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Resumo

Esta tese investiga os problemas de andlise de estabilidade e sintese de controladores
por realimentacdo de estados e de saida por meio da Compensacédo Distribuida
Paralela (do inglés, Parallel Distributed Compensation — PDC) para sistemas nebu-
losos Takagi-Sugeno (T-S) de tempo continuo e discreto. A principal contribui¢do
no dominio do tempo continuo é o projeto de controladores PDC globais e regionais
utilizando fung¢des de Lyapunov polinomiais homogéneas de graus maiores que
dois nos estados do sistema, generalizando assim os resultados baseados em fun¢des
de Lyapunov quadraticas nos estados. Para sistemas nebulos T-S de tempo discreto,
a principal novidade reside em uma modelagem especial das fung¢des de pertinén-
cia, que elimina a necessidade de conhecimento de limites nas taxas de variagdo
dessas funcdes. As condicdes de sintese para ambos os casos continuo e discreto sdo
formuladas em termos de algoritmos iterativos localmente convergentes baseados
em desigualdades matriciais lineares. Esses algoritmos sdo capazes de abordar a
estabilizagdo, maximizar a taxa de decaimento e fornecer uma estimativa para a
regido de atragdo. Uma vantagem chave desta classe de algoritmos é que os ganhos
do PDC sao considerados como variaveis de otimizagdo, sem exigir a habitual
mudanga de variaveis. Isto facilita o tratamento de restri¢des estruturais, tais como
limites de magnitude nas entradas dos ganhos e descentralizagdo. Experimentos
numéricos sdo fornecidos para ilustrar as vantagens e aplicabilidade dos resultados

propostos.

Palavras-chave: Sistemas nao lineares; Sistemas nebulosos Takagi-Sugeno; Estabi-
lizagdo global; Estabiliza¢do regional; Realimenta¢do de estados; Realimentagdo de

saida; Regido de atracdo; Desigualdades matriciais lineares.



Abstract

This thesis investigates the problems of stability analysis and synthesis of state-
and output-feedback controllers through Parallel Distributed Compensation (PDC)
for both continuous-and discrete-time Takagi-Sugeno (T-S) fuzzy systems. The
main contribution in the continuous-time domain is the design of global and re-
gional PDC controllers utilizing homogeneous polynomial Lyapunov functions of
degrees greater than two on the system states, thus generalizing the results based on
quadratic-on-the-state Lyapunov functions. For discrete-time T-S fuzzy systems, the
main novelty lies in a special modeling of the membership functions, which elimi-
nates the need for knowing bounds on the variation rates of those functions. The
synthesis conditions for both continuous- and discrete-time cases are formulated in
terms of locally-convergent iterative algorithms based on linear matrix inequalities.
These algorithms are capable of addressing stabilization, maximizing the decay
rate, and providing an estimation for the region of attraction. A key advantage of
this class of algorithms is that the PDC gains are handled as optimization variables,
without requiring the usual change of variables. This facilitates the treatment of
structural constraints, such as magnitude bounds on the entries of the gains and
decentralization. Numerical experiments are provided to illustrate the advantages

and applicability of the proposed results.

Key words: Nonlinear systems; Takagi-Sugeno fuzzy systems; Global stabilization;
Regional stabilization; State-feedback; Output-feedback; Region of attraction; Linear

Matrix Inequalities.



Notation

Basic Sets

set of the first  positive integers, i.e.,

N, ={1,...,r}

space of real numbers

set of n x m real matrices

set of n X n real symmetric matrices

n x n identity matrix

m X n null matrix

unity vector of appropriate dimension, i.e.,

e;=[00 - 1 - o}T
vector of ones of dimension 7, i.e.,
=11 - 1" er

unit simplex of dimension r, i.e.,

T
/\r:{AeR’:i;)\izl,)\iZO,ieNr}



Elementary Functions and Operators

* block induced symmetry in a square matrix

xT transpose of X € R™*"

He(X) X+ XT,with X € R"™"

tr(X) trace of X

co{R} convex hull of the elements of the set R

X >0 symmetric positive definite matrix X € S, i.e.,
X>0<y'Xy>0 VyeR", y#0

X >0 symmetric positive semidefinite matrix X € S”, i.e.,
X>0<y'Xy>0 VyeR"

AL basis for the null space of A, i.e.,
AAL =0
X®Y Kronecker product of matrices X and Y, i.e,,
x11Y xppY - X1 X12
XQY = |x01Y x2Y |, X=|Xx21 X2
xli] i-th Kronecker power, i.e.,
| {X@XV”, i>1
xli] —
1, i=0.
||x]] 2-norm of x
aeb scalar product of a and b

xlm} power vector



Contents

Introduction
1.1 Contributions . . . . . . . . . . . s

1.2 Thesis organization . . .. ... .. ... ... .. ... ...

Preliminary Concepts, Definitions and Notations

2.1 Linear Matrix Inequalities . . . . ... .. .. ... . ... ... . ...,
2.2 Lyapunov Stability Theory . . . . . ... ... ... ... ... . ....
2.3 Homogeneous Polynomials . . . ... ....................
2.4 LMlI-based Iterative Algorithm . . . .. ... ... ... ... ... ...

Takagi-Sugeno Fuzzy Systems
3.1 Continuous-time T-SSystems . . . . . ... .................
3.2 Discrete-time T-SSystems . . . .. ... ... ... ... ... ... ...

Global Stabilization of Continuous-time T-S Systems
41 MainResults . . . . ... ... .. L
42 Numerical Examples . . . ... ..... ... .. ... ... ... ..

4.3 Conclusion . . . . . . . .. s

Regional Stabilization of Continuous-time T-S Systems

5.1 Fuzzy Lyapunov Function . . .. ... ... .................
511 Numerical Example. . . . ... ... ... ... ... ...

5.2 Homogeneous Polynomial Parameter-Dependent Lyapunov Functions .
52.1 Numerical Examples . . .. ... ...... ... .. ..... ...

53 Conclusion . . . ... ...

Regional Stabilization of Discrete-time T-S Systems

6.1 MainResults . . . ... ... ... ... oo

6.2 Stabilityanalysis. . . . .. ... ... L o L
6.2.1 Numerical Example . . . . . .. ... ... ... . 0.

6.3 PDCdesign . ... .. ... .. ... ... ...
6.3.1 Numerical Examples . . . . ... ...................

13
16
18

19
20
22
25
29

33
34
37

56
56
62
66
77
80



6.4 Conclusion . . . . ... ...
7 Conclusions and Future Steps

References



13

Chapter 1

Introduction

From wind turbines [1] to microelectromechanical systems [2], in practice the dy-
namic behavior of most systems can be considered nonlinear. Nonlinear models provide
a valuable and powerful framework for representing the complex dynamics often ob-
served in nonlinear systems. However, features such as non-unique equilibria, complex
dynamics leading to bifurcations and chaos, sensitivity to initial conditions, interactions
of nonlinearities in different parts of a system, and the absence of analytical solutions,
among others, render the theoretical analysis of nonlinear systems a challenging task
[3]. In contrast to linear models, where trajectory prediction and precise qualitative
analysis can be achieved using Lyapunov stability theory [4], nonlinear models cannot
be approached with the same level of precision and generality. Although linear control
is a mature and well-established area, with a wide variety of methods and tools with
proven success, it presupposes that the dynamic system operates around a small range
in which linear behavior can be assumed [5]. Thus, when the sources of nonlinearities
that were neglected begin to influence the dynamics of the system, its operation in the
linear regime is no longer guaranteed, and a description of the nonlinear dynamics
that allows the design of control systems with guarantees of stability, performance and

robustness is necessary.

In this case, one option is to use Takagi-Sugeno (T-S) [6] fuzzy systems. Using the
sector nonlinearity modeling strategy, a T-S model accurately represents the nonlinear
system in a compact region of the state space containing the origin through the fuzzy
combination of linear submodels [7, 8]. This combination of linear models can be suit-
ably addressed through convex optimization tools. In fact, problems like robust stability
analysis [9-11], design of feedback laws [12-17], and estimation of domains of attraction
(DOA) [18-21] for T-S fuzzy models can be treated through quadratic and non-quadratic
Lyapunov functions, generally in terms of Linear Matrix Inequalities (LMISs) [22]. Since
the first appearance in 1985, T-S fuzzy models have been extensively and successfully
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used to represent nonlinear dynamics of a variety of dynamic systems [23], such as
generators [24], motors [25-27], robots [28-32], vehicles [33-35], missiles [36], heating
processes [37-39], microelectromechanical systems [40—42], twin rotors [43], Chua’s
chaotic electrical circuits [44—47], wind turbines [48], inverted pendulums [49], biological
processes [50, 51], medicine [52-54], buildings [55], aircrafts [56], and spacecrafts [57-59].
Concerning control of T-S fuzzy systems, Parallel Distributed Compensation (PDC)
allows the design of a linear feedback controller for each local linear model; the resulting
controller — which is nonlinear in general — is a fuzzy combination of each individual
linear controller [60]. If the stability or synthesis conditions are represented in terms of
LMIs, the problem can be numerically solved using convex optimization techniques

implemented in computational packages of proven efficiency [22, 61, 62].

Particularly regarding PDC stabilization problem for T-S systems, initially the
results based on quadratic Lyapunov functions (quadratic-on-the-state functions with a
constant matrix) stand out. However, this approach often yields overly conservative
conditions since the same Lyapunov matrix must certify stability for all linear subsys-
tems [63]. To address this issue, researchers have employed techniques such as slack
variables, Pélya’s relaxations, and also exploited fuzzy summation properties to gener-
ate progressively less conservative conditions [15, 64-68]. These efforts date back to the
1990’s and have evolved into convergent relaxations based on Pélya’s theorem [69-71].
However, due to its conservativeness, it is well known that quadratic functions cannot
completely characterize stability and performance of T-S systems. As a matter of fact,
polyhedral [72], piecewise quadratic [73, 74], and homogeneous polynomial (of degree
larger than 2) on the states Lyapunov functions [75, 76] may be needed. Regarding
stability analysis, Homogeneous Polynomial Lyapunov Functions (HPLFs) are certainly
the most attractive technique since the corresponding stability conditions can be for-
mulated in terms of convergent LMI relaxations [75-77]. Notwithstanding, this class of
Lyapunov functions has still been little explored in the context of controller synthesis,
since the known linearization techniques — such as congruence transformations and
change of variables — are not useful in this case. As a consequence, this subject certainly
warrants further investigation in the context of robust stabilization of T-S fuzzy systems,
specially when dealing with output-feedback, where the existing results, based on

quadratic-on-the-states Lyapunov functions, are conservative.

The problem becomes more complicated when investigating regional stability
and estimating regions of attraction. Regional stability guarantees the existence of a
neighborhood around the equilibrium point, known as DOA, where all trajectories
originating from any initial condition within the DOA asymptotically converge to the
equilibrium point [3]. Quadratic Lyapunov functions are based on a constant Lyapunov

matrix (independent of the Membership Functions (MFs)), implying that there is no
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need to take into account the derivative of the MFs in the stability conditions. Despite
the notable success from a theoretical standpoint, stability analysis and control design
results based on quadratic Lyapunov functions do not fully explore the key fact that
the T-S model is valid only within a compact region of the state-space. In other words,
although the interest is only regional, the stability conditions are assured globally,
inevitably leading to more conservative results. Less conservative Lyapunov functions,
which generally require a treatment of the derivatives of MFs, have also emerged
as alternatives to the quadratic function. Fuzzy Lyapunov Functions (FLFs) — i.e,,
quadratic-on-the-state functions with a Lyapunov matrix that depends on the MFs —
can be used to provide less conservative results, applicable to both continuous-time [20,
78-80] and discrete-time [81-84] T-S fuzzy systems.

Considering the regional stability of continuous-time systems, the time-derivative
of the MFs appearing in the stability conditions must be taken into account. In this
context, FLFs with affine [78, 85] and polynomial [86] dependence on the MFs have
emerged as an alternative when the variation rates of the MFs are known or at least
bounded. When considering bounds for the time-derivative of the MFs [78, 86-89], it is
necessary to verify a posteriori the validity of the results. Different strategies based on
the imposition of bounds for the time-derivative of the MFs have been proposed (see
for instance Guerra et al. [19], Lee, Park, and Joo [20], Bernal and Guerra [90], Pan et al.
[91], Pan et al. [92], and Lee and Kim [93]). The application of FLFs has evolved to better
account for the locality of the T-S model. Enhanced methodologies were first introduced
in Guerra et al. [19], Lee, Park, and Joo [20], Bernal and Guerra [90], Pan et al. [91], Pan
et al. [92], Lee and Kim [93], and Guerra and Bernal [94], where the locality of the model
is further explored to compute precise bounds for the time-derivative of the MFs with
respect to the premise variables. In Lee, Joo, and Tak [95], Gomes et al. [96, 97], and
Marinho, Oliveira, and Peres [98], the time-derivative of the MFs is described entirely in
terms of the T-S dynamic model by means of a polytopic representation of the gradient
of the MFs. These strategies produced less conservative results and improved estimates
for the DOA.

In the discrete-time domain, one of the earliest instances of FLFs was introduced
in Guerra and Vermeiren [99], being after that improved to incorporate techniques such
as relaxations [100], k sample variation approach [101], as well as Lyapunov matrices
and control gains depending on multiple instants of time [102-109]. However, most of
the aforementioned works predominantly address global stability, not fully exploring
the locality of the T-S model when computing the variation of the MFs. Moreover,
the study of regional stability conditions and estimation of the DOA in discrete-time
T-S fuzzy systems pose additional challenges. This complexity arises from the need
to define subsets of the state-space where the MFs remain valid for both the current
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and next instants of time, enabling the computation of variations of the MFs and of
the candidate Lyapunov function. However, this aspect has received comparatively
less attention [63, 110, 111], and the use of bounds for the variations of the MFs in the
conditions does not exploit all information associated to the MFs that can be used to
reduce the conservativeness of the analysis, possibly with significant impact on the size
of the estimated DOA.

1.1 Contributions

Considering the scenario where the variation rates of the MFs are unknown,
the first proposal of this thesis is to approach the global state- or output-feedback
stabilization of continuous-time T-S fuzzy systems through HPLFs of arbitrary degree on
the state, generalizing the results based on quadratic stability. As main technical novelty
when compared with standard approaches, this thesis proposes stability conditions
where the closed-loop matrices appear affinely, following the strategy suggested by
Felipe and Oliveira [112] that does not require change of variables. In this way, the
extended matrix, a commonly employed representation for stability analysis [75] using
HPLFs, can be handled in the context of synthesis. As a result, the control design
problem is formulated in terms of a convex optimization procedure based on LMIs,
solved iteratively by means of a locally convergent algorithm. Numerical experiments
are presented to show the advantage of using HPLFs of higher degrees to reduce
conservatism and improve performance in terms of the decay rate in the PDC design
for T-S fuzzy systems.

Besides, this thesis introduces enhancements to the regional stability analysis of
T-S fuzzy systems, presenting novel synthesis conditions for state-feedback and output-
feedback stabilization, as well as for the estimation of the DOA. The innovation lies in
extending the previous results to address PDC control (both state- and output-feedback)
with two different Lyapunov functions: one that depends polynomially on the MFs and
quadratically on the states (FLFs), and another that depends polynomially on both the
MFs and the system states, named Homogeneous Polynomial Parameter-Dependent
Lyapunov Function (HPPDLF). While quadratic-on-the-states Lyapunov functions have
been extensively used for PDC controller design, functions with higher polynomial
dependence on the states have primarily been utilized for stability analysis. This is
because the well-known linearizing change of variables does not generally apply. To
overcome this challenge, a different strategy based on Finsler’s lemma is proposed, de-
riving a design condition where the Lyapunov matrix, the closed-loop dynamic matrix,
and the time-derivative of the Lyapunov matrix (which also depends on the closed-
loop matrix) appear affinely. Overall, the proposed technique simplifies the design
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of output-feedback control laws, making the synthesis procedure tractable through a
locally convergent iterative LMI-based algorithm. This algorithm also has the objectives
of minimizing the decay rate of the trajectories and maximize an estimate of the DOA.
Regarding the treatment of the time-derivative of the MFs, an approach similar to those
in Gomes et al. [96, 97] and Campos [113] is employed. A polytopic representation
is used for the domain of validity of the T-S model as well as for the gradient of the
time-derivatives of the MFs, overcoming one of the main difficulties of dealing with
tuzzy Lyapunov functions in continuous-time. Using the sector nonlinearity approach,
stability conditions that do not require bounds for the time-derivatives of the MFs are
derived. Numerical examples demonstrate the advantages of the proposed approach

compared to some existing techniques from the literature.

Considering discrete-time T-S systems, this thesis focuses on developing condi-
tions for the stability analysis, stabilization and estimation of DOA using parameter-
dependent Lyapunov functions, commonly referred to as FLFs. Building upon the
inspiration from previous works for continuous-time systems [96-98], a novel approach
is introduced by proposing a polytopic representation for both the domain of validity
of the T-S model and the MFs of discrete-time T-S systems. This innovative strategy
effectively addresses the primary challenge of dealing with variation rates of the MFs.
By utilizing the sector nonlinearity approach, stability conditions that do not rely on the
availability of bounds are derived. The stability analysis procedure involves solving a
single-parameter minimization problem subject to LMI constraints, thereby maximizing
the estimate of the DOA. On the other hand, the feedback stabilization entails solving a
locally-convergent iterative algorithm based on LMIs, consisting of two phases: first,
ensuring the stability of the closed-loop system, and second, maximizing the estimate of
the DOA. Numerical examples are presented to assess the effectiveness of the proposed
method, and a comparative analysis with existing techniques from the literature in the
context of state-feedback is conducted.

The relevance of this thesis extends beyond its academic and theoretical contribu-
tions, as it addresses critical aspects of stability analysis and control design for nonlinear
systems. By advancing methods that can be applied to a wide range of systems, such
as aircrafts, drones, motors, vehicles, and biological processes, the results of this work
have the potential to indirectly enhance the development of cutting-edge technologies.
These improvements can lead to more efficient, reliable, and safe systems across vari-
ous industries, highlighting the societal impact of this research on both technological

innovation and practical applications.
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1.2 Thesis organization

This work is organized as follows. The main concepts related to LMIs are
introduced in Chapter 2, including Finsler’s Lemma, a fundamental tool for developing
the stabilization conditions proposed in this work. These conditions are based on the
Lyapunov stability theory, presented in the same chapter, which addresses both global
and regional stability theory, as well as concepts related to the estimation of the DOA.
Properties and notations related to homogeneous polynomials, which are essential for
defining Lyapunov functions with degrees of dependence on the states higher than
2, are also covered in Chapter 2, where, subsequently, a general LMI-based iterative
algorithm is presented. Variations of this algorithm are used to solve the global and
regional feedback stabilization problems for both continuous- and discrete-time T-S
systems, which are described in Chapter 3, along with concepts involving PDC control.
Chapters 4, 5 and 6 present the main results of this thesis, encompassing feedback
stabilization, improvement of decay rates and maximization of estimates for the DOA of
continuous- and discrete-time T-S systems. Finally, Chapter 7 outlines the conclusions
and suggests directions for future work.
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Chapter 2

Preliminary Concepts, Definitions and Notations

This chapter introduces fundamental concepts in control theory, focusing on
LMIs, Lyapunov stability theory, and homogeneous polynomials. These mathematical
tools and techniques are essential to the stability analysis and design of control systems,
offering effective, numerically efficient and robust methods for ensuring system stability

and performance.

The development and application of LMIs have revolutionized the field of ap-
plied mathematics, specially control theory. From the foundational contributions of
early 20th-century mathematicians to the sophisticated numerical algorithms available
today, LMIs have proven to be an indispensable tool in both theoretical research and
practical engineering. The robust mathematical framework provided by LMIs enables
the systematic handling of stability analysis and control design methods taking into
account uncertainties, time-varying parameters, some types of nonlinearities, hybrid
dynamics, stochastic parameters, and performance specifications, making them a corner-
stone of modern control theory. The significance of LMIs lies in their ability to convert
complex, non-convex problems into tractable convex forms, which can be efficiently

solved using modern computational tools [22, 62, 114-116].

Lyapunov stability theory provides a powerful set of tools for analyzing the
stability of equilibrium points in dynamical systems. It offers a set of techniques for
determining whether the equilibrium points of a system are stable, asymptotically
stable, or unstable. By constructing appropriate Lyapunov functions, one can determine
both local and global stability conditions and estimate the domain of attraction. The
theory’s versatility and robustness make it indispensable in modern control theory and

dynamical systems analysis [3, 117].

Homogeneous polynomials are defined as polynomials where all the terms
(monomials) have the same total degree [77], providing a uniform structure that is
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advantageous in various analytical contexts [77]. This property makes them particularly
useful in simplifying complex mathematical expressions and performing algebraic

manipulations essential in fields such as control theory and optimization.

The integration of these concepts — LMIs, Lyapunov stability theory, and homo-
geneous polynomials — provides a compelling and effective framework for addressing
a wide range of analysis and control problems. By exploring the strengths of each
approach, one can develop robust and efficient methods for system analysis and con-
troller design. This chapter aims to introduce these concepts, providing the necessary

theoretical background, mathematical formulations, and practical applications.

2.1 Linear Matrix Inequalities

The advent of modern control theory in the 1960s and 1970s, with contributions
from Lyapunov, Kalman, and others, paved the way for the use of LMIs in system
analysis and synthesis of filters, observers and controllers. LMIs are a powerful tool in
control theory, optimization, and various fields of engineering and applied mathematics.
The origins of LMIs can be traced back to the work on quadratic forms and matrix
theory in the early 20th century. Significant contributions came from fields such as
optimization and control theory, where LMIs were used to assess system stability and

performance [22, 117].
An LMI is an inequality of the form

F(x) =F+x1Fi+ -+ x,F, >0, (2.1)

-
where Fy, Fy, - - - , F; are symmetric matrices and x! = [xl Xy - xn} is a vector of

decision variables. The set of values x that satisfies the LMI (2.1) is called the feasible
set. Finding a solution to an LMI involves determining whether this feasible set is
non-empty and, if so, identifying the values of x within it. The feasibility of LMIs can
be efficiently checked using convex optimization techniques, particularly semidefinite

programming (SDP) [118].

It is important to emphasize that the previous inequality is related to the concept
of positive definiteness of the matrix F(x). A matrix A € R"*" is defined as positive definite
if

x"Ax >0 Vx#0.
If the strict inequality is relaxed to x " Ax > 0, then A is referred to as positive semidefinite.
Similarly, a matrix is termed negative definite or negative semidefinite if the inequalities are
reversed in the definitions of positive definite and positive semidefinite, or equivalently,
if —A is positive definite or positive semidefinite, respectively [119].
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The foundational works of control theorists like Lyapunov and Kalman eventu-
ally led to the formulation of LMI conditions, setting the stage for the systematic use
of LMIs in control and optimization. Kalman’s development of the Kalman filter and
his criteria for controllability and observability laid the groundwork for the practical
application of matrix inequalities in system analysis [120]. Lyapunov’s stability theory,
which provides conditions for the stability of dynamical systems via the existence of
Lyapunov functions, often translates into LMI conditions [117], specially when dealing

with linear systems.

