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Simple Summary: Different warm-ups can be used to improve physical and sports performance.
Among these strategies, we can include the pre-activation of the inspiratory muscles. Our study
aimed to investigate this pre-activation model in high-intensity running performance and recovery
using an integrative computational analysis called a complex network. The participants in this study
underwent four sessions. The first and second sessions were performed to explain the procedures,
characterize them and determine the individualized pre-activation intensity (40% of the maximum
inspiratory pressure). Subsequently, on different days, the subjects were submitted to high-intensity
tethered runs on a non-motorized treadmill with monitoring of the physiological responses during
and after this effort. To understand the impacts of the pre-activation of inspiratory muscles on
the organism, we studied the centrality metrics obtained by complex networks, which help in the
interpretation of data in a more integrated way. Our results revealed that the graphs generated by
this analysis were altered when inspiratory muscle pre-activation was applied, emphasizing muscle
oxygenation responses in the leg and arm. Blood lactate also played an important role, especially
after our inspiratory muscle strategy. Our findings confirm that the pre-activation of inspiratory
muscles promotes modulations in the organism, better integrating physiological responses, which
could increase performance and improve recovery.

Abstract: Although several studies have focused on the adaptations provided by inspiratory mus-
cle (IM) training on physical demands, the warm-up or pre-activation (PA) of these muscles alone
appears to generate positive effects on physiological responses and performance. This study aimed
to understand the effects of inspiratory muscle pre-activation (IMPA) on high-intensity running and
passive recovery, as applied to active subjects. In an original and innovative investigation of the
impacts of IMPA on high-intensity running, we proposed the identification of the interactions among
physical characteristics, physiological responses and muscle oxygenation in more and less active
muscle to a running exercise using a complex network model. For this, fifteen male subjects were
submitted to all-out 30 s tethered running efforts preceded or not preceded by IMPA, composed of
2 × 15 repetitions (1 min interval between them) at 40% of the maximum individual inspiratory
pressure using a respiratory exercise device. During running and recovery, we monitored the physio-
logical responses (heart rate, blood lactate, oxygen saturation) and muscle oxygenation (in vastus
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lateralis and biceps brachii) by wearable near-infrared spectroscopy (NIRS). Thus, we investigated
four scenarios: two in the tethered running exercise (with or without IMPA) and two built into the
recovery process (after the all-out 30 s), under the same conditions. Undirected weighted graphs
were constructed, and four centrality metrics were analyzed (Degree, Betweenness, Eigenvector, and
Pagerank). The IMPA (40% of the maximum inspiratory pressure) was effective in increasing the
peak and mean relative running power, and the analysis of the complex networks advanced the
interpretation of the effects of physiological adjustments related to the IMPA on exercise and recovery.
Centrality metrics highlighted the nodes related to muscle oxygenation responses (in more and less
active muscles) as significant to all scenarios, and systemic physiological responses mediated this
impact, especially after IMPA application. Our results suggest that this respiratory strategy enhances
exercise, recovery and the multidimensional approach to understanding the effects of physiological
adjustments on these conditions.

Keywords: acute inspiratory loading; performance; near-infrared spectroscopy (NIRS); muscle
oxygenation; tethered running; computational modelling

1. Introduction

Inspiratory muscles (IM) are essential for performing physical effort at different in-
tensities [1], as well as for maintaining the quality of post-exercise recovery [2,3]. Aiming
to improve respiratory muscle efficiency, specific respiratory muscle training has been the
target of many investigations in sports performance [4–8] and has been used as a proce-
dure to boost the physical capacity and physiological state of active individuals [9,10] and
patients [11–13]. With long-term training, IM showed positive adaptations, such as the
reduction of the respiratory metaboreflex mechanism, which contributes to the redirection
of blood flow to more active muscles during physical effort [14,15].

Although several studies have focused on the adaptations provided by IM train-
ing, such as a significant resource to improve performance [6,14], the warm-up or pre-
activation (PA) of these muscles already seems to generate positive effects on physiological
responses [16,17] and performance [18,19]. So, this individualized and licit strategy has
been highlighted as ergogenic for elite swimmers [19], badminton players [20], judo ath-
letes [21] and runners [18]. On the other hand, the literature is scarce about the effects
of inspiratory muscle pre-activation (IMPA) on non-athlete participants, revealing some
positive effects on pulmonary function [16] and breathlessness sensations and an improve-
ment in exercise tolerance [22] with inspiratory exercise at 40% of the maximal inspiratory
pressure (MIP) before the main exercise.

Based on pre-activation concepts, it is probable that the IM warm-up using individual
load flow restriction by a mechanical device (i.e., external mechanical loading) [23] acts
as an important pre-activator of the organism, preparing it for high-intensity demands
and recovery processes and boosting performance. In addition to studies that investigate
electroencephalographic (EEG) activity prior to motor activation [24] and diaphragm
motor-evoked potentials [25], the monitoring of physiological responses (e.g., HR, VO2
and SpO2) during effort and recovery seems to contribute to the analysis of the impact of
IMPA on the organism. Metabolically, lactate can develop a significant role during different
processes, including exercise and recovery. Currently, it is considered a major energy
source for mitochondrial respiration, the major gluconeogenic precursor and a signaling
molecule [26]. This metabolite, produced during high-intensity exercise [27,28], can be
used as an important fuel by different tissues, including less-active muscles after effort.
Regarding IM warm-up, Lin et al. [20] observed a reduction in blood lactate accumulation
during an incremental field test using this strategy. In this way, we strongly believe that
the effects of IMPA on high-intensity running effort and recovery can be related to blood
lactate shuttle.



