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Resumo

A adoção em massa de algoritmos de aprendizado de máquina trouxe preocupações den-
tro da comunidade de pesquisa de privacidade de dados, exigindo esforços para desenvolver
técnicas de preservação de privacidade. Entre essas abordagens, a avaliação homomórfica
de algoritmos de aprendizado de máquina se destaca por ser capaz de computar diretamente
sobre dados encriptados, oferecendo garantias de confidencialidade robustas. Enquanto
houve progresso significativo em algoritmos eficientes de criptografia homomórfica (HE)
para inferência em Redes Neurais Convolucionais (CNNs), ainda não existem soluções
eficientes para treinamento encriptado. As soluções atuais geralmente dependem de pro-
tocolos interativos, que, embora preservem a privacidade, impõem um enorme custo de
comunicação. Essa limitação destaca a demanda por soluções de aprendizado de máquina
mais rápidas que preservem a privacidade e possam manter a confidencialidade dos dados
e o desempenho do modelo em uma ampla gama de aplicações.

Este trabalho apresenta uma nova abordagem para o aprendizado de máquina com
preservação de privacidade por meio da avaliação homomórfica do Algoritmo de Reco-
nhecimento de Wilkie, Stonham e Aleksander (WiSARD) (Aleksander et al., 1984) e
subsequentes Redes Neurais Sem Pesos (WNNs) de última geração, usando o esquema
TFHE de criptografia totalmente homomórfica (FHE). Apresentamos várias contribuições,
incluindo extensões para o TFHE, otimizações de parâmetros e modificações nas WiSARDs
para melhorar a acurácia. Nossa abordagem permite o treinamento e a inferência baseada
em FHE, juntamente com técnicas complementares, como balanceamento homomórfico.

Avaliamos nossos modelos homomórficos WiSARD em relação a abordagens de última
geração em três conjuntos de dados de referência: MNIST, HAM10000 e Wisconsin Breast
Cancer. Nossos resultados demonstram melhorias significativas de desempenho, alcançando
níveis de latência competitivos em minutos de treinamento criptografado em comparação
aos dias exigidos por trabalhos anteriores. Para o MNIST, alcançamos 91,71% de acurácia
após apenas 3,5 minutos de treinamento encriptado, aumentando para 93,76% após 3,5
horas. No HAM10000, alcançamos 67,85% de precisão em apenas 1,5 minutos, aumentando
para 69,85% após 1 hora. Comparado ao Glyph (Lou et al., 2020), o estado da arte em
treinamento homomórfico, esses resultados representam ganhos de desempenho de até
1200 vezes com uma perda máxima de acurácia de 5,4%. Para HAM10000, alcançamos
até mesmo uma melhoria de acurácia de 0,65% sendo 60 vezes mais rápidos.

Nossos modelos oferecem um bom balanço entre velocidade, acurácia e preservação de
privacidade. Também demonstramos a praticidade da nossa abordagem em hardware nível
consumidor, treinando mais de 1000 imagens do MNIST em 12 minutos ou o conjunto
inteiro do Wisconsin Breast Cancer em apenas 11 segundos usando um único núcleo e
menos de 200 MB de memória. A nossa técnica se destaca pela flexibilidade em cenários
como aprendizado distribuído, federado e contínuo. Embora ainda não alcance a acurácia
das CNNs, as WiSARDs homomórficas representam um passo significativo para tornar o
aprendizado de máquina baseado em FHE mais acessível para aplicações de dados sensíveis.



Abstract

The generalized adoption of machine learning algorithms has brought concerns within
the data privacy research community, demanding efforts to develop privacy-preserving
techniques. Among these approaches, the homomorphic evaluation of machine learning
algorithms stands out for its ability to perform computations directly on encrypted data,
offering robust and inherent confidentiality guarantees. While homomorphic encryption
(HE) has made significant progress in enabling practical inference for Convolutional Neural
Networks (CNNs), the challenge of efficient encrypted training remains unsolved. Current
solutions often rely on interactive protocols, which, while preserving privacy, imposes a
huge communication overhead. This limitation highlights the demand for faster privacy-
preserving machine learning solutions that can maintain both data confidentiality and
model performance across a wide range of applications.

This work presents a novel approach to privacy-preserving machine learning through
the homomorphic evaluation of Wilkie, Stonham, and Aleksander’s Recognition Device
(WiSARD) (Aleksander et al., 1979) and subsequent state-of-the-art Weightless Neural
Networks (WNNs), using the TFHE Fully Homomorphic Encryption (FHE) scheme.
We introduce several contributions, including extensions to TFHE, optimizations of
cryptographic parameters, and modifications to the WiSARD algorithm to improve
accuracy. Our approach enables FHE training and inference, alongside complementary
techniques such as homomorphic dataset balancing.

We evaluate our Homomorphic WiSARDs against state-of-the-art approaches on three
benchmark datasets: MNIST, HAM10000, and Wisconsin Breast Cancer. Our results
demonstrate significant performance improvements, achieving competitive accuracy levels
in minutes of encrypted training compared to days required by previous works. For MNIST,
we achieve 91.71% accuracy after only 3.5 minutes of encrypted training, rising to 93.76%
after 3.5 hours. On HAM10000, we reach 67.85% accuracy in just 1.5 minutes, increasing
to 69.85% after 1 hour. Compared to Glyph (Lou et al., 2020), the state-of-the-art
in homomorphic training, these results represent speed-ups of up to 1200 times with a
maximum accuracy loss of 5.4%. For HAM10000, we even achieved a 0.65% accuracy
improvement while being 60 times faster.

Our models offer a compelling trade-off between speed, accuracy, and privacy preserva-
tion. We also demonstrate the practicality of our approach on consumer-grade hardware,
training over 1000 MNIST images in 12 minutes or the entire Wisconsin Breast Cancer
dataset in just 11 seconds using a single thread and less than 200MB of memory. The
flexibility of our technique in scenarios like distributed, federated, and continuous learning
is highlighted. While not yet matching the peak accuracy of CNN approaches, Homomor-
phic WiSARDs represent a significant step towards making FHE-based machine learning
more accessible and practical for sensitive data applications.
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Chapter 1

Introduction

The demand for Machine Learning (ML) has increased substantially in the past decade,

driven by advances in machine learning techniques and the ability to leverage hardware

acceleration. These developments enable the implementation of deeper architectures that

can address increasingly complex problems. Notable examples include computer vision [64],

natural language processing [53], and recommendation systems [70].

In response to this demand, cloud services provide solutions for training and inferencing

over ML models, simplifying and often reducing the cost of resource allocation compared

to hosting and maintaining hardware on-premises. While being a practical solution for

many applications, cloud services also raise privacy concerns regarding both the models

and the data, particularly when dealing with sensitive information.

Privacy-preserving Machine Learning (PPML) may seem contradictory, as ML involves

extracting insights from data while privacy hides data. However, Fully Homomorphic

Encryption (FHE) provides a solution to this dilemma. FHE enables computations on

encrypted data without the need for decryption or knowledge of secret keys, allowing data

to be processed in an untrusted environment without exposition.

Recent years have seen significant progress in FHE-based ML inference. Since then,

the most successful approaches have been based on Convolutional Neural Networks

(CNNs) [23, 35, 36], achieving near state-of-the-art precision compared to plaintext models.

However, efficient and accurate encrypted training remains an open problem, as existing

solutions either fall short of state-of-the-art accuracy or require prohibitively long execution

times [45]. Alternative approaches like client-assisted FHE [14] offer promising results in

specific contexts but come with the inherent limitations of multiparty protocols.

In this dissertation, we explore the intersection of PPML and Weightless Neural Network

(WNN) architectures by proposing a novel approach: a homomorphically encrypted version

of WiSARDs [3] (Wilkie, Stonham, and Aleksander’s Recognition Device) using the TFHE

scheme [20]. WiSARD nets offer unique advantages in terms of computational efficiency

and adaptability, making them an intriguing candidate for PPML applications.

Using the TFHE scheme, we demonstrate that it is possible to efficiently train and

evaluate WiSARD nets on encrypted data, preserving the privacy of both the input data

and the trained model. This approach combines the efficiency of WiSARD nets with the

security guarantees of fully homomorphic encryption, potentially opening new avenues for

privacy-preserving machine learning applications in cloud environments.
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This work explores the foundational principles of both TFHE and WiSARDs. We

then present our methodology, the first to investigate this intersection and subsequently

analyze its performance and security characteristics. Our goal is to contribute to the field

of PPML by offering a practical and computationally efficient solution that maintains data

confidentiality without significantly compromising efficiency or model accuracy.

1.1 Contributions

In this work, we focus on advancing the field of privacy-preserving machine learning

through the development and evaluation of homomorphically encrypted WiSARD [3]

models based on the TFHE scheme [20]. Our contributions are summarized as follows:

• We extend the TFHE scheme’s functionality for encrypted data structures by de-

veloping the Controlled Demultiplexer (CDEMUX) gate, as well as defining the

CDEMUX Tree and the Inverse Vertical Packing (IVP) techniques.

• We conduct a comprehensive search over the TFHE parameter space, focusing on

improving the efficiency of the RGSW-RLWE external product operation while

maintaining the required precision and a minimum security level of 128 bits.

• We generalize the bleaching technique in WiSARD models as a non-linear activation

function, also introducing the logarithmic and bounded logarithmic activations,

which presented interesting properties and accuracy improvements in our tests.

• We design and implement fully homomorphic WiSARD models, with homomorphi-

cally encrypted training, inference, and model activation phases.

• We develop complementary techniques that enhance the core methodology, including

a privacy-preserving dataset balancing technique and strategies for distributed,

federated, and continuous learning implementations.

• We perform a comprehensive evaluation of Homomorphic WiSARDs against state-of-

the-art, assessing accuracy, training and evaluation times, and resource utilization.

• We demonstrate the practical applicability and efficacy of Homomorphic WiS-

ARDs by evaluating against three datasets in the literature, including MNIST [41],

HAM10000 [67], and Wisconsin Breast Cancer [68], comparing our results with

existing privacy-preserving machine learning techniques.

• We analyze and quantify the trade-offs between different model activation approaches

in terms of privacy preservation capabilities, computational cost, and efficiency.

The results of this work are presented in our paper titled “Homomorphic WiSARDs:

Efficient Weightless Neural Network Training over Encrypted Data” [52], which has been

accepted for publication in the proceedings of the 23rd International Conference on Applied

Cryptography and Network Security (ACNS 2025).
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1.2 Structure

The rest of this document is organized into six chapters. Chapter 4 provides an

overview of related developments in FHE-based machine learning. Chapter 2 introduces

notation, concepts about LWE-based cryptography, Fully Homomorphic Encryption, and

the TFHE scheme. Chapter 3 provides the theoretical foundations for Weightless Neural

Networks (WNNs), WiSARD nets, and presents relevant state-of-the-art techniques for

WNNs. Chapter 5 contains our methodology, including contributions to the TFHE scheme,

the results of our parameter search, our proposed modifications to the WiSARD algorithm,

our implementation of Homomorphic WiSARDs, and discussions of additional techniques.

Chapter 6 contains our experimental configurations, a comparative analysis against the

state-of-the-art, a resource usage analysis, and the model activation cost analysis. Chapter 7

presents our conclusions and introduces future work.
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Chapter 2

Homomorphic Encryption

Homomorphic Encryption (HE) is a cryptographic solution that allows computations to

be performed on encrypted data. Its theoretical foundation dates back to a 1978 paper by

Rivest, Adleman, and Dertouzos [60]. Since then, many HE schemes have been developed

to provide solutions for privacy-preserving computation.

In Section 2.1, we introduce the fundamental concepts related to homomorphic encryp-

tion. In Section 2.2, we present the notation used throughout the chapter. In Section 2.3,

we explain the LWE problem and the RLWE variant. In Section 2.4, we detail the TFHE

scheme, the foundation for the development of our techniques.

2.1 Fundamental Concepts

A homomorphism is a structure-preserving map between two algebraic structures.

In the context of homomorphic encryption, this mathematical concept is applied to

create a correspondence between operations in the plaintext space and operations in the

ciphertext space. This correspondence allows computations to be performed on encrypted

data without decrypting it, while still yielding meaningful results when decrypted. An

encryption scheme is homomorphic with respect to an operation ⋄ in the plaintext space if

there exists a corresponding operation ◦ in the ciphertext space such that:

decsk(encpk(m1) ◦ encpk(m2)) = m1 ⋄m2, ∀m1,m2 ∈M

Where M is the set of possible messages, encpk is the encryption function, given a

public key pk, and decsk is the decryption function, given a secret key sk. This ensures

that applying the operation ◦ on ciphertexts and decrypting is equivalent to applying ⋄ on

plaintext messages. Figure 2.1 represents homomorphic encryption as a category, where M

and M ′ are messages before and after an operation and E is a functor that maps plaintext

operations to the ciphertext domain, preserving their algebraic structure.

Homomorphic encryption schemes are designed to support various types of computations

on encrypted data. They typically include algorithms for key generation, encryption,

decryption, and evaluation of functions over ciphertexts. It is important to note that

the operations on plaintexts and ciphertexts may differ significantly. For example, the

addition of plaintexts might correspond to a more complex operation when performed on
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Figure 2.1: Homomorphism in encryption schemes.

ciphertexts.

Several traditional encryption schemes exhibit homomorphic properties. Examples

include RSA [61], ElGamal [24], and Paillier [54]. While the Paillier cryptosystem is

homomorphic over addition, RSA and ElGamal are homomorphic over multiplication.

Although they have homomorphic capabilities, these capabilities alone are not sufficient

to enable arbitrary computations. To achieve that, an encryption scheme must implement

a functionally complete set of operations while also allowing arbitrarily long operation

chains. For instance, homomorphism over addition and multiplication enables polynomial

evaluation, which in turn enables function approximation to arbitrary precision. In boolean

logic, the AND and XOR gates together constitute a functionally complete set of operations,

not only because they form a universal set of logic gates, but also because they correspond

to multiplication and addition over the Galois field GF (2), respectively.

Homomorphic encryption schemes are classified by their computational limitations,

with each successive category offering broader capabilities:

1. Partially Homomorphic Encryption (PHE): Implements homomorphism over at least

one operation, typically either addition or multiplication.

2. Somewhat Homomorphic Encryption (SHE): Implements a functionally complete set

of operations, allowing one to evaluate operation chains with limited depth.

3. Fully Homomorphic Encryption (FHE): Can evaluate any computable function on

encrypted data, with operation chains unbounded in depth.

Beyond computational capabilities, HE schemes must provide strong security guar-

antees against cryptographic attacks. Consider the deterministic version of RSA: while

homomorphic over multiplication, encrypting any plaintext message always produces the

same ciphertext, making it vulnerable to Chosen-Plaintext Attacks (CPA) [38]. This

means that if an attacker is able to encrypt carefully chosen plaintexts and observe the

resulting ciphertexts, they can potentially obtain all or part of the secret key.

To be indistinguishable against CPA, most SHE and FHE schemes introduce randomness

into the ciphertext, ensuring that the same message encrypted twice will, with overwhelming

probability, result in distinct ciphertexts [27]. The major drawback is that the result of each

operation slightly diverges in value with the introduced randomness, causing intermediate

results in an operation chain to become increasingly imprecise. This divergence, known as

noise, can grow until the message is corrupted. Consequently, the maximum length of an

operation chain is limited by the noise propagation, as illustrated in Figure 2.2.
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Figure 2.2: Noise propagation over the operation chain.

The breakthrough leading to the first FHE scheme was achieved by Gentry in 2009 [27]

with the introduction of bootstrapping. It involves creating a SHE scheme with a simple

enough decryption function and then homomorphically evaluating this function to produce

a clean ciphertext. This process is then used to reduce the noise in the operation chain.

Even though bootstrapping aims for simple decryption functions, it is still a computa-

tionally expensive operation in most modern FHE schemes. For this reason, they must

be carefully inserted between operation chains, otherwise performance can be hindered.