In control theory, LMIs are extensively applied, since determining whether a
system is stable can be formulated as an LMI problem [120]. The foundational works
by Boyd et al. [22] and Gahinet et al. [61] have significantly contributed to the popularity
and widespread adoption of LMIs in control applications. LMIs have become an
essential tool in robust control design, providing a systematic way to handle system
uncertainties and performance specifications [121, 122].

Moreover, LMIs are instrumental in solving problems related to .7, control,
model predictive control, and multi-objective optimization. Their versatility and the
existence of efficient numerical solvers, such as those discussed by Nesterov and Ne-
mirovskii [123], make LMIs an invaluable tool in modern engineering and applied
mathematics. Consequently, the LMI framework has established itself as a cornerstone
in both theoretical research and practical applications.

The application of LMIs extends beyond control theory into various domains. In
signal processing, LMIs are used to design filters and optimize various performance
criteria [124]. In structural design, as in civil and mechanical engineering, LMIs are
applied to optimize the design of structures to ensure stability and resilience under
various loads [125]. Additionally, LMIs provide a convenient framework for convex

optimization problems, enabling efficient solution techniques [123, 126].

A key result in the theory of LMIs, providing a useful condition for the existence
of solutions to certain types of matrix inequalities, is Finsler’s lemma, presented in
sequence (extended to deal with parameter-dependent matrices). This lemma is partic-
ularly important in control theory and optimization for its role in handling quadratic

forms and matrix inequalities.

Lemma 2.1

Let x € R", 2(«) € S" and B(a) € R™*" such that rank(A(«)) < n, and consider
B ()t such that B(x)B(x)- = 0, where & € Ay, the unity simplex of appropriate

d
dimension d, i.e., \j; = {/\ € R . Z A=1,A2>0,i¢€ Nd}. Then the following
i=1
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statements are equivalent:

(i) x*2(x)x < 0,VB(ax)x =0, x # 0,V € Ay.
(i) B(a)* T 2(x)B(x)*: <0,V € Ay.
(iii) IueER : 2(a) — uB(a)' B(a) <0,V € Ay.

(iv) 32 () € R : 2(a) +He(Z (ax)#B(x)) <0,V € Ay.

Proof. See [127] for a proof where all matrices are x-independent. O

Finsler’s lemma is a technique in control theory that deals with quadratic in-
equalities and provides a set of equivalent conditions that can be used to check the
feasibility of certain matrix inequalities, making it a powerful tool in the analysis and

design of control systems [128, 129].

2.2 Lyapunov Stability Theory

Lyapunov stability theory is a cornerstone in the field of control theory and
dynamical systems, providing a robust framework for analyzing the stability of equilib-
rium points in nonlinear systems. The theory, developed by the Russian mathematician
Aleksandr Lyapunov in the late 19th century, offers both qualitative and quantitative
tools to determine the stability of a system without solving its differential equations
explicitly.

The origins of Lyapunov stability theory date back to Aleksandr Lyapunov’s
seminal work in 1892, titled “The General Problem of the Stability of Motion”. Lya-
punov’s methods extended the classical approaches to stability analysis, which were
primarily based on linearization and eigenvalue analysis. His approach introduced the
concept of a Lyapunov function, a scalar function that can be used to assess the stability
of an equilibrium point for both linear and nonlinear systems. Even though largely
unknown in the West until about 1960 [117], Lyapunov’s work laid the groundwork for
modern stability theory and has influenced numerous developments in control theory,
particularly in the analysis and design of robust control systems. The significance of
Lyapunov’s contributions is evident in various fields, including engineering, physics,

and applied mathematics [3, 117].

Consider a continuous-time autonomous dynamical system described by the

differential equation

x = f(x), (2.2)
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where x € R" and f : R” — R" is a continuously differentiable function. An equilibrium
point x, is a point where f(x,) = 0, and it can be defined as Lyapunov, asymptotically
or exponentially stable [3, 117], according to the definition presented in the sequence.

Definition 2.1

The equilibrium point x, is said to be

e Lyapunov stable if, for every e > 0, there exists a & > 0 such that if ||x(0) — x,.|| <
5, then ||x(t) — x.|| < eforall t > 0;

* unstable if it is not stable;

* asymptotically stable if it is Lyapunov stable and, in addition, ||x(t) — x.|| — 0 as
t — oo,

 exponentially stable if there exist positive constants ¢ and A such that ||x(t) —
Xel| < c||x(0) — x.|| exp(—At) forall t > 0.

Therefore, an equilibrium point is stable if all solutions starting at nearby points
stay nearby; otherwise, it is unstable. It is asymptotically stable if all solutions starting
at nearby points not only stay nearby, but also tend to the equilibrium point as time
approaches infinity. If this tendency is exponential, then the equilibrium point is
exponentially stable.

To analyze the local stability of an equilibrium point, Lyapunov theory uses a
scalar function V(x(t)) : D — R, as defined next [3].

Theorem 2.1

Let x, = 0 be an equilibrium point of the dynamical system (2.2) and D C R" be a domain
containing x.. Let V(x(t)) : D — R be a continuously differentiable function such that:

1. V(x,) =0and V(x(t)) > 0in D — {x,.}
2. V(x(t)) = VVef(x) <0inD.
Then, V (x(t)) is a Lyapunov function for the equilibrium point x, and x, is stable. Moreover,

if V(x(t)) < 0in D — {x.}, then V(x) is called a strict Lyapunov function, and the
equilibrium point x, is asymptotically stable.

An extension of the previous theorem to address the global case can be immedi-
ately obtained by considering D = R" and imposing that V (x(t)) is radially unbounded,
meaning ||x(t)|| — oo = V(x(t)) — oo. Lyapunov stability theory provides conditions
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for global and regional stability, asymptotic stability and exponential stability [3, 117].
When considering the regional stability, a concept that arises is the domain of attrac-
tion (DOA). The DOA of an equilibrium point x, is the set of all initial conditions that
lead to trajectories converging to x., as mathematically defined in the next definition.

Definition 2.2

The domain of attraction 2 (x.) of an equilibrium point x,. is defined as

PD(xe) = {x(0) e R" : x(t) = x,ast — oo} .

Even though finding the exact DOA analytically may be difficult or even impos-
sible, an estimation of the DOA can be obtained by considering a Lyapunov function
V(x) that satisfies the following conditions:

1. V(x) is positive definite.

2. V(x) is negative definite.

The level sets of V(x), defined as Q. = {x € R" : V(x) < ¢}, can provide an estimate
of the DOA. If Q. is bounded and V(x) < 0in Q.\{x.}, then Q. is an estimate of the
DOA [130].

Lyapunov stability theory also applies to discrete-time systems, providing similar
tools for analyzing the stability of equilibrium points. As in the continuous-time case,
stability analysis does not require explicit solutions to the difference equations, relying
instead on the construction of a Lyapunov function.

Consider a discrete-time autonomous system described by the difference equa-
tion

x(k+1) = f(x(k)), (2.3)

where x € R" and f : R” — R" is a continuous function. An equilibrium point x
satisfies f(x,) = x,, and, analogous to the continuous-time case, it can be classified
as stable if solutions starting near the equilibrium remain nearby, and asymptotically
stable if those solutions converge to the equilibrium over time. Exponential stability

implies a more rapid, geometric convergence rate [3].

To assess local stability, a discrete-time Lyapunov function V(x(k)) : D — Riis

used. The following conditions are required [131]:

Theorem 2.2

Let x, = 0 be an equilibrium point of the dynamical system (2.3) and D C R" be a domain
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containing x.. Let V(x(k)) : D — R be a continuous function such that:

1. V(x,) =0and V(x(k)) > 0in D — {x.}
2. AV(x(k)) =V (x(k+1)) — V(x(k)) <0inD.
Then, V (x(k)) is a Lyapunov function for the equilibrium point x, and x, is stable. More-

over, if AV (x(k)) < 0in D — {x.}, then V(x) is called a strict Lyapunov function, and
the equilibrium point x. is asymptotically stable.

In the previous theorem, if D = R" and V(x(k)) is such that V(x(k)) — oo as
|x(k)|| — oo (i.e., V(x(k)) is radially unbounded), then the equilibrium point is globally
stable.

2.3 Homogeneous Polynomials

In modern control theory, the use of homogeneous polynomials became promi-
nent with the advent of state-space representations and the development of robust con-
trol techniques in the 1960s and 1970s, with significant contributions from researchers
like Kalman and Lyapunov, who utilized these polynomials to describe system dynam-
ics and formulate stability criteria [117, 120].

Homogeneous polynomials are defined as polynomials where all the monomials
have the same total degree, a property that makes them particularly useful in simplifying
complex mathematical expressions and in performing algebraic manipulations that are
essential in various fields such as control theory and optimization. For instance, in
control theory, they are used to describe the state space of a system and to formulate
stability criteria.

Additionally, homogeneous polynomials play a pivotal role in stability analysis,
where the concept of an extended matrix (to be defined in Theorem 2.3) arises. Stability
analysis often utilizes Lyapunov functions, which can be constructed using homoge-
neous polynomials to assess the stability of equilibrium points in dynamical systems.
The extended matrix, defined in the context of dynamical systems, is computed through
linear operations with the entries of the dynamic matrix, particularly via Kronecker
products [77]. This method facilitates stability assessments by transforming the system
equations into a higher-dimensional space where the stability criteria are easier to verity.
The use of Kronecker products in this transformation is crucial as it allows for the
efficient handling of the polynomial terms and their interactions. By transforming the
original system dynamics into a higher-dimensional space, it becomes easier to apply
LMI techniques, which are widely used in modern control theory to derive stability
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conditions and design controllers that guarantee system robustness.

To provide a formal definition of homogeneous polynomials, this section relies
on the concepts and definitions thoroughly described in Chesi et al. [77]. The set of
homogeneous polynomials of degree d on n scalar variables is formally defined as

Snd = {h R" =R h(x)= ) aqxq},
qun,d
where x € R”, a; € R is the coefficient associated to the monomial x7, and g belongs to
the set

Dyg={deN":qi+q+ - +q.=d}.

The number of monomials of any polynomial in =, ; is given by the cardinality of D,, 4,

which is equal to
(n+d—1)!

ol d) = = Tyar

Therefore, a homogeneous polynomial is a weighted sum of monomials of
degree d. For instance, consider n = 2 and d = 3. In this case one has the set Dy 3 =
{(3,0),(2,1),(1,2),(0,3)} and the resulting homogeneous polynomials is represented
by h(x) = ”(3,0)95% + a(z,l)x%xz + ﬂ(1,2)x1x% + a(0,3)x§ where a; ;) are known coefficients.

Polynomials can be represented by vectors which contains their coefficients with

n,d)

respect to an appropriate base. Let x{%} € R7("4) be any vector such that, for all i € Znds

there exists ¢ € R%("%) satisfying
h(x) = g"xi

Then, x{?} is called a power vector for =, ;. Therefore, the entries of the vector xtd} are
a finite generating set for =, ; —i.e., every polynomial i € Z, ; can be represented as
a linear combination of the elements of x{?}. Special choices for the power vector are
those where each entry is a monomial, a typical one being

T{k—1}7
X1 [xl Xo X3 ... Xp
k
X1 {} N [x . N }T{kl}
% S Jifk >0
T{k—1}
xn L x?’l [xn] |
(1, otherwise

which yields the lexicographical order of the monomials in x{%} and is adopted in this
thesis.
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Homogeneous polynomials of even degrees, h € =, »,,, can be effectively repre-
sented utilizing the concept of the power vector x{"} € RZ(*")_ This representation is
facilitated through the usage of a matrix H € S7("™) that satisfies the relation

h(x) = xtm T Hxm (2.4)

Matrix H mentioned in (2.4) assumes the designation of a Square Matricial Rep-
resentation (SMR) of the homogeneous polynomial #(x) concerning the power vector
x1"} Introduced in Chesi et al. [132] and Chesi et al. [133], the SMR is also known as
Gram matrix [134].

Given the set defined as
Enm = {E €870 : M TEm) — 0, wx e R"},

and considering E(3) as a linear parametrization of &, ,,, specifically

w(n,m)

E(ﬁ) = Z ﬁiEi/
i=1

where w(n, m) = o(n,m) (1+ o(n,m)) /2 — o(n,2m) and f € R¥(%M) is a free vector,

the expression for /(x) takes the form

h(x) = <" T (H + E(B)) ",

This particular representation is known as the Complete Square Matricial Repre-
sentation (complete SMR) of the homogeneous polynomial /1(x) concerning the power
vector x{"}. As an example, consider n = m = 2 and the quartic homogeneous polyno-
mial i(x) = x} + 2x3xy + 2x3. Computing 0 = 3, w = 1 and the complete SMR, one

gets
110 0 0 -5
H=1|10 0|, EB)=|0 23 0
00 2 -B 0 0
and, consequently,
x3 "T1 1 -8 x5 Xt +2x3x) + 235
W)= [xxa| |1 28 0| |xix| = 48 (—axd+ 22223 — x3ad)
3 B 0 2| | ) ~ ’

A key concept that arises from the use of homogeneous polynomials for stability
analysis is the extended matrix. Given the system x(t) = Ax(t), A* is called the extended
matrix of A, m > 1, if the following relation is satisfied

dxtmt  gydm}p

= — Aftxlm}
I o x(t) = A"xV,

The extended matrix can be computed in terms of Kronecker products by means

of linear operations with the entries of matrix A, according to the following result.
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Theorem 2.3

Let Gy € R™ X901M) be the (full column rank) matrix satisfying

xlM = Gpalm (2.5)
where x"] is the i-th Kronecker power of x. Then the extended matrix A* is given by
-1 m—1
A (G;E Gm> G,I( Y L ®A® Ini> Go. (2.6)
i=0
Proof. See Chesi et al. [77]. ]

Each of the non-zero entries of matrix G;; holds a unity value, and these coef-
ficients can be determined by comparing the monomials on both sides of (2.5). An
example is presented in the sequence to illustrate the construction of the extended

matrix considering a second order matrix A and m = 3.

;
x%xZ
x3 X337
A_ |0 1], RE- X3x7 3 _ x1%3
—6 —5 xlx% x%xz
3 x1X5
x1%3
| %
(1.0 0 0
0100
0100 0 3 0 0
Gy = 0010 CoAt— -6 -5 2 0
0100 0 —12 —-10 1
0010 0 0 —-18 -—-15
0010
_0 00 1_

Pélya’s relaxation is a powerful method for addressing polynomial optimization
problems, particularly in the context of positivity conditions for polynomials, such
as when using parameter-dependent Lyapunov functions in the stability analysis of
uncertain linear systems [135, 136]. This approach is grounded in Pélya’s theorem,
which provides conditions under which a positive homogeneous polynomial with non-

negative variables can be expressed with all positive coefficients after a suitable scaling.
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This simplifies the problem of verifying positivity by converting it into a form where
the polynomial’s positivity is easier to check, typically by ensuring that its coefficients
are positive after the transformation [137].

Poélya’s relaxations are particularly useful for assessing the positivity of homoge-
neous polynomials where the coefficients of the monomials are matrices. This type of
relaxation has found extensive applications in stability analysis and control design for
uncertain linear systems with parameters (either time-invariant or time-varying) that

lie within the unit simplex. To illustrate this, consider the polynomial matrix inequality
T(x) = a3 Tao + a1onTi1 + 03T >0, a € Ay

where A, refers to the unity simplex of dimension 2, and suppose that the coefficients
Tyo, T11 and Ty, are matrices that depend affinely on optimization variables. One
sufficient (though conservative) condition to check the positivity of T(«) is the following
set of LMIs

Ty >0, T11 >0, Tppo>0 (2.7)

since o1 and ap are non-negative and sum up one. To improve the accuracy of the
positivity test, Pélya’s relaxations can be used. For instance, one can test the condition
(g + o) T(ex) > 0, which leads to

oG Tag + G0y (Tag + Ti1) + o105 (Top + Ti1) + o5 To > 0,
that can be tested through the following set of LMIs
Too >0, Too+T11>0, Top+Ti1, Tp2>0 (2.8)

It can be noted that if the LMIs in (2.7) are feasible, then the set of LMIs in (2.8) also holds,
but the converse is not necessarily true. Notably, in (2.8) the term T1; does need to be
positive definite. The number of relaxations can be generalized to (a; + ap )T () > 0,
and if T(«) is positive definite, then for a sufficient large d all coefficient will be positive

definite. For more details about the use of Pélya’s relaxations in control theory, see [135,
136].

24 LMl-based Iterative Algorithm

Motivated by the problem of robust stabilization of uncertain linear systems,
Felipe and Oliveira [112] introduced a novel design procedure using Lyapunov stability
theory that diverges from traditional methods by not employing the classic change of
variables. Instead, the gain is directly treated as an optimization variable. This approach
offers a unified treatment for state-feedback, static output-feedback, and decentralized
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control problems , addressing both continuous- and discrete-time systems. The method
formulates an inequality where both the Lyapunov and closed-loop matrices appear
affinely, and is solved iteratively using polynomial approximations for the optimization
variables and objective function minimization. Despite its local convergence, numerical
comparisons indicate this technique can outperform existing methods, suggesting
potential for new robust control algorithms for systems with uncertainties [112].

Consider an uncertain linear time-invariant system with the dynamics
(2.9)

where x(t), u(t) and y(t) are respectively the vectors of states, control inputs and
measured outputs, matrices A(«), B(«) and C(«) belong to a polytope and « is a vector

of time-invariant parameters in the unit simplex A;, i.e.,

.
(A,B,C)(x) = Y a(A,B,C)i, ac€A,.
i=1

Considering the control law u(t) = Ky(t), and using the Lyapunov theory, the
stability conditions for the closed-loop system are given in terms of the existence of a
parameter-dependent Lyapunov matrix P(«) € S", P(«) > 0, such that

He (P(et) Ay () <0,
where A, (o) = A(a) + B(a)KC(«).

In the case of state-feedback, congruence transformations allow this problem
to be addressed using a classic change of variables [138], where the product of the
Lyapunov matrix and the gain is replaced by a new variable, after fixing P(x) = P.
Specifically, the product A, ()P = A(«)P + B(«)Z, where Z = KP.

On the other hand, according to statement (ii) of Finsler’s lemma, the previous

o) = [P(Ooc) ;]

condition can be rewritten as

I

@1(0()J‘T0@1(06)=@1(06)J‘ <0, %1(0()J‘ = Acl((x)

From the orthogonal property, it is possible to determine % («) = [ACZ () —1I } ,
which allows to obtain the condition (iv) of Lemma 2.1 with slack variables, i.e.,

X1 ((X)

21 () + He ( Xa(a)

[Ad((x) —ID <o. (2.10)

Even though equation (2.10) has been explored in the robust synthesis of con-
trollers, typically associated with a change of variables, Felipe and Oliveira [112] propose
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applying Finsler’s lemma once more to provide new equivalent conditions with addi-
tional slack variables. This innovative approach offers more flexibility and potentially
enhances the robustness of the resulting control strategies by introducing additional
degrees of freedom in the formulation, since all optimization variables can be made

parameter-dependent.

Rewriting (2.10) in the form of statement (ii) of Lemma 2.1, %> (a) T 2, («) %5 () * <
0, with

], B ()t = 0 I ,
Xl(OC)T Xz(()()T

it is possible to obtain
F(e) = |Zi(0) Za(@) Za(w)] = ~Zs(e) [X(@)T Xo(@) -1].

Therefore, the condition (iv) of Finsler’s lemma can be obtained, i.e.,

25 (a) + He (% () %(x)) < 0, (2.11)
where
Yl(oc)
V(@) = @], B =2 Z@) Za).
Yg((X)

However, it is important to note that conditions in (2.11) take the form of Bilinear
Matrix Inequalities (BMIs) due to the presence of the product % («)%,(«). To address
this challenge, an iterative algorithm with local convergence is proposed in Felipe and
Oliveira [112], starting from an initial feasible solution through an appropriate choice of
variables %, («). The existence of a feasible solution can be ensured by considering a
relaxed stability condition. This involves examining the stability of A, () — pI, where
p is an upper bound to the maximum real part of the eigenvalues of A, («). The
introduced real positive scalar p can be viewed as a relaxation parameter and it can be
minimized as an objective function. If p < 0 is obtained, A.(«) is robustly stable and K
is a robust stabilizing gain. Therefore, ensuring the existence of a feasible initial solution

requires selecting a sufficiently large positive value for p.

The key feature of condition (2.11), enabling the iterative solution, is that
He (% ()%, (x)) = He(%(a) "% (x) 7).

Therefore, any % («) T serves as a valid choice for %,(«) in the subsequent iteration.
The local convergence of the algorithm, with non-increasing p, can be demonstrated
by assuming the feasibility of (2.11) at iteration it and showing it remains feasible at
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the subsequent iteration it + 1. This is achieved with specific selections 2 j;1 () =
22it(«) and By iy y1(ax) = Hy(a) ", ensuring pj 41 < pjy.

The described procedure is presented in Algorithm 1. It takes the systems
matrices A(«), B(a) and C(«) as inputs, as well as the maximum number of iterations
itmax and a tolerance ¢, which determines the end of the iterative procedure if the

progress between two consecutive iterations is not significant.

Algorithm 1 Iterative procedure for robust stabilization

Input: Ai, Bi, Ci, 9372, itmaXI £,
1: it < O;
2: While it < itpax
3: it <—it+1;

4 minimize p subject to (2.11);
5: If p;; <0 Then
6: K <= Kit, p < pit;
7 Return
8: Else If p;; — p;;—1 < € Then
9: break;
10: End If

11: %o(a) « Z ()"
12: End While

The algorithm also requires an initial value for %, («), which follows a prede-
tfined form proposed by Felipe and Oliveira [112], which is specific for the problem of
robust stabilization of time-invariant polytopic systems. However, this thesis proposes
different initialization techniques in subsequent chapters, specialized for each problem
under investigation, that also present variations of the iterative procedure described,
particularly when dealing with performance criteria. The iterative algorithm has already
proved its advantages in uncertain linear systems and Lur’e systems [139], and the
similarity of the description of T-S systems — presented in the next chapter — with the
polytopic representation of uncertain linear systems has inspired the development of

the main results of this thesis.
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Chapter 3

Takagi-Sugeno Fuzzy Systems

Fuzzy logic, introduced by Zadeh [140], extends classical Boolean logic to handle
the concept of partial truth, accommodating the inherent vagueness and ambiguity
of real-world situations. At its core, fuzzy logic employs fuzzy sets, which are char-
acterized by MFs that assign each element a grade of membership between 0 and 1,
in contrast to the binary nature of classical sets. Premise variables, also known as
antecedent variables, are the input variables used in fuzzy rule-based systems to define
the conditions or premises of the rules. These variables are mapped to fuzzy sets using
MFs, which assign a degree of membership to each premise value. The degree of fulfill-
ment (or firing strength) measures the extent to which the premise satisfies the fuzzy
condition, and is computed using operations such as the minimum or product of the
membership values of the premise variables. Fuzzy systems can be broadly classified
into several types based on their rule structures and inference mechanisms [141]. For
example, T-S fuzzy systems use linear or affine functions in the consequent part of their
rules, making them computationally efficient and well-suited for control problems.

