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ARTICLE INFO ABSTRACT

Editor: M. Doser In this letter, measurements of (anti)alpha production in central (0-10%) Pb-Pb collisions at a center-of-mass
energy per nucleon-nucleon pair of m = 5.02 TeV are presented, including the first measurement of an
antialpha transverse-momentum spectrum. Owing to its large mass, the production of (anti)alpha is expected to
be sensitive to different particle production models. The production yields and transverse-momentum spectra of
nuclei are of particular interest because they provide a stringent test of these models. The averaged antialpha
and alpha spectrum is compared to the spectra of lighter particles, by including it into a common blast-wave fit
capturing the hydrodynamic-like flow of all particles. This fit is indicating that the (anti)alpha also participates
in the collective expansion of the medium created in the collision. A blast-wave fit including only protons,
(anti)alpha, and other light nuclei results in a similar flow velocity as the fit that includes all particles. A similar
flow velocity, but a significantly larger kinetic freeze-out temperature is obtained when only protons and light
nuclei are included in the fit. The coalescence parameter B, is well described by calculations from a statistical
hadronization model but significantly underestimated by calculations assuming nucleus formation via coalescence
of nucleons. Similarly, the (anti)alpha-to-proton ratio is well described by the statistical hadronization model. On
the other hand, coalescence calculations including approaches with different implementations of the (anti)alpha
substructure tend to underestimate the data.

1. Introduction Two different approaches exist that describe the production of light
(anti)nuclei in heavy-ion collisions. In statistical hadronization models
(SHMs), often simply called thermal models, the production of hadrons
and nuclei is described in the framework of a grand-canonical ensem-
ble employing only three parameters: temperature T, volume V', and
baryo-chemical potential up [58-64]. Previous measurements of the
production of light (anti)nuclei in central Pb-Pb collisions! by the AL-
ICE Collaboration agreed well with a common SHM fit to all avail-

During the past five decades the production of light nuclei in heavy-
ion reactions has been measured over a broad range of collision ener-
gies [1-21]. At center-of-mass energies of up to a few GeV light nucleus
production is commonly understood in terms of nuclear break-up where
the incoming nuclei disintegrate into lighter nuclear fragments. In con-
trast to this, the study of the production of antinuclei in heavy-ion
collisions is a nascent field that emerged with the availability of heavy- .
ion colliders [22-38]. In particular, the antialpha was first observed only able hadron and nucleus measuremf:nts with a_‘ temperature of T =
13 years ago by the STAR Collaboration in Au-Au collisions at the Rel- (156.5+1.5) MeV and a baryo-chemical potential of yg = (0.7+3.8)
ativistic Heavy-Ion Collider (RHIC) [39]. At the Large Hadron Collider MeV [62]. The temperature is commonly understood in terms of a chem-
(LHC), which provides the highest center-of-mass energies for heavy-ion ical freeze-out temperature Ty, at which the abundances of hadrons and

collisions to date, measurements of the production of nuclei and anti- nuclei are fixed during the evolution of the fireball created in central
nuclei have so far mainly been performed by the ALICE Collaboration Pb-Pb collisions [53,61]. It is compatible with the (pseudo)critical tem-
in different collision systems [40-57]. Understanding the production perature T, predicted by the lattice QCD calculations for the transition
mechanism of nuclei and antinuclei in ultrarelativistic collisions could between a hadronic system and a quark-gluon plasma (QGP) at van-
provide deeper insights into the hadronization process and the quantum ishing up [65,66]. The interpretation in the context of the production
properties of composite hadronic systems. of nuclei, however, is not straightforward because significant modifica-

* E-mail address: alice-publications@cern.ch.

! Centrality in heavy-ion collisions is normally given in the inverse percentage of the overlap between the area of the collided nuclei, i.e. 0-10% central collisions
correspond to the events where the collisions are mostly head-on and 80-90% would be a peripheral collision where the colliding nuclei only have a small overlap.
Semicentral corresponds to a centrality of 30-50%.
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tions of the abundances of nuclei are expected from density and cross
section arguments due to inelastic processes in the subsequent fireball
evolution, often called hadronic phase, below T, [61,67,68]. In another
class of models, nucleus formation is conjectured via the coalescence
of nucleons in the final state of the system evolution [69-72]. The
coalescence process is typically associated with the kinetic freeze-out
temperature 7;,, which corresponds to the temperature where the in-
elastic collisions cease and the (transverse-)momentum spectra of the

BN A
A of nuclei with

dp:A

mass number 13; is connected to the final-state momentum distribution

BN, .
of protons Ep d—3p via the coalescence parameter [71]:
p;

P
—A
B,=E Ny E Ny e}
A= LEA—T= S 2 ’

dpi P dpg

particles are frozen [61,73]. The invariant yield E ,

assuming that protons and neutrons are produced in equal amounts at
ultrarelativistic collision energies since both belong to the same isospin
doublet. The coalescence prescription can thus be employed to deduce
the formation of nuclei based on measured proton yields as well as on
nucleon distributions from event generators such as PYTHIA [74,75] and
EPOS [76], or transport models like UrQMD [77-79] or SMASH [80-
82].

