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La caja de pandora

Siento una llama aquí dentro
Quema lo que se conoce por todo.
No siento frío ni calor,
Caliento el aire alrededor.

Por primera vez
El planeta me siente.
Por no percibirme antes,
Siente curiosidad.

Pájaros vienen a mi ventana
En las mañanas de frío,
Por tan ignea presencia.
Gatos e perros
Se acercan en las tardes
De mucho calor.

Siento una llama aquí adentro
Cómo si fuera un motor.
Aquel que calienta el aire de un globo,
Y lo eleva por los cielos.

Y es que...

Elevado voy
Cuando camino.
Elevado me siento,
Y es que no me puedo ni sentar.

Las piedras,
Mis amigas las piedras,
Me permiten caminar.

Una piedra en el zapato,
Tal vez dos o tres
Que no me permitan levitar.

Siento una llama aquí dentro,
Abre cajas.
Cajas que encienden llamas.
Llamas para no sentir frío ni calor.
Calor que globos elevan.
Elevado voy cuando camino
Camino con piedras en los zapatos.
Zapatos para que?...

...nunca más volverá a ser igual.

(WAGC)
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Resumo

Esta dissertação aborda o desafio da escassez de dados no reconhecimento de sinais da
Língua Brasileira de Sinais (Libras) utilizando técnicas de aprendizado profundo, em par-
ticular o Vision Transformer (ViT). A falta de dados amplamente disponíveis e anotados
corretamente dificulta o desenvolvimento de tecnologias de Reconhecimento Automático
de Línguas de Sinais (ASLR), especialmente para Libras. Para enfrentar esse problema,
propomos explorar diferentes abordagens de aumentação de dados sendo eles o padrão,
e modelos de difusão. Além disso, utiliza-se o aprendizado por transferência, visando
melhorar o desempenho em múltiplos conjuntos de dados de Libras. O trabalho tam-
bém introduz uma abordagem inovadora de análise de movimento por meio de Imagens
de Energia de Marcha Coloridas (CGEI), que permite capturar informações detalhadas
sobre os sinais, contribuindo para o aumento da precisão dos modelos. Os modelos ViT
e ResNet50 foram avaliados com base em dados de Libras, comparando o desempenho
dessas arquiteturas em protocolos de divisão de dados estratificados e controlados. Os
resultados demonstram que o uso de técnicas avançadas de aumento de dados, juntamente
com os modelos de aprendizado profundo, se mostrou como uma solução promissora para
lidar com a escassez de dados em Libras. Os modelos ViT, em particular, mostraram
melhor desempenho em relação a outras abordagens previamente utilizadas para o pro-
blema. Espera-se que esta pesquisa contribua para o desenvolvimento de tecnologias mais
precisas e acessíveis, promovendo a inclusão da comunidade surda no Brasil.



Abstract

This dissertation addresses the challenge of data scarcity in recognizing Brazilian Sign
Language (Libras) signals using deep learning techniques, particularly Vision Trans-
former (ViT) . The lack of widely available and correctly annotated data hinders the
development of Automatic Sign Language Recognition (ASLR) technologies, especially
for Brazilian Sign Language (Libras). To tackle this issue, we propose exploring differ-
ent data augmentation approaches, including standard methods and diffusion models.
Additionally, transfer learning is utilized to enhance performance across multiple Libras
datasets. The work also introduces an innovative approach to motion analysis through
Color Gait Energy Image (CGEI), which allows for capturing detailed information about
the signals, contributing to increased model accuracy. Vision Transformer (ViT) and
Residual Network (ResNet50) models were evaluated based on Libras data, comparing
the performance of these architectures in stratified and controlled data splitting proto-
cols. The results demonstrate that the use of advanced data augmentation techniques,
combined with deep learning models, proves to be a promising solution for addressing
data scarcity in Libras. ViT models, in particular, showed better performance compared
to other previously used approaches for this problem. This research is expected to con-
tribute to the development of more accurate and accessible technologies, promoting the
inclusion of the deaf community in Brazil.
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Prefacio (Spanish Version)

Durante mis años de vida, he aprendido y soy fiel a la idea de que la comunicación es
la principal herramienta para la construcción de sociedades. Esta no se limita solo a las
sociedades humanas, ni tampoco a las animales. Si entendemos la comunicación como
cualquier interacción en la naturaleza, encontraremos infinitas conexiones: entre plantas
y animales, entre el comportamiento de los ríos o entre la proliferación de peces. Para
muchas de estas interacciones, se han establecido sistemas de comunicación, algunos más
complejos que otros, pero todos nacen de la necesidad de interactuar.

Reflexionando sobre esto, sin hacer ninguna discriminación entre especies o compleji-
dades de sistemas, podemos identificar diversos modos de comunicación que son funda-
mentales para la interacción entre los seres vivos. La comunicación verbal, por ejemplo,
se manifiesta a través del uso de palabras habladas o escritas, facilitando diálogos y con-
versaciones. En contraste, la comunicación no verbal abarca gestos que expresan ideas o
emociones, como los movimientos de las manos y el cuerpo, así como expresiones faciales
que reflejan cambios en el rostro para indicar emociones o reacciones. La postura corporal
también desempeña un papel crucial, ya que la forma en que sostenemos nuestro cuerpo
puede transmitir mensajes sobre nuestro estado emocional o nuestras intenciones.

Asimismo, la comunicación visual juega un papel importante, utilizando colores o luces
para transmitir información. También se manifiesta en el dibujo y el arte, donde se crean
imágenes para comunicar ideas o sentimientos. Por otro lado, la comunicación sonora
incluye vocalizaciones, como gritos, cantos o murmullos, así como la música, que combina
sonidos organizados para transmitir emociones o ideas.

Además, en el ámbito olfativo, encontramos feromonas que los animales utilizan para
comunicarse, especialmente en contextos de apareamiento o marcaje de territorio, así
como olores que transmiten información sobre identidad, estado de ánimo o ubicación. La
comunicación táctil, que se da a través de toques, expresa afecto, dominio o advertencia,
mientras que la danza utiliza movimientos corporales individuales o grupales (como en
las danzas de las abejas) para transmitir información.

Estos modos de comunicación reflejan la diversidad de interacciones en el mundo natu-
ral. A partir de ellos, y considerando las diferencias técnicas y de complejidad que existen,
las especies vivas han desarrollado distintos lenguajes, todos con la finalidad de interac-
tuar con el entorno y expresar intención motivos, intereses e ideas de diversos tipos y
niveles. En el caso de los humanos, esto también incluye la expresión de la gran creativi-
dad que nos caracteriza, una necesidad intrínseca que se manifiesta en la “poíesis”, el acto
de crear que va más allá de la mera supervivencia y que se convierte en una forma de dar
sentido a nuestra existencia. Esta capacidad de crear, de generar significado a través del
lenguaje y otras formas de expresión, nos permite conectar profundamente con nuestro
entorno y con los demás. El lenguaje se transforma así en una interfaz que nos ayuda a
resolver el complejo problema de la vida misma.

Desde un punto de vista más antropocéntrico, el lenguaje natural forma parte de la
vida; existe por sí mismo y está vivo. Varía según la ubicación geográfica, así como entre
individuos, grupos etarios, grupos étnicos o pequeños grupos de personas que se identi-
fican con variaciones de una lengua y las modifican coloquialmente, añadiendo matices
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que merecen ser respetados y valorados. La lengua evoluciona en relación a muchos fac-
tores, entre ellos la cultura y la sociedad, ofreciéndonos una ventana a las costumbres
y tradiciones que se han tejido a lo largo del tiempo. Me gusta afirmar que el lenguaje
existe como una entidad independiente y compleja que habita en un mundo separado de
nosotros.

El lenguaje natural, en su riqueza y complejidad, ha sido uno de los problemas más
estudiados y desafiantes para la inteligencia artificial. Comprender y emular la capaci-
dad humana para procesar, interpretar y generar lenguaje implica enfrentarse a aspectos
como la ambigüedad, el contexto y las variaciones culturales que se reflejan en cada
lengua. Desde los primeros intentos de traducir oraciones simples hasta los modelos mod-
ernos capaces de mantener conversaciones complejas y contextuales, la IA ha intentado
desentrañar las reglas explícitas e implícitas del lenguaje, desarrollando herramientas y
algoritmos que emulan en parte la capacidad humana de comunicación.

El estudio del lenguaje en la IA ha permitido avances significativos en tecnologías
como el procesamiento de lenguaje natural (NLP), que se aplica en asistentes virtuales,
traductores automáticos y modelos de generación de texto. Sin embargo, esta tarea sigue
siendo un reto, ya que el lenguaje humano es dinámico y evoluciona continuamente,
reflejando no solo información objetiva, sino también emociones, pensamientos complejos
e incluso aspectos de la identidad individual y colectiva. La inteligencia artificial, al
intentar comprender este fenómeno, busca no solo responder preguntas o traducir frases,
sino también capturar la esencia del lenguaje como medio de expresión y vínculo social.
En este sentido, el lenguaje no solo se estudia como un problema técnico, sino como una
ventana hacia las complejidades y sutilezas de la experiencia humana.

A pesar de los grandes avances, existen desafíos específicos cuando se trata de lenguas
de señas, ya que estas no solo dependen de gestos manuales, sino también de expresiones
faciales, movimientos corporales y el contexto en que se realizan. Las lenguas de señas
son sistemas visuales-espaciales únicos que, a diferencia de los idiomas orales, requieren
una interpretación precisa de elementos visuales en movimiento. Esto añade una capa de
complejidad en los modelos de inteligencia artificial, que deben captar tanto la dinámica
espacial como la sincronización de múltiples señales visuales en tiempo real para lograr una
interpretación adecuada. El desafío reside en desarrollar algoritmos que puedan entender
y generar estas lenguas de manera fluida, lo que representa un área de investigación activa
y esencial para garantizar accesibilidad e inclusión de las comunidades sordas en el ámbito
social.

La investigación en inteligencia artificial ha alcanzado un punto crucial en el cual la
interacción entre humanos y máquinas puede beneficiarse enormemente de herramientas
avanzadas de reconocimiento gestual, especialmente en el ámbito de las lenguas de señas.
Como investigador en Ciencias de la Computación y apasionado por la innovación en IA,
encontré en el problema de la clasificación de señales gestuales un desafío estimulante
que me ha permitido conjugar mi interés por la visión por computadora, el aprendizaje
profundo y el diseño de soluciones que acerquen la tecnología a las necesidades humanas.

Mi motivación por este proyecto no solo proviene de la curiosidad técnica, sino de
experiencias personales con personas cercanas que enfrentan dificultades auditivas. Estos
casos me han sensibilizado sobre la importancia de la accesibilidad en la comunicación y
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me han llevado a ver la inteligencia artificial como una herramienta poderosa para resolver
problemas complejos de nuestra sociedad. Desde esta perspectiva, este trabajo pretende
contribuir a mejorar el reconocimiento de señales en Libras, enfrentando el desafío de la
escasez de datos representativos y explorando el potencial de modelos avanzados, como
Vision Transformers, para optimizar la precisión y adaptabilidad en la clasificación de
gestos.

Este estudio se basa en dos enfoques: el uso de modelos de aprendizaje por trans-
ferencia y el aumento de datos mediante técnicas de difusión, aplicados a datasets de
Libras como Elias y MindsLibras. La metodología, los resultados y conclusiones reflejan
el compromiso con la mejora de modelos en entornos desafiantes. Además, los Objetivos
de Desarrollo Sostenible (ODS) han guiado este proyecto, especialmente en el objetivo de
lograr una educación inclusiva y accesible, y fomentar la innovación en tecnología para la
inclusión social.

Este proyecto ha sido un viaje de descubrimiento y superación, en el cual he contado
con el apoyo invaluable de mi orientador, família, colegas y colaboradores. Presentar
estos hallazgos en la Reunión Internacional de Inteligencia Artificial y sus Aplicaciones
(RIIAA) ha sido una experiencia que reafirma la relevancia de esta investigación. Espero
que este trabajo inspire a otros a continuar innovando y contribuyendo al desarrollo de
tecnologías inclusivas y accesibles para todos.
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Preface (English Version)

Throughout my life, I have learned and firmly believe that communication is the primary
tool for building societies. This concept extends beyond human societies and even beyond
the animal kingdom. If we understand communication as any form of interaction in nature,
we discover infinite connections: between plants and animals, the behavior of rivers, or the
proliferation of fish. Many of these interactions have established communication systems,
some more complex than others, but all are born from the need to interact.

Reflecting on this, and without discriminating between species or the complexities
of systems, we can identify various forms of communication that are fundamental to in-
teraction among living beings. Verbal communication, for instance, manifests through
spoken or written words, facilitating dialogues and conversations. In contrast, non-verbal
communication includes gestures that express ideas or emotions, such as hand and body
movements, as well as facial expressions that reflect changes in the face to indicate emo-
tions or reactions. Body posture also plays a crucial role, as the way we hold our bodies
can convey messages about our emotional state or intentions.

Similarly, visual communication plays an important role, using colors or lights to
convey information. It also manifests in drawing and art, where images are created to
communicate ideas or feelings. On the other hand, auditory communication includes vo-
calizations, such as shouts, songs, or murmurs, as well as music, which combines organized
sounds to convey emotions or ideas.

Additionally, in the realm of olfactory communication, we find pheromones that ani-
mals use to communicate, especially in contexts of mating or territory marking, as well as
scents that convey information about identity, mood, or location. Tactile communication,
which occurs through touch, expresses affection, dominance, or warning, while dance uses
individual or group body movements (such as the dances of bees) to transmit information.

These modes of communication reflect the diversity of interactions in the natural world.
From them, and considering the technical and complexity differences that exist, living
species have developed distinct languages, all aimed at interacting with their environment
and expressing intentions, motives, interests, and various types and levels of ideas. In the
case of humans, this also includes the expression of the great creativity that characterizes
us, an intrinsic need that manifests in “poíesis”, the act of creating that goes beyond mere
survival and becomes a way of giving meaning to our existence. This capacity to create,
to generate meaning through language and other forms of expression, allows us to connect
deeply with our environment and with others. Language thus transforms into an interface
that helps us solve the complex problem of life itself.

From a more anthropocentric perspective, natural language is part of life; it exists in
itself and is alive. It varies according to geographic location, as well as among individuals,
age groups, ethnic groups, or small groups of people who identify with variations of a
language and modify it colloquially, adding nuances that deserve to be respected and
valued. Language evolves in relation to many factors, including culture and society,
offering us a window into the customs and traditions that have been woven over time. I
like to assert that language exists as an independent and complex entity that inhabits a
world separate from us.
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Natural language, in its richness and complexity, has been one of the most studied and
challenging problems for artificial intelligence. Understanding and emulating the human
ability to process, interpret, and generate language involves confronting aspects such as
ambiguity, context, and cultural variations that are reflected in each language. From the
earliest attempts to translate simple sentences to modern models capable of maintaining
complex and contextual conversations, AI has tried to unravel the explicit and implicit
rules of language, developing tools and algorithms that partly emulate the human capacity
for communication.

The study of language in AI has led to significant advances in technologies such as
natural language processing (NLP), which is applied in virtual assistants, machine trans-
lators, and text generation models. However, this task remains a challenge, as human
language is dynamic and continuously evolves, reflecting not only objective information
but also emotions, complex thoughts, and even aspects of individual and collective iden-
tity. Artificial intelligence, in trying to understand this phenomenon, seeks not only to
answer questions or translate phrases but also to capture the essence of language as a
means of expression and social bond. In this sense, language is studied not only as a
technical problem but also as a window into the complexities and subtleties of human
experience.

Despite significant advances, there are specific challenges when it comes to sign lan-
guages, as they rely not only on hand gestures but also on facial expressions, body
movements, and the context in which they are performed. Sign languages are unique
visual-spatial systems that, unlike spoken languages, require precise interpretation of vi-
sual elements in motion. This adds a layer of complexity to artificial intelligence models,
which must capture both the spatial dynamics and the timing of multiple visual signals in
real-time to achieve adequate interpretation. The challenge lies in developing algorithms
that can understand and generate these languages fluently, representing an active and
essential area of research to ensure the accessibility and inclusion of deaf communities in
the social realm.

Research in artificial intelligence has reached a crucial point where the interaction
between humans and machines can greatly benefit from advanced gesture recognition
tools, especially in the realm of sign languages. As a researcher in Computer Science and
passionate about innovation in AI, I found the challenge of gesture signal classification to
be a stimulating problem that has allowed me to combine my interest in computer vision,
deep learning, and the design of solutions that bring technology closer to human needs.

My motivation for this project stems not only from technical curiosity but also from
personal experiences with close individuals facing hearing difficulties. These cases have
sensitized me to the importance of accessibility in communication and led me to see
artificial intelligence as a powerful tool for solving complex problems in our society. From
this perspective, this work aims to contribute to improving sign recognition in Brazilian
Sign Language (Libras), tackling the challenge of the scarcity of representative data and
exploring the potential of advanced models, such as Vision Transformers, to optimize
accuracy and adaptability in gesture classification.

This study is based on two approaches: the use of transfer learning models and data
augmentation through diffusion techniques, applied to Libras datasets such as Elias and
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MindsLibras. The methodology, results, and conclusions reflect a commitment to en-
hancing models in challenging environments. Furthermore, the Sustainable Development
Goals (SDGs) have guided this project, particularly the goal of achieving inclusive and
accessible education and promoting innovation in technology for social inclusion.

This project has been a journey of discovery and overcoming challenges, during which
I have had the invaluable support of my advisor, family, colleagues, and collaborators.
Presenting these findings at the International Meeting on Artificial Intelligence and Its
Applications (RIIAA) has been an experience that reaffirms the relevance of this research.
I hope that this work inspires others to continue innovating and contributing to the
development of inclusive and accessible technologies for all.
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Chapter 1

Introduction

In this chapter, we start by providing background and motivation of this research, em-
phasizing the importance of improving gesture recognition in sign language. We then
define the specific problem addressed in this work, followed by our proposed solution,
which leverages advanced classification models for gesture recognition. Next, we present
the research questions that guide this study and the main objectives we aim to achieve.
Finally, we outline the structure of the dissertation, giving the reader an overview of its
organization and flow.

1.1 Background and Motivation

The lack of accessibility for deaf communities remains one of the main challenges currently
faced. Although there have been significant advances in public policies and technology,
the deaf community still struggles to communicate and access basic services [5, 30, 54, 93].
Additionally, deaf individuals often face stigmas and prejudices that impact their social
inclusion. It is important to emphasize that hearing impairment does not limit intellectual
ability. However, negative stereotypes and a lack of understanding from employers often
result in barriers to employment and restrict their access to the job market [5].

These situations highlight the importance of promoting and implementing measures
that ensure inclusion and equal opportunities for deaf individuals. One of the strategies
adopted by the scientific community is the preservation and documentation of the language
through inventories that collect the various signs present in a given territory [3, 20, 65].
These collections form the corpora of a Sign Language and are continually maintained by
the scientific community [6, 37, 78]. Different countries have been working to gather as
much data as possible related to their country’s specific sign language [3, 4, 11, 20, 37,
78, 97].

Some solutions have been explored to improve accessibility and inclusion within the
deaf community, especially for Automatic Sign Language Recognition (ASLR) [8, 46, 47].
However, the available corpora are not ready-to-use datasets for these technologies. They
are scarce and have a limited number of samples. Although there are larger datasets, such
as American Sign Language Lexicon Video Dataset (ASLLVD) [13], University of Texas
Arlington American Sign Language Dataset (UTA-ASL) [27], and Continuous Sign Lan-
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guage Benchmark dataset (PHOENIX-2014) [70], they still contain only a small number
of samples for each sign.

In Brazil, the Brazilian Sign Language (Libras) is the chosen language of the deaf com-
munity for communication and is spoken by approximately 5% of the Brazilian population.
It is recognized as a language and has regulation associated with Law 10.436/2002 [1],
including Decree 5.626/2005 [2]. Libras is a linguistic system with all the characteristics
found in spoken languages and is constructed through signs composed of the following pa-
rameters: configuration, point of articulation, and hand movement; orientation/direction
of the palm; facial and body expressions [30], which can be seen in Figure 1.1. Lack
of awareness of these laws, coupled with limited contact with Libras, can be considered
limiting factors for communication and social inclusion of the deaf. Furthermore, the
teaching of Libras in schools is not comprehensive, and there are few bilingual school
options. This contributes to deaf individuals having fewer opportunities for education,
employment, and participation in society.

