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𝑠NN = 5.02 TeV
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A R T I C L E I N F O A B S T R A C T

Editor: M. Doser In this letter, measurements of (anti)alpha production in central (0–10%) Pb–Pb collisions at a center-of-mass 
energy per nucleon–nucleon pair of 

√
𝑠NN = 5.02 TeV are presented, including the first measurement of an 

antialpha transverse-momentum spectrum. Owing to its large mass, the production of (anti)alpha is expected to 
be sensitive to different particle production models. The production yields and transverse-momentum spectra of 
nuclei are of particular interest because they provide a stringent test of these models. The averaged antialpha 
and alpha spectrum is compared to the spectra of lighter particles, by including it into a common blast-wave fit 
capturing the hydrodynamic-like flow of all particles. This fit is indicating that the (anti)alpha also participates 
in the collective expansion of the medium created in the collision. A blast-wave fit including only protons, 
(anti)alpha, and other light nuclei results in a similar flow velocity as the fit that includes all particles. A similar 
flow velocity, but a significantly larger kinetic freeze-out temperature is obtained when only protons and light 
nuclei are included in the fit. The coalescence parameter 𝐵4 is well described by calculations from a statistical 
hadronization model but significantly underestimated by calculations assuming nucleus formation via coalescence 
of nucleons. Similarly, the (anti)alpha-to-proton ratio is well described by the statistical hadronization model. On 
the other hand, coalescence calculations including approaches with different implementations of the (anti)alpha 
substructure tend to underestimate the data.

1. Introduction

During the past five decades the production of light nuclei in heavy-
ion reactions has been measured over a broad range of collision ener-
gies [1–21]. At center-of-mass energies of up to a few GeV light nucleus 
production is commonly understood in terms of nuclear break-up where 
the incoming nuclei disintegrate into lighter nuclear fragments. In con-
trast to this, the study of the production of antinuclei in heavy-ion 
collisions is a nascent field that emerged with the availability of heavy-
ion colliders [22–38]. In particular, the antialpha was first observed only 
13 years ago by the STAR Collaboration in Au–Au collisions at the Rel-
ativistic Heavy-Ion Collider (RHIC) [39]. At the Large Hadron Collider 
(LHC), which provides the highest center-of-mass energies for heavy-ion 
collisions to date, measurements of the production of nuclei and anti-
nuclei have so far mainly been performed by the ALICE Collaboration 
in different collision systems [40–57]. Understanding the production 
mechanism of nuclei and antinuclei in ultrarelativistic collisions could 
provide deeper insights into the hadronization process and the quantum 
properties of composite hadronic systems.

⋆ E-mail address: alice -publications @cern .ch.
1 Centrality in heavy-ion collisions is normally given in the inverse percentage of the overlap between the area of the collided nuclei, i.e. 0–10% central collisions 
correspond to the events where the collisions are mostly head-on and 80–90% would be a peripheral collision where the colliding nuclei only have a small overlap. 
Semicentral corresponds to a centrality of 30–50%.

Two different approaches exist that describe the production of light 
(anti)nuclei in heavy-ion collisions. In statistical hadronization models 
(SHMs), often simply called thermal models, the production of hadrons 
and nuclei is described in the framework of a grand-canonical ensem-
ble employing only three parameters: temperature 𝑇 , volume 𝑉 , and 
baryo-chemical potential 𝜇𝐵 [58–64]. Previous measurements of the 
production of light (anti)nuclei in central Pb–Pb collisions1 by the AL-
ICE Collaboration agreed well with a common SHM fit to all avail-
able hadron and nucleus measurements with a temperature of T = 
(156.5±1.5) MeV and a baryo-chemical potential of 𝜇𝐵 = (0.7±3.8) 
MeV [62]. The temperature is commonly understood in terms of a chem-
ical freeze-out temperature 𝑇ch at which the abundances of hadrons and 
nuclei are fixed during the evolution of the fireball created in central 
Pb–Pb collisions [53,61]. It is compatible with the (pseudo)critical tem-
perature 𝑇𝑐 predicted by the lattice QCD calculations for the transition 
between a hadronic system and a quark–gluon plasma (QGP) at van-
ishing 𝜇𝐵 [65,66]. The interpretation in the context of the production 
of nuclei, however, is not straightforward because significant modifica-
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tions of the abundances of nuclei are expected from density and cross 
section arguments due to inelastic processes in the subsequent fireball 
evolution, often called hadronic phase, below 𝑇ch [61,67,68]. In another 
class of models, nucleus formation is conjectured via the coalescence 
of nucleons in the final state of the system evolution [69–72]. The 
coalescence process is typically associated with the kinetic freeze-out 
temperature 𝑇kin, which corresponds to the temperature where the in-
elastic collisions cease and the (transverse-)momentum spectra of the 

particles are frozen [61,73]. The invariant yield 𝐸𝐴
d3𝑁𝐴

d𝑝3
𝐴

of nuclei with 

mass number A is connected to the final-state momentum distribution 

of protons 𝐸p

d3𝑁p

d𝑝3p
via the coalescence parameter [71]:

𝐵𝐴 =𝐸𝐴

d3𝑁𝐴

d𝑝3
𝐴

(
𝐸p

d3𝑁p

d𝑝3p

)−𝐴

, (1)

assuming that protons and neutrons are produced in equal amounts at 
ultrarelativistic collision energies since both belong to the same isospin 
doublet. The coalescence prescription can thus be employed to deduce 
the formation of nuclei based on measured proton yields as well as on 
nucleon distributions from event generators such as PYTHIA [74,75] and 
EPOS [76], or transport models like UrQMD [77–79] or SMASH [80–
82].