However, simpler functions can be evaluated without the need for bootstraps in some

FHE schemes by improving the robustness of cryptographic parameters. This approach is

known as leveled function evaluation and can be a practical solution in many situations.

In the next subsections, we will explore computational problems that lay the foundation

for some SHE and FHE schemes, as well as going in detail over an FHE scheme that can

evaluate arbitrary functions both during bootstrap and in a leveled setting.

2.2 Notation

We denote Sn
q as the set of vectors with n elements, where each element belongs to

a set S modulo q. Subscripts are also used to index elements of a vector, where si ∈ S

represents the i-th element of s ∈ Sn. B denotes the set {0, 1}. N, Z, Q, and R denote

the sets of natural, integer, rational, and real numbers, respectively. T denotes the real

torus R/Z, which is also R mod 1. S[X] denotes the set of polynomials in the variable X

with coefficients belonging to S. Φ2d(X) denotes the 2d-th cyclotomic polynomial in the

variable X. S denotes the polynomial ring S[X]/Φ2d(X) in the variable X for a set S. ÇS

denotes a fixed probability distribution over samples in a set S.

2.3 Learning With Errors

Learning With Errors (LWE) is a computational problem introduced by Regev in 2005,

which has become foundational in modern cryptography, particularly in the development

of post-quantum cryptosystems. LWE involves distinguishing between random linear

equations perturbed by a small amount of noise and uniformly random equations [58].

Regev demonstrated that the LWE problem is at least as hard as several worst-case

lattice problems [59]. The LWE problem has served as the basis for many public-key

cryptosystems, including homomorphic encryption schemes and key-exchange algorithms.
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The LWE problem is defined as follows. There exists an unknown linear function

f : Zn
q → Zq in the form f(xi) = (s · xi) + ei, where s ∈ Zn

q is a secret and ei ∼ Ç is a

small amount of noise drawn from a discrete Gaussian distribution Ç. Given a limited

number of sample pairs in the form (xi, f(xi)) ∈ Zn
q × Zq:

• Search LWE: Find the value of s.

• Decision LWE: Differentiate between pairs from f and uniformly random pairs.

The security of LWE-based cryptosystems depends on the choice of parameters n, q,

and the distribution Ç. Larger values of n and appropriate choices of q and Ç lead to

stronger security but at the cost of increased computational overhead.

Lyubashevsky et al. [47] introduced Ring Learning With Errors (RLWE), an algebraic

variant of LWE. RLWE offers improved efficiency by operating in polynomial rings, allowing

for more compact representations and faster operations.

The RLWE problem is defined as follows. There exists an unknown linear function

f : Rq → Rq in the form f(xi) = (s · xi) + ei, where s ∈ Rq is a secret, xi ∈ Rq is chosen

uniformly at random, and ei ∼ Ç is a small amount of noise. Given a limited number of

sample pairs in the form (xi, f(xi)) ∈ Rq ×Rq:

• Search RLWE: Find the value of s.

• Decision RLWE: Differentiate between pairs from f and uniformly random pairs.

Ongoing research in LWE and RLWE focuses on optimizing parameter selection,

improving implementation efficiency, and exploring new applications in cryptography.

These problems remain central to the development of quantum-resistant cryptographic

protocols and homomorphic encryption schemes.

2.4 TFHE Scheme

TFHE is a FHE scheme introduced by Chillotti et al. [19] in 2016, built on the

hardness assumptions of the LWE problem and its ring variant. It significantly improves

performance over previous FHE schemes by introducing a fast bootstrap procedure, along

with generalized and scale-invariant representations over the Torus.

This section introduces the algebraic foundations and fundamental algorithms un-

derlying TFHE, which enable homomorphic evaluation of both arithmetic and arbitrary

functions. Subsection 2.4.1 discusses the ciphertext types in TFHE. Subsection 2.4.2

presents the basic operations, including arithmetic, encryption, and decryption. Sub-

section 2.4.3 defines the CMUX gate. Subsection 2.4.4 unveils the CMUX tree method.

Subsection 2.4.5 outlines Blind Rotation procedure. Subsection 2.4.6 explains Sample

Extraction procedure. Subsection 2.4.7 details Vertical Packing technique. Subsection 2.4.8

describes Key Switching. Subsection 2.4.9 discloses Programmable Bootstrapping.
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2.4.1 Ciphertexts

TFHE operates through three primary types of ciphertext, each serving distinct

purposes in the scheme. Although the original TFHE definition employs the Torus

notation, we opt for the representation over Zq, which is prevalent in the literature.

Table 2.1 introduces the parameters in TFHE, which will be detailed in this section.

Parameter Description

p Modulus for plaintext space Zp.
q Modulus for ciphertext space Zq.
Ã Standard deviation of the error distribution in samples.
n Dimension of the secret key vector in LWE samples.
k Number of polynomials in RLWE samples.
N Power-of-two degree of polynomials in RLWE samples.
ℓ Levels in the gadget decomposition for RGSW samples.

ℓKS Levels in the gadget decomposition for packing key switching.
´ Power-of-two gadget decomposition base for RGSW samples.

´KS Power-of-two gadget decomposition base for packing key switching.

Table 2.1: Cryptographic parameters used in the TFHE scheme.

LWE is the most basic ciphertext, encrypting a scalar in Zp and defined by a pair

(a, b) ∈ Zn+1
q , where b = ïa, sð+ e. Here, a (the basis vector) is uniformly sampled from

Zn
q , s (the secret key) is uniformly sampled from Bn, and e (the random noise) is sampled

from a Gaussian distribution over Z with mean 0 and standard deviation Ã.

On the other hand, RLWE is a composite ciphertext, which encrypts a polynomial in

Rp and is defined by a pair (a, b) ∈ Rk+1
q , where b = a · s+ e. In this case, a (the basis

vector) is uniformly sampled from Rk
q , s (the secret key) is uniformly sampled from Rk

2,

and e (the random noise) is sampled from a Gaussian distribution over R with mean 0 and

standard deviation Ã. A polynomial packs multiple scalar values as coefficients, allowing

for batched, SIMD-like evaluation (Single Instruction, Multiple Data).

Finally, a RGSW ciphertext, based on the Gentry-Sahai-Waters scheme [28], is a special

structure composed of ℓ(k + 1) RLWE ciphertexts. It encrypts a gadget decomposition

matrix G := [[0, q
p´1 ], . . . , [0,

q
p´ℓ ], [

q
p´1 , 0], . . . , [

q
p´ℓ , 0]]. G represents the decomposition of

a scalar s ∈ Zp into ℓ terms, formed by powers of a given basis ´. This decomposition

enables a fundamental arithmetic operation that will be explained in the next subsection.

A ciphertext is said to be “fresh” if it encrypts an element within a noise variance of

Ã2, which means that no operations were performed on it, except its own initialization.

2.4.2 Basic Operations

The original TFHE scheme defines a functionally complete set of operations to achieve

FHE. Basic arithmetic operations involving LWE and RLWE ciphertexts are described in

Table 2.2. All LWE operations are performed modulo q, whereas all RLWE operations

described are performed modulo XN + 1.
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Operation Operands Output

Addition LWE (a, b) Scalar c (a, b+ c)
Subtraction LWE (a, b) Scalar c (a, b− c)

Multiplication LWE (a, b) Scalar c (a, b · c)
Addition LWE (a1, b1) LWE (a2, b2) (a1 + a2, b1 + b2)

Subtraction LWE (a1, b1) LWE (a2, b2) (a1 − a2, b1 − b2)

Addition RLWE (a, b) Polynomial c (a, b+ c)
Subtraction RLWE (a, b) Polynomial c (a, b− c)

Multiplication RLWE (a, b) Polynomial c (a, b · c)
Addition RLWE (a1, b1) RLWE (a2, b2) (a1 + a2, b1 + b2)

Subtraction RLWE (a1, b1) RLWE (a2, b2) (a1 − a2, b1 − b2)

Table 2.2: Basic arithmetic operations in the TFHE scheme.

Notice that no multiplication between LWE or RLWE ciphertexts is defined. Instead, an

operation named External Product (⊡) is defined between RGSW and RLWE ciphertexts.

This operation enables the element-wise multiplication between a scalar, encrypted as a

RGSW ciphertext, and each coefficient in a polynomial, encrypted as a RLWE ciphertext,

resulting in an RLWE ciphertext. Algorithm 1 details this operation.

Algorithm 1 RGSW-RLWE External Product (⊡).

Input: A RGSW sample C encrypting a message m1 with noise ÃC ;
Input: A RLWE sample d = (a, b) encrypting a message m2 with noise Ãd;

Output: A RLWE sample encrypting a message m1 ·m2 with noise Ã;
Noise: Ã2 f Ã2

d + (k + 1)ℓN(0.5´)2Ã2
C + (1 + kN)(2´ℓ)−2;

1: let â be the decomposition of a such that a =
∑ℓ

i=1 âi · ´
i

2: let b̂ be the decomposition of b such that b =
∑ℓ

i=1 b̂i · ´
i

3: return
∑ℓ

i=1 Ci · âi +
∑ℓ

i=1 Cℓ+i · b̂i

Given a fresh LWE or RLWE ciphertext encrypting zero, a message can be encrypted

by simple cleartext addition. An RGSW ciphertext is basically a row-wise encryption of

the gadget decomposition matrix described in the last subsection. The decryption of a

ciphertext, known as phase [19], is calculated as follows.

• LWE: Given an LWE ciphertext (a, b) and a LWE secret s, return
⌈

p
q
(b− ïa, sð)

⌋

.

• RLWE: Given an RLWE ciphertext (a, b) and a RLWE secret s, return
⌈

p
q
(b− a · s)

⌋

.

• RGSW: Given an RGSW ciphertext C = {(a1, b1), . . . , (a2ℓ, b2ℓ)} and a RLWE

secret s, return
⌈

p
q

∑ℓ
i=1(b− a · s)

⌋

.

In the remainder of this section, we describe high-level constructs that can be realized

by means of the above operations, enabling the TFHE scheme to achieve leveled discrete

function evaluation, key switching, and bootstrapping.
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2.4.3 CMUX Gate

The Controlled Multiplexer gate (CMUX ) is a fundamental primitive for multiple

ciphertext operations in the TFHE scheme, being characterized by three input channels

and one output channel. The control input channel accepts an RGSW ciphertext that

encrypts a binary message C ∈ B, while the two data input channels receive RLWE

ciphertexts. The CMUX gate, through homomorphic evaluation, replicates one of the two

data input messages to the output channel based on the value of C. Specifically, if C = 0,

the first input data message is routed to the output channel. If C = 1, the second input

data message is directed to the output channel. In Figure 2.3, we depict the CMUX gate.

Cmux

C = 0

s0
s1

s0 Cmux

C = 1

s0
s1

s1

Figure 2.3: Representations of the CMUX gate with distinct control messages.

The CMUX gate enables one to secretly select between two encrypted input messages

based on an encrypted control message. This functionality is achieved by using the

external product operation to conditionally select between the zero element and the

difference between the two encrypted input messages and then adding this value to the

first encrypted input message. Specifically, given two encrypted input messages m0 and

m1 and an encrypted control message C, the output is described by Algorithm 2.

Algorithm 2 Controlled Multiplexer Gate (Cmux).

Input: A binary RGSW sample C with noise ÃC ;
Input: A RLWE sample s0 encrypting a message m0 with noise Ãs0 ;
Input: A RLWE sample s1 encrypting a message m1 with noise Ãs1 ;

Output: A RLWE sample with noise Ã encrypting either m0 or m1;
Noise: Ã2 f max(Ã2

s0
, Ã2

s1
) + (k + 1)ℓN(0.5´)2Ã2

C + (1 + kN)(2´ℓ)−2;

1: return s0 + C ⊡ (s1 − s0)

2.4.4 CMUX Tree

The functionality of the CMUX gate can be extended to select between an arbitrary

number of encrypted input messages. This is accomplished through a hierarchical tree-like

arrangement of CMUX gates. The process begins by applying the CMUX gate between

all pairs of input messages. Subsequently, CMUX operations are recursively applied to

the outputs of the preceding stage, with each level of the tree utilizing a distinct control

message. In Figure 2.4, we represent the CMUX tree arrangement for two control messages.

This recursive construction yields a single ciphertext resulting from the selection

between all input ciphertexts. The selection of the input message is determined by the

sequence of control messages used at each level of the tree. This method effectively enables
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Figure 2.4: A representation of a two-level CMUX tree.

secretly indexing an array of ciphertexts based on an encrypted control message array,

where each control message encrypts an individual bit from the desired index. Given an

array of encrypted input messages m and an array of encrypted control messages C, the

output array of the CMUX tree is described by Algorithm 3.

Algorithm 3 Controlled Multiplexer Tree (CmuxTree).

Input: Array of d binary RGSW samples C with noise ÃC ;
Input: Array of 2d RLWE samples s encrypting an array m with noise Ãs;

Output: A RLWE sample with noise Ã encrypting N messages from m;
Noise: Ã2 f Ã2

s + d((k + 1)ℓN(0.5´)2Ã2
C + (1 + kN)(2´ℓ)−2);

1: s′ ← s
2: for i← 0 to d− 1 do

3: t← 2d−i−1

4: for j ← 0 to t do

5: s′j ← Cmux(Ci, s
′
j, s

′
j+t)

6: return s′0

2.4.5 Blind Rotation

Blind Rotation is an operation used to perform a controlled rotation on the coefficients

of an encrypted RLWE ciphertext. This rotation is based on a sequence of RGSW

ciphertexts encrypting binary values, referred to as the control sequence. This operation

is “blind” as it does not reveal information about the ciphertext or the control sequence.

This operation exploits that multiplying a polynomial in X of degree N by X modulo

XN + 1 results in a counterclockwise shift of the polynomial’s coefficients. Using this

principle, the blind rotation algorithm strategically combines multiplications by fixed

powers of X with CMUX gate operations. This results in a RLWE ciphertext that has its

coefficients rotated by a total amount determined by the sequence of rotations conditionally

applied according to the control sequence. The procedure is described in Algorithm 4.

We use the sequence of powers of two to achieve counterclockwise rotations, i.e., ri = 2i.

As multiplication occurs modulo the 2N -th cyclotomic polynomial, rotation can also be

performed in the clockwise direction employing the sequence ri := 2N − 2i, effectively

reversing a rotation over a RLWE ciphertext provided the same control sequence.
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Algorithm 4 Blind Rotation (BlindRotate).

Input: An array of d binary RGSW samples C with noise ÃC ;
Input: An array of d rotation offsets r;
Input: A RLWE sample s with noise Ãs;

Output: A RLWE sample with noise Ã and rotation determined by C;
Noise: Ã f Ãs + d((k + 1)ℓN(0.5´)2ÃC + (1 + kN)(2´ℓ)−2);

1: t← s
2: for i← 0 to d− 1 do

3: t′ ← t · (Xri − 1) mod XN + 1
4: t← Cmux(Ci, t, t

′)
5: return t

2.4.6 Sample Extraction

The Sample Extract operation in TFHE extracts individual LWE ciphertexts from

specific coefficients of an RLWE ciphertext. Given an RLWE ciphertext s = (a, b) and a

coefficient position i within the range [0, N), this operation produces an LWE ciphertext

s′ = (a′, b′) of dimension N . The method is described in Algorithm 5.

Algorithm 5 Sample Extraction (SampleExtract).

Input: A RLWE sample s = (a, b) encrypting a message m with noise Ãs;
Input: An index c ∈ [0, N);

Output: A LWE sample encrypting the c-th coefficient of m with noise Ã;
Noise: Ã2 = Ã2

s ;

1: for i← 0 to k − 1 do

2: for j ← 0 to c do

3: a′N ·i+j ← ac−j

4: for j ← c+ 1 to N − 1 do

5: a′N ·i+j ← q − aN+c−j

6: b′ ← bc
7: return (a′, b′)

2.4.7 Vertical Packing

The Vertical Packing (VP) technique [19] homomorphically evaluates arbitrary func-

tions employing a combination of CMUX trees and blind rotation over RLWE ciphertexts.

