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Resumo

Na primeira parte do trabalho, estudamos a estabilidade estocástica de um sistema dinâmico

sujeito a pequenas perturbações aleatórias. Mostramos que medidas estacionárias convergem

para medidas físicas quando o nível de perturbação aleatória vai para zero se o sistema dinâmico

tem a propriedade de sombreamento. Na segunda parte, provamos que um atrator aleatório de um

sistema perturbado, em termos de uma familia de difeomorfismos aleatórios parametrizados, é

estocasticamente estável. Finalmente, provamos o teorema da existẽncia e finititude de atratores

aleatórios.

Palavras-chave: Propriedade de sombreamento, estabilidade estocástica , cadeia de Markov,

dinâmica aleatória, atratores.



Abstract

In the first part of the work, we study stochastic stability of dynamical system subject to small

random perturbation. We show that stationary measures converge to physical measures when the

level of random perturbation goes to zero if the dynamical system has a shadowing property. In

the second part, we prove that random attractor of dynamical system perturbed, in terms of a

family of parameterised random diffeomorphisms, is stochastically stable. Finally, we prove the

theorem of existence and finiteness of random attractors.

Keywords: Shadowing property, stochastic stability, Markov chain, random dynamics, attractors.



List of symbols

A The Borel σ-algebra on M

Ac The complement XzA of each subset A

Bpµq Basin of the measure µ

B Set of bounded continuous function on M

CpMq Set of bounded continuous function on M

d Distance induced by a Riemannian metric

δx Dirac delta probability measure supported at x

M Compact metric space

M pMq Denote the space of Borel probability measures on M

Pεp.|xq Transition probabilities of family of Markov chains

R Set of real numbers

W spΛq The basin of attraction of the Λ

Zµ Set of shadowable point µ

Z
`
0

Denote non-negative integers

MN Denote the sequence from natural number to M

Λ Denote an attractor

Λε Denote a random attractor

∆ε Denote the perturbation space

}.}p The norm on space Lp
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Introduction

The study of statistical properties of Dynamical Systems is currently present in

almost all fields of science. In its essence, one wants to classify long term behaviour of processes

undergoing time transformation from a statistical point of view, and understand how stable

they are. In this context, invariant attracting sets are some of the most important objects whose

properties are studied in Dynamical Systems. They are directly related not only to the asymptotic

properties of dynamics, but also to its stability, and most of the theory of classical dynamical

systems has to do with this.

In the case of dynamical systems evolving under random perturbations, their charac-

terisation can be an even more cumbersome task when compared with deterministic dynamics,

from the perspective of fundamental Mathematics as well as of applied modelling. It is important

to distinguish between bounded and unbounded perturbations though. In this thesis, we focus on

the former case.

When the dynamics evolves under bounded perturbations, there might coexist many

invariant measures, the noise blurs the dynamics and fine scale characteristics may not be

detected, and several emergent features may take place when the intensity of the noise is

changed (JSWLR15; CSRK14). Bounded random perturbation of dynamics is often claimed as

being more realistic in terms of modelling, given that oscillations in natural processes are in

general limited. In spite of that, the mathematical basis to tackle such systems remain surprisingly

unexplored, which contrasts with the case of unbounded randomness.

For processes under unbounded stochastic perturbations (Stratonovich, Itō, Mar-

tingales, etc.) one can use tools from stochastic analysis, heavily dependent on the analytical

properties of such perturbations in order to build up a general theory; see Arnold (Arn98) and

references therein. In the case of bounded perturbations the study of statistical properties of the

dynamics is usually carried out in terms of Markov chains and/or perturbations on the space of

maps (JJR15; JJR19).

Although several contributions regarding statistical properties of such dynamical

systems have been made on specific cases by the work of Kifer (Kif86; Kif88), L.-S. Young

(You86), Keller (Kel82), Araújo (Ara00), Alves (Alv03), Viana (BV06; Via97), among others,

even characterising attracting sets or bifurcations become difficult in such context. The main

challenge is that this requires strong assumptions on the properties of the perturbations them-

selves, on the existence of nearby orbits, on the space where it takes place, and on the classes of

systems.

In (JJR15) the authors have considered what happens to the support of invariant

measures in order to formulate a characterisation for bifurcation in randomly perturbed dynamical
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systems. One of the key observations to this aim is that the focus is shifted from a statistical

perspective to the dynamics of sets. This is the approach we want to consider in part of this

work. In this thesis we shall consider an appropriate definition for attracting sets for randomly

perturbed dynamics and study some of their properties in terms of set dynamics combining

methods from Ergodic Theory.

Alternatively, a way to characterise robust behaviour when the dynamical system

evolves under small random perturbations is by means of the so called stochastic stability. We

say that a system is stochastically stable if the stationary measure for the randomly perturbed

dynamics is close, in some sense, to the invariant physical or Sinai-Ruelle-Bowen (SRB) measure,

which in turn encodes important dynamical information. A more precise definition will be timely

presented.

Since the 1980’s, several results have been obtained under different hypotheses

leading to proving stochastic stability of some classes of systems. To mention a few, Kifer has

first proved stochastic stability of diffeomorphisms having (uniformly) hyperbolic attractors and

expanding maps (Kif86; Kif88). Under slightly different technical assumptions L.-S. Young then

showed that the stability of (uniformly) hyperbolic attractors of C2- diffeomorphisms follows

from the persistence of hyperbolic structures (You86). Viana has shown how to use spectral

properties of transfer operators to infer stochastic stability of several classes of maps (Via97).

Later Araújo has proved the existence and finiteness of physical measures for randomly perturbed

dynamics considering some special type of perturbations (Ara00; Ara01). Then Alves and Araújo,

based on some construction already present in (Ara00), gave sufficient and necessary conditions

for stochastic stability of some non-uniformly expanding maps (AA03). More recently, Benedicks

and Viana have proved the stochastic stability of Hénon like maps (BV06), and Alves, Araújo,

and Vásquez the stochastic stability of a type of non-uniformly hyperbolic diffeomorphisms with

dominating splitting (JFAV07).

Another common approach to characterise robustness of dynamics is through the idea

of structural stability. A dynamical system is said to be structurally stable if it is equivalent to

some other dynamical system in its vicinity, choosing an appropriate topology. Among different

consequences of structural stability, one may investigate the shadowing property. Vaguely

speaking, the shadowing property says that every pseudo-orbit, i.e. every sequence of points

whose elements are close enough to an orbit of a dynamical system, can be described by a real

orbit itself. Several authors have studied different types of shadowing under different technical

assumptions, mainly, because of its close connection to structural stability (Bow75; Kat80; Pil99;

PT10). See (Pil99) for an extensive historical account.

These two apparently distinct approaches to stability lead us to an important question:

how structural properties of dynamical systems are related to their statistical ones?

The concept of shadowing is clearly related to stochastic stability because the or-

bits evolving under random perturbations are pseudo-orbits. In this context, proving stochastic
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stability equals to proving that most random orbits mimics the behaviour of real orbits (the unper-

turbed ones). The connection of shadowing with stochastic stability has never been satisfactorily

addressed. This problem has also been raised by Bonatti, Díaz and Viana in (CBV04)[Problem

D10]. To the best of our knowledge, the only attempt to study this connection was presented

in the manuscript (Tod14), and in (WBV14) where the authors impose several hypotheses and

much more restrictive contexts than ours.

In this thesis, we study stochastic stability of a dynamical system with shadowing

property, which evolves under small random perturbation. We define time averages with respect

to continuous observables along the trajectory which converges to their averages with respect to

an invariant measure. Using this framework we study time averages along the pseudo-trajectory

that converge with respect to stationary measure for the randomly perturbed dynamics. Finally,

we proof that stationary measures converge to physical measures when the noise level goes to

zero if dynamical system has a shadowing property.