Introduced by Takagi and Sugeno [6] — and also known as Takagi-Sugeno-Kang
(TSK) fuzzy systems —, T-S systems were first intended for system identification and
control of nonlinear systems, offering a powerful tool for modeling, simulation, and
designing robust control strategies, providing a systematic and effective way to handle
nonlinear systems. The T-S model structure allowed for the approximation of nonlinear
systems through a combination of linear or affine models, making it a powerful method
for capturing the dynamics of complex systems. Another primary application was in
control systems design. T-S systems provided a framework for designing controllers
that could handle nonlinearities more effectively than traditional linear controllers. By
using a set of fuzzy rules to blend linear control actions, T-S models enabled more
precise and robust control strategies for nonlinear processes. T-S models are composed
of a set of fuzzy If-Then rules. Usually, each rule associates a fuzzy condition with a
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linear (or affine) consequent part. This structure allows for the smooth integration of
local linear models into a nonlinear model.

As shown in Tanaka and Wang [7], the linear T-S fuzzy model can be a universal
approximator of any smooth nonlinear control system [142]. The T-S model’s ability to
interpolate between multiple linear models based on the degree of fulfillment of the
fuzzy conditions provides a powerful way to handle nonlinearities. This mechanism
ensures a smooth transition between different operating regimes of the system. Despite
their ability to model complex behavior, T-S systems remain relatively simple and
interpretable compared to other nonlinear modeling approaches. The use of linear
consequents in the fuzzy rules makes it easier to analyze and understand the model’s
behavior.

The sector nonlinearity approach [6, 8] is a fundamental concept in fuzzy model-
ing, especially in the context of T-S fuzzy systems. This methodology aims to represent
the nonlinear behavior of a system within a compact region of the state space by com-
bining linear submodels. By defining sectors within which the nonlinearities of the
system can be bounded, the sector nonlinearity approach facilitates the construction of
T-S fuzzy models that accurately capture the dynamics of the system. This technique en-
ables the application of well-established linear control techniques to nonlinear systems,

thereby simplifying stability analysis and controller design.

3.1 Continuous-time T-S Systems

Consider a nonlinear system represented by the state-space model
(3.1)

where f(0) = 0 for u = 0 (the origin is an equilibrium point), and fx(-), f¢(-) and f(-)
are bounded and smooth functions in a compact set of the state-space. Associated to
this dynamics, the i-th rule of the T-S fuzzy system is given by [7, 60]

If z1(t) is M and ... and zp(t) is M;,
Then x(t) = Ajx(t) + Bu(t), i€eN,,
y(t) = Cix(t)

where M;; denotes the fuzzy set linked to the premise j in the i-th rule, and r is the

count of model rules. The vector of premise variables, denoted as

207 = [a() - 7],
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can capture the states, external disturbances, and time dependencies. In this thesis, for
continuous-time T-S systems, it is assumed that the premise variables z(t) are functions
of the state variables, i.e., z(f) = f;(x(¢)). This formalism allows for expressing the
premise variables in terms of the state variables, thereby facilitating the subsequent
analysis and modeling procedures. For feedback control purposes, it is assumed that all
the premise variables can be measured or estimated in real time.

In the previous If-Then expression, the vectors x(f) € R", u(t) € RY, and
y(t) € R® respectively represent the state, input, and output of system (3.1). Matrices
A; € R B; € R"™1, and C; € R**" correspond to the local model components.
Consequently, these If-Then rules encapsulate the local linear input-output relationships
inherent within the original system (3.1).

For a given triple (x(t), u(t), y(t)), the representation of (3.1) using a fuzzy model

is given by
oo Limgwi(z(f)) (Aix(t) + Biu(t))
o B
_ Li= WilZ i* ’
Y = S )
where

P
w;(z(t)) = I_Il M;;(z;)(t)
]:

and M;;(z;(t)) is the grade of membership of z;(t) in M;;. Observing that
14
Y wi(z(t) >0, wi(z(t)) >0,ieN,,
i=1

it is possible to write
wi(z(t))
ai(z(t) = =——.
R RETEG)
In the previous equation, «;(z(t)) represents the MF associated with the i-th rule and,
forallt > 0and x(t) € X (the T-S model validity domain, to be defined in the sequence),
the vector of MFs a(z(t)) belongs to the simplex, i.e.,

.
a(z() = [aa(z(t) - alz(t)] €A

Therefore, the ultimate representation of the nonlinear system (3.1) using a fuzzy
model is given by

, (3.2)

valid for all x(t) € X, where matrices A(a(z(t))), B(a(z(t))) and C(a(z(t))), are
inferred through a summation called center-of-gravity defuzzification process expressed
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as [7, 60]
(A,B,C)( = Z )(A, B, C);. (3.3)

The MFs and their associated parameters hold substantial sway over the per-
formance and interpretability of the system. These choices delineate not only which
local linear model (consequent) is triggered but also the extent to which it is activated.
Central to this process is the computation of the degree of fulfillment or firing strength
of each rule, which hinges on the membership values of the premise variables. This
parameter assumes a pivotal role in the operation of fuzzy systems, particularly in
the aggregation of rule consequents in Takagi-Sugeno (T-S) models, as depicted in

equation (3.3), thereby exerting a direct influence on the overall output of the system.

Furthermore, the set X C R" is characterized as a polytope
X ={&eR" & € [—Zimax Zimax) » | €Ny},

where z; ., > 0, € N, are predefined real numbers. To simplify, X delineates the
region that establishes the limits within the T-S model remains applicable. The polytope
X can also be equivalently described by two different representations that are more
useful for the purposes of this thesis. First, the set X’ can be represented in terms of

linear inequalities [22]
X:{xeana;{xg,keNu}, (3.4)

where the vectors a, € R”, k € N, are known and p is the number of constraints.
Second, X can be expressed by X = co{h',h?,... W<}, ie., by the convex hull of a
set of given vectors W, i€ Ng (the computation of h' from the inequalities (3.4) can be
performed through linear programming tools [143]). Thus, any x € X can be written as

=Y Ghf, e A (3.5)
k=1

From the above discussion, the nonlinear system outlined by equation (3.1) can
be effectively portrayed using the T-S fuzzy model as presented in (3.2) [7]. For the
sake of notational clarity, the explicit dependency on the time index t is suppressed

whenever possible and «(z(t)) is simplified to a.

With respect to the T-S fuzzy system as expressed in (3.2), by employing the PDC
methodology for the design of output-feedback controllers, each control rule aligns
with the corresponding rule of the T-S model [7], i.e.,

If z1(t) is M,1 and ... and z,(t) is M)
Then  u(t) = Kiy(t), i€N,.
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Consequently, this leads to the derivation of the control law u(t) = K(a)y(t),

with
r
K((X) = Z a;iK;, K; € qus’ o €N,
i=1
By extension, the closed-loop T-S fuzzy system can be described as
x(t) = Ag(a)x(t), Vx(t) € X (3.6)
where

Aqla) = A(a) + B()K(@)Cla).

Hence, distinct from other nonlinear control techniques, the PDC approach
for T-S models hinges on determining the local linear gains K; within the consequent
portion of the T-S model rules.

3.2 Discrete-time T-S Systems

Discrete-time T-S systems can be defined similarly to the continuous-time case.
However, due to the locality of the model, some particularities related to the presence of

the states inside the validity domain in the subsequent instants of time must be defined.

Consider the state-space dynamics

{x(k +1) = f(x(k))x(k) + g(x(k))u(k), (3.7)

which corresponds to a discrete-time nonlinear system, where the vectors x(k) € R”,
u(k) € R7, and y(k) € R’ respectively represent the state, input, and output. This
system can be expressed locally in a compact region of interest containing the origin as

a T-S fuzzy model.

For the nonlinear system (3.7), the i-th rule of the T-S fuzzy model takes the
form [7, 60]
If z1(k) is Mj; and ... and z,(k) is M;,

hen {x(k +1) = Apx(k) + Biu(k)
y(k) =Cix(k), i€eN,,

where matrices A; € R"*", B; € R"*1, and C; € R**" correspond to the local model
components, M;; represents the fuzzy set associated with the j-th premise in the i-th rule
and r denotes the number of model rules. The premise variables, denoted as z(k) " =
[z1(k), ..., zp(k)], can be designed to encompass the states, external disturbances, and
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time dependencies. Particularly when dealing with discrete-time systems, it is assumed
that these premise variables solely rely on linear combinations of the state variables, i.e.,

2() = Tx(k) € R, T = |77 o T,]] e RV, (3.9)

Although this assumption restricts the classes of nonlinear systems that can be
investigated (for instance, quadratic systems [144, 145]), stability analysis and especially
control design remain challenging problems. Moreover, this assumption has been
frequently adopted in the literature on T-S systems. As in the continuous-time case, it is

assumed that all the premise variables can be measured or estimated in real time.

Given a certain triple (x(k), u(k), y(k)), the fuzzy model represents the nonlinear
system as [7, 60]

/ (3.9)

valid for all x(k) € £ C R", a set that includes the origin. Put simply, £ represents the
set that delineates the boundaries within which the T-5 model remains applicable and it
is formally defined later in the text. Matrices A((z(k))), B(a(z(k))) and C(«x(z(k))),

obtained using the center-of-gravity method, can be expressed as
r
(A, B,C)(a(z(k))) = ) ai(z(k))(A, B,C);,
i=1

where «;(z(k)) represents the MF associated with the i-th rule and, for all k > 0 and
x € L, the vector of MFs a(z(k)) belongs to the simplex, i.e.,

.
a(2(0) = [oa(z(K) ... w(z(k)] €A

Thus, the nonlinear system described by equation (3.7) can be accurately repre-
sented [142] by the T-S fuzzy model provided in (3.9). Consequently, the construction
of a fuzzy model becomes pivotal in this approach. Despite the extensive literature on
this topic, identification using input-output data for fuzzy modeling is more suitable for
systems that cannot be represented by analytical models. In cases where the nonlinear
dynamic model is known, the sector nonlinearity approach [7] is more appropriate, en-
suring an exact construction of the fuzzy model by considering a local sector. Therefore,
considering the representation of the premise variables as linear combinations of the
states as in (3.8), it is possible to describe the region of validity of the local sector as a
set that includes the origin as

P = {5 cR": 7;'5 S [_pmax,ir pmax,i] 7 i€ Np} ’ (310)



Chapter 3. Inkagi-Sugeno Fuzzy Systems 39

where pnayi > 0, for i € Ny, are predefined real numbers.

Additionally, in this thesis, it is assumed that all state variables associated to
discrete-time systems are confined to a specific interval, defined as

X = {E eR": 315 € [_xmax,j/xmax,j] ’ ] S Nn} ’

where Xpay,; > 0, for j € N, are predetermined real numbers. This assumption is
important for the proposed approach and, moreover, it has a practical justification since
variables of physical systems are inherently bounded. Consequently, the domain of
validity of the T-S model can be described as the polytope

L=PNX={EcR": Li € [~ Zmaxts Zmaxt]» L € Nptn}, (3.11)
where
LT = [Tf T el e;] _ [TT In}
and

pmax,fr £ € {LIP}
Xmax,—pr LE€{p+1,...,p+n}

Zmax,{ =

In the particular case where a premise variable corresponds to a state variable,
it is not necessary to constrain such variable in the definition of both P and L. There-
fore, matrix L can be simplified to exclude repeated constraints on the state variables.
Alternatively, the domain of validity £ can be described by the vertices that define
the polytope, and the computation of the vertices can be performed using the Vertex
Enumeration algorithm, a well known linear programming-based tool [143].

For simplicity, dependence on the time index k and premise variables z are
explicitly mentioned only when essential, and an abbreviated notation is introduced,
where x(k) = x and x(k + 1) = x* denote the state vectors at instants k and k + 1,
respectively, while a(z(k)) = a and a(z(k+ 1)) = a™ are the MFs at instants k and
k+1.

Regarding the T-S fuzzy system as delineated in (3.9), the implementation of the
PDC methodology consists on using a fuzzy output-feedback controller that mirrors
the structure of the associated T-S model. Therefore, the PDC design ensures that each

control rule is precisely associated with the corresponding rule of the T-S model [7], i.e.,

If z1(k) is M and ... and zp(k) is M;,
Then  u(k) =Kyy(k), ieN.

Consequently, this leads to the derivation of the control law u(k) = K(«)y(k),
with

r
K(OC) = Z a;iK;, K; € RI*¢, oo € A,
i=1
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and, by extension, the closed-loop T-S fuzzy system can be described as
x(k+1) = Ag(a)x(k), Vx(k) € L (3.12)

where
Ag(a) = A(a) + B(a)K(a)C(ex). (3.13)
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Chapter 4

Global Stabilization of Continuous-time T-S Systems

Given the scenario where the variation rates of the MFs are unknown, this chapter
proposes using Homogeneous Polynomial Lyapunov Functions (HPLFs) of arbitrary
degree on the state for global state- or output-feedback stabilization of continuous-
time T-S fuzzy systems. This approach generalizes results based on quadratic stability,
aiming to provide more flexible and less conservative conditions.

Consider the candidate Lyapunov function
o(x) = x M Ty lm} 4.1)
of degree 2m on the states. The global asymptotic stability of the origin of the closed-

loop continuous-time T-S given in equation (3.6) can be proved using the next theorem,
where & > 0 is a lower bound for the system decay rate [22].

Theorem 4.1

Letv:R" — R, v(x) = ximyTydm} v e solnm) pe a function satisfying

v(x) >0, Vx e R", x #0
o(x) < —2yv(x), Vx € R", x #0,

along the trajectories of (3.6). Then v(x) is a Homogeneous Polynomial Lyapunov Function
(HPLF) of degree 2m for the T-S system (3.6) that proves the global exponential stability of
the origin of this system and provides a lower bound for the decay rate, given by & = y/m,
when y > 0.

Proof. See [22,77]. o
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The choice m = 1 in Theorem 4.1 retrieves the well known result based on the
quadratic Lyapunov function v(x) = x ' Vx, extensively used in the robust control liter-
ature. The main interest of this chapter is to investigate the case m > 1, where standard
linearization techniques, as change of variables and congruence transformations, cannot
be applied. The motivation comes from the fact that, as far as stability is concerned, the
conditions of Theorem 4.1 are progressively less conservative with the increase of m,

tending to the necessity for a sufficiently large m [76].
The first condition in Theorem 4.1, v(x) > 0, can be written as V > 0. For the
second condition, according to the definition of the extended matrix (2.3), one has
o(x) = 2t Typlmd 4yl Ty g {m
= M T (AR (o) V + VAY, () 2. (4.2)

Taking into account that A¥ (x) is a cubic fuzzy summation on « (due to the product
B(a)K(x)C(«x)), consider the following matrix

E(@)= Y of'al?. - ofE(B"). (4.3)
kE'Drs

where E(%) € Eum, k € D,3 and x{"™ TE(a)x{™ = 0, Vo € A,. As an illustrative
example, the case n = 2, m = 3, r = 2 yields

0 0 —3B —3B
P 0 ﬁk lﬁk —lﬁk
E@)= Y o'o?E(BY), EB)=| 1o 10 g o |
keDy s —2P1 2By B3
—3B5 =385 0 0

Dy5 =1(3,0),(2,1),(1,2),(0,3)}
Thus, including E(«) into (4.2), gives
o(x) = x1mT (He(VAf,(oc)) + E(cx)) xim (4.4)
and, as a result, the second condition in Theorem 4.1 can be written as
xtmT (He(VAf,(oc)) - E(oc)) b < 2y {mi Ty pdm

He (VA% («)) + E(a) +2yV = He(V(A¥/(«) + vI)) + E(x) < 0.

The next theorem formalizes the above results.
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Theorem 4.2

Let m > 1 be given. If there exist matrices 0 < V € S K(a) € RI*" and
E(a) € RO g5 in (4.3), and a scalar y > 0 satisfying

He(V(A%(a) +vI)) + E(a) <0, Va €A, (4.5)

then v(x) as in (4.1) is a HPLF of degree 2m for the T-S fuzzy system (3.6) that proves the
global exponential stability of the origin of the system and & = y/m is a lower bound for
the decay rate.

Proof. Follows from the previous development. O

In (4.5), one can notice the product of the Lyapunov matrix V by the feedback
controller K(«) (inside the closed-loop matrix A* («)), resulting in a Bilinear Matrix
Inequality (BMI). Exclusively for the case m = 1, it is possible to deal with this problem
applying congruence transformations and change of variables (K(x)V = Z(«)), as
in Tanaka and Wang [7], for the state-feedback problem. Considering output-feedback
synthesis, there are some techniques that can derive sufficient LMI conditions, at the
price of introducing conservatism or restricting the structure of the matrices of the
system or of the variables of the problem. However, for m > 2, those techniques can
no longer be applied. The primary reason is that the entries of the control gains K;,
although appearing affinely, are dispersed among the entries of the extended matrix
A" (). Consequently, the product K(«)V no longer appears, and the change of variables
used in the case m = 1 is not feasible. Taking a different approach, this work proposes to
segregate the factors of the product, constructing LMI conditions that can be iteratively
solved. This follows the methodology proposed in Felipe and Oliveira [112], where
changes of variables are avoided.

4,1 Main Results

From Finsler’s Lemma 2.1, Z+ " («) 2(«) %" («) < 0 if and only if
32 (a) : 2(a) +He (2 (x)PB(x)) < 0. (4.6)

This equivalence can be used to construct alternative conditions where the extended
matrix A% («) does not multiply any other variable.

First, equation (4.5) in Theorem 4.2 can be written as %7 ' (x) 21 (a) %1 () <0
with
I

PO = (@) 1)
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and an equivalent condition obtained according to (4.6) is achieved, i.e.,

12 (a) : 21(a) + He (2 (a)B1(x)) <0 (4.7)
with
A = A +v1 1], 2@ = |

An interesting feature of the structure of inequality (4.6) is that it can be easily
rewritten in the form #+ " () 2(a) %" («) < 0 because

2(a) +He (Z (0)B(a)) = [I %(oc)} [;’;Ez; ;] [% I )T] :

Thus, rewriting (4.7) again as %5 ' (a) 22(«x) %5 («) < 0 with

E(x) *
D(x) = 1% 0 * (4.8)
(A (x)+vI) =1 0
I 0
By (o) = 0 I |,

X (a) Xj (a)
a new equivalent condition with slack variables in the form of (4.6) can be derived, i.e.,
3% (x) : Zo(a) + He (% (x)#2(a)) < 0 where # («) and %, («) are given by

Yy () X1 (ex)
V()= |Yala)|, %) ()= |Xa()
Y3(a) —1

The result is presented in next theorem.

Theorem 4.3

Let the integers m > 1 and d > 0 be given. If there exist matrices 0 < V € Snm),
K(a) € RS, % (a) € R3o(vm)xo(nm) and ,(x) € ROMM*30(nm) and q scalar
v > 0 such that the robust BMIs

( i )" (2(a) + He(# () B2())) <0 (4.9)
i=1

hold for all « € A, with 2, () given in (4.8), then v(x) as in (4.1) is a HPLF of degree
2m for the T-S system (3.6) that proves the global exponential stability of the origin of the
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| system and & = y/m is a lower bound for the decay rate.

Proof. Follows the development (in reverse sense) of Finsler’s equivalent conditions
that preceded the theorem. O

The parameter d used in inequality (4.9) is related to the application of Pdlya’s
relaxations [136, 137], which are useful when deriving numerically implementable
solutions, as discussed in the sequel. Regarding the interesting properties of Theo-
rem 4.3, note that both A* («) and the Lyapunov matrix V appear affinely in (4.9). Thus,
the control gains can be dealt with as decision variables in the optimization problem,
facilitating the treatment of structural constraints (e.g., decentralized control) or of
magnitude restrictions on the entries of K(«), which can be helpful to avoid actuator sat-
uration. For instance, one can solve (4.9) jointly with the linear constraints (elementwise
inequalities)

Kmin £ Ki <Kmax, i=1,...,1, (4.10)

where Kpnin and Kmax are given matrices. Note that such constraints are hard to be
considered in the approaches where the control gains are obtained through change of
variables, specially in the case of output-feedback.

Notwithstanding, conditions (4.9) are BMIs due to the product % («) %, («). By
fixing some variables (Xj () and X, («)) that transform the conditions into LMIs, an
iterative algorithm (with local convergence) starting from an initial feasible solution is
proposed to search for a solution to Theorem 4.3. The fact that y appears affinely in (4.9)
is explored to construct feasible initial values for Xj («) and X, («). The strategy relies
on computing an open-loop decay rate §/m and, then, to solve (4.6) for the open-loop
system, as proposed in next theorem.

Theorem 4.4

Let 6* be the optimal solution for the following maximization problem considering the
open-loop T-S system:

maximize o
5, E(a), V=V T >0
subject to He(V(A*(a) 4 8I) + E(«)) < 0.

Then, by solving the robust LMIs

E(a) V
vV 0

+He<
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where A*(a) = A*(«) + 6*1, one obtains X1 (cx) and Xp(ex) matrices such that, by fixing
Zr(@) = [Xi()" Xa(a)T ~I]

in Theorem 4.3 (the conditions in this case become robust LMISs), a feasible solution with
v < 6% is always obtained.

Proof. Immediate from the equivalences of Finsler’s Lemma. O

It is interesting to note that & = y/m, a bound for the decay rate of the system,
can also be considered as a relaxation factor in stability. In fact, for sufficiently large
negative values of y, matrix A*(a) + yI is always stable. As a consequence, it is
immediate to construct feasible fixed values for X;(«) and X, («) such that Theorem 4.3
always has a solution. Moreover, since matrix A" («) + yI appears affinely in (4.9),
Y can be conserved as an optimization variable (objective function) to be maximized.
Whenever a positive y is obtained, § = y/m is a lower bound for the decay rate of the
system. If the outcome is such that y < 0, Theorem 4.3 can be tested again. Actually,
since He(% (a)%,(a)) = He(%, («)Z " (a)), one has that every %' () is a valid
choice for %, () in a new test of conditions (4.9).