It uses RLWE ciphertext arrays as encrypted lookup tables, allowing the selection and

decryption of individual LWE ciphertexts representing the outputs of the functions.

In VP, a sequence of RGSW ciphertexts containing elements in B, known as the control

sequence, encodes the input. Let N be the polynomial degree of the RLWE ciphertexts

encrypting the lookup table entries. The control sequence is then split into two subsets:

the former comprises the initial log2(N) RGSW ciphertexts, used for blind rotation, while

the latter contains any remaining RGSW ciphertexts for the CMUX tree.

The CMUX tree, controlled by the second subset, selects the appropriate RLWE

ciphertext from the array. This ciphertext contains the output corresponding to the
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encoded input. If the second subset is empty, no RGSW ciphertexts are available after

partitioning, and the look-up table is encrypted by a single RLWE. The first subset guides

the blind rotation of the selected RLWE. This rotation shifts the polynomial coefficients

to move the output to the first coefficient. Finally, the output is extracted as an LWE. We

detail this procedure in Algorithm 6.

Algorithm 6 Vertical Packing (VerticalPacking).

Input: Array of d binary RGSW samples C with noise ÃC ;
Input: Array of 2d/N RLWE samples s encrypting array m with noise Ãs;

Output: LWE encrypting message extracted from m, with noise Ã;
Noise: Ã2 f Ã2

s + d((k + 1)ℓN(0.5´)2Ã2
C + (1 + kN)(2´ℓ)−2);

1: n← log2(N)
2: r ← {2N − 1, . . . , 2N − 2d−n}
3: s′ ← CmuxTree({Cn, . . . , Cd−1}, s)
4: s′ ← BlindRotate({C0, . . . , Cn−1}, r, s

′)
5: return SampleExtract(s′, 0)

2.4.8 Key Switching

Key Switching is a family of procedures in TFHE that performs the homomorphic

evaluation of the ciphertext phase. These techniques allow for the transformation of

ciphertexts encrypted under one secret key to be decryptable under a different key, while

also facilitating transitions between different parameter sets. Key-switching procedures are

fundamental to various ciphertext manipulations, including bootstrapping, transitioning

between ciphertext types, and enabling multi-key homomorphic encryption [17].

The original TFHE [20] introduces two variants: public and private functional key

switching. Both procedures enable the transition from an array of LWE ciphertexts of

dimension n, encrypted under a secret key s ∈ Bn, to a RLWE ciphertext encrypted under

a new secret key s′ ∈ Rq. This transition is enabled by a specialized key switching key

ks ∈ R2nt
q , where t ∈ N is a decomposition precision parameter. Additionally, a linear

morphism f : Zn
q → Rq maps the input LWE ciphertexts to the output RLWE ciphertexts.

The difference between the public and private variants is that f is publicly known in the

public version, whereas f is encoded as part of the key ks in the private version.

Although detailed algorithms for both functional key-switching procedures are well

documented in the literature [20] and beyond the scope of this work, it is important to

highlight a special case: the packing key-switching procedure. This procedure is effectively

an application of public functional key switching, employing a specific linear morphism

f that maps each input LWE ciphertext to sequential coefficients in the output RLWE

ciphertext. In particular, both functional key switching procedures use the same gadget

decomposition principles that drive the external product operation. This implies that the

parameters for packing key switching, namely ℓKS and ´KS, share similar properties and

distributions with the parameters ℓ and ´, used in the RGSW ciphertexts.
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2.4.9 Programmable Bootstrapping

As discussed previously, the ciphertexts in the FHE schemes incorporate randomness

to ensure security. As noise accumulates during arithmetic operations, noise management

is required for long operation chains, eventually requiring a reset to smaller noise levels to

enable further computations. This process is known as Bootstrapping.

The TFHE literature contains various bootstrap techniques. In particular, one of them

enables arbitrary evaluation of functions during bootstrap, which is known as Programmable

Bootstrapping [10, 21] (PBS). It exploits the fact that TFHE’s gate bootstrap is a special

LUT evaluation of the identity function that also reduces noise. By composing arbitrary

functions in the bootstrap, they can be evaluated for no additional cost.

Given two bootstrap precision parameters t, t′ ∈ N and a bootstrap key kb ∈ R
ℓn(k+1)2

q ,

the programmable bootstrap procedure applies a morphism f : Zt 7→ Zt′ over an LWE

encrypting a message m, resulting in an LWE encrypting f(m) with reduced noise.

Although other details of PBS are beyond the scope of this work, it is important to

note its role in enabling function evaluation with LWE ciphertexts as input, whereas VP

requires RGSW ciphertexts. This is required when performing function evaluation using

the result from previous homomorphic computations. However, it is significantly more

expensive than VP and is only capable of evaluating small LUTs with good performance.
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Chapter 3

Weightless Neural Networks

Machine Learning (ML) is a research field focused on enabling computational systems

to learn and improve based on experience rather than explicit programming. This learning

process is based on observations or data, from which underlying patterns can be learned.

Brain models stand out as a prominent family of ML algorithms, which resembles the

behavior of the nervous system found in animal brains [62]. The development of these

algorithms is primarily motivated by the pursuit of understanding the mechanisms of the

biological brain and their ability to address complex and loosely defined problems.

The Perceptron, introduced by Rosenblatt (1958) [62], based on the artificial neuron

model by McCulloch and Pitts (1943) [48], represents one of the earliest brain models. This

model later evolved into what is now known as an Artificial Neural Network (ANN). On a

high level, an ANN is an arrangement of artificial neurons that communicate by sending

signals over numerous weighted connections. These weights are dynamically adjusted

during training as the network is exposed to new data, allowing the model to approximate

the behavior of arbitrary functions [63].

Around the same time, alternative brain models, such as the N-Tuple Classifier from

Bledsoe and Browning (1959) [8], were also proposed, further contributing to the machine

learning field. N-tuple classifiers, later known as Weightless Neural Networks (WNNs),

explore a radically different approach than ANNs, and compatible with the decoding that

occurs in the neurons’ dendritic trees [39]. The basic principle behind WNNs involves

segmenting the binary representation of the input data into small, deterministic, usually

assigned groups of N bits, known as N -tuples. This segmentation breaks the input data

into smaller feature combinations, recognizing the information by means of statistical

correlation, which vaguely resembles how visual information is processed by animal brains.

WNNs demonstrated potential in performing classification tasks without relying on

weight multiplications. WiSARDs [3] were among the first practical implementations

of WNNs and the first to be realized as hardware devices. It also presented a modular

architecture that conveyed more flexibility in training and composing different classes.

In Section 3.1, we introduce the notation used throughout the chapter. In Section 3.2, we

detail Random Access Memory (RAM) devices. In Section 3.3, we present Discriminators,

which are trainable recognition structures designed to address some of the limitations of

RAMs. In Section 3.4, we provide an overview of the WiSARD models. In Section 3.5, we

discuss some of the techniques that lay the foundation for the state-of-the-art.
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3.1 Notation

We denote Sn
q as the set of vectors with n elements, where each element belongs to

a set S modulo q. Subscripts are also used to index elements in a vector, which means

that si ∈ S represents the i-th element of s ∈ Sn. B denotes the set {0, 1}. N, Z, Q, and

R denote the sets of natural, integer, rational, and real numbers, respectively.

3.2 Random Access Memories

Random Access Memory (RAM) devices are programmable memory units that are

analogous to lookup tables, capable of dynamically storing discrete functions. A RAM with

a N -bit input and P -bit output space can represent any function f : BN 7→ BP . RAMs

can store a unique output for every possible input, making them sufficiently expressive to

encode any sort of function that may fit within their representation domain.

However, this expressiveness comes with a drawback: the size of a RAM unit grows

exponentially with the number of input bits and linearly with the number of output bits,

which may potentially limit their practicality for functions with a large input space. To

demonstrate their representation capabilities, we present the NOR and XOR logic gates

encoded as binary functions, by using 2-bit RAMs with 1-bit output each, in Figure 3.1.
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Figure 3.1: Evaluation of the NOR and XOR logic gates using RAMs.

RAMs can dynamically learn functions by updating their stored output based on

input-output pairs provided during the training process. This allows them to directly store

the output corresponding to each possible input combination, effectively memorizing any

given function. Learning is achieved by using input values as addresses to access specific

memory locations, where the desired output values are then written or updated.

This learning capability is particularly effective for functions where all possible input

combinations can be explicitly provided and stored, making RAMs ideal for implementing

static and deterministic functions like logic gates. However, this approach also implies

that RAMs can only reproduce behaviors that have been explicitly taught during training,

without the ability to interpolate outputs for any inputs not seen during training.

3.3 Discriminators

One way to overcome the interpolation limitations of RAMs and reduce the size of the

model is to organize them into structures known as discriminators. In this setup, all the
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s input bits are segmented into k equal-sized tuples of size a. Each a-tuple is provided

as input into k distinct RAMs. Each RAM is then trained to be a binary function that

determines whether a a-tuple is relevant for general pattern recognition. The contents of

their positions are summed to form a score that quantifies the number of relevant a-tuples

present in the input. We formalize the evaluation procedure in Algorithm 7.

Algorithm 7 Discriminator Evaluation (DiscEval).

Input: Input size s;
Input: Address size a;
Input: Evaluation sample S ∈ Bs;
Input: Discriminator state D ∈ B2a+s/a,;

Output: Recognition score Φ;

1: Φ← 0 ▷ reset the recognition score accumulator.
2: for r ← 0 to +s/a, do ▷ loop over all RAMs in the discriminator.
3: k ← 0 ▷ reset the address for the current RAM.
4: for i← 0 to a do ▷ loop over sample bits associated to RAM r.
5: k ← k + 2i · Sar+i ▷ append the sample bit to the RAM address.
6: Φ← Φ +D2ar+k ▷ retrieve the value for the given RAM address.
7: return Φ ▷ return the final recognition score.

As an example, we represent two evaluations of a discriminator, composed of two

RAMs, using two distinct inputs in Figure 3.2.
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Figure 3.2: Discriminator evaluations with input size 4 and address size 2.

The training of a discriminator begins with all k RAMs’ outputs set to zero. As training

data are presented to the discriminator, it considers each of the k a-tuples in the sample as

important combinations of features to recognize that sample. For that reason, the outputs

of the k respective RAMs for these a-tuples are set to one. Repeating this adjustment over

all samples, each RAM gradually learns to recognize feature combinations in the training

set, becoming specialized in recognizing inputs that share similar features. As the outputs

of all a-tuples are set to one, all training samples will consistently receive the maximum

score. We formalize the discriminator training procedure for a single input in Algorithm 8.
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Algorithm 8 Discriminator Training (DiscTrain).

Input: Input size s;
Input: Address size a;
Input: Sample S ∈ Bs;
Input: Discriminator state D ∈ B2a+s/a,;

Output: Updated discriminator state D;

1: for r ← 0 to +s/a, do ▷ loop over all RAMs in the discriminator.
2: k ← 0 ▷ reset the address for the current RAM.
3: for i← 0 to a do ▷ loop over sample bits associated to RAM r.
4: k ← k + 2i · Sar+i ▷ append the sample bit to the RAM address.
5: D2ar+k ← 1 ▷ update the value for the given RAM address.
6: return D ▷ return the updated discriminator state.

3.4 WiSARD Nets

A standalone discriminator provides a similarity score between a sample and the set

of features it represents. However, for classification problems, each class requires its own

discriminator to decide how closely a sample matches the learned features of that specific

class. Using a discriminator per class, the WiSARD net can generate individual scores,

allowing it to determine the most likely class. The selected class is typically the one with

the highest score, except in case of a tie, for which an untie criterion must be defined.

A WiSARD net consists of three main components: a permutation procedure that

provides a fixed, deterministic, pseudo-random mapping between the input data and the

corresponding N-tuples, shared among all discriminators; a set of discriminators, each

responsible for generating a similarity score for a class in the dataset; and a scoreboard

criterion that determines the classification of the input sample based on the similarity

scores. We show an overview of the WiSARD net architecture in Figure 3.3.
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Figure 3.3: Overview of the WiSARD net architecture.
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Training a WiSARD model consists in training the discriminator associated with each

label from a training set. However, evaluating a WiSARD model involves evaluating all

discriminators to determine the highest score for a sample. The permutation is fixed prior

to training and reused throughout the lifetime of the model. Additionally, due to the

incremental nature of discriminators, a WiSARD model can be trained simultaneously by

multiple parties, making it suitable for distributed and federated learning.

3.5 State-of-the-Art WNNs

In this section, we explore techniques that can improve the performance of WNN models.

These techniques may not only improve the overall accuracy of these models for general

and particular kinds of data, but also reduce their computational requirements, making

them more efficient and practical for a wider range of applications. In Subsection 3.5.1,

we introduce quantization. In Subsection 3.5.2, we present the thermometer encoding. In

Subsection 3.5.3, we overview the bleaching technique.

3.5.1 Quantization

Quantization [29] refers to mapping a set of input values from a continuous or otherwise

large domain, such as Q or R, to a discrete finite domain, such as Zp for some p ∈ N.

This procedure enables the representation of real-world values in digital systems and can

reduce the memory required to store scalar sequences. However, this mapping can be lossy

and non-linear, as input values may not have exact representations in the output domain,

leading to round-off errors and blurring the distinction between close values.

The most basic form of quantization allocates uniform and equal-sized intervals to

represent ranges of input values in the output domain. An example of uniform quantization

is the rounding function, which partitions the continuous domain of R into units of intervals,

represented by the values in Z. The uniform quantization is represented in Figure 3.4.

Figure 3.4: Uniform quantization applied over a continuous function (sine).

For non-uniform distributions, such as Gaussian or exponential distributions, round-off

errors can be reduced by using non-uniform quantization techniques. They assign smaller

ranges to more frequently occurring values in the input distribution, providing higher

precision where the data density is greatest, and therefore minimizing round-off errors.
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In the context of WNNs, applying quantization over the input data significantly reduces

the model’s memory requirements and may potentially improve the model performance,

as the data are projected into a smaller, non-linear latent space that may be better

recognized with smaller RAM sizes. The challenge, however, lies in the trade-off between

the quantization resolution and the model’s accuracy. Excessive quantization can degrade

the information in the input data, negatively affecting the performance of the model.

3.5.2 Thermometer Code

Thermometer code [15, 16], also known as unary code, is a method to represent natural

numbers as increasing binary sequences of ones. A thermometer code Tq : N 7→ Bq encodes

a number x ∈ N in a binary vector t containing q bits. This encoding is defined so that for

all i ∈ [0, x), ti := 1, and for all j ∈ [x, q), tj := 0. In other words, for any natural number

x less than q, its representation using a thermometer of size q starts with x ones, followed

by zeros, padding the sequence to a total length of q bits.

As the bit sequence length increases linearly with the maximum value that may be

encoded, thermometer encoding requires significantly more bits per value than conventional

binary encoding. Therefore, this code is often used in conjunction with quantization and

rescaling values to meet specific resolution requirements. The name “thermometer code” is

inspired by its similarity to an analog thermometer, where the filled portion increases with

increasing temperature. Table 3.1 presents numbers in decimal, binary, and horizontal

thermometer representations, highlighting the number of digits required to represent them.

Binary Code Thermometer Code

Decimal B0 B1 B2 T0 T1 T2 T3 T4 T5 T6

0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 0 0 0 0 0 0
2 0 1 0 1 1 0 0 0 0 0
3 1 1 0 1 1 1 0 0 0 0
4 0 0 1 1 1 1 1 0 0 0
5 1 0 1 1 1 1 1 1 0 0
6 0 1 1 1 1 1 1 1 1 0
7 1 1 1 1 1 1 1 1 1 1

Table 3.1: Comparison between binary and thermometer codes.

In the context of WNNs, applying the thermometer code to scalar values has shown

significant improvements in recognition performance, particularly when combined with a

quantization technique that better preserves the characteristics of the underlying data [6].