The thesis is organised as follows. In Chapter 1, we introduce basic concepts of

probability theory, invariant measure and ergodicity, existence of invariant measure and theorems

that will be useful in this work. In Chapter 2, we present some result of shadowing property

and shadowable point following (Mor16). Furthermore, the orbit of systems subject to small

perturbation is called random orbit and it is given by the sequence of random variables with

certain probability distribution. This family of Markov chain will be called small random

perturbation of systems. In Chapter 3, we present the mean result of the thesis where we

prove that the dynamical system with shadowing property is stochastically stable. Finally, In

Chapter 4, we prove that existence and finiteness of random attractors, and a random attractor is

stochastically stable.



14

1 Preliminaries

In this chapter we give some preliminary topics for development of this thesis. As

it follows, in the first section we address some basic concept of probability theory. Next we

present about invariant measure and ergodicity. In the latter section we remember of theorem

that guarantees the existence of invariant measures for continuous maps.

1.1 Introduction measure theory

In this section we start to giving a brief introduction about the measure theory, and

then we give some theorems and results which will be useful throughout the work. We shall use

(CBV04), (MV16), (Wal00) and (Mañ12) as main references.

Let M be a nonempty set equipped with a σ-algebra A . A measure space is a triple

pM,A , µq, where pM,A q is a measurable space, and µ is a measure on pM,A q. Moreover, if

µpMq “ 1 then µ is called a probability measure and pM,A , µq is called a probability space. In

addition, let pM,A q be any measure space. For x P M , define the measure δx : A Ñ r0,8q by

δxpAq “ 1 if x P A and δxpAq “ 0 otherwise. We call δx the Dirac delta probability measure

supported at x.

Let M be a compact metric space and let B be the Borel σ-algebra on M . Let µ be

a measure on pM,Bq. Consider the set

U :“
ď

tU : U is a open , µpUq “ 0u

That is, U is the largest open set with zero measure. The complement of U is called the support

of µ.

Definition 1. If pM,A q and pN,A 1q are measurable spaces, a function f : M Ñ N is

measurable if

f´1pAq “ tx P M : fpxq P Au P A , for every A P A
1

Definition 2. Let pM,A , µq be a probability space and pN,A 1q be a measurable space. Every

measurable function g : M Ñ N induces a probability measure on N of the following way

µgpAq “ µpg´1pAqq “ g‹µpAq “ µtx P M : gpxq P Au

for A P A
1. We will call that µg is law or distribution of g where g‹µ denote push forward of µ

by g defined by g‹µpAq “ µpg´1pAqq for A P A
1.

Now we denote by M pMq the set of probability measure on the Borel σ-algebra

of M . For the next definition, consider CpMq the space of continuous functions from M to R
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Definition 5. We say that f is ergodic if every f -invariant subset A of M has measure 0 or 1.

Recall that a set A P A is called f -invariant if f´1pAq “ A.

Example 2. Let f : X Ñ X be a measurable function. Then the Dirac delta, δx is f invariant

and ergodic where x is a fixed point for f . That is, let A Ă X be a measurable set. Firstly,

we suppose that x P A, then δxpAq “ 1. Since x “ fpxq, we have that x P f´1pAq. Thus

δxpf´1pAqq “ 1. For the second case, x R A, then δxpAq “ 0 so we also have x R f´1pAq. On

the other hand, if we did have x P f´1pAq, then by definition imply that fpAq P A, it contradicts

our assumption. Therefore, δxpf´1pAqq “ 0. Thus it is invariant measure. Finally, ergodicity is

trivial.

Theorem 1. (Birkhoff Ergodic Theorem) If f : M Ñ M preserves a probability measure µ and

ϕ : M Ñ R is integrable, then there is ϕ‹ : M Ñ R integrable such that , for µ-a.e x P M

lim
nÑ8

1

n ` 1

nÿ

j“0

ϕpf jpxqq “ ϕ‹pxq

Moreover, if µ is ergodic, then ϕ‹pxq “
ż
ϕdµ for almost every x P M .

We say that a linear functional L : CpMq Ñ R is positive if Lpϕq ě 0 for every

function ϕ P CpMq with ϕpxq ě 0 for every x P M . In that case, the following theorem relates

elements of M pMq to linear functional on CpMq.

Theorem 2. (Riesz-Markov Kakutani Representation Theorem) Let M be a compact metric

space. Consider any positive linear functional L : CpMq Ñ R. Then there exists a unique finite

Borel measure µ on M such that

Lpϕq “
ż
ϕdµ for every ϕ P CpMq

1.3 Existence of invariant measures for continuous maps

In this section we present the theorem that assure existence of invariant measures for

continuous maps on compact metric space. Furthermore, we give two examples that theorem

does not hold when the function do not is continuous or the space do not is compact.

Theorem 3. (Krylov-Bogulyobov theorem) If M is a compact metric space and f : M Ñ M is

a continuous function, then there exists at least onef -invariant probability measure on M .

Proof. The reader can see the proof of theorem on page 45 (MV16).

Now, this theorem fails when the space is not compact. Before showing the examples

we present the following theorem:
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Theorem 4. (Poincaré’s Recurrence Theorem) Let f : M Ñ M measure preserving function of

a probability space pM,A , µq. Then for any A P A with positive measure µpBq ą 0, µ- almost

every point x P B returns to B.

Example 3. Let f : R Ñ R, given by fpxq “ x ` 1. We assume that f has an invariant

probability measure µ. Let A a subset of R with positive measure and a “ suppAq, then note

that A is bounded. Now, let x P A. Since f is a expansion on R, then there exist α P N such that

f ipxq ą a. However this contradicts the Poincare Recurrent Theorem. Thus, there are not exist

invariant probability measure if the space does not is compact.

The theorem (3) that is not true for discontinuous function. See the following

example.

Example 4. Let f : r0, 1s Ñ r0, 1s defined by fpxq “ x

2
if x ‰ 0 and fp0q “ 1. Note that

f is discontinuous at 0. We assume that δ0 is f invariant. Let A “ t0u, then δ0pAq ą 0 and

f ip0q “ 1

2i´1
for each i P N, then by Poincare Recurrent Theorem there exist tikukPN Ă N such

that f ik P A, that is f ip0q “ 1

2i´1
“ 0 for each ik P N. So this is contradiction. Thus δ0 is not

invariant measure for f .

1.4 Hausdorff distance

To discuss random attractors in Chapter p4q, we need first to introduce fundamental

concepts following (Fol99). In a metric space pM,dq we can define the following concepts:

The ε-neighborhood of a point x0 P M and radius ε ą 0 by Bεpx0q :“ tx P M :

dpx, x0q ă εu and we also define the diameter of the set A Ă M which is given as

diampAq :“ suptdpx, yq : x, y P Au

Moreover, for any arbitrary nonempty sets A,B Ă M and x P M . We can define the

distance from a point to a set as follows,

dpx,Aq :“ inftdpx, yq : y P Au

and also the distance between two sets:

dpA,Bq :“ suptdpx,Bq : x P Au

Definition 6. Let pM,dq be a metric space and letA,B be nonempty subsets ofM . The Hausdorff

distance between A and B is defined as follows:

hpA,Bq :“ maxtdpA,Bq, dpB,Aqu.
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Denote by HpMq the collection of all nonempty compact subsets of a metric space

pM,dq. In addition, following (Bar11) it can be shown that h defines a metric on HpMq.
Therefore when equipped with the Hausdorff distance h, is also a metric space pHpMq, hq.

Lemma 1. Let A and B be nonempty subsets of M then:

1. distpA,Bq “ 0 if and only if A Ă B;

2. hpA,Bq “ 0 if and only if A “ B.

Proof. 1. First, assume that distpA,Bq “ 0, then suptdistpx,Bq : x P Au “ 0 and

dpx,Bq “ 0 for all x P A. Then, for any ε ą 0 there exists y P B such that dpx, yq ă ε,

then Bpx, εq
č

B ‰ H. As a consequence x P B, then A Ă B.

