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Resumo

Os modelos de linguagem agora sao capazes de resolver tarefas que exigem lidar
com longas sequéncias consistindo em centenas de milhares de tokens. No entanto, eles
frequentemente falham em tarefas que exigem o uso repetitivo de regras simples, mesmo
em sequéncias que sao muito mais curtas do que aquelas vistas durante o treinamento.
Por exemplo, grandes modelos de linguagem (LLMs) de tltima geragdo podem encontrar

itens comuns em duas listas com até 20 itens, mas falham quando as listas tém 80 itens.

Esta dissertagao apresenta o MLissard, um benchmark multilingue projetado para
avaliar as habilidades dos modelos de processar e gerar textos de tamanhos variados
e oferece um mecanismo para controlar a complexidade da sequéncia. Os resultados
demostraram que tanto os modelos de codigo aberto e proprietarios apresentaram um
declinio consistente no desempenho em todos as tarefas e idiomas a4 medida que a com-
plexidade da sequéncia aumenta. Surpreendentemente, o uso de exemplos em contexto
em idiomas diferentes do inglés ajuda a aumentar significativamente o desempenho da

extrapolagao.

Palavras-chave: Processamento de Linguagem Natural; Transformers; Aprendizado

de MAaquina; Modelo de Linguagem de Grande Escala; Extrapolagao.



Abstract

Language models are now capable of solving tasks that require dealing with long
sequences consisting of hundreds of thousands of tokens. However, they often fail on
tasks that require repetitive use of simple rules, even on sequences that are much shorter
than those seen during training. For example, state-of-the-art large language models
(LLMs) can find common items in two lists with up to 20 items but fail when lists have

80 items.

This paper introduces MLissard, a multilingual benchmark specifically designed to
assess the performance of models in processing and generating texts of varying lengths,
while also providing a mechanism to control sequence complexity. The results demonstrate
that both open-source and proprietary models show a consistent decline in performance
across all tasks and languages as the complexity of the sequence increases. Surprisingly,
the use of in-context examples in languages other than English helps increase extrapolation

performance significantly.

Keywords: Natural Language Processing; Transformers; Machine learning; Large

Language Model; Extrapolation.



List of Figures

Figure 1 = Template for evaluation. Being (a) Instruction and examples of

tasks in the target language; (b) Instruction in the target language and

multilingual examples. . . . . . . . ... .. 21
Figure 2  GPT-4 performance in the MLissard. . . . . . . .. ... ... ... 22
Figure3  Comparison of Llama-3.1-405B vs. GPT-4 performance in the MLis-

sard Benchmark . . . . . . . .. ..o 23

Figure 4  Average accuracy considering all bins. Since (1) Baseline - Both
the instruction and the examples derive from the same target language; (2)
instruction in the language that performed better or worse and a examples
in the target language; (3) Instruction in target language and multilingual

examples. . . . . . .. L 26



List of Tables

Table 1 Key task entities: Last Letter Concatenation (LLC), Repeat Copy

Logic (RCL), Object Counting (OC), and List Intersection (LI) . . . . .. 17
Table 2  Task Summary in the MLissard Benchmark. . . . . . . . . ... . .. 17
Table 3  Examples of input and target sequences of the Object Counting task. 18
Table 4  Examples of input and target sequences of the List Intersection task. 18
Table 5  Examples of input and target sequences of the Last Letter Concate-

nation task. . . . ... ... 19
Table 6  Examples of input and target sequences of the Repeat Copy Logic

task. . .o L L 20
Table 7 The average accuracy for each language across the tasks of Object