Biology 2022, 11, 963 3 of 23

Furthermore, the analysis of muscle oxygenation by wearable near-infrared spec-
troscopy (NIRS) [29,30] offers the possibility of exploring O2 balance in skeletal muscle
continuously, both during and after exercise. The NIRS technique has been applied suc-
cessfully to measure the muscle oxygenation changes in a single muscle [31,32] and in
two or more muscles [33–37]. Regarding the use of the NIRS analysis associated with the
acute loading of IM on exercise, there are few investigations in the literature. In 2015,
Ohya et al. [38] investigated the effects of IM warm-up on locomotor muscle oxygenation
(vastus lateralis—VL) in healthy males submitted to cycling exercise. They did not observe
significant performance enhancement or muscle oxygenation during high-intensity inter-
mittent sprint cycling in untrained participants. Recently, Richard & Billaut [39] conducted
an interesting study applying the IM warm-up to elite speed skaters before 3000 m time
trials. Corroborating the results of Ohya et al. [38], no differences in speed performance
nor in the tissue saturation index (TSI) and total hemoglobin (tHb) after an IM warm-up
strategy were observed, at least in the VL muscle. However, investigations using portable
NIRS in less and more active muscle concomitantly are scarce, but they can contribute
strongly to the comprehension of the physiological effects promoted by IMPA.

The IMPA seems to provoke positive effects on performance and physiological adjust-
ments, but this is not the consensus in the literature. However, to the best of our knowledge,
only one recent study conducted by our group involving this strategy is based on complex
analysis—rather than only conventional statistics—to interpret these data [21]. In this
case, by the complex network model, the positive impact of the IMPA at 40% of the MIP
was confirmed. So, it is possible that important physiological changes occur in athletes
or non-athletes submitted to IMPA prior to different exercise types but are not always
detectable by statistical analyses based on “cause-effect” approaches. In previous studies,
we have worked with more integrated models to investigate the physical exercise [40,41]
and sports-related context [21,42,43], applying the concepts of complex networks [44,45] for
biological data interpretation [46,47]. This line of investigation has contributed strongly to
understanding biological responses that do not depend only on an isolated factor [46–51],
which occurs with physiological adjustments in effort and recovery. In this way, we believe
that this computational model can improve the knowledge about IMPA, especially by inte-
grating analyses conducted with many responses during exercise and recovery. Basically, in
complex network models, the centrality metrics that are returned from the graphs built for
different scenarios are able to highlight, within a dataset, those which are the main players
in an integrative context. Centrality measures are capable of quantifying the capacity of
a node to influence or be influenced by other parameters in a connection topology [52].
Among the many available centrality metrics, we highlight here the analysis of the Degree,
Betweenness, Eigenvector and Pagerank, each with a purpose in studies with complex
networks [21,42,43,52–56].

Here, we investigated the impact of one mechanical IMPA protocol (load at 40% of
the MIP) on tethered running power on a non-motorized treadmill. Thus, by applying the
concept of complex networks for integrative analysis among physiological responses, we
aimed to understand the effects of this specific IMPA on important physiological measures
for effort and recovery, such as blood lactate, HR and muscle oxygenation in the biceps
brachii (BB) and the vastus lateralis (VL), which are, respectively, less and more active
in high-intensity running. We investigated four scenarios: two in the tethered running
exercise (with or without IMPA) and two others built to understand the recovery process
after the all-out 30 s (AO30) running effort under the same conditions. We hypothesize that
the IMPA presents changes in physiological responses in both exercise and recovery, and
the complex network model is sensitive enough to detect the effects of this pre-activation
strategy on physiological connections.
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2. Methods

2.1. Subjects

Fifteen physically active young men participated in the study (23 ± 1 years, 73.2 ± 2.0 kg,
1.77 ± 0.02 m, 6.5 ± 0.5% body fat, 144.3 ± 10.2 cm H2O of MIP, mean and peak global
strength index of IMs (S-Index) equal to 123.7 ± 3.7 and 139.1 ± 3.4 cm H2O, respectively).
Firstly, the subjects answered the International Physical Activity Questionnaire (IPAQ), in
which the minimum score required to classify them as “physically active” was used as the
inclusion criterion [57]. All of the subjects reported no cardiovascular, respiratory, metabolic
or orthopaedic disease and no use of drugs, ergogenic supplements or medications. This
study was conducted in agreement within the ethical recommendations of the Declaration
of Helsinki, and all experiments were approved by the Research Ethics Committee of The
School of Medical Sciences (protocol number 99783318.4.0000.5404). The participants were
only evaluated after having received information about the experimental procedures and
risks and signing an informed consent form.