Theorem 4.3 gives rise to an iterative algorithm with local convergence (non-
decreasing y). In fact, assuming the feasibility of conditions (4.9) at some iteration it,
the particular choices 2, j¢11(a) = 25;() and %y is11(a) = %' () assure that The-
orem 4.3 yields yj11 > v as solution at iteration it + 1. The stopping criterion is
defined in terms of maximum number of iterations (without success), or the value of
v. A stabilizing control gain is obtained if y = &m > 0 or, if a target decay rate &, is
pursued, the algorithm ends when y > £,m.

Based on the above discussion, Algorithm 2 is proposed. The iterative procedure
computes a feedback gain K(«) subject to a magnitude limitation while maximizing a
bound to the decay rate. The input parameters are the matrices of the system, m > 1
(the HPLF degree corresponds to 2m), the maximum number of Pdlya’s relaxations
dmax, the maximum number of iterations itmax, the restrictions on the entries of gains K,
given by Kmax and Knin (optional), and the target decay rate &,. A tolerance ¢ is used to
evaluate the evolution of y along consecutive iterations. When no significant increase is
observed on v, a escape from a local maximum can be tried by increasing the number

of Pélya’s relaxations.

Whenever available, solutions for m = 1 (computed by Algorithm 2 or any other
technique) can be used to construct a initial %, o(«) to search for control gains using
HPLFs of order m > 2, as presented in next theorem.
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Algorithm 2 Decay Rate Maximization

Input: A;, B;, C;, m, Amaxs itmax, Kmin, Kmax, &a, &
1: Solve the problem in Theorem 4.4 to obtain %, o(«);
2: it < 0;d < O;
3: While it < itmax

4: it it+1;

5: maximize y subject to (4.9) and (4.10);
6: If y;; > &,;m Then

7: Return &nyax = vir/m, K(x), V;

8: End If

9: If vii — vii—1 < eand d < dmax Then
10: d+—d+1;
11: Else
12: Return &nmax = vir/m, K(x), V;
13: End If

14: By () +— ¥ T ();
15: End While
16: Return énax = vit/m, K(a), V;

Theorem 4.5

If feasible for some integer m > 1, the conditions of Theorem 4.3 are also feasible for pm,
where p > 1 is any integer.

Proof. First, a HPLF of degree 2pm is constructed from one of degree 2m. Considering
the HPLF candidate of degree 2m, one has v(x) = x{"} TVx{"} and (4.4) with E(«) €
Enm- A feasible solution to Theorem 4.3 implies that Theorem 4.2 is also solvable. Thus,
one has

V >0, He(VAY(a))+E(a) < —2yV. (4.11)

For a HPLF of degree 2pm, considering the extended matrix A* (a), such that x{P"} =

A* (a)x{P"}, and a linear parametrization E(et) € €y, pm, one can write

z’j(x) — x{pm}TVx{pm}

and
6(x) = x0T (He(V At (o)) + E(o))x(P)

implying
(x) +270(x) = 1P (He(V A% () + E(ax) + 27V) x P}, (4.12)
A HPLF of degree pm can be constructed as 7(x) = v(x) in terms of Kronecker powers:

3(x) = ((x{m})[p])TV[p}((x{m})[p])
— xlem} T pTy/lelpy{em} (4.13)
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with (x{"})[lPl = Tx{P} where T has full column rank. Imposing that (4.13) describes
the same candidate polynomial 7(x), and since the Kronecker power of a matrix pre-
serves its positivity, one has V = T' VIPIT > 0, concluding the first part of the proof.

Taking into account the time-derivative of 7(x), one has

5(x) = Cf;)((?)pz}(x) — po(x)P @ 9(x)

or, using Kronecker powers,

po(x)P~ 1 = p((xthle= 1) Ty le=11 ((lmbyle—1])

yielding
5(x) =xPmTTT (pvlPY @ (He(VA% (a)) + E(a))) TP},
Then,
5(x) + 290(x) = 21T M(a)xlom (4.14)
with

M(a) =T" <pv[p—11 ® (He(VA* () + E(a)) + ZWM) T
A bound to x {pm}TM(oc)x{pm} can be constructed from the feasibility of (4.11), yielding

e T M () e < x{pm}TTT(pV[p—l] ® (—2yV) + 277V[F’])Tx{pm}
< (=2yp 4+ 29)x e T Ty lel Ty lem}
= (—2yp + 27)xlPm Ty lom}, (4.15)

To have (4.12) and (4.14) as the same polynomial and taking into account (4.15), one has
He(VAY(a)) + E(a) + 27V = M(a) < (—2yp +27)V.
Defining y = {m and ¥ = £pm, then —2yp + 27 = 0 and

He(VA% () + E(a) + 27V < 0.

]

Therefore, when condition (4.11) holds for some y = {m > 0, the above condition is

also guaranteed with V > 0fory = &pm > 0. O

The main utility of Theorem 4.5 is that whenever a controller K(«) is designed
using a HPLF of degree m, matrix (A" (a) — yI) can also be certified as robustly stable
using a HPLF of degree pm, p > 1. In this case, Theorem 4.4 is not necessary and feasible
values for X;(a) and X;(«) can be computed directly using (4.6) with (A*(x) — yI)
constructed with degree pm. Thus, the new decay rate computed with Algorithm 2

cannot be smaller than the previous one.
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4.2 Numerical Examples

Regarding the implementation of the inequalities involving fuzzy summations in
Theorems 4.3 and 4.4, the Robust LMI Parser (ROLMIP) is used to extract a finite set of
LMIs from the robust LMIs [115, 136]. It is important to emphasize that ROLMIP oper-
ates with homogeneous polynomials, where the coefficients associated with monomials
of the same degree but different order (such as a;«; and a;«;) are merged into a single
coefficient. This can possibly lead to slightly more conservative results compared to a
case where the merge is not performed. Basically, a fuzzy summation X(«) is tested to
be positive by imposing that each matrix coefficient is positive. The following values are
used in Algorithm 2: itmax = 30 for Example 1 and itpmax = 50 for Example 2, dmax = 5,
¢ = 1073. Whenever Algorithm 2 is tested for consecutive values of m, the gain found
for the degree 1 is used in the bisection of Theorem 4.4 when considering pr, that is,
matrix A*(x) is replaced by A" («). In other words, the bisection is performed for a
closed-loop matrix with a previously computed gain, converging to a better (larger)
value of 6 and, overall, to a better decay rate when testing Algorithm 2. The optimiza-
tion variables % («), X («) and X, («) have been chosen as affine fuzzy summations.
The experiments were performed in a PC equipped with Ubuntu 20.04 64 bits, Core i7,
12 GB RAM, Matlab (R2017), Yalmip [114], Mosek 10.0.26 [146].

Regarding comparisons with other techniques from the literature, the following

conditions were considered:

¢ Agulhari, Oliveira, and Peres [147, Theorem 2]: the technique has been adapted
to cope with PDC design for T-S systems, basically fixing P(«) = P and consid-
ering K(«) affine on a. Concerning the scalar search demanded by the method,
the following values were tested: £ € {107%,107>,...,1,...,10° 10°}. Finally,
to facilitate the implementation, ROLMIP was used to program the synthesis

conditions.

¢ Jeung and Lee [148, Theorem 4]: the previous values of & were also considered for
the scalar search.

® Bouarar, Guelton, and Manamanni [149, Theorem 1]: To avoid the necessity of
bounds for the time-derivative of the MFs, the choice was made Wy (h) = W (as
suggested by the authors).

* Montagner, Oliveira, and Peres [71]: particularly in the case of state-feedback
design, this method, convergent for a sufficient large number of Pélya’s relaxations,

is used in the comparisons.
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* Lo and Liu [150]: This method was specially developed to cope with polynomial
fuzzy systems, but can be adapted to deal with T-S systems. The parser Yalmip
[114] was used to implement the sum-of-squares based conditions. In the first
stage, the same values of & informed above were considered.

Example 1

Consider a T-S system with matrices (randomly generated) of the local models

given by
1 -4 -1 0o 7 =2 1
Ai=12 -3 =-3|, A=10 2 5, Bi1=By= |4
3 -1 —1 5 -2 -5 1

The aim is to compare the proposed design technique with some conditions from
the literature in the context of state-feedback and output-feedback for two situations:

0
casel: C; = [Cl

0

1] , casell:C; = [ci 0 1] .

with c; = 1, ¢ = 1.5. Table 4.1 presents the maximum values of the decay rate obtained
by each condition and the associated computational complexity, given in terms of
the number of scalar variables (V;), LMI rows (L 11s) and computational times! (in

seconds).

The results show that all relaxations, including Algorithm 2, are not capable to
stabilize the system by state-feedback through a quadratic Lyapunov function, yielding
negative values for £max. On the other hand, Algorithm 2 with degree four (m = 2) and
six (m = 3) HPLFs can stabilize and provide bounds for the decay rate that become
larger as m grows. In the output-feedback case, quadratic Lyapunov functions continue
to fail in providing stabilizing controllers, while Algorithm 2 yields feasible results with
m = 2 and m = 3. This experiment shows the importance of employing Lyapunov
functions of degrees higher than two to improve performance in the context of control
design for continuous-time T-S systems. As an illustration, the PDC gain designed with
m = 3 in the output-feedback — case Il is given by (truncated to 4 decimal digits)

K(a(t)) = o (1) [0.7330 0.6695} +on(t) [—1.6186 —0.7627]

ISince the methods have been implemented and executed in the same computer, the computational
time of each method provides a reliable relative evaluation of the different numerical complexities.
Moreover, the times informed are the average of 10 tests performed.
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Table 4.1: Maximum decay rates (£,,4x) obtained by the conditions of Agulhari, Oliveira, and Peres
[147], Jeung and Lee [148], and Bouarar, Guelton, and Manamanni [149] and Algorithm 2. V; is the
number of scalar variables, Lj y1rs the number of LMI rows and computational times are given in
seconds.

Condition ‘ Emax ‘ Vs ‘ Limis ‘ time (s)
Jeung and Lee [148] -1.6673 | 56 61 1.97
Bouarar, Guelton, and Manamanni [149] -4.4808 | 44 34 0.09
Montagner, Oliveira, and Peres [71]¢—1 4-1 | -0.0266 | 48 27 0.09
Montagner, Oliveira, and Peres [71];—5 4—5 | -0.0266 | 120 75 0.36
State- Agulhari, Oliveira, and Peres [147] -0.0266 | 49 31 0.50
feedback | [ and Liu [150] 0.0269 | 128 | 62 0.76
Algorithm 2,1 -0.0294 | 67 30 0.37
Algorithm 2, 0.1021 | 256 60 1.78
Algorithm 2,3 0.2347 | 716 | 100 7.83
Jeung and Lee [148] -1.6673 | 54 61 1.18
Bouarar, Guelton, and Manamanni [149] -4.4808 | 30 30 0.06
Output- Agulhari, Oliveira, and Peres [147] -0.0821 | 47 31 0.88
feedback | Lo and Liu [150] -0.1111 | 126 60 1.19
(case I) Algorithm 2,1 -0.0549 | 65 30 0.48
Algorithm 2,,—» 0.1249 | 254 60 1.44
Algorithm 2,,_3 0.1534 | 714 | 100 8.48
Jeung and Lee [148] -1.6673 | 52 61 1.28
Bouarar, Guelton, and Manamanni [149] -4.4808 | 20 26 0.06
Output- Agulhari, Oliveira, and Peres [147] -0.2499 | 45 31 1.39
feedback | Lo and Liu [150] -0.2197 | 126 58 1.15
(case IT) | Algorithm 2,4 -0.0582 | 63 30 0.40
Algorithm 2,,—» 0.0487 | 252 60 1.55
Algorithm 2,,_3 0.0675 | 712 100 10.70

Considering oy (t) = 0.5sin(x1(t)) + 0.5 and ap () = 1 — a4 (¢), a time simulation for

g
the closed-loop system is performed considering [1 -1 2} . Figure 4.1 shows the
behavior of the state and control effort, illustrating the effectiveness of the designed
static-output feedback control law.

As a final investigation, consider the following constraints on the magnitude
of the control gains: K; = [ki1, kiz], \kij| <0.80,i =1,2and j = 1,2. In this scenario,
Algorithm 2 provides a stabilizing solution for m = 3, with y = 0.0549 and

K(a(t)) = o () (02417 0.6527) + o (t) [~0.8000 —0.8000] .

The time simulation depicted in Figure 4.2 shows a decrease in performance (a longer
interval required to drive the states towards zero), but the system is asymptotically
stable. It is noteworthy that handling magnitude bounds is more challenging using
the existing methods based on change of variables, which generally require structural
constraints on the optimization variables (sources of conservativeness). In the proposed
approach, these constraints can be straightforwardly incorporated.
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Figure 4.1: Closed-loop response (states, control signal and MFs) with the PDC controller K(«(t)) =
aq(t) [0.7330  0.6695] + ap(t) [~1.6186 —0.7627], for the output-feedback — case IL.
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Figure 4.2: Closed-loop response (states, control signal and MFs) of with the PDC controller with
magnitude bounds K(a(t)) = ay (t) [0.2417  0.6527] + ap(t) [-0.8000 —0.8000], for the output-
feedback — case II.
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Mpall

1z

Figure 4.3: Inverted pendulum on a car.

Example 2

To illustrate the applicability of the proposed method in a T-S model arising
from a physical system, consider the inverted pendulum depicted in Figure 4.3, where
Mpan = 0.2 Kg, My = 0.8 Kg and ¢ = 0.5 m. The states x; and x3 are chosen as the
pendulum angular position and angular velocity, respectively. The cart position and
velocity are chosen as states x, and x4. A T-S fuzzy model (borrowed from Hmidi et al.
[151]) as in (3.2) has the following matrices

0 1.0000 0 0 0 1.0000 0 0
4 |173118 0 0 00882 L |14322 0 0 00573
= 0 o o 10000 | % 0 0 0 1.0000
17312 0 0 —0.0441 10127 0 0 —0.0405
0 0
1.7647 1.1467 100
Bi= | . By=| . Ci=C,=1010 0
0 0
0011
1.1765 1.0811
and
1

T T exp(—18 () — 7/8))
T+ exp(—14(x1(t) — /8))

The aim is to design an output-feedback PDC controller maximizing the decay rate of

, Oéz(t) =1- (Xl(t)

(xl(t) =

the trajectories but also satisfying magnitude constraints on the entries of gains K; and
K; to assure not excessively large control signals. With this purpose, the following must
hold: |I<i].| <20,i=1,2, j =1,2,3. The results are presented in Table 4.2, where itmax
is set to 50. As can be seen, the conditions in Agulhari, Oliveira, and Peres [147], Lo and
Liu [150], and Algorithm 2 using quadratic in the state functions all yielded stabilizing
controllers. In the implementation of the methods [147-150], the magnitude limits
over the entries of K; were achieved by constraining the variables involved, in some
cases fixing some matrices as diagonal. Note that the proposed method does not suffer
from this potential source of conservativeness. Notably, Algorithm 2 demonstrated
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an advantage in both the decay rate and computational time. When employing a
quartic function, Algorithm 2 provided a significantly better decay rate, albeit with a
substantially longer computational time, though still within a reasonable range. The
PDC gain designed using m = 2 is

K(a) = oy [15.4246 2.0370 0.5603}+(x2 [20.0000 23371 0.5965

Adopting the initial condition x(0) = [0.3491 00 0] ' (corresponding to an initial
angle of 20° on ), Figure 4.4 shows a time simulation for the closed-loop system.

Table 4.2: Maximum decay rates (;;5x) obtained by the conditions of Agulhari, Oliveira, and
Peres [147], Jeung and Lee [148], and Bouarar, Guelton, and Manamanni [149] and Algorithm 2
in Example 2 where the following constraint must hold: |Kij| <20,i=1,2,j=1,2,3. Vs is the
number of scalar variables, Lj y17s the number of LMI rows and computational times are given in
seconds.

Condition | Emax | Vs | Lomis | time (s)
Jeung and Lee [148] -2.5011 | 90 68 1.33
Bouarar, Guelton, and Manamanni [149] | -4.1567 | 50 40 0.08
Agulhari, Oliveira, and Peres [147] 0.1260 | 81 40 1.29
Lo and Liu [150] 0.1052 | 202 | 89 3.31
Algorithm 2,4 0.1973 | 113 | 52 1.18
Algorithm 2,,—, 0.3522 | 702 | 112 25.39

As a final note, it is important to highlight that while a HPLF is utilized during the
synthesis phase to improve the decay rate, the practical implementation of the resulting
PDC controller is identical to the standard PDCs designed through quadratic-on-the-
states Lyapunov functions. This fact further emphasizes the advantage of the proposed
procedure, where the extra computational effort required to design the controller is
spent offline. Moreover, the fact that the closed-loop matrix A («) appears affinely in
the synthesis conditions facilitates the immediate treatment of dynamic output-feedback
controllers and the handling of discrete-time systems.

4.3 Conclusion

This chapter provided an LMI-based algorithm for output-feedback PDC de-
sign for continuous-time T-S systems. The novelty is the possibility of employing
homogeneous polynomial Lyapunov functions of arbitrary degree, generalizing the
results based on quadratic functions. A numerical experiment showed a situation
where quadratic functions may not be enough even to stabilize the system. Conversely,
employing higher-degree Lyapunov functions cannot only stabilize the system but also
enhance performance by improving the decay rate. It is worth noting that while the
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Figure 4.4: Closed-loop response (states and control signal) of the inverted pendulum consider-
ing magnitude bounds K(a) = oy [15.4246 2.0370 0.5603] + e, [20.0000 2.3371 0.5965] and
x(0) = [0.3491000] .

proposed approach is initially developed to deal with T-S fuzzy systems, the results
can also be beneficial in the context of Linear Parameter-Varying (LPV) systems with
unknown variation rates of parameters (as switched systems) or other classes of sys-
tems where quadratic-on-the-states Lyapunov functions are not enough to characterize
stability.
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Chapter 5

Regional Stabilization of Continuous-time T-S Systems

Consider the closed-loop continuous-time T-S given in equation (3.6). In this
chapter, the locality of the T-S model is further explored, considering Lyapunov can-
didate functions that depend on the MFs, allowing the incorporation of information
regarding the T-S model validity domain, leading to new stability analysis and PDC
control synthesis conditions where the knowledge of bounds for the time-derivative of
the MFs is not necessary. Those conditions are derived considering two different Lya-
punov functions: the first, a Fuzzy Lyapunov Function (FLF) that depends quadratically
on the states and polynomially on the MFs; the second, a Homogeneous Polynomial
Parameter-Dependent Lyapunov Function (HPPDLF), that depends polynomially on
both the MFs and the states.

5.1 Fuzzy Lyapunov Function

Consider a quadratic-on-the-states parameter-dependent (membership function-
dependent) candidate Lyapunov function (i.e., a FLF) of the form

o(x) = x"V(a)x, (5.1)

where V,(«) is a homogeneous polynomial matrix of arbitrary degree ¢ on a(z(t)) = &
defined as [136]
Ve(a) = Y oV, (5.2)
k€Dyq
where o are the monomials and V; € S", Vk € Dy,¢ are matrix-valued coefficients.

The exponential stability of the origin of system (3.6) can be proved using the
presented concepts, according to the following theorem.
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Theorem 5.1

Letv:R" — R, v(x) = x' V(a)x, V() as in (5.2), be a function satisfying
v(x) >0, Vx e R", x #0
v(x) < —2&v(x), Vx e R", x # 0, YV € A,.

Then, v(x) is a FLF for the T-S system (3.6) that proves the exponential stability of the
origin of this system and, when & > 0, & is a lower bound for the decay rate.

Proof. See, for instance, [3, 22, 77]. O

Taking into account the Lyapunov function candidate of equation (5.1), the first
exponential stability condition in Theorem 5.1 can be simply written as V(«) > 0. The
expression for 9(x) is given by

o(x) =% V(a)x +x " V(a)x +x V(a)x
and, according to the definition of the closed-loop T-S system (3.6):
o(x) = x" (A () V() + V() Ag(ax) + V(ax))x.
Then, the second condition in Theorem 5.1 can be written as
x' (He (V(a)Ag(a)) + V(e))x < —2&x V(a)x

or, equivalently,
He (V(a) (Aq(e) +é1y) ) + V() <0.
The term V («) can be manipulated as follows [96]:

_ dV(«) oV (x) N

=Y & [VaV(a)]; = VoV (x) (& ® L) (5.3)
i=1
N
where & = [éq e éc,} and
VaV(a) = [_f’g;f> - _ag;ﬂ e R,

Since the premise variables z depend on the states, one has

&(z) = Via(2)i = J(0) Aa(a)x, (5.4)
. a(XZ'

[Vx“(z)]ij = a_x]-’

i=1,...,r, j=1,...,n,
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J(0) = Vaar(z) = ¥ 60 J(6) € R,
k=1

and 6;(x) € Ay. Matrices J; and the number of vertices v are obtained from the knowl-
edge of «(z) using a sector nonlinearity approach on the nonlinear terms found in J(0)
inside the set X where the T-S model is valid [7] (in Subsection 5.1.1 the computation of
J(0) is illustrated through an example). Therefore, using (5.4), V(«) in (5.3) results in

V(a,0,0) = VaV(a)(J(0) Ac(x)x(¢) @ L) (5.5)

where the state vector is replaced by x(¢), valid inside X'. Note that, using this approach,
there is no need to specify bounds on the variation rate of the MFs, considered as a
function of the T-S system closed-loop dynamics. The next theorem formalizes the
above development.

Theorem 5.2
Given K(a) € R7*¢, if there exist 0 < V(a) € S" as in (5.2) and & > 0 satisfying
He(V(a) (Aq(a) +&1) ) + V(e,6,0) <0 (5.6)

forallx € Ay, 0 € Ay, ( € A with V(a,0,() as in (5.5), then v(x) as in (5.1) is a FLF
for the T-S fuzzy system (3.6) that proves the local exponential stability of the origin of the

system and & is a lower bound for the system decay rate.

In (5.6), one can notice the product of the Lyapunov matrix V(«) by the feedback
controller K(a) — inside the closed-loop matrix —, resulting in a Bilinear Matrix
Inequality (BMI). An extra complicating factor in this case is the presence of the closed-
loop matrix A, («) inside V(a, 0, ) in (5.5). Change of variables — at least for state-
feedback — could handle this bilinearity, considering for instance the stability of the
dual system A, («) " (as in Gomes et al. [97], that solved the problem in two stages).
However, a more general approach is pursued in this thesis, applying Finsler’s lemma
to separate V,V () from the other matrices in (5.5), dealing directly with K(«) in the
optimization problem (no change of variables is required) and facilitating the treatment
of output-feedback (a much more challenging control problem). Inspired by Felipe and
Oliveira [112], an iterative algorithm based on LMIs similar to the one in Section 2.4 is

proposed to solve the problem.