In pertinent formulations of the coalescence model, the coalescence 
probability incorporates a dependence on the spatial distribution of the 
nucleons at kinetic freeze-out and its overlap with the internal wave 
function of the nuclear cluster, leading to a characteristic dependence 
of 𝐵𝐴 and consequently the production yield of nuclei on the size of the 
collision system [83–93]. This motivated detailed studies of nuclear for-
mation in pp, p–Pb, and non-central Pb–Pb collisions, where the yield 
ratio of nucleus 𝐴 relative to protons is studied as a function of the aver-
age charged-particle multiplicity per unit of pseudorapidity, ⟨d𝑁ch∕d𝜂⟩. 
Indeed, the present data tend to confirm the system-size dependence 
predicted by coalescence models for the yield ratios deuteron to pro-
ton (d/p), triton to proton (t/p), and 3He to proton (3He/p) in small 
collision systems [41,43–46,48–50]. On the other hand, the statistical 
description of particle production in small collision systems requires a 
canonical formulation of the statistical hadronization model, leading 
to the Canonical Statistical Model (CSM). This formulation entails an 
additional model parameter, the so-called correlation volume 𝑉C , in-
side which electric charge 𝑄, strangeness 𝑆 , and baryon number 𝐵 are 
conserved exactly [63,64,94–97]. CSM calculations of nucleus-to-proton 
ratios result in a suppression of the production of nuclei in small systems 
that is qualitatively compatible with the patterns observed in data, but 
still tends to overestimate the yields of nuclei for realistic assumptions 
of 𝑉C [52,63,96].

In central and semi-central Pb–Pb collisions, recent results for d/p 
and 3He/p are compatible with both statistical hadronization and coa-
lescence models, while t/p in Pb–Pb is significantly closer to the coales-
cence model [54]. It should be noted, however, that the yield of nuclei 
in Pb–Pb collisions may also be modified by absorption effects during 
the hadronic phase, as indicated by calculations from the UrQMD hybrid 
coalescence model [79].

The observed stiffening of transverse-momentum (𝑝T) spectra of 
hadrons produced in heavy-ion collisions can be interpreted in terms of 
a common radial flow field, arising from hydrodynamic expansion. The 
so-called blast-wave model [98] describes the radial boost of the light-
flavor hadrons and nuclei arising from hydrodynamic expansion with 
a common set of parameters: the kinetic freeze-out temperature 𝑇kin, 
the mean radial expansion velocity ⟨𝛽⟩, and an exponent 𝑛 of the radial 
velocity profile. The measured 𝑝T spectra are fitted with the Boltzmann-
Gibbs blast-wave function [98]:

𝐸
d3𝑁

d𝑝3
∝

𝑅

∫
0

𝑚T𝐼0

(
𝑝T sinh(𝜌(𝑟))

𝑇kin

)
𝐾1

(
𝑚T cosh(𝜌(𝑟))

𝑇kin

)
𝑟d𝑟 (2)

where 𝑚T is the transverse mass (𝑚T =
√
𝑚2 + 𝑝T

2), 𝐼0 and 𝐾1 are the 
modified Bessel functions, and 𝜌 is the velocity profile given by:

𝜌(𝑟) = tanh−1 𝛽(𝑟) = tanh−1
[(

𝑟

𝑅

)𝑛

𝛽max

]
, (3)

where 𝑟 is the radial distance in the transverse plane, 𝑅 is the radius of 
the fireball and 𝛽max is the transverse expansion velocity at the surface 
of the expanding fireball.

The study of (anti)alpha production in central Pb–Pb collisions is 
particularly interesting because it is the heaviest nucleus measured at 
the LHC so far. In the SHM, there is a strong mass dependence of the 
statistical penalty factor (yield suppression when a baryon is added to 
the system) for typical values of 𝑇ch and 𝜇B, while predictions of coales-
cence models depend on nucleon densities and geometrical factors to the 
power of 𝐴. For the SHM the antialpha-to-alpha ratio is expected to be 
proportional to exp(−8𝜇B∕𝑇ch) [99], which is the strongest dependence 
of the thermal model parameters on the baryon number 𝐴. The micro-
scopic coalescence models directly have problems to get the predictions, 
since they need much more nucleons to be produced initially that can 
be used then in the coalescence process. This makes the (anti)alpha a 
very sensitive probe for stringent tests of the production models of light 
nuclei. In addition to already discussed models, there is also the idea 
that correlations are present already in the vacuum, allowing an antinu-
cleus like antialpha to be directly excited from the vacuum [100–103]. 
This would mean that the antinulcei rate could be much larger than the 
values predicted by SHM or coalescence models, which expect them to 
be rather equal. Previous measurements of the integrated yields of an-
tialpha and alpha in central Pb–Pb collisions at a center-of-mass energy 
per nucleon–nucleon pair of 

√
𝑠NN = 2.76 TeV agreed with a global fit 

of the SHM to the yields of all measured hadrons and nuclei [42]. No 
predictions for 𝐴 = 4 from coalescence models existed at the time.