Although recent WNN literature often discusses thermometer code as incorporating

quantization techniques, we choose to address these techniques separately here for clarity.
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3.5.3 Bleaching Technique

Bleaching [30] is an architectural modification of WiSARDs to adjust their sensitivity

to repeated subpatterns in the training set. It consists in replacing the binary RAM cells

in discriminators by integers, which now counts co-occurrences of sub-patterns over all

inputs in the training set instead of only acknowledging their presence.

To preserve the original score properties in WiSARDs, a threshold operation ϕt(x) is

applied to every RAM output during the inference phase, where t is a threshold value,

and then the results are summed to form the score. More formally, we define ϕt(x) := 0 if

x < t, and ϕt(x) := 1 if x g t. The optimal threshold value t for the best classification is

heavily influenced by the statistical subpattern distributions and can be static (i.e., fixed

for all RAMs) or dynamically defined for each RAM in a discriminator.

In Figure 3.5, we show the architecture of a bleaching discriminator using a static

threshold t = 2 side-by-side with the traditional binary discriminator. Note that the

discriminator states do not have semantic relation besides being fed with the same input.

0

1

1

0

RAMs

00

01

10

11

0

1

1

0

Discriminator

00

01

10

11

0

1

1

0

Input

∑

2

Score

0

2

1

0

RAMs

00

01

10

11

0

3

1

1

Discriminator

00

01

10

11

0

1

1

0

Input

≥2

ϕ Σ 1

Score

Figure 3.5: Comparison between the binary and the bleaching discriminators.

By increasing the threshold value, the bleaching technique effectively filters out noise

and weak correlations, focusing on subpatterns that appear at least a minimum number of

times during training. One of the key advantages of bleaching is its ability to significantly

enhance the accuracy of models with smaller address sizes. This is particularly beneficial

in scenarios where memory constraints limit the RAM sizes that can be used.
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Chapter 4

Related Work

The field of privacy-preserving machine learning using FHE has seen significant advances

in recent years. This chapter provides an overview of related developments in FHE-based

machine learning models in chronological order. We outline various approaches that have

pushed the boundaries of homomorphically encrypted training and inference, focusing on

their methodologies and optimizations.

Bourse et al. (2018) [11] proposed FHE-DiNN, a framework to evaluate plain text neural

networks over encrypted data using the TFHE scheme. FHE-DiNN uses bootstrapping after

every neuron evaluation, making the complexity of processing each neuron independent

of the network size. To ensure scale invariance, FHE-DiNN employs quantized integer

weights and the sign activation function, classifying MNIST [41] with an accuracy up to

96.3% in under 1.5 seconds. Although accuracy is decreased due to quantization and sign

function approximations, the authors prioritize efficient neuron-level inference.

Lou and Jiang (2019) [46] presented SHE, a shift-accumulation-based neural network for

fast inference, using the TFHE scheme in a leveled setting. SHE leverages binary-friendly

TFHE to implement ReLU activations and max pooling, avoiding the accuracy degradation

and performance overhead of polynomial approximations. SHE adopts logarithmic quanti-

zation to replace multiplications with shifts and introduces a mixed-bit-width accumulator

to optimize accumulations. SHE achieves state-of-the-art accuracy while reducing inference

latency from 76.21% to 94.23% on data sets such as MNIST [41].

Park et al. (2020) [57] proposed the first HE-friendly algorithm for privately training a

Support Vector Machine (SVM) model based on the CKKS scheme. They employed a least-

squares SVM formulation and solved the linear system using a gradient descent approach,

eliminating the need for expensive operations like matrix inversions or comparisons. Their

implementation has shown improved performance compared to an existing secure logistic

regression model in various data sets, including the Wisconsin Breast Cancer dataset [68],

suggesting that SVM training with FHE is viable and could be integrated with existing

homomorphic SVM inference algorithms.

Lou et al. (2020) [45] presented Glyph, a technique for fast and accurate training of deep

neural networks on encrypted data using FHE. Glyph uses the TFHE scheme for efficient

nonlinear activations and BGV for vector arithmetic in convolutional and fully connected

layers. In addition, Glyph incorporates transfer learning to reduce computational overhead

and improve test accuracy. Their experiments using data sets such as MNIST [41] and
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HAM10000 [67] demonstrate significant speed-ups compared to previous homomorphic

training approaches while achieving state-of-the-art accuracy.

Folkerts et al. (2021) [26] proposed REDsec, a framework that uses the TFHE scheme

to perform homomorphic inference on binary and ternary neural networks. The framework

contains tools for plaintext training and modules for encrypted inference. REDsec intro-

duces optimizations for faster inference, such as novel bidirectional bridging techniques

that allow it to use binary and integer arithmetic. Their evaluation shows an inference

time of 3.6 seconds in MNIST [41] with 98% accuracy using a multi-GPU server.

Stoian et al. (2022) [65] presented a quantization-aware training methodology for neural

networks compatible with the TFHE scheme, allowing for exact computations without

depth limitations or specialized activation functions, using the programmable bootstrap

technique. They achieve competitive accuracy in data sets such as MNIST [41]. In

particular, their method simplifies FHE-compatible networks by making it a ML problem

rather than requiring cryptographic expertise. While showcasing up to 9 layer networks,

they acknowledge the potential for implementing networks with unbounded depth.

Montero et al. (2024) [50] proposed a quantized neural network training approach that

uses the TFHE scheme to ensure data confidentiality throughout the training process.

Their method supports both logistic regression and MLP models. Utilizing TFHE’s

programmable bootstrapping for activation functions and a novel rounding operator for

quantization, they demonstrated competitive training accuracy with lower bit representa-

tions, while improving upon prior work in terms of speed for MLP training.

The related work presented in this chapter demonstrates the rapid progress and diverse

approaches to applying FHE to machine learning. Although challenges still remain,

particularly in computational efficiency, these works lay a strong foundation for advances

in privacy-preserving machine learning. As this field continues to evolve, we can expect

further innovations that bring FHE-based machine learning closer to practical real-world

applications across various domains.
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Chapter 5

Homomorphic WiSARDs

This chapter presents the methodological foundations and novel techniques developed

to enable privacy-preserving machine learning using Homomorphic WiSARDs.

In Section 5.1, we introduce several key contributions to the TFHE cryptosystem,

allowing more flexible and efficient operations on encrypted data structures. In Section 5.2,

we detail our approach to optimize TFHE parameters, focusing on balancing performance

and security in the context of the RGSW-RLWE external products. In Section 5.3, we

discuss modifications to the WiSARD algorithm, introducing novel activation functions

designed to enhance its compatibility with TFHE while preserving recognition capabilities.

In Section 5.4, we provide a comprehensive breakdown of the training, inference, and model

activation phases, each designed to operate fully within the homomorphic encryption

domain. In Section 5.5, we address other techniques that complement our methodology.

5.1 TFHE Contributions

This section presents several novel techniques that extend and enhance the functionality

of TFHE, enabling more flexible and efficient operations on encrypted data structures.

We introduce three key innovations: the Controlled Demultiplexer Gate (CDEMUX), the

CDEMUX tree, and the Inverse Vertical Packing (IVP) technique.

These contributions address important challenges in TFHE, particularly in the manip-

ulation of encrypted arrays and lookup tables (LUTs). The CDEMUX gate provides a

mechanism for conditionally positioning encrypted ciphertexts based on a binary control

ciphertext, while the CDEMUX tree extends this concept to enable positioning using

arbitrarily sized indices. The IVP technique builds on these foundations to enable the

modification of encrypted LUTs, which complements the existing VP method used for

homomorphic LUT evaluation. We note that algorithms similar in functionality to CDE-

MUX and CDEMUX tree have already been proposed in the literature. In Cong et al. [22],

they introduce HomSel and HomTrav to evaluate decision trees. Our proposal, being

independently developed, aims specifically at building the IVP algorithm.

Together, our proposed techniques offer new tools for constructing and manipulating en-

crypted data structures. In the following subsections, we detail each of these contributions,

their implementations, and some potential applications.
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5.1.1 CDEMUX Gate

We define the Controlled Demultiplexer Gate (CDEMUX) as the functional inverse of

TFHE’s Controlled Multiplexer Gate (CMUX), characterized by two input channels and

two output channels. The control input channel accepts an RGSW ciphertext that encrypts

a binary message C ∈ B, while the data input channel receives an RLWE ciphertext. The

CDEMUX gate, through homomorphic evaluation, directs the input message to the first

or second output channels based on the value of C. Specifically, if C = 0, the input data is

routed to the first output channel, while the second output channel produces a ciphertext

that encrypts the zero element. In contrast, if C = 1, the input data is directed to the

second output channel, and the first output channel produces a ciphertext encrypting the

zero element. In Figure 5.1, we illustrate the CDEMUX gate.
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Figure 5.1: Representations of the CDEMUX gate with distinct control messages.

The CDEMUX gate effectively enables conditional routing of an encrypted input

message according to the internal state of an encrypted control message. This functionality

is achieved by using the external product operation to conditionally select between the

zero element and the encrypted input message. Specifically, given an encrypted input

message m and an encrypted control message C, the tuple containing the output of the

CDEMUX gate is described by the Algorithm 9.

Algorithm 9 Controlled Demultiplexer Gate (Cdemux).

Input: A binary RGSW sample C with noise ÃC ;
Input: A RLWE sample s encrypting a message m with noise Ãs;

Output: RLWE samples with noise Ã encrypting (0, m) or (m, 0);
Noise: Ã2 f Ã2

s + (k + 1)ℓN(0.5´)2Ã2
C + (1 + kN)(2´ℓ)−2;

1: m′ ← C ⊡m
2: return (m−m′,m′)

5.1.2 CDEMUX Tree

The functionality of the CDEMUX gate can be extended to accommodate an arbitrary

number of output gates. This is accomplished through a hierarchical tree-like arrangement

of CDEMUX gates, analogous to the CMUX tree structure employed by the Vertical

Packing technique. The process begins with a single CDEMUX operation. Subsequently,

CDEMUX operations are recursively applied to both outputs of the preceding stage, and

each level of the tree utilizes a distinct control message. In Figure 5.2, we represent the

CDEMUX tree arrangement for two controlling RGSW ciphertexts.
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Figure 5.2: A representation of a two-level CDEMUX tree.

This recursive construction yields an array of ciphertexts that is predominantly encrypt-

ing zero elements, except for one specific position that contains the message routed from

the input data channel. The position of the input message within the array is determined

by the sequence of control messages used at each level of the tree. This method enables

the creation of an array of any desired size, providing precise control over the initialization

of a single secret position within the array. Control messages can be seen as a sequence

of routing instructions that guide the input data to its designated location. Specifically,

given an encrypted input message m and an array of encrypted control messages C, the

output array of the CDEMUX tree is described by the Algorithm 10.

Algorithm 10 Controlled Demultiplexer Tree (CdemuxTree).

Input: An array of d binary RGSW samples C with noise ÃC ;
Input: A RLWE sample s encrypting a message m with noise Ãs;

Output: An array of 2d RLWE samples with noise Ã, one encrypting m;
Noise: Ã2 f Ã2

s + d((k + 1)ℓN(0.5´)2Ã2
C + (1 + kN)(2´ℓ)−2);

1: s′0 ← s
2: for i← d− 1 downto 0 do

3: t← 2d−i−1

4: for j ← 0 to t do

5: (s′j, s
′
j+t)← Cdemux(Ci, s

′
j)

6: return s′

5.1.3 Inverse Vertical Packing

The Inverse Vertical Packing (IVP) technique addresses an important challenge in

the TFHE cryptosystem: secretly modifying specific coefficients within arrays of RLWE

ciphertexts. While the standard Vertical Packing (VP) allows for element retrieval in

LUTs, IVP complements this by allowing the modification of elements in LUTs, enhancing

the flexibility of homomorphic operations on encrypted data structures.

Specifically, IVP combines the blind rotation operation over RLWE ciphertexts with the

CDEMUX tree procedure to create an encrypted single-valued LUT that follows TFHE’s

vertical packing encoding. Single-valued LUTs are arrays of RLWE ciphertexts composed

of zeroed coefficients except for one secretly designated coefficient.
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In IVP, a sequence of RGSW ciphertexts containing binary elements, i.e., elements in

B, known as the control sequence, encodes the target address. Let N be the polynomial

degree of the initial RLWE ciphertext encoding the single value in its first coefficient.

The control sequence is then split into two subsets: the former comprises the initial N

RGSW ciphertexts, used for blind rotation, while the latter contains any remaining RGSW

ciphertexts used to control the CDEMUX tree.

The first subset guides the blind rotation of the selected RLWE ciphertext. This

rotates the polynomial coefficients to move the input coefficient to a position defined by the

sequence of RGSW ciphertexts encoding the index. Then, the CDEMUX tree, controlled

by the second subset, routes the RLWE message into the target range inside the array. If

the second subset is empty, no RGSW ciphertexts are available after the split, implying

that the resulting look-up table should contain a single RLWE ciphertext, which is already

positioned from the previous step. We detail this procedure in Algorithm 11.

Algorithm 11 Inverse Vertical Packing (InverseVerticalPacking).

Input: An array of d binary RGSW samples C with noise ÃC ;
Input: A RLWE sample s encrypting a single message m0 with noise Ãs;

Output: Array of 2d/N RLWE samples with noise Ã, one encrypting m0;
Noise: Ã f Ãs + d((k + 1)ℓN(0.5´)2ÃC + (1 + kN)(2´ℓ)−2);

1: n← log2(N)
2: r ← {1, . . . , 2d−n}
3: s′ ← BlindRotate({Cn−1, . . . , C0}, r, s)
4: s′ ← CdemuxTree({Cd−1, . . . , Cn}, s

′)
5: return s′

The IVP technique’s ability to create single-valued LUTs opens up powerful possibilities

when combined with other TFHE operations, particularly for updating existing LUTs.

Updating an existing LUT can be achieved in a few steps: First, we apply the VP technique

to select a target element, then we extract it to an LWE sample for arbitrary manipulation;

Then, we compute the difference between the original and modified values, use IVP to

reposition this difference and finally update the original LUT by using RLWE addition.

Moreover, we may generate LUTs of arbitrary complexity simply by adding multiple

single-valued LUTs together, enabling the secret positioning of its elements.

5.2 TFHE Parameter Search

In TFHE, the choice of cryptographic parameters dictates the execution time and

noise propagation of the operations, allowing for trade-offs between output precision

and performance. To optimize the performance of the RGSW-RLWE external product

operation while preserving the precision required for accurate evaluation, we conducted a

comprehensive exploration of the TFHE parameter space, specifically focusing on N , Ã, ℓ

and ´. This emphasis on the external product stems from its significant contribution to

the overall execution time of both the VP and IVP methods.

To take advantage of the optimized RLWE ciphertext multiplication offered by the

MOSFHET library [32], which utilizes Fast Fourier Transforms (FFT), we restrict our search
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to RLWE instances with a single high-degree polynomial by fixing k = 1. Furthermore,

given the characteristics of the FFT algorithm, we also restrict our search for values of N

that are powers of two. The MOSFHET library supports values of N between 256 and

4096. Taking into account our restrictions for N and k, we estimated the normalized noise

standard deviation (Ã) for each value of N by using the Lattice Estimator library [2], to

ensure a minimum 128-bit security. These values of Ã are described in Table 5.1.

N std. dev. (Ã)

256 1.00× 2−5

512 1.15× 2−11

1024 1.85× 2−25

2048 1.10× 2−51

4096 1.00× 2−104

Table 5.1: Estimated noise standard deviation Ã for each value of N .

Taking into account all combinations of ℓ and log2(´) satisfying the constraint ℓ ·

log2(´) f 54, where 54 is the number of usable bits in each ciphertext component defined

by the MOSFHET implementation, we then estimate the upper bound for the noise

propagation of the average case external product, based on Corollary 3.14 from TFHE [20].

This analysis determines values of log2(´) that minimize the noise variance for each choice

of ℓ and N , which, in turn, maximize the precision of these parameter choices, enabling

the selection of computationally cheaper sets. Our findings are visualized in Figure 5.3.
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Figure 5.3: Optimal values of log2(´) for each choice of ℓ and N .
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We conducted exhaustive testing of the parameter sets using the MOSFHET library,

observing a minor discrepancy between theoretical predictions and experimental results.