Figure 1.1: Image of the fingerspelling of AZUL and the sign “AZUL” in Libras.

Both academic studies and government actions have focused on improving accessibil-
ity for the deaf community. The Brazilian government invests in technologies that have
facilitated deaf individuals’ access to information. Notably among these projects is VLi-
bras [54], which consists of an automatic translator from Libras to Brazilian Portuguese
(PB) incorporated into most of the country’s web pages. Additionally, several research
groups have been dedicated to creating databases that drive ASLR technologies. Some
examples are:

• Libras Database, Libras-34 Dataset (Kinect v1) (LIBRAS-34) [10];

• Elias Dataset [107];

• Libras Database, Libras-10 Dataset, Extension of Libras-34 (LIBRAS-10) [9];

• Libras Database developed by CEFET-Rio de Janeiro (CEFET-Libras) [53];
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• MINDS-Libras [92];

• Libras Database developed at the Federal University of Ouro Preto (LIBRAS-
UFOP-ISO) [23];

• SILFA [98].

These databases are essential for the development of increasingly advanced and ac-
curate technologies for communication between deaf and hearing individuals. All sign
language databases represent significant progress in this regard and should be valued and
encouraged.

Within ASLR, hand tracking and hand configuration recognition are considered static
processes [26]. In this sense, several studies have been developed to improve these pro-
cesses. Some works propose recognition methods based on k-Nearest Neighbors (KNN)
models [28]. Other studies have developed frameworks for real-time hand tracking using
a single RGB camera, based on the hybridization of two models: a palm detector and a
landmark model to predict the hand’s skeleton [122]. In Libras, projects like HandArch
[33] are capable of real-time hand pose recognition in videos to accelerate the development
of ASLR applications.

Dynamic processes in ASLR involve recognizing isolated signs and sentences. In this
context, one of the main challenges is the complexity of movement and shape patterns.
The work of Gameiro et al. [53] proposes KNN and Random Forest (RF) algorithms
for sign recognition based on computer vision, achieving an average accuracy of 65.81%
on their own database (DB) of CEFET-Libras videos. Algorithms like Support Vec-
tor Machine (SVM), Light Gradient Boosting Model (LightGBM), or eXtreme Gradient
Boosting (XGBoost) have also been tested and compared, incorporating various prepro-
cessing techniques, achieving higher global accuracies depending on the DB used [83].
Other projects go a step further, focusing on methods for Automatic Facial Expression
Recognition (AFER) in Libras through Convolutional Neural Network (CNN) combined
with feature extraction approaches for Facial Expression (FE) [30].

The linguistic and cultural diversity of the country, coupled with the scarcity of re-
sources for promoting accessibility and inclusion, makes the construction of comprehensive
and accurate databases complex and challenging. Furthermore, the lack of standardization
in sign languages used in different contexts and regions can lead to variations in message
interpretation, further complicating the task of building reliable databases, which also rep-
resents a significant challenge in the development of ASLR technologies. These situations
create a landscape of scarcity of annotated and standardized Libras video data.

1.2 Problem Definition

The scarcity of Libras data represents a significant challenge for the development of auto-
matic sign language recognition technologies. To overcome this challenge, one possibility is
to resort to data augmentation. One approach used by Passos et al. [83] is the application
of augmentation techniques in feature space. The work involves evaluating three aug-
mentation techniques in this space, called Synthetic Minority Oversampling Technique,
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Borderline-SMOTE, and Borderline-SMOTE SVM, which are commonly employed for
data with class imbalance issues. Additionally, there are basic transformation techniques
that perform augmentation in sample space. These transformations include: spatial trans-
formations, such as translation, horizontal and vertical flipping, resizing, among others;
and temporal transformations, such as scaling the duration of the sequence or warping in
the time domain.

Zanon de Castro et al. [120] highlight the importance of these techniques in the quest to
increase the volume of available data. Another possibility is the usage of transfer learning
techniques, where resources learned from one task are used to improve performance in a
related task, can be a promising approach. Indeed, the exploration of both possibilities
is still an open problem.

1.3 Our Proposal

To tackle the aforementioned problem of data scarcity in the field of Libras, we propose
a methodology based on two branches: in the first one, we make use of transfer learning
through the usage of state-of-the-art vision transformer models; in the second one, we
develop a data augmentation process based on diffusion models, which is trained using
different Libras datasets such as Elias Dataset and MINDS-Libras.

1.4 Research Questions

Having defined the problem to be tackled and also the proposed approaches, the research
questions (RQs) we aimed to answer were:

Research Question 1 (RQ1)

For a given Libras dataset (augmented or not), how does a Vision Transformer
(ViT) performance compare to the machine learning models previously used for this
problem?

Research Question 2 (RQ2)

Is it possible to augment data from a Libras database using data from other Libras
datasets?

Those research questions guided the work developed in this Master’s, whose details are
presented in the following chapters. The answers we obtained to these research questions
are provided in the dissertation’s conclusions (Chapter 6).

1.5 Main Objectives

We believe that this work significantly contribute to the development of more precise and
efficient solutions in automatic Libras recognition, since the combination of data augmen-
tation techniques and ViT can help overcome challenges related to data scarcity, advancing
the development of assistive technologies; thus, it is expected to improve accessibility for
deaf communities.
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1.6 Outline of the Dissertation

This Master’s dissertation is organized as follows: in Chapter 2, we introduce fundamen-
tal concepts for reading this dissertation, including a presentation of Libras, moviment
analysis techniques, transformers and difusion models; in Chapter 3, we present a re-
view of related works, including recent works on sign language datasets, sign language
classification and data augmentation for sign language; in Chapter 4, we describe the
methodology developed in this dissertation, with dataset choice, data preprocessing and
split, generative and classification models, and computational protocol of the experiments;
in Chapter 5, we show and discuss the main results obtained in the computational exper-
iments; finally, in Chapter 6, we recall the contents of the dissertation and make the final
remarks on the classification and data augmentation experiments.
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Chapter 2

Fundamental Concepts

In this chapter, we explore the fundamental concepts that underpin this work. We
begin with a historical overview of Libras, highlighting its main linguistic and cultural
features. Next, we focus on the motion analysis technique employed, which is crucial
for understanding gestures. We then introduce concepts related to the attention model,
covering both the transformer and its variant for computer vision, the Vision Transformer,
which is the core model of our study. Finally, we discuss the principles of diffusion models,
which also play an important role in this work.

2.1 Brazilian Sign Language - Libras

Brazilian Sign Language (Libras) is a visual-gestural-spatial language with its own gram-
mar and linguistic structure, distinct from spoken Portuguese. It is a complete linguistic
system that encompasses all the qualities present in spoken languages, making it a crucial
means of communication for the deaf community in Brazil. This language allows deaf
individuals to communicate effectively, expressing their ideas and feelings in a rich and
complex manner [37, 38, 50, 72, 76, 101].

Libras is the preferred and officially recognized language for communication within the
deaf community [1, 2, 72], representing about 5% of the Brazilian population. Federal Law
No. 10.436/2002 [1] recognizes it, and Decree 5.626/2005 [2] made it legal, highlighting its
importance as a linguistic system for conveying ideas and facts within the Brazilian deaf
community [38]. This legal recognition was a significant milestone for the empowerment
and inclusion of the deaf population, reaffirming their linguistic and cultural rights. Libras
became the first sign language in Brazil to be included in the National Inventory of
Linguistic Diversity, according to De Quadros et al. [38].

Formally, the education and integration of the deaf began in the 19th century, with the
creation of the Imperial Institute of Deaf-Mutes in 1857, under the leadership of Ernest
Huet [67, 35, 94]. The enactment of Federal Law No. 10.436 in 2002, which formally
recognized Libras as the language of the deaf and gave it legal status in Brazil, marked
an important milestone for the inclusion and rights of the deaf. Currently, Libras is being
valued and accepted as an important language for the social processes of the deaf in Brazil,
being officially recognized as a heritage of the deaf communities [1, 2, 38, 67, 72, 94].
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However, deaf communities continue to face many barriers and prejudices. Despite
official recognition, many deaf people are still denied the right to quality education, em-
ployment, and public services, and generally a dignified existence. Persistent prejudices
include the belief that deaf people lack intellectual and cognitive capacities, which lim-
its their participation in social and economic dynamics. These barriers hinder the full
exercise of their rights and their integration into society [5, 67, 93].

Additionally, the teaching of Libras in schools is not comprehensive, and there are only
a few options for bilingual schools. Many educational institutions do not include Libras as
part of the curriculum, resulting in a lack of familiarity with the language among teachers
and hearing students. The lack of Libras interpreters in educational institutions and other
essential services is a critical issue. This can prevents the deaf from having equal access to
education and other services, affecting their academic performance and social inclusion.
Furthermore, the shortage of qualified interpreters means that many deaf people face
significant difficulties in accessing health, justice, and other public services [50].

Socially, there is still a lack of awareness about the needs and rights of deaf people,
perpetuating exclusion. Prejudices and negative stereotypes are common, and many deaf
people are erroneously perceived as having inferior intellectual capacities. This leads
to marginalization and discrimination in various areas, including the job market, where
employment opportunities for the deaf are often limited.

In the technological field, the scarcity of data on Libras - including insufficient, un-
labeled, non-standardized data - and the visual complexity of Libras phonology make
it difficult to develop viable technologies for this community. Tools such as automatic
translators, sign recognition software, and other technological resources face challenges
due to the lack of high-quality data and the complex nature of the signs. Moreover, re-
search and development in these areas are often underfunded, limiting progress in creating
technological solutions that could significantly improve the quality of life for deaf people.

These problems highlight the need for more effective public policies and greater in-
vestment in education, interpreter training, and technological development to ensure that
deaf people have the same opportunities and rights as the rest of the population.

Libras is now evolving and thriving as a vibrant and expressive language, exemplifying
the rich diversity and tenacity of the Brazilian deaf community. It serves as a powerful
symbol of identity and pride for the deaf, connecting them to their cultural history and
empowering them to participate in all aspects of Brazilian culture actively.

2.1.1 Linguistic Characteristics

Libras is a complex and rich mode of communication that combines visual, gestural,
and spatial elements. Communication occurs through gestures, facial expressions, and
bodily movements, resulting in a fully autonomous linguistic system. Contrary to popular
belief, Libras is more than just a translation of spoken Portuguese into gestures; it is a
rich and expressive linguistic system capable of conveying nuances and complexities of
meaning [18, 30, 36, 39, 101].

Libras’ unusual grammar is intriguing. For example, word order in a phrase may
differ from that in Portuguese, and specific resources exist to convey tense, aspect, mood,
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and negation. These grammatical features are required for comprehending and creating
messages in Libras, exhibiting its richness and complexity as a fully evolved language [36].

Furthermore, it is crucial to stress Libras’ phonological qualities. The phonology of sign
languages, including Libras, is critical for the understanding of the structure and creation
of signs. Each Libras sign consists of a variety of phonological aspects, including hand
configuration, position, movement, palm orientation, and facial expressions, according
to Stokoe [101], Da Silva et al. [30], De Quadros et al. [36], De Matos et al. [35] and
Kumada [72]. These characteristics contribute to the variety of Libra signs and help
to distinguish meanings and understand given signals, allowing users to communicate
clearly and effectively. As a result, when analyzing the linguistic qualities of Libras, it is
critical to acknowledge its complexity and originality. Libras is more than just another
mode of communication for the deaf; it is a complete and alive language that embodies
the culture and identity of the Brazilian deaf community. Understanding and honoring
Libras is critical for encouraging inclusivity and guaranteeing equitable communication
opportunities for everybody.

2.1.1.1 Hand Configuration (HC)

One of the distinguishing characteristics of sign languages is the range of hand config-
urations used to produce signs. The number of signs varies according to the author.
According to Ferreira-Brito [51, 52], this system includes 46 hand configurations (HCs),
similar to what is found in American Sign Language (ASL), although each sign language
may have its own set of HCs. These signs are grouped based on their similarity, although
they have not yet been classified as basic or variant. Therefore, these HCs only refer
to surface manifestations, i.e., the phonetic level found in Libras. However, according
to Felipe [49], there exist 64 HCs, including variations; moreover, recent recent studies
report about 111 signs.

Each hand configuration is made up of a set of features, including finger form, hand
position, and movement direction. These aspects combine to provide distinct meanings
within the context of sign language. For example, extending or curling the fingers, as
well as the palm orientation can radically change the meaning of a sign. Some hand con-
figurations can also be used as icons to graphically depict objects, animals, or abstract
notions. Precision in executing these hand configurations is critical for clarity and un-
derstanding in sign language communication. Signers must have fine motor skills as well
as a comprehensive awareness of gestural nuances in order to effectively use varied hand
configurations in verbal expressions. Therefore, signers must have fine motor skills as well
as a comprehensive awareness of gestural nuances in order to effectively use varied hand
configurations in verbal expressions.

2.1.1.2 Localization (L)

In sign linguistics, location refers to the area of space surrounding the body where signs
are made. This quality is critical for comprehending and interpreting the meanings com-
municated by Libras and other sign languages. The particular areas used for sign pro-
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duction may differ depending on the thoughts or grammatical categories being repre-
sented [35, 36, 101].

For example, some animal signs may be generated close to the body (e.g., lion, cat,
dog), whereas signs denoting distant items or locations may be done further out from
the body (e.g., plate, pot, place, house, school, university). This spatial distinction not
only helps Libras communicate clearly and effectively, but it also mirrors how deaf people
perceive and organize their surroundings.

2.1.1.3 Moviment (M)

Sign language phonology relies heavily on hand and body movements. These movements
are extremely dynamic and can vary in several ways, including direction, speed, amplitude,
and fluidity. These differences are critical for communicating nuances of meaning and
grammatical categories in Libras and other sign languages around the world [18, 51].

For example, the direction of movement might represent the direction of an object or
action, whereas speed can suggest the intensity or urgency of the action. The amplitude
of movement can emphasize the size of a region or the amount of something, whereas
fluidity might show the smoothness or continuity of an action. All of these combined
properties enable elaborate and exact expression in sign language communication [51].

In Libras, one significant example is the employment of quick hand movements to
signify plurality or intensity in some signs. This quick succession of gestures might be
read as several instances of the same item or action, giving depth and complexity to the
gestural language.

2.1.1.4 Palm Orientation (PO)

The palm orientation plays a crucial role in the phonology of Libras, where several distinct
orientations are recognized. This element refers to the direction in which the palm of the
hand is facing when producing a sign and is essential for conveying specific meanings and
linguistic nuances. In Libras, six palm orientations are identified: upward, downward,
toward the body, forward, to the right, and to the left [51].

For example, when the palm of the hand is facing toward the signer’s body, it generally
indicates a reference to something related to the signer themselves, such as self-description
or an action performed by them. On the other hand, when the palm of the hand is
facing forward, it often suggests a reference to something external to the signer, such
as an object, person, or event in the surrounding environment (as observed in the sign
“NAME”, where the palm facing the body means “My name” and facing forward means
“Your name”). Additionally, the different palm orientations in Libras can be combined
with other linguistic elements, such as movement, facial expressions, and specific locations,
to create an even broader range of meanings and communicative contexts. This variation
in palm orientation is fundamental to enriching the language [51].

Therefore, understanding the role of palm orientation in Libras is essential and con-
tributes to a rich and meaningful linguistic interaction within the deaf community and
beyond [51].
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2.1.1.5 Non-gestual Expresions

The role of non-manual expressions in sign languages goes beyond simply accompanying
hand movements. They play a multifaceted role in communication, contributing to the
syntactic and semantic understanding of sentences. Facial expressions, including eye,
mouth, and eyebrow movements, along with body movements such as head and torso
gestures, are fundamental for conveying nuances and details in Libras [30, 42, 91].

Syntactically, non-manual expressions are used to mark different linguistic construc-
tions. For example, they can indicate whether a sentence is a yes-no or a WH-question.
Additionally, these expressions can be employed to highlight specific elements in the sen-
tence, such as the topic of conversation or negation [30, 42, 91].

At the lexical level, non-manual expressions have the ability to modify the meaning
of signs. They can mark specific references, such as pointing to a person or object in
the environment, or indicate pronominal reference in a conversation. Moreover, these
expressions can function as grammatical markers, such as the negative particle or adverb
of manner.

It is important to note that several non-manual expressions can occur simultaneously,
providing additional layers of meaning and complexity to communication in Libras. The
dynamic interaction between hand gestures, facial expressions, and body movements al-
lows users of sign language to express themselves in a rich and precise manner, thereby
enriching communication and understanding within the deaf community Guimaraes and
Maestri [55], dos Santos Paiva et al. [42], Rezende et al. [91].

2.1.2 Importance of Libras in Brazilian Society

The significance of Brazilian Sign Language (Libras) transcends mere linguistic utility;
it embodies the fundamental principles of inclusivity, cultural preservation, and social
equity within Brazilian society. Libras serves as a vital conduit for the expression of
thought, emotion, and identity among the deaf community, fostering a sense of belonging
and empowerment.

At its core, Libras is a catalyst for communication equality, breaking down barriers
that hinder meaningful interaction between deaf and hearing individuals. By providing
a robust means of expression for the deaf, Libras facilitates access to education, employ-
ment opportunities, healthcare services, and legal proceedings, thereby safeguarding their
fundamental rights and enhancing their quality of life.

Moreover, Libras plays a pivotal role in preserving and promoting the rich cultural
heritage of the deaf community in Brazil. Through its distinct linguistic features and
expressive capabilities, Libras embodies a unique cultural identity, fostering pride and
solidarity among its users. This cultural significance extends beyond mere communication;
it fosters a sense of community, strengthens social bonds, and fosters inter-generational
transmission of values, traditions, and narratives.

In a broader societal context, the recognition and promotion of Libras represent a
commitment to diversity, inclusion, and social justice. By acknowledging Libras as an
official language and investing in its dissemination and accessibility, Brazilian society
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affirms its dedication to upholding the rights and dignity of all its citizens, regardless of
linguistic or sensory differences.

Furthermore, the integration of Libras into various sectors of society, including edu-
cation, media, and public services, not only enhances accessibility but also enriches the
cultural tapestry of the nation. Embracing linguistic diversity fosters a more inclusive and
equitable society, where individuals of all backgrounds can fully participate, contribute,
and thrive.

In conclusion, the importance of Libras in Brazilian society embodies the principles
of equality, cultural identity, and social cohesion. By recognizing, supporting, and cele-
brating Libras, Brazil reaffirms its commitment to building a more inclusive, diverse, and
harmonious society for present and future generations.

2.1.3 Challenges and Future Perspectives

Despite significant advances in gaining recognition and promoting inclusion through
Brazilian Sign Language (Libras), there are still substantial challenges that need to be
addressed to ensure its widespread acceptance and accessibility:

• Limited Access to Education and Resources: One of the main challenges faced
by Libras users is the limited availability of educational resources and qualified
instructors proficient in the language. Many deaf individuals struggle to access
quality education in Libras, hindering their academic and professional development.

• Linguistic Discrimination and Stigmatization: Despite its official recognition,
Libras still faces linguistic discrimination and stigmatization in Brazilian society.
Negative attitudes towards sign languages persist, leading to social exclusion and
barriers to employment, healthcare, and other essential services for deaf individuals.

• Digital Divide and Technological Accessibility: The digital divide poses a sig-
nificant obstacle for deaf individuals, as many online resources and services are not
accessible in Libras. Improving technological accessibility and promoting the devel-
opment of digital content in Libras are essential steps to ensure equal opportunities
for the deaf in the digital age.

• Legal and Policy Implementation: Although the legal framework for protecting
the rights of the deaf, including the recognition of Libras, is in place, effective
implementation and enforcement of these laws are often lacking. There is a need
for greater advocacy and policy initiatives to ensure that the rights of the deaf are
respected in practice.

• Empowerment and Representation: Empowering the deaf to become active
participants in decision-making processes and advocating for their rights is crucial
for advancing the status of Libras in Brazilian society. Increasing the representation
of deaf individuals in political, cultural, and professional spheres can help challenge
stereotypes and promote greater inclusivity.
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Despite these challenges, there are promising prospects for the future development and
promotion of Libras in Brazil. Collaboration between government agencies, educational
institutions, advocacy groups, and the deaf community is essential to address these chal-
lenges and promote a more inclusive society where the rights and linguistic diversity of
all individuals are respected and preserved.