In pertinent formulations of the coalescence model, the coalescence
probability incorporates a dependence on the spatial distribution of the
nucleons at kinetic freeze-out and its overlap with the internal wave
function of the nuclear cluster, leading to a characteristic dependence
of B, and consequently the production yield of nuclei on the size of the
collision system [83-93]. This motivated detailed studies of nuclear for-
mation in pp, p-Pb, and non-central Pb-Pb collisions, where the yield
ratio of nucleus A relative to protons is studied as a function of the aver-
age charged-particle multiplicity per unit of pseudorapidity, (d N, /dn).
Indeed, the present data tend to confirm the system-size dependence
predicted by coalescence models for the yield ratios deuteron to pro-
ton (d/p), triton to proton (t/p), and 3He to proton (3He/p) in small
collision systems [41,43-46,48-50]. On the other hand, the statistical
description of particle production in small collision systems requires a
canonical formulation of the statistical hadronization model, leading
to the Canonical Statistical Model (CSM). This formulation entails an
additional model parameter, the so-called correlation volume V,, in-
side which electric charge Q, strangeness S, and baryon number B are
conserved exactly [63,64,94-97]. CSM calculations of nucleus-to-proton
ratios result in a suppression of the production of nuclei in small systems
that is qualitatively compatible with the patterns observed in data, but
still tends to overestimate the yields of nuclei for realistic assumptions
of V¢ [52,63,96].

In central and semi-central Pb-Pb collisions, recent results for d/p
and 3He/p are compatible with both statistical hadronization and coa-
lescence models, while t/p in Pb-Pb is significantly closer to the coales-
cence model [54]. It should be noted, however, that the yield of nuclei
in Pb-Pb collisions may also be modified by absorption effects during
the hadronic phase, as indicated by calculations from the UrQMD hybrid
coalescence model [79].

The observed stiffening of transverse-momentum (py) spectra of
hadrons produced in heavy-ion collisions can be interpreted in terms of
a common radial flow field, arising from hydrodynamic expansion. The
so-called blast-wave model [98] describes the radial boost of the light-
flavor hadrons and nuclei arising from hydrodynamic expansion with
a common set of parameters: the kinetic freeze-out temperature Ty,
the mean radial expansion velocity (f), and an exponent » of the radial
velocity profile. The measured py spectra are fitted with the Boltzmann-
Gibbs blast-wave function [98]:

R
3 inh h

E(il 1:! « [ mel, <PT Sl; (p(r))> X, <mT C(;f (p(r))> rdr
P kin kin

(2)
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where my is the transverse mass (mp = \/m? + p;2), I, and K, are the
modified Bessel functions, and p is the velocity profile given by:

p(r) = tanh™! B(r) = tanh™" [(%) ﬂmax], 3)

where r is the radial distance in the transverse plane, R is the radius of
the fireball and f,,, is the transverse expansion velocity at the surface
of the expanding fireball.

The study of (anti)alpha production in central Pb-Pb collisions is
particularly interesting because it is the heaviest nucleus measured at
the LHC so far. In the SHM, there is a strong mass dependence of the
statistical penalty factor (yield suppression when a baryon is added to
the system) for typical values of T, and g, while predictions of coales-
cence models depend on nucleon densities and geometrical factors to the
power of A. For the SHM the antialpha-to-alpha ratio is expected to be
proportional to exp(—8ug/Ty,) [99], which is the strongest dependence
of the thermal model parameters on the baryon number A. The micro-
scopic coalescence models directly have problems to get the predictions,
since they need much more nucleons to be produced initially that can
be used then in the coalescence process. This makes the (anti)alpha a
very sensitive probe for stringent tests of the production models of light
nuclei. In addition to already discussed models, there is also the idea
that correlations are present already in the vacuum, allowing an antinu-
cleus like antialpha to be directly excited from the vacuum [100-103].
This would mean that the antinulcei rate could be much larger than the
values predicted by SHM or coalescence models, which expect them to
be rather equal. Previous measurements of the integrated yields of an-
tialpha and alpha in central Pb-Pb collisions at a center-of-mass energy
per nucleon-nucleon pair of m = 2.76 TeV agreed with a global fit
of the SHM to the yields of all measured hadrons and nuclei [42]. No
predictions for A = 4 from coalescence models existed at the time.