Conversely, suppose that A Ă B, given any x P A we have x P B. Then for all ε ą 0,

there exists y P B such that dpx, yq ă ε. Thus 0 ď distpx,Bq “ inftdpx, yq : y P Au ď
dpx, yq ă ε which implies 0 ď distpx,Bq ă ε. Hence distpx,Bq “ 0, which implies that

distpA,Bq “ suptdistpx,Bq : x P Au “ 0. Thus distpA,Bq “ 0

2. hpA,Bq :“ maxtdistpA,Bq, distpB,Aqu “ 0 ô distpA,Bq “ 0 and distpB,Aq “
0 ô A Ă B and B Ă A. Thus A “ B.
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2 Shadowing property and random per-

turbation

In this section we introduce some results of shadowing property and random per-

turbation, for that we shall use bibliography of (Pil99), (Mor16), (Kif88), and (CBV04). Let

pM,dq be a metric space and f : M Ñ M be a continuous map. First, we consider that a

pseudo-trajectory of a dynamical system f is a result of a small random perturbation of f . A

random perturbation is understood that a particle jumps from x to fpxq and disperses randomly

close to fpxq with some distribution. On the other hand, the shadowing property means there are

real trajectories close to trajectories of a system randomly perturbed.

2.1 Shadowing property

The shadowing theory is an important part of the study stability of dynamical systems.

In addition, shadowing property means that close to pseudo-orbit there exists an exact or real

orbit. Now, let M be a metric space endowed by the induced Riemannian metric d and let

f : M Ñ M be a continuous function. Furthermore, for our goal we consider the dynamics

generated by the iteration the function f : M Ñ M , given by zj “ f jpz0q “ f ˝ ¨ ¨ ¨ ˝ floooomoooon
j times

pz0q for

any initial condition z0 P M . Hereafter we set f 0pzq “ z, for every z P M . Additionally, let a

sequence of points, x “ pxjqjPZ`

0

, in M where are close enough to trajectory of any z P M .

Definition 7. Given δ ą 0, we say that a sequence of points x “ pxjqjPZ`

0

in M is a δ-pseudo-

trajectory of f if

d pfpxjq, xj`1q ď δ, for all j ě 0. (2.1)

Note that the set of δ-pseudo orbits or δ-pseudo trajectory are similar to real trajecto-

ries. Hence, in the next definition we should give the meaning of an orbit of f is approximate

by a pseudo-orbit.

Definition 8. We say that a dynamical system generated by f has the shadowing property if, for

every ε ą 0, we can find δ ą 0, such that, for each δ-pseudo-trajectory x “ pxjqjPZ`

0

of f , there

exists a point z P M , such that,

dpf jpzq, xjq ă ε, for all j ě 0.

In this case, we say that x “ pxjqjPZ`

0

is ε-shadowed by some z P M .

Example 5. Let T : r0, 1s Ñ r0, 1s be the tent function, defined as T pxq “ 1 ´ |1 ´ 2x|. Let

X “ tp0, 0qu Y
ď

t1

k
u ˆ r0, 1

k
s be endowed with metric by the Euclidean metric and we define
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the following function

fT px, yq “

$
&
%

p1

k
,

1

k
T pkxqq fork ą 0

p0, 0q otherwise

If we fix ε ą 0 then there is δ ą 0 such that if p1

k
, xq, p1

p
, yq P X and

1

k
ą

?
ε then either

k “ p or |1
k

´ 1

p
| ą δ. Thus, for any δ-Pseudo Orbit x “ tp 1

kn

, xnqu8
n“o we either have that

x Ă r0,
?
εs ˆ r0,

?
εs or kn “ kn`1 for every n ą 0. Thus, f has shadowing property.

Example 6. In general, we consider the family of tent maps, that is, the piecewise linear maps

fs : r0, 2s Ñ r0, 2s for every
?

2 ď s ď 2 defined by

fspxq “
#
sx , 0 ď x ď 1

sp2 ´ xq , 1 ď x ď 2

Following (EMCY98), this family of tent maps have the shadowing property for

almost all parameters s, for every s P r
?

2, 2s.

2.1.1 Shadowable point

Now, we introduce the concept of shadowable point, which has been extensively

studied by Morales (Mor16). In his article "Shadowable points", Morales proved that if f : M Ñ
M is a homeomorphism of a compact metric space M , then f has the shadowing property if

only if every point in M is shadowable. Moreover, in the next lemma we will prove the previous

statement requiring only that f be a continuous map.

Definition 9. We say that a point y P M is shadowable if for every ε ą 0 there is δ ą 0, such

that, every δ-pseudo orbit x “ pxjqjPZ`

0

, with x0 “ y can be ε-shadowed.

Lemma 2. Let f : M Ñ M be a continuous function of a compact metric space M . Then, f

has the shadowing property if, and only if, every point in M is shadowable.

Proof. pñq Since f has the shadowing property, for every ε ą 0 and each y P M , there exists

δ ą 0 such that, for every δ-pseudo trajectory x “ pxjqjPZ`

0

with x0 “ y there exists a point

z P M satisfying

dpf jpzq, xjq ď ε, for all j ě 0.

Hence, y is shadowable.

pðq Conversely, if every point in M is shadowable, then for any ε ą 0 and every point w P M
there exists δw ą 0, such that every δw-pseudo trajectory x “ pxjqjPZ`

0

, with x0 P Bδw
rws, the

closed ball centered at w with radius δw, is ε-shadowed by some point in M . For each w P M ,

consider the open ball Bδw
pwq centered at w with radius δw. Then tBδw

pwquwPM the collection

of such balls centered at each w P M provides an open cover for M . Since M is a compact
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metric space, we can extract a finite subcover tBδwi
pwiqun

i“1
from tBδw

pwquwPM . Let δ be the

smallest radius from the balls tBδwi
pwiqun

i“1
, and consider any δ-pseudo orbit y “ pyjqjPZ`

0

of

f . Then y0 P Bδwi
rwis for some i. Since δ ď δwi

we have y “ pyjqjPZ`

0

is ε- shadowed by some

point in M .

2.2 Random perturbation

In this section, we study a random perturbation of a dynamics. One of the key

problems in dynamical system is studying the stability of the dynamical behavior under random

perturbation. We consider that random perturbation is represented by a sequence of random

variables following a specific probability distribution. In addition, this sequence is considered a

realization of a family of Markov chain.

2.2.1 Markov chain

First, let us recall the definition of a stochastic process. Let pM,A ,Pq be a prob-

ability space, and let T be an arbitrary set called the index set. In general, T “ R, r0,8 ą,N
or Z. Then a stochastic process is a collection of random variables tXt : t P T u defined on the

probability space pM,A ,Pq with T as the indice set. Here, we are interested in a special class

of stochastic process called Markov chains, where T “ Z
`
0

and the random variable Xn take

values in a state space M . Below, we provide the formal definition of a Markov chain.

Definition 10. Let pM,A ,Pq be a probability space. A sequence of random variables tXnuně0

taking values in M is said satisfying the Markov property if

PpXn`1 P B|X0, X1, ..., Xnq “ PpXn`1 P B|Xnq, @B P A , n “ 0, 1, 2, ...

such a sequence is called a Markov chain.

In addition, for each x P M and B P A , let

P pB|xq :“ PpXn`1 P B|Xn “ xq

This defines a Stochastic Kernel on M , which means that

• P p.|xq is a probability measure on A for each fixed x P M , and

• P pB|.q is a measurable measure on M for each fixed B P A .

The stochastic kernel P pB|xq is also known as a Markov transition probability function.

In this work, following (Kif88) we consider perturbation of dynamical systems

thought a family of Markov chains Xε
n, n “ 0, 1, 2, ... with transition probabilities

PεpB|xq “ PpXε
n`1

P B|Xε
n “ xq
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defined for any x P M and a Borel set B Ă M .