2.2. Experimental Design

The experimental design consisted of four laboratory visits, separated by 24−72 h
(Figure 1, Panel A). Firstly, the subjects received information about the experimental
design and signed a consent form. They answered the IPAQ and a questionnaire for
health characterization. Next, the participants were submitted to anthropometric and
body composition measurements, including body mass (balance portable digital scale,
with a maximum capacity of 150 kg and an accuracy of 100 g, Toledo® model 2098, São
Bernardo do Campo, Brazil) and height (by a stadiometer (Cescorf®, Porto Alegre, Brazil).
To estimate the percentage of body fat (%BF), seven skinfold thicknesses of the right side of
the body were evaluated (triceps, chest, subscapular, midaxillary, suprailiac, abdominal
and thigh by the Lange® skinfold caliper, Beta Technology, Santa Cruz, USA), and the
equation proposed by Jackson & Pollock, following by Siri et al., was applied [58,59]. On
the second day, the maximal inspiratory pressure (MIP) and S-Index (SI) were obtained
(with a 1 h interval between them), and the tethered running familiarization was conducted
on a non-motorized treadmill (NMT). The third and fourth days were randomly dedicated
to AO30 in NMT, preceded or not preceded by the IMPA, aiming to determine the power
in tethered running and physiological measurements in two conditions. In these sections,
the subjects were equipped with two NIRS devices (one in BB and the other in VL) to
acquire muscle oxygenation signals and with the HR monitor. After the running test, the
participants remained at rest (18 min in the dorsal decubitus position) for the continuous
monitoring of HR, SpO2 and muscle oxygenation responses. Additionally, blood samples
and Borg scale scores [60] were collected at rest immediately after the effort and after
each 2 min of passive recovery in order to assess blood lactate and perceived exertion
(RPE). All of the trials were completed under controlled laboratory conditions at a similar
temperature, relative humidity and luminosity.

2.3. Maximal Inspiratory Pressure and S-Index Determination

The maximal inspiratory pressure (MIP) measurement was obtained from residual
volume in accordance with Hartz et al. [6]. The evaluation was conducted by a trained
researcher who demonstrated the correct performance of the respiratory maneuver. The
volunteers remained seated in a chair, wearing a nose clip and a plastic mouthpiece that
was connected to an analogical manovacuometer (±300 cmH2O; GER-AR, São Paulo, SP,
Brazil) used to measure maximal pressures. A small hole (2 mm) was introduced in the
rigid mouthpiece in order to prevent glottic closure. The volunteers were instructed to
complete three to five acceptable and reproducible maximal maneuvers (i.e., differences of
10% or less between values). Each inspiratory effort was sustained for at least 1 s, and the
highest value reached was registered for further analysis. An interval of about 1 min was
allowed between efforts [61].
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inspiratory muscles (SI) were measured. Exercise (all-out in tethered running, AO30) and recovery
(both, without or with inspiratory muscle pre-activation (IMPA)) were conducted at the third and
fourth randomized visits, separated by 48–72 h. Panel B. Scenarios for constructing the complex
networks and complex network nodes used in these four scenarios. Legend: AO30 = all-out 30 s,
IMPA = inspiratory muscle pre-activation, BM = body mass, %BF = percentage of body fat, MIP = max-
imal inspiratory pressure, SI = global strength index of inspiratory muscles, Lac = blood lactate,
HR = heart rate, SpO2 = arterial oxygen saturation, RPE = perceived exertion, D = delta between
final and initial results, BB = biceps brachii, VL = vastus lateralis, O2Hb = oxyhemoglobin relative
concentration, HHb = deoxyhemoglobin relative concentration, tHb = total hemoglobin, TSI = tissue
saturation index.

The global strength index of IMs (S-Index, SI) was measured by the POWERbreathe®

device, model K5 (IMT Technologies Ltd., Birmingham, UK). The participants performed
the assessment protocol in the orthostatic position with a nose clip. Thirty dynamic
inspirations were performed slowly with verbal encouragement to inspire a greater air
capacity [62]. During the protocol, the curves related to the inspirations were monitored by
graphic records issued by the Breathe-link® software (IMT Technologies Ltd., Birmingham,
UK). At the end of the test, the algorithm provided the mean and maximum values of the
SI (in units of cmH2O).

2.4. Inspiratory Muscle Pre-Activation

The IMPA was characterized by 2 sets of 15 breaths with a 40% maximal inspiratory
mouth pressure load (40% of the MIP) using the POWERbreathe inspiratory muscle trainer,
model K5 (IMT Technologies Ltd., Birmingham, UK), with a 60 s rest between sets. The
choice of flow restricted to 40% of the MIP was based on different studies that use this
restriction, aiming to improve performance by mechanical breath warm-up [16,21,39].

2.5. High-Intensity Running Effort and Post-Exercise

As a high-intensity exercise, the participants performed a tethered run in the NMT
ergometer specifications are detailed by Manchado-Gobatto et al. [34]). All of the proce-
dures were similar in the third and fourth sessions, except for the application of the IMPA
in one of these. After arriving in the laboratory, the participants were equipped with two
wearable NIRS devices and a heart rate monitor. They remained in a sitting position at
rest for 3 min, and their baseline responses were registered. The first blood sample was
collected from the ear lobe. After this, the participants warmed up for 5 min by running
on a motorized treadmill (Inbramed Super ATL, Inbrasport, Porto Alegre, Brazil) with the
intensity fixed at 7.0 km/h−1. After the warm-up, a 5 min passive recovery was taken to
return the physiological responses to rest levels. The IMPA was applied (or not) according
to the session characteristics. After this, the running effort was applied for 30 s (AO30),
and the mechanical, heart rate and muscle oxygenation responses were recorded. The
participants received constant verbal encouragement during the tethered test exercise.

Immediately after the exercise, a pulse oximeter was placed on the subject’s finger, and
blood capillary samples were extracted from the ear lobe into heparinized capillary tubes.
With the aim of conducting recovery investigations, HR, arterial oxygen saturation (SpO2)
and muscle oxygenation were monitored continuously for up to 18 min after AO30, with
blood capillary samples extracted immediately and every 2 min during this recovery period.