In this letter, we present results on (anti)alpha production in central
Pb-Pb collisions at 4/syy = 5.02 TeV, including the first ever mea-
sured transverse-momentum spectrum of the antialpha. The results are
compared to predictions by coalescence and statistical hadronization
models. Together with previous results for different hadron species and
lighter nuclei, the py spectra are analyzed employing the blast-wave
model. Throughout this letter, especially in the figures but also at some
occasions in the text, “He instead of alpha is stated, which are used as
equivalent. Note that with “He not the chemical element with electron
shell but the “He nucleus is meant.

In Sec. 2 the analysis is described, followed by the presentation of
the systematic uncertainties in Sec. 3. The results are discussed in Sec. 4
and the conclusion is given in Sec. 5.

2. Data analysis
2.1. Data sample and experimental apparatus

The presented results are based on a data set of Pb-Pb collisions
at \/sN_N =5.02 TeV, collected in 2018, where 99.5 x 10° events in the
0-10% centrality interval [104] were analyzed. These events are the
sum of a minimum-bias trigger of lower bandwidth and a central trig-
ger with a higher bandwidth, giving 12.6 x 10° and 86.9 x 10° events,
respectively. The number of antialpha candidates outside the chosen in-
terval is negligible and would not give any statistical benefit.

The ALICE apparatus [105,106] provides excellent particle identi-
fication and vertexing capabilities. The (anti)alpha was reconstructed
and identified using the Inner Tracking System (ITS), the Time Projec-
tion Chamber (TPC), the Transition Radiation Detector (TRD), and the
Time-Of-Flight detector (TOF). These detectors are all located inside a
homogeneous magnetic field with a strength of 0.5 T and cover the full
azimuth in the pseudorapidity range |n| < 0.9. Interactions located in-
side |z| < 10 cm are selected, where z is the distance from the nominal
interaction point along the beam direction.
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The ITS [107] is a silicon detector consisting of six cylindrical lay-
ers. It is used for charged-particle tracking and for the reconstruction of
primary and secondary vertices. It can also be used to separate primary
nuclei from secondary, knocked-out nuclei from the detector material,
via the distance of closest approach (DCA) of the track to the primary
vertex.

The TPC [108] is the main tracking device of the ALICE apparatus. It
is a gas-filled cylinder and provides charged-particle tracking and par-
ticle identification via the specific energy loss per path length (dE/dx)
with a resolution of 6% in Pb-Pb collisions.

The TOF detector [109] provides identification of light (anti)nuclei
by means of the velocity determination from the calculated path length
of the track and the time-of-flight measurement. Its total time resolu-
tion for tracks in Pb-Pb collisions corresponds to about 65 ps which is
determined by the intrinsic time resolution of the detector and the reso-
lution of the event collision time measurement. By combining TPC and
TOF information, (anti)alphas can be identified from pr =2 GeV/c up
to 6 GeV/c in Pb-Pb collisions.

The TRD [110] can be used to improve the momentum resolution
and significantly reduces the probability of random matches between
tracks and TOF hits.

The VO detectors [111] measure the arrival time of particles with a
resolution of 1 ns, by utilizing a pair of forward and backward scin-
tillator arrays (covering the pseudorapidity ranges 2.8 < < 5.1 and
—3.7 < n < —1.7). They are used for triggering purposes and for rejection
of beam-gas interactions. In addition, they provide the centrality trigger
in Pb-Pb collisions [104], and they are also used for offline centrality
determination.

The Zero Degree Calorimeter (ZDC) consists of two sets of hadronic
calorimeters, which are located 112.5 m away from the interaction point
on both sides of it, and of one set of electromagnetic calorimeters, placed
7 m away from the interaction point [105] on one side of it. It is located
at 0° relative to the beam direction.

2.2. Event and track selection

The data were collected using a minimum-bias trigger requiring at
least one hit in both VO detectors. In addition, a trigger on central colli-
sions was used, also determined by the VO detectors, selecting collisions
in the 0-10% centrality interval. To reject the events triggered by the
interactions of the beam with the residual gas in the LHC vacuum pipe,
the timing information of the VO scintillator arrays is used. A further se-
lection using the ZDC is applied in order to reject the electromagnetic
beam-beam interactions and beam-satellite bunch collisions [112]. This
is done by selecting good events from the correlation between the sum
and the difference of arrival times measured in each of the ZDCs [106].
All these rejection steps are done in the offline analysis.

The production yield of (anti)alphas is measured at midrapidity
(Jly| < 0.5). Only tracks in the full tracking acceptance of |#| < 0.8 are
selected. In order to guarantee good track momentum and dE/dx resolu-
tion in the relevant py ranges, the selected tracks are required to have at
least 70 out of 159 possible reconstructed points in the TPC and at least
two points in the ITS out of which at least one is in the two innermost
layers, the Silicon Pixel Detector (SPD). The requirement of at least one
point in the SPD assures a resolution better than 300 pum on the distance
of closest approach to the primary vertex for the selected tracks [106].
Furthermore, it is required that the y2 per TPC reconstructed point is
less than 2.5 and tracks with a kink, which originate from weak decays,
where the decay products are one charged and at least one neutral par-
ticle, are rejected.