Throughout the work, we assume that every realization of Markov chain is a δ-pseudo

orbit for any δ ą 0. Moreover, we call small random perturbation of the dynamical to the

family of Markov chain and the orbit of dynamical subject to small perturbation we will call

random orbits.

Definition 11. A Borel probability measure µε on M is a stationary measure for the Markov

chain if

µεpGq “
ż
PεpG|xqdµε

for every x P M and every Borel set G Ă M .

Definition 12. Let M be a compact metric space. We denote by MN the sequence of θ : N Ñ M ,

endowed with the product measure. The left shift map σ : MN Ñ MN is the map defined by

σpxq “ px1, x2, ...q

where x “ px0, x1, x2, ...q P MN
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3 Shadowing and stochastic stability

Stochastic stability has been studied by many authors, see (MV16) and (Kif88).

In this work, we introduce a small random perturbation to a deterministic dynamical systems

through Markov chain. In this context, stochastic stability means that the invariant measure is

close, in some sense of the stationary measures associated to the Markov chain. Next we will

state the main theorem and its demonstration.

3.1 Ergodicity and physical measures

Given a compact metric space pM,dq, consider a continuous function f : M Ñ M .

and considering the same dynamics defined in section(2.1). We define the following probability

measures:

First, we can define the following probability measure for each z P M , which we

denote by Sf
npzq, that is

Sf
npzq “ Sn

`
tf jpzqu8

j“0

˘
“ 1

n ` 1

nÿ

j“0

δfjpzq. (3.1)

Since M is a compact metric space and f is continuous, the Krylov-Bogolyubov Theorem,

guarantees the existence of at least one f -invariant probability measure µ on M . If µ is such

an f -invariant probability measure and ϕ P L1pµq then, by the Birkhoff Ergodic Theorem, the

following limit exists for µ-almost every z P M :

ϕ̃ “ lim
nÑ8

1

n ` 1

nÿ

j“0

ϕ
`
f jpzq

˘

Moreover, for any ϕ P L1pMq, from (3.1) we have

ż
ϕdSf

npzq “
ż
ϕd

˜
1

n ` 1

nÿ

j“0

δfjpzq

¸

“ 1

n ` 1

nÿ

j“0

ż
ϕdδfjpzq

“ 1

n ` 1

nÿ

j“0

ϕ
`
f jpzq

˘
.

Thus, there exists the limit

Ezpϕq ” lim
nÑ8

ż
ϕdSf

npzq

for µ-almost every z P M . On the other hand, we also have that the map ϕ ÞÑ Epϕq “ Ezpϕq,
for each z P B Ă M , where B is some set of µ positive measure, defines a non-negative



Chapter 3. Shadowing and stochastic stability 24

linear functional on the space L1pMq. Therefore, by the Riesz-Markov-Kakutani Representation

Theorem, there exists a unique Radon measure µ on M , such that, for every ϕ P L1pMq
ż
ϕdµ “ Epϕq “ lim

nÑ8

1

n ` 1

nÿ

j“0

ϕ
`
f jpzq

˘
. (3.2)

Hence, a measure µ is ergodic if for µ-almost every point z P M , it holds that

Sf
npzq Ñ µ, as n Ñ 8

in theweak‹-topology on the space of probability measures onM . These considerations naturally

lead to the concept of physical measures.

Definition 13. A physical measure, or SRB measure, of a continuous function on M is an

invariant probability measure µ on M , such that the time average of every continuous function

ϕ : M Ñ R coincides with the corresponding space-average with respect to

lim
nÑ8

1

n ` 1

nÿ

j“0

ϕpf jpxqq “
ż
ϕdµ (3.3)

for a set of initial points z with positive Lebesgue measure. We call this set the basin of µ, and

denoted by Bpµq

Lemma 3. The measure µ is ergodic if for µ-a.e point z P M , it holds that Sf
npzq Ñ µ, as n Ñ 8.

Then, for every ϕ P B, and for each ε ą 0 sufficiently small, there exists n0 “ n0pµ, ϕ, zq P N,

such that, ˇ̌
ˇ̌
ż
ϕdSf

npzq ´
ż
ϕdµ

ˇ̌
ˇ̌ ď ε, for all n ě n0pµ, ϕ, zq.

Proof. Suppose that Sf
npzq Ñ µ in M and take ϕ P B. Given ε ą 0, consider the neighborhood

Nε,ϕpµq “
"
ν :

ˇ̌
ˇ̌
ż
ϕdν ´

ż
ϕdµ

ˇ̌
ˇ̌ ă ε

*
.

By hypothesis, there exists n0 “ n0pµ, ϕ, zq P N, such that, for all n ě n0, we have Sf
npzq P

Nε,ϕpµq. That is,

ˇ̌
ˇ̌
ż
ϕdSf

npzq ´
ż
ϕdµ

ˇ̌
ˇ̌ ă ε, for all n ě n0.

Finally, let x “ pxjqjPZ`

0

be a sequence of points in M indexed by the non-negative

integers. Then similarly, we can define the following probability measure for each sequence in

M , which we denote by Snpxq. That is,

Snpxq “ 1

n ` 1

nÿ

j“0

δxj
(3.4)

We can define a shift map F : M ˆ MN Ñ M ˆ MN, px0,xq ÞÑ px1, σpxqq,
where σ is the left shift on the space of random orbit, such that, σpxq “ px1, x2, ...q for any



Chapter 3. Shadowing and stochastic stability 25

x “ px0, x1, x2, . . . q and x0. The stationary measure defined above is equivalent to the skew-

product measure µε ˆ Pε
N, given by

dpµε ˆ Pε
Nqpx0, x1, . . . , xj, . . . q “ µεpdx0qPεpdx1|x0q...Pεpdxj|xj´1q

to be invariant under the shift map. Since M is a compact metric space, by Tychonoff theorem,

the space M ˆ MN is also compact. Moreover, F is a continuous map, then by the Krylov-

Bogolyubov Theorem, there exists at least one F -invariant probability measure on M ˆMN. So,

if µε ˆ Pε
N is such an F -invariant probability measure and ψ is an integrable function, then, by

the Birkhoff Ergodic Theorem,

rψpxq “ lim
nÑ8

1

n ` 1

nÿ

j“0

ψpxjq “ lim
nÑ8

1

n ` 1

nÿ

j“0

pψ ˝ π1qpF jpxqq

the limit above exists for µε ˆ Pε
N-a.e px0,xq P M ˆ MN, where π1 : M ˆ MN Ñ M is the

projection onto the first coordinate. Thus, there exists the limit below

Ex0
pψq :“ lim

nÑ8

ż
ψdSnpxq

for µε-almost every x0 P M . Moreover, the mapping ψ ÞÑ Epψq, for any x0 P B Ă M , where B

is a set of positive measure, defines a non-negative linear functional on the space L1pMq. Thus,

by the Riesz-Markov Kakutani Representation Theorem, there exists a unique Radon measure

µε on M . Such that, ż
ψdµε “ Epψq “ lim

nÑ8

1

n ` 1

nÿ

j“0

ψpxjq.

Hence, the measure µε is ergodic if for µε-almost every point x0 P M , it holds that

Snpxq Ñ µε, as n Ñ 8 (3.5)

in the weak‹-topology sense in the space of probability measures on M .

Lemma 4. The measure µε is ergodic, for µε ˆ Pε
N-a.e point px0,xq P M ˆMN, if it holds that

Snpxq Ñ µε, as n Ñ 8. Then, for every ϕ P B, and for each δpεq ą 0, there exists n0 P N, such

that, ˇ̌
ˇ̌
ż
ϕdSnpxq ´

ż
ϕdµε

ˇ̌
ˇ̌ ď δpεq, @n ě n0

Proof. Suppose that Snpxq Ñ µε in M and take ϕ P B. Given δpεq ą 0, consider the neighbor-

hood Nε,ϕpµεq “
"
νε :

ˇ̌
ˇ̌
ż
ϕdνε ´

ż
ϕdµε

ˇ̌
ˇ̌ ă δpεq

*
. By hypothesis, there exists n0 P N, such

that, for all n ě n0 we have Snpxq P Nε,ϕpµq, that is

ˇ̌
ˇ̌
ż
ϕdSnpxq ´

ż
ϕdµε

ˇ̌
ˇ̌ ă δpεq, for all

n ě n0.