2.6. Power in High-Intensity Tethered Exercise

The exercise protocols were conducted on a standardized non-motorized treadmill.
As described by Gobatto et al. [42] and Manchado-Gobatto et al. [34], this ergometer is
composed of an acquisition system consisting of a strain gauge (CSA/ZL-500 MK Control,
Sao Paulo, Brazil), a portable amplifier (MKTC5-10, MK Control, Sao Paulo, Brazil) and an
acquisition module (NI USB-6009, National Instruments, Austin, USA). The participants
were submitted to AO30 tethered running using an inextensible steel cable tied to a system.
In this structure, there was a load cell (CSL/ZL-500, MK Controle e Instrumentação Ltd., São
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Paulo, Brazil) to measure the horizontal force during running. Four load cells positioned
under the NMT platform were capable of capturing the vertical force. An effect hall sensor,
inserted in the frontal axis of the NMT, provided pulses for velocity acquisition. The
product of the force and running velocity was considered to be the tethered running power.
The signals of mechanical variables were captured at a 1000 Hz acquisition (LabView Signal
Express 2009 National Instruments®, Austin, TX, USA). To maintain high system quality,
the NMT was calibrated daily, modulated and subsequently transferred to MatLab (R2008a
MatLab®, MathWorks, Natick, MA, USA). The peak (p), mean (m), and minimum (min)
values of power were displayed in absolute (W) and relative body mass values (W·kg−1)
with a MatLab routine. The fatigue index (FI = (peak power—minimum power)/peak
power × 100) was also calculated. These values were used to compare the effects of the
IMPA on tethered running performance.

2.7. Muscle Oxygenation Measurements and Analyses

During all periods of the third and fourth visits, the changes in muscle oxygenation
were assessed continually using the NIRS technique at wavelengths between 760 and
850 nm. For this, the NIRS wearable system (2 × PortaMon, Artinis Medical Systems, Elst,
Netherlands) registered changes in the relative concentrations of oxyhemoglobin (O2Hb),
deoxyhemoglobin (HHb) and total hemoglobin (tHb) and the values of the tissue saturation
index—TSI (%) at a signal capture frequency of 10 Hz. Two NIRS devices were positioned
on the medial biceps brachii (BB) portion [35,63] and vastus lateralis (VL) belly (15 cm above
the proximal edge of the patella and 5 cm towards the external side [64], parallel to the
long axis of the muscle), which were considered as less and more active during the running
effort [34], respectively. The signal data were captured and smoothed using a 10th-order
low-pass-zero phase Butterworth filter (cut-off frequency 0.1 Hz) using the Oxysoft (Artinis
Medical System, Elst, Netherlands). To determine the peak, mean and minimum values of
O2Hb, HHb and tHb, we considered the difference from the baseline data (final 30 s of the
3 min baseline period).

2.8. Arterial Oxygen Saturation, Heart Rate and Blood Lactate Concentration

Arterial oxygen saturation was captured at rest immediately after the AO30 exercise
and during all recovery phases with a pulse oximeter (Oxifast Takaoka, São Paulo, Brazil).
The heart rate was registered during all protocols (at 1 s intervals) by a heart rate monitor
(Polar V800, Polar Electro Oy, Kempele, Finland). Blood samples (25 µL) were collected at
rest and during the post-exercise phase from the ear lobe with a heparinized capillary. The
blood samples were deposited into microtubes (Eppendorf, 1.5 mL) containing 50 µL of
1% sodium fluoride (NaF) and were subsequently frozen at −20 ◦C. The blood lactate con-
centrations were determined by a lactate analyzer (YSI-2300-STAT-Plus™, Yellow Springs,
OH, USA).

2.9. Complex Network Construction: Scenarios and Centrality Metrics

The four scenarios constructed in this study were modelled considering the use of
complex networks, two of them involving exercise results (AO30 and IMPA + AO30) and
the other two based on recovery responses (Recovery AO30 and Recovery IMPA + AO30)
(Figure 1, Panel B). In all cases, the analysis of these complexes was performed using
the software Gephi (version 0.9.2, Gephi, Paris, France)—implemented in the JAVA pro-
gramming language and applying the Fruchterman–Reingold layout [65]—after the data
processing step by a specific algorithm constructed for this study in MatLab. The networks
were built considering undirected weighted graphs G = (V, E, w) for our scenarios, where
V represents the nodes, E represents the interaction between two physiological variables
(edges) and w is the weight function [53]. In this case, the nodes of the graph correspond to
the participant’s characteristics, physiological responses and muscle oxygenation parame-
ters in BB and VL (see Figure 1, Panel B for more detail) in exercise and recovery scenarios.
The undirected edges were pointed out by correlations among the nodes (participants´
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characteristics, physiological responses and muscle oxygen) which were weighted by sig-
nificant “r” values (p ≤ 0.05) according to Pearson’s correlation (linear regression test) in
each scenario [42] (MatLab®,MathWorks, Natick, MA, USA).

The same 46 nodes were used to construct the graphs in the exercise scenarios (AO30
and IMPA + AO30). Aiming to establish the recovery scenarios (recovery and IMPA re-
covery), 52 nodes were included in these respective graphs. In this study, we used four
centrality metrics to provide the complex network interpretation: Degree, Betweenness Cen-
trality, Eigenvector Centrality and Pagerank. The use of these metrics was based on previous
studies by our group in exercise investigations [21,40–43] and on Oldham et al. [52]. The method-
ological details about the metrics adopted here are visualized in Supplementary File S1-Complex
network centrality metrics: Degree, Betweenness, Eigenvector, and Pagerank.