2.2 Movement Analysis techniques

2.2.1 Gait Energy Image (GEI)

Gait Energy Image (GEI) is a visual representation that captures crucial information
about an individual’s gait pattern. This concept arose from the need to quantify and
objectively analyze human gait, a fundamental aspect of physical functionality and an
important indicator of overall health. The GEI is generated from video sequences or
sensor data that record body movements during walking. This technique utilizes image
processing algorithms to extract significant features of the movement pattern and create
a compact and informative visual representation (Figure 2.1.

The analysis of the Gait Energy Image has various applications in fields such as biome-
chanics, physical rehabilitation, elderly monitoring, and diagnosis of neurological disor-
ders. By analyzing an individual’s GEI, researchers and healthcare professionals can iden-
tify abnormal gait patterns that may indicate health issues, musculoskeletal injuries, or
neurological impairments. Additionally, the GEI can be used to evaluate the effectiveness
of therapeutic interventions and rehabilitation programs, providing objective feedback on
the patient’s progress over time.

(a) Original (b) Segment (c) Mask (d) GEI (e) CGEI

Figure 2.1: Different stages to calculate GEI and its variants. a) The original image (Source: Vidalón
and Martino [107]), b) The image with the overlapping segments, c) Mask, d) GEI representation, e) GEI
Color Representation. Source: Images taken from the dataset.

The GEI has also found application in sign language identification and recognition.
Although initially developed to analyze walking patterns, its ability to capture distinctive
movement characteristics can also be leveraged to interpret gestures and signs used in
sign language communication. GEI analysis can extract important information about the
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dynamics and shape of gestures, enabling the development of sign language recognition
systems based on computer vision. These systems have the potential to assist in com-
munication between deaf individuals and hearing individuals, as well as in the automatic
interpretation of gestures in environments where sign language is used.

The mathematical representation of the GEI is simple and can be interpreted as the
average of each pixel in each frame of the sequence of images. The equation representing
the GEI is:

G(x, y) =
1

N

N
∑

t=1

Bt(x, y), (2.2.1)

where Bt and G represent, respectively, the mask sequences and the final GEI represen-
tation. x and y are the coordinates of each pixel in each sequence image, and N is the
total number of frames in the video [16, 58, 83].

2.3 Transformers

Transformers represent a powerful class of machine learning models that have revolu-
tionized various fields, such as natural language processing and computer vision. These
models introduced an innovative approach to sequence modeling, moving away from con-
ventional neural network architectures like Recurrent Neural Networks (RNNs), Long
Short-Term Memory (LSTM), or Gated Recurrent Unit (GRU). Instead of relying on
fixed network structures to capture sequential dependencies, transformers use attention
mechanisms that allow for parallel processing of data sequences and capture complex
long-range relationships.

A crucial aspect of transformers is their ability to handle long sequences and capture
non-linear relationships between tokens. For example, consider an input sequence like
“As the Portuguese arrived at the coast...” and the expected output sequence as “...and
began to colonize Brazil a certain group of settlers...”. The model must be able to adapt
and generate a coherent output sequence based on the input sequence of fixed size (also
known as “context window”) that relates each word in the output to the corresponding
words in the input. Figure 2.2a illustrates how different words in the output are related
to words in the input sequence, showing that some words in the output sequence can be
related to words very far back at the beginning of the input sequence, thus overcoming
limitations of fixed context windows.

While networks like RNNs and even LSTMs have a limited context window, the at-
tention mechanism of transformers allows for a context window size limited only by the
available computational capacity. This means that to predict a word or token in a se-
quence, the model does not need to rely only on the immediately preceding token but
can relate distant information within the input sequence. This feature is illustrated in
Figure 2.2b, which compares the context windows for different models.

In practice, this translates into an improved ability to maintain cohesion and relevance
of context in large volumes of text. While traditional networks may struggle to maintain
textual cohesion in long texts due to their context limitations, Transformers are designed
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(a) Word relationship in a sentence

(b) Context windows

Figure 2.2: a) Word relationship in a sentence. b) Context windows for different architec-
ture: Attention mechanism has reference windows as large as the available computational
resources; RNNs have short reference windows; GRUs and LSTMs improve RNN’s refer-
ence window to some extent.

to effectively handle this complexity, resulting in better performance in tasks such as
machine translation, text generation, and named entity recognition.

In this session, we will explore the fundamentals of transformers, including their ar-
chitecture, internal mechanisms, and adaptations for vision tasks. Transformers excel
in efficiently processing data sequences and capturing complex long-range relationships.
Compared to traditional architectures like Convolutional Neural Networks (CNNs) and
Recurrent Neural Networks (RNNs), transformers have shown significant improvements in
many tasks, thanks to their attention capabilities and efficient parallelism. Their effective
sequence modeling capability has made them the preferred choice in a variety of appli-
cations, including machine translation, text generation, text summarization, and named
entity recognition.
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2.3.1 Transformer Architecture

Understanding the architecture of the transformer (Figure 2.3) is crucial to comprehend
how these models operate in sequence processing tasks. It consists of an encoder and
a decoder, each one composed of n layers; those layers in turn have sublayers such as
multiple self-attention blocks, fully connected layers, and layer normalization. Here is a
detailed explanation of each component:

Figure 2.3: The Transformer model architecture. Adapted from: Vaswani et al. [106].

Encoder and Decoder

Encoder: The encoder in a transformer takes an input sequence and produces a
contextualized representation of each token in the sequence. Each encoder layer
consists of a self-attention block followed by a fully connected layer.

Decoder: The decoder is responsible for generating an output sequence based on
both the contextualized representation of the input sequence and a context sequence,
commonly referred to as the “partial output”, which consists of tokens already gen-
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erated in previous steps. This enables the decoder to sequentially build the output,
token by token.

To achieve this, each decoder layer incorporates two main components:

1. A self-attention block, which focuses on the partial output sequence. This
block uses a masking mechanism to ensure each token only attends to previous
tokens, preserving the causality needed in autoregressive tasks.

2. A cross-attention block, which attends to the encoded representation of the
input sequence, allowing the decoder to integrate information from the input
at every step.

Together, these components allow the decoder to generate each token based on both
the previously generated sequence and the input context, ensuring consistency and
relevance to the original input.

Self-Attention Block

• Self-Attention: The self-attention block is the fundamental unit of the Trans-
former. It computes relationships between all tokens in the input sequence, allow-
ing the model to assign different attention weights to different tokens based on their
contextual relevance. This mechanism is at the core of the transformer’s ability to
capture long-range relationships in sequential data.

• Attention Weight Calculation: During the calculation of attention weights, each
token in the input sequence contributes to the attention of all other tokens, with the
importance of each contribution dynamically determined by the calculated attention
weights.

Fully Connected Layers and Layer Normalization

• Fully Connected Layers: After the application of the self-attention block, the
representation of each token is passed through a fully connected layer, which applies
a linear transformation followed by an activation function, such as ReLU (Rectified
Linear Unit).

• Layer Normalization: Layer normalization is applied after each fully connected
layer to stabilize training. This is achieved by normalizing activations within each
layer, keeping them within a consistent range, and helping to prevent shifts in
activation scale during training.

The processing flow of a transformer can be divided into six steps, which will be explained
in the next sections.
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Figure 2.4: Text processing for transformer input, from left to right: “X” is the text input,
following the word tokenizer. The tokens are inserted as input embeddings, subsequently,
the positions are embedded, and finally, the embeddings representing the input text are
output. de is the dimension of the embedding matrix.

2.3.2 Inputs in the Transformers Model

As a first step, Transformers uniquely process sequential data, using embedding vectors
and positional information to represent input tokens (See Step 1 in Figure 2.4). This
subsection explores how input data is prepared and transformed before being fed into the
model.

Tokens Representation

The input data, whether they are words in a sentence or patches of an image, need to
be transformed into high-dimensional vectors de that the Transformer can process. This
transformation is done through embeddings.

Input Embeddings: Each token (word or patch) is mapped to a high-dimensional
embedding vector. In NLP tasks, words are typically mapped using pre-trained
embeddings, such as Word2Vec or GloVe, or learned during model training. In Vi-
sion Transformers (ViT), image patches are linearly projected into high-dimensional
embeddings.

Positional Embeddings

Since transformers do not have an intrinsic order structure, it is necessary to add positional
information to the token embeddings to preserve the sequential order of the data.

Positional Encoding: Positional embeddings are added to the token embeddings
to incorporate order information. These positional embeddings can be learned dur-
ing training or generated using sine and cosine functions. They allow the transformer
to differentiate tokens in different positions in the sequence.

PE(pos,2i) = sin(pos/100002i/dmodel) (2.3.1)

PE(pos,2i+1) = cos(pos/100002i/dmodel) (2.3.2)
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2.3.3 Attention Mechanisms

Attention mechanisms in transformers are fundamental to the model’s ability to capture
complex relationships among elements of a sequence. They operate based on three main
matrices: Q (of query vectors), K (of key vectors), and V (of value vectors), and employ
the technique of scaled dot-product attention to calculate the importance of each token
relative to others in the sequence.

Query, Key, and Value

Figure 2.5: Calculation of Query and Key-Value pair matrices.

Attention mechanisms in transformers rely on three main elements: the query, the
key, and the value. These elements are essential for calculating attention weights, which
determine the importance of each token relative to other tokens in the sequence.

• Query: A query vector represents the token as a query, attempting to capture the
purpose and likelihood of the token in context. In simple terms, we can think of
the query as the question we are asking the model about a particular part of the
sequence. For example, if we are trying to translate a sentence, the query can be the
word at the current position that we are trying to translate into the target language.
Each token in the input sequence has its own associated query. The query vector is
projected from the token’s representation in the previous layer of the transformer.

• Key: A key vector is used to calculate the relevance of each token in relation to the
overall context, for a given query token. It encodes information about the context
and content of each token in the sequence. For example, in translating a sentence,
the key can represent the neighboring words of the current word we are trying to
translate.
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• Value: A value vector contains information about the content of each token in the
sequence. It provides the context associated with each token and is used to calculate
the attention weight assigned to each token relative to the query. Continuing with
the example of translating a sentence, the value can represent the semantic meaning
of each word in the original sequence.

The combination of query, key, and value vectors is crucial for calculating attention
weights in an attention mechanism. The similarity between the query and the key of each
token determines how much attention should be given to that token, while the weighted
values are aggregated to compute the output of the attention layer. This process allows
the Transformer to capture complex and long-range relationships between tokens in the
sequence, resulting in rich and informative contextual representations, see Step 2 in
Figure 2.5.

Scaled Dot-Product Attention

The scaled dot-product attention is given by:

Attention(Q,K, V ) = softmax

(

QKT

√
dk

)

V, (2.3.3)

where dk is the dimensionality of the key vector k and query vector q. It is a widely used
technique for calculating the importance of each token relative to others in the sequence.
It consists of three main steps:

• Calculation of Similarity Scores: For each pair of query and key, the similarity
score is computed as the dot product between them. This measures the relevance
of the key relative to the query and is known as unscaled attention, see Step 3 in
Figure 2.6.

• Scaling of Scores: To prevent the similarity score values from becoming too large,
they are scaled by the square root of the dimension of the query and key vectors.
This helps smooth the gradient during training and stabilize the attention process,
see Step 4 in Figure 2.6.

• Softmax and Weighting of Values: The scaled scores are passed through the
softmax function to obtain normalized attention weights. These weights are then
applied to the corresponding values to compute a weighted representation for each
token in the sequence, see Step 5 in Figure 2.6.

Multi-head Attention

Finally, the Multi-Head Attention mechanism in transformers is designed to capture mul-
tiple aspects of the relationships between tokens in a sequence. Instead of relying on a
single “head” of attention to capture all relevant information, Multi-Head Attention uses
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Figure 2.6: Explicit Scaled Dot-Product Attention process.

multiple attention heads simultaneously to obtain richer and more diverse representations.
This process is represented by the equations:

MultiHead(Q,K, V ) = Concat(head1, ..., headh)W
O, (2.3.4)

where:
headi = Attention(QWQ

i , KWK
i , V W V

i ). (2.3.5)

Its ability to capture different aspects of token relationships allows models to capture
complex and long-range contextual information, improving performance in tasks such as
machine translation, text summarization, and text classification.

Masked Multi-Head Attention in the Decoder

In the Transformer architecture, the decoder generates each token in an output sequence
based on the input representation and previously generated tokens. To prevent the de-
coder from accessing "future" tokens, it uses masked multi-head attention.

In each layer of the decoder, a mask is applied to restrict tokens from attending to
any subsequent tokens. This mask is represented by a triangular matrix, allowing each
token to attend only to itself and preceding tokens. This mechanism enforces a sequential
generation process, ensuring the model does not "peek" ahead and maintains the causality
needed for sequence generation tasks.

During training, masked multi-head attention ensures that each token prediction is
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based solely on prior tokens and the input, preventing information leakage from future
tokens in the output sequence. This is essential for autoregressive tasks like machine
translation and text generation, where the model must rely only on previous tokens to
produce coherent and logically ordered outputs.

2.3.4 Vision Transformer (ViT)

In recent years, computer vision has been significantly driven by advances in deep learning
models. Convolutional Neural Networks (CNNs) emerged as a powerful tool for image
analysis, thanks to their ability to extract hierarchical features through local convolutions.
Models such as LeNet, AlexNet, and VGGNet demonstrated the effectiveness of CNNs in
image classification tasks. With the introduction of Residual Networks (ResNet50s) [59],
there was a substantial leap in performance, allowing the construction of much deeper net-
works without the problems of gradient degradation. ResNet50 uses residual connections
to facilitate the learning of deeper layers, further improving accuracy in computer vision
benchmarks. More recently, Transformers, originally designed for natural language pro-
cessing tasks, have been adapted for computer vision, resulting in the Vision Transformer
(ViT) [43]. The ViT adopts an attention-based approach, dividing images into patches
and processing them as sequences, which allows for capturing global dependencies more
efficiently than traditional CNNs. In Figure 2.7, it is depicted the ViT architecture,
whose main components will be presented in the following.

Figure 2.7: Vision Transformer (ViT) model scheme. Adapted from: Dosovitskiy et al. [43].

Patch Segmentation

In ViT, patch segmentation helps to reduce the variable space of an image. By dividing
the image into small patches, whether overlapping or not, it is possible to transform the
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two-dimensional image into a one-dimensional sequence of patches. This segmentation
allows the model to capture spatial and contextual information from the image. Patch
segmentation enables a more granular representation of the image, allowing the model to
analyze specific regions in detail, which can be beneficial for tasks requiring a detailed
understanding of visual features, such as object detection or semantic segmentation.

Token Projection

After segmenting the image into patches, each patch is linearly projected into an embed-
ding space, generating a representation vector for each patch. These patch representation
vectors are then treated as input tokens for the Transformer. Similar to natural language
models, these patch embeddings pass through transformation layers in the Transformer
encoder, where they are processed to capture contextual and relational information be-
tween patches.

Position and Position Embeddings

To preserve positional information in the image after patch segmentation, Vision Trans-
formers include position embeddings that are added to the patch embeddings. These
position embeddings encode the relative position information of the patches in the im-
age. By incorporating position embeddings, ViTs ensure that the model can distinguish
the relative location of patches in the image, allowing it to recognize spatial patterns
important for scene understanding.

Classification

Finally, ViTs use an MLP head where classification will be performed. This head maps
the patch final representations to the desired output classes. Each patch contributes to
the final class decision, and the aggregation of these contributions results in the final
class prediction for the image. The inclusion of the MLP heat in ViT allows the model
to be trained end-to-end for image classification tasks, leveraging the features learned in
various layers of the Transformer. In addition to image classification, the same approach
can be applied to other vision tasks, where the MLP head is adapted according to the
specific task, such as object detection, semantic segmentation, or object localization.
This modular structure of ViT, with a separate classification layer, offers flexibility and
adaptability for a variety of vision tasks, allowing the model to be easily fine-tuned and
customized for different datasets and application requirements.

2.4 Diffusion Models

2.4.1 Introduction

Diffusion models represent an advanced family of probabilistic models that provide flexible
structure, exact sampling, efficient handling of distributions, and computational economy
in the calculation and evaluation of log probabilities and individual states, thus facilitating
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the modeling of complex datasets. These models are grounded in the statistical physics
of non-equilibrium, characterized by the gradual and systematic deconstruction of the
structure in a data distribution through an iterative process.

Within the field of generative Deep Learning, these models arrive as an innovative
alternative to other traditional generative approaches. Diffusion models offer several
comparative advantages that distinguish them from models such as normalized flows,
autoregressive models [32], variational autoencoders [109], energy-based models, and gen-
erative adversarial networks (GANs).

First, unlike normalized flows [90], diffusion models do not require specifying an invert-
ible transformation with constant volume, which allows for greater flexibility in modeling
complex distributions. Normalized flows may be limited in terms of representational ca-
pacity due to the need to maintain a computable Probability Density Function (PDF),
while diffusion models do not face this restriction, allowing for greater modeling capacity.

Compared to autoregressive models, diffusion models avoid the need to decompose
the joint probability distribution into a series of one-dimensional conditional distribu-
tions. This can simplify the training process and reduce sample generation time. While
autoregressive models are effective in generating sequences like text and music, they may
be less efficient when generating high-resolution images.

In relation to variational autoencoders, diffusion models do not rely on formulating a
variational lower bound (ELBO), which can introduce bias in the estimation of the target
distribution. Additionally, variational autoencoders often face the problem of "posterior
collapse," where the encoder disregards latent information. Diffusion models, by not
depending on an explicit encoder-decoder, avoid this issue.

When compared to energy-based models, diffusion models allow for explicit and ef-
ficient probability evaluation. Energy-based models can be challenging to train due to
the need to sample efficiently from an intractable distribution, a problem that diffusion
models mitigate through their iterative and controlled diffusion and denoising process.

Finally, compared to generative adversarial networks, diffusion models avoid common
issues associated with training GANs, such as generator-discriminator mismatch, mode
collapse, and convergence difficulties. GANs require a delicate balance in training two
competing networks, which can be unstable and difficult to manage. In contrast, diffusion
models rely on a more direct and stable optimization process that does not require this
adversarial balance.

Diffusion models stand out for their robustness, flexibility, and stability in modeling
complex distributions, presenting themselves as a promising alternative to other generative
approaches within the realm of Deep Learning. Their ability to handle high-dimensional
distributions and ease of evaluating and sampling efficiently from these distributions po-
sitions them as a powerful tool in synthetic data generation and modeling complex phe-
nomena.

2.4.2 Forward Diffusion Process (FDP)

The forward diffusion process, also known as forward diffusion, is a method in which
noise is iteratively added to a sample from a real data distribution X0 ∼ p(x) (in our
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Figure 2.8: Noise addition process.

case, images), progressively disrupting the information. This process is fundamental for
understanding diffusion models and can be mathematically formalized.

The process begins with an initial data distribution p(x), from which a natural sample
X0 is drawn. This distribution can be a representation of the original data or a simpler
distribution (e.g., a Gaussian). Over T time steps, a small amount of Gaussian noise
is added to the sample at each iteration, resulting in a progressive deterioration of the
information.

Although this diffusion process is intuitively simple, it is crucial to examine its sta-
tistical consistency to ensure that the information is being disrupted in a controlled and
mathematical manner.

Transition in Diffusion Process

To formalize this process, consider xt, where t = 0, 1, ..., T , representing the state of the
data at step t of the diffusion process. As it is a probabilistic process, it is modeled with
a probability density function (PDF):

q(xt | xt−1) = N (xt;
√

1− βtxt−1, βtI), (2.4.1)

where βt is a noise coefficient specific to step t, controlling the magnitude of the added
noise. Choosing βt appropriately is crucial to ensure the stability of the diffusion process.
Small values of βt (10−4 < βt < 10−2 for 1 < t < T ) allow for precise control over the
amount of noise added, increasing gradually as the sample becomes noisier (β1 < β2 <

... < βt).
This equation can be reparametrized using the reparametrization trick described by

Weng [109], allowing the random variable xt to be expressed as:

xt =
√

1− βtxt−1 +
√

βtǫt−1, (2.4.2)

where ǫt−1 ∼ N (0, I) is standard Gaussian noise.
This formula shows that the transition between two consecutive states xt−1 and xt is

a weighted average between the less noisy sample and the Gaussian noise added at that
step. This process is iteratively repeated, accumulating noise at each step.

