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a b s t r a c t 

A growing number of studies have demonstrated the in vitro potential of an impressive number of an- 
tileishmanial candidates in the past years. However, the lack of uniformity regarding the choice of cell 
types for cytotoxicity assays may lead to uncomparable and inconclusive data. In vitro assays relying 
solely on non-phagocytic cell models may not represent a realistic result as the effect of an antileishma- 
nial agent should ideally be presented based on its cytotoxicity profile against reticuloendothelial system 

cells. In the present review, we have assembled studies published in the scientific literature from 2015 
to 2021 that explored leishmanicidal candidates, emphasising the main host cell models used for cyto- 
toxicity assays. The pros and cons of different host cell types as well as primary cells and cell lines are 
discussed in order to draw attention to the need to establish standardised protocols for preclinical testing 
when assessing new antileishmanial candidates. 

© 2022 Elsevier Ltd and International Society of Antimicrobial Chemotherapy. All rights reserved. 

1. Leishmaniasis: general aspects and current chemotherapy 

Leishmaniasis is a disease caused by more than 20 species of 
protozoan parasites belonging to the genus Leishmania . It is esti- 
mated that 350 million people live in risk areas worldwide and 
there are approximately two million new cases of leishmania- 
sis per year [1] . Female sandflies are responsible for transmis- 
sion of the parasite between invertebrate and mammalian hosts. 
During the blood meal, amastigotes are ingested by Phlebotomi- 
nae sandflies and transform into promastigotes in the insect’s gut, 
while some of them accumulate in the stomodeal valve as meta- 
cyclic promastigotes. During a new blood meal, parasites are in- 
oculated into the mammalian host and infect mononuclear phago- 
cytes, mainly macrophages. Within these cells, Leishmania remains 
in parasitophorous vacuoles as amastigotes [2–4] . 

Leishmaniasis disease has different clinical forms, varying from 

asymptomatic lesions to disfiguring cutaneous leishmaniasis (CL) 
and fatal visceral leishmaniasis (VL). The latter form occurs due 
to the dissemination of infected macrophages through the reticu- 
loendothelial system resulting in hepatosplenomegaly, thrombocy- 
topenia, hypoalbuminemia and anaemia [5] , often leading to death 
if the patient remains untreated. In East Africa and India, post- 
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kala-azar dermal leishmaniasis may develop after VL manifestation 
[ 4 , 5 ]. Dermotropic strains cause CL, characterised by a spectrum 

of clinical manifestations including localised cutaneous leishma- 
niasis, diffuse cutaneous leishmaniasis, disseminated leishmaniasis 
and mucocutaneous leishmaniasis. Diffuse cutaneous leishmaniasis 
is characterised by the appearance of multiple non-ulcerated papu- 
lar lesions, while mucocutaneous leishmaniasis causes destructive 
lesions on the lips, nasal septum and palate [ 4 , 6 , 7 ]. 

In general, drugs available for the treatment of leishmaniasis 
are toxic and require parenteral administration, which may lead 
to poor patient adherence. In addition to pentavalent antimonials, 
available in two formulations meglumine antimoniate and sodium 

stibogluconate, amphotericin B and its liposomal formulation, and 
miltefosine, there are also other drug options including pentami- 
dine, paromomycin, azoles and allopurinol [ 8 , 9 ]. In the Americas, 
meglumine antimoniate is the drug of choice for the treatment of 
VL and CL [10] . Amphotericin B has been successfully used against 
VL, despite its toxicity when administered in the deoxycholate free 
form. The liposomal formulation is less toxic and more effective, 
and although being more expensive, it is considered the drug of 
choice for VL in many countries [ 10 , 11 ]. Additionally, the use of 
aromatic diamidine pentamidine has shown diminished effective- 
ness in the last decades, especially in India [ 12 , 13 ]. Paromomycin, 
a broad-spectrum aminoglycoside antibiotic, has been used topi- 
cally for New World CL with very comparable results to those ob- 
served for parenteral antimonials [ 14 , 15 ]. The drawbacks of this 
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drug, however, are related to the relevant side effects that involve 
vestibular, cochlear and renal toxicity [11] . One of the most recent 
advances in the chemotherapy of leishmaniasis is the use of milte- 
fosine, an orally administered phosphatidylcholine analogue devel- 
oped as an antitumour compound that successfully replaced pen- 
tavalent antimonials in the Indian subcontinent despite disadvan- 
tages such as prolonged half-life and teratogenic effects [16] . 