In this letter, we present results on (anti)alpha production in central 
Pb–Pb collisions at 

√
𝑠NN = 5.02 TeV, including the first ever mea-

sured transverse-momentum spectrum of the antialpha. The results are 
compared to predictions by coalescence and statistical hadronization 
models. Together with previous results for different hadron species and 
lighter nuclei, the 𝑝T spectra are analyzed employing the blast-wave 
model. Throughout this letter, especially in the figures but also at some 
occasions in the text, 4He instead of alpha is stated, which are used as 
equivalent. Note that with 4He not the chemical element with electron 
shell but the 4He nucleus is meant.

In Sec. 2 the analysis is described, followed by the presentation of 
the systematic uncertainties in Sec. 3. The results are discussed in Sec. 4
and the conclusion is given in Sec. 5.

2. Data analysis

2.1. Data sample and experimental apparatus

The presented results are based on a data set of Pb–Pb collisions 
at 

√
sNN = 5.02 TeV, collected in 2018, where 99.5 × 106 events in the 

0–10% centrality interval [104] were analyzed. These events are the 
sum of a minimum-bias trigger of lower bandwidth and a central trig-
ger with a higher bandwidth, giving 12.6 × 106 and 86.9 × 106 events, 
respectively. The number of antialpha candidates outside the chosen in-
terval is negligible and would not give any statistical benefit.

The ALICE apparatus [105,106] provides excellent particle identi-
fication and vertexing capabilities. The (anti)alpha was reconstructed 
and identified using the Inner Tracking System (ITS), the Time Projec-
tion Chamber (TPC), the Transition Radiation Detector (TRD), and the 
Time-Of-Flight detector (TOF). These detectors are all located inside a 
homogeneous magnetic field with a strength of 0.5 T and cover the full 
azimuth in the pseudorapidity range |𝜂| < 0.9. Interactions located in-
side |𝑧| < 10 cm are selected, where 𝑧 is the distance from the nominal 
interaction point along the beam direction.
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The ITS [107] is a silicon detector consisting of six cylindrical lay-
ers. It is used for charged-particle tracking and for the reconstruction of 
primary and secondary vertices. It can also be used to separate primary 
nuclei from secondary, knocked-out nuclei from the detector material, 
via the distance of closest approach (DCA) of the track to the primary 
vertex.

The TPC [108] is the main tracking device of the ALICE apparatus. It 
is a gas-filled cylinder and provides charged-particle tracking and par-
ticle identification via the specific energy loss per path length (dE/dx) 
with a resolution of 6% in Pb–Pb collisions.

The TOF detector [109] provides identification of light (anti)nuclei 
by means of the velocity determination from the calculated path length 
of the track and the time-of-flight measurement. Its total time resolu-
tion for tracks in Pb–Pb collisions corresponds to about 65 ps which is 
determined by the intrinsic time resolution of the detector and the reso-
lution of the event collision time measurement. By combining TPC and 
TOF information, (anti)alphas can be identified from 𝑝T = 2 GeV∕𝑐 up 
to 6 GeV∕𝑐 in Pb–Pb collisions.

The TRD [110] can be used to improve the momentum resolution 
and significantly reduces the probability of random matches between 
tracks and TOF hits.

The V0 detectors [111] measure the arrival time of particles with a 
resolution of 1 ns, by utilizing a pair of forward and backward scin-
tillator arrays (covering the pseudorapidity ranges 2.8 < 𝜂 < 5.1 and 
−3.7 < 𝜂 < −1.7). They are used for triggering purposes and for rejection 
of beam–gas interactions. In addition, they provide the centrality trigger 
in Pb–Pb collisions [104], and they are also used for offline centrality 
determination.

The Zero Degree Calorimeter (ZDC) consists of two sets of hadronic 
calorimeters, which are located 112.5 m away from the interaction point 
on both sides of it, and of one set of electromagnetic calorimeters, placed 
7 m away from the interaction point [105] on one side of it. It is located 
at 0◦ relative to the beam direction.

2.2. Event and track selection

The data were collected using a minimum-bias trigger requiring at 
least one hit in both V0 detectors. In addition, a trigger on central colli-
sions was used, also determined by the V0 detectors, selecting collisions 
in the 0–10% centrality interval. To reject the events triggered by the 
interactions of the beam with the residual gas in the LHC vacuum pipe, 
the timing information of the V0 scintillator arrays is used. A further se-
lection using the ZDC is applied in order to reject the electromagnetic 
beam–beam interactions and beam–satellite bunch collisions [112]. This 
is done by selecting good events from the correlation between the sum 
and the difference of arrival times measured in each of the ZDCs [106]. 
All these rejection steps are done in the offline analysis.