A process of successive steps can be represented with a joint probability density func-
tion (PDF) over [1 : T ] conditioned on the natural sample X0,

q(x1:T | X0) :=
T
∏

t=1

q(xt | xt−1), (2.4.3)



50

where the natural sample X0 with probability q(X0), whose analytical interpretation we
do not know, can be described as the random choice of a sample from our training set.

Important Properties of the Forward Process

The forward diffusion process has three important properties:

1. Fully Joint Probability Density Function (PDF) q(x0:T ):

Since this is a probabilistic process, there exists a set of possible trajectories that lead
the natural sample X0 to a pure noise sample. This trajectory can be represented
by a fully joint PDF:

q(x0:T ) = q(X0)q(x1:T | X0). (2.4.4)

Here, q(x1:T | X0) is the joint PDF of the diffusion process over successive steps,
which can be calculated using equation Equation (2.4.3).

2. Marginal Distribution q(xt | X0):

The marginal distribution property of the forward diffusion process ensures that, for
any step t in the interval [0, T ], the variable xt follows a Gaussian distribution [62]:

xt ∼ N (
√
αtx0, (1− αt)I), (2.4.5)

where αt := 1 − βt. This representation implies that the random variables xt in
the interval [0, T ] can be sampled arbitrarily from their corresponding Gaussian
distributions [110]. This is possible due to the Gaussian nature of the diffusion
process, where each xt can be expressed as a linear combination of the natural
sample X0 and the accumulated Gaussian noise up to step t, ǫt. The distribution
of the fusion of Gaussians with different variances is calculated as

N (0, (
T
∑

t=1

(1− αt))I),

and the combination of their standard deviation is:

√
1− α1α2 . . . αt,

thus:

ᾱt := α1α2 . . . αt =
t

∏

s=1

αs. (2.4.6)

This logic ensures the elimination of dependence between intermediate random vari-
ables, preserving only the dependence with the natural variable X0. By reinterpret-
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ing Equation (2.4.1) using Equation (2.4.6), we obtain:

q(xt | X0) = N (xt;
√
ᾱtX0, (1− ᾱt)I), (2.4.7)

xt =
√
ᾱtX0 + (1− ᾱt)ǫ. (2.4.8)

Now, each xt in the diffusion process depends only on the natural variable X0. We
can also redefine the joint PDF of Equation (2.4.3) as:

q(x1:T | X0) :=
T
∏

t=1

q(xt | X0), (2.4.9)

where q(xt | X0) is described in Equation 2.4.7. Both Equation 2.4.3 and Equa-
tion 2.4.9 are equivalent, as they describe, for the same set of random variables, the
same joint probability distribution.

Given that the parameter t can take any continuous value within the interval [0, T ]
and the function ᾱt is well-defined and continuous over this interval, any xt generated
will be consistent with the described diffusion model. This property ensures that
the sampling process is robust and that any variable xt obtained using this method
will have a valid Gaussian distribution.

Therefore, this marginal distribution property not only allows us to sample inter-
mediate variables efficiently but also provides a deep understanding of how the
information from the original sample dissipates into Gaussian noise throughout the
diffusion process.

3. The Inverse Of The Forward Process q(xt−1 | xt,X0):

One of the most important features of the diffusion process is its reversibility. As
will be explained later in Section 2.4.3, this process allows reconstructing a natural
sample X0 from a pure noise sample by reversing the diffusion process. This reverse
process is crucial for data generation in diffusion models.

2.4.3 Inverse Diffusion Process (IDP)

The inverse diffusion process is the method by which the original structure of the data is
restored from a noisy distribution obtained through the Forward Diffusion Process (See
Section 2.4.2). This process involves learning a model that can reverse the addition of
noise step by step, thus reconstructing the original distribution.

As it is a reverse process, we start with a noisy distribution q(xt) ∼ N (0, I) from
which we sample a noisy xt. At each step of the reverse process, a small amount of noise
is removed from the current state of the data. This process is performed iteratively in
reverse from t = T to t = 0. However, to understand the IDP, one must understand the
Inverse of the Forward Diffusion Process (IOFDP).
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Inverse of the Forward Diffusion Process (IOFDP)

In the previous section, we discussed two of the three important properties of the forward
diffusion process: the Fully Joint Probability Density Function and the Marginal Distri-
bution (See Section 2.4.2). However, perhaps the most important property of this process
is the ability to reverse it.

To understand this, let’s examine the PDF of the random variable xt in Equation 2.4.1.
By adding a redundant conditioned random variable X0, we can rewrite it as q(xt |
xt−1,X0). This expression does not affect the probability density for xt because, by
definition, given xt−1, the random variable xt does not depend on any other random
variable. Applying Bayes’ rule to Equation 2.4.10, we get:

q(xt | xt−1,X0) = q(xt−1 | xt,X0) ·
q(xt | X0)

q(xt−1 | X0)
. (2.4.10)

Note that the random variables q(xt | X0) and q(xt−1 | X0) are known from the marginal
distribution property of the Forward Diffusion Process. Rearranging Equation 2.4.10, the
term in red becomes:

q(xt−1 | xt,X0) = q(xt | xt−1,X0) ·
q(xt−1 | X0)

q(xt | X0)
. (2.4.11)

Note that when t = 1, q(X0 | x1,X0) ≡ 1 due to the lack of uncertainty about it, which
makes the first analytical loss function occur at t = 2.

Equation 2.4.2 describes a process that takes a noisy image xt and transforms it into a
less noisy image xt−1. Therefore, it describes the process in the opposite direction to the
Forward Process and will be referred to as The Inverse of the Forward Process. This
process is defined by the probability density of the forward process (in green) multiplied
by a scaling factor (in blue). The three elements in Equation 2.4.2 were defined earlier,
so simplifying it yields a multivariate Gaussian distribution:

q(xt−1 | xt,X0) = N (xt−1;µt(xt,X0), β̃tI), (2.4.12)

where:

µt(xt,X0) =

√

ᾱt−1βt

1− ᾱt

X0 +

√
αt(1− ᾱt−1)

1− αt

xt, (2.4.13)

and:

β̃t =
1− ᾱt−1

1− ᾱt

βt. (2.4.14)

Note that this process is conditioned on the initial image X0. This conditioning arises
from the way we interpret the noise, as we are not starting from pure Gaussian noise but
rather from noise close to pure Gaussian noise. Thus, in the IOFDP, we can obtain an
image very close to X0. Additionally, this conditioning is unavoidable as it results from
applying Bayes’ rule to the forward process, which includes X0 when t = 1.
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Inverse Process

An initial question we might suggest is: Why do we need an inverse process pθ(xt−1 | xt)

when we already have the IOFDP q(xt−1 | xt,X0)? Can’t we simply sample directly from
that distribution, which we already know? The answer is that, although it is possible to
do that, the IOFDP depends on the natural sample X0, the initial image, to define the
behavior of the noise. This means that the IOFDP would return an image very close to
the known X0. However, what we want is to be able to produce/generate new natural
images independently of X0.

As in the IOFDP, the starting point of the inverse process is a pure noise sample,
modeled by the standard multivariate Gaussian distribution pθ(XT ) ∼ N (XT ; 0, I). In
contrast to the IOFDP, the inverse process is not conditioned on any initial random
variable, which allows generating new images from the noise:

pθ(xt−1 | xt) = N (xt−1;µp(xt, t),Σp(xt, t)). (2.4.15)

In this formula, µp is the mean vector and Σp is the covariance matrix. These are actually
two deep neural networks that predict the d-dimensional mean and the d× d covariance
matrix. Both networks receive two inputs: xt and t, the noisy image and the time step,
respectively. The latter is used to encode the diffusion process position in which we
are. It is especially useful for providing additional positional context to the noise for the
networks.

This makes sense if we consider that in statistical modeling, once we choose the dis-
tribution family, the hardest task is to define the values that completely specify that
distribution. Since we choose a multivariate Gaussian distribution in this case, we need
to predict the mean vector µp and the covariance matrix Σp to describe the spectrum of
images that are less noisy versions of xt.

These prediction functions are complex and it is impractical to use simple functions to
model them. Therefore, it becomes necessary to use deep neural networks with millions
of parameters that can handle these very difficult functions. For example, in Ho et al.
[61], Nichol and Dhariwal [82], very high-dimensional architectures are described that
predict the mean and covariance adaptively for each stage of the reverse process, allowing
the model to gradually remove noise from the images.

In this context, in the inverse process, we can also establish a joint PDF that allows
us to abbreviate the inverse process pθ(X0,x1, · · · ,XT ):

pθ(x0:T ) := p(XT ) ·
T
∏

t=1

p(xt−1 | xt). (2.4.16)

The equation represents a joint PDF for T+1 random variables; it is, in itself, the product
of all the recursive terms in Eq. (2.4.15) and pθ(XT ).

Finally, the model parameters, which are the weights of the neural networks, are
adjusted through optimization. The goal is to find the appropriate values for these pa-
rameters so that, starting from a noise sample pθ(XT ), we can iteratively find xt−1 from
the distribution pθ(xt−1 | xt). By the end of the process, when we reach X0, we expect
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that sample to be a "denoised" version of the natural image.
In this way, we have defined the reverse diffusion process such that we understand

its fundamentals and statistical coherence. We will not address the training process of
the networks in this section, as we only intend to provide a fundamental overview of its
operation.
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Chapter 3

Literature Review

In this chapter, we will discuss the current state of sign language datasets, starting with
variations across different languages, moving on to the types of data we can find, and
concluding with a focus on the databases available for Libras. We will also cover the
state of the art in sign language recognition technologies across various languages and
end the chapter with an analysis of generative AI data augmentation techniques available
to date.

3.1 Sign Language Datasets

Research in sign language recognition and classification has expanded significantly in
recent decades, driven by the need for more inclusive communication systems for the
deaf community. The core of this research lies in the diverse and detailed datasets that
enable the training of machine learning models. These datasets vary not only in the sign
languages they represent but also in the types of data they include. In Table 3.1, we can
see the datasets reviewed in this literature.

3.1.1 Diversity of Sign Languages

Sign languages are not universal; each deaf community has developed its own language,
reflecting its unique culture. These cultural and linguistic differences result in a rich
diversity of sign languages worldwide. For example, American Sign Language (ASL) and
British Sign Language (BSL) are significantly different, despite the countries sharing the
same spoken language. This diversity is evidenced by the existence of multiple datasets
for different sign languages, each reflecting the unique characteristics of its respective deaf
community.

Here are some examples of datasets that reflect this diversity:

• ASLLVD: One of the largest datasets found in the literature, comprising high-
quality video data useful for research. It contains recordings from multiple camera
angles, with 3,314 signs from the Gallaudet Dictionary of American Sign Language.



56

Table 3.1: General dataset characteristics.

Libras Datasets
Datasets Data provided Mode Body Part Signers Vocab. Samples Avail.

RGB Depth Pose Vid. Img.

CEFET-Libras [53] X X Full body 20 24 547 No
MINDS-Libras [92] X X X X Full body 12 20 1100 Yes
LIBRAS-10 [9] X X X X Hand 10 10 100 Yes
SILFA [98] X X X Facial 10 23 230 Yes
LIBRAS-34 [10] X X X X Hand 5 34 170 Yes
LIBRAS-UFOP-ISO [23] X X X X Full body 5 56 3040 Yes
V-Librasil [93] X X Full body 3 1364 4089 Yes
Elias Dataset [107] X X X X Full body 2 26 166 Yes

Others
Datasets Data provided Mode Body Part Signers Vocab. Samples Avail.

RGB Depth Pose Vid. Img.

BSL Corpus [20] X X Full body 249 25k ∼ Yes
ASL-LEX 2.0 [95] X X Full body 129 2K7 ∼ Yes
ArASL [73] X X Hand 40 32 54K Yes
ISL-CSLTR [87] X X X ∼ 6+7 ∼ 700/18K Yes
How2Sign [45] X X X X Full body 11 16K ∼ Yes
RWTH-PHOENIX [70] X X Full body 9 1081/7K ∼ Yes
ASLLVD [13] X X Full body 6 3314 9794 Yes
UTA-ASL [27] X X X Full body 2 1113 1313 No
ISL-translate [66] X X Full body ∼ 11K 31K ∼

Each video includes annotations on hand shapes in the initial and final frames, hand
and face positions, and a general label with the “approximate English translation”.
This dataset consists of 9,800 samples performed by six native signers [13].

• BSL Corpus: A dataset composed of video recordings of hundreds of BSL users,
collected from different regions of the United Kingdom [20].

• RWTH-PHOENIX: This dataset is based on the GSL (German Sign Language),
and contains real videos from a weather channel, including a corpus of 1,081 words
and 7,000 sentences from 9 signers. It stands out by addressing five main focuses:
tracking, features, signer dependency, visual modeling, and language modeling. It
also combines synthetic data for comparisons [70].

• ArASL: Arabic Alphabets Sign Language Dataset is a fully labeled dataset of Ara-
bic Sign Language (ArSL) images. Publicly available and free for researchers, it
contains 54,049 images of 32 ArSL signs and alphabets, collected from 40 partici-
pants of different age groups. It is essential for developing automated systems for
deaf individuals using machine learning algorithms and computer vision [73].

• ASL-LEX 2.0: A large-scale lexical database for American Sign Language (ASL),
including detailed phonological descriptions, measures of phonological density and
complexity, among others. This database is publicly accessible and can be explored
interactively online [95].

• ISLTranslate: A translation dataset for Indian Sign Language (ISL), including
31,000 ISL-English phrase/sentence pairs. It is one of the largest datasets for con-
tinuous ISL translation, useful for validating the performance of sign language to
spoken language translation systems [66].
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3.1.2 Libras Datasets

In Brazil, besides Libras, there is the Brazilian Kaapor Sign Language, demonstrating the
plurality within the country. In Portugal, Portuguese Sign Language (LGP) is the official
sign language, while in Angola and Mozambique, we have Angolan Sign Language (LAS)
and Mozambican Sign Language (LMS), respectively. Each of these languages has its own
grammatical rules, vocabulary, and cultural expressions, highlighting the importance of
developing specific datasets for each context.

In the specific case of Libras, we find several datasets that serve as references to
promote research and development of ASLR technologies in Libras:

• LIBRAS-34: The LIBRAS-34 [10] is a set of Libras signs aimed at benchmarking
for ASLR and gestures. The dataset contains 34 distinct signs for words/sentences
such as person, spread, copy, grab, gather, disappear, look, fair, truth, weight,
justice, who, nothing, believe, forget, love, distress, celebrate, resentment, assembly
meeting, compare, shout, speak, absorb, fatten, fight, shrewd, shine, maid, replace,
prison, television, yesterday, and future. Each sign was recorded 5 times by a single
signer, totaling a database of 170 samples. The signals were captured using an
RGB-D sensor (Microsoft Kinect) and processed by the nuiCaptureAnalyze software.
This dataset is publicly available. These data are valuable for the development and
evaluation of Libras and gesture recognition algorithms.

• Elias Dataset: The Elias Dataset [107] is a Libras database created for continuous
sign language recognition in a healthcare environment to help deaf and hard-of-
hearing people access essential information and services. It contains 26 Libras signs
recorded five times by two signers, totaling 166 samples. The signs were captured
using the Microsoft Kinect V1 sensor, including RGB-D image and skeleton articu-
lation information. The RGB and depth videos have a resolution of 640x480, while
the body coordinates of the signer are in a text file format. The background is solid
color and provides a great contrast with the signers’ clothing. The Elias Dataset is
a database with great potential for use in ASLR tasks in Libras.

• LIBRAS-10: The LIBRAS-10 [9] consists of a set of Libras signs aimed at bench-
marking for ASLR and gestures. The dataset contains 10 action signs: calm, accuse,
annihilate, in love, fatten, happiness, thin, lucky, surprise, and angry. Each sign was
recorded 10 times by a single signer, resulting in a total of 100 samples. The signals
were captured using an RGB-D sensor (Microsoft Kinect) and processed by the nu-
iCaptureAnalyze software. The dataset includes RGB-D images, skeleton images,
RGB-D face images, and .mat files containing all the information obtained by the
Kinect software. These data provide a valuable source for the development and
evaluation of Libras and gesture recognition algorithms.

• CEFET-Libras: The CEFET-Libras [53] is a collection of Libras data composed
of 24 classes, including signs and sentences. Although the CEFET-Libras has a
more limited number of words, it has a broader number of samples per sign.
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• MINDS-Libras: The MINDS-Libras dataset [92] was developed to fill a gap in the
academic community interested in Libras, providing a standardized and challeng-
ing resource for artificial intelligence (AI) research. Composed of 20 Libras signs
recorded by 12 different signers, including deaf and hearing men and women, the
dataset offers a wide variety of samples. Using an RGB camera and an RGB-D sen-
sor to capture videos and body coordinates of the signer, MINDS-Libras provides
detailed information about body points and facial data, facilitating the development
of Libras sign recognition algorithms. With an organized structure and accessible
file formats, this dataset promotes collaboration and innovation in Libras research,
representing a valuable resource for the deaf community and AI researchers.

• LIBRAS-UFOP-ISO: The LIBRAS-UFOP dataset [23] is a valuable contribu-
tion to the field of Libras recognition, publicly available and challenging for re-
searchers. Recorded with the Microsoft Kinect V1 sensor, it offers complete RGB-
D and skeleton articulation information. Composed of 56 signs divided into four
distinct categories, the dataset presents significant intraclass variations, including
different movements, articulation points, and hand configurations. Each category
was carefully selected and validated by a Libras expert. The recordings were made
in front of the Kinect sensor, following the guidance of a LIBRAS specialist, and
the dataset includes variations in lighting, sign execution speeds, and the use of one
or both hands by the signers. In summary, the LIBRAS-UFOP dataset provides a
comprehensive Kinect data set for the research and development of LIBRAS sign
recognition algorithms.

• SILFA: This dataset [98] was obtained through stimuli from well-validated sen-
tences to elicit a variety of grammatical and affective facial expressions, with manual
annotation of facial actions using Facial Action Coding System (FACS). This work
also promotes the exploration of discriminative features in subtle facial expressions
in SL, providing a deeper understanding of the relationship between the dynamics
of grammatical facial expression classes and facial action units, as well as providing
protocols and benchmarks for the automated recognition of facial action units for
sign language research.

These datasets are fundamental for continuous research and the development of more
robust Libras recognition systems, contributing to the inclusion and accessibility of the
deaf community. However, our focus in this work is on lesser-known datasets with char-
acteristics that impair model performance.

3.1.3 Variety of Data Types

Sign language datasets vary significantly in the types of data they include. This variety
is essential to address different aspects of sign language recognition, such as movement,
facial expressions, hand configurations, and context. Here are some of the main categories
of data types found in these datasets:
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Video Data

Videos are the most common form of data used in sign language datasets. They capture
the complexity of movement and facial expressions, which are essential for communication
in sign language. Examples include:

• ASLLVD: Contains high-quality videos of American Sign Language signs with
multiple camera angles and detailed annotations.

• RWTH-PHOENIX: Includes real videos from a weather channel with a corpus of
1,081 words and 7,000 sentences in German Sign Language.

• UTA-ASL: Presents a dataset of video and depth data based on Microsoft Kinect
for research in body part detection and tracking.

• ASL-LEX 2.0: A large-scale lexical database for ASL, with detailed phonological
descriptions and videos.

• How2Sign: A dataset that includes videos of ASL signs with detailed annotations
and audio synchronization.

Static Images

Some datasets use static images that capture specific moments of the signs. These
datasets can be useful for analyzing hand configurations and specific positions. Examples
include:

• ArASL: Contains 54,049 images of 32 signs and alphabets of Arabic Sign Language.

3D and Depth Data

3D and depth data provide a more detailed view of hand and body positions and
movements. They are particularly useful for developing models that need to understand
spatial orientation. Examples include:

• MINDSLibras: Uses an RGB camera and an RGB-D sensor to capture videos and
body coordinates of the signer, offering detailed information about body points and
facial data [92].

• LIBRAS-UFOP: Recorded with the Microsoft Kinect V1 sensor, it provides com-
plete RGB-D and skeleton articulation information, offering a comprehensive dataset
for the research and development of Libras sign recognition algorithms [23].