2.3. Particle identification
Particles with electric charge z =2 are well separated in the TPC

from the particles with z = 1, as they have a four times larger specific
energy loss (d E/dx). However, to distinguish the alphas from the much
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Fig. 1. m?/z? distribution for “He candidates (green). The background (ma-
genta) is constructed by selecting all candidates outside the *He TPC window
of 3 ¢ around the alpha mass hypothesis (|no-TPC(4ﬁ)| > 3) and in addition out-
side the 3 ¢ window around the deuteron mass hypothesis (|nopc (E)| > 3). The
blue line is an exponential fit to the rise at lower masses originating from 3He
candidates.

more abundant 3He (by a factor of the order of 103) the dE/dx in-
formation is combined with the mass calculated from the time-of-flight
measured with the TOF and the track momentum. The energy loss in
the TPC can be described by the Bethe-Bloch formula for a given mass
hypothesis. To select the (anti)alphas it is required that the energy loss
of the track lies in a 3 ¢ window around the expected values for alpha
particles, where o is the dE/dx resolution. In addition, it is required
that the track is matched to a hit in the TOF detector. Fig. 1 shows the
m?/z?* distribution of the TOF detector for antialpha candidates (green)
in the py interval between 3 and 6 GeV/c. The m?/z? for true (anti)al-
phas is 3.475 GeV?/c*. Note that in the m?/z> distributions, *He are
clearly separated from 3He, for which m?/z? is 2.0 GeV2/c*. The back-
ground (magenta) is coming from TOF mismatches, which is the case if
a track in the TPC is associated with the wrong hit in the TOF detector,
resulting in a wrong mass. To describe the background a data-driven
approach with only one free parameter is used. The background is de-
termined by selecting all tracks in the TPC outside a 3 ¢ interval of the
expected Bethe-Bloch curve for alpha particles and in addition outside
a 3 o interval of the expected curve for the deuteron mass hypothesis, as
alphas and deuterons have similar m?/z2. The background is then scaled
to the height of the *He histogram by normalizing to the sideband on
the right of the “He peak between 4.4 and 6 GeV?/c* and subtracted.
This is done in each py interval separately except for the first py interval
of the *He (2-3 GeV//c), where there is no background. The 3He contri-
bution under the “He peak is described by an exponential fit to the tail
of the 3He peak (blue dashed line). This is done in one py interval from
3 to 6 GeV/c and an (anti)>He fraction (3% for *He and 9% for *He) is
determined for particles and antiparticles separately, which is then sub-
tracted in each py interval individually. This is needed since the 3He
contribution cannot be determined in each py interval separately due to
the limited statistics. The (anti)alpha signal is counted in every py in-
terval between 3 and 4.2 GeV?/c* due to the asymmetric shape of the
signal in m?/z?

The *He raw y1e1d is extracted in four py intervals between 2 and
6 GeV/c. The “He raw yield is only extracted in three py intervals be-
tween 3 and 6 GeV/c, due to the large contribution of knocked-out
alphas from the detector material and the support structure at low pr.
This contribution can only be extracted properly from data to Monte
Carlo comparison and is done usually in template fits in slices of pr in
the variable distance-of-closest approach. Unfortunately, this extraction
is not possible for the presented analysis due to the small number of
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candidates. Nevertheless, the comparison of the raw counts in py inter-
vals suggests that the knock-out is negligible already for p; >3 GeV/c,
since the raw yields of alpha and antialpha become similar in number.
For the statistical uncertainties of the data points the Poisson statistics
is used.

2.4. Corrections to the spectra

The transverse-momentum spectra of the (anti)alphas are obtained
by correcting the raw yields in the different py intervals of the analysis
for tracking efficiency and detector acceptance. This is done by using
Monte Carlo events, simulated with the HIJING event generator [113].
As HIJING does not include (anti)alphas, they are injected into the event
with flat distributions in pr (between 0 and 10 GeV/c), azimuth (be-
tween 0 and 2x), and rapidity (|y| < 1). The GEANT 4 [114] transport
code is used to propagate the generated particles through a full simula-
tion of the ALICE detector setup. The combined acceptancexefficiency
was determined for the (anti)alphas in the 0-10% centrality interval. As
the nuclei are not produced with flat p; distribution, the acceptancexef-
ficiency was weighted with a blast-wave shape applying an iterative
method (see e.g. Ref. [54]), where the blast-wave parameters were taken
from a fit to the (anti)alpha spectra.

