oBL

SISTEMA DE BIBLIOTECAS DA UNICAMP

UNICAMP

UNIVERSIDADE ESTADUAL DE CAMPINAS
SISTEMA DE BIBLIOTECAS DA UNICAMP
REPOSITORIO DA PRODUGAO CIENTIFICA E INTELECTUAL DA UNICAMP

Versao do arquivo anexado / Version of attached file:

Versao do Editor / Published Version

Mais informacoes no site da editora / Further information on publisher's website:
https://ieeexplore.ieee.org/document/9917529/

DOI: https://doi.org/10.1109/access.2022.3214229

Direitos autorais / Publisher's copyright statement:
©2022 by Institute of Electrical and Electronics Engineers. All rights reserved.

DIRETORIA DE TRATAMENTO DA INFORMAGCAO

Cidade Universitaria Zeferino Vaz Barao Geraldo
CEP 13083-970 — Campinas SP
Fone: (19) 3521-6493
http://www.repositorio.unicamp.br

IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 22 September 2022, accepted 9 October 2022, date of publication 13 October 2022, date of current version 20 October 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3214229

== RESEARCH ARTICLE

Edge Computing and Microservices Middleware
for Home Energy Management Systems

LUIZ C. B. C. FERREIRA“'', ANDREZA DA ROSA BORCHARDT !,

GUSTAVO DOS SANTOS CARDOSO'!, DIMAS AUGUSTO MENDES LEMES"!,
GABRIEL RODRIGUES DOS REIS DE SOUSA', FERNANDO BAUER NETO?,

EDUARDO RODRIGUES DE LIMA3, GUSTAVO FRAIDENRAICH"', PAULO CARDIERI,
AND LUIS GERALDO P. MELONI*"

! Department of Communications, School of Electrical and Computer Engineering, University of Campinas (FEEC), Campinas, Sdo Paulo 13083-852, Brazil
2Companhia Paranaense de Energia, Curitiba, Parana 81200-240, Brazil
3Depa.rtment of Hardware Design, Instituto de Pesquisa Eldorado, Campinas, Sdo Paulo 13083-898, Brazil

Corresponding author: Luis Geraldo P. Meloni (meloni @unicamp.br)

This work was supported by the Companhia Paranaense de Energia (COPEL) through the Research and Development Project ANEEL
PD-02866-0508/2019.

ABSTRACT A middleware software can be seem as an abstraction layer between hardware and user
applications, that facilitates the development and deployment of services in various scenarios, such as those
found in Home Energy Management Systems (HEMS). There are several middleware proposals for HEMS,
with most of them taking the cloud computing approach. This approach is unconcerned about computing
resources but raises a dependency on external connections. This paper presents a middleware for energy
management systems, based on the concept of edge computing for smart homes. The paper presents a
reference model for the proposed architecture, considering specific requirements for this type of application.
The proposed architecture employs the concept of microservices for data access and system configuration.
The proposed middleware is designed to work with embedded systems under computational constraints,
such as processing capability and storage, to reduce costs and allow its application closer to the user. The
middleware is open and customizable to meet the developer’s needs. The proposed solution was implemented
and tested in a university laboratory, as well as at the Eldorado Research Institute to confirm the effectiveness
of the middleware. The proposal stands out from others found in the literature as it can be implemented using
low cost hardware. In addition to using microservices concepts, the proposed middleware is a valuable option
for applications that need an edge computing approach. A performance analysis was carried out, using low
cost hardware with limited resources. The results show that the proposal can handle a significant number of
devices, offering low latency and low error rate, and consuming few processing resources and memory.

INDEX TERMS Home energy management systems, middleware, Internet of Things.

I. INTRODUCTION

One of the challenges that the society faces nowadays is to
meet the growing demand for electrical energy using sustain-
able and environment-friendly solutions. One way to address
this issue is based on using energy management systems.

The associate editor coordinating the review of this manuscript and
approving it for publication was Vyasa Sai.

VOLUME 10, 2022

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Home Energy Management Systems (HEMS) are techno-
logical solutions designed to manage the use of electrical
energy in homes or commercial buildings, by measuring and
analyzing the data consumption and/or controlling energy
production.

Typical requirements of the HEMS solutions include
implementation in low cost hardware platforms with low
computational capacity, edge processing capability, low

109663

IEEE Access

L. C. B. C. Ferreira et al.: Edge Computing and Microservices Middleware for Home Energy Management Systems

latency, continuity of operation in case of Internet connection
interruption, and reliable security requirements. There are
several IoT middleware proposed in the literature that, in prin-
ciple, could be employed in HEMS solutions. However, the
requirements of HEMS solutions are more stringent. This
situation has motivated the proposition of a novel middleware
architecture focused on HEMS applications.

HEMS applications can be considered within the IoT
context, which involve several areas of knowledge, such
as computing, communications, energy, data analysis, and
microelectronics [1]. The variety of products and manufac-
turers of IoT devices, the lack of standardization, and the
multidisciplinary nature are key characteristics of any IoT
deployment. This heterogeneous and dynamic environment
complicates the development of solutions (such as HEMS),
leading to a dependency on platforms that provide interoper-
ability of systems, devices, people, and data [1].

In this context, middleware platforms emerge, which oper-
ate as a link connecting distinct layers. The middleware
works as an intermediary abstraction layer between the
devices (such as smart outlets, sensors and controllers, in the
case of HEMS) and the user applications. Thus, the mid-
dleware facilitates data acquisition and processing by pro-
viding high-level APIs that abstract the complexity of the
implementation.

