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Resumo

Culturas celulares em esferoides são modelos valiosos para o desenvolvimento de fármacos.
Entretanto, sua análise ainda demanda muito tempo, tornando essencial a automação para
triagens em larga escala. Para enfrentar esse desafio, apresentamos um banco de dados
abrangente de imagens de esferoides, acompanhado de protocolos e amostras anotadas,
além de um método inovador de segmentação e um pipeline escalável para análises roti-
neiras de esferoides em larga escala. O banco de dados é composto por imagens em campo
claro capturadas em intervalos de 24 horas ao longo do ciclo de vida dos esferoides, gera-
das no OncoBiomarkers Lab da Universidade Estadual de Campinas (Unicamp). Nossa
abordagem de segmentação integra data augmentation com arquiteturas de redes neurais
convolucionais (CNNs) e Transformers de última geração. Além disso, introduzimos um
novo método de ensemble, utilizando late-stage majority vote de modelos treinados, para
melhorar o desempenho na segmentação. A avaliação quantitativa, utilizando o índice
Dice como métrica, revelou que arquiteturas baseadas em Transformers se destacam na
extração de características essenciais para a segmentação de esferoides, mesmo em cenários
com dados limitados. Adicionalmente, o ensemble de modelos CNN apresentou desempe-
nho superior em comparação com redes individuais. A análise qualitativa dos resultados
de segmentação evidenciou que as métricas quantitativas nem sempre se correlacionam
diretamente com a qualidade visual das segmentações. Em conclusão, a segmentação de
esferoides cancerígenos continua sendo um desafio e um gargalo em experimentos de alta
capacidade. A metodologia proposta demonstrou ser eficaz na geração de máscaras de
segmentação confiáveis e, quando integrada ao Spheroid Analysis Pipeline (SAP), oferece
uma solução de ponta a ponta para testes em larga escala e resultados reprodutíveis. To-
dos os recursos necessários para a reprodução dos resultados, incluindo a base de dados, os
protocolos, os métodos e o manual correspondente, estão publicamente disponíveis para
apoiar pesquisas futuras e a extensão deste trabalho.



Abstract

Spheroid cell cultures serve as valuable models for drug development. However, their ex-
amination remains time-intensive, necessitating automation for high-throughput screen-
ing. To address this challenge, we present a comprehensive dataset of spheroid images,
complete with protocols and annotated samples, alongside a novel segmentation method
and a scalable pipeline for routine large-scale spheroid analysis. The dataset comprises
brightfield images captured at 24-hour intervals throughout the lifespan of spheroids, gen-
erated at the Oncobiomarkers Research Laboratory, University of Campinas (Unicamp).
Our segmentation approach integrates data augmentation with state-of-the-art convolu-
tional neural networks (CNNs) and Transformer architectures. Furthermore, we introduce
a novel ensemble method employing late-stage majority vote fusion of trained models to
enhance segmentation performance. Quantitative evaluation, using the Dice index as
the benchmark metric, revealed that Transformer-based architectures excel in extracting
critical features for spheroid segmentation, even in data-scarce scenarios. Additionally,
the ensemble of CNN models demonstrated superior performance compared to individual
networks. Qualitative analysis of segmentation outputs highlighted that quantitative met-
rics alone do not always correlate with visual segmentation quality. In conclusion, cancer
spheroid segmentation remains a significant challenge and bottleneck in high-throughput
experimentation. Our proposed methodology generates reliable segmentation masks and,
when integrated with the Spheroid Analysis Pipeline (SAP), provides an end-to-end so-
lution for large-scale testing and reproducible results. All necessary resources for repro-
ducing the results, including the dataset, protocols, methods, and accompanying manual,
are publicly available to support future research and extensions of this work.
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Chapter 1

Introduction

In this chapter, we present an overview of the thesis by outlining its motivation, defin-
ing the problem under investigation, and establishing the primary objectives. We then
highlight the key contributions made through this research, followed by a summary of
related publications that have resulted from this work. Finally, we provide an outline
of the organization of this thesis, detailing the structure and content of each chapter to
guide the reader through the document.

1.1 Motivation

Cancer continues to pose a significant global health challenge, responsible for nearly 10
million deaths worldwide in 2020 and approximately 19 million new cases reported that
year [142]. The development of new drugs, including cancer treatments, is a complex,
costly, and time-consuming process. According to Wouters et al. [165] and Hughes et al.
[64], between 2014 and 2018, the FDA approved 355 new drugs in the United States,
yet cost data was publicly available for only 63 of them. Their analysis estimated that,
factoring in failed trials, developing a single drug costs around US$1 billion. They also
emphasized that gathering sufficient evidence to justify a screening trial often requires 12
to 15 years of research.

Bringing a drug to market involves four key steps, starting with Research & Devel-
opment (R&D), which is often the most time-intensive step. This step focuses on under-
standing the disease and identifying potential drug targets. For example, if an enzyme is
found to be overexpressed in cancer and linked to tumor progression, researchers explore
strategies to discover new compounds or modify existing ones. Once a target is validated,
the compounds move to the next phase for biological testing [43].

The second step, the Preclinical phase, is divided into two sub-phases, illustrated in
the top row of Figure 1.1. The first, called in vitro, involves testing the compound on
human cell cultures to assess effectiveness, optimal dosage, and toxicity. The second, in

vivo, tests the compounds on animals [64].
Compounds that successfully complete preclinical testing advance to human trials,

conducted in three progressive clinical phases. These trials, which expand in scale over
time, are critical for assessing the drug’s behavior in the human body and ensuring patient
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safety, as depicted in the bottom row of Figure 1.1. Once sufficient evidence of a drug’s
safety and efficacy is collected, researchers proceed to the final step: submitting the drug
for regulatory review and approval.

Figure 1.1: A flowchart illustrating the stages of drug development: (1) The in silico
phase, where computer simulations are used to evaluate the compound. (2) The in vitro
phase, involving tests on cultured cells. (3) The in vivo phase, where the compound is
tested in living animals. (4) The four phases of clinical trials, during which the compound
is assessed in human participants.

Clinical trials are the most expensive phase of drug development, with only 10%
of candidates ultimately reaching the market. This high rejection rate is often linked
to limitations in preclinical testing, which may fail to filter out unviable compounds
early [41]. To address this, researchers have focused on improving preclinical studies,
particularly by advancing in vitro models and reducing reliance on animal testing.

A very common in vitro approach is the two-dimensional (2D) cell culture, in which
cells grow in a monolayer on a plastic or glass surface, as illustrated in Figure 1.2a.
This method has several advantages, including reduced ethical concerns compared to
animal models, simpler training requirements, and the availability of highly consistent
cell batches for reproducibility. Additionally, cells can be frozen for long-term storage,
unlike live animals, which age rapidly. Maintaining 2D cultures is also more cost-effective
than operating animal facilities [135].

Despite these benefits and their critical role in research [71, 117], 2D cell cultures have
notable limitations. Their main disadvantage is the lack of physiological relevance, as
they fail to replicate the complex cell-to-cell interactions and microenvironment dynamics
found in living tissues. This is particularly important in cancer research, where the tumor
microenvironment plays a crucial role in disease progression.

Other limitations of 2D cultures include altered gene expression, increased sensitivity
to compounds, absence of systemic effects, and poor predictive accuracy for drug efficacy.
Essential factors such as nutrient diffusion and waste removal, which are critical for tumor
growth, are also poorly represented in these models [46, 117].

To overcome these challenges, researchers have developed 3D culture models, includ-
ing spheroids and organoids. In spheroid models, cells are cultured in suspension within
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(a) 2D Culture (b) 3D Culture

Figure 1.2: A cross-sectional illustration of cell organization in different culture types: (a)
The flat, monolayer structure of a 2D culture, with cells adhering to the bottom of the
plate. (b) The spherical arrangement of a three-dimensional (3D) culture, where cells are
suspended and form a cohesive spheroid shape.

a nutrient-rich medium, either with or without scaffolds to support cellular organization,
as shown in Figures 1.2b and 1.3. These models better mimic the physiological microen-
vironment by reproducing key in vivo phenomena, such as intercellular communication,
cell-stroma interactions, and differentiation.

As a result, 3D cultures offer greater accuracy in drug screening compared to 2D cul-
tures, contributing to improving the predictive value of in vitro assays. They also provide
higher throughput than in vivo models, are more automation-friendly, and demonstrate
superior reproducibility.

(a) Lacalle et al. [80] (b) Leite et al. [84]

Figure 1.3: Spheroid cultures described in the literature often differ in scale and focus.

1.2 Problem Definition

Drug development is costly [64, 165], and while 3D cultures offer significant advan-
tages over 2D cultures in cancer research [155], high-throughput testing remains a chal-
lenge [174]. A key bottleneck is the continuous analysis of spheroids as they grow and
respond to tested compounds [121].

One common method involves examining each spheroid under a microscope to assess
its various features: whether the cells at the edges are loose or compact, changes in nuclear
appearance (darkening or lightening), cell migration from the spheroid, or morphological
ones, like changes in the spheroid’s area. However, manual analysis of these cultures is
time-consuming and prone to errors due to human fatigue and subjectivity.
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Automating the process of delineating spheroid boundaries and quantifying their areas
could significantly accelerate drug discovery in cancer research. This task, known as
semantic segmentation, is a well-established problem in computer vision [148]. In this
study, we aim to harness the power of artificial intelligence to meet the needs of laboratory
workflows, enabling fast, accurate, and efficient analysis of cancer spheroids.

1.3 Objectives

In this thesis, we seek to lay the material basis for understanding this field and to pave
the way for integrating computer vision with cancer spheroid research, above all aiming
to automate the spheroid analysis process. To achieve this, we have defined the following
objectives:

• O1. Conduct a comprehensive literature review on the application of semantic
segmentation to cancer spheroid cultures, explaining terminology, identifying trends,
highlighting limitations, and uncovering knowledge gaps.

• O2. Create a publicly accessible dataset of cancer spheroid images, including high-
quality annotated masks and relevant metadata, to support future research and
promote reproducibility by other researchers.

• O3. To develop a semantic segmentation method based on deep learning architec-
tures that is both versatile and practical for the everyday needs and challenges of
cancer spheroid experimentation.

• O4. Implement a practical application of the proposed method within the daily
workflow of a biology laboratory focused on cancer spheroid research.

1.4 Research Questions

Here we list the research questions that we came up with to reach our previously stated
objectives, these were used to guide our next steps, which in turn generated new questions.

• Q01. Which techniques are mostly used to produce the segmentation results?

• Q02. What is the role of deep learning approaches in these scenarios?

• Q03. How available are the datasets in this field?

• Q04. Are these datasets ready to be used for deep learning training?

• Q05. Which metrics are used for comparison between methods?

• Q06. Are CNNs better suited for this task compared to more complex architectures
like Transformers?

• Q07. By combining these two types of architectures, can we improve on segmenta-
tion performance?
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• Q08. Which architecture type generalized its learning from the few samples we have
available?

• Q09. Are the datasets generalizing enough to produce a segmentation on different
type of cell culture?

• Q10. What is the minimum necessary on a pipeline to automate spheroid analysis?

1.5 Contributions

This thesis offers three key contributions. First, it introduces a meticulously curated and
annotated dataset of cancer spheroid images, serving as a valuable resource for researchers
in this field. Second, it proposes a novel deep learning-based method for semantic segmen-
tation, enabling precise and automated analysis of spheroid images. Third, it develops a
robust statistical analysis pipeline, facilitating quantitative evaluation and deeper insights
into segmented data. Collectively, these contributions advance the state-of-the-art in can-
cer spheroid image analysis and enables for future research and practical applications.

Our dataset1 is a critical resource for advancing research of image analysis on cancer
spheroid biology, offering high-quality, expertly annotated images of spheroid structures.
Each image has undergone careful review to ensure accurate segmentation, supporting
reliable and reproducible computational studies. To promote open science and encourage
further exploration, the dataset is publicly accessible, enabling researchers worldwide to
use and build upon it in their investigations of cancer spheroids and related areas.

Additionally, this work introduces a segmentation method specifically designed to
cancer spheroid images, enabling high-throughput, quantitative analysis without human
intervention. This method captures the distinct morphology of spheroids, allowing for
detailed data extraction across large datasets. Its application has generated significant
insights, culminating in scientific publications that validate its effectiveness and impact.
By enhancing segmentation techniques, this contribution empowers researchers to perform
analyses efficiently, driving progress in cancer research through improved image-based
quantification.

The statistical analysis pipeline2 developed in this thesis provides quantitative insights
by integrating the results of spheroid segmentation. It includes tools for conducting t-
tests and analysis of variance (ANOVA), enabling comparative analysis across different
treatment groups. This ensures robust, reproducible evaluations and helps identify sta-
tistically significant differences between experimental conditions. By combining feature
extraction with rigorous statistical methods, the pipeline supports in-depth analysis in
cancer spheroid studies and related applications.

1https://github.com/guilhermevleite/dataset-spheroid-segmentation
2https://github.com/guilhermevleite/Spheroid-Analysis-Pipeline
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1.6 Publications

Our research has yielded several significant results, which have been submitted to es-
teemed international journals and conferences in the fields of computing and biology. The
following works are presented as either published or currently under review for submission.

• G. V. Leite, J. M. Azevedo-Martins, C. V. Ferreira-Halder, H. Pedrini. Cancer

Spheroid Segmentation Based on Vision Transformer. IEEE International Confer-
ence on Visual Communications and Image Processing, Jeju, South Korea, pp. 1-5,
December 2023.

• G. V. Leite, J. M. Azevedo-Martins, C. V. Ferreira-Halder, H. Pedrini. Seman-

tic Segmentation Techniques for Human-Cancer Spheroid Cell Cultures: A Survey.

Image Analysis and Stereology (Submitted).

• Aires-Lopes, B, G. V. Leite, C. V. Ferreira-Halder, H. Pedrini. Spheroid Analy-

sis Pipeline (SAP) for Overcoming the Bottleneck of 3D Cell Culture Image Mea-

surement in High Throughput Screening. Computer Methods and Programs in
Biomedicine (Submitted).

• G. V. Leite, J. M. Azevedo-Martins, C. V. Ferreira-Halder, H. Pedrini. Deep Learn-

ing Ensemble Towards Cancer Spheroid Semantic Segmentation. Computers in Bi-
ology and Medicine (Submitted).

1.7 Text Organization

The following chapters are structured to provide a thorough understanding of the research
context, methodology, and findings. Chapter 2 introduces foundational background in-
formation necessary for interpreting the study’s aims and approach. Chapter 3 reviews
existing studies and theoretical frameworks relevant to the research, highlighting gaps the
thesis aims to address. Chapter 4 describes the specific resources and materials utilized,
clarifying the tools and data essential for the proposed method. Chapter 5 outlines the
methodology in detail, explaining the procedures and theoretical basis guiding the study’s
approach. In Chapter 6, the experimental setups and their outcomes are presented, of-
fering insight into the study’s findings. Chapter 7 shows a real-world application of the
spheroid segmentation towards high-throughput testing in form of a statistical analysis
pipeline. Finally, Chapter 8 synthesizes key insights, contributions, and potential direc-
tions for future research.
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Chapter 2

Related Concepts

In this chapter, we provide essential background information that establishes the founda-
tional knowledge necessary for understanding all the aspects of this thesis. We explain
comprehensively the key concepts in image processing, semantic segmentation techniques,
and cancer spheroid cultures, enabling readers to fully understand the context and signif-
icance of our research. Ultimately, this chapter serves as a starting point for readers to
engage with the subsequent discussions on the related literature, materials, method, and
experimental results presented later in the work.

2.1 Cancer Spheroid Cultures

Cancer spheroid cultures provide a method for developing cancer models in three-
dimensional (3D) space, closely mimicking the morphology and microenvironment of can-
cer in vivo. These 3D models represent a significant improvement over two-dimensional
(2D) cultures by replicating key features such as cancer cell-cell interactions, interactions
between cancer cells and the surrounding stroma, and cellular density.

One characteristic of spheroid cultures is the differentiation of their layers and the
biological processes within them, such as the formation of a hypoxic core. In this layer,
cells at the center experience nutrient and oxygen deprivation, while those in the outer
layers have abundant access to these resources. This layered structure has a significant
impact on the penetration of therapeutic compounds, which can either enhance or hinder
their effectiveness.

There are several established methods to form cancer spheroid cultures, each with its
advantages and applications depending on the experimental goals, such as liquid overlay,
hanging drop, scaffold-based, scaffold-free, spinner flask, microfluidic, and magnetic levi-
tation. For the purposes of this study, the specific method used to generate our spheroids
is detailed in Chapter 4.

2.2 Bio-Image Capture

In the context of this thesis, we refer to image capture as the microscopy technique
employed to capture the cancer spheroid culture images, and as such, there are various
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techniques available to do so. Here we describe the ones we came across in the related
literature most frequently, while also briefly talking about their functionality, and most
importantly for this thesis, their output features.

2.2.1 Phase Contrast

Phase contrast is a microscopy technique designed to enhance the visibility of transparent
and colorless samples, such as living cells, by converting subtle differences in light waves
into variations in intensity. As light passes through a specimen, differences in refractive
index and thickness cause slight phase shifts, which are otherwise undetectable to the
human eye. Using specialized optical components, these shifts are transformed into visible
contrast, revealing intricate cellular structures without the need for staining [172].

2.2.2 Brightfield

Brightfield is microscopy a technique in which a specimen is illuminated with white light
from below, and the image is formed based on the light absorbed, reflected, or refracted
by the sample. This method creates contrast between the specimen and its background,
making it ideal for observing fixed and stained samples or naturally pigmented speci-
mens. However simple, cost-effective, and suitable for a broad range of applications it
is, brightfield microscopy has limited effectiveness for transparent or colorless samples,
as they lack contrast. As a result, it is often used with staining techniques to enhance
visualization [17].

2.2.3 Fluorescent

Fluorescence microscopy is a powerful imaging technique that uses fluorescent dyes or
naturally fluorescent molecules to visualize specific components within a specimen. By
illuminating the sample with light of a specific wavelength, fluorescent molecules absorb
this energy and emit light at a longer wavelength, producing highly specific and brightly
colored signals against a dark background. This method enables detailed visualization of
cellular structures, proteins, and molecular processes. Its high sensitivity and specificity
make it an essential tool in cell biology, molecular biology, and medical diagnostics [85].

2.2.4 Confocal

Confocal microscopy is an advanced optical imaging technique that enhances resolution
and contrast by using a pinhole to eliminate out-of-focus light from specimens, producing
sharp, high-resolution images. Unlike traditional fluorescence microscopy, confocal mi-
croscopy scans the sample point-by-point with a focused laser beam and collects the light
from a specific focal plane, creating optical layers. This allows for the reconstruction of
detailed 3D images of thick specimens by compiling multiple focal planes [110].
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2.3 Semantic Segmentation

Image segmentation [53] involves dividing an image into multiple cohesive regions, rep-
resenting one of the oldest and most extensively studied problems in computer vision.
However, traditional segmentation methods often overlook the semantic relationships be-
tween regions.

Semantic segmentation addresses this limitation by assigning meaningful labels to
these segments, achieving a pixel-wise classification where each pixel in the image is
categorized. This process, illustrated in Figure 2.1, is inherently more computationally
demanding than standard image classification, which assigns a single label to the entire
image [98].

(a) Image Classification (b) Semantic Segmentation

Figure 2.1: A comparison between image classification and semantic segmentation. (a)
In image classification, the entire image is assigned to a single class, with the output
representing the probability of each class. In this case, there are two classes: cat and dog,
and the algorithm classifies the image as a dog. (b) In contrast, semantic segmentation
involves classifying each individual pixel of the image and assigning it to a specific class.
The output of semantic segmentation is a pixel-wise classification. In this figure, there
are three classes: cat, dog, and background.

Semantic segmentation methods have evolved significantly over time. Before the ad-
vent of deep learning, techniques such as conditional random fields, pixel-based operations,
and superpixel analysis dominated the field. The introduction of early deep learning
models marked a shift, where classification networks were adapted to classify superpix-
els. However, the true advancement came with the development of fully convolutional
neural networks, which replaced fully connected layers with convolutional ones, enabling
pixel-level classification. This not only improved segmentation accuracy but also led to
the revival of conditional random fields for refining pixel class probabilities and paved the
way for modern encoder-decoder models.

In deep learning-based segmentation, the process is performed on a pixel-by-pixel ba-
sis, where each pixel in the image is assigned a classification. These deep architectures
typically take an image as input and produce a black-and-white segmentation mask as
output, where the white pixels represent the region of interest and the black pixels rep-
resent the background, as shown in Figure 2.2. As expected, this pixel-wise classification
requires more computational resources compared to standard image classification, where
a single class is assigned to the entire image [98].
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Image segmentation is an older technique that predates the use of deep machine learn-
ing approaches [148]. Early methods included data clustering, region growing, edge de-
tection, genetic algorithms, and fuzzy logic, among others. However, with the rise of deep
machine learning, segmentation has increasingly been carried out using convolutional neu-
ral networks, with specialized architectures designed specifically for this task, as discussed
later in this chapter.

Image segmentation is an older technique with approaches that precede those involv-
ing deep machine learning [148]. The first methods developed include data clustering,
region growing, edge detection, genetic algorithms, fuzzy logic, among others. However,
with the advent of deep machine learning, segmentation began to be performed through
convolutional neural networks, with architectures created specifically for this topic, as we
explain later in this chapter.

(a) (b)

(c) (d)

Figure 2.2: Illustration of two cultures and their corresponding segmentation masks.
Images (a) and (b) show the input, while images (c) and (d) display the respective outputs.
It is important to note that the region of interest does not necessarily encompass the entire
cell culture, as demonstrated in (d), where the cell aggregation in the southeast corner of
the culture is excluded from the region of interest.

In biological applications, image segmentation is crucial across several fields, includ-
ing medical imaging, histopathology, and microscopy. It allows researchers to isolate
and quantify specific features, such as cells, tissues, and organelles, from complex back-
grounds. Accurate segmentation enhances the visualization and interpretation of biolog-
ical phenomena, facilitating a better understanding of cellular morphology, distribution,
and interactions.

The development of advanced algorithms, particularly those utilizing deep learning
and convolutional neural networks, has significantly increased segmentation accuracy and
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efficiency, overcoming challenges related to variations in the size, shape, and appearance
of biological structures. By enabling high-throughput analysis and improving result re-
producibility, computer-based image segmentation plays an essential role in advancing
our knowledge of biological systems and disease mechanisms, ultimately aiding in the
improvement of diagnostic and therapeutic approaches.

Otsu

Proposed by Otsu et al. [107], this method determines the optimal threshold for image seg-
mentation automatically by maximizing the variance between classes of pixel intensities.
Using histogram analysis, it minimizes intra-class variance to achieve effective separation
of foreground and background without the need for manual input or prior knowledge of
the image context.

The Otsu algorithm is renowned for its robustness and computational efficiency, mak-
ing it a favored approach for various object detection and segmentation tasks. Its capabil-
ity to determine thresholds for binary segmentation automatically has led to its extensive
application in fields such as medical and biological imaging.

Watershed

This algorithm is a powerful image segmentation technique, initially developed in the field
of topography. It simulates the natural flow of water over a landscape’s ridges and valleys
to identify regions of interest through a “flooding” process [154], as depicted in Figure 2.3.

Figure 2.3: Watershed illustration of the seeds being initialized at the bottom of the
valleys and the flood algorithm filling the “water” from the seeds, until two regions touch
each other, creating a segmentation ridge.

In this method, a grayscale image is interpreted as a topographic surface, where pixel
intensities represent peaks (higher values) and valleys (lower values). The algorithm be-
gins by flooding the surface from chosen seed points, gradually filling the valleys. Region
boundaries are defined where the floodwaters from different seed points meet, segmenting
the image into distinct regions. This approach is particularly effective for separating ob-
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jects in images with complex intensity variations, where traditional methods may struggle
to delineate intricate boundaries.