3. Systematic uncertainties

To estimate the systematic uncertainties, different sources affecting
the (anti)alpha measurement were studied, which are described in the
following. Unless specified otherwise, all uncertainties are taken for all
pr intervals equally.

The first considered source of systematic uncertainty is related to
possible imperfections in the description of the track reconstruction ef-
ficiency in the Monte Carlo simulations, which is usually estimated by
varying the track selection criteria and by comparing the probability of
attaching ITS hits to a TPC track (matching efficiency) in the data and
in the simulation. Owing to the low number of counts of the (anti)alpha
analysis the systematic variations of the track selection criteria were
found to be not significant within the statistical uncertainties by apply-
ing the check proposed by Barlow [115]. Therefore, the method based
on varying the selections could not be used and instead systematic un-
certainties based on similar studies of identified charged particles were
assigned, namely 5% for the TPC-ITS matching efficiency for all py in-
tervals [116].

For the signal extraction, a systematic uncertainty between 6% and
22% for the *He and between 9% and 14% for the *He has been evalu-
ated. This uncertainty takes into account variations in fit functions and
fit ranges used for yield extraction.

The limited knowledge of the interaction of (anti)nuclei with the
detector material leads to another large contribution to the system-
atic uncertainties. The hadronic interaction cross section implemented
in GEANT4 [114,117-119] is used to determine the acceptancexeffi-
ciency. As there is no measurement of the “He inelastic interaction cross
section so far, an uncertainty of 7% is assumed, as done for the 4He mea-
sured in the Pb-Pb data sample at \/ﬁ =2.76 TeV [42]. The 7% are
supposed to cover the difference between GEANT4, which was used for
the propagation of the tracks in the detector material, and the true in-
teraction cross sections [42]. This uncertainty represents the difference
between the cross section implemented in GEANT4 to the one imple-
mented in the AMS model in the rigidity interval where ALICE and AMS
measurements overlap.

The material budget of the ALICE apparatus employed in the MC
simulation was varied by + 4.5%, corresponding to the uncertainty of
the ALICE material budget determination [106]. This results in an un-
certainty on the (anti)alpha spectra of 2%.

The blast-wave weighting of the acceptancexefficiency only affects
the first pr interval of the 4He spectrum and the uncertainty was de-
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Fig. 2. Measured transverse-momentum distributions of “He and “He (upper
panel). The vertical lines indicate the statistical uncertainties, while the boxes
represent the systematic ones. In the case that the statistical uncertainties would
overlap the *He points are a bit shifted on the x-axis. The lower panel shows the
ratio between “He and “He with statistical and uncorrelated systematic uncer-
tainties as the correlated systematic uncertainties cancel.

termined to be 3%. This is half of the difference to the case when no
blast-wave weighting is taken into account.

As there is a contribution of feed-down to the (anti)alphas from the
decay of j‘\H and ‘/‘\ﬁ, an additional uncertainty of 3% for particles and
antiparticles in all py intervals was taken into account, estimated from
a Monte Carlo study where these hypernuclei have been injected.

In total, all these contributions result in a systematic uncertainty
between 12% and 24% for “He and between 12% and 16% for *He when
added in quadrature.

Most of the systematic uncertainties are correlated between “He and
“He. The uncorrelated contributions are the uncertainty coming from
the inelastic interaction cross section as well as the uncertainties on the
background subtraction and the (anti)*He contribution, which are part
of the signal extraction.

4. Results

The size of the data sample presented in this letter exceeds that of a
previous measurement in Pb—Pb collisions at m = 2.76 TeV [42] by
about a factor of five. This allows for the determination of the transverse-
momentum spectra for alpha and antialpha, as shown in Fig. 2. In the
case of the antialpha, this is the first ever measurement of the py dis-
tribution. In the pr interval between 4 and 5 GeV/c there is a 2¢
discrepancy between particle and antiparticle yields, relative to the com-
bination of statistical and systematic uncertainties, while in the other pt
intervals the alpha and antialpha yields are consistent within statistical
uncertainties. The antialpha-to-alpha ratio is shown in the lower panel
of Fig. 2, where the error bars represent the statistical uncertainties and
the boxes represent the uncorrelated systematic uncertainties, as the cor-
related ones cancel. Both spectra were combined for further analysis by
constructing the weighted average of the data points, where statistical
and systematic uncertainties were considered.