Counting (OC), List Intersection (LI), Last Letter Concatenation (LLC),

and Repeat Copy Logic (RCL) is presented. We compare the performance

of two models: Llama-3.1-405B and GPT-4, with the best results high-

lighted in bold. . . . . . .. .. . ... .. ... 24
Table 8  Average accuracy across all MLissard tasks was compared between

the Llama-3-70B and Llama-3.1-405B models. . . . . . . . . . .. . . ... 25



Contents

1 Introduction

1.1 Main Contributions . . . . . . . . . . .. .

2 Related Work

3 Methodology
3.1 Key entities

3.2 Tasks. . . . . . .
3.2.1 Object Counting . . . . . . . . . . .. ... ...
3.2.2 List Intersection . . . . . . . . ... ... ... ... ...
3.2.3 Last Letter Concatenation . . . . . . . .. . ... ... .. .....
3.2.4 Repeat Copy Logic . . . . . . . . . .. .. ... ... ... .....

4 Experimental Setup

5 Results
5.1 Impact of model size . . . . . . . . . ... ... ... ... .. ...
5.2 Can cross language improve extrapolation performance? . . . . . . . . . . .

6 Conclusion

6.1 Limitations

References

11
13

14

16
16
17
17
18
18
19

21

22
24
24

27
27

28



11

1 Introduction

The efficacy of language models, particularly in reasoning tasks, is significantly im-
pacted by longer text lengths than those seen in training [Li et al., 2023b, Anil et al.,
2022, Lake and Baroni, 2018]. This phenomenon, referred to as “Length Generalization”
or “Length Extrapolation” in the literature Press et al. [2022], Zhao et al. [2023], is also
common in models based on the Transformer architecture Liska et al. [2018|, Lewkowycz
et al. [2022], Delétang et al. [2023], Zhou et al. [2023b]. Notably, even Large Language
Models (LLMs), known for their strong performance in a wide range of tasks and domains,
are not immune to this problem Anil et al. [2022], Chen et al. [2023].

In practical applications, this challenge is evident in LLM-based assistants, partic-
ularly when they encounter requests necessitating the use of simple, repetitive rules or
memorization. For instance, tasks such as identifying a specific name within an extensive
contact list or checking priorities in a task list exemplify this issue; the scope of similar
tasks is vast. Consequently, various techniques have been developed to address these
challenges, both at the architectural level of transformers with an emphasis on positional

embeddings and at the prompt level by breaking tasks into sequential steps.

Regardless of the approaches implemented, there is still a lack of evaluation bench-
marks for subsequent tasks. Benchmarks such as SCROLLS Shaham et al. [2022] assess
models on long sequence tasks but lack explicit control over task complexity relative to
sequence length, making it hard to gauge length generalization. For example, there is no
certainty that questions about longer texts are harder than those about shorter ones. This
highlights the need for benchmarks that explicitly test the impact of sequence length. In
dialogue Li et al. [2023a] and multi-document question answering Liu et al. [2024], tech-
niques like retrieval-augmented generation (RAG) are prevalent, and therefore explicitly

isolating the length extrapolation issue poses a challenge.

We introduce MLissard, a multilingual benchmark that evaluates models on tasks
with repetitive rules, where difficulty increases with sequence length. Supporting English
(EN), German (DE), Portuguese (PT), Russian (RU), Spanish (ES), and Ukrainian (UA),
MLissard employs a developed method to identify models’ breaking points. Additionally,
it allows for the generation of new examples to heighten task difficulty, thereby avoid-
ing the contamination issues commonly associated with traditional datasets Ahuja et al.
[2023], Li and Flanigan [2024]. At the time of this research, it is the first multilingual

dataset aimed at assessing models’ length extrapolation capabilities.

Our analysis, which includes evaluations on proprietary models such as GPT-4 Ope-
nAl [2023], as well as open-source ones like LLama-3 Dubey et al. [2024], reveals a common
trend among them. Our findings underscore that irrespective of their architectures and

parameter counts, all examined models demonstrate a performance degradation with in-
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creasing length, controlled by the number of key entities (see their definition in Table 1),
required to solve the tasks. This indicates a common point of failure in generalization for
LLMs, even for sequence lengths that are considerably shorter in terms of tokens than

those seen during their pretraining or fine-tuning phases.