Notably, the Drugs for Neglected Diseases initiative (DND i ) has 
evaluated the impact of clinical trials based on the association of 
reference drugs [17] . For example, in patients with VL in India, 
combination therapy has been recommended, for which a single li- 
posomal dose of amphotericin B plus miltefosine or a single dosage 
of liposomal amphotericin B plus paromomycin proved to be effec- 
tive [ 18 , 19 ]. 

Given the absence of available vaccines for humans and regard- 
ing the aforementioned obstacles in leishmaniasis chemotherapy, 
it remains mandatory to evaluate the efficacy of more affordable 
drugs with lower toxicity. Several approaches have been used in 
the search for new leishmanicidal compounds, but scientific and 
non-scientific bottlenecks delay successful pipelines towards the 
finding of new drugs [17] . Identification of potential antileishma- 
nial molecules is generally initiated by characterisation of their in 
vitro activity, using direct incubation tests mainly directed against 
the promastigote stage, followed by assays against the intracellular 
amastigote form. However, there is still a lack of consensus in the 
literature on the ideal parameters required to evaluate toxicity pro- 
files for host cells, especially when choosing the most appropriate 
cell type(s) [ 9 , 17 ]. 

2. Cytotoxicity assays and the search for new leishmanicidal 

agents: what has been done for the last years? 

In vitro cell culture assays are very common tools with a broad 
range of applications often used in academic, pharmaceutical and 
biotechnology companies’ laboratories. Several advantages can be 
listed, such as: (i) quick achievement of quantitative results; (ii) ex- 
perimental variables that can be relatively well controlled; and (iii) 
the possibility of performing high-throughput screening assays, al- 
lowing systematic series of analyses of large chemical compound 
libraries in terms of cell toxicity [20–22] . 

In the context of leishmanial infections, the most common host 
cell belongs to the mononuclear phagocytic system [23] , which 
is responsible for the establishment and progression of the dis- 
ease. Therefore, when investigating the potential of a given an- 
tileishmanial candidate, it is expected that macrophages and/or 
monocytes will be the first cell types to be tested regarding its 
toxicity, i.e. ‘cytotoxicity assay’. By using these specific host cell 
models, initial and crucial information is obtained to infer the 
concentrations to be evaluated against the intracellular amastig- 
ote stage as well as the planning of further assays. Since the 
1980s, it has been proposed that ideal antileishmanial experiments 
should focus on the utilisation of primary isolated macrophages as 
host cells (mouse bone marrow-derived/peritoneal or human blood 
monocyte-derived macrophages) or lineages of human-monocyte 
transformed macrophages [ 17 , 24 ]. It is relevant to point out that 
in general, phagocytes from all human/non-human primates and 
rodents are susceptible to Leishmania infection, indicating that the 
choice of these biological sources is appropriate. Even so, several 
studies have based their investigations on cell types not suscep- 
tible to Leishmania infection during the steps of in vitro toxicity 
evaluation. 

Based on this scenario, in vitro studies identifying new an- 
tileishmanial candidates published from January 2015 to July 2021 
were collected from the MEDLINE/PubMed database using the fol- 
lowing descriptors simultaneously: ‘ Leishmania ’; ‘cytotoxic’; and ‘in 

vitro’. Only articles in indexed journals and written in English were 
included in this review, totalling 175 articles ( Table 1 ). 