The combined (anti)alpha p spectrum was compared to those of
other light-flavored hadrons [116] and nuclei [54], measured in central
(0-10%) Pb-Pb collisions at 4/syn = 5.02 TeV, by performing a simul-
taneous blast-wave fit to all py spectra (see Fig. 3, left). The fit range of
7, K, p was restricted in the momentum range in order to minimize bi-
ases from resonance decays at low py and from hard processes at high
pr. The fit is performed in the following pr intervals: 0.5-1 GeV/c for
charged pions, 0.2-1.5 GeV/c for charged kaons, and 0.3-3 GeV/c for
(anti)protons. These regions are the same as in the previous publications
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Fig. 3. Combined blast-wave fit of all available light flavored hadron p; spectra including nuclei [54,116] (left) and only p, d, t, *He and “He pr spectra (right) in
Pb-Pb collisions at 4/syy = 5.02 TeV for 0-10% central events (upper panels). The lower panels show the ratio between each data point and the blast-wave model

fit for each species.

Table 1

Parameters obtained from the combined blast-wave fits (Fig. 3) to the p; spectra of different combina-

tions of light-flavor hadrons and nuclei measured in central (0-10%) Pb-Pb collisions at

s\N =5.02

TeV. The uncertainty from the fits corresponds to the statistical uncertainty. Systematics, that have
been evaluated by changing the fit strategy slightly, are of similar size as the statistical uncertainties.
The last column shows the y? value and the corresponding number of degrees of freedom (ndf) for

each fit.
Fitted particles () Proax Tiin MeV)  n %/ ndf
Fit A 7, K, p, d, t,’He,*He 0.664 +0.002 0.873 +0.004 108 +2 0.63 +0.02 381.1 /92
Fit B p, d, t,’He,*He 0.670 + 0.002 0.853 +0.004 132+4 0.55+0.02 176.5 / 64
Fit C d, t,>He,*He 0.684 + 0.003 0.863 +0.005 108 +6 0.52+0.02 44.5 / 37
FitD K, p 0.664 +0.002 0.909 +0.003 85+4 0.74 £0.01 113.0 / 54

that showed results for global blast-wave fits [41,116,120]. The spectra
of antideuterons, antitritons, 3@, and alpha were fitted over the full
measured py range.

One should note, blast-wave fits are a simplified approach mimicking
the hydrodynamics behind the radial expansion and have certain limita-
tions, e.g. it is known that the temperature is particularly sensitive to the
fit range and the used particle species. In particular, in blast-wave fits us-
ing the FastReso package [121,122] the quality of the fits is rather good
using a single temperature of about 150 MeV for chemical and kinetic
freeze out and these fits do not show a dependence of the temperature
on centrality [123]. This is possible in the FastReso approach because
the feed-down from resonances is taken into account by the package. In
addition, there are other approaches utilizing results from LHC that can
describe the data in an extended blast-wave model approach with more
parameters [124]. In any case, the standard (Boltzmann-Gibbs) blast-
wave fit provides a simple and solid approach to compare the spectra
of nuclei and lighter hadrons, which is the goal of the study presented
here.

The fit results are shown in the left panel of Fig. 3 and the fit pa-
rameters are reported in Table 1 (Fit A). The freeze-out parameters, in
particular (#) and T;;,, are consistent with those obtained in Pb-Pb col-
lisions at m = 2.76 TeV [41]. The data-to-model ratios, shown in
the bottom panel of Fig. 3 left, indicate that the spectra of nuclei are
reasonably well described by the common fit within their uncertainties.
This suggests that also relatively heavy compound objects like (anti)al-
pha nuclei participate in a common flow field.

The coalescence picture assumes that nuclei are formed at a late stage
of the collision, i.e. at or after kinetic freeze-out. In this case, one may
expect that the py spectra of protons and (anti)nuclei exhibit a com-
mon temperature and velocity field that characterizes the source at or
after the stage of nuclear cluster formation. To elucidate this further a
blast-wave fit was performed, where only protons and (anti)nuclei are
included (Fit B). The data points are well described by the common fit,
as shown in Fig. 3 (right). Actually, the protons are well described over
a larger range in Fit B (right panel of Fig. 3) than in Fit A. The fit param-
eters indicate a similar velocity field as in the case when = and K are
included in the fit (Fit A), but a significantly larger kinetic freeze-out
temperature of T;, = (132 +4) MeV. In the context of final-state coales-
cence, this finding is unexpected. However, it matches the conjecture of
statistical hadronization including formation of (anti)nuclei close to the
phase boundary, without significant rescattering at later stages of the
system evolution. Possible explanations for such a scenario in terms of
pre-hadronic multi-quark states have been proposed in Ref. [62].