Skeleton Data

Skeleton data capture the articulations and positions of the limbs, providing an ab-
stract model of body movements. These data are often used in conjunction with machine
learning algorithms for gesture recognition. Examples include:

• Elias: Includes RGB-D image and skeleton articulation information captured using
the Microsoft Kinect V1 sensor [107].
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Facial Expression Data

Facial expressions play a crucial role in sign language, providing grammatical and emo-
tional information. Some datasets focus specifically on capturing these facial nuances.
Examples include:

• SILFA: A video database of grammatical facial expressions in Libras, manually
annotated for facial actions using FACS [98].

3.2 Sign Language Classification

The area of ASLR has received significant attention in recent years due to its structural
complexity and its application in testing computer vision algorithms [7, 26, 98, 113]. The
gestures and movements in sign languages involve different parts of the body, with the
hands, body, and FE being key elements [112]. However, dealing with the diversity of
signs and their variability is a significant challenge [7, 26, 116]. Various techniques have
been explored in this field, such as CNN, Deep Learning (DL), Hidden Markov Model
(HMM), and Linear Discriminant Analysis (LDA) [7, 26].

Hand Configuration Recognition (HCR) techniques have been widely implemented
in the field of vision-based sign recognition, particularly for static gesture classification.
Recent studies explore the use of CNNs for this task. For example, Zhan [121] proposed
a CNN-based algorithm that achieved an average accuracy of 98.76% in recognizing nine
hand gestures. Additionally, Poon et al. [85] utilized a multi-camera approach to reduce
ambiguity caused by self-occlusion of the hand in bimanual gestures.

In Static Gesture Recognition (SGR) for Libras, different approaches have been pro-
posed. Bastos et al. [17] achieved high recognition rates using shape descriptors, such
as Histogram of Oriented Gradients (HOG) and Zernike Invariant Moment (ZIM), along
with a two-stage neural network classifier. On the other hand, Costa et al. [28] used
novelty and KNN classifiers to recognize 61 hand configurations in Libras, achieving high
accuracies. Additionally, Caiafa et al. [21] explored the use of CNNs with different archi-
tectures, such as AlexNet, VGG16, VGG19, InceptionV3, and ResNet50, to classify static
signs in Libras, obtaining promising results. de Carvalho et al. [33] also explored the use
of CNNs on a dataset with 91 classes of manual configurations in Libras, called Libras91.

Dynamic gesture classification involves recognizing temporal sequences of signs, which
adds an extra layer of complexity due to the need to capture the evolution of movements
over time. Techniques such as HMMs and Recurrent Neural Networks (RNN), including
LSTMs and GRUs, have been successfully applied in this area [7, 26].

3.2.1 Hybrid Techniques and Recent Advances

During our review, various studies were analyzed (Table 3.2), addressing the use of differ-
ent techniques for automatic sign recognition, such as hand gestures and sign language.
Vision Transformer (ViT) have shown significant advantages in terms of capturing lin-
guistic context and sequential representation, surpassing previous methods. Additionally,
techniques such as LAT and the use of body pose as input for ViT models were also
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explored. However, few studies have applied these techniques specifically to Libras, which
opens research opportunities to explore the potential of these approaches in this context.

In summary, the area of sign language classification is rapidly evolving, with various
techniques being continuously improved to address the challenges posed by the complexity
of gestures and the diversity of signs. Our study proposes a reference approach in the
field, combining motion analysis techniques and deep learning models for the recognition
of Libras.
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Table 3.2: Works on sign language recognition. Values in “Results” column correspond to the metrics indicated in “Metrics” column.

Paper Type Mode Data provided SL Body Part Models Metrics Augmentation Results
Dynamic Static Real Time F2F RGB Depth Skeleton

Bastos et al. [17] X X Libras Hand HOG, ZIM MSE 96.77%
Costa et al. [28] X X Libras Hand KNN ACC 96.31%
Caiafa et al. [21] X X X Libras Hand CNN ACC 97.98%
de Carvalho et al. [33] X X X X Libras Hand CNN, SVM ACC 99.0%
Castro et. al. [120] X X X X Libras Hand, torso 3DCNN, CNN ACC X 72.6%
Escovedo et. al. [47] X X X X X X Libras Full body CNN, SVM, HCM Recognition rate 67.37%
Zhang et al. [122] X X X Hand DL MSE, AP X 25.7%

95.7%
Zhan [121] X X X X ASL Hand CNN ACC X 98.2%
Poon et al. [85] X X Hand SVM, LDA ACC 99.0%
Kagirov et al. [68] X X X X X RSL Full body 3DCNN, CNN, LSTM ACC 73.25%
Devineau et al. [40] X X X X X X Hand CNN, LSTM, Droput ACC, F1 91.28%

84.35%
Montazerin et al. [79] Hand ViT ACC 84.62%
Du et al. [44] X X X X ASL Hand CNN, KNN, TF ACC X 90.57%
Guo et al. [56] X X X X GSL, CSL Full body TF BLEU, ROUGE X 49.16%

49.74%
Guo et al. [56] X X X X GSL, CSL Full body TF BLEU, ROUGE X 98.27%

98.13%
Hinrichs et al. [60] X X X X GSL Multi-Hand TF WER X <10%
Bohacek and Hruz [19] X X X X X LSA, ASL Full body ViT ACC X LSA64: 100%

WLASL100: 63.18%
ArSL: 100%

Al-Hammadi et al. [8] X X X X ARSL, ASL Full body SGD, LSTM, 3DCNN ACC KSU-SSL: 96.69%
RVL-SLLL: 76.67%

Passos et al. [83] X X X X X X Libras Full body KNN ACC X CEFET: 85.40%
MINDS: 84.66%
UFOP: 64.91%
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3.3 Data Augmentation for Sign Language

It is well-known in the literature that having insufficient data can lead to overfitting, where
a model fails to generalize and only adapts to the training dataset. Data augmentation
techniques emerge as an effective solution to this problem, helping address issues such
as class imbalance, accuracy, robustness, regularization, and data scarcity. Zhan [121]
demonstrated that data augmentation plays a crucial role in achieving superior perfor-
mance in ASLR for ASL.

3.3.1 Classical Data Augmentation Techniques

Data augmentation involves using techniques that generate new data from a limited
dataset. These techniques can be applied to any type of data. In the case of images,
these techniques include classical transformations that modify geometry, such as rota-
tion, translation, and scaling, as well as photometric transformations, such as changes
in lighting, contrast, and saturation [69, 96]. These techniques are widely used for their
simplicity and efficiency in creating variations of the original data without the need to
generate new data from scratch.

3.3.2 Advanced Data Augmentation Techniques

Beyond classical transformations, there are deep learning-based approaches, such as Gen-
erative Adversarial Network (GAM), Neural Style Transfer [69, 96], and more recently, dif-
fusion models Denoising Diffusion Probabilistic Modelss (DDPMs) [62], as demonstrated
by Chen et al. [25], Xiao et al. [114], Azizi et al. [14]. Techniques like MixUp [123] and
CutMix [118] also fall within this scope, offering variations such as TokenMix1, used in
image preprocessing for ViTs. Other approaches combine multiple techniques to pro-
vide broader results, such as Neural Augmentation [84], Auto Augmentation [29], and
Smart Augmentation [74]. Figure 3.1 illustrates a basic taxonomy of these techniques,
and Table 3.3 presents the data augmentation techniques reviewed for this dissertation.

1A variation of CutMix at the token level.
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Table 3.3: Works on data augmentation.

Paper Date Technique Type Tested model Dataset

Chawla et al. [24] 2002 SMOTE Basic DesitionTree, SVM, KNN ∼
Perez and Wang [84] 2017 Neural Augmentation Basic, DL CNNs, DenseNet imagenet-200, MNIST
Lemley et al. [74] 2017 Smart Augmentation Basic, DL CNNs, VGG16 ∼
DeVries and Taylor [41] 2017 Feature Space Features Rede neural Arabic Digits
Zhang et al. [123] 2018 MixUp Basic ResNet, Wide ResNet,

DenseNet
CIFAR-10, CIFAR-100,

SVHN e ImageNet
Yun et al. [118] 2019 CutMix Basic ResNet, DenseNet e

EfficientNet.
CIFAR-10, CIFAR-100,

SVHN e ImageNet
Cubuk et al. [29] 2019 Auto Augment DL ResNet, Wide ResNet,

DenseNet
CIFAR-10, CIFAR-100,

SVHN, ImageNet
Yun et al. [119] 2020 VideoMix Basic SlowOnly-50, SlowFast-50,

I3D, T-CAM, SlowFast-50
Kinetics-400, Mini-Kinetics,

AVA.
Bai et al. [15] 2020 TaCo DL 3DCNNs, 3D-ResNet18 UCF-101, HMDB-51
Sinha et al. [100] 2021 NDA Basic GANs CIFAR-10, CIFAR-100,

SVHN, ImageNet, COCO,
UCF101.

Wang et al. [108] 2021 ISDA DL CNNs, RNNs CIFAR-10, CIFAR-100,
SVHN e ImageNet.

Dablain et al. [31] 2021 DeepSMOTE DL CNNs, DNNs, RNNs MNIST, CIFAR-10,
CIFAR-100, SVHN,

CelebA.
Ye et al. [117] 2023 XmDA DL XmDA PHOENIX-2014T,

CSL-Daily
Liu et al. [77] 2023 TokenMix DL DeiT-S, DeiT-B, Swin-T,

ViT-L16.
ImageNet-1K, ADE20K
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Figure 3.1: Basic taxonomy of techniques involved in the image data augmentation. In red
represents the data augmentation used in this work.

3.3.3 Data Augmentation for Sign Language

In ASLR tasks, the complexity is higher because it is necessary to preserve both temporal
characteristics and the grammatical and syntactical structure of a sign. Various au-
thors choose techniques with spatio-temporal transformations [120, 121], heuristics2 [80],
or approaches like Cross Modality Data Augmentation (XmDA) [117] to preserve these
characteristics that give meaning to the sign.

3.3.4 Avatars and Generative Models

Another approach creates an entire area called Sign Language Production (SLP) [88,
89], which proposes generating language typically simulated through avatars as a way to
augment data for ASLR tasks. One of the recent works proposing this is by Nguyen et al.
[81]. This work presents a technique to automatically generate a 3D sign language avatar
from skeleton data for real-time interpretation. It also discusses the architecture of the
CNN model used and the metric for evaluating the accuracy of hand sign classification.

However, avatars do not preserve the non-manual gestures of a sign, which means
that deaf individuals may not fully understand the message [102]. With the advancement

2Lemmatization of spoken words: for example, the word “running” would be lemmatized to “run”.
Exclusion of random and “POS”-dependent words: for example, articles and prepositions can be excluded
more frequently than nouns and verbs. Random permutation of words: helps increase the syntactic
diversity of the generated synthetic data.
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of GANs, new alternatives have emerged to achieve more natural results. One of the
first known works for sign language production is by Stoll et al. [102]. This work allows
for the production of sign language videos from spoken language sentences, requiring
minimal gloss annotations at the skeletal level. Later, Stoll et al. [103] improved on the
previous work, proposing a combination of CNNs and GANs to map glosses to sequences
of sign poses and sign videos, enabling the model to capture the complexities of sign
movements and generate high-resolution videos. Xiao et al. [115] also use GANs in a
bidirectional communication process between deaf and hearing individuals. This work
focuses on generating skeleton sequences of Chinese Sign Language (CSL) using a Bi-
LSTM-based discriminator, while the generator has a two-level probability model based
on encoding and decoding random samples from the distribution of a sign.

3.3.5 Generative Data Augmentation

Similarly, video generation works based on DDPMs have gained high representativity.
These models allow for generating high-quality videos from a text input, as shown by
Singer et al. [99] and Ho et al. [63]. Or copying the style of an image to an input sequence,
as demonstrated by Esser et al. [48]. Although these diffusion models are prominent, there
are few reference works focused on sign language. However, it is important to mention the
work of Zhang et al. [124], which focuses on generating pose sequences from text, being
relevant to our work.

We reviewed works that apply different forms of data augmentation in the context of
sign language (Table 3.4). We found works from different areas, techniques, models, and
training data, mostly utilizing DL approaches. However, in the case of Libras, the scarcity
of works oriented towards this type of task has allowed our work to make significant
contributions to the field.
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Table 3.4: Works on data augmentation in this context.

Paper Date Application
domain

Technique Data type Type Tested
model

Dataset Metric

Stoll et al. [102] 2018 Sign language
production

∼ GSL DL GANs PHOENIX-
2014

BLEU-4

Zhan [121] 2019 Hand gesture
recognition

Spatio-
temporal

Black and
white hand

gesture image

Basic CNN ∼ Acc

Zanon de Castro et al. [120] 2019 Libras sign
recognition

Spatio-
temporal

Libras sign
videos

Basic 3DCNN ∼ Mean Acc

Wu et al. [111] 2019 Human
activity

recognition

GANs Human
activity

DL CNN,
3DCNN

UCF101,
KTH

∼

Zhang et al. [125] 2019 Video
classification

GANs Ações
humanas

DL 3DCNN HMDB51,
UCF101

Acc

Li et al. [75] 2019 Dynamic
signal

recognition

Temporal
Cropping,
Rotation,

Translation,
Spacial Cut

Hand action Basic 3DCNN,
md CNN

VIVA
Dataset

∼

Zhang et al. [126] 2020 Video
classification

GANs Human
action

DL 3DCNN,
Inception-v3

HMDB51,
UCF101

Acc

Pu et al. [86] 2020 Sign
Language

Recognition

XmDA GSL DL GoogLeNet,
BLSTM3,

CTC4

PHOENIX-
2014

WER

Stoll et al. [103] 2020 Sign language
video

generation

Spatio-
temporal

GSL DL gloss2pose,
pose2video,

GANs

PHOENIX-
2014

MSE, Own
metric

Xiao et al. [115] 2020 Sign language
generation

and
recognition

Jittering CSL, skeleton DL Bi-LSTM,
GANs

CSL
Continuous

Sign
Language
Dataset

Acc

Tan et al. [104] 2021 Hand gesture
recognition

9 Techniques Hand
positions

Basic EDenseNet UB-HDB,
UST-HK,

UW-Madison

Acc

Moryossef et al. [80] 2021 Language
Translation

Heuristic ASL, GSL,
Glosses

Other NMT5 NCSLGR
dataset,
DGS,

PHOENIX-
2014

BLEU,
METEOR

Nguyen et al. [81] 2021 Sign language
avatar

generation

Mirroring GSL DL CNN,
ResNet-50

DGS Corpus Acc

Ho et al. [63] 2022 Text-
conditioned

video
generation

∼ Text-video DL DDPM LAION-400M FID, FVD,
CLIP

Zhang et al. [124] 2022 Text-
conditioned

human
moviment
generation

∼ Human
actions

DL DDPM KIT dataset,
HumanML3D

FID, R
Precision,

Recall, Acc,
F1 Score.

Chen et al. [25] 2022 Image
generation

DDPM Weed images DL VGG16,
InceptionV3,
DenseNet161,

ResNet50

CottonWeedID15 Top-1%,
Precision,

Recall

Hu et al. [64] 2022 Image
Classification

Attention-
guided image

cropping

Images DL ViT CUB-200-
2011,

Stanford
Dogs

Top-1%

Singer et al. [99] 2022 Video
creation

∼ Video clips
with captions

DL Make-A-
Video

WebVid-
10M,

HD-VILA-
10M,

MSR-VTT

FID6,
CLIPSIM,

AMT7

Kothadiya et al. [71] 2023 Sign language
recognition

Spatio-
temporal

Hand
position

DL TF ∼ Recall,
Precision,
Accuracy

Azizi et al. [14] 2023 Data
augmentation

DDPM High-
resolution

images

DL ResNet-50,
ResNet-152,

ViT

ImageNet FID,
Inception
Score, Acc

Xiao et al. [114] 2023 Image
caption

generation

DDPM Imagens and
captions

DL Fully Convo-
lutional (FC)

model

COCO BLEU-4,
METEOR,
ROUGE,
CIDEr,
SPICE

Trabucco et al. [105] 2023 Data
augmentation

DDPM Object
images

DL ResNet50 Caltech101,
Flowers102

∼

Esser et al. [48] 2023 Video
creation

DDPM DL
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Chapter 4

Methodology

In this chapter, we present the methodology proposed in this dissertation, which is
summarized in the diagram depicted in Figure 4.1. In the following sections, we present
each step of the methodology, including the used datasets, the preprocessing employed
on those data, the data augmentation procedure, the model training procedure and the
experimental protocols.

Figure 4.1: Pipeline of the methodology proposed in this dissertation. The image shows the
data flow for each stage of our methodology, on the left is the classification, and the right is the
data augmentation.
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Figure 4.2: MINDS-libras data card. The image shows the characteristics of the dataset
and how the classes are distributed for each Signer.

4.1 Dataset Choice

We chose the dataset based on various criteria, including availability, video quality, sam-
ple size, and number of signers. Our goal is to assess the model’s performance in a
variety of settings, ranging from low-quality datasets (with few samples, few signers, and
unbalanced) to high-quality datasets.

Evaluating the model’s performance under adverse situations is critical for under-
standing its limitations and identifying areas for improvement. Low-quality datasets can
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Figure 4.3: Elias data card. The image shows the characteristics of the dataset and how
the classes are distributed for each Signer.

provide substantial issues, such as lighting fluctuations, inconsistent movements, and a
lack of signer diversity, all of which can have a severe impact on the model’s accuracy.
In contrast, more robust and balanced datasets provide a more controlled and varied en-
vironment, allowing for a more comprehensive assessment of the model’s effectiveness in
accurately recognizing indicators.

Furthermore, the diversity of the signers, including variances in gender, age, and level
of expertise with sign language, is critical to ensuring that a learning model can generalize
well in real-world scenarios. We also assessed the representativeness of the signs in terms of
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phonological features, ensuring that the dataset encompasses a wide range of movements
and hand positions.

We selected Elias Dataset and MINDS-Libras among the datasets discussed in Section
3.1.2.

• MINDS-Libras: This dataset, also discussed in Section 3.1.2, is superior to Elias
Dataset in several aspects, although both cover a similar vocabulary. It is a balanced
dataset made up of 12 signers, with the same amount of samples per signer and a
consistent number of labels. All of its classifications correspond to standalone signs.
To maintain the balanced qualities of this dataset, all samples from signer four will
be deleted, leaving 1100 of a total of 1155. Figure 4.2 illustrates the dataset’s details.

• Elias Dataset: As previously described in Section 3.1.2, this dataset was built for
healthcare situations, with a vocabulary focused on generating statements specific
to the scenario. Figure 4.3 shows only two signers of different genders and age dif-
ferences. It includes 49 and 127 videos for sentences and isolated signs, respectively.
The collection includes RGB, depth videos, and skeleton sequences. The first two
are in .MP4 format, while the skeletal sequences are in .mat format. Both have a
resolution of 640x480. We will only use the 19 classes in this dataset that correspond
to isolated signs, eliminating phrases, for a total of 26 classes. Also, we can see in
Figure 4.3 depicts an imbalanced class distribution with insufficient examples for
some classes per signer. We found that one signer had almost 50% more samples
than the other. We’re interested in this dataset because of its unique properties.

4.2 Pre-processing

Our approach intends to leverage pre-trained vision models that accept an image as input.
However, our data is in video format. Based on Passos et al.’s work [83], we employ the
GEI representation for motion analysis to maintain gesture dynamics from a sequence of
photos. Thus, our pre-processing comprises the following steps: i) body segmentation, ii)
body part selection, iii) per-frame masking, and iv) GEI creation. The method is shown
in Figure 4.4. As a first step, we execute label extraction. This phase is not part of our
pre-processing pipeline but is detailed in this section.

Label Extraction

The datasets do not include a structured label table. However, the video name correlates
to the label that reflects each sign’s class and the signer’s sample number. At this point,
the goal is to develop a data table that correlates the labels with the appropriate video
URLs and then include it in our procedure. This will allow for proper label access during
model training and evaluation.
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Figure 4.4: Pre-processing pipeline. The image shows each stage of our pre-processing.