We can define the stochastic stability stability for random perturbation systems as

following.
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Definition 14. The system pf, µq is stochastically stable under the small perturbation scheme

tPεp¨|xq : x P M, ε ą 0u if µε converges, in the weak‹ sense, to the physical measure µ, when

the noise level ε goes to zero.

Definition 15 (Typical shadowing). We say that a dynamical system generated by f with

shadowing property has the µ-typical shadowing if, for every ε ą 0, we can find δ ą 0 such that,

for each δ-pseudo-trajectory x “ pxjqjPZ`

0

of f there exist µ-typical points z P M , such that

dpf jpzq, xjq ď ε for all j ě 0,

Thus, in this case, x “ pxjqjPZ`

0

is ε-shadowing by µ-typical z P M .

3.2 Main result about shadowing property and stochastic

stability

Theorem 5. Consider the dynamics generated by the continuous map f : M Ñ M , and suppose

that it has a unique absolutely continuous with respect to the Lebesgue measure, invariant,

ergodic probability µ and the µ-typical shadowing property. Furthermore, suppose that under

the perturbation scheme tPεp¨|xq : x P M, ε ą 0u, with Pεp¨|xq absolutely continuous with

respect to the Lebesgue measure and supppPεp¨|xqq Ă Bεpfpxqq for every x P M , there is a

unique stationary probability measure µε for every small ε. Then, the dynamics is stochastically

stable.

Proof. Step 1: Given any small ε ą 0, note that the realization of Markov chain defines, for

each x0 P M and for each δpεq ą 0, a δpεq-pseudo-trajectory of f . That is

dpfpxjq, xj`1q ď δpεq for all j ě 0,

where each xj`1 has probability distribution Pεp¨|xjq. Denote by Bδ,ε a set of realizations of

the Markov chain. By hypothesis, f has the shadowing property, which means that, for every

ε ą 0, we can find a δpεq ą 0, such that, for any δpεq-pseudo-trajectory, x P Bδ,ε, of f , there

exist z P M , such that,

dpf jpzq, xjq ă ε, for all j ě 0. (3.6)

Furthermore, since M is compact, by Lemma 2, every point in M is shadowable. Therefore, any

x P M can be chosen as x “ x0 for a random orbit pxjqjě0, such that, there exists zpx0q P M
satisfying dpf jpzq, xjq ă ε, for all j ě 0.

Step 2: We want to ensure that the points z can be taken µ-typical. By hypothesis, f

has the shadowing property. Then, by Lemma (2), every point in M is shadowable. Given x P M ,

an arbitrary shadowable point, let ε ą 0 be sufficiently small. Then there exists δpεq ą 0, such

that for each δpεq-pseudo-trajectory x P Bδ,ε of f with x0 “ x, there exist z P M such that,

dpf jpzq, xjq ă ε, for all j ě 0. (3.7)
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Moreover, µ is ergodic if, for µ-a.e point z P M , the sequence Sf
npzq Ñ µ, as

n Ñ 8. For such a measure, we consider the following set of points

Zµ :“
#
z P M :

1

n ` 1

nÿ

j“0

ϕpf jpzqq Ñ
ż
ϕdµ, when n Ñ 8

+
, (3.8)

defined for every continuous function ϕ P CpMq. Since CpMq is separable, we can take a dense

sequence pφkqk in CpMq. By the Birkhoff Ergodic Theorem, for each φk, there is a set Mk with

µ pMkq “ 1, such that for z P Mk, it holds that

lim
nÑ8

1

n ` 1

nÿ

j“0

φkpf jpzqq “
ż
φkdµ.

Defining X “
č

k

Mk we have µ pXq “ µ

˜
č

k

Mk

¸
“ 1, since the countable intersection of

full measure sets is a full measure set. Furthermore, on X we have for every φk

lim
nÑ8

1

n ` 1

nÿ

j“0

φkpf jpzqq “
ż
φkdµ.

Let ϕ P CpMq, then there is a subsequence pψkqk of pφkqk such that for every ε ą 0, there is a

K P N so that for every k ą K we have ‖ϕ ´ ψk‖8 ď ε. Thus, for every z P X we have

ˇ̌
ˇ̌
ˇ

1

n ` 1

nÿ

j“0

ϕ
`
f jpzq

˘
´

ż
ϕdµ

ˇ̌
ˇ̌

“
ˇ̌
ˇ̌
ˇ

1

n ` 1

nÿ

j“0

ϕ
`
f jpzq

˘
´ 1

n ` 1

nÿ

j“0

ψk

`
f jpzq

˘

` 1

n ` 1

nÿ

j“0

ψk

`
f jpzq

˘
´

ż
ψkdµ `

ż
pψk ´ ϕqdµ

ˇ̌
ˇ̌
ˇ .

Note that, ˇ̌
ˇ̌
ż

pψk ´ ϕqdµ
ˇ̌
ˇ̌ ď εµ pMq ,

ˇ̌
ˇ̌
ˇ

1

n ` 1

nÿ

j“0

ϕ
`
f jpzq

˘
´ 1

n ` 1

nÿ

j“0

ψk

`
f jpzq

˘
ˇ̌
ˇ̌
ˇ ď ε,

and

lim
nÑ8

1

n ` 1

nÿ

j“0

ψk

`
f jpzq

˘
´

ż
ψkdµ “ 0.

Then, by the triangle inequality we obtain,

lim sup
n

ˇ̌
ˇ̌
ˇ

1

n ` 1

nÿ

j“0

ϕ
`
f jpzq

˘
´

ż
ϕdµ

ˇ̌
ˇ̌
ˇ ď εp1 ` µ pMqq,
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which is valid for every ε. Thus,

lim sup
n

ˇ̌
ˇ̌
ˇ

1

n ` 1

nÿ

j“0

ϕ
`
f jpzq

˘
´

ż
ϕdµ

ˇ̌
ˇ̌
ˇ “ 0.

Hence,

lim
n

ˇ̌
ˇ̌
ˇ

1

n ` 1

nÿ

j“0

ϕ
`
f jpzq

˘
´

ż
ϕdµ

ˇ̌
ˇ̌
ˇ “ 0.

Therefore, we conclude that µpZµq “ 1.

Note also that, since µ is absolutely continuous with respect to the Lebesgue measure

m, having µpZµq “ 1 implies mpZµq ą 0, so the measure µ is physical. We do not require each

random trajectory to be shadowed by a unique point z.

Step 3: Considering a given random trajectory, we can prove that for every fixed

ε ą 0, for an observable function ϕ in the set of bounded continuous function B, and for any

sufficiently large N P N, there exists a constant Cϕ, such that

ˇ̌
ˇ̌
ż
ϕdSf

npzq ´
ż
ϕdSnpxq

ˇ̌
ˇ̌ ď Cϕε, for all n ą N, (3.9)

holds. Indeed,

ˇ̌
ˇ̌
ż
ϕdSf

npzq ´
ż
ϕdSnpxq

ˇ̌
ˇ̌

“
ˇ̌
ˇ̌
ˇ

ż
ϕd

˜
1

n ` 1

nÿ

j“0

δfjpzq

¸
´

ż
ϕd

˜
1

n ` 1

nÿ

j“0

δxj

¸ˇ̌
ˇ̌
ˇ

ď 1

n ` 1

nÿ

j“0

ˇ̌
ˇ̌
ż
ϕdδfjpzq ´

ż
ϕdδxj

ˇ̌
ˇ̌

“ 1

n ` 1

nÿ

j“0

ˇ̌
ϕpf jpzqq ´ ϕpxjq

ˇ̌

ď 1

n ` 1

nÿ

j“0

sup
zPM

ˇ̌
ϕpf jpzqq ´ ϕpxjq

ˇ̌
. (3.10)

Since ϕ P B, there exists a constant Cϕ ą 0, such that,

sup
zPM

|ϕpzq| ď Cϕ.