Our investigation further demonstrated that the effect of extrapolation is not iso-
lated; variables such as language and model size significantly influence the outcomes. For
instance, despite English being a high-resource language, its performance was only av-
erage and was surpassed by other languages such as German. Moreover, ablation tests
revealed improvements in extrapolation performance when in-context examples comprised
a mixture of languages. This underscores the influence of language selection on the ex-

trapolation capabilities of language models.

The subsequent sections will explore the primary contributions this article makes to
the community regarding the topic of extrapolation. We will examine related works that
discuss approaches and techniques in the literature aimed at enhancing the generalization
capacity of language models, particularly in addressing the challenges related to sentence
length. The Methodology section outlines the development of benchmarks and details
the key entities method, along with the various tasks involved. The Experimental Setup
section describes the process of evaluating the MLissard using state-of-the-art language
models. In the Results section, we present the significant findings from the experimenta-
tion phase and the ablation tests. Lastly, the Conclusion and Limitations section reviews
the results and discusses the challenges encountered in completing the master’s thesis

work.
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1.1 Main Contributions

The developed thesis makes contributions in the field of language model generaliza-

tion, including;:

1. The creation of a multilingual benchmark that can be easily expanded with new

examples, lengths, and languages.

2. Identification of model breaking points through a key entity mechanism, aiding in

tracking model improvements in extrapolation tasks.

3. An analysis of the impact of language diversity and model size on extrapolation

capabilities.
4. Provision of open-source datasets and results.

Additionally, two papers related to the master’s thesis were accepted for publication:
one at the Math NLP workshop during EMNLP-2022, which has been cited 14 times,
and another at the Genbench workshop during EMNLP-2024 that was cited two times.
Both publications significantly contributed to the development of the dissertation topic by
highlighting the limitations of neural architectures, particularly their fragility in extrapo-
lating internal rules—a capability that is not typically emphasized during the pre-training
phase.
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2 Related Work

The challenge of length extrapolation in the domain of natural language processing
has been a persistent and long-standing issue. An array of studies has demonstrated that
neural architectures encounter difficulties when confronted with sequences of longer than
those they encountered during their training Lake and Baroni [2018], Ligka et al. [2018],
Keysers et al. [2019], Dubois et al. [2020], Nogueira et al. [2021], Welleck et al. [2022],
Lewkowycz et al. [2022], Delétang et al. [2023], Zhou et al. [2023b]. Despite efforts to
expand the context window in LLMSs, this issue persists, particularly when tackling tasks

involving complex reasoning Anil et al. [2022].

Recent endeavors have been undertaken to enhance the general performance of LLMs
by employing prompt engineering techniques and by developing novel decoding methods
aimed at expanding their capacity to extrapolate effectively over lengthy sequences of
tokens. For instance, Nye et al. [2021] introduced the concept of a "scratchpad" that
enables the model to generate draft responses in natural language before producing the
final output. To assess the performance of this method, a range of tasks were employed,
including math and coding tasks. Moreover, studies by Wei et al. [2022] and Zhou et al.
[2023a] demonstrated improvements by configuring the model to generate explanations for
problem-solving and breaking down tasks into multiple interactive steps. These enhance-
ments were particularly noticeable in tasks requiring the ability to extrapolate, such as
last-letter concatenation (symbolic manipulation), SCAN Lake and Baroni [2018] (com-
positional generalization), and mathematical reasoning. The last letter concatenation
task focuses on string manipulation by requiring the concatenation of the last letters of
each word. In contrast, the SCAN task involves using a limited vocabulary (e.g., JUMP,
TWICE, LEFT, RIGHT, etc.) alongside an instruction, such as JUMP TWICE, which
the model must translate into a sequence of navigation commands like JUMP JUMP.
This task effectively evaluates the model’s ability to apply a repetitive rule and combine
elements to produce the correct output. Additionally, Bueno et al. [2022] showed that uti-
lizing markups tokens as position representations help the model to generalize to longer
sequences in tasks related to mathematical addition and compositional generalization.
Han et al. [2024] devised a decoding method to improve generalization over extended

sequences.