The production yield of (anti)alphas is measured at midrapidity 
(|𝑦| < 0.5). Only tracks in the full tracking acceptance of |𝜂| < 0.8 are 
selected. In order to guarantee good track momentum and dE/dx resolu-
tion in the relevant 𝑝T ranges, the selected tracks are required to have at 
least 70 out of 159 possible reconstructed points in the TPC and at least 
two points in the ITS out of which at least one is in the two innermost 
layers, the Silicon Pixel Detector (SPD). The requirement of at least one 
point in the SPD assures a resolution better than 300 μm on the distance 
of closest approach to the primary vertex for the selected tracks [106]. 
Furthermore, it is required that the 𝜒2 per TPC reconstructed point is 
less than 2.5 and tracks with a kink, which originate from weak decays, 
where the decay products are one charged and at least one neutral par-
ticle, are rejected.

2.3. Particle identification

Particles with electric charge 𝑧 = 2 are well separated in the TPC 
from the particles with 𝑧 = 1, as they have a four times larger specific 
energy loss (d𝐸/d𝑥). However, to distinguish the alphas from the much 

Fig. 1. 𝑚2∕𝑧2 distribution for 4He candidates (green). The background (ma-
genta) is constructed by selecting all candidates outside the 4He TPC window 
of 3 𝜎 around the alpha mass hypothesis (|𝑛𝜎TPC(4He)| > 3) and in addition out-
side the 3 𝜎 window around the deuteron mass hypothesis (|𝑛𝜎TPC(d)| > 3). The 
blue line is an exponential fit to the rise at lower masses originating from 3He
candidates.

more abundant 3He (by a factor of the order of 103) the d𝐸/d𝑥 in-
formation is combined with the mass calculated from the time-of-flight 
measured with the TOF and the track momentum. The energy loss in 
the TPC can be described by the Bethe–Bloch formula for a given mass 
hypothesis. To select the (anti)alphas it is required that the energy loss 
of the track lies in a 3 𝜎 window around the expected values for alpha 
particles, where 𝜎 is the d𝐸/d𝑥 resolution. In addition, it is required 
that the track is matched to a hit in the TOF detector. Fig. 1 shows the 
𝑚2∕𝑧2 distribution of the TOF detector for antialpha candidates (green) 
in the 𝑝T interval between 3 and 6 GeV/𝑐. The 𝑚

2∕𝑧2 for true (anti)al-
phas is 3.475 GeV2/𝑐4. Note that in the 𝑚2∕𝑧2 distributions, 4He are 
clearly separated from 3He, for which 𝑚2∕𝑧2 is 2.0 GeV2/𝑐4. The back-
ground (magenta) is coming from TOF mismatches, which is the case if 
a track in the TPC is associated with the wrong hit in the TOF detector, 
resulting in a wrong mass. To describe the background a data-driven 
approach with only one free parameter is used. The background is de-
termined by selecting all tracks in the TPC outside a 3 𝜎 interval of the 
expected Bethe–Bloch curve for alpha particles and in addition outside 
a 3 𝜎 interval of the expected curve for the deuteron mass hypothesis, as 
alphas and deuterons have similar 𝑚2∕𝑧2. The background is then scaled 
to the height of the 4He histogram by normalizing to the sideband on 
the right of the 4He peak between 4.4 and 6 GeV2∕𝑐4 and subtracted. 
This is done in each 𝑝T interval separately except for the first 𝑝T interval 
of the 4He (2–3 GeV∕𝑐), where there is no background. The 3He contri-
bution under the 4He peak is described by an exponential fit to the tail 
of the 3He peak (blue dashed line). This is done in one 𝑝T interval from 
3 to 6 GeV∕𝑐 and an (anti)3He fraction (3% for 3He and 9% for 3He) is 
determined for particles and antiparticles separately, which is then sub-
tracted in each 𝑝T interval individually. This is needed since the 

3He 
contribution cannot be determined in each 𝑝T interval separately due to 
the limited statistics. The (anti)alpha signal is counted in every 𝑝T in-
terval between 3 and 4.2 GeV2∕𝑐4 due to the asymmetric shape of the 
signal in 𝑚2∕𝑧2.

The 4He raw yield is extracted in four 𝑝T intervals between 2 and 
6 GeV/𝑐. The 4He raw yield is only extracted in three 𝑝T intervals be-
tween 3 and 6 GeV/𝑐, due to the large contribution of knocked-out 
alphas from the detector material and the support structure at low 𝑝T . 
This contribution can only be extracted properly from data to Monte 
Carlo comparison and is done usually in template fits in slices of 𝑝T in 
the variable distance-of-closest approach. Unfortunately, this extraction 
is not possible for the presented analysis due to the small number of 
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candidates. Nevertheless, the comparison of the raw counts in 𝑝T inter-
vals suggests that the knock-out is negligible already for 𝑝T > 3 GeV/𝑐, 
since the raw yields of alpha and antialpha become similar in number. 
For the statistical uncertainties of the data points the Poisson statistics 
is used.

2.4. Corrections to the spectra

The transverse-momentum spectra of the (anti)alphas are obtained 
by correcting the raw yields in the different 𝑝T intervals of the analysis 
for tracking efficiency and detector acceptance. This is done by using 
Monte Carlo events, simulated with the HIJING event generator [113]. 
As HIJING does not include (anti)alphas, they are injected into the event 
with flat distributions in 𝑝T (between 0 and 10 GeV∕𝑐), azimuth (be-
tween 0 and 2𝜋), and rapidity (|𝑦| < 1). The GEANT4 [114] transport 
code is used to propagate the generated particles through a full simula-
tion of the ALICE detector setup. The combined acceptance×efficiency 
was determined for the (anti)alphas in the 0–10% centrality interval. As 
the nuclei are not produced with flat 𝑝T distribution, the acceptance×ef-
ficiency was weighted with a blast-wave shape applying an iterative 
method (see e.g. Ref. [54]), where the blast-wave parameters were taken 
from a fit to the (anti)alpha spectra.