Body Segmentation

Body segmentation is the initial stage in preparing video data for motion analysis. In
this step, we employ image segmentation techniques to separate the person’s body from
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the video background. We refer to the work of Passos et al. [83], who propose the usage
of DensePose [57] for this purpose. DensePose recognizes bodily components including
head, torso, upper and lower arms, upper and lower legs, hands, and feet. This process is
depicted in Figure 4.4.

Body Part Selection

After separating the body from the background, the following step is to choose the body
portions of interest. This procedure entails identifying and isolating key body areas, such
as the head, arms, and hands, that are important for motion analysis. Accurate selection
of body parts enables more precise and concentrated analysis of movements, ensuring that
the dynamics of individual gestures are preserved and accurately portrayed in later steps.

Masking per Frame

We use the specified body components to make masks for each video sequence frame.
Each mask highlights the regions of interest, enabling accurate observation of motion
variations without focusing on the time. This stage involves applying masks on original
frames, resulting in a series of frames that only show the specified body parts. Masking
each frame aids in the detection of specific motion patterns, resulting in a clearer and
more informative portrayal of gesture dynamics.

GEI Creation

The GEI is created from the sequence of masked frames. To generate the GEI, we use the
formula 2.2.1, where the average pixel intensity values at each position (x, y) are applied
over all frames in the sequence.

4.2.1 Color Gait Energy Image (CGEI)

The CGEI representation in Figure 2.1e, is an innovative extension of the traditional Gait
Energy Image (GEI) that incorporates color information to enrich the visualization and
analysis of gait patterns. While conventional GEI relies on grayscale to highlight intensity
variations and capture the average silhouette of movement, CGEI introduces an additional
dimension by assigning specific colors to different body regions. The application of this
technique is given by:

G(x, y) =
1

N

N
∑

t=1

Ct(x, y)Bt(x, y), (4.2.1)

where Bt and Ct represent, respectively, the sequence of masks and the sequence of original
frames. As in Equation 4.2.1, x, y, and N are the coordinates of each pixel in each image
of the sequence and the total number of frames in the video.

This inclusion of chromatic information allows for a more detailed and precise repre-
sentation, capturing specific configurations and orientations of the hands and other body
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parts and subtle variations in movement that might go unnoticed in a black-and-white
image.

We propose CGEI as an alternative for motion analysis in the context of Libras. By
combining the advantages of traditional GEI with the richness of information provided
by color, CGEI becomes a powerful tool for analyzing human motion. In our work, we
apply CGEI to observe its effects on our models and whether it can improve performance.
Additionally, in the context of data augmentation, CGEI offers data types that enrich our
qualitative analysis. This proposal aims to advance the development of more accurate
and accessible technologies for the deaf community, contributing to the recognition and
preservation of Libras.

CGEI Creation

The CGEI is also created from the sequence of masked frames. To add color information
to our GEI representation, we use the formula 4.2.1, where before applying the average
pixel intensity values at each position (x, y) over all frames in the sequence, we perform
an extractive operation by multiplying the binary mask sequence by the image sequence
that makes up the videos.

(a) GEI representation (b) CGEI representation

Figure 4.5: Pre-processing results for the label “FOME” in the Elias dataset. The image
shows the differences between a) GEI Representation and b) CGEI Representation.

Finally, Figure 4.5, shows the characteristics and differences of the GEI (Figure 4.5a)
and ColorGEI (Figure 4.5b) representations. A preliminary qualitative assessment shows
that the ColorGEI representation has more visual complexity than the traditional GEI
representation, keeping some facial features and hand shapes. Additionally, these features
can be positive for providing gender variations to our model. Another positive aspect of
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both representations is the elimination of visual semantic context that is not relevant to
our case, focusing only on the body parts where the movements are executed.

4.3 Data Split Protocol

To train the models, we defined two data split protocols, each designed to evaluate the
model’s performance in contrasting scenarios: in-distribution and out-of-distribution. The
objective is to challenge the model both in controlled environments and under conditions
that require greater generalization capability.

Protocol 1: Controlled Stratified Split (CSS)

The Controlled Stratified Split (CSS) protocol uses a stratified split of the data with
proportions of 60%, 20%, and 20% for the training, validation, and test sets, respectively.
We assigned this name because we made sure that all labels were present in the training
set. This protocol seeks to simulate a controlled scenario where the samples are uniformly
distributed without considering the variability between the users performing the gestures.
The complexity of this protocol is low, as it does not present significant challenges in
terms of model generalization, but it allows us to analyze its performance under standard
and well-distributed conditions.

Protocol 2: Controlled User Split (CUST)

We propose The Controlled User Split (CUST) protocol. This follows a variant of the
Leave-One-Person-Out (LOPO) method, presenting a scenario of greater complexity in
terms of generalization. In practical applications, it is crucial that the model learns from
a limited set of users and adapts to significant variations in the data distributions across
different users. To address this need, in the Elias Dataset dataset, we selected one user
who holds 40% of the samples for validation, leaving the model learning from a limited
diversity. In the MINDS-Libras dataset, we chose seven users to compose the training
set and four users for the validation set, maintaining a 60%-40% ratio for these sets.
The test groups for both datasets were formed by splitting the validation set into two
equal parts. This protocol introduces significant complexity, as it exposes the model to
out-of-distribution cases, forcing it to generalize correctly to users it has not seen before.

4.4 Classification Models

In this section, we present the machine learning models used in our experiments, including
the Vision Transformer (ViT) and the ResNet50. Both models were employed to classify
the GEI representations containing signs. Below, we describe the architecture of each
model and its justification in the context of our study.
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4.4.1 Deep Residual Network (ResNet50)

The ResNet50 is a widely established Convolutional Neural Network (CNN) architecture,
consisting of 50 layers. It was designed to address the vanishing gradient problem by
incorporating residual connections. These connections allow the network to learn identity
mappings, facilitating the training of deeper networks.

Pretrained Model

For our experiments, we used the pretrained model microsoft/resnet-50 available on the
Hugging Face platform. This model has been trained on the ImageNet-1k dataset, which
contains a wide range of images and labels, and has demonstrated solid performance on
image classification tasks.

Model Architecture

The ResNet50 architecture includes:

• Initial Convolutional Layer: This layer performs an initial convolution to extract
basic features from the image;

• Residual Blocks: The network is composed of 16 residual blocks, each with mul-
tiple convolutional layers and residual connections that facilitate learning identity
mappings. Each residual block allows information to pass through shortcut connec-
tions, improving the network’s ability to learn complex features;

• Pooling Layer: After the residual blocks, global pooling is performed to reduce
dimensionality and obtain a compact representation of the image;

• Final Fully Connected Layer: This layer performs the final classification based
on the features learned by the network.

The hyperparameters chosen for this model are detailed in Table 4.2, which were
optimized through an extensive search, as described in the Experiments section.

4.4.2 Vision Transformer (ViT)

The Vision Transformer (ViT) is a state-of-the-art model that applies the transformer
architecture, originally developed for natural language processing, to image classifica-
tion tasks (see details in Section 2.3). For our experiments, we used the pre-trained
model google/vit-base-patch16-224-in21k from Hugging Face, which has been trained on
the ImageNet-21k dataset.

Pretrained Model

The google/vit-base-patch16-224-in21k model is a version of ViT pre-trained on the
ImageNet-21k dataset, which contains a wide variety of images and 1,000 labels. This
model has demonstrated robust performance in image classification tasks and provides a
solid foundation for fine-tuning on Libras datasets.
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Figure 4.6: ResNet50 Architecture.

ViT Architecture

The ViT architecture is based on dividing the image into fixed-size patches (16x16 pixels
in this case) and treating these patches as sequences, similar to words in a sentence. The
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Figure 4.7: ViT model architecture.

architecture includes an embedding layer that converts the image patches into vectors,
followed by multiple transformer encoder layers. Each encoder layer consists of multi-
head self-attention mechanisms and feed-forward neural networks, allowing the model to
capture global dependencies within the image (see details in Section 2.3).

The ViT architecture (Fig. 4.7) includes:

• Image Patch: 16x16 pixels;
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• Embedding Dimension: 768;
• Number of Encoder Layers: 12;
• Number of Self-Attention Heads: 12;
• Feed-Forward Dimension: 3072.

The hyperparameters selected for this model are detailed in Table 4.2, following an
extensive hyperparameter search as described in the Experiments section.

4.4.3 Evaluation Metrics

To evaluate the performance of the classification models, we use several standard metrics
in the field of machine learning. In this study, we chose to start our evaluation with recall
due to its relevance in the context of sign language classification, where the ability to
correctly identify gestures is crucial. Subsequently, we use the F1-score to ensure that the
model not only detects a large number of gestures but also maintains acceptable precision.
Finally, we present accuracy as an overall view of performance but contextualize it after
evaluating the more specific metrics of recall and F1-score to prevent metrics like accuracy
from masking underlying issues in minority classes or imbalanced scenarios.

Below, we describe each of these metrics and their relevance for evaluating our models.

Recall

Recall, also known as sensitivity or completeness, is defined as the number of true positives
divided by the sum of true positives and false negatives. This metric measures the model’s
ability to correctly identify all positive instances:

Recall =
TP

TP + FN
, (4.4.1)

where TP is the number of true positives and FN is the number of false negatives.
Recall is crucial in our context because we are interested in ensuring that the model
correctly identifies as many correct gestures as possible, especially when working with
imbalanced data or in scenarios where failing to recognize a gesture could have significant
consequences.

Precision

Precision is the ratio of true positives to the total number of instances predicted as
positive (the sum of true positives and false positives). This metric tells us how many of
the positive predictions made by the model were correct:

Precision =
TP

TP + FP
, (4.4.2)

where FP is the number of false positives. In the context of sign language classification,
precision helps us understand if the model is being cautious when classifying gestures,
minimizing incorrect predictions.
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F1-Score

The F1-score is the harmonic mean between precision and recall. This metric provides a
balance between precision and completeness, and is useful when a single metric is needed
to evaluate performance in class imbalance contexts:

F1 = 2× Precision×Recall

Precision+Recall

= 2× TP

2 · TP + FP + FN
, (4.4.3)

where FP is the number of false positives. The F1-score focuses on balancing recall and
precision. This is important because, while we want the model to recognize many gestures
(high recall), we also need to ensure that those gestures are classified correctly. The F1-
score helps us evaluate whether the model is managing this balance well, showing whether
high recall is accompanied by high precision.

Accuracy

Overall accuracy, or accuracy, is defined as the total number of correct predictions divided
by the total number of instances. This metric provides a general overview of the model’s
performance:

Accuracy =
TP + TN

TP + TN + FP + FN
, (4.4.4)

where TN is the number of true negatives. Although accuracy is a metric that is often
presented first due to its simplicity, it is more useful after evaluating recall and F1-score
in this case. This is because accuracy can be misleading if we do not consider how the
model performs on minority classes. Accuracy gives a general overview of performance
but should be considered after better understanding the model’s behavior in terms of
detection and precision through recall and F1-score.

4.4.4 Qualitative Evaluation with Vision Transformer Attention

Maps

To complement the quantitative analysis of the models in terms of standard metrics such
as recall, F1-score, and accuracy, we propose conducting a qualitative evaluation using
the attention maps generated by the ViT. Attention maps allow us to visualize the regions
of the image that the model deems most relevant during the classification task, providing
a more detailed view of its decision-making process.

The qualitative analysis will include the following aspects:

• Exploration of Attention Points in Complex Gestures: We will use atten-
tion maps to examine whether the ViT can focus on critical areas of the image
during more complex gestures, which may involve multiple simultaneous or sequen-
tial movements. This analysis will help us verify if the model is adequately capturing
the most important spatial features;
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• Comparison of GEI and CGEI Representations: Attention maps will be used
to compare the behavior of the ViT when using different types of representations
(GEI and CGEI). We will evaluate whether the model shows different attention
patterns depending on the type of input, which might suggest differences in how
representations affect the classification process;

• Identification of Distinctive Signals: We will focus on analyzing how the ViT
identifies distinctive signals within images. We will evaluate if the model concen-
trates on specific visual features that are crucial for distinguishing visually similar
gestures that have different meanings.

To generate the attention maps, we will extract the outputs from the attention heads
of the ViT. These maps will be overlaid on the input images, allowing for direct visual
inspection of the areas influencing the model’s predictions. This methodology will allow
us to verify the effectiveness of the model and interpret and diagnose potential failures in
the ViT’s decisions.

The results of this qualitative evaluation will provide a deeper understanding of the
ViT’s performance, allowing us to identify the strengths and limitations of the model in
different classification contexts.

4.5 Generative Models

4.5.1 Simple Diffusion Model

In this work, we propose the Simple Diffusion model, designed to generate new images
through a forward and reverse diffusion process. Our approach follows the paradigm of
stochastic diffusion models, in which progressively increasing levels of noise are added to
an image until it becomes pure noise, and then neural networks are trained to reverse this
process and generate new images from the noise.

Model Architecture

The Simple Diffusion model (In Figure 4.8) uses a modified U-Net-based architecture,
whose input includes:

• The noisy image xt.

• The timestep (t), indicating the current stage of the diffusion process.

• The label associated with the image class.

• The user identifier, allowing the model to learn variations related to different users
in the dataset.

The U-Net consists of convolutional layers with skip connections between the encoding
and decoding layers, facilitating the preservation of important details during the image
reconstruction process.
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Figure 4.8: Simple Diffusion. The image shows a U-Net with 224× 224 input and output
blocks, the composition of the downlink and uplink blocks, and the composition of the
limiter block used for this work.

4.5.1.1 Schedulers Used

We explored two types of schedulers in the reverse diffusion process:

• Cosine Scheduler: This scheduler adjusts the diffusion step according to a cosine
function, allowing a smooth transition between different stages of the process. We
recreated the step schedule as described by Nichol and Dhariwal [82], as follows:

ᾱ =
f(t)

f(0)
, f(t) = cos

(

t/T + s

1 + s
· π
2

)2

. (4.5.1)

A βt value (noise coefficient of time step t) can be expressed as:

βt = 1− ᾱt

ᾱt−1

. (4.5.2)
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In practice, the values are constrained to βt < 0.999 to avoid singularities around
t = T .

• Linear Scheduler: This scheduler adjusts the diffusion step linearly, implying a
constant change in the amount of noise removed at each step.

Both schedulers were tested to evaluate their impact on the quality of the generated
images.

4.5.2 Evaluation of the Simple Diffusion Model

Instead of using traditional quantitative metrics such as Frechet Inception Distance (FID)
or Inception Score (IS), we opted for a qualitative evaluation of the images generated by
the Simple Diffusion model. This decision is based on the fact that these metrics do not
specifically assess the composition of the generated gesture, focusing more on the overall
structure of the image. Preliminary tests with these metrics on the dataset itself showed
no significant differences in the images, leading us to conclude that they were not suitable
for capturing the nuances of the gesture itself.

Therefore, the qualitative evaluation focused on visually inspecting the generated im-
ages to verify:

• The visual coherence of the generated images compared to the original data;

• Consistency in the representation of gestures;

• The model’s ability to preserve important visual details throughout the diffusion
process;

• Preservation of key features of the gesture in relation to the associated label and
user;

• Diversity of the generated images, especially regarding inter- and intra-class varia-
tions;

• The overall quality of the visual composition.

This evaluation provided us with a deeper understanding of the model’s capabilities to
generate visually coherent gestures under different noise conditions and data variations.

4.6 Experiments

In this section, we present the experiments conducted to address our research questions.
The aim is to compare the performance of a ViT (RQ1) and to evaluate the feasibility of
augmenting a Libras dataset with data from other Libras datasets (RQ2).
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4.6.1 Generative Data Augmentation

To address RQ1 of this dissertation, we designed three experiments using our Simple

Diffusion model for generating new data from the Elias Dataset dataset, and in a third
experiment, with the inclusion of a new external dataset. As previously mentioned in
Section 4.1, the Elias Dataset dataset includes two users (User 1 and User 2) and 19
signs. Six signs are performed by User 1, eight by User 2, and only five signs are common
to both users. Coincidentally, User 2 represents 60% of the dataset. Initially, our goal
is to evaluate the quality of the generation in terms of user features and labels and to
determine if it is possible to fill in the missing labels for one user using those from the
other (Cross-User) and effectively balance the dataset.

Experiment 1: Generation with Unknown User

In the first experiment, we trained the Simple Diffusion model using only data from User
2. Subsequently, we performed inferences with both known and unknown users and labels.
This setup allows us to assess the model’s ability to generate new signs in a context where
certain users and labels are not present in the training set.

Experiment 2: Inclusion of Known and Unknown Users

For the second experiment, we incorporated two samples of each class from User 1 into
the training dataset and trained the model with data from both users (User 1 and User
2) to increase the variety of signs available during training. We then performed inferences
not only with these two users but also with a third unknown user. This increases the
complexity of the experiment, allowing us to observe the model’s ability to generalize
gesture generation to users who were not present in the training set.

In both experiments, we conducted a qualitative evaluation of the generated results,
analyzing the coherence of the gestures in relation to the expected signs. We chose this
qualitative evaluation because traditional metrics, such as FID and IS, do not allow for
the assessment of the specific composition of gestures. In preliminary tests, these metrics
did not indicate a significant change in the visual structure of the images, which justifies
their omission in favor of a more detailed visual assessment.

4.6.2 Vision Transformers Performance

To address RQ2, we compared the performance of the ViT with other deep learning
models, such as ResNet50, using two Libras datasets. Additionally, our results were
compared with those obtained in other works in the literature, such as Passos et al. [83].

These comparisons were made from different perspectives: model comparison (ViT vs
ResNet), dataset comparison (Elias vs Minds), representation comparison (GEI vs CGEI),
and data splitting protocol comparison (Protocol 1 vs Protocol 2).

We also subjected the models to training processes with degraded data to observe their
behavior with varying amounts of data, thus evaluating their robustness and generalization
capability under limited conditions.
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Experimental Design

Figure 4.9: Scheduler for classification performance experiments.

The experimental design, shown in Figure 4.9, structured our list of experiments,
detailed in Table 4.1. This scheme guided us in subjecting each model to different data
scenarios. The selected datasets were used independently and, subsequently, the obtained
results were analyzed and compared.

Table 4.1: Experiments list: Each experiment’s name is composed of each element in line.

Model Dataset Pre-pro. Split
ID ViT ResNet Elias Minds GEI CGEI P_1 P_2 Experiment Name

1 X X X X ViT-Elias-GEI-P_1

2 X X X X ViT-Elias-GEI-P_2

3 X X X X ViT-Elias-CGEI-P_1

4 X X X X ViT-Elias-CGEI-P_2

5 X X X X ViT-Minds-GEI-P_1

6 X X X X ViT-Minds-GEI-P_2

7 X X X X ViT-Minds-CGEI-P_1

8 X X X X ViT-Minds-CGEI-P_2

9 X X X X ResNet-Elias-GEI-P_1

10 X X X X ResNet-Elias-GEI-P_2

11 X X X X ResNet-Elias-CGEI-P_1

12 X X X X ResNet-Elias-CGEI-P_2

13 X X X X ResNet-Minds-GEI-P_1

14 X X X X ResNet-Minds-GEI-P_2

15 X X X X ResNet-Minds-CGEI-P_1

16 X X X X ResNet-Minds-CGEI-P_2

The hyperparameter search was initially conducted for the eight experiments involving
the Elias Dataset dataset. The best hyperparameters obtained from this search were then
used for analogous experiments with the MINDS-Libras dataset. The tuned hyperparam-
eters included: batch size, learning rate, optimizer, scheduler, warm-up ratio, and weight
decay. The ranges and values explored during this search are presented in Table 4.2.

We opted for a Bayesian method for hyperparameter search, performing 50 iterations
per experiment, with a duration of approximately 16 hours per search. The number
of epochs was fixed at 32, as preliminary experiments showed that at least the ViT
converged within this time. After the search, fine-tuning was performed using the best
hyperparameters obtained (see Table 4.2).

To ensure the robustness of the results, each model was trained 10 times in each of the
experiments, and the average results of the 10 runs were calculated. These experiments
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were conducted on an Nvidia A6000 GPU, with an approximate duration of 2 to 3 hours
per experiment.

Table 4.2: Results of hyperparameter tuning for different models and datasets. Each row
shows specific settings, including batch size, learning rate, optimizer, scheduler, warmup
ratio, and weight decay.