In particular, this deviation is marginal, being no more than two units for smaller values of

ℓ, and can be explained by implementation details, such as numerical imprecision in FFTs.

5.3 WiSARD Activation Functions

The literature on WNNs frequently emphasizes on minimizing resource usage, as these

models are often employed as a cost-effective alternative to traditional ANNs. However,

in our use case, many of these techniques are not applicable due to the constraints of

HE. Consequently, we investigated several modifications to WiSARDs to enhance their

compatibility with FHE while preserving their classification performance.

Our approach maintains a balance between preserving the efficiency for which WNNs

are known and adapting them to work within the cryptographic environment. In Table 5.2,

we summarize the functions we investigated to activate the RAM outputs. In the remainder

of this section, we detail our investigation and the improvements we achieved.

approach function observation

Binary x g 1 From original WiSARD paper
Bleaching x g t From bleaching technique

Linear x Biased towards frequent sub-patterns
Logarithmic log2(x+ 1) Consistent accuracy across permutations

Bounded Log min(log2(x+ 1), c) Consistent accuracy with improvements

Table 5.2: Activation functions we investigated using our WiSARD models.

5.3.1 Linear Integer Models

Building upon WiSARD models that employ the bleaching technique, we aimed to

mitigate the computational costs associated with nonlinear functions, particularly the

threshold operation, as they are expensive to evaluate in TFHE and require bootstraps.

Our initial approach involved completely removing these operations and instead calcu-

lating scores by directly summing the counters from each RAM output. However, this

modification alone has proven to be ineffective, as the models became severely biased

towards the most frequently occurring patterns observed during the training phase, ul-

timately leading to poor overall classification performance. This outcome suggests that

non-linearity plays a critical role in maintaining accurate input classification.

5.3.2 Non-linear Integer Models

Drawing some inspiration from ANNs, we reconceptualized the threshold operation as

an instance within a broader class of non-linear activation functions. This generalization
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led us to explore alternative forms of score composition that could potentially improve

recognition performance while remaining compatible with existing bleaching models.

As discussed earlier, adding RAM counter values for the score composition did not

yield improved accuracy. Our hypothesis is that this method overemphasizes frequently

occurring feature combinations during inference, obscuring the capacity to recognize less

frequent, yet relevant, patterns. However, it is important to note that frequently seen

features can indicate strong correlation, which could improve recognition performance.

Considering that, we explored the use of the magnitude of RAM counters instead of

their raw values. To quantify this magnitude for positive integer values, we used the

function f(x) = log2(x+ 1), since log2 is not defined for x = 0. This method, designated

as logarithmic (log) activation, produced models with an accuracy almost as good as our

bleaching models for our experimental data sets without requiring threshold adjustments.

In addition, they maintained consistent accuracy even with varying input permutations.

Further experimentation revealed that defining an upper bound on the log activation,

specifically employing f(x) = min(log2(x+ 1), c) with a small constant c > 0, resulted in

even better recognition performance. This approach, which we name bounded logarithmic

(bounded-log) activation, demonstrated superior accuracy compared to bleaching models

when utilizing smaller WiSARD parameters for our experimental datasets. Furthermore,

it maintained comparable accuracy levels with larger WiSARD parameters. In particular,

the consistent accuracy observed with log activation was retained in this variant.

5.3.3 Activations as Ensembles

Interestingly, non-linear activation functions can be interpreted as particular cases of

ensembling of bleaching models, where multiple WiSARDs trained with the same WiSARD

parameters and inputs, using distinct threshold values, have their scores summed to form

a stronger classification score. For example, five models using thresholds of 1, 2, 4, 8, and

16 would produce a score equivalent to a single WiSARD model using the b-log activation

function, as a score point is added for each magnitude level a RAM counter can reach.

This ensemble equivalence explains some of the properties observed in our empirical

experimentation and suggests that other activation functions may simulate different

ensemble configurations, potentially improving classification for specific problems.

5.4 Homomorphic WiSARDs

This section details the core components of our proposed Homomorphic WiSARD

model, which enables pattern recognition on encrypted data without compromising privacy.

We break down the process into three phases: the training phase, where the model learns

from encrypted samples; the inference phase, where it classifies new encrypted inputs; and

the model activation phase, which determines the final classification output. Each phase

is designed to operate fully within the homomorphic encryption domain, ensuring data

confidentiality throughout the machine learning pipeline. By explaining these phases, we

illustrate how traditional WiSARD concepts are adapted to work with encrypted data,

highlighting the unique challenges and solutions in this privacy-preserving paradigm.
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5.4.1 Training Phase

The training phase begins on the client side. This step involves applying quantization

and thermometer encoding to the input data. Fundamentally, for each sample, we

employ only preprocessing techniques that are independent of the knowledge of the entire

dataset. Although techniques such as average or min-max normalization could improve our

recognition performance, they would require data knowledge that is not always available in

scenarios where the data are already encrypted or in cases such as distributed, federated,

or continuous learning [56, 69]. The client then encrypts each sample with its respective

label bit-by-bit as RGSW ciphertexts and sends this data to the server.

At the start of the training phase, the server initializes an array of u(2n) RLWE samples,

referred to as the model state, where n is the sum of the address and the label sizes and

u is the number of RAMs in the model. For each pair of address and respective label,

the server then concatenates the RGSW ciphertexts as a single array. Then, it executes

the IVP procedure over a special RLWE ciphertext, whose first coefficient contains an

encryption of the number one, followed by the rest of the coefficients encrypting zeros,

using this concatenated array as the control sequence. This yields a RLWE array of size

2n, which is then summed to the slice of the model state that corresponds to the RAM

that the specific address is targeting. For each address in the sample, each RAM will

be trained exactly once, which means that a total of u IVP evaluations per sample are

performed. We formalize the training procedure for an individual sample in Algorithm 12.

Repeating this step for each sample, the training phase is then completed.

Algorithm 12 Homomorphic WiSARD Training (HomWisardTrain).

Input: TFHE parameter N ;
Input: Input size s; Address size a; Label size l;
Input: Number of RAMs k := +s/a,;
Input: Label set L, discretely mapped to [0, 2l);
Input: An array of k(a+ l) binary RGSW ciphertexts C (the sample);
Input: An array of k2a+l−log2(N) RLWE ciphertexts W (the model state);

Output: Updated model state W ;

1: m← {1, 0, 0, . . . , 0}
2: for r ← 0 to k do

3: m′ ← InverseVerticalPacking({Cr(a+l), . . . , C(r+1)(a+l)−1},m)
4: e← r2a+l−log2(N)

5: for i← 0 to 2a+l−log2(N) do

6: We+i ←We+i +m′
i

7: return W

5.4.2 Inference Phase

The inference phase begins on the client side. Similarly to the training phase, this step

involves applying quantization and thermometer encoding to the input data. The client

then encrypts each sample bit by bit as RGSW ciphertexts and sends them to the server.

The server, possessing the model state, evaluates the VP procedure using the RGSW
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ciphertexts provided by the client, which is now evaluated u · l times, being u the number

of RAMs and l the number of labels in the model. Note that despite executing the u · l

VP evaluations, as opposed to the u IVP evaluations in the training phase, each of these

VP evaluations is performed at a smaller depth, with precisely +log2(l), fewer bits. This

procedure is formalized for a single sample in Algorithm 13. This results in u · l RAM

scores that are then used in the model activation phase, described in the next subsection.

Algorithm 13 Homomorphic WiSARD Evaluation (HomWisardEval).

Input: TFHE parameter N ;
Input: Input size s; Address size a; Label size l;
Input: Number of RAMs k := +s/a,;
Input: Label set L, discretely mapped to [0, 2l);
Input: An array of ka binary RGSW ciphertexts C (the sample);
Input: An array of k2a+l−log2(N) RLWE ciphertexts W (the model state);

Output: An array of lk LWE ciphertexts Φ (associated RAM counts);

1: for b ∈ L do

2: for r ← 0 to k do

3: c← r(a+ l)
4: c′ ← (r + 1)(a+ l)− 1
5: e← r2a+l−log2(N)

6: e′ ← (r + 1)2a+l−log2(N) − 1
7: Φbk+r ← VerticalPacking({Cc, . . . , Cc′}, {We, . . . ,We′})
8: return Φ

5.4.3 Model Activation Phase

The activation phase has the goal of applying the activation function fact over the

individual RAM scores of a sample and combining them to form the discriminator scores,

which are then compared to determine the most likely class for a sample. In this subsection,

we define three approaches for the score composition, summarizing them in Table 5.3.

approach evaluation cost
model continuous
privacy learning

PD-act very low , ✓

OTF-act high (inference) ✓ ✓

FM-act amortized low ✓ p

Table 5.3: Comparison between model activation approaches.

Post-Decryption Activation – PD-act

Nonlinear operations, such as argmax, are common at the end of neural network

inference processes. When evaluating these processes homomorphically, a typical strategy

is to send all inputs for nonlinear operations to the client, who decrypts them and performs
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the operation in cleartext. This approach avoids the complexity of evaluating nonlinear

operations homomorphically but exposes intermediate computation results to the client,

which can potentially reveal information about the training data.

This principle can be applied to the model activation in Homomorphic WiSARDs.

The server can perform inference, retrieve encrypted RAM output, and send them to the

client. The client then decrypts the scores and completes the model activation by applying

fact, summing the scores, and determining the class with the highest score. Although the

simplest and most cost-effective method for activations, it presents two challenges:

• Output size: Models may comprise numerous RAMs (up to 6860 in our MNIST

experiments), each producing an encrypted score. Initially, this would require many

LWE ciphertexts, potentially using 26.8 MiB of memory. To reduce the resulting

array size, we can employ the packing key switch procedure [20] to pack all scores

into a single RLWE ciphertext, decreasing usage to 131 KiB.

• Model privacy: Exposing individual RAM results during evaluation allows the client

to gather information about the model, potentially enabling its reconstruction.

Although the PD-act approach offers a cost-effective solution for model activation, it

requires careful consideration of the output size and privacy requirements.

On-the-Fly Activation – OTF-act

Building upon the previous activation method, we now explore approaches that perform

the model activation entirely on the server side. Our second approach for performing the

activation utilizes TFHE’s programmable bootstrapping (PBS) to evaluate fact over the

RAM scores during inference. The process unfolds as follows.

1. Perform the inference process, obtaining the encrypted scores of each RAM cell.

2. Use PBS to apply fact to encrypted scores.

3. Add the activated scores to calculate each discriminator’s score.

4. (Optional) Evaluate the homomorphic argmax function.

5. Send the encrypted class scores or the inferred class to the client.

The main drawback of this approach is that performing multiple PBS operations

for each inference can be computationally expensive, potentially increasing latency and

implementation costs. However, it offers several advantages over the PD-act method:

• More privacy: The model’s internal states remain fully encrypted, revealing only the

final prediction to the client.

• No training cost: The method does not require changes to the training process,

which is desirable for distributed, federated, and continuous learning scenarios.
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• Reduced communication overhead: Only scores or the final prediction are transmitted,

minimizing data transfer requirements.

The suitability of this method depends on the specific application. For use cases

where privacy is critical, OTF-act could be the ideal choice. For example, in medical

diagnosis systems where patient data confidentiality is crucial, this method could provide

the necessary privacy guarantees. Additionally, the computational overhead for OTF-act

can be reduced with future research, optimizing PBS operations and potentially making

this approach more viable for general applications.

Full Model Activation – FM-act

The Full Model Activation approach presents a distinctive strategy for model activation.

This method involves using PBS to evaluate fact over each element of each RAM throughout

the model. Unlike previous methods that activate during or after inference, FM-act

performs activation after training. The activation process is performed as follows.

1. Train the Homomorphic WiSARD model.

2. Use PBS to apply fact to every element in the model state.

3. Store the pre-activated model for future use.

After precomputation of the activated scores, inference proceeds as follows.

1. Perform the inference process, obtaining the encrypted preactivated scores of each

corresponding RAM cell.

2. Add the activated scores to calculate each discriminator’s score.

3. (Optional) Evaluate the homomorphic argmax function.

4. Send the encrypted class scores or the inferred class to the client.

Compared to PD-act and OTF-act, FM-act is significantly more expensive and

hinders implementation in distributed, federated or continuous learning scenarios. However,

it offers several advantages over the previous approaches:

• Even more privacy: The model is fully protected, and the RAM scores cannot be

exposed even after a leak, as pre-activation occurs before any inference.

• Reduced training cost: Noise removal after training with PBS may allow the use of

cheaper cryptographic parameters, accelerating the training phase.

• Reduced inference cost: Activation is performed only once per model, which does not

affect subsequent inference times. Additionally, pre-activated scores with removed

noise may allow the use of cheaper parameters, accelerating the inference phase.

The FM-act approach could be particularly beneficial in scenarios where a model is

trained once and then deployed for long-term use with strict privacy requirements. For

example, it might be ideal for a medical diagnosis system that uses a fixed and thoroughly

validated model. As in OTF-act, the computational overhead for FM-act can be reduced

with future research, in particular with novel batched PBS techniques.
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5.5 Additional Techniques

The design of the Homomorphic WiSARD algorithm facilitates the straightforward

implementation of various techniques commonly required for PPML training and inference.

This section will discuss some of these techniques.

5.5.1 Federated Learning

Federated Learning is a collaborative machine learning approach in which multiple

entities train a single model together without sharing their data [69]. This scenario presents

unique privacy challenges that Homomorphic WiSARDs are well suited to address.

In federated learning, each participating entity has its own privacy concerns and

refuses to share input data with others. This requires techniques such as threshold

homomorphic encryption [4] or multi-key homomorphic encryption [17]. These methods

enable computation over data encrypted with different or jointly generated keys, with

decryption requiring participation from all involved parties. Similar privacy requirements

arise in other scenarios, such as encrypted inference in public clouds, where the input data

owner and model owner may be distinct entities seeking to protect their assets.

Homomorphic WiSARDs offer several advantages for federated and distributed learning:

• Trivial merging: Homomorphic WiSARDs allow for merging models trained by

distributed or federated entities through simple model state addition, if they share

the same parameters. This enables performance equivalent to centralized training.

• Scalability: Both distributed and federated approaches for Homomorphic WiSARDs

scale well with an increasing number of entities, as the merging process remains

computationally efficient regardless of the number of participants.

• Continuous learning: The model state in Homomorphic WiSARDs can be continu-

ously updated as new training samples are presented, with a similar effect to having

these samples trained all at once. This facilitates asynchronous collaborative updates

from distributed or federated entities, allowing parties to send differential updates.

• Threshold HE compatibility: Only the programmable bootstrapping performance

is affected by threshold HE, while other predominant procedures such as VP and

IVP remain largely unaffected. This can be implemented using methods such as

proposed by Lee et al. [42], which supports multiple parties with minimal overhead.

5.5.2 Dataset Balancing

The class imbalance represents a significant challenge for machine learning, particularly

in privacy-preserving contexts where data access is restricted. This section explores the

existing solutions for imbalanced datasets and proposes a novel balancing technique.

A data set with n samples associated with c classes is considered balanced if each class

is represented by approximately +n/c, samples. More formally, we can define a balance

ratio ri = c · ni/n for each class i, with perfect balance achieved when ri = 1. Although
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minor imbalances (0.8 f ri f 1.2) are generally not problematic, significantly unbalanced

data sets pose a substantial challenge for many ML algorithms. Training a classifier on

an unbalanced data set often results in biased models that may exhibit artificially high

accuracy on the majority class while performing poorly on minority classes. This bias

comes from the model’s tendency to overfit the dominant class, failing to learn the patterns

necessary for accurate classification across all classes [1, 40].

Several techniques have been developed in the literature to address class imbalance [34],

most of them falling into more general concepts, described below.

• Undersampling: Remove samples from the majority classes until all classes are

equally represented. Although simple, it may lead to the loss of valuable information.

• Oversampling: Duplicate samples from minority classes. Although it preserves

information, it may introduce bias from repeated samples.

• Data augmentation: Create samples using transformations. Although it increases

variability, it requires domain-specific knowledge and can introduce artificial patterns.