3. Systematic uncertainties

To estimate the systematic uncertainties, different sources affecting 
the (anti)alpha measurement were studied, which are described in the 
following. Unless specified otherwise, all uncertainties are taken for all 
𝑝T intervals equally.

The first considered source of systematic uncertainty is related to 
possible imperfections in the description of the track reconstruction ef-
ficiency in the Monte Carlo simulations, which is usually estimated by 
varying the track selection criteria and by comparing the probability of 
attaching ITS hits to a TPC track (matching efficiency) in the data and 
in the simulation. Owing to the low number of counts of the (anti)alpha 
analysis the systematic variations of the track selection criteria were 
found to be not significant within the statistical uncertainties by apply-
ing the check proposed by Barlow [115]. Therefore, the method based 
on varying the selections could not be used and instead systematic un-
certainties based on similar studies of identified charged particles were 
assigned, namely 5% for the TPC–ITS matching efficiency for all 𝑝T in-
tervals [116].

For the signal extraction, a systematic uncertainty between 6% and 
22% for the 4He and between 9% and 14% for the 4He has been evalu-
ated. This uncertainty takes into account variations in fit functions and 
fit ranges used for yield extraction.

The limited knowledge of the interaction of (anti)nuclei with the 
detector material leads to another large contribution to the system-
atic uncertainties. The hadronic interaction cross section implemented 
in GEANT4 [114,117–119] is used to determine the acceptance×effi-
ciency. As there is no measurement of the 4He inelastic interaction cross 
section so far, an uncertainty of 7% is assumed, as done for the 4Hemea-
sured in the Pb–Pb data sample at 

√
𝑠NN = 2.76 TeV [42]. The 7% are 

supposed to cover the difference between GEANT4, which was used for 
the propagation of the tracks in the detector material, and the true in-
teraction cross sections [42]. This uncertainty represents the difference 
between the cross section implemented in GEANT4 to the one imple-
mented in the AMS model in the rigidity interval where ALICE and AMS 
measurements overlap.

The material budget of the ALICE apparatus employed in the MC 
simulation was varied by ± 4.5%, corresponding to the uncertainty of 
the ALICE material budget determination [106]. This results in an un-
certainty on the (anti)alpha spectra of 2%.

The blast-wave weighting of the acceptance×efficiency only affects 
the first 𝑝T interval of the 

4He spectrum and the uncertainty was de-

Fig. 2. Measured transverse-momentum distributions of 4He and 4He (upper 
panel). The vertical lines indicate the statistical uncertainties, while the boxes 
represent the systematic ones. In the case that the statistical uncertainties would 
overlap the 4He points are a bit shifted on the x-axis. The lower panel shows the 
ratio between 4He and 4He with statistical and uncorrelated systematic uncer-
tainties as the correlated systematic uncertainties cancel.

termined to be 3%. This is half of the difference to the case when no 
blast-wave weighting is taken into account.

As there is a contribution of feed-down to the (anti)alphas from the 
decay of 4

Λ
H and 4

Λ
H, an additional uncertainty of 3% for particles and 

antiparticles in all 𝑝T intervals was taken into account, estimated from 
a Monte Carlo study where these hypernuclei have been injected.

In total, all these contributions result in a systematic uncertainty 
between 12% and 24% for 4He and between 12% and 16% for 4He when 
added in quadrature.

Most of the systematic uncertainties are correlated between 4He and 
4He. The uncorrelated contributions are the uncertainty coming from 
the inelastic interaction cross section as well as the uncertainties on the 
background subtraction and the (anti)3He contribution, which are part 
of the signal extraction.

4. Results

The size of the data sample presented in this letter exceeds that of a 
previous measurement in Pb–Pb collisions at 

√
𝑠NN = 2.76 TeV [42] by 

about a factor of five. This allows for the determination of the transverse-
momentum spectra for alpha and antialpha, as shown in Fig. 2. In the 
case of the antialpha, this is the first ever measurement of the 𝑝T dis-
tribution. In the 𝑝T interval between 4 and 5 GeV∕𝑐 there is a 2 𝜎
discrepancy between particle and antiparticle yields, relative to the com-
bination of statistical and systematic uncertainties, while in the other 𝑝T
intervals the alpha and antialpha yields are consistent within statistical 
uncertainties. The antialpha-to-alpha ratio is shown in the lower panel 
of Fig. 2, where the error bars represent the statistical uncertainties and 
the boxes represent the uncorrelated systematic uncertainties, as the cor-
related ones cancel. Both spectra were combined for further analysis by 
constructing the weighted average of the data points, where statistical 
and systematic uncertainties were considered.