According to Finsler’s lemma, condition (5.6) in Theorem 5.2 can be written as
BT («,0,0)21(x) B (,0,) < 0, where

0 * K
21 (a) = V(x) 0 | est+2m (5.7)
05VaV(x)" 0 0
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I
P (a,0,0)" = (Ag(e) +ELy) e R(r+2)nxn,
(](Q)ACZ(OC)X(C) ® In)
Since Y/, & = 0, from (5.4) one has
r

Y & = 17 = 1 J(0) Aq(a)x(C) = 0.

i=1
Moreover, with ,%’f («, 0, ) given above,

J(O)Aq(a)x(O) ® 1, 0 —Irn

and the Finsler’s equivalent condition with a slack variable 2" («), statement (iv), reads

32 («) : 21(a) +He(2 (x)%1(,6,0)) <0
where 2" () can be partitioned as

Xu(cx) X
%((X) = le((X)
X31((X)

c R(r+2)n><(r+l)n.

&2
NN
&2

X32((X)

Rewriting inequality (5.9) as %5 ' () 22(e, 0, () %5 (x) < 0, with

Qi(a) (2r+3)n
.:Q ,9, - S ’
2(%,6,¢) lﬁl(oc,e,c) o] ©

where 2 (), %1(«, 0, () are given respectively in (5.7), (5.8) and

I
%ZL(cx) _ [ (r+2)n

c R(Zr—i—B)nx(r—&—Z)n/
2 ()"

the condition with slack variables can be applied once more, providing

3Y (a) + 25(ex,0,() +He (% (x)%2(x)) <0

with 25(«, 0, ) asin (5.11), # («) partitioned as

_Yll (oc) le((X)_
Yo1(a) Yoo(cx)
@/(“) = | Yy ((X) Y32((X) € R(27+3)n><(r+1)n’
Y41 (oc) Y42(OC)
| Ys1(a) Yso(a)]

and %, («), from the orthogonality condition %, () %5 («) = 0, given by

%z(a) = [%(“)T _I(r—l—l)n] c R(r+1)n><(2r+3)n’

(5.9)

(5.10)

(5.11)
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where 2 («) is presented in (5.10).

From the above discussion, sufficient conditions for local exponential stability
by output feedback of the T-S fuzzy system (3.6) with & > 0 as a lower bound for the

decay rate are presented in next theorem.

Theorem 5.3

If there exist parameter-dependent matrices 0 < V() € S" as in (5.2) , K(«) € R7*",
Y (o) € RE3)nx(r+ln - 5, (x) € RUAVXQ+3)1 gud g scalar & > 0 such that the
robust BMIs

25(,0,0) + He(% ()%, (a)) <0, (5.12)

hold forall x € Ay, 0 € Ayand { € A with 25(«, 0, () as in (5.11), then v(x) as in (5.1)
is a FLF for the T-S system (3.6) that proves the local exponential stability of the origin of
the system and & is a lower bound for the decay rate.

Since the closed-loop matrix of the T-S system (as well as the control gain K(«))
and the Lyapunov matrix appear affinely in the conditions of Theorem 5.3, magnitude
bounds can be directly imposed on the entries of the gain matrices through linear
constraints. In this case, the conditions in Theorem 5.3 must be solved considering

Kn<K <Ky, i=1,...,r (5.13)

where K, e K) are given matrices. Therefore, there is no additional conservatism,
contrary to what is observed in standard techniques that impose structural constraints

on the optimization variables involved in the computation of K;.

Notwithstanding, the conditions in Theorem 5.3 are BMIs due to the product
Y (o) B (). To solve them, an iterative algorithm with local convergence is proposed.
Phase 1 of the algorithm starts from an initial feasible solution by fixing some variables
— the matrices in %;(«), precisely —, that transform the conditions into LMIs. The
existence of a solution can be guaranteed by considering ¢ as a relaxation parameter
on the system stability, which ensures that the conditions in Theorem 5.3 are feasible
for a sufficiently large negative value of §. Moreover, & (that appears affinely in the
conditions) can be considered as the objective function to be maximized in the iterative

procedure. A stabilizing feedback gain is found when & > 0.

As discussed in Section 2.4, the main characteristic of the strategy used in this
work, that allows the solution of the problem in an iterative way;, is the fact that

He(% (a) %, () = He(%a(a) % () ).

Therefore, every % («) ' is a valid choice for %,(«) at the next iteration. The local
convergence of the algorithm, with non-decreasing &, can be proved assuming the
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teasibility of the conditions in Theorem 5.3 at some iteration if, showing that the condi-
tions in Theorem 5.3 remain feasible at the iteration it + 1 with the particular choices
Dy iri1(a) = Do ip(a) and By i 1(a) = ()T, ensuring that &;4,1 > & Thus, the
stopping criterion of phase 1 of the algorithm is defined in terms of the evolution of &.
When a certain target decay rate &, must be attained, the algorithm ends when & > &,
(&4 = 0if only stabilization is pursued).

After the required decay rate is ensured, the same iterative procedure can be
used to enlarge an estimate of the DOA contained in the domain of validity of the T-S
system, that can be represented as the largest invariant set () contained in the polytope
X [22], given by Q £ x € R” such that x" V(a)x < 1. The constraint Q € X holds if
a] V() lay <2,k =1,...,m[22]. Applying the Schur complement, the condition

results in
Vv
(f) “’2‘] >0, k=1,...,m, VYacA,. (5.14)
G

One of the possibilities for the enlargement of Q is to consider the following
optimization problem [152]

min o =Tr(W) s.t.(5.12),(5.13),(5.14), V(ax) < W
K(a),V(x),W
where W € 5", which corresponds to a homogeneous increase of the ellipsoid Q) in all

directions [152]. This optimization is performed in phase 2 of the algorithm.

A feasible initial solution for the algorithm can be obtained as follows. Use
Theorem 5.2 to compute the open-loop decay rate 6* of the T-S fuzzy system inside the
polytope X. Then, solve equation (5.9) with slack variables considering the modified
open-loop T-S system A(a) = (A(«) + &6*I) that is guaranteed to be stable. This
procedure is described in next theorem.

Theorem 5.4

Let 6* be the solution of the maximization problem (considering the open-loop T-S system)

maximize &
5,V(x)

subject to  (5.14), He (V(«) (A(x) + 8I,)) + V(«,6,¢) < 0.

Then, replace the closed-loop matrix Ay () in %1(w, 0, () defined in (5.8) by A(a) =
A(a) + 6*1 and solve (5.9) on 2 («) to obtain the feasible initialization

B (a) = Xin(@)' Xa(@)' Xa(®)' —I 0
2\ = Xi2(2)T Xop(a)T Xpp(a)T 0 —Iy,
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Proof. Immediate considering the equivalent conditions in Finsler’s lemma. O

Based on the results presented, Algorithm 3 is proposed, which, at phase one,
consists on an iterative procedure to compute the feedback gain K(«) subject to a
magnitude limitation and that ensures the performance criterion defined by a certain
decay rate. The input parameters are matrices A;, B; and C;, i € N, of the T-S fuzzy
system local models, matrices Ji, ] € N, of the Jacobian of the MFs, x;, k € N that
define the polytope X, the maximum number of iterations it;,y, the restrictions on
the gains Kj; and K, (optional), and the target decay rate &,. A tolerance ¢ is used to
evaluate the evolution of the algorithm between consecutive iterations. In phase one
(ph = 1), the evolution is based on the parameter &: once the decay rate reaches the
target value, the algorithm starts the second stage (ph = 2), where the decay rate is
fixed at the value found on the first stage, and the conditions are solved iteratively
to maximize the estimate for the region of attraction. The evolution of the algorithm
during this stage is monitored based on the difference of Tr(W) between consecutive

iterations.

After fixing a homogeneous polynomial structure for the optimization variables,

the complexity of the algorithm can be evaluated based on the number V; of scalar
(r+g—1)!
Gy
assuming polynomial degrees g1 and g, on « for V(«) and 2°(«), respectively, Vs and

variables and Lyys of LMI rows. Considering the definition p(g) = and
L1 umjs in phase 2 for output-feedback (the most complex case because A («) is cubic on

«) are

Vs = 0.5(u(g1) + Dn(n+1) +rgs + u(g2) (21 + 57 + 3)n>
Liaass = o(2r + 3)nu(ge) + m(n + 1)plg1) + (g1 + 2rgs,

where g = max(g1,2g2,3) and 2rgs only appears if magnitude bounds are imposed
for the gains.

51.1 Numerical Example

The Robust LMI Parser (ROLMIP) is used to transform the robust LMIs (that
depend on «, 6, {) in a finite set of LMIs [115, 136]. The variables V(«) and K(«) are
fixed as polynomials of degree one (affine on «), and the slack matrix % («) is fixed with
the same degree of A, («). Higher degrees could provide better results at the price of a
larger computation effort. The algorithm, built in Matlab 9.4 (R2018a), was solved with
Mosek 9.3.18 [146], in an 11th Gen Intel(R) Core(TM) i7-1165G7 @ 2.80GHz with 16 GB
RAM, Windows 11 Home Single Language. For the computation of areas of ellipsoids
in the plane, the script polyarea from Matlab was used.



Chapter 5. Regional Stabilization of Continuous-time T-S Systems 63

Algorithm 3 Control Design

Input: Ai/ Bi/ Ci/ ]]/ Xk, itmax/ Km/ KM/ Eur £
1: Solve the problem in Theorem 5.4 to obtain %, o(«);
2: it < 0; ph <+ 1;
3: While it < ity

4: it it+1;
5: If ph =1 Then
6: maximize & subject to (5.12), (5.13) and (5.14);
7: If £;; > &, Then
8: ph < 2,& < &i;
9: ElseIf £;; — &y 1 < € Then
10: break;
11: End If
12: Else If ph = 2 Then
13: minimize Tr(W) subject to (5.12), (5.13), (5.14) and V() < W;
14: If Tr(W)j—1 — Tr(W);; < e Then
15: break;
16: End If
17: End If

18 Boi(a) « Fiy(a)';

19: End While

20: If ph = 1 Then

21: Return &,y = &, K(a), V(a);

22: Else If ph = 2 Then

23: Return 0* = Te(W)i, Emax = é, K(x), V();
24: End If

Consider the nonlinear system [92, 97]:

[—% — 3sin(x;) —4

5 = 78i1’1(3¢'1) -2

0

X+ . Uu.
12—3 + % sm(xl)]

Using the sector nonlinearity approach over the nonlinear term z = sin(x1), this system
can be exactly represented in the compact set ¥ = {x € R? : |x;| < 7/2,i = 1,2} as the
T-S fuzzy system (3.2) with

-5 —4 —2 —4 0 0
> s AZ - ’ Bl = ’ B2 = s
-1 -2 20 -2 10 3

a1(z) = (1+sin(x1))/2, a(z) =1—o(z).

The Jacobian of the MFs is given by

aoqx(Z) a‘xi{(z) cos 2 0
J(0) = Via(z) = [3086282) 3‘2252)] - [— COS(ng/Z O] .

Al =

8x1 aX2

Applying the sector nonlinearity technique over the nonlinear term cos(x1 ), then J(0) =

01]1 +62]2,0 € Ay,
05 0 00
Ji= [—0.5 0]’ Ja = [0 o] '
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The estimate for the DOA obtained by Algorithm 3 (Alg. 3) with V(«) of degree
one in «, tolerance ¢ = 1073 and target decay rate &, = 0 — i.e., stabilizing gains —
is shown in Figure 5.1 for both the state- (in black) and output-feedback (in red) —
with C; = [O 0] and C; = [10 O} —, almost completely overlapping, as well as the
estimates provided by other conditions available in the literature for state-feedback:
Gomes et al. [97] with Lyapunov matrix of degree ¢ = 2 in &« and § = 10 in magenta,
Lee and Kim [93] using degree 4 = 3 and ¢ = 10000 (values also used in Gomes et al.
[97] for comparison) in blue, and Pan et al. [92] in green. The corresponding areas
are given in Table 5.1, with the number V; of scalar variables and L js;s of LMI rows
and the computational time demanded by each condition — providing an estimate
for their complexity. The results clearly show that, despite the computational cost, the
proposed method presents superior results for the estimates of the region of attraction,
even when considering the output-feedback, when compared to the other conditions for
state-feedback, that are clearly more general. The PDC output-feedback gain provided
by the algorithm is given by (a € Ay)

K(a) = a1 [0.1049 + | ~0.5143]

1.5 7
1F i
051 Gomes et al. i
Lee and Kim
~ ol Pan et al. |
= — Al 3, s f
Alg. 3,0f
05F model |
1F ]
-1.5F 7
-1.5 -1 -0.5 0 0.5 1 1.5
X1

Figure 5.1: Estimates of the DOA obtained with Alg 3 for the state- (sf, black) and output-feedback
(of,red), and provided by the state-feedback conditions of Gomes et al. [97] (magenta), Lee and
Kim [93] (blue) and Pan et al. [92] (green). The domain of validity of the model is depicted in gray
(dashed).
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Table 5.1: Areas of the estimates of the DOA for conditions in Pan et al. [92], Lee and Kim [93], and
Gomes et al. [97] and Algorithm 3. Vs and Ly ;5 are respectively the numbers of scalar variables and

LMI rows and the computational time is given in seconds.

Condition

| area (u.a.) | Vs | Lpmis | time (s)

Gomes et al. [97]¢—2 s=10 7.1824 41 242 1.46

Lee and Kim [93],3 g—10000 | 7.3724 | 129 | 180 | 0.94

State-feedback | p,p, ot a1, [92] 76018 | 22 | 32 0.41
Algorithm 3 9.6705 265 | 588 16.21
Output-feedback | Algorithm 3 | 9.6776 | 347 | 812 | 43.27
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5.2 Homogeneous Polynomial Parameter-Dependent Lyapunov
Functions

In this section, the previous results are generalized to consider Lyapunov func-
tions that depend polynomially on the states. Unlike the results in Chapter 4, an
additional difficulty arises because the time-derivative of the Lyapunov matrix must be

suitably addressed.

Consider the candidate Lyapunov function given by
v(x, o) = x{m}TVg(cx)x{m} (5.15)

where V(«) is a homogeneous polynomial matrix of arbitrary degree g on a(z(t)) = «
defined as [136]

Ve(a) = Y oV, (5.16)
keDyq
where o are the monomials and Vi € so(nm) vk e D,,¢ are matrix-valued coefficients.

Hence, the Lyapunov function v(x, &) given in (5.15) — here nominated Homo-
geneous Polynomial Parameter-Dependent Lyapunov Function, HPPDLF) — possesses
two degrees of freedom. First, matrix V(«) exhibits a homogeneous polynomial de-
pendency of arbitrary degree ¢ on the MFs «;(z(t)). Second, and more relevant, v(x, «)

is a homogeneous polynomial of degree 2m with respect to the state variables x.

In the context of polytopic linear systems characterized by time-varying un-
certainties and finite bounds on their variation rate, a similar structure for Lyapunov
functions was introduced in Chesi et al. [77] to address robust stability analysis. Re-
ferred to as Homogeneous Parameter-Dependent Homogeneous Lyapunov Functions
(HPDHLFs), this class of functions also incorporates homogeneous polynomials in both
the state variables and the uncertain parameters. Notably, in this formulation, robust
stability conditions are derived considering an SMR in terms of an expanded vector
encompassing the state variables and the uncertain parameters altogether. In contrast,
the strategy pursued in this thesis follows a different path, considering the dependence
on x and « separately (more on this in the subsequent sections). Such separation is

crucial when designing feedback laws, especially for output-feedback control.

Considering the Lyapunov function (5.15), the exponential stability of the origin
of system (3.6) can be assessed through the next theorem [22].

Theorem 5.5

Letv: R" — R, v(x, &) = x{" TV, (a)x "}, V(o) € STV as in (5.16), be a function
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satisfying
v(x,a) >0, Vx € R", x £0, Va € A,
o(x,a) < =2yv(x, ), Vx € R", x #0, Va € A,,
along the trajectories of (3.6) with a scalar y > 0. Then v(x, «) is a HPPDLF of degree

2m on the states x and degree g on the MFs o for the T-S system (3.6) that certifies that the
origin of this system is exponentially stable, and provides a lower bound for the decay rate,

given by & = y/m.

Proof. See, for instance, [3, 22, 77]. O

The case m = 1 and degree g on the MFs has been explored in previous studies, either
by imposing bounds on the time-derivative of the MFs [19, 20, 90-93], or in a stability
analysis scenario without such constraints[19, 90, 94-96]. This particular Lyapunov
function has also been investigated in the previous section.

Fixing m = 1 and ¢ = 0 (constant Lyapunov matrix) in Theorem 5.5 leads
to the familiar outcome built upon the quadratic Lyapunov function v(x) = x' Vx,
extensively employed within the T-S fuzzy literature. However, a synthesis procedure
where m > 1 certainly induces an algebraic challenge because conventional linearization
methods, such as the widely used change of variables (K(«)V = Z(«)) and congruence
transformations, find limited applicability in such cases, especially for output-feedback
control. Moreover, the option g > 1 also demands suitable algebraic manipulation for
the time-derivative of the Lyapunov matrix, i.e., Vg(a). Finsler’s lemma and adequate
relaxations play important roles in dealing with these technical difficulties, as presented

next.

Considering the Lyapunov function (5.15), the first inequality in Theorem 5.5 is
equivalent to
Ve(a) > 0.

Equation (5.15) also allows one to get the expression for the time derivative 9(x, «) as
9(x, ) = ATV (o) M 4 ATV () 2 m Ty () i), (5.17)

and, from the definition of the closed-loop T-S system (3.6) and the extended matrix (2.3),

the term %{"} is equivalent to
Ak = Af (a)xt™,
which can be used in (5.17), resulting in

o(x, o) = T (AR () Vg (o) + V(o) A% () + V(o)) 2l (5.18)
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Thus, the second inequality in Theorem 5.5 can be written as
xlmT (He (Vg(oc)Afl((x)> + Vg(oc)> xtm < —2yx{m}TVg(oc)x{m}

He (Vg(o) A% () ) + Vg() +27 V(@) <0

He (Vg(oc) (Afl((x) + m)) + Ve(a) 0. (5.19)

The time-derivative of the parameter-dependent Lyapunov matrix, Vg (e), can be written

as
V(o) = a‘;i(;x) G 4.+ a‘giff) &
= 1; & [VaVg(a)],
= VaVg(a) (6 ® I5)
where
VaVelw) = |20 2] - aT = [a -0 a]

Since the MFs «(z(t)) are functions of the premise variables z, and those are
functions of the state variables, as previously defined in Chapter 3, one has

&(z) = Vya(z)x

(5.20)
= J(0)Aq(a)x
where
a(xi
[Vx“(z)]ij = a_x]-’

K@z%d@zi&@h

and 0(x) € Ay; matrices J; are obtained from the knowledge of «(z) and the set X
within the T-S model is valid [7]. Therefore, using (5.20), one has

Ve(ar) = VaVg(a) (J(0) A ()x(¢) ® o) (5.21)

where the state vector is replaced by x(¢) as in (3.5), valid inside &X'. The advantage of
this modeling is that no additional information (as upper bounds) for variation rates
of the premise variables is necessary since they can be represented as functions of the
closed-loop dynamics of the system.
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Considering matrix

EgL(OC): Z “kE</3k)'

keDr,gL
where E(B%) € Eum, k € Dpg, and xI™TE, (a)xl™ = 0, Va € A,, Theorem 5.6
combines (5.19) and (5.21) to present sufficient conditions to prove that the origin of

the T-S system is exponentially stable using an HPPDLFE. Aiming for a more compact
notation, consider 9 = (a',0",¢") .

Theorem 5.6

Given K(a) € RI*", if there exist 0 < V(o) € S"™) gs in (5.16) and a scalar y > 0
satisfying

He (V(a) (Af(@) + V1) ) + VaV() (J(0) At()x(C) © Io) + Eg, () <0,
(5.22)
forall & € Ay X Ay X Ay, then v(x, &) as in (5.15) is an HPPDLF of degree 2m on the
states x and degree g on the MFs « for the T-S fuzzy system (3.6) that certifies that the
origin of the system is locally exponentially stable. Moreover, & = y/m is a lower bound

for the system decay rate.

Proof. The proof is omitted since it can be constructed from the development presented

at the beginning of the section. O

Although the stability analysis problem of the open-loop system (or the closed-
loop system when K(«) is given) is not the main focus of this chapter, it is important
to highlight that Theorem 5.6 is a new result for the T-S fuzzy system literature. This
theorem can be solved in terms of LMI relaxations, and the results tend to be much less
conservative than the design conditions presented subsequently due to the linearization
techniques required (which are sources of conservativeness) to handle K(«) as a design

variable.

Equation (5.22) comprises a Bilinear Matrix Inequality (BMI) due to the presence
of the feedback controller K(«) within the closed-loop matrices. An interesting aspect is
that both closed-loop matrices A* () and A (e) appear in this inequality. The linearity
of matrix A" (a) with respect to the entries of K(«) is preserved, but the Kronecker
operations (see equation (2.6)) spread the entries of K(«). This separation makes apply-
ing the classical change of variables, even in the case of state-feedback [7], unfeasible,
necessitating a strategy different from the methodologies frequently employed in the

literature.
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The distinct approach adopted in this work is, essentially, to separate the matrices
A" (a) and A, («) from the optimization variables of the problem. This separation
enables the derivation of LMI conditions that can be solved iteratively, following the
methodology introduced by Felipe and Oliveira [112] and described in Section 2.4. In
this strategy, alternative equivalent conditions based on applying Finsler’s lemma play
a pivotal role.