In addition to techniques for customizing prompts, recent research has explored mod-
ifying the position encoding function of the original transformer architecture to enhance
its extrapolation capabilities Press et al. [2022], Chi et al. [2022, 2023], Li et al. [2023b],
Qin et al. [2023], Chen et al. [2023]. For instance, Kazemnejad et al. [2023] evaluated
commonly used positional coding methods and found that, despite these methods improv-
ing perplexity score, completely omitting positional coding actually yielded better results

on downstream tasks requiring extrapolation ability.



15

The studies above provide evidence of multiple approaches that have been developed
to address the challenge of extrapolation. Nonetheless, there is a notable absence of
research focusing on development of diverse and standardized datasets that assess the
generation and synthesis of extended text sequences produced by neural models. This gap
is particularly significant when considering that many of the classical datasets available

in question may have already been used into the training of large language models.
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3 Methodology

Our benchmark incorporates a combination of existing tasks, such as those from
BIG- bench authors [2023], as well as newly developed ones. We intentionally excluded
classical datasets (e.g., SCAN) from the analysis, since unlike the synthetic MLissard,
their test sets are publicly available and many solutions have been extensively detailed
in the scientific literature, making them potentially familiar to large language models

(LLMs). To create the benchmarks, several steps were followed:

1. Filtering and creating tasks: In this step, we identify simple and synthetic
tasks that require logical reasoning, memorization, and repetition, and that include
an extrapolation factor, such as lists of objects or command applications. The goal
is to isolate this extrapolation factor—like the number of objects in a list—and then

expand the task synthetically to cover larger input lengths.

2. Identifying key entities: As explained in Section 3.1, we extracted the extrap-
olation factor for each task and identified the possible range values to assess the

model’s generalizability.

3. Generating new examples: For each task, we developed a Python script to gen-
erate new examples, increasing the complexity of the key entity within the specified

ranges.

4. Multilingual adaptation: In addition to English (EN), our language set includes
German (DE), Spanish (ES), Portuguese (PT), Russian (RU), and Ukrainian (UA).
We expanded this set by integrating automatic translation systems and using Python

scripts to generate synthetic data.

Once the evaluation benchmark was created, we conducted tests to assess the extrap-
olation performance of leading state-of-the-art models. The following sections provide a
detailed explanation of the concept of key entities, the generation process for each task,

and the methodology used to evaluate the language models in MLissard.

3.1 Key entities

The notion of key entities functions as an extrapolation factor within the context
of a target task. For instance, in a task that seeks to identify common items between
two lists, this extrapolation factor is defined by the number of items the model requires
to analyze. Utilizing this factor allows for the augmentation of task complexity without
modifying its properties. As a result, within specified ranges (bins), we can identify the

model’s breakpoints.

The choice of bins for each task was performed empirically to achieve a balanced range
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Task Key Entity Bin 1 Bin 2 Bin 3 Bin 4
LLC Names 1-8 8-15 15-22 22-30
RCL Total Repetitions 1-9 9-17 17-25 25-33
0C Objects 1-7 7-12 12-17 17-23
LI [tems: lists A and B 1-46 46-91 91-136 136-181

Table 1: Key task entities: Last Letter Concatenation (LLC), Repeat Copy Logic (RCL),
Object Counting (OC), and List Intersection (LI)

of difficulty levels. Bin 1 consists of sequences of shorter length, while Bin 4 comprises
sequences of longer length. Table 1 describes the key entities and the respective lengths

in each bin.

3.2 Tasks

In total, four tasks were developed, and Table 2 provides a summary of each one with
input and output examples. Due to the high costs of paid APIs, we restricted our tests
to 300 examples per task and language. To ensure balanced evaluations across different

length partitions, we randomly selected 75 examples for each bin.