A scenario also related to the IoT and HEMS contexts is
the emergence of low cost hardware platforms [2], opening
up new possibilities for application. These low cost hard-
ware platforms make it possible, for instance, to deploy a
large-scale HEMS system in a city, serving thousands of
customers with affordable hardware and acceptable perfor-
mance. However, this lower cost is typically associated to low
computational power (i.e., processing, storage and commu-
nication), requiring special attention when designing reliable
communication, storage and data processing.

A trend observed in the literature and in the market
of IoT is to move some of the services offered by IoT
solutions closer to the end-user, using an edge computing
approach [3], [4] [5]. In the context of HEMS, this trend
means a middleware platform operating closer to the user and
addressing the requirements of a HEMS application. Figure 1
depicts this scenario, with the middleware implemented in
the edge.

There are several middleware platforms for [oT available
nowadays. In general, these platforms were not developed for
low computational power hardware, preventing them to be
used in an edge computing approach.

Typically, middleware platforms work under the concept of
cloud computing, providing scalability, high processing capa-
bility, and nearly unlimited data storage capability [3]. How-
ever, the middleware can also work under the fog computing
paradigm, acting as a gateway, gathering data from multiple
users and pre-processing them before sending them to the
cloud [6]. The cloud and fog computing approaches are char-
acterized by the availability of large computing resources,
including processing and storage. However, these approaches

109664

High computational resources

= — Long-term storage
- g g
g - @ Global predictive models Cloud
Global network management
D
-

Consumption Analysis

Middleware
Data Collect
Local Processing
Local Storage
Devices Control

Edge

loT Devices
Data
Controls

/

/

FIGURE 1. The scenario adopted for HEMS in the middleware proposal.

add delays to the communication with end-devices [3],
potentially affecting the end-user experience and increases
the cost.

A software development approach that has received a
great deal attention in the last few year is the microser-
vices approach, which consists of small, independent ser-
vices communicating via well-defined APIs [7]. The use
of microservices to expose the middleware functionalities
provides scalability and accelerates the development of the
middleware, enabling innovation and reducing the time to
introduce innovative solutions.

This work presents a middleware platform for a home
energy management system, based on microservices and
designed to run on low-cost, low computational power
hardware, following the edge computing approach. These
characteristics distinguish this work from others found in
the literature, where middleware platforms work predomi-
nantly under the cloud computing approach and use develop-
ment architectures based on conventional Web services. The
proposal presented here was developed for limited capacity,
low-cost hardware, and, for that reason, considers the con-
sumption of computational resources.

The main contributions of this work are:

o We present a literature survey of middleware for IoT,

focusing on the hardware requirements and architecture.

e We propose a middleware architecture for HEMS

following the edge computing approach, providing
the main HEMS functions closer to the user. This
approach removes the requirement for external connec-
tions (from internet or network operators) and decreases
the response time for the end-user. The proposed mid-
dleware was designed to run on low-cost hardware,
and was implemented using the Microservices archi-
tecture as a method of access to data and middleware
configuration.

o We present implementation details and performance

analysis results of the proposed middleware.

o It is an open middleware, which the APIs are available

at Github project (RT-DSP/SHArM), alongside its com-
plete documentation.

VOLUME 10, 2022

L. C. B. C. Ferreira et al.: Edge Computing and Microservices Middleware for Home Energy Management Systems

IEEE Access

The proposed middleware is part of an energy manage-
ment system being developed in the research project “Open
Middleware and Energy Management System for the House
of the Future.” This project is carried out via a partner-
ship involving the University of Campinas, the Instituto de
Pesquisas Eldorado, and the Brazilian energy provider Com-
panhia Paranaense de Energia (COPEL).

The remainder of the paper is structured as follows:
Section II presents a literature review on middleware archi-
tectures for IoT; Section III introduces the proposed middle-
ware architecture; Section IV shows the middleware imple-
mentation; Section V presents the results and Section VI
presents the conclusions of the work.

Il. MIDDLEWARE loT - REVIEW AND APPROACHES

In the IoT context, the middleware resides between the appli-
cations and the subjacent infrastructure (communication, pro-
cessing, storage, etc.), offering a standardized method of
accessing data and services via a high-level interface. The
middleware provides an abstraction for developers, conceal-
ing complexities of adjacent hardware components, network
protocols, characteristics of operating systems, among other
implementation details [8].

Several HEMS architectures have been proposed in the
literature, such as those presented in [9], [10], [11], [12], [13],
and [14]. All these works present architectures and systems
for HEMS, but only the work in [11] mentions the use of a
middleware.

The work in [15] presents a comparison among 20 open
systems for Smart Homes. However, none of these solu-
tions uses a middleware to facilitate the development and
implementation of new features, thus increasing flexibility,
interoperability and system scalability.

There are few works in the literature about middleware
for HEMS and Smart Homes, even though middleware is an
important component in these systems, as it can be used to
deal with interoperability, flexibility and scalability issues of
these systems.

The literature shows that some energy management appli-
cations use a middleware platform [16], [17], [18], [19], [20].
These works seek to meet the requirements of HEMS applica-
tions. In general, the middleware platform is based on cloud
or fog computing, where processing and control functions are
performed in the cloud or in an intermediate environment, in-
between the cloud and the edge.