From Finsler’s lemma, equation (5.22) in Theorem 5.6 can be rewritten as

#1 " (9)21(x) A1 (9) <0

with
Eq, () Ve(a) 0.5V Vg(a)
21 (a) = Ve(e) 0 0 , (5.23)
0.5VaVe(a)T 0 0
Iy
P (9) = (A% (o) +vI5)

(J(6) At () x(C) © I5)

Considering that the sum of the time-derivative of the premise variables is null, i.e.,

then, according to (5.20),
r
Y ai=1a=1]0)Aq(x)x(¢) =0.
i=1

Therefore, considering % (9) € RU+1ox(r+2)0 the condition %, (9) %5 (9) = 0 can be
attended choosing

A¥ () +vIs I, 1) ®I

P$1(9) =
JO)Ag()x() @1, 0  —Lyg

(5.24)

Thus, it is possible to write the Finsler’s equivalent condition with slack variables
2 (9) : 21(a) + He (2 (9)%1(9)) <0 (5.25)
with 21 () and % (9) as in (5.23) and (5.24), respectively, and the slack variable

X11(9) X12(9)
Z(9) = | Xn(9) Xpp(9)| € RUFHox(+1)o, (5.26)
X31(9) Xz2(9)

=)
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Re-writing inequality (5.25) in the form %5 T (9) 2, (9) %5 (9) < 0, statement (ii)
of Lemma 2.1, with

| 2i(@) *
2,(9) = [ 2(9) o]’ (5.27)

where 21 () and % (9) are given respectively in (5.23) and (5.24), and

2 (0) = [ ;:g;;f;] ,

with 2°(9) as in (5.26), Finsler’s lemma can be applied once more, resulting in the
equivalent condition 3% (9) : 2,(9) + He (¥ (9)%,(9)) < 0 with 2,(9) as in (5.27),
the slack variables

y.<

110
9

D

2(9

(9)]
1 (9)
2(9)| € REr+3)ox(r+l)e
(9)
(9) ]

(

(
1( /

(

(

D
D

D
2(9

1

N
V\_/\Q_‘.ivv

1

and %, (9), from the orthogonality conditions %, (9)%,(9)+ = 0, given by

Zr(9) = |2 ~Iin)o]- (5.28)

The main result of this section is the next theorem, built upon the above algebraic
manipulation.
Theorem 5.7

If there exist matrices 0 < Vg(a) € S°0"™) gs in (5.16), K(a) € RT", & (9) €
RZr+3)ox(rtl)o g, (9) € RUTDox(2r+3)0 aud g scalar y > 0 such that the robust BMIs

2,(9) + He (% (9)%,(9)) < 0, (5.29)

hold for all 9 € A, X Ay X A with 2,(9) as in (5.27), then v(x, «) as in (5.15) is a
HPPDLF of degree 2m on the states x and degree g on the MFs o for the T-S system (3.6)
that certifies that the origin of the system is locally exponentially stable, and & = y/m is a
lower bound for the decay rate.

Proof. Immediate from the presented development. O

The main advantage of Theorem 5.7 over Theorem 5.6 is that both A («) and
A" (a) appear affinely in inequality (5.29). Consequently, the PDC gain K(«) also
appears affinely and can be computed without resorting to a change of variables, which,
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as previously explained, is not possible in this case. Moreover, dealing with K(«) directly
as a variable of the problem makes it straightforward to establish magnitude bounds on
its entries. This is in stark contrast to approaches based on change of variables, where
structural constraints come at the expense of constraining other variables in the problem
(a source of conservatism). Consequently, the conditions presented in Theorem 5.7 can
be tackled while considering the constraint formulation:

Kmin S Kl S Kmax, Z = 1, “ e ,1’ (5.30)
where Kiin and Kmax are given matrices.

However, it is worth noting that the conditions established in Theorem 5.7 also
take the form of BMIs due to the presence of the product % (9)%,(8). Unlike the BMIs
in (5.22), this bilinearity can be suitably addressed using the parameter y as a relaxation
factor in an iterative algorithm where local convergence can be assured. The first
step in devising the iterative algorithm is to linearize inequality (5.29) by converting
it into LMIs. This can be achieved by treating the matrix %, (9) as constant (possibly
9-dependent). To ensure feasibility with a pre-specified matrix %, (9), the parameter
v plays an important role. Besides serving as a lower bound for the decay rate of
the system, it can also act as a relaxation parameter. This is because the conditions
of Theorem 5.7 can always be made feasible by selecting a sufficiently large negative
value for y. At this stage, the affine dependency of the left-hand side of (5.29) with
respect to A" () proves to be useful since y can be maximized as an objective function
throughout the iterative process. If y exceeds 0, it indicates that a stabilizing PDC gain
has been found.

In order to compute the first feasible solution, Theorem 5.6 can be employed
to derive a bound for the decay rate 6*/m associated with the open-loop T-S system
(i.e., with K(a) = 0). Subsequently, equation (5.25) can be solved by considering the
modified open-loop matrix A(«) = (A*(a) + &*I), which is guaranteed to be stable.
This process yields the slack variables 2"(9) required to produce the initial value of
P> (9) as in (5.28). The theorem presented in the sequence provides a comprehensive

description of this procedure.

Theorem 5.8

Consider the following maximization problem associated to the open-loop T-S system

maximize o
8, Eg; (a), Vg(a)>0

s.t. He (Vg(cx) (A#(oc) + 5Ig>>
+ VaVe(a) (J(O)A(a)x(C) @ Iy) + Eg, () < 0.
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Let 5* be the optimal solution. Then, substitute the extended closed-loop matrix A*(x) in
P1(9), given in expression (5.24), by A(a) = A*(a) + 6*1, yielding

A(x) —I, 1) ®I,

%1 (9) =
J(O)A(a)x(() ® 1z O —Lro

4

and solve (5.25) for 2 (9) to obtain the feasible initial condition

Br(0) = |2 )T ~Iyi1)0] -

Proof. Straightforward from the conditions of Finsler’s lemma. O

Suppose that a stabilizing PDC gain is available, computed using any other
technique from the literature. In such cases, the procedure suggested in Theorem 5.8
could be applied considering the closed-loop matrix A, (), which is already stable,
certainly leading to a positive §*. Consequently, Algorithm 4 can be utilized to obtain
improved decay rates or expand the DOA (as explained in the sequence).

The primary feature of the approach employed in this study, facilitating an
iterative problem-solving strategy, lies in the property that

He(% (9)%2(9)) = He(%:(9) % (9)").

As a result, any choice of % (9) | can serve as a valid selection for %, (9) in the subse-
quent iteration. The algorithm demonstrates local convergence characterized by a y
that cannot decrease along the iterations, which can be verified by assuming that the
conditions outlined in Theorem 5.7 are feasible at a given iteration it. It is then demon-
strated that the same conditions remain feasible at the (it + 1)-th iteration through
specific choices, such as 2, ;111(9) = 2, 4(9) and B, ;111(9) = %;(9) T, thereby en-
suring vit+1 > Vit- As a result, the evolution of y along the iterations is used as the
stop criterion of the algorithm. If a decay rate &, is given as a target to be achieved, the
algorithm concludes when y > &;m (&, = 0 if solely aiming for stabilization).

Once the desired decay rate is achieved, the iterative process can be slightly mod-
ified to produce an estimate for the DOA of the closed-loop trajectories. This domain
can be represented as the largest invariant set () confined within the polytope X" [22].
Since in this section the Lyapunov function depends polynomially on the states, Q is

formally defined as
Q= {xeR": X" Ty (a)xlm <1}. (5.31)

As discussed in the previous section, the condition to assure that Q) is contained within
the polytope X (domain of validity of the T-S system) can be easily established in the
case m = 1 because in this case the inequality in (5.31) can be made affinely in x by a
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Schur complement, and thus tested on the vertices #* defined in (3.5). However, for
m > 1, a different strategy is necessary. Assuming that the linear constraints in (3.4)
are symmetric, that is, the valid region can always be defined through |a,jx| <1,itis
possible to equivalently redefine the set X as

X ={xeR": x{m}Tka{m} <1,k=1,...,u},
where

x{m}Tka{m} = (a,jx)zm,

My = G Q"™ G, Qi = axay,

and Gy, is defined in (2.5). Therefore, with this new representation, the constraint

QO C X can be accomplished through
V() > My, k=1,...,1 (5.32)

It is important to emphasize that the restriction given by (5.32) must be considered
when obtaining the initial condition for the iterative procedure, i.e., when solving the

conditions presented in Theorem 5.8.

The following optimization problem can be used as a heuristic for the enlarge-
ment of Q [153]

i tr(W) s.t. (5.29),(5.30),(5.32), Vo(ax) < W,
kB (W) (5.29),(5.30), (5.32), Vg(a)
Since two performance criteria are pursued, i.e., the optimization of the decay rate and
the enlargement of Q, an algorithm with two phases, is proposed, as detailed in the

sequence.

As input parameters, Algorithm 4 has the data associated with the T-S model A;,
B;, Ci,i € Ny, Jj, j € Ny, xy, k € Ny, the degrees m and g related to the Lyapunov function,
the constraints on the PDC gains (optional) Knin and Kmax, the target decay rate &;,, the
maximum number of iterations itmax, and tolerance ¢ to end up the procedure if the
progress (in terms of the values of yj or tr(W), in phase 1 or 2, respectively) between
two consecutive iterations is not significant. In phase 1, the procedure tries to achieve
the desired decay rate, and in the case of success, the procedure goes to phase 2, where
the enlargement of the estimate of the region of attraction is performed.

The flexibility of the proposed technique regarding the choices of m and g raises
a question about the conservativeness of the results when the values of m and g grow.

The next theorem provides an important outcome addressing this issue.
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Algorithm 4 PDC Design

IHPUt5 g, m, A, B;, G, ]]'/ Xk, tmaxs Kmin, Kmax, Ea/_e}
1: Solve the problem in Theorem 5.8 to obtain %4, o (9);
2: it <= 0; phase < 1;
3: While it < itmayx

4: it<+it+1;
5: If phase = 1 Then
6: maximize y subject to (5.29), (5.30) and (5.32);
7: If y;; > é,m Then
8: phase < 2,y < Vi
9: Else If y;; — y;1—1 < € Then
10: break;
11: End If
12: Else If phase = 2 Then
13: minimize tr(W) subject to (5.29), (5.30), (5.32) and Vi () < W;
14: If [tr(W); — tr(W) ;1| < ¢ Then
15: break;
16: End If
17: End If

18: Boi(9) « Z(9)7;

19: End While

20: If phase = 1 Then

21: Return Vyax = vir, K(a), Vg(a);

22: Else If phase = 2 Then

23: Return 0 = 0y, Yimax = v, K(a), Vg();
24: End If

Theorem 5.9

If the conditions of Theorem 5.7 are feasible for some integer m > 1 and g > 1, then they
are also feasible for pm and pg, for any given integer p > 1.

Proof. Considering the Lyapunov function
v(x, ) = x{m}TVg((x)x{m},

and that the exponential stability conditions (v(x,«) > 0 and 9(x,«) < —2yv(x, x)
with y = &m > 0) hold, it is possible to write another Lyapunov function

(x, o) = 2P TV, ()P, (5.33)

as 9(x, «) = v(x, ). Using Kronecker powers, one has

5(x, ) = ((x{’“}) M) T Vg ()P ((x{’”}) M) (5.34)

— x{pm}TTTVg((X) [Pl Ty tPm}

where

(x{m}) L qytom) (5.35)



Chapter 5. Regional Stabilization of Continuous-time T-S Systems 76

and since the polynomials in (5.33) and (5.34) are the same, one has

Vpg(at) = T Vo (a)lPIT,

Noticing that T has full-column rank, considering that the condition v(x, ) > 0 is valid,
then V() > 0 and, according to the previous expression, V() > 0.

Computing the time-derivative,
_do(x, )P
~ do(x, )

= po(x, a)’ L ®@o(x, x)

0(x, o) o(x, x)

and writing v(x, )P~ ! in terms of Kronecker powers and 9(x, ) as in (5.18) yields

o(x, &) = (P ((x{m}>[pl]>TVg(oc)[p—ﬂ ((x{m}>[91})>

® (x{m}T (AszVg(‘X) + Vg(a) Al
+ V() x{m}>

_ ((x{m})“’])T (pVe(@l ) (A5 V()
+ V() Af + V'g(oc)>> ((x{m}) [p])

T (Ve @ (AR V()

+ V(o)A + Vg(e) ) ) Tl (5.36)
Taking into account Equations (5.34) and (5.36), one has
5(x, &) 4 270(x, o) = 2P TT ((pVg(oc) Pl
(ABTVy(e) + V(@) Al + Vg(@)) )
27V (ax) M) Txlom,
Since the condition 9(x, @) < —2yv(x, ) is valid with y = &m > 0, then
pVy(@)le~ @ (A Vi(e) + V(@) A% + Vi(a) ) < —29Vg(w)
and considering that the decay rate is constant (i.e., ¥ = py), one has
5(x, &) 4 270(x, o) < x1PmTTT ((pVg(oc) [p=1]

R (—2yVg(a))) +2pyVe(a) [p}) T lom}
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ie., 0(x, a) < =270(x, ).

Therefore, if the exponential stability conditions v(x,«) > 0 and 9(x, a) <
—2yvu(x, «) with y = &m > 0 hold, then 0(x,«) > 0 and 0(x,«) < —273(x, ), with
v = pé&m > 0, are also feasible for p > 1.

O]

A final issue worth highlighting is the effect of increasing m in the enlargement
of ). As presented, there is no guarantee that the volume produced by a certain
degree pm will be larger than the one obtained with degree m since there is no apparent
connection between the trace of the matrix W and the volume of Q. In this context, the
representation given in (5.31) can be useful again. Suppose that Q) in (5.31) is obtained
for certain degrees m and g. Now consider the estimates of the domain using the degrees

pg and pm, for an integer p > 1, are given by
Q, = {x eR" : x{pm}TVpg(oc)x{pm} < 1} .

To assure that O C Q,, it is enough to produce an equivalent representation of
x{m}TVg(cx)x{m} < 1 using a left-hand side with degree pm. This can be straight-
forwardly done by applying the constraint

T V()T > Vo (), (5.37)

with T satisfying (5.35). Thus, whenever a Lyapunov function of degrees m and g
is available, with a certain associated volume for Q, it is possible to search for a new
Lyapunov function of degrees pm and pg with the guarantee that the new volume cannot
be smaller, simply taking into account the constraint (5.37) in the parameter-dependent
LMI conditions that are considered in Algorithm 4.

5.2.1 Numerical Examples

Algorithm 4 and all associated conditions are presented in terms of inequali-
ties depending polynomially (also known as fuzzy summations) on the parameters
9 = (a,6,). In this form, no numerically tractable procedure is directly applicable.
However, relaxations can be applied (exploring the non-negativity of the vector of
parameters 9), and a finite set of LMIs can be used to test the inequalities. Moreover, this
procedure can nowadays be performed with software support, for instance, using the
Robust LMI Parser (ROLMIP) [115], which makes the implementation of the parameter-
dependent LMIs user-friendly. In the implementation, it was chosen to keep Eg, ()
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with fixed degree ¢ = 1, and the slack variables #'(9) depending only on the MFs
a, i.e., ¥ (a), also with degree one. In this section, the PDC controller K(«) depends
affinely on «, but higher polynomial degrees could be straightforwardly considered, es-
pecially using ROLMIP. The programming of all codes was built in Matlab 9.4 (R2018a),
and the SDP solver Mosek 9.3.18 [146] was employed. The PC used is equipped with
the following setup: Core(TM) i7-1165G7 @ 2.80GHz 11th Gen Intel(R) with 16 GB
RAM, Windows 11 Home Single Language. The numerical complexity of the design
techniques presented used in the experiments are evaluated in terms of the numbers V;
of scalar variables and L j;s of LMI rows.

Example 1

Consider the nonlinear system from Gomes et al. [97],

P — a4 Z0gin(xy) —4 - 1 ;
D —2sin(x) -2 —102”9 + _102—b sin(x1)|

where —4 <a < 4and —2 < b < 2. In this example, the aim is to evaluate the existence
of state-feedback (C(«) = I) PDC controllers considering different values of (a, b) lying
in the defined intervals and comparing the proposed technique with the methods in
Gomes et al. [97] and Lee and Kim [93].

Considering the premise variable z = x; and using the section nonlinearity
approach over the nonlinear term sin(x;), the dynamics can be precisely represented
inside the compact set X = {x € R?: |x;| < 7/2,i = 1,2} as the T-S system (3.2) with

4 —4 2 4
Alz ! ]/ Azzl ]/ _4§a§4/

-1 -2 20 -2

1 1
By = , By = , —2<b<2
10 b
and the MFs
o 1+ sin(xq) o 1 —sin(xq)
1 — 2 ’ 2 — 7 .
The Jacobian of the MFs yields
a(xl 80(1
= e, cos(x 0
J(6) = Aca(z) = [3;2 3] - [ o) ]
o om —cos(x1) 0

and the sector nonlinearity approach applied on the nonlinear term cos(x;) leads to the
representation J(0) = 61]1 + 62]>, 0 € A, with

05 0 00
= [—0.5 0]’ ]2_[0 o]'



Chapter 5. Regional Stabilization of Continuous-time T-S Systems 79

In Algorithm 4, no restriction on the magnitude of the gains is imposed, and the
target decay rate is established as &, = 0, i.e., only assuring stability. The maximum
number of iterations is set at it = 25 and the tolerance ¢ = 10~%. Tests are carried
out for the Lyapunov function of degrees m = 1 and g = 1, where the initial condition
%1 (9) is obtained through Theorem 5.8. The proposed technique is compared with LMIs
conditions from Gomes et al. [97] with Lyapunov matrix of degree ¢ = 1 and & =5,
and Lee and Kim [93] with degree g = 2 and ¢ = 10000 (the same value used in Gomes
et al. [97]). The feasible pairs depicted in Figure 5.2 clearly show the less conservatism

of the iterative aloarithm nranneed in thic eectinn in etahilizino the evatem

2 @ " ¢ ¢ ¢ ¢ ¢ ¢ ¢
1r " " ¢ ¢ ¢ ¢ ¢ ¢ -

b of ® @ @ ¢ o
At ¢ ¢ ¢ ¢ 0

I g=m=1 |

2+ : Somesdelt( ;'11. ¢ - - - &

-4 -3 -2 -1 0 1 2 3 4
a

Figure 5.2: Feasible pairs (a,b) € [—4,4] x [-2,2] for Example 1 estimated using Algorithm 4
(circles), Gomes et al. [97] (diamonds), and Lee and Kim [93] (squares).

Example 2

This example shows the effectiveness of the proposed technique dealing with
output-feedback, particularly with the purpose of providing a DOA with the largest
possible area inside the validity of the model. Consider the T-S system (3.2) adapted
from Pan et al. [16] valid in

X = {x €eR?: |x;| <1.5,i = 1,2}
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with
—0.1125 —0.02 ~0.1125 —1.527
Al - ’ 2 = ,
1 0 1 0
1 1
B, = H,Bz_ [0 Ly = [0 1},C2_ [o 1}
and the MFs defined as
225-x3 3
%1 225 %27 305

with the corresponding Jacobian

gﬂ gﬂ 0 2

_ _ _ 2.25

J(6) = Via(z) = | 500 a2 | = 0 2% |-
0x;  Oxp 225

The sector nonlinearity approach applied on the nonlinear term x; leads to the repre-
sentation J(6) = 01]1 + 62]2, 6 € A, with

]_1 0 —3 ]_103
=225 10 317 2 2250 —3|°

The estimation of the DOA obtained by Algorithm 4 for state- and output-
feedback with different degrees ¢ and m for the Lyapunov function, and a target decay
rate §; = 0 (i.e., only stabilization), are depicted in figures 5.3 and 5.4, respectively.
For the Lyapunov function of degrees m = 1 and g = 1, the initial condition € (9) is
obtained through Theorem 5.8. For the other degrees, Theorem 5.9 is used to find an
initial condition starting from the results found for m = 1 and ¢ = 1 — therefore, it
is worthy to emphasize that the increase of the area is expected in relation to the area
found with those degrees only. Additionally, to further illustrate the advantages of the
proposed technique, comparisons with state-feedback conditions (clearly more general
to provide larger DOAs) from the literature are included for comparison.

The corresponding areas are provided in Table 5.2. The numbers V; and Lj pys
and the computational time (in seconds) are also presented, offering an estimate of
the numerical complexity of the conditions. The outcomes show that, in exchange
for an increase of the computational load, the iterative algorithm consistently yields
superior results in terms of DOA estimates when compared to the other state-feedback
techniques from the literature, even using output-feedback with degrees ¢ = m = 2.

5.3 Conclusion

This chapter introduces an LMI-based algorithm for local output-feedback PDC
control of continuous-time T-S fuzzy systems using two different types of Lyapunov
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1.5
1 -
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g=m=1
g=m=2
N B g=m=3
= 0 Gomes et al.
Lee and Kim
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05
-1+
1.5
-1.5 -1 -0.5 0 0.5
X1

Figure 5.3: Estimates of the DOA for Example 2 considering state-feedback control law obtained
with Algorithm 4 for different degrees g and m, and with the conditions of Gomes et al. [97] (black)
and Lee and Kim [93] (magenta). The gray box (dashed) indicates the domain of validity of the

model.

Table 5.2: Areas of the estimated DOA obtained by the conditions of Lee and Kim [93] and Gomes
et al. [97] and Algorithm 4 and the corresponding number of scalar variables (V), LMI rows (Lyumjs)

and computational time (in seconds) for Example 2.

Condition | area (u.a.) | Vs | Lpmys | time (s)
Gomes et al. [97]¢—2 s=10 6.5615 41 242 1.00
Lee and Kim [93],7:3,(1):10000 6.7247 129 180 1.06
State- Algorithm 4g_,_1 7.0387 | 181 | 356 | 12.41
feedback | Algorithm 44— y—n 81644 | 409 | 558 | 25.60
Algorithm 4¢3 81281 |733| 992 | 55.56
Algorithm 4¢_,_1 48443 179 | 356 | 19.15
Output- | Algorithm 4,_,,—» 7.2307 | 407 | 558 | 37.17
feedback | Algorithm 44,3 61460 |731| 992 | 8321

functions: Fuzzy Lyapunov Functions (FLFs) and Homogeneous Polynomial Parameter-

Dependent Lyapunov Functions (HPPDLFs). Both methods eliminate the need for
bounds on the time-derivative of the MFs. The main advantage of HPPDLFs is their

ability to extend the results of FLFs and the existing literature, which predominantly

rely on quadratic-on-the-states Lyapunov functions.

The proposed algorithms first guarantee a specified decay rate, then search for

the largest estimate of the DOA within the model’s valid space. The algorithms have
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Figure 5.4: Estimates of the DOA for Example 2 considering output-feedback control law obtained
with Algorithm 4 for different degrees ¢ and m. The gray box (dashed) indicates the domain of
validity of the model.

local convergence and optimize the decay rate of closed-loop trajectories, thereby pro-
viding extended DOA estimates. Numerical examples demonstrate the effectiveness of
the proposed technique in stabilizing T-S fuzzy systems and improving DOA estimates.
Moreover, the results indicate that the proposed method can provide less conserva-
tive outcomes than existing state-feedback control approaches. Finally, although not
explored in this chapter, designing PDC gains that also depend on 8 and ¢ presents a
promising strategy for further improving closed-loop performance.
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Chapter 6

Regional Stabilization of Discrete-time T-S Systems

Consider the discrete-time T-S system described as
x(k+1) = Ay(a)x(k), Vx(k) € L, (6.1)

where A;(a) = A(a) — i.e., the open-loop system — when considering the stability
analysis and A;(«) = A («), according to equation (3.13), for the feedback stabiliza-
tion problem, according to the definitions presented in Chapter 3. The goal of regional
stability analysis is to determine whether the zero equilibrium point of the open-loop
T-S system is locally asymptotically stable. When considering the feedback stabilization
of this system, the objective is to ensure the asymptotic stability of the origin. Ad-
ditionally, in both scenarios, an inner estimate of the Domain of Attraction (DOA) is
computed. This involves identifying a set that is entirely contained within the actual
DOA, providing a conservative but reliable estimate of the region where the system will
converge to the equilibrium point. To achieve this, one can consider a Fuzzy Lyapunov
Function (FLF) given by

o(x) =x' V(a)x (6.2)

where V(«) is a parameter-dependent matrix defined as

V(OC) = Z o Vi, Vi e S™. (6.3)
i=1

Therefore, the candidate Lyapunov function v(x) incorporates the parameter
dependence through matrix V(«), which is a linear combination of V; matrices weighted
by the values of the MFs «;, @ € A,.