• Algorithm adjustment: Modify learning algorithms to be more sensitive to minority

classes. Does not modify the dataset, but can have similar issues to oversampling.

In conventional neural networks, algorithm adjustment often involves scaling the

learning rate linearly according to the class represented by the sample, thus increasing its

impact during training. For WNNs, the sensitivity to specific samples can be adjusted by

applying a scaling factor to the increments applied to the associated RAM cells.

However, these traditional approaches present challenges in privacy-preserving machine

learning scenarios. Many balancing techniques require knowledge of the dataset’s class

distribution, which may not be available when working with encrypted or distributed data.

In federated learning contexts, where data are dispersed across multiple parties, applying

consistent balancing techniques becomes even more complex.

To address these limitations, we propose an alternative that is FHE-friendly, inspired

by the scaling technique described for WNN algorithm adjustment. It works as follows.

• During the training phase, we maintain a separate array of RLWE ciphertexts and

use the IVP technique to count occurrences of each label in an encrypted manner,

reusing the same encrypted label provided by the client for each sample.

• For PD-act, during the inference phase, we share the encrypted label counts with

the client, who will use this information to dynamically adjust the scores before

evaluating the rest of the circuit.

• For OTF-act, during the inference phase, we dynamically adjust the output scores

using encrypted label counts.

• For FM-act, the same process proposed for OTF-act is used, except that the

balancing occurs after the training phase.
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Our homomorphically encrypted balancing technique, unlike other approaches in

the literature, does not involve previously modifying the dataset, being also applicable

in distributed, federated, and continuous learning scenarios, for the model activation

approaches that are compatible. The solution for PD-act has obvious privacy concerns

that must be considered, but the labels are never exposed to the server. However, the

solutions for OTF-act and FM-act preserve privacy for both the client and the server.

Furthermore, solutions for both OTF-act and FM-act can be implemented without

additional PBS evaluations by composing the fact activation function with the balancing

technique. As introduced by Guimarães et al. [31], and pointed out by Chillotti et al. [21],

functions to be evaluated using PBS can be dynamically created using encrypted data,

which allows both function composition and multivariate evaluation.

5.5.3 Input Compression

A notable challenge in our method is the significant ciphertext expansion of encrypted

input samples compared to other neural network training and evaluation approaches. In

homomorphic encryption, ciphertext expansion refers to the ratio of the ciphertext size

to the size of the data it encrypts. This subsection explores the challenges and potential

solutions related to ciphertext expansion in our implementation.

Our approach uses RGSW ciphertexts to encrypt the sample and the label bits.

Although this enables fast VP and IVP evaluations, it also results in considerable ciphertext

expansion, as each RGSW is composed of ℓ(k + 1) RLWE ciphertexts, which is amplified

by bit-by-bit decomposition of both the addresses and labels. Quantitatively, each RGSW

expands each input bit in a rate of ℓ(k + 1)log2(q)N .

However, computing Homomorphic WiSARD circuits using RGSW ciphertexts gen-

erates significantly less noise, thus requiring a much smaller ciphertext modulus q. Our

approach also does not require batched input samples, which is beneficial for scenarios such

as distributed or federated learning where data availability is restricted. In contrast, RLWE

batched approaches, while generally yielding smaller expansions, are dependent on circuit

depth. For reference, Legiest et al. [43] reported an expansion factor of 2 · 389/4 ≈ 194 for

a CNN in MNIST using 4-bit linear quantization.

There are some potential solutions to mitigate ciphertext expansion for the TFHE

scheme. In particular, transciphering offers complete mitigation of ciphertext expansion [7,

51]. Alternative approaches are to pack multiple bits as coefficients in RLWE ciphertexts,

reducing the expansion by a factor of ℓ(k + 1)N at the cost of requiring circuit bootstraps,

or to pack them inside RGSW ciphertexts, reducing the expansion by a factor of N at the

cost of a key switch per input bit [33].
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Chapter 6

Experimental Results

In this chapter, we evaluate the performance of Homomorphic WiSARDs in terms of

latency and classification performance across three popular machine learning datasets,

presenting detailed analyses of these results against state-of-the-art in PPML training.

In Section 6.1, we present the hardware configuration used for our experiments. In

Section 6.2, we introduce characteristics of the data sets used in our experiments. In

Section 6.3, we assess the parameter sets for WiSARD and TFHE used in our experiments.

In Section 6.4, we perform a comparative analysis of our results against the state-of-the-art.

In Section 6.5, we argue about the practicality of our models by evaluating execution

times and memory usage on consumer-grade hardware. In Section 6.6, we estimate the

execution time for different model activation approaches. In Section 6.7, we analyze and

discuss the communication costs for each model.

6.1 Experimental Setup

To evaluate the performance and scalability of our homomorphic WiSARD models, we

conducted experiments in two distinct environments, representing consumer-grade and

enterprise-grade hardware. These environments were chosen to provide information on

computational requirements across a spectrum of potential use cases. The experiments

were conducted in February 2024, using the following setups.

1. Consumer Desktop Computer:

• Processor: Intel Core i7-12700k w/ AVX-512 (5.0 GHz, 8 cores, 16 threads)

• Memory: 64GB (DDR5, 4800MHz)

• Operating System: NixOS 23.11

2. AWS Cloud Instance:

• Instance Type: i4i.metal

• Processor: Dual Intel Xeon Platinum 8375C (3.5 GHz, 64 cores, 128 threads)

• Memory: 1TB (DDR4, 3200MHz)

• Operating System: Ubuntu Linux 22.04
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For both environments, we used the Clang compiler version 17.0.6 and the Rust compiler

version 1.76.0. Furthermore, the experiment binaries were compiled with -O3 optimization

level, and we applied the cross-language LTO technique to further improve optimization.

Using these diverse environments, we aim to provide a comprehensive understanding of

how our homomorphic WiSARD models perform under different hardware constraints.

6.2 Evaluation Datasets

This section details the datasets selected for our experimental evaluation, outlining

the inherent challenges for each dataset, and describing the preprocessing techniques

implemented to optimize their data representation. In Subsection 6.2.1, we overview the

MNIST [41] dataset. In Subsection 6.2.2, we introduce the HAM10000 [67] dataset. In

Subsection 6.2.3, we present the Wisconsin Breast Cancer [68] dataset.

6.2.1 MNIST

The MNIST [41] dataset consists of 70,000 grayscale images of handwritten digits,

each with a resolution of 28× 28 pixels and represented using 8 bits per pixel. We follow

the standard train-test split for this dataset, with 60,000 images for training and 10,000

images for testing. We also applied linear quantization to the entire dataset, reducing the

bit depth from 8 to 4 bits per pixel, effectively halving the model size.

6.2.2 HAM10000

The HAM10000 [67] dataset, also known as Skin Cancer MNIST or DermaMNIST,

consists of 10,015 dermatoscopic images representing seven types of pigmented skin lesions:

Melanocytic Nevi (nv), Melanoma (mel), Benign Keratosis-like Lesions (bkl), Basal Cell

Carcinoma (bcc), Actinic Keratoses or Intraepithelial Carcinoma (akiec), Vascular Lesions

(vasc), and Dermatofibroma (df). The images have a resolution of 450 × 600 pixels and

are represented in RGB format, with 8 bits per color channel. This data set is known

in the literature to be heavily unbalanced [1]. We used the official 28 × 28 downscale

version of this dataset, following a 80% train and a 20% test split. We also applied linear

quantization to the entire dataset, decreasing the bit depth from 8 to 4 bits per channel.

6.2.3 Wisconsin Breast Cancer

The Wisconsin Breast Cancer [68] dataset comprises 569 samples, each featuring 30

attributes of breast cell nuclei, calculated from digitized Fine Needle Aspirate (FNA)

images, and labeled benign or malignant. For this dataset, we employ a 80% train and a

20% test set split. We apply Min-Max scaling followed by linear quantization, converting

the features from their original floating-point representation to 8-bit unsigned integers.
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6.3 Parameter Sets

Based on the results of our TFHE parameter search, outlined in Section 5.2, we

evaluated the error rate for each set using Equation 6 of Guimarães et al. [31]. To minimize

execution times, the parameter sets were then selected through a greedy choice of ℓ, which

is associated with higher evaluation costs, prioritizing values of ´ that could support

the plaintext space Zp for each model while ensuring the error rate remained below 2−16.

Both ℓKS and ´KS were selected using the same criteria, with the additional constraint

of maintaining an output noise variance comparable to that resulting from VP. These

restrictions led us to two candidate parameter sets, presented in Table 6.1.

set q Ã N ℓ ´ ℓKS ´KS

HE0 264 1.1× 2−51 2048
1 223 2 215

HE1 2 215 3 211

Table 6.1: Selected parameter sets for the TFHE scheme.

For WiSARD parameters, we conducted empirical experiments using our cleartext

implementation to optimize the balance between memory requirements and accuracy,

provided that WiSARDs are memory bound. Our experiment assessed the impact of each

parameter on memory usage. While increasing the address size leads to exponential growth

in model state, the thermometer size causes only linear growth. Considering that and the

model accuracy across various combinations, we identified optimal candidates for address

sizes, thermometer sizes and types, thresholds, and number of training samples. For a

fair comparison, we used the entire corresponding test set in all experiments. Table 6.2

presents the selected sets with associated TFHE parameter sets.

set
addr. therm.

act. thr.
training testing encrypt

size size type samples samples set p

MNISTT 9 4 log b-log 0 1000 10000 HE0 28

MNISTS 12 4 log b-log 0 7500 10000 HE0 210

MNISTM 14 4 log b-log 0 30000 10000 HE1 212

MNISTL 16 4 log b-log 0 60000 10000 HE1 213

HAM10000S 12 5 lin bin 0 1002 2003 HE0 210

HAM10000M 14 5 lin bin 1 4006 2003 HE1 213

HAM10000L 16 5 lin bin 1 8012 2003 HE1 213

Wisconsin 10 5 lin log 0 455 114 HE0 29

Table 6.2: Selected parameter sets for the WiSARD models.

For the MNIST dataset, we prepared four parameter sets, named MNISTT (tiny),

MNISTS (small), MNISTM (medium), and MNISTL (large). For the HAM10000 dataset,

we prepared three parameter sets, named HAM10000S (small), HAM10000M (medium),

and HAM10000L (large). For the Wisconsin Breast Cancer dataset, we prepared only one

parameter set, as increasing the parameters did not result in improved accuracy.
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6.4 Comparative Analysis

This section presents a comparative analysis of our proposed models against the current

state-of-the-art in both homomorphically encrypted training and inference. We provide a

comparison based on the accuracy and execution time for each of our models, obtained

from our evaluations in the cloud-based environment described in Section 6.1.

The accuracy is calculated as the average of 100 evaluations over the entire unbalanced

test set, each using a unique random seed to ensure statistical relevance. For all experiments,

we consider the PD-act activation approach, described in Subsection 5.4.3, and the use of

our balancing technique, described in Subsection 5.5.2. Other classification metrics were

not considered due to the lack of comparative metrics in other works.

The following subsections present the comparison results, highlighting both quantitative

improvements and qualitative insights gained from our methodology. Subsection 6.4.1

includes the techniques that perform both homomorphically encrypted training and

inference for the three datasets. Subsection 6.4.2 considers inference-only techniques for

the MNIST dataset, which is more prevalent in the literature.

6.4.1 Homomorphic Training

In this subsection, we present the comparison against techniques that perform both

homomorphically encrypted training and inference, being a direct correspondence to what

our methodology proposes. Training times were measured by employing the amount of

training samples reported in Table 6.2, and are expected to scale linearly for increasing

amounts of samples if the same TFHE parameters are used. The choice for a reduced

amount of samples reflects one of the strengths of the WiSARD models, that can effectively

recognize patterns using lower amounts of data.

MNIST

For the MNIST dataset, we benchmark our models against Glyph [45], including their

fastest result (one training epoch) and their result optimized for better accuracy, both

results representing the current state-of-the-art in homomorphically encrypted training. In

both cases, we focus on the baseline model performance without applying transfer learning,

which we consider as a context-specific optimization outside the scope of this work. Note

that transfer learning can potentially be applied to WNNs [49], as we will discuss later.

Table 6.3 presents a comprehensive comparison between our models and Glyph’s. In

particular, our implementations achieve significantly faster training times while maintaining

competitive accuracy. The accuracy trade-off ranges from a minimal 0.4% to a maximum

of 5.4% reduction compared to Glyph, depending on the specific configuration.

When interpreting the speed-up results, we provide both nominal values and values

adjusted for the difference in computational resources. Glyph’s experiments were conducted

on an Intel Xeon E7-8890 v4 at 3.4GHz with 48 threads and 256GB of memory. Our speedup

calculations account for the difference in thread count only, though other factors such as

architecture specifics and compiler optimizations may also influence performance. It is
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model epochs accuracy train time
nominal adjusted
speedup speedup

MNISTS 1 91.71% 3m28s 3291.4 1234.3
MNISTM 1 93.06% 38m18s 300.6 112.7
MNISTL 1 93.76% 3h30m 54.9 20.6

Glyph 1 94.10% 1.5 days 5.4 5.4
Glyph 5 97.10% 8 days 1.0 1.0

Table 6.3: Cloud results comparison for MNIST dataset.

difficult to consider these factors in our comparison without access to their implementation.

Note that these differences alone do not explain the gap in model performance.

The results demonstrate that our approach offers a compelling trade-off between training

speed and accuracy. For applications where rapid training is crucial and a slight decrease

in accuracy is acceptable, our fastest model provides a remarkable 1234x adjusted speedup

compared to Glyph’s. This dramatic reduction in training times could be particularly

valuable in scenarios requiring frequent model updates.

HAM10000

For the HAM10000 dataset, we benchmark our models against Glyph [45], which also

represents the current state-of-the-art. As in the MNIST comparison, we adjusted the

speedup for differences in execution environments between our benchmark and Glyph’s,

while also considering the model trained without the transfer learning technique.

Table 6.4 presents a comparison of our models with Glyph’s. In particular, our

implementations also achieved faster training times, but for this dataset our largest model

achieved an improvement of 0.35% in accuracy. Compared to Glyph, our small and medium

models maintained an accuracy gap of 1.35% and 0.6%, respectively.

model epochs accuracy train time
nominal adjusted
speedup speedup

HAM10000S 1 67.85% 1m35s 6720.0 2520.0
HAM10000M 1 68.60% 13m35s 746.7 280.0
HAM10000L 1 69.85% 1h03m 160.0 60.0

Glyph 15 69.20% 7 days 1.0 1.0

Table 6.4: Cloud results comparison for HAM10000 dataset.

Our results show a substantial improvement in training time while maintaining com-

petitive accuracy. Specifically, our fastest model achieves a training time of less than 2

minutes, representing a 2520x adjusted speedup over Glyph’s approach. These results are

significant as they demonstrate our method’s applicability to complex, real-world datasets.

Furthermore, these results also demonstrate the effectiveness of our balancing approach.

As discussed in Subsection 6.2.2, HAM10000 is a heavily unbalanced dataset, requiring
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additional measures to prevent overfitting. For example, without any balancing, our models

can achieve accuracies up to 83.37%. Despite the higher values, the model completely

overfits to a super-represented class, failing to classify samples from any of the other

classes. As we balance the model, the accuracy drops significantly, but the model is able

to consistently classify samples from all classes. Glyph does not discuss data set balancing

in their work, so it is unclear whether this problem was addressed in their results.

Wisconsin Breast Cancer

For the Wisconsin Breast Cancer dataset, we compare our models with the approaches

presented by Montero et al. [50] and Park et al. [57]. Taking into account that this is a

much smaller data set than the others, simpler alternative techniques for classification

are also applicable. In this case, we are comparing the results against the Multi-Layer

Perceptron (MLP) and Support Vector Machines (SVM) algorithms, respectively.