As HEMS systems and Smart Homes can be seen as
IoT applications, IoT middlewares could be used in these
applications. Several middleware platforms are available
for IoT in the literature. A survey of these platforms is
presented in [21], which shows that most proposals are
based on the concept of Platform as a Service (PaaS). This
concept relies on cloud development with almost unlim-
ited computational resources, making a middleware platform
developed under this concept appropriate to be used in appli-
cations with different requirements in terms of computational
capabilities [22].

VOLUME 10, 2022

The main requirements of IoT middleware are [21], [27]:

o Scalability: The middleware must be scalable to allow
allocation and release of computational resources as
needed, keeping the system in operation at a consistent
and adequate level of performance;

« Real-time: Due to the nature of HEMS operations, which
involve collecting and processing energy consumption
information, the delay when sending and processing data
must be kept low;

« Interoperability: The interoperability among the various
components of an IoT application (devices, applications,
services, etc.) is a key requirement for an IoT middle-
ware platform;

« Security and privacy: Any middleware block containing
personal or sensitive information must preserve user
privacy;

« Data management: In addition to its ability to process
large volume of data, the IoT-oriented middleware plat-
form needs to provide data management, including data
store, verification, and processing;

o Context Awareness: The middleware must understand,
analyze, and react according to context changes, both
past and present, in an attempt to infer potential future
actions.

An emerging trend in the IoT middleware context is to
move data processing and device control closer to the end-
user. This approach reduces latency and the dependency
on external communications, maintaining the system func-
tional even in the case of interruptions of Internet access.
Moreover, this approach allows an additional security layer
to be implemented between the edge and the cloud, lead-
ing to an overall performance improvement of the services
offered [3], [5] [4].

In order to guarantee a massive deployment of energy
management systems, the end-user devices must be low
cost, which means devices with low computational capa-
bility. Therefore, providing services with good performance
in energy management systems may be a challenging task.
In this case, offering these services through a middleware
using the edge computing approach may be a good solu-
tion [18].

The edge computing approach requires special attention
to hardware requirements. In the works mentioned here, this
problem is not addressed, since the processing and control
take place in the cloud or fog, in which computational con-
straints is typically not an issue.

In [23], several IoT middleware platforms were compared,
using qualitative and quantitative metrics. All of the analyzed
platforms use the PaaS approach, and hardware requirements
are not discussed. Furthermore, the tests were carried out
using high computational power hardware.

However, hardware requirements of middleware in the
IoT context can be a concern [28], [29], [30]. For instance,
Perera et al. emphasized the importance of designing middle-
ware solutions for low computing power devices to achieve
the IoT vision. This indicates the importance of approaches

109665

IEEE Access

L. C. B. C. Ferreira et al.: Edge Computing and Microservices Middleware for Home Energy Management Systems

TABLE 1. Comparison of the proposed middleware and approaches available in the literature.

Ref. Hardware Microservices HEMS Focused
Proposed middleware NXP i.mx6 - 396 MHz ARM Single Core 512 MB RAM Yes Yes

[3] Raspberry 3 - ARM Cortex-A53 Quad Core 1.2 GHz CPU 1 GB RAM Yes No

[11] High Performance Servers (Not Specified) No Yes

[23] Intel Xeon E5-1620 v3 Quad Core 3.5GHz 32GB RAM No No

[24] Raspberry Pi 3 - 1.2 GHz ARM Single Core 1 GB RAM No No

[25] AMD Athlon (tm) 64 X2 Dual Core 2.21GHz 1GB RAM No No

[26] Raspberry 3 - ARM Cortex-A53 Quad Core 1.2 GHz CPU 1 GB RAM No No

that address hardware requirements, as the one proposed in
this work.

As far as the middleware development architecture is con-
cerned, the literature review shows a predominance of the
REST architecture. For instance, in [23] several solutions are
discussed, and all of them use REST.

In [3] the authors discuss the use of microservices as
development architecture. In fact, the use of microservices in
the middleware context is a promising approach since it stan-
dardizes access to the middleware functionalities and allows
any entity operating with the HTTP standard to interact with
it, improving the interoperability degree of the middleware
platform. The microservices are independent from each other,
providing scalability and resilience to the middleware.

Table 1 lists several middleware approaches found in the
literature, summarizing their hardware configurations and
development architectures. This table also presents the hard-
ware specification of our proposed solution, showing that it
requires a simpler hardware. Furthermore, our approach uses
microservices as a development architecture, providing more
flexibility and ease of implementation of new features and
modules.

It is worth mentioning that several other middleware
approaches found in the literature are based on cloud and fog
computing, in which the computational capability is almost
unlimited. Other studies are conceptual, lacking proof of
concept or practical testing.

Ill. MIDDLEWARE ARCHITECTURE

Several middleware solutions are already available in the
literature and are widely employed in many designs. Most of
these solutions were developed for platforms with almost no
restrictions regarding hardware computational capability. The
HEMS being developed in the project “Open Middleware and
Energy Management System for the House of the Future™,
on the other hand, is expected to be implemented at low
computation capability (and, therefore, low cost) hardware.
This scenario led us to develop a new middleware architecture
suitable for low-cost hardware.

The proposed middleware was designed to operate within
the home/commerce of the end-user’s premises, running on
the edge portion of the HEMS solution. The advantage of
the edge approach is to bring processing and control tasks
of devices closer to the end-user. Only the most complex
processing tasks that require higher computing capability are
performed in the cloud.

109666

In the scenario envisioned in the project, smart outlets
collect appliances’ electrical consumption data and actuators
may control the operation of appliances, solar inverter and
charger, among other devices, allowing an efficient home
energy management. The middleware is responsible for gath-
ering and storing data, processing data, and controlling the
attached devices. In addition, the middleware sends data to
remote repositories located in the cloud, where the most com-
plex processing tasks involving big data and machine learn-
ing techniques are performed. The data generated through
these more complex processes are accessible to the end-user
through client applications and websites.