2.10. Statistical Analysis

The normality of the distributions and the homogeneity of the variance were initially
tested by the Shapiro−Wilk and Levene tests, respectively. A paired Student’s t-test was
applied to identify the differences between the performance in exercise without or with
IMPA (peak, mean and minimum running power), physiological responses (blood lactate,
heart rate, arterial oxygen saturation) and muscle oxygenation (tissue saturation index in
BB and VL) at rest and after efforts in two conditions. Statistical analyses were performed
using the software STATISTICA® (7.0 version) and MatLab® (MathWorks, Natick, MA,
USA). In all cases, the statistical significance was set at p ≤ 0.05.

3. Results

Table 1 shows the peak, mean and minimum values of the absolute running power
(W) and running power (W·kg−1) relative to the body mass observed in the participants
submitted to tethered running without (AO30) and with IMPA (IMPA + AO30) using a
mechanical device with a 40% MIP load. Here, we also presented the main physiological
results at rest, showing similar conditions in the two experimental sessions, and after
both interventions to characterize the results. The conventional statistical analysis (paired
Student’s t-test) indicated the effect of IMPA on performance, without modifications in
physiological variables, at least by cause–effect analysis. The IMPA protocol (2 sets of
15 repetitions applied 2 min before 30 s of tethered running) increased the absolute and
relative mean running power (Table 1).

Aiming to investigate the effect of IMPA on node influences in an integrative analysis,
we used centrality metrics (Degree, Betweenness, Eigenvector and Pagerank). In this way,
Figures 2–4 show the graphs and tables containing the top five ranked nodes returned from
the complex network metrics in two exercise scenarios (without or with IMPA), considering
the main variables in the interactions according to the metrics. When the metric values
returned similar results for different nodes, we included these nodes in the top five list
with the same importance classification. As informed in the methods section, 46 nodes
were used to construct all the graphs in two exercise scenarios. After the complex network
analysis, 147 edges and 119 edges were observed in the scenarios with and without IMPA
efforts, respectively (Figures 2–4).

The results of the Degree metric in an exercise context are expressed in Figure 2.
Thirteen nodes were highlighted in the first scenario (without IMPA); a high number
of connections (13 links for the first nodes) and the important participation of muscle
oxygenation responses for both BB and VL were visualized (Panel A). In the exercise
preceded by IMPA (Panel B), 25 nodes assumed the top five ranking, with special attention
given to the peak blood lactate and muscle oxygenation responses in VL. In this scenario,
HR and SpO2 also appear on the top five list.

Figure 3 shows the results of the Betweenness centrality (Panels A, B) and Eigenvector
metrics (Panels C, D) obtained in the AO30 exercise, without or with IMPA application.
For the Betweenness, in the exercise without IMPA (Panel A), minimum oxyhemoglobin
in VL and many parameters in BB assumed the main positions. When IMPA was applied
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(Panel B), the main returned nodes were related to muscle oxygenation in VL, and the
peak blood lactate once again appeared in the top five ranking. For the Eigenvector metric,
only muscle oxygenation responses in both muscles configured the top five nodes in the
exercise without the IMPA scenario (Panel C). IMPA increased the values of this metric and
modified the main players (Panel D). In this last case, TSI and HHb in VL assumed the first
node positions.

Table 1. Peak, mean and minimum values of the absolute running power (W) and the power
relative to body mass (W·kg−1) during the AO30 exercise (n = 15) and AO30 with inspiratory muscle
pre-activation (IMPA + AO30), and physiological responses at rest and after effort in these two
experimental sessions.

AO30 IMPA + AO30 p

Mechanical responses

pP (W) 2296.7 ± 126.3 2501.1 ± 115.6 0.05

mP (W) 1706.9 ± 104.7 1894.0 ± 93.8 0.02

minP (W) 1210.3 ± 89.2 1372.3 ± 81.8 0.06

pP (W·kg−1) 31.4 ± 1.5 34.0 ± 1.4 0.04

mP (W·kg−1) 23.3 ± 1.1 25.8 ± 1.0 0.02

minP (W·kg−1) 16.5 ± 1.0 18.6 ± 07 0.06

FI (%) 47.2 ± 2.4 44.7 ± 2.6 0.32

Physiological responses

at rest

LAC (mM) 0.8 ± 0.1 0.8 ± 0.1 0.88

HR (bpm) 65 ± 3 66 ± 3 0.75

SPO2 (%) 97.4 ± 0.2 97.3 ± 0.2 0.50

TSI_BB (%) 66.1 ± 0.9 68.3 ± 0.7 0.07

TSI_VL (%) 73.7 ± 0.8 72.8 ± 0.8 0.27

Physiological responses

after effort

LAC peak (mM) 17.2 ± 0.6 16.2 ± 0.6 0.07

time to pLAC 8.1 ± 0.6 8.4 ± 0.6 0.76

HR (bpm) 176 ± 2 179 ± 2 0.11

SPO2 (%) 96.9 ± 0.3 96.9 ± 0.3 0.87

TSI_BB (%) 32.2 ± 1.8 34.1 ± 1.2 0.38

TSI_VL (%) 50.1 ± 1.7 49.8 ± 1.6 0.78
Results are expressed in mean ± SEM. pP = peak power, mP = mean power, minP = minimum power, FI = fatigue
index, LAC = blood lactate, HR = heart rate, SPO2 = arterial oxygen saturation, TSI = tissue saturation index,
BB = biceps brachii, VL = vastus lateralis. (p ≤ 0.05).