The watershed algorithm excels in preserving object boundaries, making it highly indi-
cated for applications such as cell and nuclei segmentation in biomedical imaging, as well as
geospatial and satellite image analysis [13, 16, 29, 39, 55, 60, 68, 106, 122]. However, it can
be sensitive to noise, and the choice of seed points may lead to over-segmentation, result-
ing in excessive fragmentation of the image. To address these challenges, pre-processing
steps like noise reduction and post-processing techniques such as region merging are often
employed to enhance segmentation accuracy and better capture the structures of interest.

K-Means Clustering

The K-Means algorithm [140] is a widely used method for image segmentation, dividing
an image into regions based on pixel intensity similarities. It clusters pixels into k groups,
where k is a user-specified parameter representing the desired number of segmented re-
gions, as illustrated in Figure 2.4.

The algorithm begins by randomly initializing k centroids, determined by pixel inten-
sity values. Each pixel is then assigned to the nearest centroid. After assignment, the
centroids are recalculated as the mean of the pixel values within each cluster. This pro-
cess of assignment and recalculation repeats iteratively until the centroids stabilize and
no longer change significantly. The result is an image segmented into k regions, where
pixels within the same region share similar intensity characteristics [140].

While K-Means is computationally efficient and relatively simple, it may struggle with
complex images featuring varying intensity distributions or overlapping objects. Moreover,
determining the optimal value for k can be challenging, often requiring domain expertise
or experimentation to achieve the best results.

2.4 Machine Learning and Artificial Intelligence

The term Artificial Intelligence (AI) was first coined in 1956 during the Dartmouth Sum-
mer Research Project on Artificial Intelligence conference, organized by John McCarthy
and Marvin Minsky focused on this topic [21]. AI refers to the use of computers to
replicate human intelligence, enabling them to perform tasks that are traditionally better
suited to human capabilities. It is a broad field encompassing areas such as image, text,
and audio recognition, robotics, classification systems, and the development of expert
systems. Machine Learning is referred to as a domain of AI [53].

Machine Learning, which emerged around 1980, focuses on systems that learn from
data and improve based on experience. Machine learning algorithms are typically cate-
gorized into supervised, unsupervised, and reinforcement learning, depending on the type
of supervision provided during training. In supervised learning, data and corresponding
labels are provided to the system during training to help it learn to associate the data with
the correct labels. Once trained, the model can generalize and correctly label new, unseen
data. Unsupervised learning, in contrast, deals with input data without labels, aiming to
discover patterns or structures in the data to generate meaningful outputs. Reinforcement
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(a) k = 2 (b) k = 5

(c) k = 20 (d) Original

Figure 2.4: Illustration of the K-Means segmentation, defined by the number of chosen
centroids. Each image is colored by k different colors, segmenting each region by its color.

learning involves an agent learning through its actions in a controlled environment, where
rewards are used to guide the agent’s learning towards achieving a desired goal [53].

A neural network mimics the structure of the human brain, using artificial neurons,
that usually consists of an input layer, hidden layers, and an output layer. These layers
are made up of neurons, or perceptrons, which are responsible for processing information.
In a neural network, each input in a layer is associated with a weight, and each neuron has
a bias. The perceptron calculates the weighted sum of the input and its corresponding
weight, adds the bias, and applies an activation function (such as a step function, sigmoid,
or hyperbolic tangent) to determine the neuron’s activation or deactivation based on a
threshold [53].

During the training process, the network learns by comparing its predicted output
with the actual label and performing error backpropagation. This process adjusts the
weights within the network to improve its predictions, allowing it to correctly associate
inputs with their corresponding outputs.

2.5 Deep Learning

Deep learning technology has become a driving force behind numerous research advance-
ments in various fields, including object identification, speech transcription, user interest
analysis, and interdisciplinary applications. Its widespread use is attributed to its ability
to extract knowledge from raw data, such as image pixels, and solve complex decision-
making problems in real-world scenarios [82].

Proposed by Hinton [59] in 2006, deep learning refers to neural networks with multiple
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layers, where each hidden layer is pre-trained individually. This technique enables com-
puters to learn from experience and understand the world through a hierarchical structure
of concepts, with each concept defined by its relation to simpler ones [53]. Inspired by the
neural connections in the human brain, deep learning utilizes Artificial Neural Networks
(ANN), which are composed of artificial neurons organized in different layers. The config-
uration of these layers defines the network’s architecture, allowing for complex processing
of information.

The complexity of a network is determined by its size, specifically the number of
parameters and operations it involves. While more complex architectures tend to offer
better adaptability to challenging problems, they also come with the downside of slower
and more resource-intensive training, requiring significant computational power. As a
result, there is a growing preference for simpler networks that, although smaller, are
still sufficiently complex to represent problems effectively and deliver strong performance.
However, it’s essential to recognize that this involves a trade-off between effectiveness and
efficiency, with the optimal choice depending on the specific problem and the available
computational resources.

2.6 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are deep neural networks primarily composed
of convolutional, pooling, and dense layers. The convolutional layer uses a convolution
filter that moves across the image, creating an activation map by weighting neurons in
the region where the filter is applied. This layer is crucial because it analyzes regions
of the image as a whole, considering not only individual pixels but also the surrounding
neighborhood.

Following the convolutional layers, pooling layers are used to simplify and shrink the
output. Pooling is achieved by selecting the maximum, minimum, or average of a region,
known as max-pooling, min-pooling, and average pooling, respectively. Finally, the dense
(or fully-connected) layer consists of neurons that are fully connected to those in the
previous layer.

Within CNNs, certain architectures are specifically designed for image segmentation.
Common segmentation techniques focus on pixel grayscale levels, detecting discontinuities
or similarities: the first identifies abrupt changes in grayscale, while the second groups
similar pixels into the same region [111]. Several classic CNN architectures have signifi-
cantly advanced network development, including LeNet [81], AlexNet [78], VGGNet [136],
GoogLeNet [143], and ResNet [57].

Due to their robustness, CNN-based segmentation methods are widely used across
various fields, including remote sensing, geology, medicine, and biology. They are applied
to a broad range of tasks, from face detection to traffic monitoring, by simplifying complex
problems through image partitioning, which helps separate objects from the background.
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2.7 Convolutions

In computer vision, convolutional layers are the building block of deep neural networks.
In the context of deep learning, a convolution operation is an element-wise multiplication
between matrices, followed by an addition [111]. The input image is multiplied with a
kernel, as illustrated in Figure 2.5, after which these values are added together. The
resulting sum is the new pixel value of the output image. The next value of the output
image is calculated by sliding the kernel matrix one element over.

3*0 + 3*1 + 2*2 + 0*2 + 0*2 + 1*0 + 3*0 + 1*1 + 2*2 = 12

Figure 2.5: Illustration of a 2D convolution, extracted from Bai [7]. Showcasing the
element-wise multiplication of the kernel with the input image, followed by the sum of
these values, that led to the pixel value of 12 in the cell (0, 0) of the output.

Usually, a convolution operation has three parameters. (i) The kernel size determines
the size of the kernel matrix. Using large kernels requires more computational power.
However, they create a larger receptive field, which can help the network to learn better
features. (ii) The stride is the step size in which the kernel is slid. For example, a
stride value of one moves the kernel one element over, and a stride value of two skips
the adjacent element. A value greater than two can be used to downsample images. (iii)
Padding defines how the image border is handled. For instance, a padded convolution is
when the image borders are filled with a dummy value, such as zero, so that the output of
the convolution has the same size as the input. On the other hand, unpadded convolutions
operate only over the image values, which creates a smaller image than the input [50].
In summary, a convolution applies a filter to an input image, and the repetition of this
process generates a feature map. We will return to the receptive field topic in Section 2.10.

2.7.1 U-Net

The U-Net is a deep learning encoder-decoder architecture originally proposed for medical
image segmentation [90], and it has significantly advanced the field due to its ability to
achieve high-quality results with fewer training samples. Its architecture is named “U-
Net” because of the U-shaped structure formed by its layers, as shown in Figure 2.6.
The network consists of convolutional layers, beginning with the encoder and followed by
the decoder, allowing it to produce effective segmentation even when trained on small
datasets [125].

According to Ronneberger et al. [125], the U-Net architecture consists of two main
paths: a contraction path and an expansive path. The contraction path, also known as
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Figure 2.6: The diagram of the U-Net architecture, as presented by Ronneberger et al.
[125], illustrates the organization of layers in a U-shape. The encoder is located on the
left side, where convolutions are applied to increase the number of feature channels. On
the right side, the decoder utilizes transposed convolutions (not to be confused with
deconvolutions) to enhance resolution. The connections between the encoder and decoder
are represented by skip connections, which facilitate the flow of information between
corresponding layers.

the encoder, is represented on the left side of the U-shape in Figure 2.6. This path follows
a typical deep learning structure, where the network progressively reduces feature sizes
while increasing the number of channels.

The encoder in U-Net applies 3× 3 convolutions, followed by a Rectified Linear Unit
(ReLU) activation and a downsampling max-pooling operation with a 2 × 2 filter and
stride of 2. This sequence of convolutions reduces the image resolution at each step,
which works well for classification tasks but can be problematic in segmentation, where
maintaining a high output resolution close to the input size is desired. The output from
U-Net is slightly smaller than the input, which is addressed by the decoder, that attempts
to restore the feature resolution to the original size.

The decoder works by concatenating the feature map from the encoder with 2 × 2

transposed convolutions, shown as horizontal lines in Figure 2.6, which reduce the number
of feature channels while increasing the resolution. After each concatenation, two 3 × 3

convolutions are applied with a ReLU layer. Finally, a 1 × 1 convolutional layer is used
at the output to map the features to the classification classes.
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2.7.2 MultiResUNet

MultiResUNet [66] is an advanced deep learning architecture proposed for segmenting
various modalities of biomedical images, building upon the U-Net architecture [125], as
illustrated in Figure 2.7. This architecture enhances the traditional U-Net by incorporat-
ing multi-resolution feature extraction, which significantly improves the segmentation of
complex structures in images.

Particularly effective in biomedical image analysis, MultiResUNet combines high-
resolution and low-resolution features, enabling the model to capture both fine details
and contextual information. Through a series of convolutional layers operating at multi-
ple resolutions, the architecture preserves spatial hierarchies and generates richer feature
representations. Additionally, the integration of skip connections helps maintain crucial
spatial information, resulting in more accurate segmentations.

Figure 2.7: MultiResUNet Architecture, extracted from Ibtehaz and Rahman [66].

In MultiResUNet, each pair of convolutional layers in the traditional U-Net architec-
ture is replaced by a MultiResUNet residual block. As shown in Figure 2.8, the MultiRe-
sUNet residual block consists of successive 3 × 3 convolutional layers, with their feature
maps concatenated. Additionally, a 1× 1 convolutional layer is included to add the input
to the concatenated output of the 3× 3 convolution layers.

Furthermore, the standard connections in U-Net are replaced by residual paths, as
illustrated in Figure 2.9. These residual paths involve the successive addition of feature
maps, which are derived from parallel convolution operations using both 3× 3 and 1× 1

filters.

2.7.3 U-Net++

The U-Net++ [175] architecture builds upon the U-Net architecture by incorporating
nested dense convolutional blocks between the encoder and decoder, as illustrated in Fig-
ure 2.10. Within the connections between the encoder and decoder, convolution operations
are applied, denoted by X i,j, where each convolutional layer is preceded by concatenat-
ing the output of the previous convolutional layer in the same block with the upsampled
output from the convolutional layer of the lower block.
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Figure 2.8: MultiResUNet Residual Block. (a) Inception Block and its parallel convolu-
tions with 3×3, 5×5, and 7×7 filters, to preserve spacial features within different scales.
(b) Operation in which the 5 × 5 and 7 × 7 filters are factored in a succession of 3 × 3
filters. (c) A 1× 1 convolution is added to the concatenated features in form of residual
connection.

A notable feature of this architecture is Deep Supervision [4], represented by L in
Figure 2.10. This mechanism computes the average output across multiple branches and
selects the optimal branch to generate the final segmentation map, minimizing error and
improving computational efficiency. The demonstrated effectiveness of U-Net++ in various
segmentation tasks highlights its potential to advance image analysis in domains such as
medical imaging and cancer research.
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Figure 2.9: MultiResUNet residual path, extracted from Ibtehaz and Rahman [66].

Figure 2.10: UNet++ architecture, extracted from Zhou et al. [175].

2.8 UNeXt

UNeXt, proposed by Valanarasu and Patel [149], is a convolutional multi-layer perceptron
(MLP)-based network designed for efficient image segmentation in point-of-care applica-
tions. It aims to operate on low-tier hardware while maintaining adequate segmentation
performance. To achieve this, the authors kept the 5-layer encoder-decoder structure
and skip connections from the U-Net architecture but introduced modifications in two
stages: an early convolutional stage and an MLP-based latent stage. They further pro-
posed a tokenized MLP block and incorporated a shift mechanism inspired by the Swin
Transformer.

As illustrated in Figure 2.11, the encoder contains three convolutional blocks, followed
by two tokenized MLP blocks. The decoder mirrors this structure in reverse, with two
tokenized MLP blocks followed by three convolutional blocks. Each encoder block reduces
the feature resolution by a factor of 2, which is restored in the decoder. The feature
channels in the encoder are set to 32, 64, 128, 160, and 256, with the decoder using
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Figure 2.11: UNeXt architecture, extracted from Valanarasu and Patel [149].

the reverse order. Skip connections link each encoder block to its corresponding decoder
block.

The convolutional stage, depicted at the top of Figure 2.11, consists of a convolution
layer, a batch normalization layer, and a ReLU activation function. In the encoder,
convolutional blocks incorporate max-pooling layers, while the decoder employs bilinear
interpolation layers as a computationally lighter alternative to transpose convolutions.

The shifted MLP stage, shown at the bottom of Figure 2.11, introduces a shift mech-
anism that operates on channel axes before tokenization. Inspired by the Swin Trans-
former [88], this technique forces a locality bias within the MLP block, as opposed to the
global processing used in the ViT model [166]. Each tokenized MLP block contains two
MLPs: one shifts features along the width and the other along the height.

The tokenized MLP stage, depicted in the middle of Figure 2.11, tokenizes features
before feeding them into the shifted MLP blocks. First, the features are shifted and pro-
jected into tokens. These tokens are processed by a shifted MLP block (operating across
the width) and then passed through a depthwise convolutional layer (DW-Conv), which
encodes positional information more efficiently than standard positional encodings. The
use of DW-Conv, combined with a GELU activation function, ensures lower computational
cost.

Subsequently, the features are passed through another shifted MLP (operating across
the height) and combined with the original tokens as residual information. Finally, layer
normalization is applied to normalize across tokens, and the features are re-projected.

In comparison to the original U-Net architecture, UNeXt reduces the number of pa-
rameters by a factor of 72, decreases computational complexity by a factor of 68, and
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improves inference speed by a factor of 10.

2.9 Transformers

To optimize the encoding of input sequences and the decoding of output values, Vaswani
et al. [152] introduced the Transformer network in 2017, which replaces the concept of
recurrence with an attention mechanism, designed for natural language tasks. Attention-
based networks leverage mechanisms that aggregate and process input information dy-
namically based on the data itself, primarily utilizing self-attention and multi-head self-
attention techniques.

The self-attention mechanism processes a sequence of input elements by calculating
the relationships between each element, referred to as a key, and all other elements in
the sequence, including itself. This process determines how much each element incorpo-
rates information from others. Practically, this mechanism is implemented through the
inner product of vector representations of the input sequence, where the resulting values
quantify the degree of relationship between elements [55].

In the Transformer architecture, multi-head attention employs eight attention heads
in parallel, enabling the model to learn and combine multiple perspectives of the input
sequence while reducing training time through parallelized operations. The architecture
has six encoder blocks and six decoder blocks, as depicted in Figure 2.12 as N×, each
consisting of attention layers. These layers are essential in capturing relationships within
the data, allowing the model to incorporate information from the global context effectively.

The initial step of the Transformer network involves tokenizing the input words (or
image patches), converting them into token vectors typically represented by integer val-
ues. These tokens are then mapped to word embeddings, which represent each word as a
512-dimensional vector. A common technique for generating embeddings is word2vec [14],
introduced by Google in 2013, which employs continuous bag-of-words (CBOW) and con-
tinuous skip-gram models to produce distributed word representations. Usually, the input
size across all layers of the Transformer network is fixed, set to 512 in the original im-
plementation. This consistent layer size reduces computational complexity and simplifies
the control of data flow throughout the model.

Following the embedding process, positional encodings are added to the word em-
beddings to capture the order of words within the sequence. These encodings can be
computed using various methods, such as sine and cosine functions of different frequen-
cies. The positional values are combined with the embeddings through addition or other
operations, including multiplication, subtraction, division, or square root functions.

During training, the weights of the query, key, and value matrices are optimized. The
input vectors are multiplied by these matrices to produce the query (Q), key (K), and value
(V) vectors, which are subsequently used to compute attention. The attention mechanism
employed in the Transformer is known as Scaled Dot-Product Attention, characterized
by the inclusion of a scaling factor,

√
dk, where dk represents the dimensionality of the

key vector, set to 64. This process happens in each attention head, is mathematically
defined by Equation 2.1, using Q, K, and V to capture relationships between elements in
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Figure 2.12: Transformer architecture, encoder (right) and decoder (left), extracted
from Smyrek and Stelzer [138].

the input sequence effectively.

Attention(Q,K,V) = softmax

(

QKT

√
dk

)

· V. (2.1)

Once the eight attention heads compute their outputs, the results are concatenated
and passed to the Add and Norm layer, which joins residual connections. These residual
connections brings information from earlier layers, combining it with the current layer’s
output before applying a normalization operation. This mechanism ensures the preserva-
tion of essential data, such as positional encodings, throughout the model.

After the Add and Norm layer, feedforward blocks are used, comprising of two fully
connected layers with ReLU as the activation function. Following the feedforward block,
another Add and Norm layer is applied, leading into the decoder block. The decoder or-
ganization mirrors the encoder but includes an additional Masked Multi-Head Attention
Mechanism layer. This layer prevents the model from accessing future terms in the se-
quence during training, enabling the network to learn to predict the next elements. Keep
in mind that this architecture was firstly proposed to work on text inputs.

The final stage of the Transformer network consists of a linear layer, which generates
the output sequence by applying a linear transformation to determine the next elements.
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A softmax function then refines this prediction by identifying the single most likely ele-
ment, allowing the model to produce the output sequence one token at a time.

The Transformer architecture represents the state of the art in natural language pro-
cessing and has demonstrated significant promise in fields such as computer vision and
audio processing [13, 24]. However, limitations such as inefficiency in handling long se-
quences, high computational demands of self-attention, and difficulty in generalizing from
limited data have prompted the development of Transformer-based models to address
these downsides.

Despite their transformative impact on Natural Language Processing (NLP), applying
Transformers to computer vision tasks poses challenges due to the fundamental differ-
ences between text and image data. High-resolution images contain significantly more
information, and spatial relationships between pixels are far more critical than sequential
dependencies.

2.9.1 TransUNet

Proposed by Chen et al. [28], TransUNet is a medical image segmentation architecture
designed to use the strengths of Transformer and convolutional neural network (CNN)
models. By employing the Transformer architecture and a CNN as the encoder, the model
effectively leverages the global context captured during encoding alongside the spatial
features during decoding. The encoder of this hybrid design incorporates a self-attention
mechanism, functioning in a sequence-to-sequence prediction strategy. The self-attention
features generated during encoding are upsampled and combined with higher-resolution
features from the CNN decoder via skip connections, enabling precise localization of
features.

Figure 2.13: TransUNet architecture, extracted from Chen et al. [28].

As illustrated in Figure 2.13, the architecture adopts a CNN-Transformer hybrid as its
encoder. Initially, the CNN operates as a feature extractor while simultaneously providing
skip connections from the high-resolution features. Before the input proceeds to the
Transformer, it is tokenized by reshaping into a sequence of flattened 2D patches. These
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patches are mapped into a latent D-dimensional embedding space through a trainable
linear projection. Positional embeddings are learned and encoded to preserve spatial
information, which is subsequently added to the patch embeddings to retain positional
context.

The Transformer encoder, depicted on the left side of Figure 2.13, consists of L lay-
ers of Multihead Self-Attention (MSA) and Multi-Layer Perceptron (MLP) blocks. Both
mechanisms are preceded by layer normalization. This design, in along with the CNN, uti-
lizes the high-resolution features in the decoder, achieving better performance compared
to architectures that solely rely on the Transformer for encoding.

On the decoder path, shown on the right side of Figure 2.13, the authors propose a
cascaded upsampler approach. This approach entails multiple upsampling steps to decode
the learned features. The features are reshaped to match the high-resolution features
from the skip connections and concatenated together. Following this concatenation, the
resulting features are processed through two upsampling operations, a convolutional layer,
and a ReLU activation layer. This sequence reconstructs the segmentation mask at the
input resolution.

2.9.2 Swin Transformer

The Swin Transformer [88] introduces a hierarchical representation strategy that enables
the processing of visual information in a multi-scale way, similar to convolutional neural
networks (CNNs). Starting with small, fixed-size image patches, it progressively merges
neighboring patches to reduce spatial resolution and join features, forming a type of
pyramid structure, illustrated in Figure 2.14.

Figure 2.14: Swin Transformer architecture, extracted from Sharma et al. [132].

This approach captures fine-grained details at lower levels while encoding contextual
information at higher levels, making it adequate for tasks requiring both local and global
understanding. By combining this hierarchical design with efficient attention mechanisms,
the Swin Transformer achieves a balance between computational efficiency and rich feature
representation, making it adept at handling high-resolution images.

A key innovation of the Swin Transformer is its shifted window partitioning mech-
anism, which facilitates efficient local-global interaction during attention computation.
Initially, images are divided into non-overlapping windows, in which self-attention is com-
puted independently to constrain computational complexity. To overcome the limitations
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of isolated attention regions, the model introduces a shift in window alignment between
consecutive layers, ensuring that patches from adjacent windows are included in the at-
tention field without increasing computational overhead. Alternating between regular and
shifted windows enables the Swin Transformer to capture both localized and contextual
features effectively, addressing the challenges of strictly localized attention.

The Swin Transformer processes images using an integrated approach of patch par-
titioning, window-based multi-head self-attention (W-MSA), and shifted window multi-
head self-attention (SW-MSA) to capture features across scales efficiently. Patch par-
titioning divides the input image into fixed-size patches, which are embedded into fea-
ture vectors for subsequent layers. W-MSA computes self-attention within these non-
overlapping patches, significantly reducing the complexity compared to global attention.
SW-MSA further enhances this design by shifting window alignments between layers,
enabling cross-window feature interactions and improving the model’s ability to aggre-
gate features effectively. This innovative combination ensures computational efficiency
while maintaining powerful feature extraction capabilities, making the Swin Transformer
scalable and effective for a wide range of computer vision tasks.

The Swin Transformer addresses key challenges in computer vision by employing a
novel architecture that strikes a balance between expressiveness and efficiency, thereby
enhancing performance across diverse applications. Its advantage over other Transformer
models in computer vision lies in two innovative aspects: its hierarchical architecture and
the sliding window-based self-attention mechanism.

The hierarchical architecture of the Swin Transformer is implemented through succes-
sive stages that group patches from the previous layer, reducing the number of patches by
a factor of four and doubling the number of feature channels. To achieve this, each patch
is transformed into a linear embedding of dimension C. After that, each 2 × 2 block of
patches is selected and concatenated into a 4C-dimensional vector, which is then mapped
into a 2C linear embedding. This process reduces the image dimensions by a factor of four
and doubles the embedding size at each stage, which represents larger and larger areas
of the original image. This design allows the network to extract information at multiple
scales, with each patch becoming more representative of the image as the grouping process
advances.

The second key innovation of the Swin Transformer lies in its use of Swin Transformer
blocks, which apply local self-attention within fixed-size windows, each consisting of a
number of patches. This contrasts with the global self-attention used in traditional vi-
sion Transformers, which makes the computational cost that scales quadratically with
image resolution. By applying self-attention only within fixed-size windows, the Swin
Transformer reduces the number of self-attention operations, resulting in proportional
scaling with the input resolution. However, simply applying self-attention within these
windows would limit the representational power of the network, as it would ignore the
global context provided by traditional global self-attention. To overcome this limitation,
each Swin Transformer block incorporates both a Multi-head Self Attention (MSA) layer
with windows (W-MSA) and an MSA layer with sliding windows (SW-MSA), where the
window alignment is shifted to enable cross-window interactions. This approach enhances
the network’s representational power, allowing it to capture similar features as a model
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with global self-attention, while offering superior computational efficiency.
Figure 2.15 illustrates the layers within each Swin Transformer block, highlighting the

W-MSA and SW-MSA self-attention layers, along with linear normalization (LN) and
fully connected (MLP) layers.