Task Input Example Output
Last Letter Concatenation Abil Gaby ly

Repeat Copy Logic Repeat 2 times school school school
Object Counting I have a chair, and an apple. 2

List Intersection A: abilmatt / B: matt, gaby matt

Table 2: Task Summary in the MLissard Benchmark.

3.2.1 Object Counting

The main goal of this task is to assess the proficiency in object counting within se-
quences, as shown in Table 3. The input to the model is a sequence comprising a list of
objects paired with their respective quantities and the expected output is a string with
the total count of objects. Diverging from the original BIG-bench task that exclusively
encompasses the enumeration of objects from predetermined categories like fruits, veg-
etables, or musical instruments, our method comprises object counting across different

categories.

Automatic translation systems were used to generate the multilingual set, in this

case, Google Translate. After this phase, a translation subset was selected for human
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analysis of the general quality of the translation.

Input Target Language
I have three onions, two potatoes, and a cab- 6 English
bage.

Ich habe einen Blumenkohl, eine Kartof- 14 German

fel, einen Kohl, einen Knoblauch, eine Yam-
swurzel, einen Salatkopf, eine Karotte, zwei

Stangen Sellerie, vier Brokkoliképfe und eine

Zwiebel.

Table 3: Examples of input and target sequences of the Object Counting task.

3.2.2 List Intersection

The objective of this task is to find common items in two lists as exemplified in
Table 4. Items within the lists are composed of words from a designated target language,
with both the words and their frequencies sourced from the FrequencyWords! repository.
The methodology involved selecting the most frequent words because the language models
had likely encountered them during pre-training. This ensured that the vocabulary used in
the task would not pose any additional difficulty. For each specific language, stop words
and special characters were eliminated. Following this preprocessing phase, a random

sampling of words was conducted.

The lists have equal sizes, but the number of overlapping items varies. The target
output is the words in common, sorted alphabetically. If there are no items in common,

"None" must be returned.

Input Target Language

A: messed/sin/college/paul

B: college/tough/alert/finger college English

A: disparar/arte/adios/diste

B: diste/arte/decirnos/bastante arte Spanish
diste

Table 4: Examples of input and target sequences of the List Intersection task.

3.2.3 Last Letter Concatenation

The Last Letter Concatenation task, as formulated in the Chain-of-Thought work

Wei et al. [2022], involves concatenating the last letter of each word within an input

'https://github.com/hermitdave/FrequencyWords/
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sequence comprised of random names. Table 5 provides an illustrative instance of the
dataset, where the input sequence comprises randomly selected names obtained through
the target language Name Census?.

In constructing our dataset, we applied a comparable methodology of "List Inter-
section" task; however, we sampled the most common names from each target language
and expanded the sample length to encompass sequences with an increase of up to thirty

names.

Input Target Language

Noah Miles Emilia hsa English

Luis Marcia Pedro Marcelo Fernanda Maria s a o o a Portuguese

a

Table 5: Examples of input and target sequences of the Last Letter Concatenation task.

3.2.4 Repeat Copy Logic

The task proposed by the BIG-bench evaluates language models’ ability to compre-
hend and execute instructions involving repetitions, text-to-copy, basic logic, and condi-

tionals. Our methodology for creating the dataset includes:
1. Collecting responses to all input sequences from the BIG-bench repository?;

2. Filtering responses to retain only those correctly answered by GPT-4, which cor-
rectly answered 17 out of 32 original questions. We adopted this methodology to
focus on assessing the model’s ability to handle extrapolation. Consequently, we
selected easier questions and synthetically recreated them by varying the required

repetitions in the task.

3. Translating instructions using Google Translate to support multiple languages and

reviewing the subset for accuracy;

4. Generate extrapolations on selected instructions, varying the repetition factor (see

Table 6).