It is important to highlight that the T-S system and the MFs are defined only for
x € L. Therefore, to ensure that x* and a™ can be consistently defined, it is necessary
to define the set [110]

R={é{eLlL:Aj(a(w)é €L, w=TE}, (6.4)
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guaranteeing that, if x € R, then x™ € L (i.e., the subsequent states remain in £) and
o™ is well defined (more details later).

By considering the Lyapunov function (6.2), the asymptotic stability of the origin
of the discrete-time T-S system can be evaluated using the following theorem.

Theorem 6.1
Letv:R" = R, v(x) = x"V(a)x, V(x) € S" as in (6.3), be a function satisfying

v(x) >0, Vxe L, x#0, Va € A,
Av(x) =ov(xT) —ov(x) <0, Vx € R, x £ 0, Va € A,,

along the trajectories of the discrete-time T-S system. Then v(x) is a FLF for the T-S system

that certifies that the origin of the system is asymptotically stable.

Proof. See, for instance, [3]. ]

Besides the asymptotic stability of the origin of the T-S system, the regional
stability conditions of this thesis also aid in determining the DOA — in other words,
the maximum distance that a trajectory can reach while still converging to the origin
as k — oo. Despite the complexity of analytically determining the DOA, Lyapunov
functions can be utilized to estimate the DOA by employing sets contained within it [3],
as presented in Section 2.2.

Consider

Q(v,c) ={x e R" : v(x) <}

the c-level invariant set of v(x), where c is a positive real number. Based on LaSalle’s
invariance theorem [3], it becomes evident that if a FLF satisfying the conditions of
Theorem 6.1 exists and if Q(v,c) C R is bounded, then every trajectory originating
from Q (v, ¢) remains within Q(v,c) and converges to the origin as k — oo. Conse-
quently, Q(v, c) serves as a positively invariant set and an estimate of the DOA [3, 22].
Overall, the use of the one-sublevel set Q(v, 1) for estimating the DOA via Lyapunov
functions strikes a balance between conservatism, practicality, and guarantee of stability,
being widely adopted in control theory. Moreover, using the one-sublevel set allows
for a uniform analysis across different Lyapunov functions and systems, providing
a standardized approach for estimating the DOA, facilitating comparisons between
different methods and systems.

As thoroughly discussed in Lee and Joo [110], the invariant subset Q(v, 1) of the
DOA satisfies the following conditions:
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1. For all x € d£, the boundary of £, v(x) > 1;
2. The set Q(v, 1) must be a subset of R;

3. The set Q(v, 1) is contained within {& € R : Av(&) < 0}, where Av(x) = v(xt) —
v(x).

Condition 1) assures that Q (v, 1), which is the level-one subset of v(x), is strictly
contained within £. Condition 3), based on Theorem 6.1 for asymptotic stability, ensures
that Q(v,1) is an invariant subset of the DOA. Therefore, as stated in condition 2),
trajectories originating within Q (v, 1) remain inside the regions defined by £, R, and
Q(y, 1).

6.1 Main Results

To obtain stability analysis conditions that allow the maximization of the esti-
mated DOA using a polytopic representation for the MFs, the proposed strategy starts
employing the Kronecker product between o and the identity matrix I, to form a block

matrix, writing V(«) in (6.3) as

V() =¥ (a® ), (65)
where 7' = [Vl . Vr] € R’ is a matrix consisting of the concatenated vertices of
V().

It is also important to define the candidate Lyapunov functions at instant k + 1.
Using (6.2) and considering the closed-loop T-S system (6.1), v(x(k + 1)) = v(x") can
be expressed as
o(x") = 2" Ag(e) "V (a(z(k + 1)) Ag(er)x

and, using equation (6.5), one has

Via(z(k+1))) =V(a") =¥ (a" @ L). (6.6)

Now, a central point of this study involves the polytopic representation of
the MFs. To achieve this, one must consider that the premise variables are linear
combinations of the states, as presented in Chapter 3 and depicted in equation (3.8),

enabling the expression of the MFs as
a(z(k)) = E(z(k))Tx+e(z(k)), (6.7)

where E = E(z(k)) € R™" comprises terms of the MFs that are a linear combination
of the state variables, and e = e(z(k)) € R™! may encompass constant or nonlinear
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terms of the MFs. Consequently, the MFs at time k + 1 can be expressed in terms of
ET = E(z(k+1))and et = e(z(k+ 1)), the transformation matrix 7, and the preceding
state x (as per the dynamics of the T-S system (6.1)), that is,

at =ETTxt +et = ETTAy(a)x +e. (6.8)

This particular formulation holds paramount significance for the outcomes of
this thesis. It facilitates the polytopic representation of the MFs at the instant k + 1
through a linear combination of the state variables using the transformation matrix 7.
Moreover, it allows for the application of the sector nonlinearity approach to either E*
or e™, if deemed necessary.

In this expression the state x can be replaced by a polytopic representation, valid
within R, enabling the mathematical definition of the MFs at time k + 1. Therefore,
using (6.8) on (6.6), one gets

Viat) =7 (EVT Ag(a)x(Q) +e") ® L) . (6.9)

The examples presented in the sequence illustrate the proposed representation.

Example 1

Consider the nonlinear discrete-time system

—1 1.5x(k
xt =05 ak)| (6.10)
1 —05

where —zmax < x1(k) < zmax, Vk > 0. Considering the premise variable z = x3,
then 7 = [1 O] , according to (3.8). Applying the sector nonlinearity approach on
the nonlinear term 1.5z, the nonlinear system (6.10) can be exactly represented by the

discrete-time T-S fuzzy system with A(«) = a1 A1 + ap Ay,

A =05 —1 1.5zZmax Ay =05 —1 —1.5zmax ’
1 —0.5 1 —0.5

defined in P = {5 ER2:T¢ € [—Zmax, zmax]} according to (3.10), with the MFs given
by a1 = (2 + Zmax)/(2Zmax) and & = (—z + Zmax)/(2Zmax). As previously stated,
this work assumes that all the state variables are limited. Therefore, for x», the limits
—5Zmax < X2(k) < 5zmax are imposed. Thus, from (3.11), the domain £ can be defined
with

1 0
L= [0 1] ; Zmax,1 = Zmax, Zmax,2 — 5Zmax-
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Writing the vector of MFs according to the representation (6.7), one gets

o = 0.5 |1 z+0.5 1
Zmax __1_ ].
05 [ 1] 1
-1 1 0] x(¢)+05 1] = ETx(0) +e
where
) 1 1
p= 02 , e=05]|. 6.11)
Zmax _1 1

At instant k + 1, according to (6.9), the Lyapunov function can be obtained
considering E* and e™, along with the region R to define x(¢), where the MFs are
mathematically defined. From (6.11), one gets

E+_0.5 1 €+—051
Zmax —1|’ T

To define the set R, condition (6.4) can be used, which requires that A(x(w))é& €
L,ie., TA(x(w))é € [—zmax, Zmax). Considering w = T¢& = &;, one can obtain

A(a(w)) based on the previously derived T-S system

o [-1 15
A(a(w)) =05 [ . _0.5] :

Therefore,

—1 1.5& 'S
TA(a(w)s = [1 0] 05[1 _o.§] lej

= 05(—51 + 155152) S [_Zmax/ Zmax] s
and the set R can be written as

R { & € R? : &1 € [_Zmax/Zmax] /}

(6.12)
0.5&1 (1.5, — 1) € [—Zmax, Zmax|

Even though the set defined in equation (6.12) is non-convex, it is possible to use
the convex hull that contains this set to polytopically represent x(¢). Therefore, an outer
approximation of the set R can be obtained, ensuring that x(¢) remains within co(R).
Thus, convex optimization techniques can be used to provide a numerically tractable
analysis of the dynamics of the system, as illustrated in Figure 6.1. The figure displays
the sets £ and R, represented by the gray dot-dashed and blue solid lines, respectively.
The blue dashed line represents the convex hull containing R. The lines in the figure

correspond to the mathematical definition of these sets. The colored areas, namely red
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and blue, indicate unstable and stable trajectories, respectively, while the green area
contains trajectories that escape the region of validity £ before converging to the origin.

These areas, along with the arrows indicating the state at the next instant, are obtained
through ni11rmnrinal cirtilatiane Aan Hha T_Q oxrofar

Figure 6.1: Distinct regions of the state space for Example 1. The validity domain £ of the model is
depicted in gray as a dot-dashed line. The solid blue line represents the limits of the set R, while the
dashed blue line corresponds to the convex hull co(R). Trajectories originating from the red region
are unstable, whereas the ones starting from the blue are stable; the green region contains trajectories
that escape L before converging to the origin.

Example 2

Consider the T-S system from Lee and Joo [110] where A(«) = a1 A1 + oAy,

ap —0.7 09 0
s AZ - ’
0 —-0.9 —0.7 ap

with the premise variable z(k) = x1(k) and the MFs

A =

o =1/2[1+sin(z(k) 1 - sin(z(k))]
defined in P = {5 eR?:TEe[-n/2,m/2], T = [1 O] } Imposing the limits —7r <

x2(k) < 7, from (3.11), the domain £ can be defined with

1 0
L= [0 1] s Zmax,1 = 7T/2; Zmax,2 = 7T.
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According to (6.7), it is possible to write the MFs as

o = [8] 1 0[x+05

and, at instant k + 1,

1+ sin(z(k))
1 —sin(z(k))

] =ETx+e

1+sin(z(k+1)
1—sin(z(k+1))

~—

Et = [8] , et =05

The presence of the term proportional to the sine of the premise variable at
instant k + 1 may initially appear problematic. However, this issue can be addressed by
considering that the T-S system is defined within £, where —7r/2 < x1(k) < 7r/2 holds
for all k > 0. Therefore, since z(k +1) = x1(k+ 1), then —71/2 < z(k+1) < 71/2 and
applying the sector nonlinearity approach in the nonlinear term sin(z(k + 1)) yields

et = B1(z(k))er + Ba(z(k))es

where e; = [1 0} T, ey = [O 1} ! and f3 € A,.

Then, by incorporating the revised representation of e and the polytopic repre-
sentation of the MFs, the candidate Lyapunov function at instant k + 1 can be expressed
in a polytopic form. Similarly to Example 1, it is possible to mathematically define
the set R — whose expression is omitted for simplicity. Again, co(R) can be used to
polytopically represent x(¢). This representation, although more conservative, enables
the proposed method to be implemented. Note that if the MFs are only polynomial
expressions of the states — as in Example 1 —, the term et is constant, and no fur-
ther application of the sector nonlinearity approach is required, leading to a simpler

representation of V(a™).

Theorem 6.2, in the sequel, uses V(a™) given in (6.9) to propose sufficient condi-

tions for the local asymptotic stability of the origin of the T-S system (6.1).

Theorem 6.2

Letv:R" = R, v(x) = x' V(x)x, V() € S" as in (6.3), be a function satisfying

Zyo Li Lg—V(a) <0 Vx € L, €Npyy, (6.13)
~V

[ B () ] <0 Vx€LlENy, (6.14)

Zmax,ELﬁAd(‘x) —1

Ag(@)TV(aM)Ag(ax) = V(a) <0 VxeR (6.15)
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where V (a™) is defined in (6.9). Then v(x) as in (6.2) is a FLF for the T-S fuzzy system (6.1)
that proves the local asymptotic stability of the origin. Moreover, the set Q(v,1) is an
invariant subset of the DOA of the system.

Proof. Given that Lyx = zpay ¢ for x € 9L, it is straightforward to notice that (6.13),
when multiplied by x ' on the left and x on the right, i.e.,

z2 x"L) Lix < v(x),

max,éx
implies that 1 < v(x) for all x € dL. Hence, v(x) = 1 for all x € 0Q (v, 1), indicating

that Q (v, 1) is strictly contained in £ and Q (v, 1) serves as a sublevel set of v(x).

The proof that Q(v,1) C R necessitates the left-multiplication of (6.14) by e
and the right-multiplication by &, where

&= In X
Zr:lix,ELfAd(“) '
yielding
Za X Ag(@) L) LAg(a)x —v(x) <0 Vx€ L\{04}, £ € Nppp. (6.16)

Considering the definition of the validity domain (3.11), it is possible to write
x; = Lyx for the instant k and, for the instant k + 1, considering the system dynamics,

x¢(k+1) = LyA(x)x. Therefore, expression (6.16) implies that
z;\ix,gxg(k—l— 1)2 <ov(x), VxeL\{0,},0 €Ny,
which can be further manipulated to

x(k+1)%— Zrznax,é < Z%nax,@(v(x) —1) Vxe L\{0,},0 € Ny

From the previous expression, if x, € Q(v,1), then 22, (v(x) — 1) < 0, imply-
ing xy(k+1)% < sznax,f' Thus, —Zmax < X7(k+ 1) < Zmay, indicating x,(k + 1) € L, i.e.,
Xy € R. Hence, one can conclude that

p+n

Q(U, 1) - ﬂ {‘E eL:n e [_Zmax,ér Zmax,(f] s = LAd(“(w))éf w = T‘E}
=1

which implies Q(v,1) C R.
By pre- and post-multiplying equation (6.15) by x" and x, respectively, and
considering the system dynamics (3.9), one obtains

V() —xTV(a)x <0 VxeR\{0,},

and, therefore, v(x™) — v(x) < 0, Vx € R\ {0, }. Hence, the Lyapunov function v(x)
is strictly decreasing along the trajectories within R \ {0,}. Since Q(v,1) C R is
guaranteed, one can conclude that Q(v,1) \ {0,} C {& € R : Av(é) < 0}. O
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xT = Ag(a)xp
at =E§TxT ¢ A,

Figure 6.2: Illustrative trajectories starting inside R and L.

Special attention should be given when addressing inequality (6.15), which must
be fulfilled within the region R.

Consider the illustration depicted in Figure 6.2, where the states xg and x, are
such that xg € R and x; ¢ R but x; € L. In both cases, the T-S model is capable of
producing a valid x™ even if this value is outside £, because the equality x™ = A;(a)x
holds for any state x belonging to £, where the T-S model is valid. However, the
same conclusion cannot be drawn for the MFs. Specifically, if x* ¢ £, the expression
at = ETTx" does not hold anymore because E* 7 x™ can lead to values not covered
by the T-S model. In other words, one can obtain values of a™ outside the unit simplex,
i.e., o ¢ A, (where «; can assume values greater than one, or negative).

One strategy to address this issue is to impose bounds on the variation rates of
the MFs, for instance, Ao = a — «, with [Aa| < b, 0 < b < 1, as proposed in Lee and
Joo [110]. Thus, the evaluation of (6.15) subject to these constraints assures that only
feasible pairs (according to b) (o, at) € A, X A, are taken into account. Note that in
this case the considered region is equal or is strictly contained in R. However, the use
of bounds has the drawback of loosing the precise relation between o™ and the current

values of a and x, established in (6.8).

In this work, a different approach is proposed, maintaining the connection
between at and the dynamics of the system (which turns to be a key feature of this
work). Thus, condition (6.15) is tested in: i) the convex hull of R whenever this region
can be computed; ii) £, the polyhedral region where the T-S model is valid. In both
cases, some conservatism may be added since E TT xt can assume values not reachable
by at, depending on how large is the difference between R compared to co(R) or L.
The second option (i.e., test (6.15) in region £) is mandatory for the synthesis problem,
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since the shape of R depends on the gain K(«) to be computed.

6.2 Stability analysis

If the open-loop T-S system is considered — or if the PDC gain K(«) is given
—, the conditions from Theorem 6.2 can be used as an LMI-based stability analysis
problem.

In this case, the conditions from Theorem 6.2 can be considered as restrictions to
an optimization problem given by
minimize Yy
v, V(a)

subject to equation (6.13),

equation (6.14), (6.17)

equation (6.15),
V(x) =y, <0 VxelL.

Pre- and post multiplying the last restriction of the previous minimization prob-

lem by x" and x, respectively, yields
XV(x—yx'x<0=0(x) <yr'x=>0(x) -1 <yx'x—1Vx € £\ {0,},

which implies {5 eL &< 1/7/} C Q(v,1). Therefore, minimizing 7y while con-
sidering the constraint {£ eL:EiTe< 1/y} C Q(v,1) results on the enlargement of
Q(v,1).

6.2.1 Numerical Example

The Robust LMI Parser (ROLMIP) is used to transform the robust LMIs of the
optimization problem (6.17) in a finite set of LMIs [115, 136]. The code, built in Matlab
9.4 (R2018a), is solved with Mosek 9.3.18 [146], in an Intel(R) Core(TM) i7-5500U @
2.40GHz with 16 GB RAM, Windows 10 Home Single Language.

With the given values of 4y = —0.35 and a; = —0.10, the T-S system of Exam-
ple 2 is simulated, and the results are depicted in Figure 6.3, following the same color
schemes as the previous example. For a comparison in terms of conservatism with
another method, the stability conditions of Lee and Joo [110, Th. 1] and the conditions
proposed in equation (6.17) are applied. For this particular system, the conditions of Lee
and Joo [110, Th. 1] remained feasible! even with b = 0.99, resulting in the estimation of

IParameter b is a bound for the variation rates Ao (k) and Aa (k).
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the DOA depicted in cyan in Figure 6.3. However, it can be observed that those condi-
tions are more conservative compared to the conditions proposed in equation (6.17), as
evidenced by the larger DOA estimated (in magenta) shown in Figure 6.3. The results

presented in Table 6.1 further validate the superiority of the proposed method in terms
Of estim?{ﬂﬂn A laraar aran Af ctalilitr

X2 0f
1r
RSN NN I I bbbk L
—R
= = =co(R)
3l Eq. (6.17)
. . . . . . . Lee and Joo

-1.5 -1 -0.5 0 0.5 1 1.5

Figure 6.3: Estimated DOA for Example 2 obtained using Lee and Joo [110, Th. 1] with (g,b) =
(1,0.99) (cyan), and using the optimization problem of (6.17) (magenta). The validity domain £ of
the model is depicted in gray as a dot-dashed line. The solid blue line represents the limits of the set
R, while the dashed blue line corresponds to co(R ). Trajectories originating from the red region are
unstable, whereas the ones starting from the blue are stable; the green region contains trajectories
that escape £ before converging to the origin.

Table 6.1: Areas of the estimated DOA obtained by the conditions of Lee and Joo [110] and the
optimization problem in Equation (6.17) and the corresponding number of scalar variables (Vs), LMI
rows (L1 p15) and computational time (in seconds) for Example 2.

Condition | area (u.a.) | Vs | Lpmys | time (s)

Lee and Joo [110, Th. 1](g py—(1099) | 45739 | 55| 126 | 0.54
Equation (6.17) 67560 | 7 | 110 | 1.93

Regarding the regional stabilization of T-S systems employing a PDC gain K(«),
the complexity of the synthesis problem notably increases compared to the stability
analysis, as discussed in the following section.
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6.3 PDC design

Notably, condition (6.15) in Theorem 6.2 involves the product between the Lya-
punov matrix at the next instant V(a™) and the feedback controller K(«), appearing
inside the closed-loop matrix A.(«). To address this challenge, this thesis proposes
employing Finsler’s equivalent conditions to separate the products between the closed-
loop matrix — that replaces A;(«) in this feedback stabilization problem — and the
Lyapunov matrix in (6.15), yielding LMI conditions that can be solved iteratively, follow-
ing the methodology introduced by Felipe and Oliveira [112], as presented in Chapter 2.
Another noteworthy characteristic is that condition (6.9) also involves the product be-
tween the feedback controller K(«) and the matrix V representing the concatenated
vertices of the Lyapunov matrix V(«), which provides an extra complicating factor
when fully separating the variables K(«) and V(«) using Finsler’s lemma.

It is possible to write condition (6.15) in Theorem 6.2 in the form of statement (ii)
of Finsler’s lemma, i.e., 1 (a) " 21 (x) % (x)*+ < 0, where

—V(x) *
0 V(ah)

Iy

Z1le) = Ag(e)

, Bi(a)t =

7

and from the orthogonal projection property, % ()% («)* = 0, resulting in
By () = [Acl(oc) —1,1} . (6.18)

Therefore, from statement (iv) of Lemma 2.1, an equivalent condition with slack

variables can be obtained

A2 (@) + 21(a) + He(Z ()% () <0, 2 (a) = [i e R (6.19)

Condition (6.19) can also be rewritten as %, («)* " 2, (a) %2 (x)* < 0, according
to statement (ii) of Lemma 2.1, where

—V(x) * ok I, 0
D(a) = 0 Viat) «|, %)t = 0 I, ,
Ag(a) =L, 0 Xi(a)" Xp(a)'

and using the orthogonal property to obtain
F(@) = [X1(@)T Xp(@)! —L|, (6.20)

it is possible to employ Finsler’s lemma again and introduce more slack variables to

obtain another equivalent condition, i.e.,

3% () : 2o(a) + He(# () Ba(a)) <0, & (a) € R, (6.21)
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Even though the product between the closed-loop matrix A, («) and the Lya-
punov matrix at instant k + 1, V(a™), is separated in (6.21), the expression for the latter
one, according to (6.9), indicates that there is another product between the variables that
must be separated. Considering expression (6.6) for V(at) — to simplify the notation
— and exploring Lemma 2.1 once more, one can manipulate (6.21) to get the form (ii),
By (o)1 23(0) B3(a)+ < 0, with

—V(x) * * K ok
0 0 * Kk X
23a) = | Agla) I, 0 * |,
0 05(at®I;) 0 0 %
Xi()T Xp()T  —I, 0 0]
[ I, 0 0 ]
0 I 0
B()t=1| 0 0 L, |,
0 1z 0
Yi(e) ' Ya(a)' Ys(a) ']

where o™ is defined in (6.8).