From this systematic review, the 175 studies listed in 
Table 1 show that research laboratories from different countries 
have been using 17 cell types, including primary and immortalised 
cells from distinct mammalian species ( Homo sapiens , Mus muscu- 

lus and Cercopithecus aethiops ) for cytotoxicity evaluation, includ- 
ing not only macrophages and monocytes but also endothelial and 
epithelial cells, fibroblasts and melanocytes. Approximately 63% 
of the studies used phagocytic cells for cytotoxicity assays, while 
∼22% used exclusively non-phagocytic cell lineages. Both phago- 
cytic and non-phagocytic cells were utilised in 6 studies [25–30] , 
while 11 employed more than one type of phagocytic cells [31–
41] and 3 of them used more than one type of non-phagocytic cells 
[42–44] , in a total of 20 studies with at least two cell types tested 
for cytotoxicity. 

Regarding the absolute number of cells employed in the cyto- 
toxic assays, 46% of the studies used amounts raised to the 5 th 

power, followed by exponent power of 4 (26%), 3 (15%) and 6 
(5.1%). Only one study used 10 7 cells and, surprisingly, 15% of these 
studies did not specify the cell number used in the assays. Only 7 
(4.0%) of the 175 reports described using relative number of cells 
per mL [10 5 (1.7%), 2 ×10 5 (0.6%), 5 ×10 5 (1.1%) and 10 6 (0.6%)]. 

Incubation times ranged from 24 h to 168 h, for which 34%, 33% 
and 30% of the assays were followed by 48 h, 72 h and 24 h, re- 
spectively. Interestingly, 5.1% of the studies did not specify the in- 
cubation time. Longer periods of incubation (96 h and 120 h) were 
performed in 2.3% of the studies. Only in a few reports, time points 
included 44 h (0.6%) and ‘overnight’ period (0.6%). 

In terms of culture cell types, primary cells differ from cell lines 
and both offer advantages and limitations, as detailed in Table 1 . 
Primary cells are expected to be more genotypically stable, given 
their inability to reproduce without interruption. They also have 
the advantage of being of natural origin, but donor viability and 
high variation can lead to multifactorial results [217] . Besides that, 
the number of cells recovered from a given tissue may be an ob- 
stacle when large screenings are performed, especially when deal- 
ing with a limited number of animal sources. In this context, the 
experimental use of animals has been a constant concern among 
researchers. There has been much debate on the ethical use of 
in vivo models, in addition to the development of new technolo- 
gies designed to avoid the excessive use of these animal models 
[ 218 , 219 ]. On the other hand, the utilisation of seeded non-dividing 
cells ensures the exact amount of a given molecule for a fixed 
number of cells during the period of incubation, allowing the com- 
prehension of the compounds’ effectiveness [105–107] . 

Cell lines, instead, have advantages such as virtually everlasting 
reproduction with facilitated laboratory maintenance and the pos- 
sibility of genetic manipulation [220] . However, a disadvantage re- 
lies on the malignant nature or artificial manipulation to allow in- 
definite proliferation and cultivation of these cells under controlled 
conditions that may result in different sensitivities [221] and in- 
teractions between the target cell and surrounding cells [217] . An- 
other undesirable aspect is that depending on the type of the im- 
mortalised lineage, it may present increased genotypic alteration 
(e.g. accumulation of chromosomal aberrations) after a prolonged 
number of cell divisions [222] . 

The right choice of cell line model is of utmost relevance, es- 
pecially regarding biological parameters [i.e. adhesion ability, dou- 
bling time (DT) and passage number during specific propagation 
protocols] that must be known when planning the most appropri- 
ate incubation period. Ideally, DT, for instance, should be higher 
than the total incubation period of a given cytotoxicity assay to 
avoid the dilution factor of the compound followed by the in- 
crease in cell number over time (in this case, referred to as ‘Ad- 
vantages’ in Table 1 ). Also, attention should be given to the pres- 
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Table 1 

Cell types employed in cytotoxicity assays aiming at the search for new leishmanicidal compounds recovered from articles published from January 2015 to July 2021. 
Biological sources, origin, and cell types are described, with emphasis on the advantages and limitations of lineages and primary cells. 

Biological source Origin Cell type Advantages Limitations Reference 

Homo sapiens 

HeLa and Parental cell 
line (KB) (Hela 
derivative) 

Cervix 
adenocarcinoma 

Epithelial Ideal for continuous 
cultivation, suitable for 
transfection protocols. Used 
for testing and calibration 
protocols in ISO 17025 
accredited laboratories. 
# DT ∼40h (KB). 