Pagerank was the last centrality metric adopted for the investigation of the IMPA
influence on exercise by network analysis (Figure 4). According to this metric, the top five
nodes in the non-IMPA (Panel A) exercise scenario were composed of muscle oxygenation
responses in VL and BB. After IMPA, the exercise scenario was modified (Panel B), and
pLac and minHR figured within the main nodes for the Pagerank—both in second place.

In the same way as that presented by the exercise scenarios, we studied the recovery
after efforts conducted without or with IMPA (Figures 5–7). Using 52 nodes, the complex
network model returned 231 and 192 undirected edges for the first and second condi-
tions, respectively.
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With regard to the Degree metrics, all of the nodes that appeared as top five in the
recovery exercise scenario without IMPA were associated with muscle responses, especially
in BB, considering the less active muscle in the AO30 running exercise (Figure 5, Panel A).
For example, the most significant node in this scenario was the total hemoglobin in BB,
with 20 connections. In contrast, in the IMPA + recovery scenario, we observed the increase
in the number of nodes completing the top five list (10 versus 22 nodes, in Panels A and B,
respectively), with HR and pLac figuring as important roles in this centrality metric.

The Betweenness and Eigenvector results are expressed in Figure 6 (Panels A–D).
Muscle oxygenation (in BB and VL) and mean blood lactate were set in the top five in the
recovery scenario (Figure 6, Panel A). When IMPA was applied, there was a modification
in the main nodes for this metric. SpO2 and pLac assumed the second and third most
important places in this scenario, and only BB muscle responses were highlighted (Figure 6,
Panel B). For the Eigenvector metric, only oxyhemoglobin, deoxyhemoglobin and total
hemoglobin in BB and VL characterized the top five ranking for both scenarios, showing
similar metric values and a similar number of nodes in two cases.

The graphs and table with the main nodes observed by the Pagerank metric in the
recovery scenarios are shown in Figure 7. The differences observed for this metric in two re-
covery scenarios were the higher number of nodes and the appearance of the physiological
measurements (HR, SpO2 and Lac) in the top five ranking in Panel B compared to Panel A
(i.e., in the recovery after the exercise preceded by IMPA).

4. Discussion

This study aimed to understand the effects of IMPA on high-intensity running power
and recovery applied to active subjects. So, in a novel and innovative way of investigating
the impacts of IMPA on high-intensity running and recovery, we proposed the identification
of the interaction among physical characteristics, physiological responses and muscle
oxygenation in more and less active muscle using a complex network model. The data
analysis confirmed our hypotheses. The IMPA at 40% of the MIP improves the running
power and provokes changes in the graph’s configuration in the exercise and recovery. The
centrality metrics obtained from a complex network model were capable of detecting the
impact of this pre-activation strategy on physiological interactions. In an additional and
interesting manner, this computational model detected the connections and adjustments
expected by theoretical and practical explanations about IMPA on an organism.

Our main objective was not to analyze the equality or difference between physiological
responses in high-intensity effort and recovery preceded or not preceded by IMPA. We
consider the complexity of the physiological responses to the demands imposed by exercise
and return to rest, and this does not occur in isolation. We resort to a multidimensional
analysis proposed by complex networks, based on highly robust measures and using
accurate wearable technologies. Our interest was to verify which adjustments actually
occur in these different scenarios (without and with IMPA before exercise and also in
recovery after these interventions in a running context) using a more integrated approach,
associating different physiological parameters interpreted as nodes of the networks. In this
sense, as observed in a previous study in Judo (Cirino et al., 2021), IMPA seems to prepare
the body for more physical work, at least through a more holistic analysis.

The option to investigate the effects of IMPA on high-intensity running exercise is
justified by the importance of these muscles in the performance context [1], as well as by
previous studies indicating that the warm-up of this musculature is able to enhance the sub-
sequent physical effort [18,19]. Here, by analyzing equalities and differences using a paired
t-test, we already observed a higher absolute and relative peak and mean power to the
trial accomplished after respiratory intervention. These results corroborate those of other
studies conducted with athletes [18–20,66], which also observed a boost in performance
after the warm-up of IMs. Note that the mechanical inspiratory strategy adopted here was
characterized by 2 sets of 15 breaths, with 40% of the MIP using the POWERbreathe IM
trainer (K5 model). While maintaining the flow restriction (40% of the individual MIP)
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employed in other investigations [16,19,66], we used fewer than 30 breath repetitions per
set. This option occurred due to our sample being composed of active subjects without
previous muscle inspiratory training. Based on our findings, and corroborating those of
Cirino et al. [21], the IMPA (2 × 15 breaths at 40% of the MIP) promoted positive effects
on performance, with running accomplished in an ergometer constructed to record power
signals with a high-capture frequency. We emphasize that, although under laboratory
conditions, this tethered test is very similar to high-intensity running conducted in the
field [42].