Figure 2.15: Swin Transformer block, extracted from Sharma et al. [132], showing two
consecutive blocks.

The Swin Transformer V2 is an optimized version of the original Swin Transformer ar-
chitecture, focusing on addressing three key limitations: unstable training, discrepancies
in input image sizes between pretraining and fine-tuning, and high GPU consumption. To
improve training stability, the authors relocated the normalization layer from the begin-
ning of the Swin Transformer block to the end, thereby stabilizing the information flow
from the residual connections. Additionally, they introduced a cosine-based self-attention
mechanism, which makes the attention mechanism insensitive to magnitude. To mini-
mize the disparity between pretraining and fine-tuning inputs, the authors implemented
log-spaced coordinates, enabling input conversion into a consistent space and reducing
the gap between stages. Finally, they adopted several strategies to optimize GPU usage,
including zero optimizer, activation checkpointing, and sequential self-attention.

2.9.3 Swin-UNet

Proposed by Cao et al. [25], the Swin-UNet model is a pure Transformer-based architec-
ture inspired by the U-shaped encoder-decoder structure of U-Net. By using Swin Trans-
former blocks, the authors designed an encoder that projects features into an arbitrary
dimensional space C, which are subsequently passed through multiple Swin Transformer
blocks.

Patch merging layers are employed in the encoder stage for down-sampling the inputs,
while patch expanding layers are utilized in the decoder stage for up-sampling. The
decoder mirrors the encoder in a symmetric fashion, with both components connected via
skip connections, as is customary in U-Net-based networks, as illustrated in Figure 2.16.
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Figure 2.16: Swin-UNet architecture, extracted from Cao et al. [25].

The encoder begins by feeding the C -dimensional tokenized inputs into two consecutive
Swin Transformer blocks to learn feature representations without altering the feature
dimension or resolution. Following this, a patch merging layer reduces the number of
tokens by a factor of 2, down-sampling the input while doubling the feature dimension.
This process is repeated three times, as shown in Figure 2.16.

The patch merging layer operates by dividing the input into four regions and con-
catenating them, thereby reducing the spatial resolution by a factor of 2. However, as
this concatenation increases the feature dimension by a factor of 4, a linear layer is then
applied to adjust the feature dimension to double the original, rather than quadrupling
it.

At the bottleneck of this U-shaped architecture, two Swin Transformer blocks are em-
ployed to learn deep feature representations while maintaining both their resolution and
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dimensionality. The authors explain that this choice addresses the challenge of Transform-
ers being difficult to converge when too deep. Additionally, skip connections are utilized
to integrate multi-scale features from the encoder with the up-sampled features in the
decoder. These skip connections are followed by a linear layer to ensure the concatenated
feature dimension matches the up-sampled features.

For the decoder, the authors adopt a symmetric design based on Swin Transformer
blocks, incorporating patch expanding layers for up-sampling the deep features. These
layers reshape the feature maps to double the resolution while halving the feature dimen-
sion.

Specifically, the patch expanding layer applies a linear layer to the input features,
doubling their dimensionality. This is followed by a rearrange operation that expands the
resolution by a factor of 2 and reduces the feature dimension by a factor of 4, achieving
the desired spatial up-sampling.

2.10 Bias

The receptive field bias in Convolutional Neural Networks (CNNs) stems from their re-
liance on local convolutional filters and pooling operations, which inherently focus on cap-
turing spatially local patterns and relationships within a fixed neighborhood, as shown
in Figure 2.5. This bias ensures that CNNs are efficient for tasks with strong spatial
structures, such as image processing, where local dependencies and translation invariance
are important.

In contrast, Transformers operate with minimal inductive bias, relying instead on a
self-attention mechanism that dynamically weighs the relevance of all elements in the input
sequence, regardless of their spatial or sequential proximity. This approach enables Trans-
formers to model global context and long-range dependencies effectively but comes at the
cost of requiring larger datasets and computational resources to learn these relationships
from zero. While CNNs are naturally tailored for local feature extraction, Transformers
offer greater flexibility, making them suitable for tasks with complex, non-local patterns.

2.11 Evaluation and Metrics

During the training process, the network weights are iteratively updated to reflect patterns
present in the input data. After each epoch, the model’s performance is evaluated using
a validation dataset to assess progress and identify the need for adjustments.

This evaluation is conducted by monitoring a validation metric and minimizing the loss
function, ensuring that the model’s learning remains aligned with the desired objectives.

2.11.1 Loss Function

The loss function utilized for evaluating the segmentation models in this dissertation
is Binary Cross-Entropy (BCE), we opted for this metric since our preliminary results
showed that it was adequate to train the networks, a widely used approach for binary
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classification tasks. This method is particularly suitable when distinguishing between two
classes, such as classifying a pixel as either part of a spheroid or the background.

A single neuron suffices to represent this binary information, as it can output a value
of 1 (indicating spheroid) or 0 (indicating background). Here, yi denotes the true label
for data point i, and pi represents the predicted probability for the same data point.

The BCE is computed using Equation 2.2, where y refers to the ground truth and p

corresponds to the network’s prediction.

L = −y log(p)− (1− y) log(1− p). (2.2)

2.11.2 Metrics

The Dice coefficient [35], also known as the F1-score, is a statistical metric commonly used
to evaluate the performance of segmentation models. It measures the overlap between the
predicted segmentation and the ground truth, providing a value between 0 and 1, where
1 indicates perfect agreement and 0 signifies no overlap, illustrated in Figure 2.17.

Dice Score = 

2x overlapped (cyan)

Total area
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Predicted
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Figure 2.17: Diagram illustrating the Dice score, in which it doubles the overlap between
prediction and groundtruth, and divides it by the sum of their areas.

The Dice coefficient is particularly useful in tasks involving imbalanced data, as it
emphasizes the correct classification of smaller regions. Mathematically, it is defined
as twice the intersection of the predicted and true regions divided by the sum of their
individual areas, ensuring a balance between precision and recall as shown in Equation 2.3.
This makes it a robust and interpretable metric for assessing segmentation of spheroid,
specially its borders, since it emphasizes correctness over small regions [35].

Dice =
2|X ∩ Y |
|X|+ |Y |

. (2.3)
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Chapter 3

Related Work

In this chapter, we present a curated review of the scholarly works and prior research
that enabled and support this thesis, and served as the material for the survey we created
to explore our study field. This chapter highlights the significant contributions from the
field of image segmentation, cancer spheroid analysis, and the application of deep learning
techniques, establishing a comprehensive background for our study. This review serves
to validate our approach, illustrating how our work builds upon and extends existing
knowledge, while also addressing critical gaps that needs further exploration.

To investigate the scope of our field, we searched for studies that utilized any form
of image segmentation to analyze cancer spheroid cultures. This search was conducted
using relevant databases such as PubMed, IEEE Xplore, Scopus, and Web of Science.
We limited our review to works published after 2015 and written in either Portuguese or
English.

The selection consisted of multiple screening stages. Initially, studies were excluded
based on their titles alone, eliminating irrelevant topics. In the second stage, both titles
and abstracts were reviewed to identify studies likely to have employed segmentation in
their analysis or methodology, as some biology-focused papers did not explicitly mention
this processing. Finally, a full-text reading was conducted on the articles, as illustrated
in Figure 3.2.

The studies included differed in the level of detail provided about their segmentation
approaches. From each selected study, we extracted these variables to guide our analysis.

• Segmentation Approach: Which technique was employed to segment the cell
culture.

• Cell Line: The specific cancer type or the name of the cell line used by the authors.

• Imaging Method: The modality used to capture the input images.

• Dataset Accessibility: Whether the dataset used in the study is publicly available.

• Study Objective: The paper’s goal.

To collect this information, each paper was thoroughly examined to extract statements
from the authors about the key variables. Subsequently, the papers were categorized
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according to their segmentation methods. We used the open-source software Zotero [47]
for collecting, annotating, and organizing the literature.

3.1 Literature Sorting

A total of 3, 219 papers were initially identified over the selected databases. Figure 3.1
highlights an increasing publication trend over the years, reflecting a rising interest within
the scientific community in the interdisciplinary field of 3D cell cultures and image seg-
mentation.
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Figure 3.1: Distribution of studies per year, illustrating an increasing interest of cancer-
spheroid segmentation papers.

After removing duplicates across databases, the number of unique papers dropped to
2, 938. We then applied a filter to include only studies published after 2015, resulting in
2, 382 papers. Two rounds of preliminary screening based on titles and abstracts further
reduced the pool, as shown in the PRISMA diagram (Figure 3.2). Ultimately, 118 papers
advanced to the full-text review phase.

The studies were classified by segmentation method, yielding the following results: 6

papers utilized manual segmentation, 48 employed image processing pipelines, 30 used
specific software, and 36 relied on deep learning models. Figure 3.3 illustrates the distri-
bution of these methods. Details of each method and the associated studies are provided
in the next sections, starting with the identified datasets.

3.2 Public Datasets

Publicly accessible datasets are essential for reproducibility and the development of new
models. However, fully open datasets remain scarce. Table 3.1 provides a summary of
the datasets identified, including their sample sizes and availability status. The “Avail-
ability” column includes the following categories: “Yes” indicates that both images and
annotations are freely downloadable; “Yes*” means the dataset is reportedly available,
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Figure 3.2: PRISMA diagram outlining the data extraction process. The initial selection
was based on titles, followed by the exclusion of studies published before 2015. This
was followed by abstract screening and a thorough full-text review. In the final stage, the
papers were classified according to their segmentation method (manual, image processing,
specific software, or deep learning).

Figure 3.3: Segmentation methods found in the related literature.

but access could not be confirmed; and “Request” denotes datasets that can be obtained
by contacting the authors. Datasets that were entirely inaccessible are excluded from the
list.

In the rare cases where datasets were openly available with functional download links,
we found minimal information about the data in the corresponding publications, although
there were a few notable exceptions. Additionally, the number of available samples is
relatively small compared to other deep learning datasets. This scarcity is largely due to
the significant effort required to maintain cell cultures, achieve consistency across plate
wells under controlled conditions, and perform the labor-intensive task of annotating each
sample for segmentation.
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Table 3.1: Datasets in the literature pertaining cancer spheroid images for segmentation.

Authors # Images Available Year

Liu et al. [86] - Yes* 2024
Lee et al. [83] - Request 2024
Abd El-Sadek et al. [1] - Request 2024
Leite et al. [84] 294 Yes 2023
Mukashyaka et al. [101] - Yes* 2023
Tebon et al. [146] 100 Yes* 2023
Kaseva et al. [74] 12 Yes* 2022
Matthews et al. [92] 66 Yes* 2022
Winkelmaier and Parvin [164] - Yes* 2021
Spiller et al. [139] - Yes* 2021
Lacalle et al. [80] - Yes 2021
Diosdi et al. [40] - Yes* 2021
Karabag et al. [72] 517 Yes* 2019
Ahonen et al. [3] - Request 2017

3.3 Found Literature

We classified the segmentation methods into four primary categories: image processing,
specific software, deep learning, and manual segmentation. Manual segmentation, in
this context, involves human annotation of spheroid surroundings, typically using image
editors or similar tools.

As noted by Deckers et al. [37], annotating and analyzing each sample manually
takes approximately 80 to 100 seconds. While this may initially seem efficient, the
time required accumulates rapidly in small-scale experiments and becomes infeasible
for high-throughput testing. Consequently, only a handful of studies employed this
method [14, 38, 73, 94, 118, 132]. More scalable alternatives, such as image processing
pipelines, provide faster solutions for segmentation.

3.3.1 Image Processing

Image processing uses algorithms to perform segmentation, but these algorithms often
fall short when used alone, requiring additional pre- or post-processing steps. Together,
these elements form what is known as a segmentation pipeline.

Most of the reviewed studies (48 papers) utilized image processing for segmentation,
as detailed in Table 3.2. This table lists the authors, the specific algorithms used, image
types, cell-culture lines, and publication year, arranged in descending order by year. While
various image types were mentioned, the primary focus was on brightfield and fluorescent
images.

Among the algorithms, Otsu’s method was the most prevalent, followed by the Wa-
tershed algorithm. Fluorescent images were frequently used due to their effectiveness in
segmentation, as they produce high-contrast images where regions of interest stand out as
bright spots against a dark background. In these images, pixels exceeding a low threshold
are typically identified as part of the target region.
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Table 3.2: Studies that applied image processing algorithms for segmentation. The table
columns list the authors, the algorithm used, the input image type, the cancer culture
studied, and the publication year. An asterisk (*) indicates methods applied without
additional pre- or post-processing. Abbreviations include: Brightfield (BF), Fluorescent
(FL), Phase-Contrast (PC), Mass Spectrometry (MS), and Differential Interference Con-
trast (DIC).

Authors Algorithm Image Type Cancer Culture Year

Chang et al. [27] K-Means Fluorescent Bone 2024
Van Hemelryk et al. [150] - Confocal Prostate 2023
Mendonca et al. [95] BG Subtraction Light-Sheet Breast 2023
L. Fillioux et al. [79] Canny Edge Brightfield Colon 2023
Dimitriou et al. [39] Watershed Confocal Breast 2023
Chen et al. [29] Watershed Confocal Liver 2023
Akbaba et al. [5] Simple Threshold MiniOpto Tomography Pancreas 2023
Petrovic et al. [113] Otsu Darkfield Lung 2022
Deckers et al. [37] Otsu* Brightfield hPDCs 2022
Chambost et al. [26] Otsu Brightfield Brain 2022
Schurr et al. [130] Otsu* Fluorescent - 2021
Ndyabawe et al. [104] Hysteresis Confocal Brain 2021
Hof et al. [60] Watershed* Light-Sheet, BF Pancreas, Bile Duct 2021
Grosser et al. [55] Watershed* Confocal Breast, Cervical 2021
Gillette et al. [52] Otsu Fluorescent Pancreas 2021
Gil et al. [51] Otsu One-Photon Redox Colorectal 2021
Diosdi et al. [40] Otsu Fluorescent Breast 2021
Alsehli et al. [6] Subtraction Fluorescent hiPSC Stem 2021
Wardwell-Swanson et al. [162] Color Segmentation Confocal Lung, Gastric 2020
Schuster et al. [131] - Phase Contrast Pancreas 2020
Nürnberg et al. [106] Watershed Confocal Colon and others 2020
Henser-Brownhill et al. [58] Fuzzy C-Means Ptychographic Melanoma 2020
Favreau et al. [45] Fuzzy C-Means Selective Plane Colorectal 2020
Edwards et al. [42] Simple Threshold Light-Sheet Renal 2020
Tobias et al. [147] Bisecting K-Means Mass Spectrometry Colon 2019
Murali et al. [103] Simple Threshold Fluorescent Melanoma 2019
Michálek et al. [97] Triangle Threshold Confocal, MS - 2019
Kovac et al. [77] Ellipsoid Fit Synthetic Images - 2019
Keller et al. [75] Simple Threshold Brightfield, Confocal Breast 2019
Karabag et al. [72] Canny Edge Face Scanning Electron Cervical 2019
Hou et al. [61] Graph Cut Confocal Lung 2018
Boutin et al. [16] Watershed Fluorescent Breast, Glioblastoma 2018
Borten et al. [15] Adaptive Threshold DIC Breast and others 2018
Wan et al. [158] Entropy Threshold Brightfield, FL Endothelial, Ovarian 2017
Smyrek and Stelzer [138] Simple Threshold Light-Sheet Glioblastoma 2017
Schmitz et al. [128] Otsu Light-Sheet Breast 2017
Reijonen et al. [122] Watershed Confocal Liver 2017
Piccinini et al. [114] Otsu Light-Sheet Lung 2017
Moriconi et al. [100] Frangi Filtering Brightfield Glioblastoma 2017
Cannon et al. [24] Otsu Fluorescent Breast 2017
Bulin et al. [22] Otsu Confocal Pancreas 2017
Ahonen et al. [3] Local Entropy Filter Confocal Lung 2017
Walsh et al. [157] Simple Threshold Fluorescent Pancreas 2016
Jagiella et al. [68] Watershed Brightfield, FL Lung 2016
Cisneros Castillo et al. [34] - Brightfield Glioblastoma 2016
Cheng et al. [32] Simple Threshold, K-Mean Brightfield, FL Breast 2016
Bilgin et al. [13] Watershed* Fluorescent Mammary 2016
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Some methods in Table 3.2 are marked with an asterisk (*), indicating that the studies
used only the core algorithm without any additional processing steps, which may com-
promise segmentation quality. Notably, few studies, such as Lacalle et al. [80], published
both datasets and segmentation metrics, enabling meaningful performance comparisons.

For building segmentation pipelines, several tools are available, with FIJI software
being particularly popular. FIJI [127], a distribution of the open-source platform Im-
ageJ [129], allows users to design and automate image processing workflows. It supports
batch processing and includes useful plugins for enhancing functionality, along with basic
image editing features.

The widespread use of image processing methods likely stems from their accessibility
and ease of use. Tools such as FIJI are free and come with extensive online tutorials,
making them approachable for users with varying skill levels. Additionally, these meth-
ods offer a practical balance between automation and manual adjustments, significantly
reducing the time needed for image analysis even when results are imperfect.

3.3.2 Specific Software

Specific software methods can be considered a subset of image processing, as they also
involve applying pipelines to images. However, these pipelines are often pre-configured
within laboratory equipment, such as microscopes, or locked behind paywalls. Due to their
limited customizability, restricted accessibility, and black-box nature, we have categorized
them separately.

We identified 30 studies employing this approach, summarized in Table 3.3. The
results are diverse, with no single software emerging as dominant. Noteworthy examples
include Ibrahim et al. [65], which used the Fiji WEKA plugin. Although tools such as
WEKA are technically plugins, their design as black-box solutions justifies their separate
classification.

3.3.3 Deep Learning

Deep learning models have achieved significant success in biological image segmentation
tasks, including cancer spheroid segmentation. As a result, many studies have explored
the use of deep neural networks for this purpose. For this category, we include any study
that utilizes a deep learning architecture for segmentation, whether by training from
scratch or using pre-trained models.

Notably, one study proposed both an image processing pipeline and a deep learning
method. However, since the primary focus was on the deep learning approach, we cate-
gorized it accordingly. Table 3.4 summarizes the 36 studies that employed deep learning
models for cancer spheroid segmentation, along with their chosen architectures.

U-Net and its variations were the most commonly used architectures, given their effec-
tiveness in biological segmentation tasks [125]. Additionally, several studies implemented
post-processing steps to improve results, addressing issues such as removing small artifacts
or refining boundaries identified by the model.

Despite the growing success of Transformer-based models across artificial intelligence
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Table 3.3: Summary of studies utilizing specific software for segmentation, including
commercial software, embedded tools, and plugins for other platforms. The table columns
provide the authors, the software used, the input image type, the cancer culture examined,
and the publication year. Abbreviations: Brightfield (BF), Fluorescent (FL), and Phase-
Contrast (PC).

Authors Software Image Type Cancer Culture Year

Sun et al. [141] Fiji WEKA Confocal Bladder 2024
Lee et al. [83] AnaSP Brightfield Breast 2024
Abd El-Sadek et al. [1] Fiji FCR Confocal Gastric 2024
Wang and Hummon [161] SCiLS Lab Mass Spectrometry Colon 2023
Wang et al. [159] Imaris Confocal Breast 2023
Sinenko et al. [137] CeelPose Fluorescent Breast 2023
Ramm et al. [121] CellProfiler Brightfield Breast, Prostate 2023
Hu et al. [63] CellProfiler Fluorescent Breast 2023
Hu et al. [62] CellProfiler Fluorescent Breast 2023
Xie et al. [169] SCiLS Lab Mass Spectrometry Colon 2022
Tanaka et al. [144] Neurolucida Confocal Liver 2022
Powell et al. [116] Pipeline Pilot Brightfield Colorectal 2022
Perini et al. [112] INSIDIA Brightfield, FL Brain, Pancreas 2022
Lotsberg et al. [91] Ilastik - Lung 2022
Koch et al. [76] MorphoLibJ Brightfield Liver 2022
Kang et al. [70] Imaris Confocal Pancreas 2022
Ibrahim et al. [65] Fiji WEKA Brightfield - 2022
Spiller et al. [139] Harmony PerkinElmer Brightfield Colorectal 2021
Sargenti et al. [126] Nikon NIS Elements AR Confocal Colon 2021
Choo et al. [33] CellProfiler Brightfield, FL Prostate 2021
Berg et al. [11] MINS (MatLab) Confocal Liver 2021
Aguilar Cosme et al. [2] AnaSP Inverted Light Melanoma 2021
Zanotelli et al. [171] CellProfiler Mass Cytometric Colorectal and others 2020
Tasnadi et al. [145] 3D Active Surface - - 2020
Shirai et al. [133] CL-Quant Phase Contrast Renal 2020
Liu et al. [87] SCiLS Lab Mass Spectrometry Colorectal, Liver 2018
Veelken et al. [153] Automated Cellular Analysis Confocal Melanoma 2017
Mittler et al. [99] HCS Studio Brightfield Prostate 2017
Garvey et al. [49] CellTracker Confocal Lung 2016
Barbier et al. [9] DIPimage (MatLab) Confocal Prostate 2016

applications, only a few studies applied them to cancer spheroid segmentation. This
suggests that while Transformers are popular in fields such as natural language processing
and image classification, their use in biological image segmentation is still rising.

Many studies treated deep learning models as black-box systems, which can limit
the benefits of fine-tuning. Optimizing architectures or tailoring loss functions could
significantly enhance performance. By not fully customizing these models, researchers
may miss opportunities to boost accuracy and efficiency in segmentation tasks, especially
in the biological domain.
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Table 3.4: List of studies that applied deep learning for segmentation, including authors,
deep learning architectures, input image types, cancer cultures, and publication years.
Studies using multiple methods are included here, with an emphasis on deep learning
approaches. Authors who made minor modifications to U-Net are also categorized under
U-Net. Abbreviations: Brightfield (BF), Fluorescent (FL), and Phase-Contrast (PC).

Authors Architecture Image Type Cancer Culture Year

Liu et al. [86] 3D U-Net + Watershed Confocal Gastric 2024
García-Domínguez et al. [48] U-Nets, GANs Brightfield, FL Brain, Colon 2024
Zhang et al. [174] AU2Net Brightfield Bladder 2023
Zhang et al. [173] EGO-Net OCT Colon 2023
X. Deng et al. [168] MacrOrga Brightfield Pancreas and others 2023
X. Deng et al. [167] CAMPEOD Brightfield, PC Pancreas 2023
Vong et al. [156] U-Net - Brain 2023
Tebon et al. [146] U-Net Interferometry Breast 2023
Shuyun et al. [134] - Spectroscopy Liver 2023
Rieken Münke et al. [123] U-Net Brightfield Cervix 2023
Qin et al. [119] TransOrga Brightfield, PC Pancreas and others 2023
Park et al. [108] U-Net Brightfield, FL Colon 2023
Ngo et al. [105] EfficientNet - Breast 2023
Mukashyaka et al. [102] Stardist-3D Confocal Breast 2023
Mukashyaka et al. [101] Stardist-3D and others Confocal Breast 2023
Maylaa et al. [93] U-Net, YOLOv5 Brightfield Cervical 2023
Jadav et al. [67] 3D U-Net Volume Electron Lung 2023
Leite et al. [84] U-Net and others Brightfield Stomach and others 2023
Erdem et al. [44] U-Net Phase-Contrast Breast 2023
Beydag-Tasöz et al. [12] Stardist-3D Light-Sheet Pancreas 2023
Bao et al. [8] U-Net, EGO-Net OCT Stomach and others 2023
Wang et al. [160] RDAU-Net Brightfield Bladder 2022
Merivaara et al. [96] U-Net + Watershed Confocal Prostate, Liver 2022
Matthews et al. [92] U-Net Brightfield, PC Pancreas and others 2022
Kaseva et al. [74] U-Net, 3D U-Net Confocal Liver 2022
Bruch et al. [19] U-Net, 3DResU-Net Confocal Lung, Pancreas 2022
Beghin et al. [10] U-Net Light-Sheet Pancreas 2022
Yao et al. [170] AD-GAN Confocal Lung, Cervical 2021
Winkelmaier and Parvin [164] U-Net Confocal Breast 2021
Wen et al. [163] U-Net + Watershed Fluorescent Cervical 2021
Lacalle et al. [80] U-Net and others Brightfield, FL Brain, Colon 2021
Grexa et al. [54] Mask R-CNN and others Brightfield, FL Breast, Liver 2021
Chen et al. [30] PSP-U-Net Brightfield Breast, Colon, Lung 2021
Chen et al. [31] U-Net EIT Sensor Breast 2021
Rahkonen et al. [120] U-Net Phase Contrast Prostate 2020
Bruningk et al. [20] U-Net Brightfield, FL Intestine, Tongue 2020



50

Chapter 4

Materials

In this chapter, we provide a detailed description of the various materials and resources
utilized in our methodology. This chapter outlines the specific datasets, imaging tech-
niques, and computational tools that support our segmentation method and analysis.