The combined (anti)alpha 𝑝T spectrum was compared to those of 
other light-flavored hadrons [116] and nuclei [54], measured in central 
(0-10%) Pb–Pb collisions at 

√
𝑠NN =5.02 TeV, by performing a simul-

taneous blast-wave fit to all 𝑝T spectra (see Fig. 3, left). The fit range of 
𝜋, K, p was restricted in the momentum range in order to minimize bi-
ases from resonance decays at low 𝑝T and from hard processes at high 
𝑝T. The fit is performed in the following 𝑝T intervals: 0.5–1 GeV/𝑐 for 
charged pions, 0.2–1.5 GeV/c for charged kaons, and 0.3–3 GeV/c for 
(anti)protons. These regions are the same as in the previous publications 
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Fig. 3. Combined blast-wave fit of all available light flavored hadron 𝑝T spectra including nuclei [54,116] (left) and only p, d, t, 3He and 4He 𝑝T spectra (right) in 
Pb–Pb collisions at 

√
𝑠NN = 5.02 TeV for 0–10% central events (upper panels). The lower panels show the ratio between each data point and the blast-wave model 

fit for each species.

Table 1
Parameters obtained from the combined blast-wave fits (Fig. 3) to the 𝑝T spectra of different combina-
tions of light-flavor hadrons and nuclei measured in central (0–10%) Pb–Pb collisions at 

√
𝑠NN =5.02 

TeV. The uncertainty from the fits corresponds to the statistical uncertainty. Systematics, that have 
been evaluated by changing the fit strategy slightly, are of similar size as the statistical uncertainties. 
The last column shows the 𝜒2 value and the corresponding number of degrees of freedom (ndf) for 
each fit.

Fitted particles ⟨𝛽⟩ 𝛽max 𝑇kin (MeV) 𝑛 𝜒2∕ ndf

Fit A 𝜋, K, p, d, t,3He,4He 0.664 ± 0.002 0.873 ± 0.004 108 ± 2 0.63 ± 0.02 381.1 / 92
Fit B p, d, t,3He,4He 0.670 ± 0.002 0.853 ± 0.004 132 ± 4 0.55 ± 0.02 176.5 / 64
Fit C d, t,3He,4He 0.684 ± 0.003 0.863 ± 0.005 108 ± 6 0.52 ± 0.02 44.5 / 37
Fit D 𝜋, K, p 0.664 ± 0.002 0.909 ± 0.003 85 ± 4 0.74 ± 0.01 113.0 / 54

that showed results for global blast-wave fits [41,116,120]. The spectra 
of antideuterons, antitritons, 3He, and alpha were fitted over the full 
measured 𝑝T range.

One should note, blast-wave fits are a simplified approach mimicking 
the hydrodynamics behind the radial expansion and have certain limita-
tions, e.g. it is known that the temperature is particularly sensitive to the 
fit range and the used particle species. In particular, in blast-wave fits us-
ing the FastReso package [121,122] the quality of the fits is rather good 
using a single temperature of about 150 MeV for chemical and kinetic 
freeze out and these fits do not show a dependence of the temperature 
on centrality [123]. This is possible in the FastReso approach because 
the feed-down from resonances is taken into account by the package. In 
addition, there are other approaches utilizing results from LHC that can 
describe the data in an extended blast-wave model approach with more 
parameters [124]. In any case, the standard (Boltzmann-Gibbs) blast-
wave fit provides a simple and solid approach to compare the spectra 
of nuclei and lighter hadrons, which is the goal of the study presented 
here.

The fit results are shown in the left panel of Fig. 3 and the fit pa-
rameters are reported in Table 1 (Fit A). The freeze-out parameters, in 
particular ⟨𝛽⟩ and 𝑇kin, are consistent with those obtained in Pb–Pb col-
lisions at 

√
𝑠NN = 2.76 TeV [41]. The data-to-model ratios, shown in 

the bottom panel of Fig. 3 left, indicate that the spectra of nuclei are 
reasonably well described by the common fit within their uncertainties. 
This suggests that also relatively heavy compound objects like (anti)al-
pha nuclei participate in a common flow field.

The coalescence picture assumes that nuclei are formed at a late stage 
of the collision, i.e. at or after kinetic freeze-out. In this case, one may 
expect that the 𝑝T spectra of protons and (anti)nuclei exhibit a com-
mon temperature and velocity field that characterizes the source at or 
after the stage of nuclear cluster formation. To elucidate this further a 
blast-wave fit was performed, where only protons and (anti)nuclei are 
included (Fit B). The data points are well described by the common fit, 
as shown in Fig. 3 (right). Actually, the protons are well described over 
a larger range in Fit B (right panel of Fig. 3) than in Fit A. The fit param-
eters indicate a similar velocity field as in the case when 𝜋 and K are 
included in the fit (Fit A), but a significantly larger kinetic freeze-out 
temperature of 𝑇kin = (132 ±4)MeV. In the context of final-state coales-
cence, this finding is unexpected. However, it matches the conjecture of 
statistical hadronization including formation of (anti)nuclei close to the 
phase boundary, without significant rescattering at later stages of the 
system evolution. Possible explanations for such a scenario in terms of 
pre-hadronic multi-quark states have been proposed in Ref. [62].