Note that, we are dealing with continuous functions on compact sets, then by Weierstrass

approximation theorem they can be approximated by polynomials. So, we can bound such

functions by their Lipschitz constants. By abuse of notation, we can write from the equation

(3.10) for every j ě 0,

sup
zPM

ˇ̌
ϕpf jpzqq ´ ϕpxjq

ˇ̌
ď sup

zPM

|ϕpzq|dpf jpzq, xjq.
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Thus, we have ˇ̌
ˇ̌
ż
ϕdSf

npzq ´
ż
ϕdSnpxq

ˇ̌
ˇ̌ ď Cϕε, for all n ě N.

Step 4: Finally we show stochastic stability. In fact, by applying the triangle inequal-

ity, we obtain the following result:

ˇ̌
ˇ̌
ż
ϕdµ ´

ż
ϕdµε

ˇ̌
ˇ̌ ď

ˇ̌
ˇ̌
ż
ϕdµ ´

ż
ϕdSf

npzq
ˇ̌
ˇ̌ `

ˇ̌
ˇ̌
ż
ϕdSnpxq ´

ż
ϕdµε

ˇ̌
ˇ̌

`
ˇ̌
ˇ̌
ż
ϕdSf

npzq ´
ż
ϕdSnpxq

ˇ̌
ˇ̌

ď pCϕ ` 1qε ` δpεq.

Observe that the first term from the right-hand side of the inequality follows from Lemma 3,

which, as shown in Step 2, can be applied to almost all orbits of f , with z chosen µ-almost surely.

The second term follows from Lemma 4, which can be applied to almost all random trajectories.

The last term is a consequence from (3.9). Moreover, since Bδ,ε is a set of realizations of Markov

chain, and the measure Snpxq is defined as (3.4), from (3.5) and ergodicity assumption we

conclude that in the limit µεpBδ,εq Ñ 1 as N Ñ 8. This completes the proof.
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4 Random Attractor

In this chapter, we explore random attractors in systems subject to perturbations,

specifically those affected by noise. There are several methods to introduce such perturbations. In

this section, the dynamics are perturbed by a family of parameterized random diffeomorphisms.

First, we will prove the stochastic stability of the the random attractor. Then, we will establish

the theorem regarding the existence and finiteness of random attractors. Additionally, we assume

throughout this chapter that M is a finite-dimensional compact metric space with a distance

d : M ˆ M Ñ R, induced by some Riemannian structure, and that f : M Ñ M is a

diffeomorphim.

4.1 Iteration of random maps and random attractor

In this section following (Ara00), we describe the perturbation acting on the dy-

namics as a family of parameterized random diffeomorphisms. At each iteration, we chose

the maps randomly in the neighborhood of the original one. Let F : M ˆ Bεp0q Ñ M ,

px, tq ÞÑ ftpxq “ fpx, tq, be C1-map where every t P Bεp0q is chosen randomly according to

the probability law νε on Bεp0q. Furthermore, we assume that ft : M Ñ M , x ÞÑ fpx, tq is a

diffeomorphism for every t P Bεp0q, where Bεp0q is a ball of radius ε ą 0 on R
n. In addition,

the unperturbed map f must be contained at the origin of the family of diffeomorphisms, that is

f0 ” f .

Moreover, for a given ε ą 0, we define the perturbation space

∆ε “ tt
¯

“ ptjq8
jě1

: tj P Bεp0qu,

with the product topology and the measure infinite product probability measure ν8
ε on ∆ε, where

νε is the normalized Lebesgue volume measure restricted to the closure of Bεp0q. Specifically,

for sets B1, ...Bk from the Borel σ- algebra of family Bn
ε p0q, we define as follows

ν8
ε pB1 ˆ ... ˆ Bk ˆ Bn

ε p0qNq “ νεpB1q...νεpBkq.

and, if A Ă Bn
ε p0q, then

νεpAq “ LebpAq
LebpBn

ε p0qq
where LebpAq will mean the Lebesgue volume measure of A.

On the other hand, the perturbed iterate of x P M is defined by the perturbed vector

t
¯

P ∆ε, as

f
j

t
¯

pxq “ f jpx, t
¯
q “ ftj

˝ ¨ ¨ ¨ ˝ ft1
pxq, for j ě 1, t

¯
P ∆ε and f 0px, t

¯
q “ x.
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Furthermore, we shall use the convention

fk
V pUq “ fkpU, V q “ tfk

t
¯

pxq : t
¯

P V, x P Uu, U Ă M, V Ă ∆ε (4.1)

for every k ě 1, and we remark that a different sequence t
¯

is considered, referred to astf j

t
¯

pxqu8
j“1

,

the t-orbit of x, for which we also write Opx, t
¯
q, for all x P U . The next definitions which follows

partly the papers of (Ara01; Rul81) we shall introduce concepts of attractor and random attractor.

Definition 16. A compact set Λ is an attractor for the system f if Λ is f -invariant, and there is

an open neighborhood UΛ of Λ, called trapping region, such that

fpUΛq Ă UΛ and Λ “
č

ně0

fnpUΛq.

Moreover, the basin of attraction of Λ is the set

W spΛq “ tx P M : lim
nÑ`8

distpfkpxq,Λq “ 0u

We say that an attractor is a random attractor if it is an attractor for the perturbed system

F : M ˆ Bεp0q Ñ M . The random attractor will be denoted by Λε and is defined as follows:

Definition 17. A compact set Λε is a random attractor for the system F if Λε is ft-invariant, and

there is an open neighborhood UΛε of Λε called trapping region, such that

ftpUΛεq Ă UΛε and Λε “
č

ně0

fn
t pUΛεq.

We define the probability measures µ and µε on M as follows: First, By Proposition

2.1 (Ara01). Let Λ be an attractor for f , then there are a neighborhood UΛ of Λ and ε0 P p0, 1q
such that for ε P p0, ε0q, there is a unique probability measure µε such that Λ Ă suppµε Ă UΛ and

for all x P UΛ and ν8
ε almost every t P ∆ε, we have for each continuous function ϕ : M Ñ R,

the following holds:

lim
nÑ8

1

n ` 1

nÿ

j“0

ϕpf jpx, tqq “
ż
ϕdµε. (4.2)

Second, following the approach outlined (Ara00), we can define a shift operator

S : M ˆ ∆ε Ñ M ˆ ∆ε, by the rule: px, tq ÞÑ pft1
pxq, σptqq, where σ is the left shift acting

on sequences in ∆ε; defined such that σptq “ r when t “ pt1, t2, t3, ...q and r “ pt2, t3, ...q.
Moreover, since M is a compact metric space and f is continuous, there exists at least one

f -invariant probability measure µ on M . This probability measure is said stationary measure if

the measure µˆ ν8
ε is invariant under the shift operator S. Additionally, µ is a stationary ergodic

probability measure if µ ˆ ν8
ε is S-ergodic. By Birkhoff’s ergodic theorem, we have

lim
nÑ8

1

n ` 1

nÿ

j“0

ψpSjpx, sqq “
ż
ψdpµ ˆ ν8

ε q
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for µˆ ν8
ε -a.e px, sq P M ˆ ∆ε and for every ψ P C0pM ˆ ∆εq. Consider the projection on the

first component π : M ˆ ∆ε Ñ M , where we take ψ “ ϕ ˝ π, with ϕ P C0pMq, then we have

ψpSjpx, sqq “ ϕpf jpx, sqq, j “ 1, 2, ... and

ż
ψdpµ ˆ ν8

ε q “
ż
ϕdµ.