Moving some of the middleware operations to the edge
reduces the delays observed by the end-user when access-
ing services for device control, consulting, and information
registration. This approach also reduces the need for Internet
access to monitor the appliances, since there is a local con-
nection between the client application and the middleware.

The proposed middleware architecture considered the fol-
lowing aspects of the HEMS project:

o Cost: The solution must use open-source tools and open
languages and be free from expensive intellectual prop-
erty controls;

« Low computational available capacity: The solution is
expected to operate in simple hardware, aiming to pro-
vide low-cost systems running on the edge portion of the
system,

o Software requirements: The middleware must address
the requirements of the remaining components of the
overall system, such as cloud software and applications;

« Standardized access: All services offered by the middle-
ware must be accessible through REST APIs, employing
the concept of microservices.

The middleware offers all required services for its config-
uration, including parameter and interface adjustments and
updates. The information is accessible through applications
and administration systems designed for the electric energy
provider personnel.

The proposed middleware architecture is based on the
reference model shown in Figure 2. As depicted in the figure,
the middleware operates by connecting two ends: the “HEMS
Devices™, i.e, smart sockets and local access devices, and
the “Applications”, i.e., software programs in the cloud and
remote applications.

The middleware contains a core, which consists of the
basic modules needed to implement the primary functions

VOLUME 10, 2022

L. C. B. C. Ferreira et al.: Edge Computing and Microservices Middleware for Home Energy Management Systems

IEEE Access

Middleware

Applications(Cloud, APP)

=

Core g

e

2

Communication Management - | == c
Application ' E ; 8 8
= . Q2
= Application and Control = E 3 P
= 3 0
g ke
N Data Management =) E §

Communication Management - . E 2

Devices ‘

1T

Devices

FIGURE 2. Proposed Middleware architecture reference model.

for its operation. The modules are independent processes,
performing specific and well-defined tasks.

Every function offered by these basic modules is accessible
through microservices using REST APIs. Each microservice
has specific and objective functions providing complete con-
trol and configuration of the middleware.

In the following, the components of the proposed architec-
ture are described:

Microservices: A feature of the proposed middleware is
the use of microservices via a local server to interact with
other components. The use of REST APIs standardizes
the usage of the middleware. Any entity using HTTP can
communicate with the middleware, either by using data
or changing behavior. The microservices paradigm is
attractive for the IoT context since it provides resilience,
scalability, and deployment agility. Furthermore, the
use of microservices architecture simplifies the middle-
ware development due to the independence among the
microservices, allowing developers to create new ser-
vices regardless of the existing ones. The microservices
independence improves middleware’s resiliency and
performance, reducing concurrent and parallel accesses
with independent databases. Another factor is the ability
for services to continue to operate normally in case a
service failure.

Communication Management - Application: Once the
data are collected and handled, it must be sent to a
remote repository, processed, and displayed to the end-
user. Services are performed in the cloud, such as load
disaggregation, discussed in Section IV-B, and detec-
tion of abnormal behavior of appliances. Several tools
and protocols are available for sending local data to
remote repositories. Many of these options are available
in this module. It is possible to send local data via
Message Queuing Telemetry Transport (MQTT) pro-

VOLUME 10, 2022

tocol, which is widely employed in the IoT scenario.
Additionally, it is possible to employ HTTP using the
Constrained Application Protocol (CoAP). There are
also proprietary solutions, such as Microsoft (Azure),
AWS, Google, and others. These options are feasible
to adopt once the proposed middleware is open and
flexible.

Control and Application Management: The middleware
must provide an environment for user interaction with
connected devices in the local network, based on simple
programming routines, either specified by the user or
available from equipment manufacturers. This module
includes services for device control, such as ON/OFF
control, dimmer, and energy controllers. It is also pos-
sible to implement intelligent applications, such as load
disaggregation, fault detection, and temperature control.
In summary, the middleware allows the development of
various applications for HEMS and smart home environ-
ment.

Data Management: This modules processes incoming
data from HEMS devices. Functions such as storage
and filtering belong to this component. The focus of
this module is local data storage. Several appliances can
generate data in HEMS scenario, requiring a reliable
storage system. The size of the database must be appro-
priately managed to avoid performance degradation of
the middleware. Large databases working on hardware
with low performance leads to delays and failures in
queries and recordings. To address this issue, the local
database was designed as a circular queue, where replac-
ing older data with newer data. The size of the cir-
cular queue is configurable. The local database stores
the information for a short period of time, as all data
are sent to remote repositories to be consolidated and
processed using advanced techniques. Several database
types are supported, such as SQL, NoSQL, time-series,
and others.

Security: This component addresses the security issues
found in all middleware components. However, there
is no single security technique that covers all compo-
nents, and a set of techniques was employed: (i) at
the communication layer among HEMS devices, used
to send data to the client applications, security is pro-
vided by the communication protocols employed, such
as Wi-SUN, Wi-Fi, and Zigbee, which already have
their own security layers; (ii) at the operating system
level, security is based on access control, encryption,
and hash algorithms for reliable and confidential data
storage; (iii) application protocols used to send local
data to remote repositories, such as HTTP, MQTT,
and CoAP, also have their own security mechanisms;
(iv) finally, the microservices architecture encapsulates
the functions, making the source code inaccessible
to users.