A key component of this chapter is the introduction of our proposed dataset, which
includes a collection of annotated cancer spheroid images that have been meticulously
curated to support high-throughput quantitative analysis. We elaborate on the charac-
teristics of the dataset, including the diverse range of spheroid sizes, shapes, and imaging
conditions, as well as the annotation process used to generate accurate segmentation
masks.

As discussed in Chapter 3, a significant challenge in this field is the scarcity of publicly
available as well as the high-quality annotated datasets. Many studies rely on small,
internal datasets and often do not make these datasets accessible to the broader research
community. A notable exception is the work by Lacalle et al. [80], which graciously
responded to our inquiries and provided access to their dataset, representing one of the
few instances of data sharing in this area.

Given this landscape, we committed to creating a publicly available dataset of can-
cer spheroid images accompanied by high-quality segmentation masks, ensuring minimal
barriers for other researchers to utilize the data for training their models. To facilitate
accessibility, our dataset is well-organized and freely available on our GitHub page, with
no restrictions on access or usage.

4.1 Our Dataset

Our dataset1 comprises brightfield images of gastric cancer spheroid cultures, the segmen-
tation mask annotations that we created, and an accompanying Comma-Separated Values
(CSV) file detailing metadata. The CSV file includes information such as the sample file
name, the spheroid’s lifetime at the time of capture, the cell line used, the microscope’s
optical lens magnification, the well coordinates where the culture was formed, the scientist
responsible for capturing the image, the date the image was taken, and a difficulty score
indicating the level of challenge in segmenting the sample.

1https://github.com/guilhermevleite/dataset-spheroid-segmentation
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Initially, our dataset consisted of 294 images and corresponding masks, provided with-
out any data augmentation. To optimize the dataset for deep learning applications, we
incorporated data augmentation and established a train/test protocol. This protocol en-
hances reproducibility and mitigates the risk of data contamination across different train-
ing sessions. We allocated 80% of the samples for training and 20% for testing, ensuring
a balanced distribution between the two sets. A summary of the dataset is presented in
Table 4.1, and Figure 4.1 illustrates some of our samples.

(a) 48 hours (b) 72 hours (c) 96 hours

Figure 4.1: Examples of brightfield images from our dataset illustrate the same culture
captured at 48, 72, and 96 hours after treatment application. These images highlight
the compaction process that occurs as the spheroid develops. As cells aggregate more
densely, the central region of the spheroid becomes darker, while the borders remain
lighter, reflecting the structural changes over time.

Table 4.1: Features from our dataset.

Samples Masks Lens Cell Line Capturing Time Resolution Colorspace

294 294 10× Kato-III 48h, 72h, 96h 1600× Grayscale

4.1.1 Cancer Cell Culture

Our dataset consists of gastric cancer cell cultures, specifically the Kato-III cell line.
Initially, the cells were cultivated in a monolayer using DMEM medium supplemented with
10% fetal bovine serum, 100U/mL penicillin, and 100µg/mL streptomycin. The cultures
were maintained in a humidified atmosphere at 37°C with 5% CO2. To ensure the integrity
of the experiments, the cells were routinely tested for mycoplasma contamination.

We chose to form the spheroids using a magnetization-based approach. For this,
we utilized the Bio-Assembler n3D assay from Greiner (Biosciences, Houston/TX) [36],
following the manufacturer’s protocol. After culturing the Kato-III cells in a monolayer
(2D model) for 24 hours to reach approximately 80% confluence, we added Nanoshuttles
(NS) at a ratio of 1.2µL per 10,000 cells. The cells were then incubated overnight at 37°C.
Following incubation, the cells were detached and transferred into a 96-well cell-repellent
plate, with 10.000 cells per well. The plate was placed on a magnetic drive and incubated
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for an additional 24 hours at 37°C with 5% CO2 to promote spheroid formation. Finally,
48 hours post-spheroid formation, the cultures were either treated with 50µM of iRF
or left untreated as controls. The entire process was documented and is illustrated in
Figure 4.2.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.2: Spheroid formation. (a) The KATO-III cells were cultured in a bottle with
DMEM medium supplemented with 10% fetal bovine serum, 1% penicillin-streptomycin
(100 U/mL and 100µg/mL, respectively), and (b) maintained at 37°C in a humidified
incubator with 5% CO2. (c) When the bottle was 80% confluent, the cells were gently
detached from the bottom using trypsin by (d) pipetting to achieve a single-cell suspen-
sion. (e) Cell concentration were determined using a hemocytometer. (f) 10,000 of cells
were plated in a 6-well plate. (g) After 24h, metallic nanoparticles were applied. The
magnetized cells were detached by tripsin after 24h, and (h) 10,000 were applied in a
96-well cell-repellent plate and placed atop on a (i) magnetic drive. After 24h, the drive
is removed, and after more 48h, the spheroid is then formed.

The cell culture reagent DMEM (Dulbecco’s Modified Eagle Medium), along with
streptomycin sulfate and penicillin, were obtained from Nutricell (Campinas, SP, Brazil),
while the fetal bovine serum was sourced from Gibco (Invitrogen, NY, USA).

4.1.2 Image Capture

To capture the spheroid images, we utilized a Lumascope light microscope, placing the
96-well plate containing the cultures described in Section 4.1.1 onto the microscope stage,
using 10× optical lens. The Lumascope allows for the acquisition of both brightfield and
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fluorescent images; however, for the purposes of this thesis, only the brightfield imaging
capability was employed. Image acquisition and digitization were facilitated using the
Lumaview software, provided by the Lumascope manufacturer, to communicate with the
microscope’s camera.

Spheroids were sampled every 24 hours following treatment application. Due to the
natural shape and size of the spheroids, it was not possible to simultaneously focus on
both the nucleus and the borders. To address this, two images were captured per sample:
one focused on the spheroid nucleus and the other on its borders. To minimize stress
on the cultures, the plate was returned to the greenhouse every 30 minutes of capturing,
maintaining conditions of 30°C and 5% CO2. The images were digitized into grayscale
Tag Image File (TIF) format at a resolution of 1600 × 1600 pixels using the Lumaview
software. Table 4.2 shows the parameters used in the Lumaview software.

Table 4.2: Parameters used on the Lumeview software to capture the brightfield images
of the spheroid cultures.

Brightness Gain Exposure

14.9 1.750 178.8

4.1.3 Mask Annotation

One significant contribution of our work is the creation of annotated cancer spheroid
images, a resource that is both scarce and invaluable for training deep neural networks.
To achieve our objective of quantifying the 2D area of spheroids, we manually annotated
each sample to accurately delineate the regions corresponding to the cultures. This process
involved using online tools to create segmentation lines directly on the original images.

As illustrated in Figure 4.3, we outlined the spheroids by placing vertices to form
polygons that closely approximate their shapes. These polygons were then exported as
binary mask images, where the background was represented in black and the regions of
interest in white. To ensure accuracy, all initial annotations were subsequently reviewed by
a specialist and corrected based on their recommendations. This whole process generated
black and white images, with 1600× 1600 pixels, which were saved in PNG format.

4.2 Lacalle’s Dataset

Lacalle et al. [80] developed and published six datasets, three of which consist of bright-
field images and the other three of fluorescence images, all accompanied by annotated
segmentation masks. However, the associated publication did not provide a train/test
protocol to facilitate reproducibility of their results. Key features of these datasets are
summarized in Table 4.3.

The authors of the dataset annotated their images using ImageJ software, which pro-
duces annotation files containing only the vertices of the segmentation masks. To convert
these annotations into usable image masks, we developed a Python script that recon-
structs the segmentation masks from the vertices and saves them as image files. Given
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(a) (b) (c)

Figure 4.3: Illustration of the annotation process, where a polygon was created to outline
the spheroid shape and subsequently exported as a binary mask image. (a) Displays
a partially annotated spheroid in cyan. (b) Shows the fully segmented spheroid. (c)
Presents the final binary mask image.

Table 4.3: Summary of the datasets presented by Lacalle et al. [80], categorized by imaging
method: brightfield and fluorescence. The second row provides the dataset names, while
the third row, Samples, indicates the number of images available per dataset. The fourth
row, Resolution, specifies the image resolution. The Microscope row identifies the brand
of the microscope used for image acquisition, and the Lens row details the magnification
of the lenses employed. The Format row describes the file format in which the images are
stored, and the Type row specifies the colorspace of the images. Finally, the Culture row
highlights the culture medium used to grow the spheroids (Suspended and Collagen).

Method Brightfield Fluorescence

Name BL5S BN2S BN10S FL5C FL5S FN2S

Samples 50 154 105 19 50 34
Resolution 1296× 966 1002× 1004 1002× 1004 1296× 966 1296× 966 1002× 1004
Microscope Leica Nikon Nikon Leica Leica Nikon
Lens 5× 2× 10× 5× 5× 2×
Format TIFF ND2 ND2 TIFF TIFF ND2
Type RGB Grayscale Grayscale RGB RGB Grayscale
Culture Susp. Susp. Susp. Colla. Susp. Susp.

the binary nature of these datasets, the spheroid pixels were assigned a white color, while
the background pixels were painted black. Figure 4.4 shows examples of the spheroid
images alongside their reconstructed segmentation masks.

While working with the dataset, we discovered differences between many of the seg-
mentation masks and their corresponding images. Upon contacting the authors, they
provided access to a repository containing all their brightfield images, but none of the
fluorescence data. Additionally, the organization described in Table 4.3 was absent from
this repository. Instead, the data was divided into manually annotated samples and those
annotated using a baseline algorithm developed by the authors. Consequently, rather than
focusing on generating comparable metrics, our tests prioritize reproducing the method-
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Figure 4.4: Examples of brightfield images from the dataset by Lacalle et al. [80]. The
images have been cropped to enhance visualization, and the corresponding segmentation
masks were generated using our Python script.

ology used in other studies.

4.3 Computational Resources

All tests were conducted using an NVIDIA GTX 1080 Ti GPU with Python [151] code
incorporating may of its libraries. To minimize variability, we maintained as much as
possible hyperparameters across all models, including the loss function, learning rate,
learning rate scheduler, and early stopping criteria. Given the high computational de-
mands of deep learning algorithms, which exceed the capabilities of standard laptops,
some experiments were carried out in the cloud using Google Colab.

The cloud environment provided a system equipped with an NVIDIA Tesla P100
GPU (16 GB, CUDA 11.2) and an Intel Xeon CPU (2 GHz). Python’s extensive adop-
tion in scientific research has led to the development of numerous ready-to-use libraries
and tools for deep learning. Consequently, our solution relied on Python [151] and its
ecosystem of libraries, including SciPy [69], NumPy [56], PyTorch [109], Einops [124],
and OpenCV [18].
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Chapter 5

Cancer Spheroid Segmentation Method

In this chapter, we present a thorough description of our methodology developed for cancer
spheroid segmentation, detailing each critical step involved in the process1. We begin by
outlining the necessary pre-processing techniques applied to the images. Following this,
we describe our training and testing setup, including the architecture of the segmentation
model, the dataset splits, and the training protocols employed to optimize performance.

Figure 5.1 presents a diagram overviewing the proposed methodology for perform-
ing semantic segmentation on spheroid cell cultures. The process begins with an input
spheroid image paired with its corresponding segmentation mask. Both the image and
mask are resized and normalized to a standardized format before undergoing a series of
image augmentation steps, detailed bellow. These augmented inputs are then utilized for
model training, ensuring the network learns robust features across varying conditions.

To determine which architectures best fit the cancer spheroid task, we scanned the lit-
erature in search of adequate neural networks, in doing so we found two major paradigms
to split our methodology: the CNN-based and the Transformer-based networks. We also
selected on MLP-based architecture, because of its lightweight design. In conclusion, to
perform the cancer spheroid segmentation process, we will apply the following architec-
tures, sorted by their number of parameters in millions: starting with the MLP-based,
UNeXt [149] (1.5m), followed by the CNN-based, MultiResUNet [66] (7.2m), U-Net [90]
(7.7m), U-Net++ [175] (9m), and finally the Transformer-based ones, Swin-UNet [25]
(41.35m), TransUNet [28] (105.32m), and SwinV2 [89] (197m). We detailed these archi-
tectures in Chapter 2.

As illustrated in Figure 5.1 (c), we introduce a novel approach for cancer spheroid
segmentation, which is specifically designed to improve both accuracy and reliability.
This method uses the power of an ensemble of networks to generate the segmentation
mask. By utilizing multiple models within the ensemble, the method aims to make use of
the strengths and unique characteristics of each network. To further optimize the process,
our approach incorporates the output masks of pre-trained models, thereby reducing the
need for retraining and maximizing the utility of existing learned features. By joining
the outputs of these models, the proposed method combines different perspectives and
learned features, producing a more robust and consistent segmentation outcome. This

1https://github.com/guilhermevleite/spheroid_keras
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not only improves the precision of the segmentation process but also contributes to its
trustworthiness, making it particularly well-suited for the detailed analysis required in
cancer spheroid studies
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Figure 5.1: Segmentation method overview. To save time on training time, we opted
to save in disk our pre-processed dataset, as shown in (a) in which every input image
was patched into four quadrants, and along side with the original image were resized to a
more manageable resolution, quadrupling the size of our dataset. Afterwards, we executed
eight strategies of data augmentation in those five images, generating a dataset 40 times
bigger. This new dataset was saved to disk and used to train our models. (b) The training
paradigm, in which a input image and its segmentation ground truth are loaded from disk
and used to train the model. The model’s output goes through a sigmoid function to
generate a segmentation map, called output. (c) Our ensemble strategy, the late fusion
majority vote, in which we join the output from different trained models to generate a
new and better segmentation map.

The proposed method generates a segmentation mask that undergoes both quantita-
tive and qualitative evaluation. Quantitatively, the Dice coefficient is used to measure
the overlap between predicted and ground truth masks, providing an objective evaluation
of segmentation accuracy. Additionally, the segmentation results are qualitatively re-
viewed by a specialist to ensure practical relevance and validate the model’s performance,
as detailed in Chapter 6. This combined evaluation approach ensures a comprehensive
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assessment of the method’s effectiveness, which is proven applicable as we detail in Chap-
ter 7.

5.1 Pre-Processing Phase

Deep learning models usually achieve optimal performance when trained on large datasets
comprising thousands of samples. However, our dataset described in Chapter 4 consists
of a limited number of highly detailed images. To address this limitation, pre-processing
techniques can be employed to augment the dataset by generating additional data from
existing samples, providing a cost-effective way to enhance model performance. Further-
more, resizing the input images to more manageable dimensions is a common practice to
optimize hardware utilization without compromising efficiency.

Data augmentation encompasses techniques designed to increase the number of sam-
ples without incurring the cost of acquiring new ones. However, the selected augmenta-
tions must align with the specific context and scope of the dataset. For example, rotation
is a commonly used augmentation that is suitable for cancer spheroid images but may
not be applicable to datasets featuring car images. Considering these factors, we deter-
mined that the following operations were appropriate for cancer spheroid cultures. All
augmentations were implemented using the Python library Albumentations [23].

To accelerate the training process and effectively increase the number of samples, all
augmentations were pre-generated and saved to disk. These augmented samples were
subsequently loaded by the model’s data feeder during training, ensuring efficiency and
consistency in data handling.

5.1.1 Random Brightness and Contrast

The random brightness and contrast augmentation adjusts the intensity and contrast
levels of an image within a specified range, introducing variability that enhances the
model’s robustness to lighting conditions. This technique is particularly beneficial for
datasets like cancer spheroids, where slight variations in illumination can simulate real-
world scenarios, helping the model generalize better to unseen data [23].

5.1.2 Blur

The blur augmentation applies a slight blurring effect to images, mimicking out-of-focus
conditions or noise that may occur during image acquisition. This technique enhances
the model’s ability to handle imperfections in the data [23].

5.1.3 Rotation

The rotation augmentation involves rotating images by a random angle within a specified
range, introducing variability in orientation. This technique is particularly useful for
datasets like cancer spheroids, where objects can appear in different orientations, helping
the model become invariant to rotational changes and improving robustness [23].
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5.1.4 Perspective

The perspective augmentation applies a transformation that simulates changes in the
viewing angle, altering the spatial perspective of the image. This technique is useful for
enhancing the model’s robustness to variations in viewpoint [23].

5.1.5 Optical Distortion

The optical distortion augmentation simulates irregular deformations that mimic lens
imperfections or other optical anomalies. This technique helps the model become more
resilient to such distortions [23].

5.1.6 Piecewise Affine

The piec-wise affine augmentation applies localized geometric transformations by spread-
ing grid points on an image, and randomly moves the neighborhood of these points around.
This technique introduces subtle, realistic deformations [23].

5.1.7 Horizontal and Vertical Flip

The horizontal and vertical flip augmentations invert images along their respective axes,
introducing variations in orientation. These augmentations are particularly effective for
datasets where the subject’s orientation is not fixed, helping the model learn invariance
to flipping and improving its generalization [23].

5.1.8 Random Crop

Random crop augmentation involves randomly extracting smaller regions from the original
image, allowing for the model to learn from diverse perspectives and focus on different
parts of the spheroid. This approach is particularly effective in combating overfitting, as
it encourages the model to recognize spheroid boundaries and textures regardless of their
position within the image [23].

5.1.9 Patching

Given the large size of the original images, simply resizing them to 256 pixels would
result in significant information loss. To address this, we partitioned each image into
four quadrants of 800 × 800 pixels, ensuring that critical details were preserved. This
approach not only increased the effective size of the dataset by a factor of four but also
allowed us to retain the original full-size images as input. Consequently, the model was
exposed to multiple scales of the same sample, promoting scale-invariant learning. This
strategy significantly expanded the dataset and yielded notable improvements in model
performance, particularly in tasks requiring detailed feature extraction.
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5.2 Ensemble

Another innovative aspect of our methodology lies in leveraging the outputs of multiple
models to construct an improved segmentation model through ensemble techniques. This
approach, widely recognized in the literature, can be implemented in various ways. We
opted for late fusion majority voting.

This ensemble method integrates the predictions of multiple segmentation models
at the decision level by assigning each pixel in the segmentation output the class label
that receives the majority vote among all models. Each model independently processes
the input microscopy image, generating a pixel-wise segmentation map, and the final
segmentation is formed by aggregating these outputs through majority voting.

As illustrated in Figure 5.1(c), the segmentation maps generated by two distinct mod-
els are shown in red and green. Subsequently, a pixel-wise majority voting operation,
represented by the ∧ symbol, classifies a pixel as part of the spheroid only if both mod-
els agree on its class, with the resulting output shown in yellow in Figure 5.1(c). This
approach mitigates individual model errors and enhances segmentation robustness.

In our methodology, we expect this technique to enhance spheroid segmentation at
its borders, as segmentation models often face challenges in correctly delineating the
boundaries of cancer cultures, as we will show in the next chapter.
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Chapter 6

Results

In this chapter, we provide a detailed description of our testing setup, including the
results and conclusions derived from our experiments. We outline the testing protocols to
facilitate future result reproduction and describe the specific ablation studies conducted
to evaluate the impact of various components on performance. Each modification’s effect
on the outcome is analyzed. Finally, we discuss the results in depth, highlighting key
discoveries and their implications towards spheroid segmentation.

In the following sessions, we will outline the testing protocols employed in this study,
providing a overview of both the quantitative and qualitative outcomes. This analysis
will detail the methods used to assess performance and day-to-day usability, ensuring a
robust understanding of the data. Quantitative results will include the dice score , while
qualitative results will offer insights into the specialist point of view of the data, adding
depth to our understanding of the methodology.

We utilized three datasets for training our models: Our Dataset, Lacalle Manual,
and Lacalle SpheroidJ. Additionally, two datasets were used for testing: Our Dataset
Test and Lacalle Test. Regarding the models tested, we employed a selection of deep
learning architectures introduced in Chapter 2. These included well-known convolutional
neural networks (CNNs), such as U-Net, U-Net++, and MultiResUNet. We also evaluated
transformer-based models, including SwinV2 Transformer, TransUNet, and Swin-UNet.
Finally, we tested a multilayer perceptron (MLP)-based model, UNeXt.

To gain a deeper understanding of our data, we approached testing from multiple per-
spectives. Consequently, we developed six protocols, described in the following sections,
to analyze what the models learned and how effectively they generalize this learning.

We assumed that every dataset has an intrinsic scientist bias, in which the samples were
generally cultured, captured, and sometimes annotated by the same professional, creating
such bias. This bias is not a problem on its own, however, it causes samples from the same
dataset to share some features, such as capture hardware, lightning conditions, cell line
culture, and well-to-well similarities. In an attempt to minimize the loss function, these
similarities may lead the models to learn some features that are specific to this dataset,
and face a drop in performance once presented with new data.
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6.1 Protocols 1, 2, and 3

Protocols 1, 2, and 3, summarized in Table 6.1, involve training and testing the networks
within a single, consistent dataset, thereby keeping the intrinsic bias present in this ex-
periment. This approach establishes a baseline performance by checking each network’s
ability to learn and generalize within the same data environment.

By focusing on a controlled dataset, it becomes possible to analyze the base capabilities
of the networks, providing a reference point before introducing more complex variables or
testing conditions.

Table 6.1: Protocols summary, stating wherein each model was trained and later tested.

Protocol 1 Protocol 2 Protocol 3 Protocol 4 Protocol 5 Protocol 6

Train Our SpheroidJ Manual Our SpheroidJ Manual

Test Our Lacalle Lacalle Lacalle Our Our

Table 6.2 presents the results of the protocols 1, 2, and 3, with each row correspond-
ing to a protocol and each column displaying the Dice scores of the respective models.
Protocol 1 revealed a competitive performance between the CNNs and Transformer mod-
els. The top three models achieved scores above 95%, with SwinV2 obtaining the highest
score (95.84), followed by U-Net++ (95.74) and U-Net (95.06). Notably, the smallest
model, UNeXt, which was expected to have the lowest performance, did not rank as the
worst-performing model. SwinV2 is the most optimized and largest model in our list,
making its top performance expected.

Table 6.2: Results of protocols 1, 2, and 3. Each row represents a protocol, in ascending
order, and every column shows the dice score percent obtained by a given model. The
best results are highlighted in bold.

Protocol U-Net U-Net++ UNeXt MultiResUNet TransUNet Swin-UNet SwinV2

P1 95.06 95.74 88.65 87.10 91.66 91.35 95.84

P2 89.81 90.51 76.16 77.10 90.10 77.23 95.07

P3 79.78 66.47 69.60 68.74 83.50 70.52 96.44

Figure 6.1 presents a qualitative comparison between the different models under Pro-
tocol 1 and their corresponding target segmentation masks. While the SwinV2 model
achieved the highest score, it exhibited a tendency to produce a ragged segmentation at
the spheroid borders. Additionally, the models demonstrated a consistent tendency to
oversmooth the segmentation boundaries, consequently failing to capture crevices in the
delineation.