Regarding the integrated analysis, multidimensional approaches have been strongly
recommended to understand non-isolated biological phenomena [46–51]. Recently, Ver-
schueren et al. [67] conducted an interesting systematic review about the fatigue process,
discussing the importance of a multidimensional approach. They appointed the complex
network model as a possible method. Likewise, Balagué et al. [68] suggest network exercise
physiology with a focus on basic laws of interactions among diverse physiological systems.
We believe that fatigue and exercise response depend on many players, and the effects
of IMPA also follow this path. According to Perry [69], NIRS-derived muscle parameters
should be implemented in a manner comparable to routinely used conventional internal
parameters (e.g., HR, lactate, VO2, RPE), and the NIRS data require computational tools to
explain the observational intra- and inter-individual variability responses to exercise. In this
sense, based on accurate peripheral measurements obtained by the NIRS technique in two
different muscles, as well as on the monitoring of some systemic physiological responses
(HR, SpO2 and blood lactate), we chose the complex network approach to interpret our
data. To the best of our knowledge, the network centrality metric has not yet been applied
to IM investigations associated with NIRS measurements, but it can certainly contribute
to the integrated and multidimensional understanding of IMPA effects on exercise and
recovery, as will be discussed.

Although there are many measures of centrality [70], we chose four of them for the
current investigation (Degree, Betweenness, Eigenvector and Pagerank centralities). Our
option was based on previous studies involving exercise physiology [21,40–43] and a recent
paper that discussed the consistency and differences between centrality measures across
distinct classes of networks [52].

The simplest and most popular measure of centrality is the node degree centrality,
which indicates the number of connections of this node on the graph [71]. So, this is
first shown in our network results (Figures 2 and 5, for exercise and recovery scenarios,
respectively). Betweenness centrality expresses the importance of elements (vertex/edge)
involved in a network, evaluating the traffic in communication networks, and also identi-
fies critical intersections in a road network [53,72]. These metric results were expressed in
Figures 3 and 6 (Panels A and B). On the other hand, Eigenvector centrality is a measure
related to prestige. The prestige of node i is related to the prestige of their neighbor’s
(assuming that centrality of node i is proportional to the sum of centrality of node i´s
neighbors) [53,54]. Our eigenvector results are shown in Figures 3 and 6 (Panels C and D).
Finally, Pagerank is the most recent algorithm compared to the other three and defines a
link analysis method to evaluate a user´s influence, so not only is the immediate informa-
tion flow incorporated but the information flow after that is also considered [73,74]. Its
importance is not necessarily established by the number of node connections but rather
by which other nodes are connected to it. The pagerank values obtained in our study are
shown in Figures 4 and 7 for exercise and recovery scenarios, respectively.

5. Centrality Metrics in Exercise Scenarios

The main findings involving complex networks and exercise scenarios revealed that
IMPA reduced the number of connections between each node (degree value) but substan-
tially increased the number of main nodes within the networks (top five ranking), which
can be viewed by the use of the Degree metric (Figure 2, Panels A and B). The number of
important nodes related to muscle oxygenation measures was greater for the locomotor
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muscle in the running effort (vastus lateralis) when IMPA was performed. Still, in the
scenario with IMPA, systemic physiological responses appeared as very important nodes
in the network. For example, the pLac, which was not highlighted in the first scenario,
attained the first place in the ranking of the degree together with the deoxyhemoglobin in
the VL and the TSI in the BB. SpO2 and HR also only appeared prominently in the network
constructed in the IMPA + AO30 scenario. During high-intensity running with similar times
of the exercise as those of the present study, the VL muscle is activated to maintain exercise
demands [75], which may justify the large number of studies focused on investigating
changes in the oxygenation of this muscle, as pointed out by Perrey & Ferrari, 2018 [29].
Findings related to the Degree metric confirm the importance of VL in an integrative way,
as investigated in a high-intensity running context. Furthermore, these results are very
interesting, signaling an impact of IMPA in increasing the importance of the most active
muscle in running, as observed by complex analysis (VL-related nodes), which is possibly
mediated by more systemic connections.

The results for the pathway metric (Betweenness centrality) also signal an increase
in the importance of VL oxygenation within the network when IMPA was applied (see
Figure 3, Panels A and B). Again, blood lactate appears in the top five ranking (Figure 3,
Panel B), with the metric value being higher than that placed first in the scenario of AO30
without pre-activation (0.110 observed by minimum deoxyhemoglobin in VL vs. 0.121
to the peak of blood lactate). The list of the main prestigious nodes was implemented
with VL responses after IMPA, with four of the five main eigenvector values being related
to oxygenation in this locomotor muscle (highlighting the TSI and deoxyhemoglobin
values in VL). Finally, the Pagerank analysis corroborates the significant importance of
systemic responses (pLac, minHR and D-SpO2) when IMPA was adopted (Figure 4, Panel B).
Considering that a high Pagerank value assumes that a node acts critically when it is
linked to others that perform essential functions in the probability distributions to each
node [42,74], deoxygenation in the less active muscle (BB) proved to be a very representative
node in the scenario without IMPA. On the other hand, not only for Pagerank but also for the
other metrics, the blood lactate concentration is actually revealed as a “chief messenger” [76]
or a “fulcrum” (as recently named by Brooks [26]) in the complex network model as
well. In our case, its prominence was highly enhanced by IMPA, which was observed by
Cirino at al. [21] using IMPA15 and 40% of the MIP before a Judo match.