Communication Management - Devices: This com-
ponent manages the communication between HEMS

109667

IEEE Access

L. C. B. C. Ferreira et al.: Edge Computing and Microservices Middleware for Home Energy Management Systems

controller and local devices. It contains multiple com-
munication interfaces and is accessed and configured via
microservices. There are several communication pro-
tocol options available nowadays. The choice of com-
munication protocol is based on issues related to the
communication network, such as the distance between
nodes, transmission capacity, and the required link qual-
ity. The middleware should be flexible enough to sup-
port different protocols, such as Wi-SUN (HAN and
FAN), Wi-Fi, Zigbee, and Bluetooth, which are stan-
dards commonly adopted. The Communication Man-
agement - Devices module allows the implementa-
tion of routines to support these standards. How-
ever, since it is an open middleware, other interfaces
and modes of communication with appliances can be
implemented.

IV. MIDDLEWARE IMPLEMENTATION
The proposed middleware was implemented using the follow-
ing tools and technologies:

o Python Programming Language: Python is a widely
used scripting language featuring easy portability over
architectures and operating systems;

o SQLite Database: this is a relational database that is
lightweight and robust, and widely employed in embed-
ded systems;

o Django REST Framework: This is framework for devel-
oping microservices, employing the Python language;

o Hardware: NXP i.Mx6 hardware platform, equipped
with a 396 MHz processor, 512MB RAM and 32 GB
storage, running a customized Linux operating system,
based on the Debian distribution for embedded systems.

As presented in Figure 2, the modules communicate among
them indirectly through the databases of the system. Each
module operates independently from the others, updating the
databases.

The independence of the modules is crucial, as it provides
flexibility and scalability to the middleware, allowing the
addition of new modules without interfering the operation of
other modules.

To achieve the independence of the modules in the core,
the concept of multiprocessing was employed, wherein each
module is treated as an independent process. Therefore,
the main middleware file, named orchestrator (mdw-orq.py),
is responsible for creating and managing these processes. The
orchestrator initiates and manages the parallel execution of
the middleware modules (see Figure 3).

Microservices perform a key role in the proposed mid-
dleware. They provide functions enabling the consumption
of the generated data, in addition to saving and modifying
information in the databases in a independent and scalable
way. The APIs provide the capability of changing the behav-
ior of the middleware in a standardized way via the REST
architecture.

Figure 4 shows the diagram of the middleware main
use case. This diagram presents the interactions of

109668

Orchestrator
Communication Control and Data Communication
Management - Application Management Management -
Application PP 9 Devices

FIGURE 3. Middleware orchestrator.

Middleware Main Use Case)

Developer/User Devices

<<extend==

Communication
Managegement
Application

Communication
Management
Devices

------------- Orchestrator - mee e D

< <pualKas >

<<extends>
Data T
Management Control

FIGURE 4. Middleware: main use case diagram.

<<extend==

users/developer and the devices directly with the modules
use cases. The user communicates with the middleware in
the Microservices and the Manage Communications Appli-
cation use cases. The devices uses the Microservices and the
Manage Communications Device to communicate with the
middleware. All modules are managed by the Middleware
orchestrator use case, which makes all these modules operate
in harmony with them and with the system.

Another important aspect related to middleware regards
its distribution, management and configuration. In this con-
text, container technology has been considered by several
developers if the hardware resources allow it [31]. In an
edge computing approach, there may be operational restric-
tions, such as the operating system and limited hardware,
which do not favor the use of container due to additional
complexities. The container technology was not used in this
project due to computational restrictions of the employed
hardware.

In the following sections, we describe some implementa-
tion aspects of the modules.

A. COMMUNICATION MANAGEMENT - DEVICES

The Device Communication Management Module contains
functions for interface configuration and scheduling of data
reading and storage.

The middleware communicates with devices (e.g., smart
outlets and smart meters) according to a template defined for
each appliance. Different templates are available for imple-
mentation, allowing communication via several protocols.
In our work, the data are collected from the files generated

VOLUME 10, 2022

L. C. B. C. Ferreira et al.: Edge Computing and Microservices Middleware for Home Energy Management Systems

IEEE Access

current, active power, reactive_power,power_factor, aparent_power]™,
"Commands n, Intensity:[e,18e]]",
"Protocol”: “wisun-han}’

FIGURE 5. Device template.

by the smart outlets. The microservice allows the registration
of the template, containing the required information to access
the device data. The template is presented in JSON format,
as depicted in Figure 5.

When a device adopts the CoAP protocol or supports the
HTTP standard, an alternative way to collect data is based on
the microservice named receive_data. In this case, the device
sends the data via a POST or PUT request. This alternative
solution provides interoperability between the middleware
and the devices.

The functions of the module are:

o Device_Template(): This function stores and captures
the format of the information provided by the devices,
besides the information from the device itself.

o Time_Request(): It sets the time between data requests
to the device.

o Config_Interface(): It stores and captures information
regarding the communication interfaces.

o Receive_data(): It checks for incoming data from
devices.

o Store_data(): This function stores the received informa-
tion in the database.

All functions are accessible via microservices. Therefore,

using an mobile App or Web interface, an administrator is
allowed to alter the middleware configuration.

B. CONTROL AND APPLICATION MANAGEMENT

This module runs routines using the data stored in the
database to perform specific functions or applications, whose
results are stored in the database and are accessible via
microservices.

An example of application that uses the data stored in
the database is load disaggregation. This application uses
artificial intelligence algorithms to determine the devices
connected to outlets, using information of aggregate energy
consumed by the house. More details on this application are
found in [32].