In Protocol 2, which involved training on the SpheroidJ dataset and testing on the
Lacalle Test dataset, we found a different scenario compared to Protocol 1. In this case,
the majority of results produced a Dice score below 90. In particular, SwinV2 achieved
the highest score (95.07), followed by U-Net++ (90.51) and TransUNet (90.10). The
SpheroidJ dataset, being the largest in this study, may have contributed to the improved
performance of the Transformer-based TransUNet model. However, despite also being a
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(a) Input (b) Target (c) U-Net

(d) U-Net++ (e) UNeXt (f) MultiResUNet

(g) TransUNet (h) Swin-UNet (i) SwinV2

Figure 6.1: Obtained from Protocol 1 by the models.

Transformer model, Swin-UNet did not achieve a Dice score of 90 or higher. Moreover,
this protocol generated a balanced ranking between the CNNs and the Transformers.

In Protocol 2, the models were tested on the Lacalle Test dataset, which presents
additional challenges compared to our test dataset. For example, as shown in Figure 6.2a,
the target spheroid is located at the center of the image, with two rounded shadows close
by. This configuration prevents the segmentation models from relying solely on contrast
to delineate the culture. Consequently, the models UNeXt, TransUNet, Swin-UNet, and
SwinV2 incorrectly classified the lower shadow as part of the spheroid. Additionally, we
observe that Swin-UNet and SwinV2 produced ragged segmentation outcomes, whereas
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the CNN-based models U-Net and U-Net++ generated smoother borders.

(a) Input (b) Target (c) U-Net

(d) U-Net++ (e) UNeXt (f) MultiResUNet

(g) TransUNet (h) Swin-UNet (i) SwinV2

Figure 6.2: Obtained from Protocol 2 by the models.

The last row in Table 6.2 corresponds to Protocol 3, in which the models were trained
on the Lacalle Manual dataset and tested on the Lacalle Test dataset. Although the La-
calle Manual dataset is the second largest in this study, it is considerably smaller than the
SpheroidJ. This protocol resulted in a significant drop in performance, particularly for the
CNN models. Unexpectedly, the U-Net++ model, which had consistently ranked among
the top three performers in previous tests, was ranked last in this scenario. Moreover, the
only model achieving a Dice score above 90 was the SwinV2.

These results suggest that the contextual differences between the Manual and Test
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datasets are substantial, leading to reduced model performance. In contrast, the stronger
performance observed in other protocols may indicate greater contextual similarities be-
tween the SpheroidJ and the Test dataset, and also our training and testing datasets.

Figure 6.3 was generated using the same input as Figure 6.2 to maintain a consistent
basis for comparison. However, in this instance, all models produced unsatisfactory seg-
mentations, including the SwinV2. Notably, both U-Net++ and MultiResUNet classified
the entire image as background, indicating that these models failed to generalize their
learning from the Manual dataset.

(a) Input (b) Target (c) U-Net

(d) U-Net++ (e) UNeXt (f) MultiResUNet

(g) TransUNet (h) Swin-UNet (i) SwinV2

Figure 6.3: Obtained from Protocol 3 by the models.

The results from Protocols 1 and 3 raised questions about whether the models ef-
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fectively learned the necessary features to segment cancer spheroid cultures or merely
adapted to specific characteristics of each dataset to produce the segmentation results.
To address these uncertainties, we designed the following protocols to provide further
insight into these doubts.

6.2 Protocols 4, 5, and 6

In Table 6.3 we summarized the results of our cross-testing protocols, in which the models
were tested on a dataset with a different creation bias, in contrast with the previous proto-
cols where the models were tested in the same context as their training. This methodology
allows us to evaluate the model’s generalization capabilities by exposing it to variations
in data characteristics, such as differences in noise levels, resolution, or features. Cross-
testing is particularly useful for identifying overfitting to the training dataset, as well as
for assessing the models’ ability to learn transferable features for new data.

The results for Protocol 4, presented in the first row of Table 6.3, correspond to
training on our dataset and testing on the Lacalle Test dataset. A noticeable drop in
performance was observed for all models compared to Protocol 1. Although SwinV2
achieved a Dice score of 83.00, the second-best model scored as low as 62.34. This outcome
is somewhat expected, given the smaller size of our dataset, which may limit the models’
ability to generalize. The MultiResUNet was the most affected by this dataset discrepancy,
obtaining a Dice score of only 29.43.

Table 6.3: Results of protocols 4, 5, and 6. Each row represents a protocol, in ascending
order, and every column shows the dice score percent obtained by a given model. The
best results are highlighted in bold.

Protocol U-Net U-Net++ UNeXt MultiResUNet TransUNet Swin-UNet SwinV2

P4 50.69 52.99 34.55 29.43 62.34 42.19 83.00

P5 77.05 77.32 37.87 70.43 73.86 66.24 89.84

P6 30.78 25.80 60.09 22.84 73.90 72.23 86.77

Figure 6.4 shows the obtained inferences for Protocol 4. In this instance it is possible
to notice the discrepancy between quantitative metrics and qualitative analysis. For
instance the TransUNet inference obtained 62.34 Dice score, which could be considered a
good metric. However, we can notice that the qualitative analysis of such segmentation
shows a segmentation map that lacks in resemblance to the spheroid region.

Protocol 5 involved training on the SpheroidJ dataset and testing on our test dataset.
This setup ensured that the models were trained on a significantly larger and more hetero-
geneous dataset compared to the testing one. The results align with the expectations for
this protocol. Although there was a decline in performance compared to Protocol 2, the
top three models maintained Dice scores above 77.00, with SwinV2 achieving the highest
score (89.84). The increased amount of training data benefited all models, however, the
improvement was more noticeable for the CNN-based models than for the Transformer-
based models when compared to Protocol 4.
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(a) Input (b) Target (c) U-Net

(d) U-Net++ (e) UNeXt (f) MultiResUNet

(g) TransUNet (h) Swin-UNet (i) SwinV2

Figure 6.4: Inferences obtained from Protocol 4.

Protocol 5 generated the outputs in Figure 6.5, in which we can notice that in most
cases the model over segmented the cell culture, extrapolating its region and producing
unusable masks. In other instances, such as SwinV2 and Swin-UNet the models produced
a ragged segmentation that seldom resembles the target mask.

We also noticed that when training the MultiResUNet model on any dataset from
Lacalle, in which a majority of the images do include the scale-bar legend, and tested on
our dataset, in which every image has the scale-bar, the model will frequently segment the
scale-bar as part of the spheroid culture. This behavior also emerged from TransUNet,
and Swin-UNet, although in a lesser degree.
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(a) Input (b) Target (c) U-Net

(d) U-Net++ (e) UNeXt (f) MultiResUNet

(g) TransUNet (h) Swin-UNet (i) SwinV2

Figure 6.5: Obtained from Protocol 5 by the models.

In Protocol 6, we trained on the Lacalle Manual dataset and tested on our test dataset.
The results align with expectations, falling between the outcomes of Protocols 4 and 5.
However, an interesting development emerged: the UNeXt model (60.09) outperformed all
CNN models. Although UNeXt is the smallest model, and thus expected to perform the
worst, it was able to extract significant features from the Manual dataset and apply them
effectively on our test dataset. Additionally, the Transformer models ranked in the top
three, led by the SwinV2 (86.77), while the CNN models ranked lower, with MultiResUNet
(22.84) scoring the lowest. This result for the transformer models can be attributed to
their ability to capture long-range dependencies, in contrast to the short-range limitations
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of CNNs.
In Protocol 6’s inferences we can notice more tame segmentations compared to Proto-

col 5. However, the models still produced unusable segmentation maps. The Transformers
came close to follow the spheroid region, with the SwinV2 coming the closest, but with
a very ragged segmentation. Lastly, as we mentioned previously, this protocol shows an
instance in which the MultiResUNet segmented the scale-bar as part of the cell culture.

(a) Input (b) Target (c) U-Net

(d) U-Net++ (e) UNeXt (f) MultiResUNet

(g) TransUNet (h) Swin-UNet (i) SwinV2

Figure 6.6: Obtained from Protocol 6 by the models.
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6.3 Ensemble

In this section, we present the results obtained from our ensemble methodology. To
evaluate which combinations of models provided the most valuable contributions to cancer
spheroid semantic segmentation, and which combinations could further improve it. The
following combinations were tested: UNeXt and TransUNet, UNeXt and U-Net++, U-Net
and TransUNet, and U-Net and U-Net++.

The UNeXt model, being the smallest among the selected models, ranked between the
worst performances within the group. Consequently, we decided to investigate whether
pairing this model with either a CNN or a Transformer could enhance its performance to
achieve competitive results. Furthermore, this approach aimed to identify which type of
information, convolutional or Transformer-based, is best suited to complement the UNeXt
model’s capabilities.

The first and second rows in Table 6.4 demonstrate that pairing the UNeXt model with
other models did not result in any significant performance improvements. In instances
where the ensemble outperformed the UNeXt model alone, the gains were minimal. How-
ever, in Protocol 6, the ensemble caused a substantial drop of 40 points in the score.
Overall, these findings suggest that incorporating the UNeXt model into an ensemble is
more likely to decrease the performance of other models rather than provide any substan-
tial advantage.

Table 6.4: Each row corresponds to a specific combination of models, while each column
displays the Dice score achieved for each protocol. Results that outperformed the indi-
vidual models are highlighted in bold.

Ensemble P1 P2 P3 P4 P5 P6

UNeXt ∧ TransUNet 89.27 76.15 68.88 31.69 38.71 62.70

UNeXt ∧ U-Net++ 89.81 76.29 58.21 30.78 39.29 18.97

U-Net ∧ TransUNet 93.30 88.99 78.12 44.25 81.73 30.78

U-Net ∧ U-Net++ 95.98 90.80 80.07 54.98 75.34 35.83

For our next ensemble, we opted to combine contrasting paradigms, CNN and Trans-
former, by pairing the U-Net with the TransUNet model, third row in Table 6.4. Despite
this attempt, the results once again failed to surpass the performance of the individual
models. However, in Protocol 5, the ensemble approach achieved its first victory over
the individual models by improving the Dice score. This outcome, shows that mixing
paradigms was not particularly effective for cancer spheroid segmentation.

Given the satisfactory results from U-Net and U-Net++ in previous experiments, we
decided to investigate whether combining two CNNs would yield better results. The
ensemble of these two models produced a score increase in most cases, with particular
emphasis on Protocol 6, where the score improved by 5 points. This positive outcome
suggests that both models effectively learned the essential features needed for spheroid
culture segmentation, highlighting the potential benefits of combining CNNs in this con-
text.

Interestingly, we identified an emerging consequence of the ensembling mechanism: the
smoothing of ragged segmentations. This behavior suggests that the ensemble may play
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a supporting role, particularly benefiting the SwinV2 model. Although SwinV2 achieved
the best Dice score, it produced overly ragged segmentations. The ensemble, by con-
trast, helped smooth these segmentations, potentially enhancing the overall quality. In
the second row of Figure 6.7, we present the smoothed segmentation obtained from the
ensemble.

(a) P1 Swin-UNet (b) P5 Swin-UNet (c) P6 Swin-UNet

(d) P1 Swin-UNet ∧ TransUNet (e) P5 Swin-UNet ∧ TransUNet (f) P6 Swin-UNet ∧ TransUNet

Figure 6.7: Ensembling Swin-UNet and TransUNet improved the ragged segmentations.
The top row displays the ragged segmentations produced by the Swin-UNet model, while
the bottom row presents the segmentation for the same spheroid using an ensemble of the
Swin-UNet with the TransUNet model. It is evident that the ragged effect is mitigated in
the bottom row, highlighting the smoothing effect introduced by the ensemble approach.

It is important to note that the ensemble approach we employed, late-stage majority
voting, requires agreement between both models for the pixel to be included. This causes
expected performance drops, as some correct pixels may be omitted during the process.
However, the remaining pixels undergo a double-checking mechanism, making them more
reliable and trustworthy in the segmentation outcome.

6.4 Ablation

In our ablation studies, we focused on examining the effects of network variations, and
the attention block to understand their impacts on model performance. The exploration
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of network variations allowed us to evaluate the effectiveness of specific features in the
Transformer models.

Additionally, we added an attention block into the U-Net model bottleneck to under-
stand the impact of such technique towards spheroid segmentation. This approach helped
us gain a nuanced perspective on the elements most crucial to optimizing our model.

6.4.1 Transformer Parameters

Given the promise of the Transformer models in other fields we decided to further inves-
tigate their effectiveness by altering the parameters of the TransUNet and the Swin-UNet
models. Initially we considered changing the patch size parameter, however, due to their
architecture the patch size has to remain fixed as 1× 1.

Regarding the TransUNet model, we altered its B parameter. Figure 2.13 shows that
in this architecture the Transformer layer is repeated several times (green box); This
repetition is controlled by the B parameters. In other words, it controls how many times
the features are passed through the Transformer layers to be learned from.

The results of such variation are shown in Table 6.5. We opted to vary the parameters
between 4, 8 , and 16, and re-run the six protocols explained above. All previous test
with this model were executed with the value at eight. In the results, we can notice a shy
variation on the Dice score of a few points, specially when it comes to improve the metric.

In Protocol 4 the variation resulted in a drop of 5 points in the score when decreasing
and an even larger drop of 14 points when increasing. As we explained from Table 6.3,
Protocol 4 demands a lot from the network by being trained on a smaller dataset, and
altering the network parameters showed no effect.

Overall, this variation has little effect and shows that passing the features through the
Transformer block more times is counter productive, but doing it less time could benefit
the model, since it saves on resources and has little effect on the outcome.

Table 6.5: TransUNet ablation parameter B variation. Every row refers to a protocol,
and each column shows the Dice score obtained for every parameter variation. The best
result of a protocol is bolded.

Protocol B 04 B 08 B 16

P1 91.09 91.66 91.58

P2 87.49 90.10 89.37

P3 83.30 83.50 82.04

P4 57.35 62.34 47.84

P5 71.65 73.86 75.99

P6 75.37 73.90 73.81

As for the Swin-UNet model we altered the C parameter. This parameter controls
the depth of the features when moving deeper into the architecture, shown in Figure 2.16
by the letter C. We assumed that by altering this parameter the model carries more
information into the encoder, and by doing so is able to produce better inferences from
the input data. We tested with the following values: 16, 32 (standard), 64, and 128.
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What Table 6.6 shows is that we were correct, and in general the model obtained
better Dice score by increasing the parameter. Initially, we tested only as far as 64, but
the results were so promising that we increased it to 128 (maximum we could fit into our
GPU’s memory), and the model once again improved its performance. Opposed to the
previous experiment, decreasing this value to save on resources was not advantageous,
with an exception in P1, which lost just a little of the Dice score. It is also worth noting
that the Protocol 4 benefited very little from the increase of C, as if the network had
reached its peak performance from that learning.

Table 6.6: Swin-UNet ablation parameter C variation. Every row refers to a protocol,
and each column shows the dice score obtained for every parameter variation. The best
result of a protocol is bolded.

Protocol C 16 C 32 C 64 C 128

P1 88.88 91.35 88.25 87.74

P2 66.87 77.23 81.08 88.08

P3 55.71 70.52 70.97 82.52

P4 29.01 42.19 29.48 42.21

P5 69.24 66.24 76.28 75.13

P6 61.50 72.23 78.68 80.20

6.4.2 U-NetAtt

Given the success of the Transformer models and their reliance on attention blocks [152],
we decided the investigate the effects of the attention mechanism towards segmentation
when applied to a CNN, in this case, the U-Net architecture. To do so, we added the
multi-head attention layer, implemented by PyTorch, right before the bottleneck shown
in Figure 2.6. In doing so, we expect the attention mechanism to execute long-range
dependencies, which should allow for better segmentation maps.

In Table 6.7 it can be seen that with respect to the initial protocols 1, 2, and 3,
the attention mechanism produced little effect, being most significant in P2 and P4,
increasing the Dice score by a few points. Its greater effect was observed in the cross-
testing protocols (5 and 6), in which it dropped the score from P5 by more than 20 points
while also increasing the P6 score by 50 points.

In general, the attention mechanism alone was too ineffective to produce better results.
As we have seen before with the SwinV2 results, this mechanism in combination with
other factors can produce much better segmentation. However, as a standalone solution
it increases the complexity of the models without assuring any improvement.

Table 6.7: U-NetAtt. Every row refers to a model, and each column shows the dice score
obtained on such protocol. The best model of a protocol is bolded.

Model P1 P2 P3 P4 P5 P6

U-Net 95.06 89.81 79.78 50.69 77.05 30.78

U-NetAtt 95.99 92.66 79.21 53.59 51.97 81.38
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6.5 Discussion

On average, the more complex models (Transformers) surpassed the lighter ones (CNNs).
This result is primarily attributed to the SwinV2 model, which scored best in every
protocol we proposed. Although we anticipated that the Transformers would achieve
top performance, we also expected some challenges, as they typically require significantly
larger datasets for training, which we did not have available. This limitation prompted
the use of our data augmentation method.

When comparing between protocols, Protocol 1 got consistently higher scores across
all models. However, when the training was transferred to a different dataset, as seen in
Protocol 4, there was a significant drop in performance. This decline suggests that while
the models were able to learn the features from our dataset, the data may have lacked
the necessary variability or quantity to enable effective extrapolation to other contexts.

SwinV2 performance in the cross-testing protocols (4, 5, and 6) was particularly sur-
prising, as it was able to maintain a significantly better result. In these protocols, the
model demonstrated a wide gap in performance between itself and the second place, show-
ing its robustness and effectiveness in producing cancer spheroid segmentation maps.

In contrast, we selected the UNeXT model due to the authors’ emphasis on creating
a small, efficient model that could be useful in point-of-care settings, such as being exe-
cuted during a doctor’s appointment. We anticipated that this model could potentially
be adapted for use in laboratory bench applications. It was therefore surprising to ob-
serve that, in several instances, UNeXT outperformed other methods. However, despite
these instances of improved performance, the small model struggled to produce acceptable
segmentations, as evidenced by both quantitative and qualitative analyses.

Although quantitative metrics serve as valuable indicators and are necessary for re-
sult reproducibility, our analysis demonstrated that they may not always align with a
qualitative evaluation. Through the qualitative analysis, we observed instances where
segmentation maps, despite obtaining high Dice scores, failed to capture important de-
tails, such as the core and the borders of the spheroid. These discrepancies highlight
the need for further post-processing steps in certain cases to ensure more accurate and
complete segmentations.

The qualitative results showed that ragged segmentation was a common issue in most
of the Transformer inferences. We believe this was caused by the patching mechanism in
these models, where the input is divided into smaller patches that are processed individu-
ally, as detailed in Section 2.9. However, the ensemble approach was able to mitigate this
effect by requiring agreement between two models before an image was segmented. This
mechanism effectively smoothed the segmentation borders, resulting in more reliable and
refined segmentations, as illustrated in Figure 6.7.

Ensembles such as U-Net ∧ U-Net++ consistently outperformed both CNN and Trans-
former averages in protocols P1, P2, P3, and P4, demonstrating their effectiveness in
these scenarios. However, their performance declined in protocols P5 and P6, where
Transformer-based models showed superior results. This suggests that the U-Net ∧ U-
Net++ ensemble may struggle to extend its learning to more complex scenarios, where
Transformer models excel.
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Chapter 7

A Quantitative Spheroid Analysis

Pipeline (SAP)

This chapter introduces a configurable, user-friendly pipeline for spheroid analysis that
facilitates semantic segmentation into day-to-day bench applications 1. Unlike other tools,
which often lack integrated statistical analysis and require careful data transfers prone
to errors and inefficiencies, our solution eliminates these issues through integrated au-
tomation. Designed to tackle the challenges of microscope imaging, which demands high
sensitivity, the pipeline not only generates usable segmentation masks but also facili-
tates statistical analysis of compound effects and produces data visualization plots. Its
modular and customizable design makes it accessible to a diverse range of users, ensuring
rapid processing of large sample datasets. The general workflow includes three key stages:
segmentation, analysis, and visualization, which will be detailed as follows.

7.1 Materials

For this application, three datasets were created to demonstrate the efficacy of the pro-
posed pipeline. It is important to note that these datasets differ from those presented
in Chapter 4. Additionally, they are not publicly available due to ongoing experimental
results associated with their respective cultures.

7.1.1 Cancer Cell Culture

Dulbecco’s Modified Eagle Medium (DMEM), streptomycin sulfate, and penicillin were
utilized as reagents, all of which were sourced from Nutricell (Campinas, SP, Brazil).
Additionally, Fetal Bovine Serum (FBS) was obtained from Gibco (Invitrogen, NY, USA).

The SKMEL-28 human melanoma cell line was kindly provided by Prof. Silvya Stuchi
Maria-Engler from the University of São Paulo (USP, Brazil). The cells were cultured in
DMEM supplemented with 10% FBS, 100 U/mL penicillin, and 100µg/mL streptomycin.
Incubation was conducted under a humidified atmosphere at 37°C with 5% CO2. Regular
testing was performed to ensure the absence of mycoplasma contamination.

1https://github.com/guilhermevleite/Spheroid-Analysis-Pipeline
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Spheroids were generated using the Bio-Assembler n3D assay (Biosciences, Houston,
TX), following the manufacturer’s protocol, similar to Chapter 4. Cells were initially
cultured for 24 hours as a monolayer (2D) model. Nanoshuttles™were added at a concen-
tration of 1.6µL per 10e4 cells, and the culture was continued. After 24 hours, the cells
were detached, transferred to a cell-repellent plate (10e4) cells per well), and incubated
over a magnet for an additional 24 hours. Subsequently, the magnet was removed, and
the plate was incubated for another 24 hours before treating the spheroids.

We treated the SKMEL-28 spheroids with 0.7µM, 1µM, 2.5µM, and 5µM of solution 1
over ten days, while doing drug holiday periods. Solution 1 was applied to the plates and
incubated in a humidified atmosphere at 37°C with 5% CO2 for 48 hours. Subsequently,
the treatment medium was completely replaced with DMEM with 10% FBS and 1%
penicillin/streptomycin added to it, followed by incubation under the same conditions for
an additional 48 hours. The treatment with solution 1 was repeated twice, with drug
holiday periods between applications. Similarly, SKMEL-103 spheroids were treated with
10µM of solution 2 over ten days, following the same drug holiday protocol.

7.1.2 Datasets

Three image datasets were utilized in this study, all of which were generated in Onco-
biomarkers Laboratory using a LumaScope microscope equipped with a 10× objective
lens, illustrated in Figure 7.1. Imaging was performed under standardized conditions for
light intensity, gain, and exposure settings. Spheroids were captured every 48 hours over
the ten-day experiment, with each image having a resolution of 1600× 1600 pixels.

The output images were systematically organized into daily folders and labeled by
the following name conversion: “control_x ” or “test_y_x ”, in which, x refers to the
experiment replicate ID, and y indicates the corresponding treatment. This organization
was essential to enable the pipeline to identify the samples associated with each treatment
or control condition.

Dataset 1 comprises 77 images of SKMEL-28 spheroids. Each day includes two exper-
imental conditions: control and treatment with solution 1, at a concentration of 0.7µM.
The dataset contains five images of the control samples and six images of the treated
spheroid per day.

Dataset 2 is composed of 78 images of SKMEL-103 spheroids. Each day features
two experimental conditions: control and treatment with solution 2 at a concentration
of 10µM. The dataset includes six images of spheroids for both the control and treated
conditions, totallying 12, per day.

Dataset 3 comprises 125 images of SKMEL-28 spheroids. Each day includes four
experimental conditions: control and treatment with solution 1 at concentrations of 1µM,
2.5µM, and 5µM. The dataset contains six images of control spheroids and five images
per concentration of solution 1 per day.

Table 7.1 provides an overview of the datasets. It is important to note that certain
samples were excluded due to cases where a replicate failed to survive between captures.
However, this discrepancy does not impact the performance of the segmentation algorithm,
and we propose a solution in the statistical analysis methodology.
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(a) (b) (c)

Figure 7.1: Samples from each dataset. (a) Dataset 1, SKMEL-28, treated with 0.7µL of
solution 1. (b) Dataset 2, SKMEL-103, treated with 10µL of solution 2. (c) Dataset 3,
SKMEL-28, treated with 5µL of solution 1.