Sensitivity differences [ 45 , 46 ]. 
Relevance for Leishmania 

infection is unknown. DT > 24h 
(Hela). 

[ 42,47–49 ] 

HepG2 Hepatocellular 
carcinoma 

Epithelial-like Suitable for transfection 
protocols. Continuous 
cultivation. DT = 48-72h. 

Sensitivity differences 
depending on the Hep cell line 
source [ 50 ]. 
Relevance for Leishmania 

infection is unknown. 

[ 28,29,43,51–59 ] 

HL-60 ∗ Peripheral blood Promyeloblast 
Granulocyte-like 
cells 

It can be stored for years and 
recovered without effects on 
cell viability. DT = 36-48h. 

Variable sensitivity. 
Differentiation is dependent 
on the appropriate stimulus 
[ 60 ]. 

[ 43 ] 

HT29 Colorectal 
adenocarcinoma 

Epithelial Suitable for transfection 
protocols. DT = 1-4 days [ 61 ]. 

Differentiation can be 
modulated by the exposure to 
different com pounds [ 62 ]. 
Relevance for Leishmania 

infection is unknown. 

[ 63 ] 

HUVEC Umbilical 
vein/vascular 
endothelium 

Endothelial Suitable model for studying 
immune response to 
infections, wound healing, 
oxidative stress, and 
angiogenesis. It has been 
demonstrated that 
lymphangiogenesis is 
associated with CL control 
[ 64 ]. DT ∼36h. 

Sensitivity differences. 
DT varies according to the 
passage number. Relevance for 
Leishmania infection is 
unknown. 

[ 65 ] 

MCF-7 Mammary gland 
adenocarcinoma 

Epithelial Suitable for transfection 
protocols. 

Sensitivity differences and 
estrogen responsiveness [ 66 ]. 
Relevance for Leishmania 

infection is unknown. 
DT ∼24h. 

[ 42,44,67–69 ] 

MRC-5 Lung Fibroblast Continuous cultivation. 
DT > 24h-5 days. 

Sensitivity differences. 
It has been demonstrated that 
these fibroblasts achieve 
senescence after a given 
number of passages and cease 
to replicate [ 70 ]. Relevance for 
Leishmania infection is 
unknown. 

[ 71 –78 ] 

PC-3 Prostate 
adenocarcinoma 
metastatic derived 

Epithelial Suitable for transfection 
protocols. DT > 24h. 

Sensitivity differences. 
Relevance for Leishmania 

infection is unknown. 

[ 42,44,79 ] 

THP-1 ∗ Monocytic- 
leukemia 

Monocyte No changes in genotype and 
phenotype upon 25 passages. 
It can be stored for years and 
recovered without effects on 
cell viability [80]. Classic 
Leishmania host cell type. 

Phorbol 12-myristate 
13-acetate (PMA), a toxic 
compound, is required for 
macrophage-like 
differentiation and it must be 
kept in culture for long-period 
assays [ 81 ]. 

[ 27,30–33,53,82–94, 
203 ] 

U937 ∗ Histiocytic 
lymphoma 

Monocyte It can be stored for years and 
recovered without effects on 
cell viability. Feasible for 
genetic manipulation and 
maintenance [ 65 ]. Classic 
Leishmania host cell type. 

Sensitivity differences. 
Differentiation requires 
ethanol or PMA [ 80 ]. 

[ 34,35,95–99 ] 

Mus musculus 

Bone marrow 

derived-macrophage 
(BMDM) ∗

Bone marrow 

myeloid progenitor 
Macrophage Primary cells from natural 

origin. 
Potential for data to be 
translated into preclinical 
results. Classic Leishmania host 
cell type. 

Ethical approval requirement. 
Good yield in the number of 
cells ( ∼1-2 × 10 7 

BMDM/mouse). It requires ∼1 
week to differentiate followed 
by the addition of specific 
factors (rGM-CSF or GM-CSF). 
Possibility of contamination 
during the differentiation 
process [ 100 ]. 