C. DATA MANAGEMENT
This module implements the management of the middleware
databases. By default, there are four databases for these
types of information: (i) raw data collected from the devices;
(ii) information genereted by processing the raw data; (iii)
configuration data for middleware operation; and (iv) HEMS
identification data.

These databases are accessed by all middleware modules,
being connecting points among the modules. Therefore, the

VOLUME 10, 2022

modules are responsible for the exchange of information
among the module and are accessible via microservices.

The database responsible for storing the raw data collected
from the devices is implemented using a circular buffer
format to achieve an ordered expansion and avoid exceeding
a pre-specified database size.

The microservices provide functions to handle the data,
enabling data collection and changing middleware operation
parameters, affording flexibility and standardized access.

D. COMMUNICATION MANAGEMENT - APPLICATION

This module implements functions to send data to the
cloud computing software, through an Internet connection.
Presently, two options are available for transferring data:
(1) sending to an IoTHub (a paid online repository supported
by Microsoft); or (ii) sending to any MQTT Broker. Hence,
the following functions are implemented:

o Search_data(): This function is responsible for database
queries for preparing the information to be sent to the
cloud computing software.

« Send_IotHub(): Responsible for sending the data to the
IoT Hub.

o Send_MQTT(): Responsible for sending the data to the
MQTT Broker.

o Resend_data(): This function is responsible for search-
ing the data whose transmissions failed, and attempting
to resend them.

The destination of data is predefined by default, although it
is possible to modify it via the APIs. The data is periodically
uploaded to the cloud computing software, with the upload
period adjustable via the corresponding microservice.

E. SECURITY MANAGEMENT

The middleware security is implemented through the security
protocols provided by the solutions and protocols employed
in communication, data storage, and cloud computing. The
security strategy consists of

o Access Control: Only registered users are allowed to
access the APIs,

o Data Sending Authentication: All data are sent to the
cloud computing software using authentication at the
MQTT broker,

o Microservices: The microservice architecture inherently
encapsulates the functions, not allowing direct access to
any portion of the system.

F. MICROSERVICES
Microservices offer the functions provided by the middleware
based on the REST standard. Complete documentation on the
APIs is available to users and developers. The use of REST
standard allows any entity to interact with the middleware.
Each microservice performs specific functions and main-
tains a different database. The microservices are organized as
follows:
« App: Responsible for the communication with cloud
computing software and the client applications,

109669

IEEE Access

L. C. B. C. Ferreira et al.: Edge Computing and Microservices Middleware for Home Energy Management Systems

o Devices: Responsible for the communication with the
devices (outlets),
o Configure: Responsible for the middleware configura-
tion.
A brief description of each microservice is presented in the
following paragraphs.

1) APP MICROSERVICE

This microservice is responsible for the communication with
the client applications. It contains four entities: Device,
Hems_sys, Zone, and outlet. The Device entity is the table
responsible for registering devices and relies on three fields
in Django: the device name, whether the device is active
or not, and whether it is a generating or consuming device.
The Hems_sys entity contains information of the user that
must be stored, both in the cloud and in the middleware,
providing easier access to it. Therefore, this entity includes
the following fields:

o hems_reg_date: Date of HEMS registration,

« userName: User name,

o priceKWh: kWh price,

o hems_last_update: HEMS latest update,

o homeCity, homeStreet, home Neighbour, and home-

Complement: Complete HEMS address.

The entities Zone and Outlet refer to the household area
where the outlet is installed (living room, kitchen, etc.) and
a set of information on the registered outlets, respectively.
These set o information includes the outlet type (relay or
dimmer), which appliance is connected to, allowing the iden-
tification of the outlet.

2) DEVICES MICROSERVICE

It is a microservice for communicating with the devices and
contains two different entities: Data and Root Data. The Data
entity addresses the information proceeding from the smart
outlets. It includes the following fields:

¢ dev: device identification,

« voltage: Voltage reading by the outlet,

« current: Current reading of the outlet,

« active_power: Active power reading of the outlet,

« reactive_power: Reactive power of the outlet,

« power_factor: Power factor of the outlet,

« device_energy: Total power of the outlet,

« time: Timestamp of the measures.

The Data entity is accessible via a GET or POST request,
allowing the devices to send the data using the CoAP stan-
dard or any other standard that supports HTTP requests.
This feature provides interoperability with multiple existing
devices.

The Root Data entity contains smart meter information
such as time (date and time of the measurements) and power
(the total kWh value). It is noteworthy that all APIs pro-
vide the collected information from the outlet organized in
JSON format, allowing flexibility when manipulating the
variables, via either the application or the cloud computing
software.

109670

FIGURE 6. Smart outlet used in the proof-of-concept.

3) CONFIGURE MICROSERVICE
It is used to configure the middleware and contains the
following entities:
« Data request time: it is the interval within which mea-
surements of the devices are requested;
« Send-to-cloud method: it configures the destination and
the method to send the data to the cloud;
« Update: used to configure the repository where the peri-
odic monitoring for middleware updates is performed;
o Time-to-cloud: it sets the time interval for sending infor-
mation to the cloud.
o Username and password for MQTT broker: it sets the
credentials for the use of MQTT broker.
o MQTT Address: it sets the address of the MQTT Broker.
Each microservice features specific functions and accesses
a unique database. This characteristic of microservices
ensures better resilience and performance of the middle-
ware since the reading and writing processes occur inde-
pendently, thus avoiding a large number of simultaneous
accesses to a single database. Furthermore, new services
can be added, without interfering other services already
implemented.