Table 7.1: Summary of each dataset. Column Treatment refers to which treatment was
employed. Column concentration indicates the concentrations that each treatment was
used. Column Control refers to the number replicates samples in the control group per
day, and the same to the Treatment column. Finally, Total column indicates the total
number of samples per dataset.

Dataset Treatment Concentration # Control # Treatment # Total

1 1 0.7µM 5 6 77

2 2 10µM 6 6 78

3 1 1, 2.5, 5µM 6 5 125

7.2 Spheroid Analysis Pipeline (SAP)

Our pipeline was designed with modularity as a key feature and is divided into three
main components: segmentation, statistical analysis, and data visualization, as illustrated
in Figure 7.2. To ensure flexibility, the output data of each module is structured to
allow integration and substitution of modules depending on to the user’s preferences.
Additionally, ease of use was a main consideration, and the pipeline requires minimal or
no coding skills to set up and operate.

Input
Images

Semantic
Segmentation

Statistical
Analysis

Data
Visualization

Figure 7.2: Spheroid Analysis Pipeline (SAP) overview. Images are input in temporal
batches (daily batches in our examples), then fed to the segmentation stage. The areas
found in the segmentation are used to produce p-values from the statistical stage, and
finally a data visualization is produced from both stages.
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7.2.1 Segmentation Module

To make our pipeline accessible for public use, we chose a straightforward segmentation
approach, employing the widely recognized Otsu algorithm alongside simple pre- and
post-processing steps, as illustrated in Figure 7.3.

Input
Images

Grayscale
Resize

Otsu
Segmentation Erode 3×

Dilate
Connected
Component

Analysis

Find
Largest
Area

Segmentation
and Areas

Figure 7.3: SAP segmentation steps overview.

The first step in our pipeline involves loading the image into a grayscale color space and
resizing it to a resolution of 512× 512 pixels, as shown in Figure 7.4a. Subsequently, the
Otsu segmentation algorithm, provided by the OpenCV library, is applied (Figure 7.4b).
To reduce noise generated during segmentation and to separate regions that are barely
touching, we perform three erosion operations followed by one dilation operation, as il-
lustrated in Figure 7.4c. Once the regions have been cleared, we extract all connected
components from the image (Figure 7.4d). Finally, a post-processing step is applied to
identify the spheroid region by assuming that the largest connected component represents
the spheroid (Figure 7.4e). In our implementation, each step is modularly separated, al-
lowing users to customize the pipeline by substituting techniques or adjusting parameters
as desired.

7.2.2 Dataframe

The connected component analysis also quantifies the size of each region, or its area, and
stores this information in a Pandas dataframe, which is subsequently exported to the file
system as a CSV file, via Pandas library.

The dataframe contains columns regarding image capture interval (time), the sam-
ple ID, the segmented area, and which experiment it is part of, as in control group or
treatment_x, for instance. This step is crucial for ensuring modularity, as the statistical
analysis that follows relies solely on the dataframe as its input. Consequently, the seg-
mentation pipeline can be fully replaced without impacting code integration, provided it
generates a compatible dataframe.

7.2.3 Statistical Analysis Module

Our pipeline is designed to work with two experimental conditions: (i) a single compound
or treatment group tested against a control group, analyzed using the t-test to evaluate
statistical differences between distributions, and (ii) multiple compounds or treatment
groups tested against a control group, analyzed using the ANOVA test.
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(a) (b) (c)

(d) (e)

Figure 7.4: SAP segmentation illustration. (a) The input image is converted to grayscale
and resized; while resizing is not mandatory, it impacts the pipeline’s throughput. (b) The
Otsu algorithm produces an initial segmentation that includes noise around the borders
and incorrectly segments the bottom region, which is not part of the spheroid. (c) Three
erosion operations remove most of the noise and disconnect the central region from the
bottom region, while a dilation restores some of the original shape. (d) Each detected
connected component is assigned a unique hue. (e) The largest connected component is
identified and segmented as the spheroid region.

Additionally, our ANOVA results include a Tukey’s test to identify significance in
pairwise comparisons. It is important to note that while the pipeline supports any number
of samples in each group, the statistical tests require a minimum sample size to produce
meaningful and reliable results.

Area
Dataframe

Outlier
Cleanup

Normality
Check

t-test

ANOVA
Tukey’s test

p-values

Figure 7.5: SAP statistical analysis overview.

Figure 7.5 illustrates the steps of our statistical analysis, using the dataframe generated
by the segmentation process. To ensure that nonviable samples do not interfere with the
data, we first remove any outliers through interquartile range (IQR) filtering. This method
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divides the data into quartiles and calculates the difference between the 75th percentile
(Q3) and the 25th percentile (Q1). Values exceeding Q3 × 1.5 or falling below Q1 × 1.5

are considered outliers. This step is optional and can be omitted.
Both statistical tests we selected require the data to follow a normal distribution.

Therefore, we assess normality using the Shapiro-Wilk test before proceeding. If the data
fails to meet the normality assumption, the pipeline generates a warning to inform the
user not to proceed with the analysis.

Finally, we perform either a t-test or ANOVA followed by Tukey’s post-hoc test to
compute the desired p-values. These p-values are reported in a temporal fashion (e.g.,
daily or hourly).

7.2.4 Data Visualization Module

Finally, the dataframe is visualized using an interactive boxplot graph, implemented by
the Plotly [115] library, which depicts the area distributions divided by time intervals
(e.g., days in our example). The graph is fully configurable, allowing users to customize
legends and labels to ensure clarity and relevance, as illustrated in Figure 7.6.

Figure 7.6: Dataframe boxplot rendered via Plotly [115] library.

7.3 Observations

The three datasets utilized in this chapter have not been made publicly available, as
our collaborators are still in the process of publishing results derived from these data.
Nonetheless, this underscores the immediate usability, utility, and demand for our pipeline,
which has already been seamlessly integrated into the routine analysis workflows of the
researchers involved.

Our pipeline has been made publicly available on a dedicated GitHub page, where
users can download the notebook file (.ipynb). The notebook script is designed for seam-
less integration with Google Colab, where users can upload it and grant the necessary
authorization to access files via Google Drive upon the first execution. To ensure proper



81

functionality, the pipeline requires that images are organized into specific folders and ad-
here to a predefined naming convention. Detailed instructions for these requirements are
provided in a user manual, which is also publicly accessible on the GitHub page.
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Chapter 8

Conclusions

This chapter presents the main conclusions drawn from the research conducted during
this doctoral study. It highlights the key findings that contribute to the understanding
and advancement of the field, while also addressing the limitations encountered through-
out the work. Furthermore, potential directions for future research are outlined, aiming
to build upon the foundations established and to explore new opportunities for further
investigation.

8.1 Final Considerations

In conclusion, three-dimensional (3D) cell culture spheroids are widely used in various
applications, such as studying biological processes, diseases, and drug development, while
also improving the reliability of in vitro studies. However, large-scale spheroid image
analysis remains a significant challenge. This thesis addresses this challenge by pre-
senting four key contributions to the field: a comprehensive literature survey on cancer
spheroid segmentation, a new publicly available dataset of cancer spheroid samples with
accurate annotations, a novel neural network ensemble method for semantic segmenta-
tion of these cultures, and an analytical pipeline that uses these segmentation outcomes to
provide statistical insights into experimental development. To the best of our knowledge,
our pipeline is the first to fully integrate automated cancer spheroid segmentation with
statistical analysis for area estimation.

Motivated by an empirical observation, we initiated our survey to identify commonly
used methods for analyzing the morphology of 3D cancer cultures, which later became
our objective (O1). Our findings highlighted existing knowledge gaps in cancer spheroid
segmentation, revealing a considerable use of image processing techniques for analysis,
followed by proprietary software and, to a lesser extent, deep learning models. Further-
more, our survey underscored the scarcity of available datasets suitable for training deep
learning models.

Inspired by our survey and anticipating the direction of our methodology, we began
the development of Objective O2: a cancer spheroid dataset. This dataset was designed
with deep learning training in mind, ensuring that we (i) manually annotated all ground
truth information, (ii) split the data into training/validation and testing sets, (iii) estab-
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lished clear protocols for result reproduction and comparison, and (iv) made the dataset
publicly available for long-term access, allowing it to be downloaded without the need for
permission or special access.

Objective O3 was achieved through our methodology, in which we explained our data
augmentation strategy, followed by a training and testing phase. We selected a set of
segmentation models from the literature that could potentially be effective for cancer
spheroid segmentation. In our protocols, we conducted a comparative analysis between
different paradigms, evaluating the models’ performance and their ability to learn the
necessary patterns, as well as their capacity to generalize to new data. Additionally, we
introduced a novel approach to cancer spheroid segmentation by ensembling two models to
leverage their strengths for improved segmentation results. Finally, we fine-tuned various
aspects of the models to identify which modifications had the greatest impact on cancer
segmentation.

Our results revealed a clear gap between CNNs and Transformers, with the latter
demonstrating a notable advantage. Transformers outperformed CNNs not only in Pro-
tocols 1, 2, and 3 but also in the cross-testing Protocols 4, 5, and 6, which evaluated
the models’ ability to generalize to new data. In our ensemble testing, combining two
CNN models proved most effective, with the U-Net and TransUNet ensemble being the
only exception. Qualitative analysis highlighted certain limitations of the Transformer
models, particularly their tendency to produce ragged segmentations. Similarly, the CNN
model MultiResUNet encountered significant challenges, especially during cross-testing.
The UNeXt model did not meet our expectations, producing consistently low scores.

The quantitative spheroid analysis pipeline (SAP) presented in Chapter 7 was the
outcome of Objective O4. This tool was developed for everyday use, not only for spheroid
analysis but also for broader experimental analysis. Our pipeline successfully integrated
the temporal aspect of experiments, provided spheroid segmentation, and delivered co-
herent analyses of the samples in relation to both time and the compounds under in-
vestigation. Designed with non-programmer users in mind, the tool was released in an
open-source and modular format, ensuring adaptability to different user needs. We made
the pipeline publicly available, along with detailed instructions on how to customize and
utilize its various components.

In the course of producing this thesis, we developed several scientific articles that
have either been published in prominent international conferences or are currently under
review, as referenced in Chapter 1. This chapter also outlines the research questions we
formulated for this work, and here, we are finally able to provide answers to them.

Q01. Which techniques are mostly used to produce the segmentation re-

sults?

In our literature review in Chapter 3, we identified three main approaches used to
produce cancer spheroid segmentation results, ranked from most common to least. The
first approach involves traditional image processing algorithms, which utilize various tech-
niques such as thresholding (Otsu), edge detection, and region-growing (Watershed) to
segment spheroids. These methods are widely used due to their simplicity and efficiency
but may struggle with complex or noisy data. The second approach, specific software,
includes commercially available tools that often integrate both image processing and ma-
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chine learning techniques for segmentation. While these tools are user-friendly and opti-
mized for specific applications, they may not be as adaptable or accessible as open-source
alternatives. The third and increasingly prevalent method is deep learning, which lever-
ages neural networks, particularly convolutional neural networks (CNNs), to learn and
predict spheroid boundaries from datasets. This method has shown superior accuracy
and robustness in other contexts, especially for complex segmentation tasks, though it
requires substantial computational resources and large annotated datasets. Finally, man-
ual segmentation is still used in certain cases, although it is time-consuming and prone
to human error, making it less viable for large-scale studies.

Q02. What is the role of deep learning approaches in these scenarios?

We found that when applied, deep learning models were primarily used as a “black-
box” solution, where the models were trained to produce segmentations without signif-
icant adaptation to the specific requirements of the cancer spheroid domain. The most
commonly used architecture in this area was U-Net, as seen in Table 3.4, known for its
effectiveness in medical image segmentation. While deep learning has the potential to
improve segmentation accuracy, its application has been somewhat limited by the lack of
adequate training data and the use of models that were not adapted to cancer spheroid
segmentation.

Q03. How available are the datasets in this field?

In the field of cancer spheroid segmentation, the availability of datasets was a sig-
nificant challenge. In Table 3.1 we showed that most of the datasets related to cancer
spheroid cultures were either dead links or completely inaccessible. We observed a clear
trend among authors to protect their data, either by withholding it or requiring direct
contact for data release. However, despite these efforts, we found only a single dataset
available. This lack of accessible data in the field is one of the key reasons we decided to
create our own dataset, aiming to contribute to the limited resources available for training
and evaluating deep learning models in cancer spheroid segmentation.

Q04. Are these datasets ready to be used for deep learning training?

No, the available datasets were not ready to be used for deep learning training. As
discussed in Section 4.2, the unique dataset we found was published with incorrect an-
notation masks, rendering it unusable for training purposes. After requesting the correct
data, we were given access to files that did not correspond to the protocols described in
the paper, further complicating the situation. As a result, we had to create new protocols
for future experimentation and to ensure the replicability of our results. This experience
highlighted the challenges of working with existing datasets in this field and shows the
need for more reliable and properly annotated datasets of cancer spheroid cultures.

Q05. Which metrics are used for comparison between methods?

As discussed in Chapter 3, the primary metric used for comparison between methods
in the few works that released their metrics is the Dice score, which is well-suited for
evaluating segmentation tasks. However, we also identified instances where less appropri-
ate metrics, such as simple accuracy, were reported. These metrics are less effective for
segmentation evaluation as they fail to account for the overlap and spatial correspondence
required in segmentation.

Q06. Are CNNs better suited for this task compared to more complex



85

architectures like Transformers?

No, CNNs (such as U-Net, U-Net++, and MultiResUNet) are not a better fit for seg-
menting cancer spheroid cultures compared to more complex architectures like Transform-
ers (SwinV2, Swin-UNet, and TransUNet). In our experiments, which included testing
with three protocols (P1, P2, and P3), Transformers consistently outperformed CNN-
based models in all cases, as showed in Table 6.2. Even when we combined two CNNs
(U-Net ∧ U-Net++) in an ensemble, the Dice score did not surpass the results achieved by
the SwinV2 model. These findings suggest that Transformers, particularly SwinV2, are
more effective at learning the necessary features for accurate cancer spheroid segmenta-
tion.

Q07. By combining these two types of architectures, can we improve on

segmentation performance?

Combining these architectures (U-Net ∧ TransUNet) did lead to an improvement in
the Dice score on Protocol 5 compared to using the models independently, as shown
in Table 6.4, similar to the performance boost observed when combining two CNNs.
However, this improvement was still insufficient to outperform the score achieved by the
SwinV2 Transformer model, which is still the top performer.

Q08. Which architecture type generalized its learning from the few samples

we have available?

Table 6.3, shows that Transformers demonstrated superior generalization capability
when learning from the limited dataset available, as evidenced by Protocol 4, where models
were tested on their ability to apply learned features in a different context. Considering the
Transformers, the SwinV2 model was the best performer, achieving a significantly higher
performance than any other model, highlighting the Transformer’s ability to generalize
from small datasets.

Q09. Are the datasets generalizing enough to produce a segmentation on

different type of cell culture?

Protocols 4, 5, and 6 also evaluated the ability of models to generalize by training on
one type of cell culture and testing on another. These experiments, shown in Tabled 6.3,
showed a drop in performance, indicating challenges in generalization. For CNN-based
models, the datasets were not sufficient to do such cross learning, as their performance
declined too much. In contrast, Transformers demonstrated better generalization capabil-
ities, with the SwinV2 model being the most robust. Showing that the datasets provided
enough data to allow for some models to generalize for other cell-line context.

Q10. What is the minimum necessary on a pipeline to automate spheroid

analysis?

In Chapter 7 we identified the necessity for the pipeline to account for the timing and
conditions of the samples. For example, if samples are captured every 24 hours over three
days, the pipeline must provide information about the spheroid progression between these
intervals. Additionally, the pipeline should support compound analysis for any number
of compounds, such as comparing control groups with experimental groups exposed to
specific compounds. Regarding segmentation, we determined that a combination of an
Otsu algorithm, cleaning operations (e.g., erosion and dilation) to filter out noise, and
connected component analysis to isolate the most promising region were the minimum re-
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quirements for producing usable segmentations. Finally, to generate meaningful insights,
it was essential to include statistical tools, such as t-tests or ANOVA, alongside data
visualization methods to facilitate interpretation of the results.

8.2 Limitations and Directions for Future Work

Throughout this work, we encountered several limitations and challenges. Initially, we
found that the majority of datasets referenced in the literature were unavailable for down-
load. As we collected our own images, it became evident that creating an extensive dataset
was both costly and labor-intensive, resulting in a smaller dataset limited to samples
from a single cell line. Another significant challenge was the lack of segmentation-focused
research in which authors detailed their testing protocols and provided data for result
reproduction and comparison. Consequently, we were unable to directly compare our
results with those studies. Lastly, our generated segmentation masks are relatively small
compared to the original image sizes. This limitation arises from the nature of the ar-
chitectures used. However, some techniques exist that could potentially mitigate this
issue.

Certain aspects of cancer spheroid analysis did not fit within the timeframe of the
doctorate or would have significantly increased the scope of the thesis, these were there-
fore assigned as future work. One important area is the explainability of neural networks,
which are often regarded as black-box models. Interpretability involves extracting in-
formation about the model’s internal workings to help humans understand its outputs,
increasing trust and enabling validation of the inferences. Additionally, there is a need
to enhance segmentation accuracy, particularly at the borders of the cell cultures. This
could be achieved by assigning weight to border errors during training or by employing
alternative techniques.

From a biological perspective, incorporating biochemical data into the analysis would
be a valuable addition. Spheroid cultures show morphological variations due to nutrient
and oxygen diffusion gradients, which decrease from the outer layers to the nucleus. These
differences create distinct regions classified as hypoxic, quiescent, and proliferative. Quan-
tifying the growth and morphology of these regions is crucial for evaluating the effects of
compounds. By utilizing biochemical markers and fluorescent microscopy, it is possible to
visualize these regions. Developing a neural network capable of identifying these regions
without the need for costly biochemical analyses would be a significant advancement,
contributing to both automation and cost-effectiveness in the field.

In conclusion, upon comparing paradigms, the convolutions in a CNN introduce an
inductive bias, where only the pixels within the kernel window are considered during each
convolution. In contrast, Transformers utilize a multi-head attention mechanism that
takes into account the relationships between all tokens, thereby producing a global bias
for the information. This attention mechanism considers a significantly larger amount of
information, requiring substantially more data to capture patterns, making the training
of Transformers a more resource-intensive task. The Swin Transformer offers a middle
ground between the local and global biases by introducing an attention window, which
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allows for the consideration of more information without being entirely global. As a
result, the Swin Transformer utilizes the attention mechanism while requiring less data for
training. This approach has proven to be highly effective for cancer spheroid segmentation,
outperforming all other methods we tested.

Lastly, the automation of segmentation tasks, combined with integrated statistical
analysis, represents a transformative step toward more efficient, reliable, and reproducible
cancer research. By replacing manual segmentation, which typically requires approxi-
mately two minutes per sample, our pipeline has demonstrated the ability to process an
entire week’s worth of samples in under five minutes, a significant reduction in analy-
sis time. This advancement not only accelerates research workflows but also minimizes
human error, enhancing the consistency of results. Currently in use for daily analyses,
the pipeline has received positive feedback, showing its practicality and potential despite
existing limitations.



88

Bibliography

[1] I. Abd El-Sadek, R. Morishita, T. Mori, S. Makita, P. Mukherjee, S. Matsusaka,
and Y. Yasuno. Label-Free Visualization and Quantification of the Drug-Type-
Dependent Response of Tumor Spheroids by Dynamic Optical Coherence Tomog-
raphy. Scientific Reports, 14:3366, 2024. 45, 48

[2] J. Aguilar Cosme, D. Gagui, H. Bryant, and F. Claeyssens. Morphological Response
in Cancer Spheroids for Screening Photodynamic Therapy Parameters. Frontiers in

Molecular Biosciences, 8, 2021. 48

[3] I. Ahonen, M. Å kerfelt, M. Toriseva, E. Oswald, J. Schüler, and M. Nees. A High-
Content Image Analysis Approach for Quantitative Measurements of Chemosensi-
tivity in Patient-Derived Tumor Microtissues. Scientific Reports, 7(1):1–18, 2017.
45, 46

[4] I. Ahonen, M. Åkerfelt, M. Toriseva, E. Oswald, J. Schüler, and M. Nees. A high-
content image analysis approach for quantitative measurements of chemosensitivity
in patient-derived tumor microtissues. Scientific Reports, 7(1):6600, 2017. 30

[5] C. Akbaba, A. Polat, and D. Göktürk. Tracing 2D Growth of Pancreatic Tumoroids
Using the Combination of Image Processing Techniques and Mini-Opto Tomography
Imaging System. Technology in Cancer Research and Treatment, 22, 2023. 46

[6] H. Alsehli, F. Mosis, C. Thompson, E. Hamrud, E. Wiseman, E. Gentleman, and
D. Danovi. An Integrated Pipeline for High-Throughput Screening and Profiling of
Spheroids Using Simple Live Image Analysis of Frame to Frame Variations. Methods,
190:33–43, 2021. 46

[7] K. Bai. A Comprehensive Introduction to Different Types of Convolutions in
Deep Learning, 2019. https://towardsdatascience.com/a-comprehensive-

introduction-to-different-types-of-convolutions-in-deep-learning-

669281e58215. 27

[8] D. Bao, L. Wang, X. Zhou, S. Yang, K. He, and M. Xu. Automated Detection and
Growth Tracking of 3D Bio-Printed Organoid Clusters Using Optical Coherence
Tomography With Deep Convolutional Neural Networks. Frontiers in bioengineering

and biotechnology, 11:1133090, 2023. 49

[9] M. Barbier, S. Jaensch, F. Cornelissen, S. Vidic, K. Gjerde, R. De Hoogt, R. Graeser,
E. Gustin, Y. Chong, J. Hickman, M. Burbridge, E. Verschuren, O. Kallioniemi,



89

J. Klefström, C. Brisken, V. Rotter, M. Oren, C. Brito, J. Schalken, G. Jen-
ster, W. Van Weerden, J. Vilo, J. Schueler, O. Monni, S. Barry, S. Grünewald,
P. Kallio, H.-J. Mueller, A. Nopora, W. Sommergruber, E. Anderson, H. Van
Der Kuip, M. Smalley, and E. Boghaert. Ellipsoid Segmentation Model for An-
alyzing Light-Attenuated 3D Confocal Image Stacks of Fluorescent Multi-Cellular
Spheroids. PLoS One, 11(6), 2016. 48

[10] A. Beghin, G. Grenci, G. Sahni, S. Guo, H. Rajendiran, T. Delaire, S. B. Mo-
hamad Raffi, D. Blanc, R. de Mets, and H. T. Ong. Automated High-Speed 3D
Imaging of Organoid Cultures with Multi-Scale Phenotypic Quantification. Nature

Methods, 19(7):881–892, 2022. 49

[11] I. Berg, E. Mohagheghian, K. Habing, N. Wang, and G. Underhill. Microtissue
Geometry and Cell-Generated Forces Drive Patterning of Liver Progenitor Cell Dif-
ferentiation in 3D. Advanced Healthcare Materials, 10(12), 2021. 48

[12] B. Beydag-Tasöz, J. D’Costa, L. Hersemann, B. Lee, F. Luppino, Y. Kim, C. Zech-
ner, and A. Grapin-Botton. Integrating Single-Cell Imaging and Rna Sequencing
Datasets Links Differentiation and Morphogenetic Dynamics of Human Pancreatic
Endocrine Progenitors. Developmental Cell, 58(21):2292–2308.e6, 2023. 49

[13] C. C. Bilgin, G. Fontenay, Q. Cheng, H. Chang, J. Han, and B. Parvin. BioSig3D:
High Content Screening of Three-Dimensional Cell Culture Models. PLoS One, 11
(3):e0148379, 2016. 24, 35, 46

[14] T. Booij, M. Klop, K. Yan, C. Szántai-Kis, B. Szokol, L. Orfi, B. Van De Water,
G. Keri, and L. Price. Development of a 3D Tissue Culture-Based High-Content
Screening Platform That Uses Phenotypic Profiling to Discriminate Selective In-
hibitors of Receptor Tyrosine Kinases. Journal of Biomolecular Screening, 21(9):
912–922, 2016. 33, 45