The result is challenged by a fit to only the (anti)nuclei (Fit C) which
yields Ty;, = (108 + 6) MeV, which is consistent within the uncertain-
ties with the result of Fit A. This seems to be more in agreement with the
expectation of the coalescence model, namely that the protons freeze out
earlier as suggested by Fit B, i.e. at a higher temperature, and the nuclei
are formed later from these protons and neutrons available for the coa-
lescence process. A fit to only 7z, K, p (Fit D) results in T};, = (85 + 4)
MeV, indicating that very low apparent kinetic freeze-out temperatures
are driven by the lightest particles. It should be noted that lighter par-
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Table 2
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Rapidity densities of “He and “He and their average, together with the statistical
hadronization model predictions [60,63,125]. The experimental values are stated with
statistical (second value) and systematical uncertainties (third value).

dN/dy (107%): ‘He

‘He (*He+*He)/2

(1.30+£0.28 +0.18)
0.945

Experiment
SHM (T, =156 MeV)

(0.83+£0.22+0.12)
0.949

(1.00 £0.19 +0.10)
0.947

ticles are more prone to contributions from resonance decays and hard
scatterings over a wider py range than heavier particles.

From the quality of the fits, i.e. the y2/ndf values given in Table 1, it
seems like the separation into nuclei (Fit C) and light-flavored hadrons
(Fit D) is best. Nevertheless, the temperature of the latter is lower than
Fit C, so the coalescence picture is again questioned from this incon-
sistency between blast-wave results. Indeed, the temperatures extracted
from the fits would imply that the protons used in the coalescence pro-
cess freeze out later than the nuclei formed from them.

Clearly, these findings cannot be used for any strong conclusion, in par-
ticular since the blast-wave model is only a simplified hydrodynamical
picture that has certain limits as discussed above.

The rapidity densities dN /dy are estimated by integration over the
blast-wave function fitted to the limited range of py spectra. To this
end, a blast-wave fit was performed to the pr spectra of all particles
except (anti)alpha. The resulting fit parameters are used to constrain
the shape for (anti)alpha while the normalization is obtained by a fit
to the (anti)alpha distributions. This procedure was applied separately
for the alpha and antialpha pr distributions as well as to the combined
spectrum. The derived rapidity densities are summarized in Table 2. The
statistical uncertainties are those of the normalization from the fit, while
the systematic uncertainties reflect the variation of d N /dy if the data
points are shifted by their systematic uncertainties. The results for alpha
and antialpha are consistent within their uncertainties. Also reported are
the SHM results obtained from a fit of all available hadron yields using
a grand-canonical ensemble [60,63,125].

The presented (anti)alpha transverse-momentum spectra allow for
the first time a determination of the coalescence parameter B, at LHC
energies. To this end, Eq. (1) was employed where the proton pr distri-
butions were taken from Ref. [116] after averaging the measurements
in the 0-5% and 5-10% centrality intervals. The B, values shown in
Fig. 4 exhibit an increasing trend with py/A, which is the transverse
momentum per nucleon. This trend is similar to earlier measurements
in heavy-ion collisions for lighter nuclei [41,54]. The results in Fig. 4
are compared to predictions from coalescence [92] and from statistical
hadronization models. For the latter, the (anti)alpha and proton yields
(dN/dy) are calculated for a chemical freeze-out temperature of T, =
156 MeV and the shapes of the transverse-momentum distributions are
taken from the blast-wave fit. While SHM, combined with the spectral
shape derived from the blast-wave fit, slightly underpredicts the data,
the coalescence prediction is about one order of magnitude below the
data in all pr intervals. However, both models capture the increase of
the data well. So intrinsically, the spectral shape seems to be correct
in both approaches and the magnitude of the discrepancy between the
coalescence curve and the data needs to be understood better.