We emphasize that muscle oxygenation nodes were highlighted in all graphs plotted
for high-intensity scenarios. This suggests that relative concentrations of oxy-, deoxy-
and total hemoglobin detected by NIRS in one or more muscles may, in fact, deepen the
understanding of exercise effects, as indicated by other authors [29,34,77]. In a muscle oxy-
genation context, special attention has been dedicated to deoxyhemoglobin (HHb), which
represents the utilization of O2 by peripheral tissue and is potentially unaffected by changes
in blood volume and arterial hemoglobin concentration in high-intensity exercise [78,79].
For example, recently, Yogev and colleagues [80] compared the respiratory compensation
point with muscle oxygen saturation in locomotor and non-locomotor muscles using the
HHb breakpoint. Here, the complex network model confirmed their significance in an
integrative analysis, with HHb nodes attaining the top three in all scenarios and metrics.
Likewise, as appointed by Richard & Billaut [39], muscle oxygenation analysis can also
improve the comprehension about the effects of IM warm-up on exercise.

Taken together, the results of the multidimensional analysis adopted for exercise
scenarios suggest that, in fact, IMPA promotes positive changes in the interaction of periph-
erical and systemic responses. This interaction emphasizes nodes related to the locomotor
running muscle, as well as the pLac and HR nodes.

6. Centrality Metric in Recovery Scenarios

After high-intensity exercise is interrupted in the AO30 applied here, some responses
quickly return to rest values, and other adjustments occur later [34,81]. In addition to
contributing to better interactions in physical effort, we expected that IMPA could also bring
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about positive changes in post-effort, perhaps detected by network analysis. This hypoth-
esis was also confirmed. Unlike what happens with effort when the most active muscle
needs to receive more blood flow during the task, the less active muscles can contribute
significantly to the recovery process—assisting in the lactate shuttle, for example. Here, the
importance of the less active muscle was detected by a multidimensional approach, with
many respiratory responses in the BB acting with the main nodes in different metrics.

Following the exercise scenario, IMPA likewise increased (more than twice) the number
of highlighted nodes in the degree centrality (Figure 5, Panels A and B). Additionally, this
strategy contributed to the HR and pLac nodes attaining top five rankings, suggesting that
the prior respiratory series at 40% MIP can also contribute to post-effort. Tong and Fu [22]
had already observed the impacts of acute inspiratory load in the recovery process, but they
used other parameters and a conventional statistical analysis. Moreover, recovery benefits
have been observed after the application of the IM training, confirming the relationship
between the efficiency of respiratory muscles and post-exercise recovery [2,5]. Here, by the
simplest and most popular measure of centrality, the impacts of IMPA were confirmed.

Regarding the Betweenness centrality, the muscle oxygenation nodes in the recovery
scenario (Figure 6, Panel A) were prominent, with special attention to the O2 delivery nodes
in less active muscle. However, IMPA made sure that only the BB responses were present
in the top five ranking, which were mediated by the SpO2 and pLac nodes (second and
third positions, respectively) in this pathway metric (Figure 6, Panel B). Corroborating
investigations that used other approaches [34,35,37], the less active muscle stood out in
the recovery process according to the Betweenness metric. So, the effectiveness of IMPA in
generating this highlight was also confirmed by the network model.

The analysis of prestigious nodes (Eigenvector centrality) only highlighted nodes
related to muscle breathing in both recovery scenarios (Figure 6, Panels C and D). In this
case, the BB total hemoglobin and oxyhemoglobin in this same muscle showed the highest
Eigenvector value in recovery without and with IMPA, respectively. As this metric is related
to the prestige of the neighboring nodes [55,56], the graph analysis again confirmed the
importance of muscle O2 delivery in the recovery process. Here, the Pagerank metric
indicated the mean blood lactate as one the top five nodes in the recovery scenario without
IM intervention (Figure 7, Panel A). In the present study, this was the first time that blood
lactate was ranked in a scenario without IMPA. This metabolite being highlighted by a
centrality metric such as Pagerank further confirms its importance as a pathway, even
without a prior stimulus such as IMPA.

Finally, we emphasize that, in all the graphs shown in our study (exercise and recovery,
with or without IMPA scenarios), the physical characteristics such as age, height, body
mass and fat percentage, as well as MIP and SI, were not highlighted by any metric. This
was different from the other studies with complex networks and exercise developed by
our group, in which physical characteristics were quite prominent [21,40–42]. However,
physical measurements were more related to experimental designs and mainly aim on those
occasions (i.e., power and jumps in basketball, running to exhaustion in elite athletes and
a Judo match). Based on theoretical and practical assumptions that support the previous
stimulus to IMs, we expected that nodes related to muscle oxygenation and systemic
responses would show a greater prominence. Even at this point, the centrality metrics
have been shown by a complex network model to be robust and sensitive to different
experimental models.

The limitation of the multidimensional approaches adopted here is in the selection
of input parameters as network nodes. Despite this, our design sought to select the best
measures within our reach and at the frontier of knowledge relevant to our objectives. In
this sense, wearable technologies that do not hinder with the execution of IMPA, exercise
and recovery and the high uptake of physiological signals were adopted to generate
the nodes.

In summary, the IMPA protocol (load at 40% of the MIP) was effective at increasing
the running power in high-intensity tethered efforts, and the complex network model
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contributed to improving the interpretation into physiological adjustments related to the
impact of IMPA on exercise and recovery. Centrality metrics highlighted the nodes related
to muscle oxygenation responses (in more and less active muscles) as significant to all
scenarios, and systemic physiological responses mediated this impact, especially after
IMPA application. Thus, in practical terms, we recommend this respiratory strategy to
improve exercise and recovery, and we further support a multidimensional approach using
complex network modelling to understand the physiological adjustments to these and
other conditions.
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