Thus, for every continuous function ϕ : M Ñ R, the following limit exists for µ ˆ ν8
ε -a.e

px, sq P M ˆ ∆ε.

lim
nÑ8

1

n ` 1

nÿ

j“0

ϕpf jpx, sqq “
ż
ϕdµ (4.3)

Lemma 5. Let Λε be a random attractor of F and µε be the probability measure defined above,

then Λε Ă supppµεq.

Proof. Let x P Λε. By the definition of random attractor, we know x P
č

kě0

fk
t
¯

pUΛεq. Then

x P fk
t
¯

pUΛεq for all k ě 0. Moreover, using the definition (17), we conclude, x P UΛε . Since Λε

is a compact invariant nonempty set and µε is a probability measure, then µεpUΛεq ą 0. Hence

x P supppµεq. This shows that

Λε Ă supppµεq.

Lemma 6. Let f : M Ñ M be a diffeomorphism of a compact finite dimensional metric space

M . We assume that a random perturbation F of f is given. Let Λε be a random attractor of F ,

and Λ be an attractor of f , then Λε Ñ Λ in the Hausdorff topology when ε Ñ 0.

Proof. We know that Λε Ă supppµεq for all small ε ą 0. Given any neighborhood V of Λε,

take Uk
Λε “

kč

i“0

f i
t
¯
pUΛεq such that distpUΛεzUk

Λε ,Λ
εq Ñ 0 when k Ñ 8, that is Uk

Λε Ă V for big

enough k, and Λε Ă ftpUk
Λεq Ă Uk

Λε for all k ě 1. By continuity, we have diampf ipx,∆εqq “
suptdpf ipx, tq, f ipx, sqq; t, s P ∆εu Ñ 0 when ε Ñ 0. Therefore, for sufficiently small δ0 ą 0,

the open set V is a trapping region with respect to ft for all ε P p0, δ0q, and every t P Bε. Since

ftpUΛεq Ă UΛε , then exists some physical probability measure µε with supppµεq Ă Uk
Λε . By

theorem 3.1 (Ara00), for all ε P p0, δ0q with δpkq Ñ 0 as k Ñ 8. This show that supppµεq Ñ Λε

in the Hausdorff topology when ε Ñ 0.

Since supppµεq Ñ Λε and by proposition 2.1 of (Ara00) we have that supppµεq Ñ Λ . Then we

can write as hpΛε,Λq ď hpΛε, supppµεqq ` hpsupppµεq,Λq. Thus, hpΛε,Λq Ñ 0 as ε Ñ 0.

By following (Ara01) we introduce the following definition:

Definition 18. An attractor Λ with respect to the dynamical system f is stochastically stable

with respect to a perturbation F if it supports an f -invariant probability measure µ (suppµ “ Λq
such that µε converges to µ in the weak˚ sense.
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Proposition 1. A random attractor is stochastically stable.

Proof. Let Λε be an attractor of F , and Λ be an attractor with respect to f where F is a random

perturbation of f . Then by equation (4.2), there is a unique probability measure µε such that

lim
nÑ8

1

n ` 1

nÿ

j“0

ϕpf jpx, tqq “
ż
ϕdµε

for each ϕ P CpMq. Moreover, by equation (4.3) we have,

lim
nÑ8

1

n ` 1

nÿ

j“0

ϕpf jpx, sqq “
ż
ϕdµ

Then by equations (4.2) and (4.3) we have,

ˇ̌
ˇ̌
ż
ϕdµ ´

ż
ϕdµε

ˇ̌
ˇ̌ “

ˇ̌
ˇ̌
ˇ lim
nÑ8

1

n ` 1

nÿ

j“0

ϕpf jpx, sq ´ lim
nÑ8

1

n ` 1

nÿ

j“0

ϕpf jpx, tqq
ˇ̌
ˇ̌
ˇ

“ lim
nÑ8

1

n ` 1

nÿ

j“0

ˇ̌
ϕpf jpx, sqq ´ ϕpf jpx, tq

ˇ̌
.

Since M is a compact metric space and ϕ P CpMq, then ϕ is bounded. Thus there exists

sup
xPM

|ϕpxq| ă 8, and

ˇ̌
ˇ̌
ż
ϕdµ ´

ż
ϕdµε

ˇ̌
ˇ̌ ď sup

xPM

|ϕpxq| lim
nÑ8

1

n ` 1

nÿ

j“0

dpf jpx, tq, f jpx, sqq

ď sup
xPM

|ϕpxq| lim
nÑ8

1

n ` 1

nÿ

j“0

sup
t,sP∆ε

dpf jpx, tq, f jpx, sqq

ď sup
xPM

|ϕpxq| lim
nÑ8

1

n ` 1

nÿ

j“0

diampf jpx,∆εqq

ď sup
xPM

|ϕpxq| lim
nÑ8

1

n ` 1

nÿ

j“0

sup
j“0,1,...,n

tdiampf jpx,∆εqqu

ď sup
xPM

|ϕpxq| sup
j“0,...,n

tdiampf jpx,∆εqqu

Since F is continuous, the diampf jpx,∆εqq Ñ 0 when ε Ñ 0. Hence

ˇ̌
ˇ̌
ż
ϕdµε ´

ż
ϕdµ

ˇ̌
ˇ̌ Ñ 0,

when ε Ñ 0.

4.2 Invariant domains

In this section, following (Ara00), we introduce the concept of invariant domains.

Those domains will play a key rule in demonstrating the uniqueness of random attractor.
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Definition 19. An invariant domain for F : M ˆ Bεp0q Ñ M is defined as a finite collection

U0, . . . ,Ur´1 of pairwise disjoint open sets, i.e; U i X U j “ H for i ‰ j, such that fkpU0,∆εq Ă
Uk mod r for all k ě 1. This collection is denoted by D “ tU0, . . . ,Ur´1u, where r P N will be

referred to as the period of the random attractor.

Definition 20. An invariant domain such that

fkpUi,∆εq Ă Upk`iq mod r, for all k ě 1,

where i P t0, . . . , r ´ 1u, is called symmetric invariant.

Remark 1. Additionally, since the ft are diffeomorphisms for all t P T and the collection D “
pU0, . . . ,Ur´1q is F -invariant, thenD “ pU0, . . . ,U r´1q also satisfies fkpUi,∆εq Ă Upk`iq mod r

and conversely: if the closure D “ pU0, . . . ,U r´1q satisfies fkpUi,∆εq Ă Upk`iq mod r with

U0, . . . ,Ur´1 pairwise disjoint open sets, then D “ pU0, . . . ,Ur´1q is an F -invariant domain.

4.3 Existence and Finiteness of Random Attractors

Theorem 6 (Existence and finiteness of random attractors). Let f : M Ñ M be a Cr diffeomor-

phism of class r ě 1, of a compact, boundaryless manifold M satisfying:

A. There exist open sets U Ă M , such that f |U is a contraction.

Then the following holds:

1) There is ε0 “ ε0pLq, representing the maximum allowable perturbation, such that for all

ε ă ε0, the perturbed system F of f remains a contraction on U ;

2) Each collection DΛi
“ tU0, . . . ,Ur´1u serves a trapping region UΛi

for a unique random

attractor Λi for any ε ă ε0;

3) The sets tUΛi
uN

i“1
are pairwise disjoints;

4) There exists a finite number N of random attractors tΛiuN
i“1

on M ;

5) Each random attractor Λε
i supports a unique probability measure.

Further, assuming the additional condition:

B. The basins of attractions of the tΛiuiě1 cover Lebesgue almost every point of M with

respect to the Lebesgue measure, that is

Nď

i“1

W spΛiq “ M
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we also prove that,

6) The time average of Lebesgue almost all orbits under perturbation Opx, t
¯
q is represented

by a finite number of probability measures.

We now begin the prove of theorem as follows:

1) First item we prove with the following proposition.

Proposition 2. Let f : M Ñ M , be a map with Lipschitz constant, Lippfq :“ L ă 1.