V. RESULTS AND DISCUSSION

A. TEST SCENARIO

The proof-of-concept of the middleware was implemented
and tested in laboratory and at the university campus, with
real devices. Six smart outlets were used to connect an LCD
TV, a tube TV, a radio, an air conditioner, and a microwave
oven. Fig. 6 shows the smart outlet used, while Figure 7 shows
some devices plugged into it.

The smart outlets employ the Wi-SUN HAN protocol
to communicate with the controller board, which hosts the
middleware. Fig. 8 displays the controller board. Measure-
ments of voltage, current, power factor, active, reactive and
apparent power are transmitted by the outlets to the con-
troller every 5 seconds. The middleware uploads the collected

VOLUME 10, 2022

L. C. B. C. Ferreira et al.: Edge Computing and Microservices Middleware for Home Energy Management Systems

IEEE Access

Boost your R&D: Accelerate your.
company with ELDORADO.
partnershi

FIGURE 7. Devices connected to smart outles.

FIGURE 8. Controller board.

data every 1 minute to the cloud software via the MQTT
protocol.

Figure 9 shows the communication topology used in the
test scenario’s. The outlets communicate with the controller
via WISUN-HAN. In the controller, the Middleware receives
and processes the data, as shown in Figure 10. This informa-
tion is made available to client applications (App and Cloud
Software) via Microservices, using the REST standard and
the MQTT protocol. Figure 11 shows the App displaying the
data obtained from an outlet over a period.

The implemented version of the middlewae requires
250 kB of disk space, excluding the databases. The total
disk space required is around 111 MB, including the Python
installation, the libraries required for operation, and the latest
version (1.21) of NGINX web server.

The most relevant database in the tests was the one used
to store the device measurements, as it receives a large
amount of data and can affect the middleware performance.
The default size of this database is adjusted to store data
collected in a period of five days. Tests in the laboratory

VOLUME 10, 2022

- n App

Y ; E Middle'ivare E REES’T

938 B |¢

Ei Y o @

N O MATT Cloud
@] Software

Controller

FIGURE 9. Communication topology.

*****¥peyices Communication Management Module***¥*\\
['001D129100035AB3", '©01D129100035EED"]

[(3,)]
3

dev_id: 3

date: 2022-08-11 21:36:44
voltage: 127.2679214477539
current: 0.06432999670505524
power factor: ©.5580000281333923
active power: 4.576000213623047
reactive power: -2.171999931335449
apparent power: 8.20199966430664
novo consumo: ©.2128390375400988

[(6,)]
5

dev_id: 6

date: 2022-08-11 21:36:48
voltage: 218.0417938232422
current: 1.4074499607086182

power factor: ©.9800000190734863
active power: 300.9670104980469
reactive power: 60.3129997253418
apparent power: 307.0639953613281

FIGURE 10. Outlets data received in middleware.

Aug 512PM 1 2

08/05/2022 12:47 PM

21511V 12.57A 2683.82W

Voltage Current Power

FIGURE 11. App showing outlet data.

and in campus trials showed that 17 MB is enough for this
period length. However, the database size can be configured

109671

IEEE Access

L. C. B. C. Ferreira et al.: Edge Computing and Microservices Middleware for Home Energy Management Systems

TABLE 2. Results of Scenario 1.

Scenario 1
Time Between Requests 0.5s 5s
Simultaneous Requests Error Average Time Median Error Average Time Median
(Devices) (%) (seconds) (seconds) (%) (seconds) (seconds)
10 0 4,52 4,66 0 4,15 4,37
30 0 9,78 12,88 0 3,26 3,61
50 0 6,23 6,54 0 5,77 6,23
100 0 22,64 15,78 0 17,76 13,12
250 0 44,86 33,93 0 43,06 33,52
400 4.80 65,30 58,48 4.20 74,15 85,50
600 38.50 39,21 47,94 36.20 48,85 50,69
TABLE 3. Results of Scenario 2.
Scenario 2
Time Between Requests 0.5s 5s
Simultaneous Requests Error Average Time Median Error Average Time Median
(Devices) (%) (seconds) (seconds) (%) (seconds) (seconds)
10 0 3,07 1,69 0 1,10 1,69
30 0 4,48 4,64 0 4,09 4,46
50 0 10,56 7,79 0 6,87 7,46
100 0 21,32 15,71 0 17,16 15,
250 0 50,11 38,84 0 49,46 39,18
400 4.30 82,46 93,02 4.20 86,71 92,64
600 36.20 54,56 61,04 37.80 46,41 58,70
via the microservice. A circular buffer was employed to delete TABLE 4. Scenarios.
older data after five days, keeping the size of the measurement . .
Scenario 1 Scenario 2
database constant. Time between requests 0.5s, Ss 0.5s, Ss
Hence, the total disk size of the middleware is approxi- Simult s 10.30,50,100, 10,30, 50, 100,
multaneous requests 550,400,600 250, 400, 600

mately 130 MB. The disk footprint is an issue that requires
attention for implementation on hardware platforms with
limited storage space.

During the laboratory tests, control logs was generated
to identify faults and interruptions in the system. In a test
period of 30 days, emulating a real scenario, the middleware
performed continuously with no faults.

B. MIDDLEWARE PERFORMANCE ANALYSIS
The middleware performance were tested using the approach
presented in [26] and the JMeter framework [33].