[15] M. Borten, S. Bajikar, N. Sasaki, H. Clevers, and K. Janes. Automated Brightfield
Morphometry of 3D Organoid Populations by OrganoSeg. Scientific Reports, 8(1),
2018. 46

[16] M. E. Boutin, T. C. Voss, S. A. Titus, K. Cruz-Gutierrez, S. Michael, and M. Fer-
rer. A High-Throughput Imaging and Nuclear Segmentation Analysis Protocol for
Cleared 3D Culture Models. Scientific Reports, 8(1):11135, 2018. 24, 46

[17] S. Bradbury and P. J. Evennett. Contrast Techniques in Light Microscopy. Garland
Science, 2020. 20

[18] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000. 55

[19] R. Bruch, M. Vitacolonna, R. Rudolf, and M. Reischl. Prediction of Fluorescent
Ki67 Staining in 3D Tumor Spheroids. In Current Directions in Biomedical Engi-

neering, volume 8, pages 305–308, 2022. 49



90

[20] S. Bruningk, I. Rivens, C. Box, U. Oelfke, and G. ter Haar. 3D Tumour Spheroids for
the Prediction of the Effects of Radiation and Hyperthermia Treatments. Scientific

Reports, 10(1), 2020. 49

[21] B. G. Buchanan. A (very) brief history of artificial intelligence. AI Magazine, 26
(4):53–53, 2005. 24

[22] A.-L. Bulin, M. Broekgaarden, and T. Hasan. Comprehensive High-Throughput
Image Analysis for Therapeutic Efficacy of Architecturally Complex Heterotypic
Organoids. Scientific Reports, 7(1), 2017. 46

[23] A. Buslaev, V. I. Iglovikov, E. Khvedchenya, A. Parinov, M. Druzhinin, and A. A.
Kalinin. Albumentations: Fast and Flexible Image Augmentations. Information,
11(2):125, 2020. 58, 59

[24] T. Cannon, A. Shah, and M. Skala. Autofluorescence Imaging Captures Hetero-
geneous Drug Response Differences between 2D and 3D Breast Cancer Cultures.
Biomedical Optics Express, 8(3):1911–1925, 2017. 35, 46

[25] H. Cao, Y. Wang, J. Chen, D. Jiang, X. Zhang, Q. Tian, and M. Wang. Swin-
Unet: Unet-like Pure Transformer for Medical Image Segmentation. In European

Conference on Computer Vision, pages 205–218. Springer, 2022. 38, 39, 56

[26] A. Chambost, N. Berabez, O. Cochet-Escartin, F. Ducray, M. Gabut, C. Isaac,
S. Martel, A. Idbaih, D. Rousseau, D. Meyronet, and S. Monnier. Machine Learning-
Based Detection of Label-Free Cancer Stem-like Cell Fate. Scientific Reports, 12
(1), 2022. 46

[27] D.-M. Chang, H.-H. Hsu, P.-L. Ko, W.-J. Chang, T.-H. Hsieh, H.-M. Wu, and Y.-
C. Tung. Rapid Time-Lapse 3D Oxygen Tension Measurements within Hydrogels
Using Widefield Frequency-Domain Fluorescence Lifetime Imaging Microscopy (FD-
FLIM) and Image Segmentation. The Analyst, 149:1727–1737, 2024. 46

[28] J. Chen, Y. Lu, Q. Yu, X. Luo, E. Adeli, Y. Wang, L. Lu, A. L. Yuille, and Y. Zhou.
TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation.
arXiv preprint arXiv:2102.04306, 2021. 35, 56

[29] X. Chen, M. E. Kandel, S. He, C. Hu, Y. J. Lee, K. Sullivan, G. Tracy, H. J. Chung,
H. J. Kong, M. Anastasio, and G. Popescu. Artificial Confocal Microscopy for Deep
Label-Free Imaging. Nature Photonics, 17(3):250–258, 2023. 24, 46

[30] Z. Chen, N. Ma, X. Sun, Q. Li, Y. Zeng, F. Chen, S. Sun, J. Xu, J. Zhang, H. Ye,
J. Ge, Z. Zhang, X. Cui, K. Leong, Y. Chen, and Z. Gu. Automated Evaluation of
Tumor Spheroid Behavior in 3D Culture Using Deep Learning-Based Recognition.
Biomaterials, 272:120770, 2021. 49

[31] Z. Chen, Y. Yang, and P.-O. Bagnaninchi. Hybrid Learning-Based Cell Aggregate
Imaging with Miniature Electrical Impedance Tomography. IEEE Transactions on

Instrumentation and Measurement, 70, 2021. 49



91

[32] Y.-H. Cheng, Y.-C. Chen, R. Brien, and E. Yoon. Scaling and Automation of a
High-Throughput Single-Cell-Derived Tumor Sphere Assay Chip. Lab on a Chip,
16(19):3708–3717, 2016. 46

[33] N. Choo, S. Ramm, J. Luu, J. M. Winter, L. A. Selth, A. R. Dwyer, M. Frydenberg,
J. Grummet, S. Sandhu, T. E. Hickey, W. D. Tilley, R. A. Taylor, G. P. Risbridger,
M. G. Lawrence, and K. J. Simpson. High-Throughput Imaging Assay for Drug
Screening of 3D Prostate Cancer Organoids. SLAS Discovery, 26(9):1107–1124,
2021. 48

[34] L. Cisneros Castillo, A.-D. Oancea, C. Stüllein, and A. Régnier-Vigouroux. A Novel
Computer-Assisted Approach to Evaluate Multicellular Tumor Spheroid Invasion
Assay. Scientific Reports, 6, 2016. 46

[35] W. R. Crum, O. Camara, and D. L. Hill. Generalized Overlap Measures for Eval-
uation and Validation in Medical Image Analysis. IEEE Transactions on Medical

Imaging, 25(11):1451–1461, 2006. 41

[36] P. F. de Souza Oliveira, A. V. Faria, S. P. Clerici, E. M. Akagi, H. F. Carvalho,
G. Z. Justo, N. Duran, and C. V. Ferreira-Halder. Violacein negatively modulates
the colorectal cancer survival and epithelial–mesenchymal transition. Journal of

Cellular Biochemistry, 123(7):1247–1258, 2022. 51

[37] T. Deckers, G. Hall, I. Papantoniou, J.-M. Aerts, and V. Bloemen. A Platform for
Automated and Label-Free Monitoring of Morphological Features and Kinetics of
Spheroid Fusion. Frontiers in Bioengineering and Biotechnology, 10, 2022. 45, 46

[38] A. Deloria, S. Haider, B. Dietrich, V. Kunihs, S. Oberhofer, M. Knofler, R. Leit-
geb, M. Liu, W. Drexler, and R. Haindl. Ultra-High-Resolution 3D Optical Coher-
ence Tomography Reveals Inner Structures of Human Placenta-Derived Trophoblast
Organoids. IEEE Transactions on Biomedical Engineering, 68(8):2368–2376, 2021.
45

[39] N. Dimitriou, S. Flores-Torres, J. Kinsella, and G. Mitsis. Detection and Spatiotem-
poral Analysis of In-vitro 3D Migratory Triple-Negative Breast Cancer Cells. Annals

of Biomedical Engineering, 51(2):318–328, 2023. 24, 46

[40] A. Diosdi, D. Hirling, M. Kovacs, T. Toth, M. Harmati, K. Koos, K. Buzas, F. Pic-
cinini, and P. Horvath. A Quantitative Metric for the Comparative Evaluation
of Optical Clearing Protocols for 3D Multicellular Spheroids. Computational and

Structural Biotechnology Journal, 19:1233–1243, 2021. 45, 46

[41] R. Edmondson, J. J. Broglie, A. F. Adcock, and L. Yang. Three-Dimensional Cell
Culture Systems and their Applications in Drug Discovery and Cell-Based Biosen-
sors. Assay and Drug Development Technologies, 12(4):207–218, 2014. 14

[42] S. Edwards, V. Carannante, K. Kuhnigk, H. Ring, T. Tararuk, F. Hallböök,
H. Blom, B. Önfelt, and H. Brismar. High-Resolution Imaging of Tumor Spheroids



92

and Organoids Enabled by Expansion Microscopy. Frontiers in Molecular Bio-

sciences, 7, 2020. 46

[43] C. H. Emmerich, L. M. Gamboa, M. C. Hofmann, M. Bonin-Andresen, O. Arbach,
P. Schendel, B. Gerlach, K. Hempel, A. Bespalov, U. Dirnagl, et al. Improving Tar-
get Assessment in Biomedical Research: The GOT-IT Recommendations. Nature

Reviews Drug Discovery, 20(1):64–81, 2021. 13

[44] Y. S. Erdem, A. Ayanzadeh, B. Mayalı, M. Balıkçi, Ö. N. Belli, M. Uçar, Ö. Y.
Özyusal, D. P. Okvur, S. Önal, K. Morani, et al. Automated Analysis of Phase-
Contrast Optical Microscopy Time-Lapse Images: Application to Wound Healing
and Cell Motility Assays of Breast Cancer. In Diagnostic Biomedical Signal and Im-

age Processing Applications with Deep Learning Methods, pages 137–154. Elsevier,
2023. 49

[45] P. Favreau, J. He, D. Gil, D. Deming, J. Huisken, and M. Skala. Label-Free Re-
dox Imaging of Patient-Derived Organoids Using Selective Plane Illumination Mi-
croscopy. Biomedical Optics Express, 11(5):2591–2606, 2020. 46

[46] K. A. Fitzgerald, M. Malhotra, C. M. Curtin, F. J. O’Brien, and C. M. O’Driscoll.
Life in 3D is Never Flat: 3D Models to Optimise Drug Delivery. Journal of Con-

trolled Release, 215:39–54, 2015. 14

[47] R. R. C. for History and N. Media. Zotero, 2024. URL https://www.zotero.org.
43

[48] M. García-Domínguez, C. Domínguez, J. Heras, E. Mata, and V. Pascual. Deep
Style Transfer to Deal with the Domain Shift Problem on Spheroid Segmentation.
Neurocomputing, 569, 2024. 49

[49] C. M. Garvey, E. Spiller, D. Lindsay, C.-T. Chiang, N. C. Choi, D. B. Agus,
P. Mallick, J. Foo, and S. M. Mumenthaler. A High-Content Image-Based Method
for Quantitatively Studying Context-Dependent Cell Population Dynamics. Scien-

tific Reports, 6(1):1–12, 2016. 48

[50] A. Géron. Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow:

Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly, 2022. 27

[51] D. A. Gil, D. Deming, and M. C. Skala. Patient-Derived Cancer Organoid Track-
ing with Wide-Field One-Photon Redox Imaging to Assess Treatment Response.
Journal of Biomedical Optics, 26(3), 2021. 46

[52] A. Gillette, C. Babiarz, A. Vandommelen, C. Pasch, L. Clipson, K. Matkowskyj,
D. Deming, and M. Skala. Autofluorescence Imaging of Treatment Response in
Neuroendocrine Tumor Organoids. Cancers, 13(8), 2021. 46

[53] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016. 21,
24, 25, 26



93

[54] I. Grexa, A. Diosdi, M. Harmati, A. Kriston, N. Moshkov, K. Buzas, V. Pietiäi-
nen, K. Koos, and P. Horvath. SpheroidPicker for Automated 3D Cell Culture
Manipulation Using Deep Learning. Scientific Reports, 11(1):14813, 2021. 49

[55] S. Grosser, J. Lippoldt, L. Oswald, M. Merkel, D. Sussman, F. Renner, P. Gottheil,
E. Morawetz, T. Fuhs, X. Xie, S. Pawlizak, A. Fritsch, B. Wolf, L.-C. Horn, S. Briest,
B. Aktas, M. Manning, and J. Kas. Cell and Nucleus Shape as an Indicator of Tissue
Fluidity in Carcinoma. Physical Review X, 11(1), 2021. 24, 33, 46

[56] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cour-
napeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer,
M. H. van Kerkwijk, M. Brett, A. Haldane, J. Fernández del Río, M. Wiebe, P. Pe-
terson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi,
C. Gohlke, and T. E. Oliphant. Array Programming with NumPy. Nature, 585:
357–362, 2020. 55

[57] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
In IEEE Conference on Computer Vision and Pattern Recognition, pages 770–778,
2016. 26

[58] T. Henser-Brownhill, R. Ju, N. Haass, S. Stehbens, C. Ballestrem, and T. Cootes.
Estimation of Cell Cycle States of Human Melanoma Cells with Quantitative Phase
Imaging and Deep Learning. In International Symposium on Biomedical Imaging,
2020. 46

[59] G. E. Hinton. Learning multiple layers of representation. Trends in Cognitive

Sciences, 11(10):428–434, 2007. 25

[60] L. Hof, T. Moreth, M. Koch, T. Liebisch, M. Kurtz, J. Tarnick, S. Lissek, M. Ver-
stegen, L. van der Laan, M. Huch, F. Matthäus, E. Stelzer, and F. Pampaloni.
Long-Term Live Imaging and Multiscale Analysis Identify Heterogeneity and Core
Principles of Epithelial Organoid Morphogenesis. BMC Biology, 19(1), 2021. 24, 46

[61] Y. Hou, J. Konen, D. Brat, A. Marcus, and L. Cooper. TASI: A Software Tool for
Spatial-Temporal Quantification of Tumor Spheroid Dynamics. Scientific Reports,
8(1), 2018. 46

[62] L. Hu, B. Ter Hofstede, D. Sharma, F. Zhao, and A. Walsh. Comparison of Pha-
sor Analysis and Biexponential Decay Curve Fitting of Autofluorescence Lifetime
Imaging Data for Machine Learning Prediction of Cellular Phenotypes. Frontiers

in Bioinformatics, 3, 2023. 48

[63] L. Hu, N. Wang, J. Bryant, L. Liu, L. Xie, A. West, and A. Walsh. Label-Free
Spatially Maintained Measurements of Metabolic Phenotypes in Cells. Frontiers in

Bioengineering and Biotechnology, 11, 2023. 48

[64] J. P. Hughes, S. Rees, S. B. Kalindjian, and K. L. Philpott. Principles of Early
Drug Discovery. British Journal of Pharmacology, 162(6):1239–1249, 2011. 13, 15



94

[65] H. Ibrahim, S. D. Thorpe, M. Paukshto, T. S. Zaitseva, W. Moritz, and B. J.
Rodriguez. A Biomimetic High Throughput Model of Cancer Cell Spheroid Dis-
semination onto Aligned Fibrillar Collagen. SLAS Technology, 27(4):267–275, 2022.
47, 48

[66] N. Ibtehaz and M. S. Rahman. Multiresunet: Rethinking the u-net architecture for
multimodal biomedical image segmentation. Neural Networks, 121:74–87, 2020. 29,
31, 56

[67] N. Jadav, S. Velamoor, D. Huang, L. Cassin, N. Hazelton, A.-R. Eruera, L. Burga,
and M. Bostina. Beyond the Surface: Investigation of Tumorsphere Morphology
Using Volume Electron Microscopy. Journal of Structural Biology, 215(4), 2023. 49

[68] N. Jagiella, B. Müller, M. Müller, I. Vignon-Clementel, and D. Drasdo. Inferring
Growth Control Mechanisms in Growing Multi-cellular Spheroids of NSCLC Cells
from Spatial-Temporal Image Data. PLoS Computational Biology, 12(2), 2016. 24,
46

[69] E. Jones, T. Oliphant, and P. Peterson. SciPy: Open Source Scientific Tools for
Python, 2001. http://www.scipy.org. 55

[70] Y. Kang, J. Deng, J. Ling, X. Li, Y.-J. Chiang, E. Koay, H. Wang, J. Burks,
P. Chiao, M. Hurd, M. Bhutani, J. Lee, B. Weston, A. Maitra, N. Ikoma, C.-W.
Tzeng, J. Lee, R. DePinho, R. Wolff, S. Pant, F. McAllister, M. Katz, J. Flem-
ing, and M. Kim. 3D Imaging Analysis on an Organoid-Based Platform Guides
Personalized Treatment in Pancreatic Ductal Adenocarcinoma. Journal of Clinical

Investigation, 132(24), 2022. 48

[71] M. Kapalczynska, T. Kolenda, W. Przybyla, M. Zajaczkowska, A. Teresiak, V. Filas,
M. Ibbs, R. Blizniak, Ł. Łuczewski, and K. Lamperska. 2D and 3D Cell Cultures
- A Comparison of Different Types of Cancer Cell Cultures. Archives of Medical

Science, 14(4):910, 2018. 14

[72] C. Karabag, M. Jones, C. Peddie, A. Weston, L. Collinson, and C. Reyes-Aldasoro.
Segmentation and Modelling of the Nuclear Envelope of HeLa Cells Imaged with
Serial Block Face Scanning Electron Microscopy. Journal of Imaging, 5(9), 2019.
45, 46

[73] H. Karimi, B. Leszczyński, T. Koł odziej, E. Kubicz, M. Przybył o, and E. Stepień.
X-Ray Microtomography as a New Approach for Imaging and Analysis of Tumor
Spheroids. Micron, 137, 2020. 45

[74] T. Kaseva, B. Omidali, E. Hippeläinen, T. Mäkelä, U. Wilppu, A. Sofiev,
A. Merivaara, M. Yliperttula, S. Savolainen, and E. Salli. Marker-Controlled Water-
shed with Deep Edge Emphasis and Optimized H-minima Transform for Automatic
Segmentation of Densely Cultivated 3D Cell Nuclei. BMC Bioinformatics, 23(1):
289, 2022. 45, 49



95

[75] F. Keller, R. Rudolf, and M. Hafner. Towards Optimized Breast Cancer 3D Spheroid
Mono-and Co-Culture Models for Pharmacological Research and Screening. Journal

of Cellular Biotechnology, 5(2):89–101, 2019. 46

[76] M. Koch, S. Nickel, R. Lieshout, S. Lissek, M. Leskova, L. van der Laan, M. Verste-
gen, B. Christ, and F. Pampaloni. Label-Free Imaging Analysis of Patient-Derived
Cholangiocarcinoma Organoids after Sorafenib Treatment. Cells, 11(22), 2022. 48

[77] B. Kovac, J. Fehrenbach, L. Guillaume, and P. Weiss. FitEllipsoid: A Fast Super-
vised Ellipsoid Segmentation Plugin. BMC Bioinformatics, 20(1), 2019. 46

[78] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. Advances in Neural Information Processing Systems,
25, 2012. 26

[79] L. Fillioux, E. Gontran, J. Cartry, J. R. Mathieu, S. Bedja, A. Boilève, P. -H.
Cournède, F. Jaulin, S. Christodoulidis, and M. Vakalopoulou. Spatio-Temporal
Analysis of Patient-Derived Organoid Videos Using Deep Learning for the Predic-
tion of Drug Efficacy. In International Conference on Computer Vision Workshops,
pages 3932–3941, 2023. 46

[80] D. Lacalle, H. A. Castro-Abril, T. Randelovic, C. Domínguez, J. Heras, E. Mata,
G. Mata, Y. Méndez, V. Pascual, and I. Ochoa. SpheroidJ: An Open-Source Set of
Tools for Spheroid Segmentation. Computer Methods and Programs in Biomedicine,
200:105837, 2021. 8, 10, 15, 45, 47, 49, 50, 53, 54, 55

[81] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and
L. D. Jackel. Backpropagation applied to handwritten zip code recognition. Neural

Computation, 1(4):541–551, 1989. 26

[82] Y. LeCun, Y. Bengio, and G. Hinton. Deep Learning. Nature, 521:436–444, 2015.
25

[83] J. Lee, Y. Kim, J. Lim, H.-I. Jung, G. Castellani, F. Piccinini, and B. Kwak.
Optimization of Tumor Spheroid Preparation and Morphological Analysis for Drug
Evaluation. Biochip Journal, 18:160–169, 2024. 45, 48

[84] G. V. Leite, J. M. Azevedo-Martins, C. V. Ferreira-Halder, and H. Pedrini. Cancer
Spheroid Segmentation Based on Vision Transformer. In IEEE International Con-

ference on Visual Communications and Image Processing, pages 1–5, 2023. 15, 45,
49

[85] J. W. Lichtman and J.-A. Conchello. Fluorescence Microscopy. Nature methods, 2
(12):910–919, 2005. 20

[86] B. Liu, Y. Zhu, Z. Yang, H. H. N. Yan, S. Y. Leung, and J. Shi. Deep Learning-
Based 3D Single-Cell Imaging Analysis Pipeline Enables Quantification of Cell-Cell
Interaction Dynamics in the Tumor Microenvironment. Cancer Research, 84(4):
517–526, 2024. 45, 49



96

[87] X. Liu, C. Flinders, S. Mumenthaler, and A. Hummon. MALDI Mass Spectrometry
Imaging for Evaluation of Therapeutics in Colorectal Tumor Organoids. Journal of

the American Society for Mass Spectrometry, 29(3):516–526, 2018. 48

[88] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo. Swin
Transformer: Hierarchical Vision Transformer Using Shifted Windows. In IEEE

International Conference on Computer Vision, pages 10012–10022, 2021. 32, 36

[89] Z. Liu, H. Hu, Y. Lin, Z. Yao, Z. Xie, Y. Wei, J. Ning, Y. Cao, Z. Zhang, L. Dong,
et al. Swin Transformer v2: Scaling up Capacity and Resolution. In IEEE Con-

ference on Computer Vision and Pattern Recognition, pages 12009–12019, 2022.
56

[90] J. Long, E. Shelhamer, and T. Darrell. Fully Convolutional Networks for Semantic
Segmentation. In IEEE Conference on Computer Vision and Pattern Recognition,
pages 3431–3440, 2015. 27, 56

[91] M. Lotsberg, G. Rø sland, A. Rayford, S. Dyrstad, C. Ekanger, N. Lu, K. Frantz,
L. Stuhr, H. Ditzel, J. Thiery, L. Akslen, J. Lorens, and A. Engelsen. Intrinsic
Differences in Spatiotemporal Organization and Stromal Cell Interactions Between
Isogenic Lung Cancer Cells of Epithelial and Mesenchymal Phenotypes Revealed by
High-Dimensional Single-Cell Analysis of Heterotypic 3D Spheroid Models. Fron-

tiers in Oncology, 12, 2022. 48

[92] J. M. Matthews, B. Schuster, S. S. Kashaf, P. Liu, R. Ben-Yishay, D. Ishay-Ronen,
E. Izumchenko, L. Shen, C. R. Weber, and M. Bielski. OrganoID: A Versatile Deep
Learning Platform for Tracking and Analysis of Single-Organoid Dynamics. PLOS

Computational Biology, 18(11):e1010584, 2022. 45, 49

[93] T. Maylaa, F. Windal, H. Benhabiles, G. Maubon, N. Maubon, E. Vandenhaute, and
D. Collard. A Hierarchical Deep Learning Framework for Nuclei 3D Reconstruction
from Microscopic Stack-Images of 3D Cancer Cell Culture. In Lecture Notes in

Networks and Systems, volume 579, pages 225–235, 2023. 49

[94] J. McIntosh, L. Yang, T. Wang, H. Zhou, M. Lockett, and A. Oldenburg. Tracking
the Invasion of Breast Cancer Cells in Paper-Based 3D Cultures by OCT Motility
Analysis. Biomedical Optics Express, 11(6):3181–3194, 2020. 45

[95] T. Mendonca, K. Lis-Slimak, A. Matheson, M. Smith, A. Anane-Adjei, J. Ashworth,
R. Cavanagh, L. Paterson, P. Dalgarno, C. Alexander, M. Tassieri, C. Merry, and
A. Wright. OptoRheo: Simultaneous in situ micro-mechanical sensing and imaging
of live 3D biological systems. Communications Biology, 6(1), 2023. 46

[96] A. Merivaara, E. Koivunotko, K. Manninen, T. Kaseva, J. Monola, E. Salli,
R. Koivuniemi, S. Savolainen, S. Valkonen, and M. Yliperttula. Stiffness-Controlled
Hydrogels for 3D Cell Culture Models. Polymers, 14(24):5530, 2022. 49