2Portuguese(PT)-—ht.tps://censo2010.ibge.gov.br/nomes/#/ranking

Spanish (ES) - https://www.epdata.es/datos/nombres-apellidos-mas-frecuentes- espana-ine/
373

English (EN) - https://www.ssa.gov/cgi-bin/popularnames.cgi

German (DE) - http://www.firstnamesgermany . com/

Ukrainian (UA) - https://census.name/ukrainian-name-database/

Russsian (RU) - https://census.name/russian-name-database/
3https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/repeat_copy_

logic


https://censo2010.ibge.gov.br/nomes/#/ranking
https://www.epdata.es/datos/nombres-apellidos-mas-frecuentes-espana-ine/373
https://www.epdata.es/datos/nombres-apellidos-mas-frecuentes-espana-ine/373
https://www.ssa.gov/cgi-bin/popularnames.cgi
http://www.firstnamesgermany.com/
https://census.name/ukrainian-name-database/
https://census.name/russian-name-database/
https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/repeat_copy_logic
https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/repeat_copy_logic

Input Target Language
Repeat 4 times "hello hello world hello world English
world" hello world hello world

Repeat the word dog 10 dog dog dog dog dog woof English
times, but halfway through dog dog dog dog dog

also say woof

Say the days of the week Saturday Sunday Saturday English
but only the weekend days, Sunday

2 times

Wiederhole ,Hallo Welt“ 5 hallo welt hallo welt hallo German

Mal

welt hallo welt hallo welt

Table 6: Examples of input and target sequences of the Repeat Copy Logic task.

20
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4 Experimental Setup

The evaluation of each task involved analyzing responses from GPT-4 (gpt4-0613) and
Llama-3 (Llama-3.1-405B-Instruct and Llama-3-instruction-70B) using greedy decoding.
We observed no repetition issues. Each task was preceded by a predefined instruction
(description of the task) with in-context examples: four for “Object Counting,” “Find
Intersection,” and “Last Letter Concat,” and one for “Repeat Copy Logic” because inputs
already provided sufficient information to perform the task. Both the instructions and
examples were in the target language of the evaluation. For instance, English tasks used
English instructions and examples (see Figure 1 (a)). For the in-context examples used
during model evaluation, we selected samples contained in the first bin, as these contain
the smallest lengths.

We utilized the exact match as the primary metric. This metric is determined by
dividing the number of correctly answered examples by the total number of examples
evaluated. The percentage range 0-100% is returned by the metric. This methodology is
further modified in section 5.2, where we discuss the impact of cross-language inputs on

model performance.

/ \\ / Instruction
Instruction You are a assistant whose

You are a assistant whose goal is <task description=
goal is <task description=

Examples

LPT]

Examples Input: Repita escola 3 vezes

EN
. Output: escola escola escola
Input: Repeat 3 times school

Output: school school school

vy

Input: Wiederholen Sie 3 Mal die | DE

|
) (b)

Figure 1: Template for evaluation. Being (a) Instruction and examples of tasks in the

target language; (b) Instruction in the target language and multilingual examples.
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5 Results

Figure 2 presents the results obtained via GPT-4 in the target tasks and languages.
Overall, there is a gradual decline in the performance of language models across tasks as
complexity increases, as measured by the number of key entities in the input sequence.
For instance, in the “Object Counting” task, when presented with inputs containing 1
to 7 objects, the model achieve approximately 100% accuracy. However, their accuracy
drops below 50% when confronted with sequences with 12 to 17 objects. This behavior
is reflected in the target languages as well, all of which present a loss of more than 50%

when dealing with more complex input sequences.

Object Counting | List Intersection |

100 100 *DE
*ES S «ES

- PT
“RU
wUA
“EN

75

50

25

1-7 7-12 12-17 1723

Bins

Last Letter Concatenation

Accuracy (%)

e 100
<ES

PT
«RU 75
“UA
=EN

«DE
“ES
PT

100

*RU
sUA
<EN

75
50 50

25 25

1-8 8-15 15-22 22-30 1~9 9-17 17~25 25-33

Bins Bins

Figure 2: GPT-4 performance in the MLissard.