Experiment Name Batch size Learning Rate Optimizer Scheduler Warmup Ratio Weight Decay

ViT-Elias-GEI-P_1 32 0.00096735 AdamW CosineWarmupLr 0.22327 0.0042706

ViT-Elias-CGEI-P_1 16 0.00074534 AdamW CosineWarmupLr 0.23634 0.015257

ViT-minds-GEI-P_1 64 0.00096735 AdamW CosineWarmupLr 0.22327 0.0042706

ViT-minds-CGEI-P_1 64 0.00074534 AdamW CosineWarmupLr 0.23634 0.015257

ResNet-Elias-GEI-P_1 16 0.00085242 AdamW CosineWarmupLr 0.16932 0.06999

ResNet-Elias-CGEI-P_1 16 0.00092494 AdamW CosineWarmupHr 0.22383 0.14474

ResNet-minds-GEI-P_1 64 0.00085242 AdamW CosineWarmupLr 0.16932 0.06999

ResNet-minds-CGEI-P_1 64 0.00092494 AdamW CosineWarmupHr 0.22383 0.14474

ViT-Elias-GEI-P_2 16 0.00007256 SGD CosineWarmupLr 0.21701 0.25085

ViT-Elias-CGEI-P_2 16 0.000050607 SGD CosineWarmupLr 0.21258 0.14791

ViT-minds-GEI-P_2 64 0.00007256 SGD CosineWarmupLr 0.21701 0.25085

ViT-minds-CGEI-P_2 64 0.000050607 SGD CosineWarmupLr 0.21258 0.14791

ResNet-Elias-GEI-P_2 32 0.00015006 SGD CosineWarmupHr 0.25197 0.094596

ResNet-Elias-CGEI-P_2 8 0.00013392 SGD CosineWarmupLr 0.11083 0.0029143

ResNet-minds-GEI-P_2 32 0.00015006 SGD CosineWarmupHr 0.25197 0.094596

ResNet-minds-CGEI-P_2 8 0.00013392 SGD CosineWarmupLr 0.11083 0.0029143

Finally, the obtained results were compared across different models, datasets, rep-
resentations, and data splitting protocols. This detailed analysis allowed us to identify
behavior patterns in each experimental context, providing a comprehensive view of the
models’ performance in different scenarios and offering a solid foundation to discuss the
effectiveness of ViT compared to other deep learning architectures in sign language recog-
nition.
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Chapter 5

Results and Discussion

In this chapter, we present and discuss the main findings in our computational experi-
ments. First, we show and discuss the results obtained in the classification results; in the
sequence, we also present and discuss results from the data augmentation experiments.

5.1 Classification Baseline Results

We have established this baseline as a fundamental part of understanding the initial be-
havior of the proposed models on the dataset shown in Section 4.1. In this study, we have
trained and evaluated the models using two distinct protocols, as described in Chapter 4.
The analysis of these results addresses the second research question (RQ2) formulated in
Chapter 1. We conducted several experiments using different models, datasets, representa-
tions, and data split protocols to understand how they impact classification performance.
We evaluate CSS and CUST protocols and present the detailed results and comparative
analysis below.

5.1.1 Analysis for the CSS Protocol

The CSS protocol, described in Section 4.3, ensures a stratified and controlled data split.
This protocol guarantees that both classes and users are evenly represented in the training
and testing partitions, allowing for a balanced and generalizable model evaluation. The
results obtained under this protocol were thoroughly analyzed to identify performance
patterns and areas for improvement.

The analysis was conducted at various levels, starting with a general comparison of
the models used, followed by a more specific analysis considering the different datasets,
and finally, a more detailed analysis considering preprocessing techniques. This approach
allows us to isolate and understand how each element contributes to the model’s perfor-
mance and, in turn, provides key insights into the factors that most affect system behavior
in sign language classification tasks.
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Table 5.1: General Model Comparison Results for the CSS Protocol.

Model Recall (%) F1-Score (%) Acc (%)

ViT 97.2± 2.0 96.9± 2.0 97.2± 2.0
ResNet 96.2± 1.6 95.9± 1.6 96.2± 1.6

Model Comparison: ViT vs ResNet

Since these models are designed with different architectures and learning mechanisms, the
analysis focuses on how each model handles the classification task under the conditions
of the CSS protocol.

Figure 5.1: Train and Validation Loss for the CSS Protocol in ViT model.

In general, we observe that the ViT model slightly outperformed the ResNet50 model
across all evaluated metrics. As shown in Table 5.1, ViT achieved an average Recall of
97.18%, an F1-Score of 96.96%, and an Accuracy of 97.18%, with respective standard
deviations indicating the consistency of these results. Conversely, ResNet50 attained
slightly lower values, with an average Recall of 96.18%, an F1-Score of 95.95%, and an
Accuracy of 96.18%. These metrics reflect averages calculated across trials, focusing solely
on model performance without additional factors.

Initially, the results suggest that both models are capable of classifying the signals with
great accuracy. In fact, in Figure 5.1 and 5.2, we can observe a slight advantage of ViT
over ResNet50, as ViT converges much faster and, overall, exhibits better validation loss
stabilization compared to ResNet50. This advantage can also be perceived in the standard
deviation of the curves (shaded areas), where the training and validation losses of ViT
tend to converge with less variation in the final stages of the process, unlike ResNet50,
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deeper into the analysis, we find this is not entirely the case.

Comparison Concerning the Datasets

In Section 4.1, the characteristics of each dataset used in this study were described in
detail. It is evident that there are significant differences between Elias Dataset and
MINDS-Libras, which go beyond the number of samples, signers, and classes. These
differences include the diversity of the signals and the internal structure of the datasets,
posing an additional challenge when training models that generalize effectively.

One feature that deserves special attention is the balance and homogeneity of the
datasets. Elias Dataset, while having fewer classes, shows significant imbalance. This
imbalance manifests in the unequal distribution of samples per class, the presence of
classes with an insufficient number of examples, and the lack of intersection between
some classes and different signers. Such imbalance may introduce biases in the model,
hindering its ability to generalize to new signals. The limited number of signers and
samples further exacerbates this issue, suggesting that the model could overfit to the
specific characteristics of the dataset rather than learning generalizable patterns.

In contrast, MINDS-Libras presents more robust characteristics. Although it also has
limitations, such as a relatively low number of samples per user, its structure is more
homogeneous and balanced in terms of class and user distribution. This homogeneity is
crucial for enabling the model to learn more effectively and generalize better to new or
unseen signals.

Table 5.2: Model Comparison Results Considering the Datasets for the CSS Protocol.

Model Dataset Recall (%) F1-Score (%) Acc (%)

ViT Elias 98.0± 2.0 97.6± 2.0 98.0± 2.0
ViT Minds 96.3± 1.6 96.3± 1.6 96.3± 1.6
ResNet Elias 96.4± 5.0 95.9± 5.7 96.4± 5.0
ResNet Minds 95.9± 1.6 95.9± 1.7 95.9± 1.6

This analysis is structured into two parts. In the first, we examine how each model
performs on each dataset separately; in the second, we compare the relative performance
between the datasets. Table 5.2 presents the general results of the metrics for each model
across the different datasets.

For the Elias Dataset, ViT achieved high values, with a Recall of 97.99%, an F1-Score

of 97.59%, and an Accuracy of 97.99%. While these results suggest that ViT is capable
of capturing relevant patterns even in an imbalanced dataset with a limited number of
samples, it is important to note that approximately 50% of the trained models showed
signs of overfitting. Similarly, in Figure 5.4a, the convergence of the loss functions is
nearly complete, indicating that the model is vulnerable to the low complexity of the
data, suggesting that the task is relatively easy to solve due to the dataset structure in
controlled scenarios.

On the other hand, the results obtained with MINDS-Libras were slightly lower but
still high, achieving a Recall of 96.36%, an F1-Score of 96.34%, and an Accuracy of 96.36%.
These values indicate that despite the mentioned limitations, MINDS-Libras provides a
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(a)

(b)

Figure 5.4: Train and Validation Loss Considering Models and Datasets for the CSS Protocol Part 1.
a) ViT with Elias Dataset, b) ViT with MINDS-Libras.

more favorable environment for model generalization in controlled scenarios, possibly due
to its better balance and homogeneity compared to Elias Dataset. In Figure 5.4b, the loss
functions’ convergence is not complete, suggesting that the complexity of MINDS-Libras
is slightly higher, providing a more challenging structure for the model. Unlike Elias
Dataset, only 10% of the models trained showed signs of overfitting with this dataset.

Regarding the performance of the ResNet50 model on the Elias Dataset, the results
show slightly lower metrics compared to ViT, but still respectable, with a Recall of 96.39%,
an F1-Score of 95.96%, and an Accuracy of 96.39%. Although ResNet50 also captures
important patterns in an imbalanced dataset with a limited number of samples, its lower
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(a)

(b)

Figure 5.5: Train and Validation Loss Considering Models and Datasets for the CSS Protocol Part 2.
a) ResNet50 with Elias Dataset and b) ResNet50 with MINDS-Libras

generalization capacity suggests that this model is even more prone to overfitting. In
this case, about 70% of the trained models showed signs of overfitting, reinforcing the
hypothesis that the low complexity of the dataset facilitates excessive model fitting to
the training data. The convergence of the loss functions follows a similar trend to that
observed with ViT, although it is slightly slower, as shown in Figure 5.5a. This confirms
that Elias Dataset presents a structure implying a lower complexity of the task.

The performance of ResNet50 on the MINDS-Libras dataset was also high, though
slightly lower than that of ViT, achieving a Recall of 95.97%, an F1-Score of 95.95%, and
an Accuracy of 95.97%. These metrics indicate good generalization in controlled settings.
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In Figure 5.5b, a temporary fluctuation in performance is observed between epochs 21 and
27, followed by stabilization. This pattern may suggest the occurrence of a double descent
phenomenon, where the model experiences a brief period of overfitting before reaching a
more stable generalization. Further analysis would be needed to confirm if double descent
or other model-specific factors are contributing to this behavior.

The variability between datasets directly influences the performance of the models.
ViT showed slightly better performance than ResNet50 on both datasets, reaffirming its
effectiveness in classification tasks regardless of data complexity.

Comparison of Representations: GEI vs. CGEI

Another aspect we examined is the impact of the type of signal representation on the
model’s performance. The representations GEI and CGEI, as discussed in Chapter 4, are
compared in terms of how they facilitate or hinder the classification task for the ViT and
ResNet50 models.

Table 5.3: Model Comparison Results Considering Datasets and Representations for the CSS
Protocol.

Model Dataset Pre-pro Recall (%) F1-Score (%) Acc (%)

ViT Elias GEI 97.6± 2.0 97.1± 2.5 97.6± 2.0
ViT Minds GEI 95.9± 1.8 95.9± 1.8 95.9± 1.8
ViT Elias CGEI 98.4± 2.0 98.1± 2.5 98.4± 2.0
ViT Minds CGEI 96.8± 2.0 96.8± 2.0 96.8± 2.0
ResNet Elias GEI 98.4± 2.7 98.2± 3.2 98.4± 2.7
ResNet Minds GEI 96.7± 1.2 96.6± 1.3 96.7± 1.2
ResNet Elias CGEI 94.4± 5.0 93.7± 5.8 94.4± 5.0
ResNet Minds CGEI 95.3± 1.9 95.2± 1.9 95.3± 1.9

Table 5.3 presents the results obtained in each case, taking into account the model-
dataset-representation relationships.

In the case of ViT, the model’s performance varies depending on the representation
used. When using GEI, ViT shows solid results across both datasets, although its perfor-
mance is slightly better on Elias Dataset, with a Recall and Accuracy of 97.60% and an
F1-Score of 97.09%. Notably, as mentioned earlier, 50% of the models trained on the Elias
Dataset exhibited signs of overfitting, which may reflect the dataset’s lower complexity.
In contrast, on MINDS-Libras, the model experiences a slight decrease in performance,
with values around 95.91%, suggesting that this dataset is more complex and varied.

When using CGEI, a representation incorporating chromatic information, ViT im-
proves its performance on both datasets. On Elias Dataset, the Recall and Accuracy

reach 98.40%, and the F1-Score rises to 98.08%, indicating that the CGEI representation
facilitates better classification. On MINDS-Libras, although the improvement is more
modest, the performance with CGEI remains superior to that of GEI, with a Recall, Ac-

curacy, and F1-Score of 96.81%, reflecting that ViT can leverage the greater complexity
of CGEI to capture the patterns present in the data better.

On the other hand, ResNet50 shows high performance with the GEI representation,
although there are also differences depending on the dataset. In Elias Dataset, the model
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(a)

(b)

Figure 5.6: Train and Validation Loss Considering Models, Datasets and Representations for the CSS
Protocol. a) ViT with Elias Dataset and GEI, and b) ViT with MINDS-Libras and GEI.

achieves a Recall and Accuracy of 98.40% and an F1-Score of 98.18%, while in MINDS-
Libras, the results slightly decrease, with a Recall of 96.68% and an F1-Score of 96.63%.
This suggests that while ResNet50 handles signals well with GEI, it faces greater chal-
lenges with MINDS-Libras due to the diversity of the signals.

However, when using CGEI, ResNet50 does not experience the same improvements
as ViT. In Elias Dataset, performance drops, with a Recall of 94.40% and an F1-Score

of 93.73%, indicating that the addition of chromatic information is not as beneficial for
this model. In MINDS-Libras, although the decline is less pronounced, with a Recall of
95.27% and an F1-Score of 95.26%, it still does not reach the performance observed with



95

(a)

(b)

Figure 5.7: Train and Validation Loss Considering Models, Datasets and Representations for the CSS
Protocol. a) ViT with Elias Dataset and CGEI, and b) ViT with MINDS-Libras and CGEI.

GEI.
In Figure 5.6, 5.7, 5.8, and 5.9, the loss curves for all experiments are displayed. It is

easy to observe that in cases involving the Elias Dataset, the validation losses converge
almost exactly with the training loss. However, in situations where this convergence is
less evident, as in Figure 5.9a, the standard deviation (represented by the shaded area)
shows significant variability, confirming the strong presence of overfitting in both models.

In contrast, with the MINDS-Libras dataset, it can be seen that the ViT model exhibits
more stable behavior compared to its counterpart, ResNet50.

Overall, this analysis reveals that in controlled scenarios, ViT significantly benefits
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(a)
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Figure 5.8: Train and Validation Loss Considering Models, Datasets and Representations for the CSS
Protocol. a) ResNet50 with Elias Dataset and GEI, and b) ResNet50 with MINDS-Libras and GEI.

from the CGEI representation. This could be attributed to the pre-training of the model.
On the other hand, ResNet50 does not seem to take advantage of this additional complex-
ity, performing better with GEI. Although both models face greater challenges with the
MINDS-Libras dataset, CGEI helps ViT mitigate some of these difficulties. This suggests
that CGEI is more advantageous for models capable of processing additional information,
while ResNet50 appears to adapt better to simpler representations like GEI. Nevertheless,
it is important to note that the results are influenced to some extent by the overfitting
observed in both models.
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(a)
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Figure 5.9: Train and Validation Loss Considering Models, Datasets and Representations for the CSS
Protocol. a) ResNet50 with Elias Dataset and CGEI, and b) ResNet50 with MINDS-Libras and CGEI.

5.1.2 Analysis for the CUST Protocol

The CUST protocol, described in Section 4.3, subjects the models to a scenario where
they must generalize to users not seen during training, posing a significant challenge in
terms of performance. The primary goal of this protocol is to force the models to handle
out-of-distribution data, which simulates real-world situations where inference systems
must adapt to unknown users. The analysis was conducted at multiple levels, similar to
Section 5.1.1.



98

Model Comparison: ViT vs ResNet

Table 5.4: General Model Comparison Results for the CUST Protocol.

Model Recall (%) F1-Score (%) Acc (%)

ViT 8.1 4.9 8.1
ResNet 5.1 2.5 5.1

The results in Table 5.4 reflect a drastic drop in performance for both models under
the CUST protocol. For the ViT, the metrics of Recall, F1-Score, and Accuracy barely
reach 8.10%, 4.90%, and 8.10%, respectively. On the other hand, the ResNet50 model
yields even worse results, with a Recall of 5.12%, an F1-Score of 2.52%, and an Accuracy

of 5.12%.
This behavior indicates that both models struggle significantly to generalize to unseen

users, a problem that becomes evident when working with datasets that exhibit substantial
variation in patterns among users. However, it is important to note that, despite the poor
performance of both models, ViT still slightly outperforms ResNet50 across all evaluated
metrics. In Figure 5.10 and 5.11, we see the general behavior of the loss functions for
training and validation.

Figure 5.10: Train and Validation Loss Considering Models for the CUST Protocol in ViT.

The obtained Accuracy values for both models (8.10% for ViT and 5.12% for ResNet50)
are notably low, suggesting that the models are operating only slightly above what could
be considered a random classifier, which would have an accuracy close to the chance level
(5% for each dataset in our case). This result highlights that, under the CUST protocol,
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Comparison concerning the Datasets

Table 5.5: Model Comparison Results Considering the Datasets for the CUST Protocol.

Model Dataset Acc (%) F1-Score (%) Recall (%)

ViT Elias 7.6 3.8 7.6
ViT Minds 8.6 5.9 8.6
ResNet Elias 4.8 2.5 4.8
ResNet Minds 5.4 2.5 5.4

(a)

(b)

Figure 5.13: Train and Validation Loss Considering Models and Datasets for the CUST Protocol. a)
ViT with Elias Dataset, and b) ViT with MINDS-Libras.

When examining the results of ViT on the Elias Dataset and MINDS-Libras datasets
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in Table 5.5, we observe that although the performance is low in both cases, the model
achieves slightly better metrics on the MINDS-Libras dataset, with an Accuracy of 8.60%
and an F1-Score of 5.89%. In contrast, on Elias Dataset, the metrics drop even further,
with an Accuracy of 7.60% and an F1-Score of 3.80%, indicating that ViT faces greater
difficulties in generalizing on this dataset.

(a)

(b)

Figure 5.14: Train and Validation Loss Considering Models and Datasets for the CUST Protocol. a)
ResNet50 with Elias Dataset, and b) ResNet50 with MINDS-Libras.

On the other hand, ResNet50 shows a similar trend, although with lower performance
than ViT. On the Elias Dataset dataset, ResNet50 achieves an Accuracy of 4.80% and
an F1-Score of 2.56%, while on MINDS-Libras, it improves slightly, with an Accuracy of
5.45% and an F1-Score of 2.51%. Despite the slight differences, the results reflect a low
generalization capacity in both datasets.
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(a)

(b)

Figure 5.15: Confusion Matrix examples for visualizing classes prediction. a) ViT with Elias Dataset
and CGEI for CSS protocol, and b) ViT with Elias Dataset and CGEI for CUST protocol.

These results reveal that, although there are minimal differences between the datasets,
both models exhibit poor generalization performance under the CUST protocol. It is
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Table 5.6: Comparison of the best results achieved in this work against other studies using
the MINDS-Libras dataset. Note: All results are obtained under controlled conditions
with CSS protocol, ensuring a consistent and fair comparison.

Study Acc. (%) F1-Score (%)

Alves et al. [12] 93.00 93.00

de Castro et al. [34] 91.00 90.00

Passos et al. [83] 84.60 –

Our ViT+GEI 95.9 95.9
Our ViT+CGEI 96.8 96.8
Our ResNet50+GEI 96.7 96.6
Our ResNet50+CGEI 95.3 95.2

important to note that ViT tends to adapt better to the MINDS-Libras dataset, while
ResNet50 faces similar difficulties across both datasets, with consistently low performance,
as shown in Figure 5.13 and 5.14.

In Fig. 5.15 and 5.16, we show examples of how the confusion matrices behaved for
some of the models in each protocol. This analysis allows us to conclude that the overall
behavior of the models in this protocol is dominated by their low ability to adapt to
unseen users. Additionally, no significant improvements are observed when analyzing the
results in more detail, as the trend of poor performance persists when broken down by
representations (GEI or CGEI) and models. This indicates that the generalization issues
do not depend on the representation used, but rather on the inherent limitations of the
models under this evaluation protocol.

In Table 5.6, we present a comparison of the best results obtained in this study with
those reported by other works on the MINDS-Libras dataset. This comparison highlights
the advantages of our approach, particularly the integration of ViT and ResNet50 models
with different data representations, such as GEI and CGEI. Our results demonstrate
consistent improvements in both accuracy and F1-score compared to prior works, with
our best-performing configuration (ViT+CGEI) achieving 96.81% accuracy and 96.79%
F1-score. Importantly, these results were achieved under controlled conditions to ensure
a fair and consistent comparison. This outcome suggests that the enhancements made
in data representation and model selection significantly impact performance, especially
when applied to the nuanced task of sign language gesture recognition in MINDS-Libras.