[ 101–107 , 136 ] 

( continued on next page ) 
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Table 1 ( continued ) 

Biological source Origin Cell type Advantages Limitations Reference 

J774A.1 ∗ Reticulum 

cell sarcoma 
Macrophage/ 
Monocyte 

It can be stored for years and 
recovered without effects on 
cell viability. Feasible for 
genetic manipulation and 
maintenance. 
Continuous cultivation and a 
classic Leishmania host cell 
type. 

Continuous cultivation can 
lead to loss of the ability to 
generate oxidative burst [ 108 ]. 
Morphology may difficult 
Leishmania visualization for in 
vitro infection assay. DT ∼17h. 

[ 25,26,32–34, 
36–41,54,109–135 ] 

L929 and 
NCTC clone 929 

Subcutaneous 
connective tissue 

Fibroblast Continuous cultivation. It can 
be used for cytotoxicity tests 
since it is grown on a large 
scale to provide GM-CSF 
enriched-supernatants used in 
the BMDMs differentiation 
protocol. 
This cell line is a suitable 
transfection host. DT ∼30h. 

Relevance for Leishmania 

infection is unknown. 
[ 30,136–142 ] 

LLC-1 Lewis lung 
carcinoma 

Epithelial It is widely used for the study 
of anticancer agents’ 
mechanisms of action. 
DT ∼21h. 

Adherent and suspension 
culture. Relevance for 
Leishmania infection is 
unknown. 

[ 143 ] 

Peritoneal 
macrophage ∗

Peritoneal cavity 
resident 
phagocytes 

Macrophage Primary cells from mice. 
Data show potential to be 
translated into preclinical 
results. Classic Leishmania host 
cell type. 

Short lifetime requires 
immediate use. Ethical 
approval requirement. Number 
of cells may be very limited 
( ∼ 0.5-1 × 10 6 cells/mouse). 
Yield can be enhanced after 
thioglycollate injection, but 
this process leads to the 
activation of immune cells 
[ 144 ]. 

[ 31 , 36–40 , 145–185 ] 

RAW 264.7 ∗ Abelson murine 
leukemia 
virus-induced 
tumor 

Macrophage It can be stored for years and 
recovered without effects on 
cell viability. Continuous 
cultivation. Feasible for 
genetic manipulation and 
maintenance. Classic 
Leishmania host cell type. 

Sensitivity differences. 
DT ∼15h. 

[ 35 , 41 , 186–202 , 
204 , 205 ] 

Cercopithecus aethiops 

VERO Kidney Epithelial Very popular cell line that is 
easily maintained. DT ∼24h. 

Unable to secrete interferon- γ . 
They may show contact 
inhibition depending on the 
strain [ 206,207 ]. Infection by 
L. infantum has been described 
[ 208 ]. 

[ 25–27 , 209–216 ] 

# DT, Doubling Time. It indicates the time required for doubling a cell population in size and/or number (ATCC 2021 [ https://www.atcc.org ]). 
∗ Phagocytic cells used for cytotoxicity evaluation. 

ence of stimulants [e.g. phorbol myristate acetate (PMA) utilised 
for THP-1 monocyte differentiation] incubated in suitable concen- 
tration ranges to avoid interference with the compound tested and 
optimal differentiation [ 81 , 223 ]. The use of THP-1 cells has been 
frequently employed in the search for new anti- Leishmania agents. 
The research articles presented herewith reported the addition of 
PMA in a variable range [10 ng/mL to 100 ng/mL ( Table 1 )], di- 
verging from the findings of Park et al. for which PMA at 5 ng/mL 
was sufficient to induce stable differentiation without undesirable 
changes in gene expression [81] . 