Similarly to the previous developments, it is possible to obtain

Yi()T Yo()T Ya(x)T 0 —1I,
Zsla) =17 v 0 —I, 0

and apply Finsler’s Lemma to introduce more slack variables, resulting in

3% (a) : 23(a) + He(Z(a)B3(x)) <0, Z(a) € RUFHmx(r+l)n (6.22)

Finally, following again the same steps, writing %, (a)* " 24(a)%By(a)+ < 0

with

[~V () * * * T —

0 0 * * * Kk Kk
Ag(a) -1, 0 * I

Dy(ax) = 0 0.5(a™ ® I) 0 0 * K x|, (6.23)

Xi()T Xp(a)T I, 0 0 x %
Yy(a)" Yo ()" Y3(x)T 0 —I, 0 %
0 1 0 Ly 0 0 0
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I 0 0 0 0
0 I, 0 0 0
0 0 I, 0 0
By(a)t = | 0 0 0 Ly o |,
0 0 0 0 I
Zu(@)" Zn(e)" Zsi(a)' Zu(a)" Zsi(a)'
[ Zio(a) " Zop(a) " Zap() " Zap(x) " Zsp(ex) "]

it is possible to get

o Z11(OC)T 221(0€)T Z31((X)T Z41(0()T Z51(0€)T —In 0

%4(“)_ le((X)T Z22(0C)T Z32((X)T Z42(OC)T Z52((X)T 0 —Im

and write a final equivalent condition

I («) : 24(a) +He(# (2)Ba(ar)) <0, #(a) € REFTHImx(r+l)n,

Building upon the previous algebraic manipulation, next theorem presents the
main result of this subsection.

Theorem 6.3

If there exist matrices V() € S" as in (6.3), # («) € REZ)mx(+0n gnd 2, (x) €
R(r+1)nx(2r+5)n satisfying

Zyo LiLg—V(a) <0 Vx e Ll €Ny, (6.25)
-V
TV g vre L e Ny (6.26)
ZmaxlfLeACl ((X) _1
24(x) + He(# (a)By(x)) < 0 (6.27)

where 24(«) is defined in (6.23), then v(x) as in (6.2) is a FLF for the T-S fuzzy sys-
tem (3.12) that proves the regional asymptotic stability of the origin. Moreover, the set
Q(v,1) is an invariant subset of the DOA of the system.

Proof. Immediate from the development previously presented. O

The primary advantage of Theorem 6.3 lies in the affine appearance of the
closed-loop matrix in inequality (6.27) and, consequently, of the controller gain K(«),
facilitating direct treatment of this gain as a variable in the problem. Hence, it becomes
straightforward to impose bounds on its entries as

Kmin[;,j S K S Kman,]‘/ Z e N]"/ (628)

g,
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where Kpin and Knax are given matrices. These constraints can be useful in preventing

control signals from having excessive magnitudes, for instance.

However, it is important to note that conditions in (6.27) of Theorem 6.3 take
the form of Bilinear Matrix Inequalities (BMlIs) due to the presence of the product
W () ABs(x). To address this challenge, an iterative algorithm with local convergence
is proposed, starting from an initial feasible solution through an appropriate choice of
variables %, («). The existence of a feasible solution can be ensured by considering a
relaxed stability condition. This involves examining the stability of the modified system

x" = pAg(a)x = (pA(ar) + B(a)K () C (), (6.29)

where K(a) = pK(a). The introduced real positive scalar p can be viewed as a relaxation
parameter because for p close to zero, a stable dynamic matrix can be easily obtained
with any gain (for instance, K(a) = 0). If p > 1 is obtained, the stabilizing gain for the
original system can be recovered. Therefore, ensuring the existence of a feasible initial
solution requires selecting a sufficiently small positive value for p. The procedure to
determine the first initial feasible values for %, («) and p is be described in detail in
what follows.

The key feature of condition (6.27), enabling the iterative solution, is that
He(# (a) By(a)) = He(By(a) # () ).

Therefore, any # () ' serves as a valid choice for %,(«) in the subsequent iteration.
The local convergence of the algorithm, with non-decreasing p, can be demonstrated by
assuming the feasibility of the conditions in Theorem 6.3 at iteration it and showing
that they remain feasible at the subsequent iteration it + 1. This is achieved with
specific selections 2y ;s 1(a) = 2y ;s() and By js11(x) = #ip(x) ', ensuring pjr1 >
pit. Moreover, as the relaxation parameter p appears affinely in the conditions of
Theorem 6.3, it can be considered as an objective function to be maximized in the
iterative procedure; a stabilizing PDC gain K(«) = K(«)/p is attained when p > 1.

After achieving stability, the iterative process can be slightly adjusted to max-
imize the estimate of the DOA. Various approaches can be employed to tackle this
maximization problem. One method involves homogeneously enlarging the DOA by
expanding an ellipsoid contained within Q(v, 1), as demonstrated in Lee and Joo [110],
or employing the convex function —log(det(-)) method. Alternatively, a heuristic
approach imposes the constraint V(«) < W, with the optimization problem aimed at
minimizing the trace of matrix W. This strategy also results in a homogeneous increase
of Q(v,1) in all directions [152].

To obtain an initial feasible solution for the iterative algorithm, one can first
consider the relaxed open-loop system x* = §A(a)x and utilize Theorem 6.2 to de-

termine the upper bound for the relaxation §* performing, for instance, a bisection
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procedure. Subsequently, LMI (6.19) can be solved to find the slack variables 2" («);
then, these results can be utilized to solve LMI (6.21) for % («). Following these steps,
the relaxed closed-loop system (6.29) can be considered to solve LMI (6.22) and de-
termine 2 («), which is then employed to initialize %, («) as outlined in (6.24). The
subsequent theorem formalizes this procedure in details.

Theorem 6.4

Consider the relaxed open-loop T-S system

1. Solve the optimization problem

maximize & subject to
5,V(x)

z 2 L/ Ly—V(a) <0 Vx€ L €Ny,

max,{
V() *
z 1 LA(a) —1

max,t

] <0 VxelL,leNpy,
Al@)"V(aNA(a) = V(a) <0 VxeR
where, according to (6.9),
Via") =V ((ETTA(a)x(0) +eT) @ I).
2. Let 6" be the optimal solution and consider, according to (6.18),
F() = [6°Ala) —1]
to solve (6.19) on V («) to obtain the slack variables 2 ().

3. Proceed to solve (6.21), still considering the relaxed open-loop system and, according
to (6.20), % () = [Xl(oc)T Xo(a) T —In], to obtain V(o) and % («).

4. With the computed values of V() and % («), consider

PBs(a) =

Yl(OC)T Yz((X)T Y3(OC)T 0 —In
0 pr 0 —L, O
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and the relaxed closed-loop system (6.29) to solve (6.22) on % (ex), finally resulting

in the feasible initial condition

Ba(a) = Zi(a)" Zyn(a)" Zz(a)" Zg(a)" Zsy(a)T —I, 0
! ZlZ(“)T ZZz(OC)T Z32((X)T Z42(oc)T ZSZ(‘X)T 0 —1I,

according to (6.24).

Proof. 1t follows directly from the equivalent conditions of Finsler’s lemma and the
preceding developments. O

Based on the presented results, Algorithm 5 is proposed. This algorithm consists
of two phases: phase one involves an iterative procedure to compute a stabilizing
PDC gain, while phase two focuses on maximizing the estimation of the DOA using
the same iterative approach. As input parameters, Algorithm 5 takes the local linear
matrices of the T-S model, A;, B; and C;, i € N,, along with x;, j € Ny, — a polytopic
representation of the states for the validity domain £. Additionally, it requires the
validity domain £ itself, the polytopic representation of the MFs at instant k + 1 (E™
and e™), and, optionally, the constraints on the entries of the PDC gains Ky and Kmax.
Other inputs include the maximum number of iterations itmax and a tolerance ¢, which
determines the end of the iterative procedure if the progress between two consecutive
iterations is not significant. During phase one, the algorithm attempts to stabilize the
closed-loop T-S system, and the evolution of the algorithm is assessed in terms of the
relaxation parameter p;;. Upon success (i.e., p;; > 1), the algorithm proceeds to phase
two, where it focuses on enlarging the estimated DOA, fixing p = 1 and evaluating the
progress in terms of tr(W). Note that, starting from any feasible initial condition (as the
one provided by Theorem 6.4), the algorithm always converges in phase 1 to a local
maximum. Whenever a solution with p;; > 1 is obtained, the algorithm enters phase 2

where an estimate for the DOA is provided.

6.3.1 Numerical Examples

Despite the conditions of theorems 6.3 and 6.4 being represented in terms of
inequalities that depend polynomially on the parameters, a and ¢, it is possible to
apply relaxations and exploit the non-negativity of the parameters to obtain a finite
set of LMIs to test the inequalities while solving Algorithm 5. The Robust LMI Parser
(ROLMIP) is employed to obtain the finite set of LMIs [115, 136]. The code, developed
in Matlab 9.4 (R2018a), is solved with Mosek 10.0.26 [146], on a PC with an Intel(R)
Core(TM) i7-5500U @ 2.40GHz with 16 GB RAM, running Windows 10 Home Single
Language. In the implementation, the dependence of both the PDC controller K(«)
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Algorithm 5 PDC Design

Input: A;, B;, Ci, xj, EY, e*, L, itmax, Kmin, Kmax, &
1: Solve the problem in Theorem 6.4 to obtain %y o(«);
2: it < 0; phase < 1;
3: While it < itpax
4: it it+1;

5: If phase = 1 Then
6: maximize p subject to (6.25), (6.26), (6.27), and (6.28);
7 If p;; > 1 Then
8: phase < 2, p < 1;
9: Else If p;; — p;;—1 < ¢ Then
10: break;
11: End If
12: Else If phase = 2 Then
13: minimize tr(W) subject to (6.25), (6.26), (6.27), (6.28), and V(x) < W;
14: If |tr(W)js — tr(W)j—1| < € Then
15: break;
16: End If
17: End If

18: @4/1}(06) — %-t((x)T;

19: End While

20: If phase = 2 Then

21:  Return tr(W)* = tr(W);, K(a) = K(a) /p, V();
22: End If

and the slack variables is kept affine on «, but higher polynomial degrees could be
considered straightforwardly, potentially leading to less conservative results at the price

of a higher computational effort.

Two numerical examples are presented next. The first example involves a sinu-
soidal nonlinear dynamic system, where the premise variable is a linear combination of
the states of the system. The second example, borrowed from [99], features a polynomial
nonlinear dynamic system, with the premise variable corresponding to the first state.
Both examples are concerned with state-feedback stabilization, allowing for comparison
with another approach available in the literature, specifically the one from [110]. Addi-
tionally, the second example also includes output-feedback stabilization, providing a
broader perspective on the effectiveness of the proposed approach.

Example 3

Consider the nonlinear discrete-time system

£t = [sin(xll-l— X2) g] rt [(1)] ” (6.30)

where the state variables are both limited, i.e., —71/2 < x1(k) < /2, —7/2 < x5(k) <
7/2, as well as their sum, —77/2 < x1(k) + x3(k) < 71/2, for all k > 0.
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Considering the premise variable z = x; + xy, i.e., the linear combination of
the states, then 7 = [1 1], according to (3.8). Applying the sector nonlinearity
approach on the nonlinear term sin(x; + x7), the nonlinear system (6.30) can be exactly
represented by the discrete-time T-S system (3.9) where

(A, B)((X) = oq(A, B)1 + 0(2(A, B)z, x € Ay,

15 -1 5 1
A — ; A = P B —= B = ,

defined in £, according to (3.11), with
11
L= |1 0}, Zmax,ézn/szeNS/
01

which can be used to find the vertices of the polytope that defines x(¢), for instance,
through the Multi-Parametric Toolbox (MPT) [143].

The MFs, given by a; = 0.5(sin(z) + 1) and ap = 0.5(—sin(z) + 1), can be
represented according to (6.7), i.e.,

o= lg] 1 1]x+05

and, at instant k + 1,

sin(z) +1

. =ETx+e,
—sin(z) +1

g = |0, et—os|snGE)F]
0 —sin(zt) +1

As previously discussed, the presence of the sine of the premise variable at
instant k + 1 in the expression for e may seem problematic. However, exploring the
locality of the T-S model and the definition of region R according to (6.4), it is ensured
that x* remains within £. Therefore, — /2 < zt <m /2 and the sector nonlinearity
approach can be applied to the nonlinear term sin(z"), yielding

1 0
e” = Bie1 + Boer, €1 = [0] , ) = L] , B € A

With the polytopic representation, Algorithm 5 is applied, setting the maximum
number of iterations as ifmax = 100 and the tolerance ¢ = 10~%. The results are
illustrated in Figure 6.4a. In this figure, the blue area represents points x such that x*
remain within the validity domain, i.e., the region R (in this case R coincides with £).
The limit of the validity domain £ is depicted by the gray dot-dashed line and the solid
magenta line indicates the boundary of the estimated DOA. For comparison reasons,
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(a) Algorithm 5. (b) Lee and Joo [110, Th. 2].

Figure 6.4: Estimated DOA for Example 3 is depicted in magenta. The boundary of the validity
domain £ of the model is shown in gray as a dot-dashed line, while the blue shaded region represents
the domain R (which coincides with £ in this case) under consideration.

the conditions of Theorem 2 in Lee and Joo [110] are also tested, considering the MFs
variation bounded by b = 0.9, resulting in the DOA shown in Figure 6.4b.

The numerical complexities of the techniques are shown in Table 6.2, where V;
corresponds to the number of scalar variables and L 75 to the number of LMI rows.
Algorithm 5, which required 37 iterations to converge, exhibits a significantly higher
computational cost compared to the synthesis conditions of [110]. However, this cost
directly correlates with the size of the estimated DOA, indicating the superiority of the
conditions proposed in this work.

Table 6.2: Areas of the estimated DOA obtained by the conditions of Lee and Joo [110] and Algo-

rithm 5 and the corresponding number of scalar variables (Vs), LMI rows (L1 p15) and computational
time (in seconds) for Example 3.

Condition | area (u.a.) | Vs | Lpmys | time (s)

Lee and Joo [110, Th. 2],—g9 | 4.9526 19 | 143 0.76

Algorithm 5 6.1843 269 | 682 24.76
Example 4

Consider the nonlinear model

1 —
xt = - X+
-1 -0.5

y=1[o0 1]«

54+ x1
le

u

(6.31)

where only the state variable x; is limited in Guerra and Vermeiren [99], i.e., —z;; <
x1(k) < zm (zm to be defined).
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Considering the premise variable z = x1, then 7 = [1 O} , according to (3.8).
Applying the sector nonlinearity approach on the nonlinear term x;, the nonlinear
system (6.31) can be exactly represented by the discrete-time T-S system (3.9) where

(A,B,C)(a) =a1(A,B,C)1 + x2(A,B,C)a, a € Ay

Ay — 1 —Zmax A, — 1 Zmax
L D -3 O e 11
By, = 5 + Zmax B, = 5 — Zmax
2Zmax ’ —2Zmax ’

q:q:@q,

defined in P, according to (3.10). However, as previously stated, this work assumes that
all the state variables are limited. Therefore, for x;, the limits —10z,, < x;(k) < 10z,
are imposed. Thus, from (3.11), the domain £ can be defined with

10
L= [0 1] ;/ Zmax,1 = Zm, Zmax,2 = 10z,

which can be used to determine the vertices of the polytope that defines x(¢). In this
case, since the premise variable corresponds to the state x1, matrix L that defines the

domain £ is simplified, as previously explained.

The MFs can be represented according to (6.7), i.e.,

“:%[1] [1 O}x—l—1
Zm | —1 2

and, at instant k + 1,
ET = L 1 — 1 ! .
2z | =1 2|1

Using the polytopic representation and considering first the state-feedback sta-

=ETx+e,

bilization, Algorithm 5 is applied using the same values for the maximum number
of iterations and tolerance as in the previous example. The results are illustrated in
Figure 6.5a. The limit of the validity domain £ is depicted by the gray dot-dashed
line, while the solid magenta line indicates the boundary of the estimated domain of
attraction. In this case, in addition to the blue area representing the region R, a green
area is also observed. Within this green area, although x € £, at the next instant, xt ¢ L,
meaning that the state vector escapes the validity domain of the T-S system. However,
it is important to note that the estimated DOA remains inside ‘R and therefore, the

conditions of Theorem 6.3 remain valid.
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(a) Algorithm 5. (b) Lee and Joo [110, Th. 2].

Figure 6.5: Estimated DOA for Example 4 considering state-feedback PDC design is depicted in
magenta. The boundary of the validity domain £ of the model is shown in gray as a dot-dashed line,
while the blue shaded region represents the domain R, bounded by the solid blue line. Trajectories
originating from the green region escape the domain £ in the subsequent instant k + 1.

Comparing the iterative conditions of this work with the synthesis conditions of
Theorem 2 in Lee and Joo [110] with b = 0.9, the superiority of the iterative algorithm is
even more evident in this example, with the area of the estimated DOA being around
2.75 times the area of the DOA estimated with Theorem 2 in Lee and Joo [110]. The
cost, again, is the numerical complexity, shown in Table 6.3, which nevertheless remains
reasonable. In this example, the iterative algorithm converges in 27 iterations and the
control gain is given by (truncated with four decimal digits)

K(a) = o [—0.0825 O.lOOO]-I—ocz [—0.1200 —0.1003].

Table 6.3: Areas of the estimated DOA obtained by the conditions of Algorithm 5 and the corre-
sponding number of scalar variables (V), LMI rows (Lpp15) and computational time (in seconds) for
Example 4 considering state-feedback.

Condition | area (u.a.) | Vs | Lpmys | time (s)
Lee and Joo [110, Th. 2],—p9 | 5.6331 19 | 125 0.81
Algorithm 5 15.4679 | 269 | 246 13.32

Finally, Algorithm 5 is also employed to compute an output-feedback PDC
controller. The resulting DOA is depicted in Figure 6.6, following the same color scheme
as the previous figures. It is interesting to note how the shape of the region R differs
from that in Figure 6.5, as it depends on the dynamics of the final closed-loop T-S system,
demonstrating that it is difficult to obtain a sketch of region R when performing control
design. Additionally, the estimated DOA, as claimed, lies inside region R, illustrating
the validity of the assumptions made in this work. Note that the output-feedback
provides a good estimate of the DOA, only 5.87% smaller than the one provided by Lee
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and Joo [110] in the state-feedback case. It is worthy to emphasize that the synthesis
conditions of Lee and Joo [110] cannot be applied in the output-feedback case. The
numerical complexity of the technique considering output-feedback PDC design is
shown in Table 6.4. In this case, the iterative algorithm is terminated with 61 iterations
and the control gain is given by

K(a) = o |0.1183] + o [~0.0709]

X2 0r

-1 -08 -06 -04 -02 O 02 04 06 08 1
X1

Figure 6.6: Estimated DOA for Example 4 considering output-feedback PDC design, obtained
through Algorithm 5, is depicted in magenta. The boundary of the validity domain £ of the model is
shown in gray as a dot-dashed line, while the blue shaded region represents the domain R, bounded
by the solid blue line. Trajectories originating from the green region escape the domain £ in the
subsequent instant k + 1.

Table 6.4: Areas of the estimated DOA obtained by the conditions of Algorithm 5 and the corre-
sponding number of scalar variables (Vs), LMI rows (L1 15) and computational time (in seconds) for
Example 4 considering output-feedback.

Condition | area (u.a.) | Vs | Lpmis | time (s)
Algorithm 5 | 53023 | 267 | 246 | 2267
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6.4 Conclusion

This chapter addressed the problem of regional stability, in the context of sta-
bility analysis and synthesis, as well as the maximization of the estimated DOA for
discrete-time T-S fuzzy systems. The proposed approach utilizes a fuzzy-modeling
technique to represent the MFs in a polytopic form based on the premise variables.
Unlike existing methods in the literature, this representation eliminates the need for
explicit information about the bounds of variation of the MFs. In the context of stability
analysis, the estimation of the DOA is formulated as a single-parameter minimiza-
tion problem subject to LMI constraints, providing an efficient solution demonstrated
through numerical examples and comparisons with other methods. Furthermore, in the
context of synthesis, the chapter tackles regional stabilization and DOA maximization
for discrete-time T-S fuzzy systems using state- or output-feedback PDC control. The
proposed fuzzy-modeling technique, representing MFs in a polytopic form, bypasses
the necessity for explicit MF bounds and by conveniently exploring Finsler’s lemma,
the chapter presents an iterative algorithm for the PDC design problem. Numerical ex-
amples highlight the effectiveness and superiority of the proposed method in providing
the largest estimated DOA and flexibility in imposing gain limits, despite increased

computational effort.
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Chapter 7

Conclusions and Future Steps

This thesis has advanced the field of control for T-S fuzzy systems, focusing on
both continuous-time and discrete-time domains. By addressing the limitations of tradi-
tional quadratic Lyapunov functions, novel synthesis conditions were proposed utilizing
Homogeneous Polynomial Lyapunov Functions (HPLFs), Fuzzy Lyapunov Functions
(FLFs) and Homogeneous Polynomial Parameter-Dependent Lyapunov Functions (HP-
PDLFs) — that depend polynomially on system states and MFs. These approaches
significantly reduce conservatism and improve performance in control design.

For continuous-time T-S fuzzy systems, FLE, HPLF and HPPDLF stabilization
methods were developed. Those methods generalize beyond quadratic stability, the
latter two introducing an innovative strategy that incorporates extended matrix repre-
sentations without the need for the standard change of variables. Those methods were
shown to effectively reduce conservatism and enhance system performance through an
iterative LMI-based algorithm. Furthermore, regional stability analysis was extended
by employing polytopic representations of the gradient of MFs, enabling the design
of more efficient output-feedback controllers without requiring known bounds on the
time-derivatives of the MFs.

In the discrete-time domain, FLFs were used to handle the regional stability and
estimation of the domain of attraction (DOA). The proposed polytopic representation
approach eliminates the need for prior bounds on the variation rates of the MFs, leading
to less conservative stability conditions and better DOA estimates. The effectiveness
of the method was validated through numerical examples, demonstrating superiority

over existing techniques in terms of reduced conservatism and improved performance.

The synthesis procedures developed in this thesis were given in terms of iter-
ative LMI-based algorithms that can be applied to both state- and output-feedback

stabilization, with constrained structure or magnitude bounds on the entries, showing
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flexibility and practicality. These procedures not only ensure closed-loop stability but
also optimize the decay rate — in the continuous-time domain — and maximize the
DOA estimate. It is worth to emphasize that, since the synthesis procedures involve
the design of a PDC gain, the practical implementation of the designed gains has the
same complexity of other PDC techniques available in the literature. Moreover, since
the controller synthesis is performed offline, the typically higher computational times

required by the proposed method do not pose an issue.

Future work will aim to extend these methods to accommodate Lyapunov func-
tions with rational dependence on system states and to address performance criteria
such as the H; and H, norms. Additionally, exploring the potential of these advanced
Lyapunov functions in other complex nonlinear systems remains an exciting avenue
for further research. Immediate extensions can be considered to treat uncertain time-
invariant linear systems and switched systems. Finally, the investigation of line integral
Lyapunov functions [154] depending polynomially on the states is also a topic for
further research.

In conclusion, this thesis has made significant contributions to the robust control
of T-S fuzzy systems, offering less conservative and more effective solutions for both
continuous- and discrete-time applications. These advancements pave the way for
future research and development in nonlinear control systems, promising enhanced

stability, performance, and robustness in practical applications.
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