97

[97] J. Michálek, K. ˇ Stˇ epka, M. Kozubek, J. Navrátilová, B. Pavlatovská,
M. MacHálková, J. Preisler, and A. Pruˇ ska. Quantitative Assessment of Anti-
Cancer Drug Efficacy from Coregistered Mass Spectrometry and Fluorescence Mi-
croscopy Images of Multicellular Tumor Spheroids. Microscopy and Microanalysis,
25(6):1311–1322, 2019. 46

[98] S. Minaee, Y. Y. Boykov, F. Porikli, A. J. Plaza, N. Kehtarnavaz, and D. Terzopou-
los. Image Segmentation Using Deep Learning: A Survey. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 2021. 21

[99] F. Mittler, P. Obeïd, A. Rulina, V. Haguet, X. Gidrol, and M. Balakirev. High-
Content Monitoring of Drug Effects in a 3D Spheroid Model. Frontiers in Oncology,
7, 2017. 48

[100] C. Moriconi, V. Palmieri, R. Di Santo, G. Tornillo, M. Papi, G. Pilkington,
M. De Spirito, and M. Gumbleton. INSIDIA: A FIJI Macro Delivering High-
Throughput and High-Content Spheroid Invasion Analysis. Biotechnology Journal,
12(10), 2017. 46

[101] P. Mukashyaka, P. Kumar, D. J. Mellert, S. Nicholas, J. Noorbakhsh, M. Brugiolo,
O. Anczukow, E. T. Liu, and J. H. Chuang. Cellos : High-throughput Deconvolution
of 3D Organoid Dynamics at Cellular Resolution for Cancer Pharmacology. bioRxiv:

The Preprint Server for Biology, page 2023.03.03.531019, 2023. 45, 49

[102] P. Mukashyaka, P. Kumar, D. J. Mellert, S. Nicholas, J. Noorbakhsh, M. Brugiolo,
E. T. Courtois, O. Anczukow, E. T. Liu, and J. H. Chuang. High-throughput de-
convolution of 3D organoid dynamics at cellular resolution for cancer pharmacology
with Cellos. Nature Communications, 14(1):8406, 2023. 49

[103] V. Murali, B.-J. Chang, R. Fiolka, G. Danuser, M. Cobanoglu, and E. Welf. An
Image-Based Assay to Quantify Changes in Proliferation and Viability upon Drug
Treatment in 3D Microenvironments. BMC Cancer, 19(1), 2019. 46

[104] K. Ndyabawe, M. Haidekker, A. Asthana, and W. Kisaalita. Spheroid Trapping and
Calcium Spike Estimation Techniques toward Automation of 3D Culture. SLAS

Technology, 26(3):265–273, 2021. 46

[105] T. K. N. Ngo, S. J. Yang, B.-H. Mao, T. K. M. Nguyen, Q. D. Ng, Y.-L. Kuo, J.-H.
Tsai, S. N. Saw, and T.-Y. Tu. A Deep Learning-Based Pipeline for Analyzing the
Influences of Interfacial Mechanochemical Microenvironments on Spheroid Invasion
Using Differential Interference Contrast Microscopic Images. Materials Today. Bio,
23:100820, 2023. 49

[106] E. Nürnberg, M. Vitacolonna, J. Klicks, E. von Molitor, T. Cesetti, F. Keller,
R. Bruch, T. Ertongur-Fauth, K. Riedel, P. Scholz, T. Lau, R. Schneider, J. Meier,
M. Hafner, and R. Rudolf. Routine Optical Clearing of 3D-Cell Cultures: Simplicity
Forward. Frontiers in Molecular Biosciences, 7, 2020. 24, 46



98

[107] N. Otsu et al. A Threshold Selection Method From Gray-Level Histograms. Auto-

matica, 11(285-296):23–27, 1975. 23

[108] T. Park, T. K. Kim, Y. D. Han, K.-A. Kim, H. Kim, and H. S. Kim. Development
of a Deep Learning Based Image Processing Tool for Enhanced Organoid Analysis.
Scientific Reports, 13(1):19841, 2023. 49

[109] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. PyTorch:
An Imperative Style, High-Performance Deep Learning Library. In Advances in

Neural Information Processing Systems 32, pages 8024–8035. Curran Associates,
Inc., 2019. 55

[110] J. Pawley. Handbook of Biological Confocal Microscopy, volume 236. Springer Sci-
ence & Business Media, 2006. 20

[111] H. Pedrini and W. R. Schwartz. Análise de Imagens Digitais: Princípios, Algoritmos

e Aplicações. Cengage Learning, 2007. 26, 27

[112] G. Perini, E. Rosa, G. Friggeri, L. Di Pietro, M. Barba, O. Parolini, G. Ciasca,
C. Moriconi, M. Papi, M. De Spirito, and V. Palmieri. INSIDIA 2.0 High-
Throughput Analysis of 3D Cancer Models: Multiparametric Quantification of
Graphene Quantum Dots Photothermal Therapy for Glioblastoma and Pancreatic
Cancer. International Journal of Molecular Sciences, 23(6), 2022. 48

[113] L. Petrovic, M. Oumano, J. Hanlon, M. Arnoldussen, I. Koruga, S. Yasmin-Karim,
W. Ngwa, and J. Celli. Image-Based Quantification of Gold Nanoparticle Uptake
and Localization in 3D Tumor Models to Inform Radiosensitization Schedule. Phar-

maceutics, 14(3), 2022. 46

[114] F. Piccinini, A. Tesei, M. Zanoni, and A. Bevilacqua. ReViMS: Software Tool for
Estimating the Volumes of 3-D Multicellular Spheroids Imaged Using a Light Sheet
Fluorescence Microscope. BioTechniques, 63(5):227–229, 2017. 46

[115] Plotly. Plotly, 2024. URL https://github.com/plotly/plotly.py. 80

[116] R. T. Powell, M. J. Moussalli, L. Guo, G. Bae, P. Singh, C. Stephan, I. Shureiqi,
and P. J. Davies. deepOrganoid: A Brightfield Cell Viability Model for Screening
Matrix-Embedded Organoids. SLAS Discovery, 27(3):175–184, 2022. 48

[117] S. Przyborski. Technology Platforms for 3D Cell Culture: A User’s Guide. John
Wiley & Sons, 2017. 14

[118] Y. Qi, Y. Liu, Y. Huang, M. Xiong, S. You, B. Wang, and M. Gu. A Three-
Dimensional Technique for The Visualization of Mitochondrial Ultrastructural
Changes in Pancreatic Cancer Cells. Journal of Visualized Experiments, 2023(196),
2023. 45



99

[119] Y. Qin, J. Li, Y. Chen, Z. Wang, Y.-A. Huang, Z. You, L. Hu, P. Hu, and F. Tan.
TransOrga: End-To-End Multi-modal Transformer-Based Organoid Segmentation.
In International Conference on Intelligent Computing, pages 460–472. Springer,
2023. 49

[120] S. Rahkonen, E. Koskinen, I. Pölönen, T. Heinonen, T. Ylikomi, S. Äyrämö, and
M. Eskelinen. Multilabel Segmentation of Cancer Cell Culture on Vascular Struc-
tures with Deep Neural Networks. Journal of Medical Imaging, 7(2), 2020. 49

[121] S. Ramm, R. Vary, T. Gulati, J. Luu, K. J. Cowley, M. S. Janes, N. Radio, and
K. J. Simpson. High-Throughput Live and Fixed Cell Imaging Method to Screen
Matrigel-Embedded Organoids. Organoids, 2(1):1–19, 2023. 15, 48

[122] V. Reijonen, L. Kanninen, E. Hippeläinen, Y.-R. Lou, E. Salli, A. Sofiev, M. Ma-
linen, T. Paasonen, M. Yliperttula, A. Kuronen, and S. Savolainen. Multicellular
Dosimetric Chain for Molecular Radiotherapy Exemplified with Dose Simulations
on 3D Cell Spheroids. Physica Medica, 40:72–78, 2017. 24, 46

[123] F. Rieken Münke, L. Rettenberger, A. Popova, and M. Reischl. A Lightweight
Framework for Semantic Segmentation of Biomedical Images. In Current Directions

in Biomedical Engineering, volume 9, pages 190–193. De Gruyter, 2023. 49

[124] A. Rogozhnikov. Einops: Clear and Reliable Tensor Manipulations with Einstein-
like Notation. In International Conference on Learning Representations, 2022. 55

[125] O. Ronneberger, P. Fischer, and T. Brox. U-Net: Convolutional Networks for
Biomedical Image Segmentation. In International Conference on Medical Image

Computing and Computer-Assisted Intervention, pages 234–241. Springer, 2015. 27,
28, 29, 47

[126] A. Sargenti, F. Musmeci, C. Cavallo, M. Mazzeschi, S. Bonetti, S. Pasqua, F. Bacchi,
G. Filardo, D. Gazzola, M. Lauriola, and S. Santi. A New Method for the Study
of Biophysical and Morphological Parameters in 3D Cell Cultures: Evaluation in
LoVo Spheroids Treated with Crizotinib. PLoS One, 16, 2021. 48

[127] J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch,
S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, et al. Fiji: An Open-Source Plat-
form for Biological-Image Analysis. Nature Methods, 9(7):676–682, 2012. 47

[128] A. Schmitz, S. Fischer, C. Mattheyer, F. Pampaloni, and E. Stelzer. Multiscale
Image Analysis Reveals Structural Heterogeneity of the Cell Microenvironment in
Homotypic Spheroids. Scientific Reports, 7, 2017. 46

[129] C. A. Schneider, W. S. Rasband, and K. W. Eliceiri. NIH Image to ImageJ: 25
Years of Image Analysis. Nature Methods, 9(7):671–675, 2012. 47

[130] J. Schurr, C. Eilenberger, P. Ertl, J. Scharinger, and S. Winkler. Automated Evalu-
ation of Cell Viability in Microfluidic Spheroid Arrays. In 10th International Work-

shop on Innovative Simulation for Health Care, pages 27–35, 2021. 46



100

[131] B. Schuster, M. Junkin, S. Kashaf, I. Romero-Calvo, K. Kirby, J. Matthews, C. We-
ber, A. Rzhetsky, K. White, and S. Tay. Automated Microfluidic Platform for
Dynamic and Combinatorial Drug Screening of Tumor Organoids. Nature Commu-

nications, 11(1), 2020. 46

[132] M. Sharma, V. Goudar, M. Koduri, F. Tseng, and M. Bhattacharya. Quantitative
and Qualitative Image Analysis of in Vitro Co-Culture 3D Tumor Spheroid Model
by Employing Image-Processing Techniques. Applied Sciences, 11(10), 2021. 36, 38,
45

[133] K. Shirai, H. Kato, Y. Imai, M. Shibuta, K. Kanie, and R. Kato. The Importance of
Scoring Recognition Fitness in Spheroid Morphological Analysis for Robust Label-
Free Quality Evaluation. Regenerative Therapy, 14:205–214, 2020. 48

[134] W. Shuyun, F. Lin, C. Pan, Q. Zhang, H. Tao, M. Fan, L. Xu, K. Kong, Y. Chen,
D. Lin, and S. Feng. Laser Tweezer Raman Spectroscopy Combined With Deep
Neural Networks for Identification of Liver Cancer Cells. Talanta, 264, 2023. 49

[135] S. Silvani, M. Figliuzzi, and A. Remuzzi. Toxicological Evaluation of Airborne Par-
ticulate Matter. Are Cell Culture Technologies Ready to Replace Animal Testing?
Journal of Applied Toxicology, 39(11):1484–1491, 2019. 14

[136] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014. 26

[137] I. Sinenko, F. Kuttler, V. Simeonov, A. Moulin, P. Aouad, C. Stathopoulos, F. Mu-
nier, A. Berger, and P. Dyson. Translational Screening Platform to Evaluate
Chemotherapy in Combination With Focal Therapy for Retinoblastoma. Cancer

Science, 114(9):3728–3739, 2023. 48

[138] I. Smyrek and E. Stelzer. Quantitative Three-Dimensional Evaluation of Immunoflu-
orescence Staining for Large Whole Mount Spheroids with Light Sheet Microscopy.
Biomedical Optics Express, 8(2):484–499, 2017. 34, 46

[139] E. R. Spiller, N. Ung, S. Kim, K. Patsch, R. Lau, C. Strelez, C. Doshi, S. Choung,
B. Choi, and E. F. Juarez Rosales. Imaging-Based Machine Learning Analysis of
Patient-Derived Tumor Organoid Drug Response. Frontiers in Oncology, 11:771173,
2021. 45, 48

[140] H. Steinhaus. Sur la Division Des Corps Matériels en Parties. Bulletin of the Polish

Academy of Sciences Technical Sciences, 1(804):801, 1956. 24

[141] Y. Sun, Z. Lu, J. A. Taylor, and J. L. S. Au. Quantitative Image Analysis of
Intracellular Protein Translocation in 3-Dimensional Tissues for Pharmacodynamic
Studies of Immunogenic Cell Death. Journal of Controlled Release : Official Journal

of the Controlled Release Society, 365:89–100, 2024. 48



101

[142] H. Sung, J. Ferlay, R. L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, and
F. Bray. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and
Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for

Clinicians, 71(3):209–249, 2021. 13

[143] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich. Going deeper with convolutions. In IEEE Conference

on Computer Vision and Pattern Recognition, pages 1–9, 2015. 26

[144] S. Tanaka, K. Takizawa, and F. Nakamura. One-Step Visualization of Natural Cell
Activities in Non-Labeled Living Spheroids. Scientific Reports, 12(1), 2022. 48

[145] E. Tasnadi, T. Toth, M. Kovacs, A. Diosdi, F. Pampaloni, J. Molnar, F. Piccinini,
and P. Horvath. 3D-Cell-Annotator: An Open-Source Active Surface Tool for Single-
Cell Segmentation in 3D Microscopy Images. Bioinformatics, 36(9):2948–2949, 2020.
48

[146] P. J. Tebon, B. Wang, A. L. Markowitz, A. Davarifar, B. L. Tsai, P. Krawczuk,
A. E. Gonzalez, S. Sartini, G. F. Murray, H. T. L. Nguyen, N. Tavanaie, T. L.
Nguyen, P. C. Boutros, M. A. Teitell, and A. Soragni. Drug Screening at Single-
Organoid Resolution via Bioprinting and Interferometry. Nature Communications,
14(1):3168, 2023. 45, 49

[147] F. Tobias, J. McIntosh, G. Labonia, M. Boyce, M. Lockett, and A. Hummon. Devel-
oping a Drug Screening Platform: MALDI-Mass Spectrometry Imaging of Paper-
Based Cultures. Analytical Chemistry, 91(24):15370–15376, 2019. 46

[148] I. Ulku and E. Akagündüz. A survey on deep learning-based architectures for se-
mantic segmentation on 2D images. Applied Artificial Intelligence, 36(1):2032924,
2022. 16, 22

[149] J. M. J. Valanarasu and V. M. Patel. UneXt: MLP-Based Rapid Medical Image
Segmentation Network. In International Conference on Medical Image Computing

and Computer-Assisted Intervention, pages 23–33. Springer, 2022. 31, 32, 56

[150] A. Van Hemelryk, S. Erkens-Schulze, L. Lim, C. M. A. de Ridder, D. C. Stuurman,
G. W. Jenster, M. E. van Royen, and W. M. van Weerden. Viability Analysis and
High-Content Live-Cell Imaging for Drug Testing in Prostate Cancer Xenograft-
Derived Organoids. Cells, 12(10), 2023. 46

[151] G. van Rossum and F. L. Drake Jr. Python Reference Manual. Centrum voor
Wiskunde en Informatica, Amsterdam, 1995. 55

[152] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
and I. Polosukhin. Attention is All You Need. In Advances in Neural Information

Processing Systems, pages 5998–6008, 2017. 33, 73



102

[153] C. Veelken, G.-J. Bakker, D. Drell, and P. Friedl. Single Cell-Based Automated
Quantification of Therapy Responses of Invasive Cancer Spheroids in Organotypic
3D Culture. Methods, 128:139–149, 2017. 48

[154] L. Vincent and P. Soille. Watersheds in Digital Spaces: An Efficient Algorithm
Based on Immersion Simulations. IEEE Transactions on Pattern Analysis & Ma-

chine Intelligence, 13(06):583–598, 1991. 23

[155] M. Vinci, C. Box, and S. A. Eccles. Three-Dimensional (3D) Tumor Spheroid
Invasion Assay. Journal of Visualized Experiments, 99:e52686, 2015. 15

[156] C. K. Vong, A. Wang, M. Dragunow, T. I.-H. Park, and V. Shim. Quantifica-
tion of Tumoursphere Migration with a Physics-based Machine Learning Method.
Cytometry Part A, 2023. 49

[157] A. Walsh, J. Castellanos, N. Nagathihalli, N. Merchant, and M. Skala. Optical
Imaging of Drug-Induced Metabolism Changes in Murine and Human Pancreatic
Cancer Organoids Reveals Heterogeneous Drug Response. Pancreas, 45(6):863–869,
2016. 46

[158] X. Wan, P. Bovornchutichai, Z. Cui, E. O’Neill, and H. Ye. Morphological Analysis
of Human Umbilical Vein Endothelial Cells Co-Cultured with Ovarian Cancer Cells
in 3D: An Oncogenic Angiogenesis Assay. PLoS One, 12(7), 2017. 46

[159] L. Wang, J. Goldwag, M. Bouyea, J. Barra, K. Matteson, N. Maharjan, A. Eladdadi,
M. Embrechts, X. Intes, U. Kruger, and M. Barroso. Spatial Topology of Organelle
Is a New Breast Cancer Cell Classifier. Iscience, 26(7), 2023. 48

[160] X. Wang, C. Wu, S. Zhang, P. Yu, L. Li, C. Guo, and R. Li. A Novel Deep
Learning Segmentation Model for Organoid-Based Drug Screening. Frontiers in

Pharmacology, 13, 2022. 49

[161] Y. Wang and A. B. Hummon. Quantification of Irinotecan in Single Spheroids Using
Internal Standards by MALDI Mass Spectrometry Imaging. Analytical Chemistry,
95(24):9227–9236, 2023. 48

[162] J. Wardwell-Swanson, M. Suzuki, K. Dowell, M. Bieri, E. Thoma, I. Agarkova,
F. Chiovaro, S. Strebel, N. Buschmann, F. Greve, and O. Frey. A Framework
for Optimizing High-Content Imaging of 3D Models for Drug Discovery. SLAS

Discovery, 25(7):709–722, 2020. 46

[163] C. Wen, T. Miura, V. Voleti, K. Yamaguchi, M. Tsutsumi, K. Yamamoto, K. Otomo,
Y. Fujie, T. Teramoto, T. Ishihara, K. Aoki, T. Nemoto, E. Hillman, and K. Kimura.
3DeeCellTracker, a Deep Learning-Based Pipeline for Segmenting and Tracking
Cells in 3D Time Lapse Images. eLife, 10, 2021. 49

[164] G. Winkelmaier and B. Parvin. An Enhanced Loss Function Simplifies the Deep
Learning Model for Characterizing the 3D Organoid Models. Bioinformatics, 37
(18):3084–3085, 2021. 45, 49



103

[165] O. J. Wouters, M. McKee, and J. Luyten. Estimated Research and Development
Investment Needed to Bring a New Medicine to Market, 2009-2018. Jama, 323(9):
844–853, 2020. 13, 15

[166] B. Wu, C. Xu, X. Dai, A. Wan, P. Zhang, Z. Yan, M. Tomizuka, J. Gonzalez,
K. Keutzer, and P. Vajda. Visual Transformers: Token-based Image Representation
and Processing for Computer Vision. arXiv preprint arXiv:2006.03677, 2020. 32

[167] X. Deng, L. Hu, Z. -H. You, and P. -W. Hu. CAMPEOD: A Cross Attention-
Based Multi-Scale Patch Embedding Organoid Detection Model. In International

Conference on Bioinformatics and Biomedicine, pages 1068–1073, 2023. 49

[168] X. Deng, L. Hu, Z. Jiang, L. Liu, and P. -W. Hu. A Contactless Automated Dy-
namic Monitoring Method for Organoid Morphology on the Time Axis. In IEEE

Conference on Data Mining Workshops, pages 412–417, 2023. 49

[169] P. Xie, H. Zhang, P. Wu, Y. Chen, and Z. Cai. Three-Dimensional Mass Spectrom-
etry Imaging Reveals Distributions of Lipids and the Drug Metabolite Associated
with the Enhanced Growth of Colon Cancer Cell Spheroids Treated with Triclosan.
Analytical Chemistry, 94(40):13667–13675, 2022. 48

[170] K. Yao, J. Sun, K. Huang, L. Jing, H. Liu, D. Huang, and C. Jude. Analyzing Cell-
Scaffold Interaction through Unsupervised 3D Nuclei Segmentation. International

Journal of Bioprinting, 8(1):495, 2021-12-30. 49

[171] V. Zanotelli, M. Leutenegger, X.-K. Lun, F. Georgi, N. de Souza, and B. Boden-
miller. A Quantitative Analysis of the Interplay of Environment, Neighborhood,
and Cell State in 3D Spheroids. Molecular Systems Biology, 16(12), 2020. 48

[172] F. Zernike. Phase Contrast, A New Method for the Microscopic Observation of
Transparent Objects. Physica, 9(7):686–698, 1942. 20

[173] L. Zhang, L. Wang, S. Yang, K. He, D. Bao, and M. Xu. Quantifying the Drug
Response of Patient-Derived Organoid Clusters by Aggregated Morphological Indi-
cators With Multi-Parameters Based on Optical Coherence Tomography. Biomedical

Optics Express, 14(4):1703–1717, 2023. 49

[174] S. Zhang, L. Li, P. Yu, C. Wu, X. Wang, M. Liu, S. Deng, C. Guo, and R. Tan.
A Deep Learning Model for Drug Screening and Evaluation in Bladder Cancer
Organoids. Frontiers in Oncology, 13:1064548, 2023. 15, 49

[175] Z. Zhou, M. M. Rahman Siddiquee, N. Tajbakhsh, and J. Liang. UNet++: A
Nested U-Net architecture for Medical Image Segmentation. In Deep Learning in

Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th

International Workshop, and 8th International Workshop, held in conjunction with

MICCAI 2018, pages 3–11, Granada, Spain, Sept. 2018. Springer. 29, 31, 56


	Introduction
	Motivation
	Problem Definition
	Objectives
	Research Questions
	Contributions
	Publications
	Text Organization

	Related Concepts
	Cancer Spheroid Cultures
	Bio-Image Capture
	Phase Contrast
	Brightfield
	Fluorescent
	Confocal

	Semantic Segmentation
	Machine Learning and Artificial Intelligence
	Deep Learning
	Convolutional Neural Networks
	Convolutions
	U-Net
	MultiResUNet
	U-Net++

	UNeXt
	Transformers
	TransUNet
	Swin Transformer
	Swin-UNet

	Bias
	Evaluation and Metrics
	Loss Function
	Metrics


	Related Work
	Literature Sorting
	Public Datasets
	Found Literature
	Image Processing
	Specific Software
	Deep Learning


	Materials
	Our Dataset
	Cancer Cell Culture
	Image Capture
	Mask Annotation

	Lacalle's Dataset
	Computational Resources

	Cancer Spheroid Segmentation Method
	Pre-Processing Phase
	Random Brightness and Contrast
	Blur
	Rotation
	Perspective
	Optical Distortion
	Piecewise Affine
	Horizontal and Vertical Flip
	Random Crop
	Patching

	Ensemble

	Results
	Protocols 1, 2, and 3
	Protocols 4, 5, and 6
	Ensemble
	Ablation
	Transformer Parameters
	U-NetAtt

	Discussion

	A Quantitative Spheroid Analysis Pipeline (SAP)
	Materials
	Cancer Cell Culture
	Datasets

	Spheroid Analysis Pipeline (SAP)
	Segmentation Module
	Dataframe
	Statistical Analysis Module
	Data Visualization Module

	Observations

	Conclusions
	Final Considerations
	Limitations and Directions for Future Work