Then for any ε ă 1 ´ L

2
, the perturbed map F : M ˆ Bε Ñ M , is a contraction for all

x, y P M such that dpx, yq ą 2ε under any probability law νε.

Proof. For all x, y P M and any t P Bεp0q, under the probability measure νε we have the

following

dpF px, tq, F py, tqq ď dpfpxq, fpyqq ` 2ε.

By hypothesis, there exist open set U Ă M , such that f |U is a contraction. Then

dpfpxq, fpyqq ` 2ε ď Ldpx, yq ` 2ε, @x, y P U

Moreover, we want F : M ˆ Bε Ñ M to contract distances, we say that

Ldpx, yq ` 2ε ă dpx, yq,

thus

2ε ă p1 ´ Lqdpx, yq.

Since L ă 1, it follows that for every x, y P X , such that dpx, yq ą 2ε, and

ε ă 1 ´ L

2

the perturbed system F : M ˆ Bε Ñ M is a contraction.

Therefore, if we restrict f on an open set U Ă M , there is ε0pLq, such that F |U is a

contraction.

2) Each collection DΛε
i

“ tU0, . . . ,Ur´1u is a trapping region UΛi
of a unique random

attractor Λε
i for any ε ă ε0.

Proof. Suppose that D “ tU0, . . . ,Ur´1u is a trapping region of two different random

attractors, Λε
i and Λε

j , where 0 ď i, j ď r ´ 1 and i ‰ j. Since Λε
i,j are random attractors,

they are ft-invariants:

Λε
i “ fpΛε

i ,∆εq and Λε
j “ fpΛε

j ,∆εq.
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Using induction, it follows that

Λε
i “ fkpΛε

i ,∆εq

Moreover, D is an invariant domain, it holds that fkpUi,∆εq Ă Upi`kq mod r according

to Remark( 1). Since ft are diffeomorphisms for all t P T , if D “ tU0, . . . ,Ur´1u is

F -invariant, then D “ tU0, . . . ,U r´1u also satisfies definition (20). Thus, fkpU i,∆εq Ă
U pi`kq mod r. Assume 0 ď i ă j ď r ´ 1, then there is exists k ą 0 such that j “ i ` k

mod r. Since, Λi is a closed set, by Remark( 1) , we have

Λε
i “ fkpΛε

i ,∆εq Ă Λε
i`k mod r “ Λε

j

Similarly, we can show that Λε
j Ă Λε

i . Thus Λε
i “ Λε

j .

3) Suppose that a random perturbation F of f is given and there is a family of pairwise

disjoint compact tΛε
i uN

i“1
, N P N. Then the sets tUΛε

i
uN

i“1
are also pairwise disjoint.

Proof. Let tΛε
i uN

i“1
be a family of pairwise disjoint compact sets, where N P N. Then, for

each i P t1, . . . , Nu there is an open neighborhood UΛε
i

of Λε
i , such that

ftpUΛε
i
q Ă UΛε

i
and Λε

i “
č

ně0

fn
t pUΛε

i
q, @i “ 1, 2, ..., N.

Since UΛε
i

is compact and ftpUΛε
i
q Ă UΛε

i
, it follows by induction that

UΛε
i

Ą UΛε
i

Ą ftpUΛε
i
q Ą f 2

t pUΛε
i
q Ą ¨ ¨ ¨ Ą fn

t pUΛε
i
q Ą, ...

Since tfn
t pUΛε

i
quně0 is a nested sequence of a compact sets, it follows that

č

ně0

fn
t pUΛε

i
q ‰ H

Moreover, by hypothesis the family tΛε
i uN

i“1
are pairwise disjoint. That is, for any i ‰ j, it

follows that

Λε
i

č
Λε

j “ H

On the other hand, since f is a diffeomorphism we have

H “ Λε
i

č
Λε

j “
č

ně0

fn
t pUΛε

i

č
UΛε

j
q

Therefore, since the intersection
č

ně0

fn
t pUΛε

i

č
UΛε

j
q are disjoint for i ‰ j, and the

diffeomorphism preserves disjointness, the open neighborhoods tUΛε
i
uN

i“1
are pairwise

disjoints.
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4) There exist a finite number of random attractors tΛε
i uN

i“1
.

Proof. Let tΛε
i uiě1 be a collection of random attractors where Λε

i Ă M for all i ě 1 .

Since each Λε
i Ă M is a closed set, the collection tpΛε

i qcuiě1 forms an open cover of M .

Given that M is a compact set, we can extract a finite subcover tpΛε
i qcui“N

i“1
. This implies

there are exists a finite number of random attractors, tΛε
i ui“N

i“1
, where N P N.

Therefore, the number of random attractors is finite.

5) Each random attractor supports a unique probability measure.

Proof. Let Λε be a random attractor, and suppose there exist two distinct probability

measure µε
1

and µε
2

on M supported on Λε, such that

Λε “ supppµ1
εq and Λε “ supppµ2

εq

Let µ be an f -invariant probability measure on M , and let ϕ : M Ñ R be a bounded

continuous function. The total variation distance is given by:

dpµε
1
, µε

2
q “ supt|

ż
ϕdµε

1
´

ż
ϕdµε

2
| : ϕ P Bu

“ supt|
ż

Λε

ϕdµε
1

´
ż

Λε

ϕdµε
2
| : ϕ P Bu

ď supt|
ż

Λε

ϕdµε
1

´
ż

Λε

ϕdµ| : ϕ P Bu ` supt|
ż

Λε

ϕdµε
2

´
ż

Λε

ϕdµ| : ϕ P Bu

By proposition (1), we know that a random attractor is stochastically stable, as a result

dpµε
1
, µε

2
q “ 0 when ε Ñ 0. Therefore, µε

1
“ µε

2

[B] The basins of attractions of the Λi cover Lebesgue almost every point of M , i.e.,
Nď

i“1

W spΛiq “ M , then we further prove that,

6) The time average of Lebesgue almost all orbits under perturbation, Opx, t
¯
q, is given by a

finite number of probability measures.

Proof. We assume that

Nď

i“1

W spΛiq “ M . Then there are exists a finite number of random

attractors tΛiuN
i“1

. In addition, by item bq of proposition 2.1 of (Ara00) there is only one

for every probability measure µε
i such that Λi Ă supppµε

i q Ă UΛi
and for all x P U and

ν8
ε almost every t

¯
P ∆ε we have for each continuous ϕ : M Ñ R such that

lim
nÑ8

1

n ` 1

nÿ

j“0

ϕpf jpx, t
¯
qq “

ż
ϕdµε

i

where i “ 1, 2, ¨ ¨ ¨ , N . This mean that, the time average of Lebesgue almost all orbits

under perturbation is given by µε
i , 0 ă i ď N ,
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Proof. Let Λi be the random attractors, and assume that the basins of attraction of the Λi

cover almost every point of M , that is,

M “
Nď

i“1

W spΛiq

W s denotes the basin attraction of Λi. This implies that are finitely many random attractor

Λi, ...,ΛN whose basin attraction cover M . By proposition 2.1(item b) in (Ara00), for

each random attractor Λi, there exists a unique probability measure µε
i , such that

Λi Ă supppµε
i q Ă UΛi

where UΛi
is a neighborhood of Λi. Additionally, for almost every M , and for almost every

t
¯

under the perturbation ν8
ε , we have that the time averages of the trajectory of x, denoted

by Opx, t
¯
q, converges to the expected value with respect to µε

i :

lim
nÑ8

1

n ` 1

nÿ

j“0

ϕpf jpx, t
¯
qq “

ż
ϕdµε

i

for any function ϕ : M Ñ R. Thus, for Lebesgue almost every orbit under perturbation,

time average is given by a finite number of probability measures µε
i corresponding to

the random attractors Λi’s. In conclusion, the time average of almost all orbits under

perturbation is determined by the measures µε
i , i “ 1, 2, ..., N .
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