We also observed considerable variability in performance between languages depend-
ing on the specific task. For instance, differences ranging from 2.4 to 42 points are observed
in the intermediate bins for tasks such as “Last Letter Concatenation” and “Repeat Copy
Logic”. These variations are intriguing as there doesn’t appear to be a general language
preference. For example, in the “Last Letter Concatenation” task, German, Portuguese,
and Spanish outperform Russian by a margin of 42.6 points in the 15-22 bin. Conversely,
in the “Repeat Copy Logic” task, Russian outperforms Portuguese by 42.5 points.

Contrary to the general trend observed in studies of multilingual models, English

did not exhibit exceptional performance compared to other languages. In fact, except for
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the “List Intersection” task, English consistently demonstrated average or below-average
accuracy across bins. This pattern may be attributed to the nature of the MLissard tasks,

which prioritize reasoning and memorization for extrapolation over advanced language

knowledge.

The intrinsic nature of the tasks also significantly impacts generalization performance.
As demonstrated in Table 7, GPT-4 has greater difficulty executing the “List Intersection”
and “Repeat Copy Logic” tasks. In the “List Intersection” task, the model achieves less
than 10% accuracy in bins 3 and 4. In the “Repeat Copy Logic” task, accuracy drops
to below 25% in the same bins. Both tasks require extensive memorization and state
tracking. We hypothesize that these challenges, along with the increased sentence length,

have influenced the observed performance outcomes.

Regarding the performance of open-source models in the MLissard benchmark, Fig-
ure 3 illustrates that both models performed similarly in bin 1, with accuracy points
ranging between 70 and 100. However, as task complexity increased from bin 2 onwards,
differences in performance stood out. Except for the "Repeat Copy Logic" task, GPT-4
outperformed Llama-3.1-405B by 5 to 60 accuracy points (see Table 7).
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N GPT4 - DE GPT4 - DE
h
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Figure 3: Comparison of Llama-3.1-405B vs. GPT-4 performance in the MLissard Bench-

mark

On the other hand, in the “Repeat Copy Logic” task, there is a reverse comparison,
where Llama-3.1-405B outperforms GPT-4 in all bins, with the difference ranging from 9



24

points to 16 points of accuracy.

In relation to language preference behavior, both the Llama-3.1-405B and GPT-4
models exhibit similar task-dependent variations. Llama-3.1-405B demonstrates more

consistent performance across Portuguese, German, and English.

Task\ Bin 1 Bin 2 Bin 3 Bin 4

‘Llama GPT-4 | Llama GPT-4 | Llama GPT-4 | Llama GPT-4

oC | 1000 1000 |579 63.3 0.85 38.6 0.70 24.6
LI |85.9 76.6 95.9 29.1 0.60 7.70 0.15 4.2
LLC | 95.3 100.0 | 48.6 85.8 0.40 60.6 0.0 15.9
RCL | 82.6 73.3 57.3 41.3 33.3 240 15.3 0.40
AVG\ 90.9 87.4 \ A7.4 54.8 \ 8.7 32.7 \ 35 11.2

Table 7: The average accuracy for each language across the tasks of Object Counting
(OC), List Intersection (LI), Last Letter Concatenation (LLC), and Repeat Copy Logic
(RCL) is presented. We compare the performance of two models: Llama-3.1-405B and
GPT-4, with the best results highlighted in bold.

5.1 Impact of model size

The Llama-3.1-405B model achieved state-of-the-art results in general NLP task
benchmarks compared to the Llama-3-70B model. We investigated whether this per-
formance trend is also evident in the MLissard benchmarks, especially in relation to the

complexity indicated by the bins.