Table 6.5 presents a comparison of our models with both MLP and SVM for the

Wisconsin Breast Cancer dataset. In particular, our implementation also achieved faster

training time while maintaining competitive accuracy, with a reduction of less than 1%.

model accuracy train time
nominal adjusted
speedup speedup

Wisconsin 97.30% 316ms 9303.8 1163.0

PBL+20 SVM 98.00% 5m34s 8.8 7.0
MFK+24 MLP 98.25% 49m 1.0 1.0

Table 6.5: Cloud results comparison for Wisconsin Breast Cancer dataset.

When interpreting the speed-up results, we provide both nominal values and values

adjusted for the difference in computational resources. Montero et al. [50] run their

experiments in an Intel i7-11800H CPU at 4.6Ghz with 16 threads, whereas Park et al. [57]

uses an Intel Xeon CPU E5-2660 v3 at 3.3 GHz with 20 threads. As in previous comparisons,

our speedup calculations account for the difference in thread count only, though other factors

such as architecture specifics and compiler optimizations may also influence performance.

Adjusting for differences in the thread counts, our model provides a speed-up ranging

from 166x to 1163x compared to alternatives. The considerable speed-up we achieve is

particularly significant given the importance of heterogeneous tabular data for real-life

use cases, such as financial analysis and medical diagnosis. Heterogeneous tabular data is

the most ubiquitous form of data in machine learning applications, and is often seen as a

challenge even for deep learning models [9].

6.4.2 Homomorphic Inference

In this subsection, we present the comparison against techniques that perform only

homomorphically encrypted inference using TFHE. We compare our models with the

approaches presented by Bourse et al. (FHE-DiNN) [11], Lou and Jiang (SHE) [46],

Folkerts et al. (REDsec) [26], and Stoian et al. [65]. Considering the availability of results
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in the literature, here we focus on the MNIST dataset, which is widely regarded as a

benchmark standard in the HE evaluation of machine learning algorithms. Table 6.6

presents the comparison between TFHE-based approaches for encrypted MNIST inference.

For our results, we present single-threaded and multithreaded evaluations.

model accuracy time (s)
security

threads
nominal adjusted

bits (¼) speedup speedup

MNISTS 91.40% 0.774 128 1 23.8 2282.2
MNISTM 92.81% 1.470 128 1 12.5 1201.6
MNISTL 93.43% 2.184 128 1 8.4 808.8
MNISTS 91.40% 0.048 128 128 383.3 287.5
MNISTM 92.81% 0.067 128 128 274.6 206.0
MNISTL 93.43% 0.092 128 128 200.0 150.0

FHE-DiNN-30N 93.71% 0.490 80 1 37.6 3604.9
FHE-DiNN-100N 96.30% 1.500 80 1 12.3 1177.6

SHE 99.54% 9.300 128 20 2.0 9.5
SFB+23-150N 92.20% 31.000 128 16 0.6 3.6
SFB+23-90N 96.50% 77.000 128 16 0.2 1.2
REDsec-Sign 98.00% 12.300 128 96 1.5 1.5

REDsec-ReLU 99.00% 18.400 128 96 1.0 1.0

Table 6.6: Cloud inference results comparison for MNIST dataset.

When interpreting the speed-up results, we provide both nominal values and values

adjusted for the difference in computational resources. Bourse et al. [11] ran their experi-

ments in an Intel i7-4720HQ CPU at 3.6GHz using one thread; Lou and Jiang [46] ran their

experiments in an Intel Xeon E7-4850 CPU at 2.4GHz with 20 threads; Folkerts et al. [26]

ran their experiments in a r5.24xlarge AWS instance, with 96 vCPUs running at 3.1

GHz; Stoian et al. [65] ran their experiments in an Intel i7-11800H CPU at 4.6GHz with

16 threads. As in our previous comparisons, our speedup calculations account for the

difference in thread count only, even though other factors may also influence performance.

Our results demonstrate significant performance improvements over existing methods

at the same security level, even for single-thread execution. Overall, the best performance

goes for the FHE-DiNN-30N technique, with an adjusted speed-up of 3605x over the slowest

method. However, it is important to note that FHE-DiNN models only offers a security

level of 80 bits for the inputs, leaving the model weights unencrypted. Additionally, the

adjusted speedup also benefits single-threaded approaches as they do not account for the

parallelism overhead, as demonstrated by our single-thread and multithread executions.

In particular, we observe that our approach maintains a maximum of 6.1% in accuracy

degradation compared to the best accuracy between the inference-only methods. However,

the raw execution time is orders of magnitude faster than the other approaches, and can be

scaled with an increasing number of threads. Comparing the adjusted speedup between the

single-thread and multi-thread results, we notice that the parallelism imposes an overhead

of 5.4x, which is very small considering that 128 threads are being used.
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6.5 Resource Usage Analysis

To demonstrate the practicality of our approach, we conducted comprehensive bench-

marks on a consumer-grade desktop computer. This analysis aims to show that small-scale

encrypted training can be feasible with limited hardware resources. We measured the

execution times over the whole test set for each experiment, providing the amortized

time per sample for single-thread and multi-thread configurations. For the multi-thread

configuration, we opt for 8 threads, each assigned to a separate physical core.

For medium and large parameter sets, where full execution would be prohibitively

demanding, we estimated full execution times across a smaller set of samples. Memory usage

results, however, reflects the true measurements as allocations are constant throughout

execution. Table 6.7 and Table 6.8 present our benchmark results.

model
single-thread multi-thread

training inference training inference

MNISTT 12m16s 2h11m 1m33s 19m40s
MNISTS 2h34m 2h09m 19m19s 18m28s
MNISTM 28h55m 4h05m 3h41m 33m42s
MNISTL 156h15m 6h04m 19h57m 48m45s

HAM10000S 54m13s 1h24m 6m50s 11m27s
HAM10000M 9h19m 2h51m 1h11m 21m11s
HAM10000L 43h30m 3h45m 5h27m 29m31s

Wisconsin 11s 3s 1436ms 361ms

Table 6.7: Consumer desktop benchmark times for each model.

model
single-thread multi-thread

training inference training inference

MNISTT 177MiB 1.0GiB 501MiB 1.1GiB
MNISTS 427MiB 1.1GiB 2.2GiB 1.1GiB
MNISTM 1.2GiB 1.8GiB 7.4GiB 1.8GiB
MNISTL 3.4GiB 3.9GiB 25.1GiB 4.0GiB

HAM10000S 638MiB 1.0GiB 3.9GiB 1.1GiB
HAM10000M 1.8GiB 2.3GiB 13.1GiB 2.3GiB
HAM10000L 6.0GiB 6.2GiB 45.4GiB 6.4GiB

Wisconsin 132MiB 188MiB 146MiB 192MiB

Table 6.8: Consumer desktop memory usage for each model.

Our results highlight that while larger models demand significant memory and com-

putational resources during training, the inference times, especially in multi-threaded

configurations, are highly efficient for consumer-grade hardware. Note that the memory

usage during training could be further reduced by sharing the model state between threads,

potentially achieving similar memory usage to the single-threaded configuration.
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6.6 Activation Cost Analysis

The choice of activation function in homomorphic encryption contexts significantly

impacts performance and privacy preservation. This section analyzes computational costs

associated with different activation approaches in our homomorphic WiSARD implemen-

tation, providing information about their trade-offs.

In Sections 6.4 and 6.5, the results represent the PD-act approach, with fast execution

times. Here, we estimate costs associated with FM-act and OTF-act, which provide

enhanced privacy with slower computation times, as discussed in Subsection 5.4.3.

For FM-act and OTF-act, we consider the results of the programmable bootstrapping

technique implemented by Liu et al. [44]. Table 6.9 presents estimated execution times for

each of our models using this programmable bootstrapping technique.

model
FM-act (hours) OTF-act (min.)

9-bit 12-bit 9-bit 12-bit

MNISTT 0.1 0.4

3.7 21.3

MNISTS 0.4 2.1
MNISTM 1.1 6.4
MNISTL 3.8 22.0

HAM10000S 0.9 5.0
HAM10000M 2.8 16.4
HAM10000L 9.8 57.2

Wisconsin 0.1 0.4

Table 6.9: Estimated model activation execution times for 9 and 12 bits.

A key observation is that despite working over large plaintext spaces, the activation

functions b-log and bin could be implemented using 9-bit precision for the MNIST and

HAM10000 models, with a maximum probability of error of 2−9. For the Wisconsin model,

the log activation already operates with p = 29, aligning well with this precision level.

For the MNIST data set, assuming cloud training times, we observe that the FM-act

activation times for 9-bit precision almost match the full training time, with activation

times ranging from 0.4 hours (MNISTS) to 3.8 hours (MNISTL), while the training times

range from 0.06 to 3.5 hours. For the HAM10000 dataset, the FM-act activation costs

for 9-bit precision are 9 to 30 times more expensive than full training, ranging from 0.9

hours (HAM10000S) to 9.8 hours (HAM10000L), compared to training times of 0.03 to

1.05 hours. The Wisconsin data set shows the most striking contrast, with an FM-act

activation time of 6 minutes for 9-bit precision, while the training time is 316 ms.

Due to the batching nature of the technique presented by Liu et al. [44], activating any

of our models with 9-bit precision using OTF-act approach requires a constant time of

3.7 minutes, as none of their samples can fill a complete batch. In contrast, the FM-act

approach has activation times that scale with the LUT sizes, depending on the sample,

address, and thermometer sizes, as detailed in Section 6.3.
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6.7 Communication Cost Analysis

Communication costs are a critical consideration in end-to-end PPML, particularly when

deploying models in distributed or federated learning scenarios. A primary challenge in our

approach is the significant ciphertext expansion, where encrypted data uses substantially

more space than its plaintext counterpart. This expansion directly impacts bandwidth and

storage requirements, especially when transmitting encrypted samples or model updates.

To quantify these costs, we calculate the encrypted sample size for each Homomorphic

WiSARD model, as shown in Table 6.10. The expansion factor is determined by the TFHE

parameter set (HE0 or HE1 of Table 6.1) and the number of bits in the input sample and

label. For example, a single MNIST sample (3,136 bits after preprocessing) encrypted

with HE0 results in a 98 MiB ciphertext. Larger models, such as HAM10000L encrypted

with HE1, produce ciphertexts of 736 MiB per sample.

dataset
number of bits enc. exp. sample
sample label set factor size (MiB)

MNISTT

3136 4
HE0 262144 98

MNISTS

MNISTM HE1 524288 196
MNISTL

HAM10000S
11760 3

HE0 262144 368
HAM10000M HE1 524288 736
HAM10000L

Wisconsin 150 1 HE0 262144 4.7

Table 6.10: Encrypted sample size for each Homomorphic WiSARD model.

Mitigation strategies discussed in Section 5.5.3, such as transciphering or bitpacking,

could reduce these communication costs. However, they can also introduce computational

overhead, which may not align with all scenarios. Despite the expansion, our approach

remains practical for applications that prioritize performance over bandwidth usage.
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Chapter 7

Conclusion

In this work, we introduced a novel approach to PPML through the homomorphic

tranining and evaluation of WiSARD nets, as well as supporting procedures, such as

the HE-friendly dataset balancing technique. We demonstrated that our approach offers

significant performance improvements over existing methods, achieving good accuracy

levels in minutes of encrypted training compared to days required by previous works.

In addition, we have shown that our technique advantages can go beyond performance

improvements, providing unprecedented flexibility in multiple scenarios, such as distributed,

federated, and continuous learning. These characteristics are not readily available in other

machine learning algorithms, often requiring major modifications and involving several

compromises that can make their implementation very complex or even not viable.

Although Homomorphic WiSARDs may not yet match the accuracy levels of ANN

approaches, they offer a compelling trade-off between performance, privacy, and flexibility.

This combination represents a significant step towards making PPML practical, opening

new possibilities for privacy applications. For example, they could be used in fields such as

healthcare, finance, and cybersecurity, accelerating the adoption of ML in these scenarios.

7.1 Future Work

There are many opportunities to further improve the performance and accuracy of

WNN models. In this section, we uncover several promising avenues for future exploration.

Multi-shot Learning Multi-shot training procedures, particularly those using back-

propagation [37], like DWN [5] and ULEEN [66], significantly improve WNN performance.

By adjusting RAM scores through backpropagation, these frameworks achieved high

MNIST accuracies (98.5% and 98.8%, respectively). Integrating such techniques into

homomorphically encrypted WiSARD models could substantially reduce the accuracy

gap compared to state-of-the-art encrypted CNNs. Notwithstanding this potential, our

investigation revealed that elements borrowed from these frameworks in isolation did not

yield significant improvements when implemented outside of their original methodology.
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Transfer Learning Applying Transfer Learning to WNNs have shown significant im-

provements. By replacing a CNN’s final layers by a WiSARD, Milhomem et al. [49]

achieved a major accuracy improvement (11.2% over prior literature, 42.9% over baseline)

in asphalt distress detection, using a pre-trained CNN as a feature extractor. In PPML,

Transfer Learning improves Glyph [45] CNN results up to 4% for HAM10000 and up to

2% for MNIST. Panzade et al. [55] have shown further improvements over Glyph’s results

by employing TL to fine-tune encrypted image recognition models.

Circular Thermometer Code A promising direction for improving data representation

lies in the use of the circular thermometer code [37] for periodic data domains, such as

angular measurements or temporal features (e.g., hours of the day). Instead of increasing

the number of active bits, the circular thermometer maintains a fixed number of active bits

and encodes wraparound values by rotating these bits within a binary vector. This ensures

that proximity at the boundaries (e.g., 0° and 360°) is preserved in the final representation.

Dynamic Activation Functions Our approach uses a common (static) function for

all activations in a model. However, per-RAM (dynamic) activation functions are an

optimistic direction for future research. As discussed, ULEEN [66] models achieve an

impressive accuracy of 98.5% by combining multiple techniques, one of them being the

dynamic selection of bleaching thresholds. In general, dynamic thresholds and activation

functions can employ distinct behaviors for each RAM, improving noise tolerance.

Horizontal Packing The VP technique provides a solid foundation for homomorphic

LUT evaluation in TFHE, but it suffers from overhead when applied to LUTs smaller

than the polynomial degree N . As a complementary approach, Horizontal Packing [20]

facilitates the simultaneous evaluation of several small LUTs, provided that they use

the same input. It does not have performance improvements compared to VP for larger

models, such as those used for MNIST or HAM10000. Nevertheless, when applied to

models trained on datasets like Wisconsin Breast Cancer that demands fewer parameters,

HP accelerates by evaluating in parallel multiple discriminators.

Alternative Encryption Schemes Although this work uses TFHE for its efficient

function evaluation, alternative HE schemes such as CKKS [18], BFV [12, 25], and BGV [13]

represent promising avenues for future homomorphic WiSARD research. BFV and BGV

offer faster arithmetic than TFHE but slower nonlinear operations (potentially impacting

activation functions). CKKS cheaply approximates polynomials, but requires managing

precision and scale. Generally, these alternatives have slower functional bootstrapping than

TFHE but higher operational throughput, being especially attractive for batch processing.



64

Bibliography

[1] Talha M. Alam, Kamran Shaukat, Waseem A. Khan, et al. An Efficient Deep

Learning-Based Skin Cancer Classifier for an Imbalanced Dataset. Diagnostics, 12(9),

2022.

[2] Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of

Learning with Errors. Journal of Mathematical Cryptology, 9(3), 2015.

[3] Igor Aleksander, W. V. Thomas, and P. A. Bowden. WISARD: a radical step forward

in image recognition. Sensor Review, 4(3), 1984.

[4] Gilad Asharov, Abhishek Jain, Adriana López-Alt, et al. Multiparty Computation

with Low Communication, Computation and Interaction via Threshold FHE. In

Advances in Cryptology - EUROCRYPT 2012, pages 483–501, Berlin, Heidelberg,

2012. Springer.

[5] Alan Bacellar, Zachary Susskind, Mauricio Breternitz, et al. Differentiable Weightless

Neural Networks. In Proceedings of the 41st International Conference on Machine

Learning, pages 2277–2295, Vienna, Austria, July 2024. PMLR.