One of the most challenging obstacles that affects both lin- 
eages and primary cell cultures is related to micro-organism con- 
tamination, especially mycoplasma colonisation. Mycoplasma is a 
prokaryotic organism, a member of the Mollicutes group with over 
100 species known. These organisms are implicated in cell cul- 
ture persistent contamination, being difficult to detect and elim- 
inate [224] . It is estimated that ∼20% of cultures are contami- 
nated by mycoplasma, a fact that may be explained by miscon- 
duct or lack of basic care while handling cell cultures. Fortunately, 
many diagnostic techniques are available for research groups in 
routine cell culture, including conventional PCR, quantitative PCR 
(qPCR), fluorescent in situ hybridisation (FISH) assay and enzyme- 

linked immunosorbent assay (ELISA), among others [ 224 , 225 ]. Up- 
hoff and Drexler showed that antibiotics such as fluoroquinolones, 
fluoroquinolones associated with macrolide, and pleuromutilin as- 
sociated with tetracycline are effective anti-mycoplasma agents 
[226] . However, attention must be given in this case to avoid 
the interference of these molecules with the cytotoxicity study 
model and possible synergism/antagonism effects with other co- 
incubated candidates. 

3. Cytotoxicity assessment methods 

Cytotoxicity is expressed in terms of a certain drug concen- 
tration that inhibits cell viability by 50%, referred to as the 50% 
cytotoxic concentration (CC 50 ). The most common methods used 
for cytotoxicity assessment of leishmanicidal drugs include colori- 
metric assays with tetrazolium salts [(3-(4,5-dimethylthiazol-2-yl)- 
2,5-diphenyltetrazolium bromide) (MTT) and 2-para-(iodophenyl)- 
3(nitrophenyl)-5(phenyl) tetrazolium chloride tetrazolium salt 
(INT)], resazurin-based solution employed in the lactate dehydro- 
genase (LDH) or alamarBlue assay, and the trypan blue exclusion 
assay. 
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The classic MTT assay involves its incubation in cell cultures 
that have been previously exposed to the test drug. Following in- 
ternalisation by viable cells, MTT is reduced in the presence of 
an electron-coupling reagent to formazan. Further cell lysis is per- 
formed to quantify absorbance values [227] , yielding satisfactory 
results in terms of sensitivity and accuracy. In terms of the LDH 

assay, quantification is possible due to the fact that this cytoso- 
lic enzyme catalyses the conversion of lactate to pyruvate. LDH, 
released into the cell culture supernatant, is measured with an 
enzymatic assay, which results in the conversion of INT into a 
coloured formazan product that is quantified spectrophotometri- 
cally. The amount of LDH present in the culture medium corre- 
lates with the number of dead cells [228] . For the alamarBlue as- 
say, viable cell mitochondrial enzymes convert resazurin (blue) to 
resorufin (pink) that is detected spectrophotometrically or by flu- 
orescence [229] . When comparing protocol steps, assays with ala- 
marBlue can be relatively faster as they do not require a cell ly- 
sis step with detergent or dimethyl sulfoxide, as required for MTT 
testing, for example. The trypan blue exclusion assay is the sim- 
plest and cheapest method to quantify cell viability. In this case, 
cells are diluted in trypan blue and the amount of viable cells is 
determined by counting cells that have not acquired blue staining. 
A major drawback is that trypan blue is not suitable for measuring 
effects that do not affect the plasma membrane [230] . 

By evaluating the studies published in the period, 66% used the 
MTT assay for different cell types. Next, the alamarBlue assay was 
the most employed method (17%), followed by the trypan blue 
assay (4.5%). Interestingly, the lack of uniformity in choosing the 
most appropriate test is evident from studies examined in this re- 
view. One could speculate that this variable may generate different 
interpretations when extrapolating cytotoxicity mechanisms, either 
involving membrane lysis (i.e. trypan blue exclusion assay) or vi- 
ability interference (i.e. MTT/LDH assay), depending on the princi- 
ple of the test used. Curiously, more than one method has been 
used in four research articles that reported cytotoxicity results for 
THP-1, HepG2, J774, peritoneal macrophages and Vero cells with 
the MTT, XTT, resazurin, crystal violet and/or sulforhodamine B as- 
say [ 27 , 28 , 31 , 36 ]. 