The ratio of alpha to proton dN /dy in central Pb-Pb collisions at
m = 5.02 TeV is shown in Fig. 5 as a function of the pseudorapidi-
ty density of charged particles produced at midrapidity in the collision,
(dNey/dn), 1 <0.s- In addition, the ratio from the 10% most central
Pb-PDb collisions at /sy = 2.76 TeV [42] and the upper limit in p-
Pb collisions at m = 5.02 TeV [126] are depicted. The new result
agrees well with the measurement at lower energy [42]. Furthermore,
predictions from the canonical statistical model (CSM) for T, = 155
MeV and three different values of the correlation volume V. are dis-
played [63]. The curves differ at low (dN, /dn), corresponding to the
multiplicity of charged particles produced in small collision systems, but
coincide in central Pb-Pb collisions where they are consistent within
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Fig. 4. The coalescence parameter B, as a function of p;/A, calculated from
the averaged “He and “He spectra and the protons from [116]. Statistical un-
certainties are indicated by the vertical lines and the boxes correspond to the
systematic uncertainties. The blue dashed line and the full black line indicate
the values for the SHM combined with blast-wave p; shapes and the coalescence
predictions from Refs. [91,92], respectively.
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Fig. 5. “He/p ratios for the measured data points as a function of charged-
particle multiplicity (dN,/dn),, .5 compared to model predictions. For com-
parison the result from the 10% most central Pb—Pb collisions at y/syy = 2.76
TeV [42] and the upper limit at 90% CL from p—Pb collisions at 4/syy = 5.02
TeV [126] is also shown. The thermal model curves are from the CSM [63]. For
the coalescence model two different approaches are displayed: analytical and
UrQMD hybrid coalescence [127,128]. The analytical coalescence is shown for
five different substructures and the thickness of the bands reflects the uncer-
tainties of the calculation. For the UrQMD model the band is representing the
statistical uncertainty of the prediction.
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uncertainties with the measurements. Also shown are different calcula-
tions from coalescence models. The “box coalescence” (using a maximal
difference in coordinate space and momentum for the coalescing part-
ners) implemented in the UrQMD [79] model, indicated by the magenta
band, shows a non-monotonic behavior that can be explained by ab-
sorption processes in the hadronic phase of Pb-Pb collisions [127]. In
central Pb-Pb collisions, the UrQMD hybrid model underestimates the
data by about a factor of three. The same trend is observed in a CSM
approach that includes annihilations [68], which also underestimates
the data. Finally, calculations of an analytical coalescence approach
are presented, in which the internal structure of the alpha nucleus is
taken into account [128]. The assumption of a structureless alpha par-
ticle (p-p-n-n) and calculations considering a d-p-n, d-d, 3H-p or >He-n
substructures are compared. All analytical coalescence curves coincide
for large system sizes where they underestimate the data by about a fac-
tor of three. This might be connected to the fact that the binding energy
of the alpha is not taken into account in the model. Neglecting the bind-
ing energy might be working well for the A =2 and A =3 nuclei, but
not for the alpha, since it is much tighter bound compared to lighter
nuclei (Eg =2.2 MeV for the deuteron, whereas the alpha is bound by
28.3 MeV). A recent publication determined the mass radius of the alpha
to be (1.70 = 0.14) fm in a model dependent approach using ¢(1020)-
photoproduction data, that is close to the measured charge radius which
is not expected [129]. The mass radius of the alpha used in the coales-
cence calculations is rather 1.4 fm, estimated from the measured charge
radius of (1.6755 + 0.0028) fm [92,130]. In fact, there is a more precise
measurement of the charge radius using laser spectroscopy of muonic
helium ions, that gives (1.67824 + 0.00083) fm [131]. It should be
noted that, the presented data even allows for the sum of contributions
from coalescence and statistical hadronization predictions. Since these
processes are not mutually exclusive one could actually imagine it as
interplay of these two production mechanisms.

5. Conclusion

New results on (anti)alpha production in central Pb-Pb collisions at
\/m = 5.02 TeV were presented, including the first differential mea-
surement of the antialpha transverse-momentum distribution. Predic-
tions from statistical hadronization models are compatible with the mea-
sured coalescence parameters B, and the (anti)alpha-to-proton yield
ratio. In contrast, different implementations of the coalescence model
underestimate the data significantly. These findings for the production
of (anti)alpha are different from the results for A = 3 nuclei [54], where
both classes of models differ only by about 30% and the data tend to lie
in between. Improvements for the models, e.g. incorporating the binding
energy of the alpha, are needed to get a better understanding of its pro-
duction. A blast-wave analysis of the py distributions together with other
hadrons and light nuclei from central Pb-Pb collisions suggests that also
relatively heavy compound objects like (anti)alpha nuclei participate in
a common flow field. However, the constraint of the (anti)alpha on this
is limited by the current statistics. On the other hand, a blast-wave fit
including only protons and light nuclei up to “He results in a kinetic
freeze-out temperature that is rather close to the chemical freeze-out
temperature obtained from statistical hadronization models. Note that
one should be careful with any strong conclusion from the blast-wave
fit, since it has certain limitations, e.g. being sensitive on the fit regions
and the treatment of feed-down from resonances. Nevertheless, this re-
sult does not agree with naive expectations based on the coalescence
picture, but is in line with a scenario where the yields of light nuclei
in central Pb-Pb collisions are dominated by thermal production close
to the QCD phase boundary. It should be noted that thermal produc-
tion and coalescence are not mutually exclusive processes and that the
data presented here are even compatible with the sum of contributions
from coalescence and statistical hadronization, suggesting a possible in-
terplay of these two production mechanisms.

Physics Letters B 858 (2024) 138943

The recent upgrades of the ALICE detector will enable the collec-
tion of substantially larger data samples during LHC Runs 3 and 4. This
will allow for more differential measurements of (anti)alpha production,
enabling in particular a systematic study of its dependence on multi-
plicity and collision system size. The large sensitivity of the (anti)alpha
yield to the different production scenarios may help to shed light on the
interplay between coalescence and thermal production and a possible
transition between them at intermediate system sizes.
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