[6] Alan Bacellar, Zachary Susskind, Luis Villon, et al. Distributive Thermometer: A

New Unary Encoding for Weightless Neural Networks. In ESANN 2022, pages 31–36,

Bruges, Belgium, January 2022. i6doc.

[7] Thibault Balenbois, Jean-Baptiste Orfila, and Nigel Smart. Trivial Transciphering

With Trivium and TFHE. In Proceedings of the 11th Workshop on Encrypted Com-

puting & Applied Homomorphic Cryptography, pages 69–78, New York, NY, USA,

2023. Association for Computing Machinery.

[8] Woodrow W. Bledsoe and Iben Browning. Pattern Recognition and Reading by

Machine. In 1959 Proceedings of the Eastern Joint Computer Science, pages 225–232,

New York, NY, USA, 1959. Association for Computing Machinery.

[9] Vadim Borisov, Tobias Leemann, Kathrin Seßler, et al. Deep Neural Networks and

Tabular Data: A Survey. IEEE Transactions on Neural Networks and Learning

Systems, 35(6), 2021.

[10] Christina Boura, Nicolas Gama, Mariya Georgieva, et al. Simulating Homomorphic

Evaluation of Deep Learning Predictions. In Proceedings of the Cyber Security

Cryptography and Machine Learning Conference, pages 212–230, Cham, 2019. Springer.



65

[11] Florian Bourse, Michele Minelli, Matthias Minihold, et al. Fast Homomorphic Evalu-

ation of Deep Discretized Neural Networks. In Advances in Cryptology - CRYPTO

2018, pages 483–512, Cham, 2018. Springer.

[12] Zvika Brakerski. Fully Homomorphic Encryption without Modulus Switching from

Classical GapSVP. In Advances in Cryptology - CRYPTO 2012, pages 868–886, Berlin,

Heidelberg, 2012. Springer.

[13] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully homo-

morphic encryption without bootstrapping. In Proceedings of the 3rd Innovations in

Theoretical Computer Science Conference, pages 309–325, New York, NY, USA, 2012.

Association for Computing Machinery.

[14] Michael Brand and Gaëtan Pradel. Practical Privacy-Preserving Machine Learning

using Fully Homomorphic Encryption. Cryptology ePrint Archive, Paper 2023/1320,

2023.

[15] Jacob Buckman, Aurko Roy, Colin Raffel, et al. Thermometer Encoding: One Hot

Way To Resist Adversarial Examples. In 6th International Conference on Learning

Representations, ICLR 2018, pages 1–22, Vancouver, Canada, 2018. OpenReview.net.

[16] Hugo C. C. Carneiro, Felipe M. G. França, and Priscila M. V. Lima. Multilingual

part-of-speech tagging with weightless neural networks. Neural Networks, 66(1), 2015.

[17] Hao Chen, Ilaria Chillotti, and Yongsoo Song. Multi-Key Homomorphic Encryption

from TFHE. In Advances in Cryptology - ASIACRYPT 2019, pages 446–472, Cham,

2019. Springer.

[18] Jung Hee Cheon, Andrey Kim, Miran Kim, et al. Homomorphic Encryption for

Arithmetic of Approximate Numbers. In Advances in Cryptology - ASIACRYPT

2017, pages 409–437, Cham, 2017. Springer.

[19] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, et al. Faster Fully Homomorphic

Encryption: Bootstrapping in Less Than 0.1 Seconds. In Advances in Cryptology -

ASIACRYPT 2016, pages 3–33, Berlin, Heidelberg, 2016. Springer.

[20] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, et al. TFHE: Fast Fully Homomor-

phic Encryption Over the Torus. Journal of Cryptology, 33(1), 2020.

[21] Ilaria Chillotti, Marc Joye, and Pascal Paillier. Programmable Bootstrapping En-

ables Efficient Homomorphic Inference of Deep Neural Networks. In Cyber Security

Cryptography and Machine Learning, pages 1–19, Cham, 2021. Springer.

[22] Kelong Cong, Debajyoti Das, Jeongeun Park, et al. SortingHat: Efficient Private De-

cision Tree Evaluation via Homomorphic Encryption and Transciphering. Cryptology

ePrint Archive, Paper 2022/757, 2022.



66

[23] Nathan Dowlin, Ran Gilad-Bachrach, Kim Laine, et al. CryptoNets: Applying Neural

Networks to Encrypted Data with High Throughput and Accuracy. In Proceedings of

The 33rd International Conference on Machine Learning, pages 201–210, New York,

NY, USA, 2016. Association for Computing Machinery.

[24] Taher El Gamal. A Public Key Cryptosystem and a Signature Scheme Based on

Discrete Logarithms. In Proceedings of CRYPTO 84 on Advances in Cryptology,

pages 10–18, Berlin, Heidelberg, 1985. Springer-Verlag.

[25] Junfeng Fan and Frederik Vercauteren. Somewhat Practical Fully Homomorphic

Encryption. IACR Cryptology ePrint Archive, 2012(1), 2012.

[26] Lars W. Folkerts, Charles Gouert, and Nektarios G. Tsoutsos. REDsec: Running

Encrypted Discretized Neural Networks in Seconds. In Proceedings 2023 Network

and Distributed System Security Symposium, pages 1–17, San Diego, CA, USA, 2023.

Internet Society.

[27] Craig Gentry. Fully Homomorphic Encryption Using Ideal Lattices. In Proceedings

of the Forty-First Annual ACM Symposium on Theory of Computing, pages 169–178,

New York, NY, USA, 2009. Association for Computing Machinery.

[28] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic Encryption from Learning

with Errors: Conceptually-Simpler, Asymptotically-Faster, Attribute-Based. In

Advances in Cryptology - CRYPTO 2013, pages 75–92, Berlin, Heidelberg, 2013.

Springer.

[29] Robert M. Gray and David L. Neuhoff. Quantization. IEEE Transactions on

Information Theory, 44(6), 1998.

[30] Bruno P. A. Grieco, Priscila M. V. Lima, Massimo De Gregorio, et al. Producing

pattern examples from “mental” images. Neurocomputing, 73(7), 2010.

[31] Antonio Guimarães, Edson Borin, and Diego F. Aranha. Revisiting the functional

bootstrap in TFHE. IACR Transactions on Cryptographic Hardware and Embedded

Systems, 2021(2), 2021.

[32] Antonio Guimarães, Edson Borin, and Diego F. Aranha. MOSFHET: Optimized

Software for FHE over the Torus. Journal of Cryptographic Engineering, 14(1), 2024.

[33] Antonio Guimarães, Leonardo Neumann, Fernanda A. Andaló, et al. Homomorphic

evaluation of large look-up tables for inference on human genome data in the cloud.

In 2022 International Symposium on Computer Architecture and High Performance

Computing Workshops (SBAC-PADW), pages 33–38, Washington, DC, USA, 2022.

Institute of Electrical and Electronics Engineers.

[34] Haibo He and Edwardo A. Garcia. Learning from Imbalanced Data. IEEE Transactions

on Knowledge and Data Engineering, 21(9), 2009.



67

[35] Ehsan Hesamifard, Hassan Takabi, and Mehdi Ghasemi. Deep Neural Networks

Classification over Encrypted Data. In Proceedings of the Ninth ACM Conference on

Data and Application Security and Privacy, pages 97–108, New York, NY, USA, 2019.

Association for Computing Machinery.

[36] Malika Izabachène, Renaud Sirdey, and Martin Zuber. Practical Fully Homomorphic

Encryption for Fully Masked Neural Networks. In Cryptology and Network Security,

pages 24–36, Cham, 2019. Springer.

[37] Rafael F. Katopodis, Priscila M.V. Lima, and Felipe M.G. França. Functional gradient

descent for n-tuple regression. Neurocomputing, 500(1), 2022.

[38] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography: Principles

and Protocols. Chapman & Hall/CRC Cryptography and Network Security Series.

Taylor & Francis, 2007.

[39] Christof Koch, Tomaso A. Poggio, and Vincent Torre. Retinal ganglion cells: a

functional interpretation of dendritic morphology. Philosophical transactions of the

Royal Society of London. Series B, Biological sciences, 298(1090), 1982.

[40] Miroslav Kubat and Stan Matwin. Addressing the Curse of Imbalanced Training Sets:

One-Sided Selection. In Proceedings of the Fourteenth International Conference on

Machine Learning, pages 179–186, Nashville, TN, USA, 1997. Morgan Kaufmann.

[41] Yann LeCun, Corinna Cortes, and CJ Burges. MNIST handwritten digit database.

Yann LeCun’s Website, 2010.

[42] Yongwoo Lee, Daniele Micciancio, Andrey Kim, et al. Efficient FHEW Bootstrapping

with Small Evaluation Keys, and Applications to Threshold Homomorphic Encryption.

In Advances in Cryptology - EUROCRYPT 2023, pages 227––256, Berlin, Heidelberg,

2023. Springer-Verlag.

[43] Wouter Legiest, Furkan Turan, Michiel Van Beirendonck, et al. Neural Network

Quantisation for Faster Homomorphic Encryption. In 2023 IEEE 29th International

Symposium on On-Line Testing and Robust System Design, pages 1–5, Washington,

DC, USA, 2023. Institute of Electrical and Electronics Engineers.

[44] Zeyu Liu and Yunhao Wang. Amortized Functional Bootstrapping in Less than 7 ms,

with Polynomial Multiplications. In Advances in Cryptology - ASIACRYPT 2023,

pages 101–132, Singapore, 2023. Springer Nature.

[45] Qian Lou, Bo Feng, Geoffrey C. Fox, et al. Glyph: fast and accurately training

deep neural networks on encrypted data. In Proceedings of the 34th International

Conference on Neural Information Processing Systems, pages 9193–9202, Red Hook,

NY, USA, 2020. Curran Associates Inc.

[46] Qian Lou and Lei Jiang. SHE: A Fast and Accurate Deep Neural Network for

Encrypted Data, pages 10035–10043. Curran Associates, Inc., Red Hook, NY, USA,

2019.



68

[47] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On Ideal Lattices and Learning

with Errors over Rings. Journal of the ACM, 60(6), 2013.

[48] Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas immanent in

nervous activity. The bulletin of mathematical biophysics, 5(4), 1943.

[49] Suayder Milhomem, Tiago Almeida, Warley Gramacho, et al. Weightless Neural

Network with Transfer Learning to Detect Distress in Asphalt. Journal of Advanced

Engineering Research and Science, 5(12), 2018.

[50] Luis Montero, Jordan Frery, Celia Kherfallah, et al. Machine Learning Training

on Encrypted Data with TFHE. In Proceedings of the 10th ACM International

Workshop on Security and Privacy Analytics, pages 71–76, New York, NY, USA, 2024.

Association for Computing Machinery.

[51] Michael Naehrig, Kristin Lauter, and Vinod Vaikuntanathan. Can Homomorphic

Encryption Be Practical? In Proceedings of the 3rd ACM Workshop on Cloud

Computing Security Workshop, pages 113–124, New York, NY, USA, 2011. Association

for Computing Machinery.

[52] Leonardo Neumann, Antonio Guimarães, Diego F. Aranha, et al. Homomorphic

WiSARDs: Efficient Weightless Neural Network training over encrypted data, 2025.

To appear at the 23rd International Conference on Applied Cryptography and Network

Security (ACNS 2025).

[53] Daniel W. Otter, Julian R. Medina, and Jugal K. Kalita. A Survey of the Usages

of Deep Learning for Natural Language Processing. IEEE Transactions on Neural

Networks and Learning Systems, 32(2), 2020.

[54] Pascal Paillier. Public-Key Cryptosystems Based on Composite Degree Residuosity

Classes. In Advances in Cryptology - EUROCRYPT ’99, pages 223–238, Berlin,

Heidelberg, 1999. Springer.

[55] Prajwal Panzade, Daniel Takabi, and Zhipeng Cai. I can’t see it but I can Fine-tune

it: On Encrypted Fine-tuning of Transformers using Fully Homomorphic Encryption.

arXiv, 2024.

[56] German I. Parisi, Ronald Kemker, Jose L. Part, et al. Continual lifelong learning

with neural networks: A review. Neural Networks, 113(1), 2019.

[57] Saerom Park, Junyoung Byun, Joohee Lee, et al. HE-Friendly Algorithm for Privacy-

Preserving SVM Training. IEEE Access, 8(1), 2020.

[58] Oded Regev. On Lattices, Learning with Errors, Random Linear Codes, and Cryp-

tography. In Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory

of Computing, pages 84––93, New York, NY, USA, 2005. Association for Computing

Machinery.



69

[59] Oded Regev. The Learning with Errors Problem. In 2010 IEEE 25th Annual

Conference on Computational Complexity, pages 191–204, Washington, DC, USA,

2010. Institute of Electrical and Electronics Engineers.

[60] Ronald L. Rivest, Len Adleman, and Michael L. Dertouzos. On Data Banks and

Privacy Homomorphisms, pages 169–179. Academia Press, New York, NY, USA,

1978.

[61] Ronald L. Rivest, Adi Shamir, and Len Adleman. A Method for Obtaining Digital

Signatures and Public-Key Cryptosystems. Commun. ACM, 21(2), 1978.

[62] Frank Rosenblatt. The Perceptron: A probabilistic model for information storage and

organization in the brain. Psychological Review, 65(6), 1958.

[63] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural Networks,

61(1), 2015.

[64] Himanshu Shekhar, Sujoy Seal, Saket Kedia, et al. Survey on Applications of Machine

Learning in the Field of Computer Vision, pages 667–678. Springer, Singapore, 2020.

[65] Andrei Stoian, Jordan Frery, Roman Bredehoft, et al. Deep Neural Networks for

Encrypted Inference with TFHE. In Cyber Security, Cryptology, and Machine Learning,

pages 493–500, Switzerland, 2023. Springer.

[66] Zachary Susskind, Aman Arora, Igor D. S. Miranda, et al. ULEEN: A Novel Architec-

ture for Ultra-low-energy Edge Neural Networks. ACM Trans. Archit. Code Optim.,

20(4), 2023.

[67] Philipp Tschandl. The HAM10000 dataset, a large collection of multi-source dermato-

scopic images of common pigmented skin lesions. Harvard Dataverse, 2018.

[68] William Wolberg, Olvi Mangasarian, Nick Street, et al. Breast Cancer Wisconsin

(Diagnostic). UCI Machine Learning Repository, 1995.

[69] Chen Zhang, Yu Xie, Hang Bai, et al. A survey on federated learning. Knowledge-Based

Systems, 216(1), 2021.

[70] Shuai Zhang, Lina Yao, Aixin Sun, et al. Deep Learning Based Recommender System:

A Survey and New Perspectives. ACM Computing Surveys, 52(1), 2019.


	Introduction
	Contributions
	Structure

	Homomorphic Encryption
	Fundamental Concepts
	Notation
	Learning With Errors
	TFHE Scheme
	Ciphertexts
	Basic Operations
	CMUX Gate
	CMUX Tree
	Blind Rotation
	Sample Extraction
	Vertical Packing
	Key Switching
	Programmable Bootstrapping


	Weightless Neural Networks
	Notation
	Random Access Memories
	Discriminators
	WiSARD Nets
	State-of-the-Art WNNs
	Quantization
	Thermometer Code
	Bleaching Technique


	Related Work
	Homomorphic WiSARDs
	TFHE Contributions
	CDEMUX Gate
	CDEMUX Tree
	Inverse Vertical Packing

	TFHE Parameter Search
	WiSARD Activation Functions
	Linear Integer Models
	Non-linear Integer Models
	Activations as Ensembles

	Homomorphic WiSARDs
	Training Phase
	Inference Phase
	Model Activation Phase

	Additional Techniques
	Federated Learning
	Dataset Balancing
	Input Compression


	Experimental Results
	Experimental Setup
	Evaluation Datasets
	MNIST
	HAM10000
	Wisconsin Breast Cancer

	Parameter Sets
	Comparative Analysis
	Homomorphic Training
	Homomorphic Inference

	Resource Usage Analysis
	Activation Cost Analysis
	Communication Cost Analysis

	Conclusion
	Future Work

	Bibliography