4. Choice of cytotoxicity models and implications for 

antileishmanial screenings 

Cytotoxicity tests are of utmost importance to advance the path 
for the discovery of new drugs against leishmaniasis. However, 
evaluating cytotoxicity exclusively in cells that do not have any bi- 
ological relevance in terms of Leishmania infection may show al- 
tered and unrealistic results. For example, the use of tumour cells 
is advantageous for laboratory maintenance and handling, but ge- 
netic alterations may be seen over time. In addition, cell lines and 
cultivation protocols vary between research groups. HeLa cells pose 
as a relevant model in this case. It has been found that this hu- 
man epithelial cell line derived from cervix adenocarcinoma shows 
genotypic and phenotypic modifications in different laboratories 
[231] . Together, these factors prevent proper independent repro- 
ducibility of generated results. 

Besides the fact that several studies have demonstrated the 
interaction between Leishmania and non-phagocytic cells in vitro 
[e.g. Chinese Hamster ovarian (CHO) cells, Vero cells, 3T3-L1 
fibroblast-differentiated adipocytes] [ 208 , 232–234 ], there is still a 
gap in the comprehension of the roles of non-phagocytic cells dur- 
ing in vivo infections, which may be explained by the limited 
number of exploratory studies in the field. Although the use of 
other non-phagocytic cell models for cytotoxic activity may con- 
tribute to the design of preclinical assays with ADMET (absorp- 
tion, distribution, metabolism, excretion and toxicity) modelling, 
we emphasise the inclusion of phagocytes in the cytotoxic analysis 

Fig. 1. Biological and technical parameters to be considered when establishing 
a protocol for cytotoxicity evaluation of antileishmanial candidates. BMDM, bone 
marrow-derived macrophages. 

as being fundamental when considering the Leishmania infection 
model, which will bring even more robust data once the selec- 
tivity index (SI = host cell 50% cytotoxic concentration/ Leishmania 

half-maximal effective concentration (CC 50 /EC 50 )] is determined. 
Indeed, the comparison of compound efficacy and cytotoxic poten- 
tial would be greatly benefited by presenting the SI for equivalent 
cell models. As the data obtained with different cell models are 
not exclusive and can increase knowledge on the toxicity of a given 
candidate, it is interesting to recommend the inclusion of a com- 
plete cytotoxic activity panel covering different cell types, but with 
emphasis on cells from the reticuloendothelial system, lineages or 
primary macrophages/monocytes that should be chosen when de- 
termining SIs. 

Notably, the Japanese Global Health Innovative Technology 
(GHIT) Fund has proposed criteria for new drug candidates by es- 
tablishing that selectivity of a given hit should be ≥10-fold the cy- 
totoxicity range. Regarding antileishmanial agents, a good candi- 
date should present an EC 50 lower than 10 μM against intracellular 
amastigotes [235] . Several consortium studies in partnership with 
the DND i have employed both lineages (THP-1 and RAW 264.7 
macrophages) and bone marrow-derived macrophages for in vitro 
laboratory routine [ 236 , 237 ], criteria on which we are in common 
agreement. 

Taking all into consideration, we propose that the parameters 
discussed in this review, and summarised in Fig. 1 , must be fol- 
lowed in order to assure comparable results among different re- 
search groups and to promote a more homogeneous body of evi- 
dence toward the development of new anti- Leishmania agents. 

5. Conclusions 

Although we recognise that the in vitro assay focused on the 
cytotoxic parameter brings a series of limitations, such as prevent- 
ing the assessment of the best routes for administering a given 
drug and aspects related to metabolisation and toxicity, the sub- 
stantial amount of studies in the literature that rely exclusively 
on cell models as the only parameters of toxicity is still remark- 
able. For initial tests, this approach may still prove to be useful 
for the selection of candidates from large libraries, but it is unde- 
niable that the proper choice of the model can significantly con- 
tribute to advancing the interlaboratory comparison of data and 
the search for hits with the potential to be directed to in vivo ex- 
periments. We reinforce the need for collective protocol guidelines 
to be followed by different laboratories, taking into account that 
human and/or rodent phagocytic cells should be routinely applied 
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in in vitro toxicity assays when searching for novel leishmanicidal 
molecules. 
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