The result is challenged by a fit to only the (anti)nuclei (Fit C) which 
yields 𝑇kin = (108 ± 6) MeV, which is consistent within the uncertain-
ties with the result of Fit A. This seems to be more in agreement with the 
expectation of the coalescence model, namely that the protons freeze out 
earlier as suggested by Fit B, i.e. at a higher temperature, and the nuclei 
are formed later from these protons and neutrons available for the coa-
lescence process. A fit to only 𝜋, K, p (Fit D) results in 𝑇kin = (85 ± 4) 
MeV, indicating that very low apparent kinetic freeze-out temperatures 
are driven by the lightest particles. It should be noted that lighter par-
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Table 2
Rapidity densities of 4He and 4He and their average, together with the statistical 
hadronization model predictions [60,63,125]. The experimental values are stated with 
statistical (second value) and systematical uncertainties (third value).

d𝑁/d𝑦 (10−6): 4He 4He (4He+4He)/2

Experiment (1.30 ± 0.28 ± 0.18) (0.83 ± 0.22 ± 0.12) (1.00 ± 0.19 ± 0.10)

SHM (𝑇ch =156 MeV) 0.945 0.949 0.947

ticles are more prone to contributions from resonance decays and hard 
scatterings over a wider 𝑝T range than heavier particles.

From the quality of the fits, i.e. the 𝜒2∕ndf values given in Table 1, it 
seems like the separation into nuclei (Fit C) and light-flavored hadrons 
(Fit D) is best. Nevertheless, the temperature of the latter is lower than 
Fit C, so the coalescence picture is again questioned from this incon-
sistency between blast-wave results. Indeed, the temperatures extracted 
from the fits would imply that the protons used in the coalescence pro-
cess freeze out later than the nuclei formed from them.
Clearly, these findings cannot be used for any strong conclusion, in par-
ticular since the blast-wave model is only a simplified hydrodynamical 
picture that has certain limits as discussed above.

The rapidity densities d𝑁/d𝑦 are estimated by integration over the 
blast-wave function fitted to the limited range of 𝑝T spectra. To this 
end, a blast-wave fit was performed to the 𝑝T spectra of all particles 
except (anti)alpha. The resulting fit parameters are used to constrain 
the shape for (anti)alpha while the normalization is obtained by a fit 
to the (anti)alpha distributions. This procedure was applied separately 
for the alpha and antialpha 𝑝T distributions as well as to the combined 
spectrum. The derived rapidity densities are summarized in Table 2. The 
statistical uncertainties are those of the normalization from the fit, while 
the systematic uncertainties reflect the variation of d𝑁/d𝑦 if the data 
points are shifted by their systematic uncertainties. The results for alpha 
and antialpha are consistent within their uncertainties. Also reported are 
the SHM results obtained from a fit of all available hadron yields using 
a grand-canonical ensemble [60,63,125].

The presented (anti)alpha transverse-momentum spectra allow for 
the first time a determination of the coalescence parameter 𝐵4 at LHC 
energies. To this end, Eq. (1) was employed where the proton 𝑝T distri-
butions were taken from Ref. [116] after averaging the measurements 
in the 0–5% and 5–10% centrality intervals. The 𝐵4 values shown in 
Fig. 4 exhibit an increasing trend with 𝑝T/𝐴, which is the transverse 
momentum per nucleon. This trend is similar to earlier measurements 
in heavy-ion collisions for lighter nuclei [41,54]. The results in Fig. 4
are compared to predictions from coalescence [92] and from statistical 
hadronization models. For the latter, the (anti)alpha and proton yields 
(d𝑁/d𝑦) are calculated for a chemical freeze-out temperature of 𝑇ch = 
156 MeV and the shapes of the transverse-momentum distributions are 
taken from the blast-wave fit. While SHM, combined with the spectral 
shape derived from the blast-wave fit, slightly underpredicts the data, 
the coalescence prediction is about one order of magnitude below the 
data in all 𝑝T intervals. However, both models capture the increase of 
the data well. So intrinsically, the spectral shape seems to be correct 
in both approaches and the magnitude of the discrepancy between the 
coalescence curve and the data needs to be understood better.

The ratio of alpha to proton d𝑁/d𝑦 in central Pb–Pb collisions at √
𝑠NN = 5.02 TeV is shown in Fig. 5 as a function of the pseudorapidi-

ty density of charged particles produced at midrapidity in the collision, 
⟨d𝑁ch∕d𝜂⟩|𝜂lab|<0.5. In addition, the ratio from the 10% most central 
Pb–Pb collisions at 

√
𝑠NN = 2.76 TeV [42] and the upper limit in p–

Pb collisions at 
√
𝑠NN = 5.02 TeV [126] are depicted. The new result 

agrees well with the measurement at lower energy [42]. Furthermore, 
predictions from the canonical statistical model (CSM) for 𝑇ch = 155 
MeV and three different values of the correlation volume 𝑉C are dis-
played [63]. The curves differ at low ⟨d𝑁ch∕d𝜂⟩, corresponding to the 
multiplicity of charged particles produced in small collision systems, but 
coincide in central Pb–Pb collisions where they are consistent within 

Fig. 4. The coalescence parameter 𝐵4 as a function of 𝑝T∕𝐴, calculated from 
the averaged 4He and 4He spectra and the protons from [116]. Statistical un-
certainties are indicated by the vertical lines and the boxes correspond to the 
systematic uncertainties. The blue dashed line and the full black line indicate 
the values for the SHM combined with blast-wave 𝑝T shapes and the coalescence 
predictions from Refs. [91,92], respectively.