5.1.3 Qualitative Evaluation: Attention Maps of the Vision

Transformer

In the previous analyses, we observed that ViT consistently achieves better results com-
pared to ResNet50 across all evaluated scenarios. This motivates us to delve deeper into
the analysis of the attention maps within ViT, to better understand the patterns it detects
and how it distributes its attention across the different signal representations.

For this qualitative analysis, we grouped the signals based on certain characteristics
that allow us to observe how the model handles gestures that are similar or different in
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(a)

(b)

Figure 5.16: Confusion Matrix examples for visualizing classes prediction. a) ViT with MINDS-Libras
and CGEI for CSS protocol, and b) ViT with MINDS-Libras and CGEI for CUST protocol.

terms of execution and meaning (See Figure 5.17):

• Group 1: Signals with similar executions and linguistic meanings: “EU” and “MEU”.
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Figure 5.17: Samples in groups. In the image, examples in GEI representation for each group formed
for the analysis.

• Group 2: Signals with similar executions but different linguistic meanings: “EN-
FERMEIRO” and “ELE", “CABEÇA” and “ONTEM”.

• Group 3: Signals involving the use of both hands: “DOENTE”, “HOJE”, and
“MÉDICO”.

These groupings allow us to explore the relationship between gesture location and the
model’s attention.
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the semantic meaning of the signal. These findings suggest that, while ViT is effective in
gesture-based pattern classification, its ability to discern the semantic meaning of gestures
may depend more on spatial representation than on specific linguistic content. This opens
the door for future research on how to integrate deeper semantic information into the
attention process.

Additionally, the use of color, with the CGEI representation, highlights subtle differ-
ences between classes that may not be as apparent in the GEI representation, allowing
the model to focus its attention more efficiently on the most relevant parts of the signal.
Color helps ViT better differentiate similar visual signals, increasing the specificity of its
predictions.

5.1.4 Discussion

The detailed analysis of model performance under the CSS protocol reveals several sig-
nificant findings:

• Model Comparison: The results indicate that ViT slightly outperforms ResNet50 in
terms of recall, F1-score, and accuracy across the evaluated datasets. This advantage
is evident in ViT’s faster and more stable convergence, indicating a greater ability to
generalize and consistently learn patterns. However, the behavior observed in Elias
Dataset suggests that both models may overfit due to the dataset’s simplicity and
imbalance, which could explain the high but potentially non-generalizable results.

• Dataset Impact: The differences between the Elias Dataset and MINDS-Libras
datasets highlight the influence of dataset quality and structure on model perfor-
mance. While Elias Dataset presents challenges due to its imbalance and limited
number of samples, MINDS-Libras offers a more balanced and complex environment
that supports better generalization. Models tend to overfit more in Elias Dataset,
whereas, in MINDS-Libras, their performance is more consistent, reflecting a greater
ability to handle the dataset’s complexity.

• Representation Effect: The comparison between GEI and CGEI representations re-
veals that the addition of chromatic information in CGEI significantly enhances
ViT’s performance, particularly on the Elias Dataset dataset. This improvement
suggests that ViT’s ability to capture subtle gesture details benefits from the addi-
tional information provided by CGEI. In contrast, ResNet50 does not exhibit notable
improvement with CGEI, and its performance even declines, indicating that chro-
matic information does not provide a meaningful advantage for this model and may
introduce noise.

The analysis under the CUST protocol, which evaluates the models’ ability to gener-
alize to unseen users, highlights significant challenges in model adaptability:

• Model Comparison: The results reveal a dramatic drop in performance for both
models under this protocol, in stark contrast to their results with the CSS proto-
col. Although ViT achieves slightly higher metrics (recall, F1-score, and accuracy)
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than ResNet50, both models operate close to chance levels, highlighting substantial
limitations in generalizing to new users. This pattern suggests that, regardless of
architectural or representational differences (GEI vs. CGEI), both models encounter
similar challenges when adapting to unseen data distributions. While ViT initially
demonstrated strong performance, it suffers considerably under out-of-distribution
conditions, underscoring the need for methods better suited to generalize beyond
training data.

• Dataset Impact in the CUST Protocol: The results show that ViT performs slightly
better on the MINDS-Libras dataset compared to Elias Dataset, although in both
cases, the metrics remain very low. This indicates that MINDS-Libras, despite being
more complex and balanced under the CSS protocol, does not provide a significant
advantage when facing unseen users. The low generalization ability in both datasets
suggests that the issue does not lie in the specific characteristics of the datasets but
rather in the models’ overall inability to handle variability in the input data when
confronted with new users.

• Independence of Representation: Unlike the results obtained under the CSS pro-
tocol, where the CGEI representation improved ViT’s performance, in the CUST
protocol, there is no significant improvement in performance using CGEI over GEI.
This suggests that the enhancements provided by the CGEI representation are not
sufficient to address the fundamental limitations of the models in terms of general-
ization to unseen users. The adaptation challenges seem to be more fundamental
rather than specific to the representation used.

The results from the qualitative evaluation of the attention maps of the ViT reveal
important insights into how the model processes and focuses on gesture signals. Overall,
the ViT demonstrates a remarkable ability to concentrate its attention on the relevant
areas for interpreting gestures, regardless of linguistic similarities or differences between
the signals.

• Attention on Similar Signals: In the case of signals with similar executions and
linguistic meanings (“EU” and “MEU”) in Group 1, the model shows the ability
to differentiate between the signals despite their similarity, generating significantly
different attention maps. This suggests that ViT is sensitive to subtle movement
nuances and not just the general characteristics of the signals.

• Similar Executions but Different Meanings: When analyzing signals with similar
executions but different meanings, such as “ENFERMEIRO” and “ELE” in Group

2, the model continues to focus its attention on the relevant areas of the gesture,
despite differences in meaning. This indicates that ViT can distinguish between
gestures based on specific spatial features beyond the semantic context.

• Signals Involving Both Hands: For gestures involving both hands, the model shows
more distributed attention, focusing on both hands simultaneously. This reflects
ViT’s ability to identify complex patterns in gesture execution, such as the symmetry
of hand movements.
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• Impact of the CGEI Representation: The comparison between GEI and CGEI rep-
resentations highlights that the inclusion of chromatic features in CGEI provides
an additional layer of discrimination. The attention maps generated with CGEI
are more focused, suggesting that color enhances the model’s ability to identify key
gesture areas with greater precision. This increased specificity may help separate
visually similar signals and improve model accuracy.

Our findings suggest that the use of chromatic information in CGEI significantly in-
fluences the model’s focus on key gesture areas, as evidenced by both quantitative and
qualitative analyses. Across more than 80 experimental trials using the MINDS-Libras
dataset, we observed that in 99% of cases, the CGEI representation directed model atten-
tion toward specific gesture points of interest, enhancing discrimination between gestures.
By contrast, the GEI representation led to more dispersed attention, often focusing on
broader, less relevant regions of the image. These patterns indicate that CGEI not only
improves quantitative performance metrics, such as recall and F1-score, but also refines
the spatial precision of attention maps, which is critical for accurately interpreting com-
plex gestures.

5.2 Data Augmentation Experimental Results

The computational experiments carried out in this section aimed to pursue the answer
to Research Question 1 (RQ1), proposed in Chapter 1. Here, we report results from two
types of experiments: in the first one, we assess a simple diffusion model in generating
gestures from an unknown user; in the second one, we evaluate model performance for an
increasing variety of training data. Finally, we conclude this section (and this chapter)
with some discussion on the obtained results.

5.2.1 Results of Experiment 1: Generation with Unknown User

In this experiment, we analyzed the ability of the Simple Diffusion model to generate
gestures with an unknown user and both known and unknown signs. We evaluated four
cases: gestures generated for known signs and known users, gestures generated for known
signs and unknown users, gestures generated for unknown signs and known users, and
gestures generated for unknown signs and unknown users.

Known Users and Known Labels

In Figure 5.25, we show the cases where inference was performed using data known to
the model. In Figure 5.25a, the labels are specific to User 3, and in Figure 5.25b, the
inference was performed on labels that both users share in common, but the model did
not see any example of that sign from the other user (User 2).

We observe that the model was able to generate coherent signs for both known users
and labels. The characteristics of the user are preserved, and it seems to introduce
variations, as seen with the label "DOER" in Figure 5.25b, where the subject appears
mirrored. In terms of gesture capture, the representation of the sign remains consistent
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(a)

(b)

Figure 5.25: a) Only Classes of the User 3 and b) Common Classes but do not exist another user in
the training dataset.

across all cases. However, the model behaved as expected, since this case falls within the
model’s training distribution.

Unknown users and known labels

Increasing the complexity slightly, we asked the model to generate known labels with
users not seen during training. We observed that, although the model understands the
difference, it fails to converge to a user different from those seen during training. In
Figure 5.26, we again show the cases with known labels, both common and individual.
We note that the model converges to the characteristics of the known user but introduces
variations in color. Regarding the sign, the model maintains gesture coherence and seems
to understand the differences between signs with similar gestures and completely different
meanings, as seen in Figure 5.26 with pairs like “Injeção-Enfermeiro”, “Eu-Meu”, “Febre-
Cabeça”. We consider this result as partially out-of-distribution.

Known users and unknown labels

Here, we evaluate how well the model can generate gestures for labels not seen during
training. We asked the model to generate gestures for User 3, who was part of the
training, but with missing labels. This scenario was set up to observe potential variations
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(a)

(b)

Figure 5.26: a) Out Of the Distribution User when label not exist in the other user and b) Out Of the
Distribution User in common labels.

in generation. In Figure 5.27a, we include the original image of User 2 as a visual reference
for the gesture, since there was no reference for these labels for the training user. In GEN

OOD USER 3 from Figure 5.27a, we can see the result generated by the model. Although
it did not generate an accurate representation of the requested gesture, it attempted
to recreate the characteristics of the known user. This result is expected, given that
the model was not trained with a sufficient variety of users. Here, the label is out of
distribution.

Unknown users and unknown labels

Finally, we present the results where the model has seen neither the user nor the labels.
In Figure 5.27b, we show the results for the fully out-of-distribution case. As expected,
the model does not generate any significant or relevant variations in these cases.
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(a)

(b)

Figure 5.27: a) Out of the Distribution Label when user exist and b) Full Out of the Distribution User
and Labels.

5.2.2 Results of Experiment 2: Inclusion of Users

In this experiment, we evaluate how the model behaves when increasing the variety of
training data. We ensured that all classes were present and performed inferences to
evaluate the following cases: known user and label, cross-validation between users, and
fully out-of-distribution cases.

Known User and Label

In this scenario, we have three cases. In Figure 5.28a, the inference results for both users
with intersecting labels are shown. The images generated by the model are consistent
with the desired gesture. For the sign “Doer” for example, the model generated one of
the variants included in the training. Upon verifying these results, we observe that the
model can generate the variations seen during training, which is an expected outcome.
Throughout this analysis, it has become clear that the model is very good at reproducing
the data distribution it was trained on, with slight variations that do not significantly de-
viate from the distribution. These results are replicated in the cases shown in Figure 5.28b
and Figure 5.28c.
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(a)

(b)

(c)

Figure 5.28: In distribution generated samples.

Cross-Validation Between Users

We wanted to evaluate the model’s ability to generate different users from those seen
during training, using the labels that belonged to one of the trained users. In the infer-
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(a)

(b)

Figure 5.29: Out of the distribution user when do not exist samples for someone users.

ences, we asked the model to generate gestures with the labels of one user seen during
training, but with the characteristics of another user who did not have those labels. In
Figure 5.29a, we generated User 3 with User 2’s labels. Although the result was not
entirely satisfactory, we highlight the model’s ability to capture the differences between
users. In Figure 5.29b, we did the reverse case, asking the model to generate User 2
with User 3’s labels. Here, the result was slightly different. In some cases, the model
attempted to generate the sign with the correct user’s characteristics, such as in the signs
“Febre” “Injeção” and “Mulher” where it is evident that the model tries to represent the
requested user with the appropriate gesture. This is a relevant finding, as it demonstrates
the model’s potential to diversify data and adapt to new users.

Fully Out-of-Distribution Cases

Finally, we evaluated the model using a completely unknown user, aiming to analyze its
ability to generalize and diversify in out-of-distribution scenarios. In Figure 5.30, the
results of these cases are presented, where the model had not previously seen the user.
Despite the difficulty, we again highlight the model’s ability to approximate the requested
gesture correctly. However, the model tends to generate images with a certain noise level.
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(a)

(b)

(c)

Figure 5.30: Full Out of distribution user.

In general, the results indicate that the model attempts to combine semantic elements
from the users it learned during training, suggesting its capacity to incorporate diversity
into the generated data.

An interesting aspect is that, although the gestures generated for the third user show
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coherence with the expected signs, some visual details indicate that the model still relies on
information from previously learned users during the generation process. This highlights
both the model’s potential to extrapolate to new cases and the limitations it faces due to
insufficient diversity of users during training.

5.2.3 Discussion

Throughout the two experiments presented, we have identified key patterns and behaviors
of the Simple Diffusion model in different generation scenarios, both with known and un-
known users and signs. These results provide valuable insights into the model’s strengths
and limitations in terms of generalization and diversification.

In Experiment 1, where we evaluated the model’s ability to generate gestures in sce-
narios with unknown users, we observed that the model performs reasonably well when
generating coherent gestures for known signs and users. However, when unknown users
were introduced, the model tended to generate coherent gestures, but replicated charac-
teristics of the known users, showing a dependency on the training data. The gestures
generated for unknown signs did not show precision in their execution, highlighting the
model’s limitations in situations completely outside the training distribution.

On the other hand, in Experiment 2, by increasing the diversity in the training set,
the model showed improvements in its ability to generalize to new users and signs. In
cross-validation scenarios, where the model was forced to generate signs for one user with
the characteristics of another, the results were mixed. Although it did not always capture
all the characteristics of the target user, the model showed clear signs of attempting to
differentiate between users and adapt its predictions based on the labels. This behavior
suggests potential improvement if more user variety is included in the training.

In the more challenging Full Out of Distribution cases, where neither the users nor
the signs had been seen before, the model produced interesting results. Although it did
not fully capture the expected diversity, there were instances where gesture coherence was
maintained, indicating that the model is beginning to combine semantic elements of the
known users. This highlights both the model’s potential to extrapolate to new scenarios
and its inherent dependence on the data seen during training.

The qualitative findings from both experiments reveal that Simple Diffusion is compe-
tent at generating signs for known cases but still faces significant challenges in situations
completely out of the training distribution. While there are signs that the model can
generate diversity from new users and gestures, it still relies heavily on previously learned
information. To improve its performance in more challenging scenarios, it would be es-
sential to increase the diversity of the dataset and explore regularization techniques that
help reduce the model’s dependence on known data.
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Chapter 6

Conclusions

In this chapter, we provide some conclusion notes on the work presented in this Master’s
dissertation. First, we present the answers for the research questions raised in Chapter 1.
In the sequence, we describe the participation of the author in academic events. Finally,
we provide some final remarks about the research.

6.1 Answers to the Research Questions

After accomplishing the work described in the previous chapters, we can revisit the re-
search questions raised in Chapter 1 to address them:

RQ1

For a given Libras dataset (augmented or not), how does the performance of a Vision
Transformer (ViT) compare to the machine learning models previously used for this
problem?

• Answer:

To address the question of how the performance of a Vision Transformer (ViT)
compares to machine learning models previously used for the classification of
Libras signs, we can rely on the experiments conducted with the CSS and
CUST protocols, which assess performance in controlled and generalization
scenarios. It is important to note that only natural data from the datasets
were used in these experiments, without augmentation.

Under the CSS Protocol, in non-augmented Libras datasets, the ViT demon-
strated a clear advantage over traditional models like ResNet50. This is
reflected in its ability to learn complex patterns and a faster and more

stable convergence of the loss function. This behavior suggests that in con-
trolled scenarios, where both users and signs are known, the ViT offers superior
performance in terms of accuracy and efficiency compared to previous models
used for this problem.

Additionally, the ViT benefits significantly from richer representations,
such as the inclusion of chromatic information in CGEI, improving gesture
classification accuracy. This contrasts with models like ResNet50, which do not
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show notable improvement or may even suffer a performance drop when using
such representations. This difference highlights the ViT’s ability to exploit
additional spatial and visual features better, placing it in an advantageous
position over previous approaches, even under conditions of insufficient and
imbalanced data.

In the CUST protocol, where the ability to generalize to unseen users is eval-
uated, the performance of the ViT, although competitive, does not show a

considerable advantage over previous models like ResNet50. Both models
exhibit significant challenges when generalizing in scenarios where the users
and signs are unknown. This result indicates that while it may be more effec-
tive in controlled scenarios, the limitations of the ViT in terms of generalization
are similar to those of earlier models.

Notably, in the CUST protocol, chromatic representation does not provide a
significant advantage, suggesting that the improvements observed in controlled
classification scenarios do not carry over to environments with greater data
variability. The fundamental limitations in generalization ability persist re-
gardless of the representations employed.

In summary, for a non-augmented Libras dataset, the ViT outperforms tra-

ditional deep learning models like ResNet50 in controlled scenarios, ex-
hibiting better performance in learning complex patterns and efficiency in
convergence. However, in situations that require broader generalization, such
as in the CUST protocol, the ViT does not offer a significant improve-

ment over previous models. This finding highlights the need to enhance the

generalization capacity of models, potentially through data augmentation
techniques or approaches that better address user and sign variability.

Finally, the experiments revealed an interesting aspect of the ViT: its poten-

tial for segmentation and data annotation tasks. This potential arises
from the attention maps generated by the model, which show promising
behavior in identifying key regions within gestures. Although this was not the
primary objective of the study, the ViT’s ability to precisely focus its attention
suggests that it may be a useful model for more complex tasks involving not
only classification but also the segmentation of gestural signals.

RQ2

Is it possible to augment data from a Libras database using data from other Libras
datasets?

• Answer:

Based on the partial results obtained in the experiments presented, it is possible
to formulate a well-founded hypothesis regarding the question of the feasibility
of augmenting a Libras dataset using information from other Libras datasets.

Firstly, the results indicate that the Simple Diffusion model shows limited gen-
eralization capability when exposed to signs and users not part of the original
training distribution. This observation suggests that the model may struggle
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when faced with data from other Libras datasets, especially if these datasets
exhibit significantly different characteristics from the original data. However,
the model’s ability to combine semantic features from seen users suggests po-
tential for the use of external data, provided that it offers a sufficiently diverse
representation of signs and users.

On the other hand, the cross-user validation experiment has shown that the
model can partially adapt to new users, further supporting the idea that, under
certain conditions, data from other Libras datasets could improve the model’s
performance by contributing greater diversity and aiding in its generalization.
Nevertheless, the current results highlight the model’s dependence on familiar
data, demonstrating that the success of this data augmentation strategy will
largely depend on the variability the new datasets can offer, in terms of both
signs and users.

Lastly, the preliminary results also suggest that, while the model faces limita-
tions when extrapolating gestures in completely new scenarios, there is a degree
of extrapolation capability that can be harnessed and improved through more
diversified training. This indicates that the use of other Libras datasets could
have a positive effect if implemented correctly.

In summary, although the current experiments do not explicitly address the
question of augmenting data by using other Libras datasets, the results ob-
tained thus far suggest that this could be a viable strategy. However, the final
“cross dataset” experiment must be conducted to conclusively evaluate the im-
pact of this strategy, especially in scenarios where there are no users or signs
in common between the datasets used.

6.2 Participation in Events

Initial results of this work were presented on a poster at the International Meeting on

Artificial Intelligence and its Applications - RIIAA Carrillo et al. [22] held in Quito,
Ecuador from February 19 to 25, 2024.

6.3 Final Remarks

Our work presents results that provide a foundation for future research. Although we have
made significant progress with the baseline and initial data augmentation experiments,
this study should be regarded as a first step. We are motivated to continue advancing
this line of research and to refine the results obtained thus far. The current conclusions
establish an initial framework and guide the path for future analysis and improvements.
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