Table 8 compares the average performance of each bin (for all MLissard tasks) using
the Llama-3.1-405B and Llama-3-70B models. As expected, Llama-3.1-405B significantly
outperforms Llama-3-70B across all languages and complexity bins. The largest differ-
ences between the models occur in bins 1 and 2, with performance gaps ranging from 16
to 43 points. In contrast, for bins 3 and 4, which involve more complex tasks, the perfor-
mance improvement is less pronounced, with variations ranging from 0.3 to 11 points. This

suggests that Llama-3.1-405B, like the 70B version, also struggles with long sequences.

5.2 Can cross language improve extrapolation performance?

We aim to examine the impact on extrapolation performance by focusing on two com-
ponents: 1) providing instructions in a different language than the target language, and
2) using mixed-language few-shot examples (see Figure 1 - (b)). For the test with mixed
languages, we used examples in Portuguese, German, Ukrainian, and English. These lan-

guages showed greater performance in MLissard with the default prompt; therefore, we
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Lang Bin 1 Bin 2 Bin 3 Bin 4
70B  405B 70B  405B 70B  405B 70B  405B
EN 70.6 89.9 18.6 48.0 0.15 0.75 0.0 0.15
PT 79.3 96.6 23.9 63.3 0.0 11.3 0.0 6.1
ES 73.9 92.6 16.6 59.9 0.1 5.7 0.0 6.5
DE 74.6 91.3 16.8 51.3 0.05 8.3 0.0 0.3
RU 60.6 87.9 12.2 37.9 0.0 0.8 0.0 0.6
UA 55.3 86.6 10.7 33.9 0.0 0.5 0.0 0.4

Table 8: Average accuracy across all MLissard tasks was compared between the Llama-

3-70B and Llama-3.1-405B models.

would like to test if mixing them can increase the extrapolation performance in general
languages. For the "Repeat Copy Logic" task, we provided two contextualized examples

(English and Ukrainian), while for the other tasks, we provided four examples.

We conducted ablation tests on all tasks in the MLissard dataset using the GPT-4
model. For comparative purposes, we focused on the languages that achieved the highest
and lowest performance in each task. We then compared these results with the baseline

(both instructions and examples in the same language).

Figure 4 presents the experimental results for each task. Asshown in the results, when
we gave prompts in a language different from the test set, accuracy declined by an average
of 2.3 percentage points. However, when we kept instructions in the test target language
but included paraphrased examples contextualized in multiple languages, performance
improved by an average of 6.25 percentage points. This improvement ranged from 2
points in the "List Intersection" task to 17 points in the "Last Letter Concatenation"
task and remained consistent across all evaluated languages. These findings indicate that

contextual examples in multiple languages can improve the quality of extrapolation.
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6 Conclusion

This master’s thesis introduces a multilingual benchmark to evaluate the ability of
language models to deal with long texts across languages. Our approach distinguishes
itself from existing benchmarks through the introduction of a control mechanism, which
we refer to as "key entities." This mechanism enables us to systematically increase task
complexity in tandem with sequence length. Furthermore, the ability to solve these tasks
is predicated on the repeated application of simple rules, providing more control and
enabling a detailed analysis of model performance in relation to the frequency of rule
application. This contrasts with benchmarks that rely on lengthy natural language texts,
where the relationship between text length and task difficulty may become obscured.
Despite the apparent simplicity of these tasks, they reveal significant limitations in state-
of-the-art LLMs concerning the processing and generation of text as lengths increase.
Our findings indicate that language and model size significantly affect extrapolation re-
sults. Moreover, including in-context examples in multiple languages improves MLissard’s

generalization performance.

6.1 Limitations

Our evaluations were conducted on a set of six languages, therefore, the findings
of this work may not necessarily extend to other languages, particularly low-resource
ones. Additionally, we solely employed a standard prompt style for our evaluations,
and the performance with more sophisticated techniques, such as chain-of-thought (CoT)
prompting, remains to be investigated. Finally, given the limitation of our study to two
models (GPT-4 and Llama-3), the results may not generalize to other LLMs.
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