Fig. 5. 4He/p ratios for the measured data points as a function of charged-
particle multiplicity ⟨d𝑁ch∕d𝜂⟩|𝜂lab|<0.5 compared to model predictions. For com-
parison the result from the 10% most central Pb–Pb collisions at 

√
𝑠NN = 2.76

TeV [42] and the upper limit at 90% CL from p–Pb collisions at 
√
𝑠NN = 5.02

TeV [126] is also shown. The thermal model curves are from the CSM [63]. For 
the coalescence model two different approaches are displayed: analytical and 
UrQMD hybrid coalescence [127,128]. The analytical coalescence is shown for 
five different substructures and the thickness of the bands reflects the uncer-
tainties of the calculation. For the UrQMD model the band is representing the 
statistical uncertainty of the prediction.
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uncertainties with the measurements. Also shown are different calcula-
tions from coalescence models. The “box coalescence” (using a maximal 
difference in coordinate space and momentum for the coalescing part-
ners) implemented in the UrQMD [79] model, indicated by the magenta 
band, shows a non-monotonic behavior that can be explained by ab-
sorption processes in the hadronic phase of Pb–Pb collisions [127]. In 
central Pb–Pb collisions, the UrQMD hybrid model underestimates the 
data by about a factor of three. The same trend is observed in a CSM 
approach that includes annihilations [68], which also underestimates 
the data. Finally, calculations of an analytical coalescence approach 
are presented, in which the internal structure of the alpha nucleus is 
taken into account [128]. The assumption of a structureless alpha par-
ticle (p-p-n-n) and calculations considering a d-p-n, d-d, 3H-p or 3He-n 
substructures are compared. All analytical coalescence curves coincide 
for large system sizes where they underestimate the data by about a fac-
tor of three. This might be connected to the fact that the binding energy 
of the alpha is not taken into account in the model. Neglecting the bind-
ing energy might be working well for the 𝐴 = 2 and 𝐴 = 3 nuclei, but 
not for the alpha, since it is much tighter bound compared to lighter 
nuclei (𝐸𝐵 = 2.2 MeV for the deuteron, whereas the alpha is bound by 
28.3MeV). A recent publication determined the mass radius of the alpha 
to be (1.70 ± 0.14) fm in a model dependent approach using 𝜙(1020)-
photoproduction data, that is close to the measured charge radius which 
is not expected [129]. The mass radius of the alpha used in the coales-
cence calculations is rather 1.4 fm, estimated from the measured charge 
radius of (1.6755 ± 0.0028) fm [92,130]. In fact, there is a more precise 
measurement of the charge radius using laser spectroscopy of muonic 
helium ions, that gives (1.67824 ± 0.00083) fm [131]. It should be 
noted that, the presented data even allows for the sum of contributions 
from coalescence and statistical hadronization predictions. Since these 
processes are not mutually exclusive one could actually imagine it as 
interplay of these two production mechanisms.

5. Conclusion

New results on (anti)alpha production in central Pb–Pb collisions at √
𝑠NN = 5.02 TeV were presented, including the first differential mea-

surement of the antialpha transverse-momentum distribution. Predic-
tions from statistical hadronization models are compatible with the mea-
sured coalescence parameters 𝐵4 and the (anti)alpha-to-proton yield 
ratio. In contrast, different implementations of the coalescence model 
underestimate the data significantly. These findings for the production 
of (anti)alpha are different from the results for 𝐴 = 3 nuclei [54], where 
both classes of models differ only by about 30% and the data tend to lie 
in between. Improvements for the models, e.g. incorporating the binding 
energy of the alpha, are needed to get a better understanding of its pro-
duction. A blast-wave analysis of the 𝑝T distributions together with other 
hadrons and light nuclei from central Pb–Pb collisions suggests that also 
relatively heavy compound objects like (anti)alpha nuclei participate in 
a common flow field. However, the constraint of the (anti)alpha on this 
is limited by the current statistics. On the other hand, a blast-wave fit 
including only protons and light nuclei up to 4He results in a kinetic 
freeze-out temperature that is rather close to the chemical freeze-out 
temperature obtained from statistical hadronization models. Note that 
one should be careful with any strong conclusion from the blast-wave 
fit, since it has certain limitations, e.g. being sensitive on the fit regions 
and the treatment of feed-down from resonances. Nevertheless, this re-
sult does not agree with naïve expectations based on the coalescence 
picture, but is in line with a scenario where the yields of light nuclei 
in central Pb–Pb collisions are dominated by thermal production close 
to the QCD phase boundary. It should be noted that thermal produc-
tion and coalescence are not mutually exclusive processes and that the 
data presented here are even compatible with the sum of contributions 
from coalescence and statistical hadronization, suggesting a possible in-
terplay of these two production mechanisms.

The recent upgrades of the ALICE detector will enable the collec-
tion of substantially larger data samples during LHC Runs 3 and 4. This 
will allow for more differential measurements of (anti)alpha production, 
enabling in particular a systematic study of its dependence on multi-
plicity and collision system size. The large sensitivity of the (anti)alpha 
yield to the different production scenarios may help to shed light on the 
interplay between coalescence and thermal production and a possible 
transition between them at intermediate system sizes.
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