No standard metrics exist to analyze the performance of a
middleware, and therefore metrics are defined according to
the application context [26]. In this work, the chosen metrics
aim to examine whether the proposed middleware provides
the services required for HEMS application, even when the
computational resources of the hardware platform are limited.
In this sense, the following metrics were chosen:

o CPU usage: The percentage of CPU usage by user
software (including the middleware) and system
software;

« RAM Memory Usage: Used memory and free memorys;

« Error Rate: Percentage of failed service requests;

« Average Response Time: Time elapsed to respond to the
requests addressed to the middleware.

The microservice Receive_data was used in the per-

formance tests, as this microservice is responsible for
receiving data from the devices via a POST operation.

109672

Besides receiving the data, the microservice saves the infor-
mation in the local database and subsequently sends a
response code to the answered HTTP request. The size of
each data package is 392 bytes.

Two different scenarios were tested:

o Scenario 1 (S1): The middleware operates following its

basic structure, with no additional applications;

o Scenario 2 (S2): The middleware operates with load

disaggregation as an additional application.

The objective is to evaluate and compare the middle-
ware performances under a default configuration (S1)
and when additional computational resources are required
(S82). For both scenarios, different numbers of simultane-
ous requests (which is related to the number of outlets)
and time intervals between requests were tested, as shown
in Table 4.

The tests for the 0.5 second interval aimed to overload the
target microservice and check the middleware performance
in a stress scenario. On the other hand, the 5-second interval
is considered to be a more realistic scenario. Ten rounds of
tests were performed for different numbers of simultaneous
requests: 10, 30, 50, 100, 250, 400, and 600.

The results of the tests for Scenarios 1 and 2 and met-
rics error rate and average and median time to respond all
requests are presented in Tables 2 and 3. We can see that
no error occurred up to 250 devices, for both time intervals

VOLUME 10, 2022

L. C. B. C. Ferreira et al.: Edge Computing and Microservices Middleware for Home Energy Management Systems

IEEE Access

Scenarios 1 and 2 - Time = 0.5s

CPU Usage (“0)
2
—a—
e
-

4.

40 * + :
30 q + +
20 4 *
[]
0 100 200 300 400 500 600
Devices (simultaneous requests)

& Scenario | (No Load Disaggregation)
Scenario 2 (With Load Disaggregation)
¥ Load Disaggregation

(a) CPU usage for 0.5 s time interval between requests.

Scenarios 1 and 2 -Time =0.5s

30

251 g0® © * . ¥
§
E 20 1 ¢ Scenario 1 (No Load Disaggregation)
o Scenario 2 (With Load Disaggregation)
; # Load Disaggregation

154
g

104

5] "mm = ® ® n

0 00 200 300 400 500 600
Devices (simultaneous requests)

(c) RAM usage for 0.5 s time interval between requests.

FIGURE 12. Result of CPU and RAM tests.

TABLE 5. Middleware minimum requirements.

Software CPU RAM Hard Disk
Linux-based OS
Python 3.8 Arm Cortex
Django 3.2.4 with DRF single core ~ 512MB 8 GB

SQLite 3 396 MHz

Nginx with uwsgi

tested. We can then assert that the middleware can serve up
to 250 devices in parallel with no errors. For 600 devices
or more, the error rate considerably increases due to the
overload of requests and the limited hardware and software
resources.

The average response times presented in Tables 2 and 3
are the time to respond to the total number of requests tested,
i. e, to serve 10, 30, 50, 100, 250, 400, and 600 requests.
The operation requested by these requests is the most costly
one, involving receiving the HTTP request, writing to the
database, and sending the HTTP response code. Therefore,
the response times presented in Tables 2 and 3 are suitable
and fulfill the requirements of most applications.

VOLUME 10, 2022

Scenarios 1 and 2 - Time = 0.5s

80
70 [
F 601 '
()
= 50 A
35 + ¢ ’
2 40 L]
e T
30
+ ¢ Scenario 1 (No Load Disaggregation)
20] ¥ Scenario 2 (With Load Disaggregation)
+' # Load Disaggregation
ggreg
10 L T T T T T T T
0 100 200 300 400 500 600

Devices (simultaneous requests)

(b) CPU usage for 5 s time interval between requests.

Scenarios 1 and 2 - Time = 5s

30

251 goe ® ™ o ®
:\é
@ 50] ¢ Scenario 1 (No Load Disaggregation)
o
I Scenario 2 (With Load Disaggregation)
; # Load Disaggregation

15
2

10

5 EEE [] [] [] m

0 00 200 300 400 500 600
Devices (simultaneous requests)

(d) RAM usage for 5 s time interval between requests.

An important conclusion from the tests was that both
scenarios yielded remarkably similar results, demonstrating
that the execution of an additional application on the mid-
dleware (e.g., load disaggregation in our case) did not affect
performance.

Figure 12 shows the CPU and RAM consumption results
for Scenarios 1 and 2. This figure also shows the consumption
of the load disaggregation application. Figures 12 (a) and
(b) show that, as expected, the highest consumption occurred
in Scenario 2 (when load disaggregation is considered), but
the maximum consumption did not exceed 85% of the avail-
able CPU capacity. Moreover, no significant difference was
observed between the results for 0.5s and 5s time inter-
vals between requests. In scenario 1, consumption did not
exceed 65% usage. The disaggregation script alone con-
sumes approximately 40% of the CPU capacity in the worst
case.

Graphs Fig. 12(c) and (d) depict the RAM consump-
tion for both scenarios. In Scenario 2 the middleware
consumes approximately 30% of the available memory,
while in Scenario 1 this figure reduces to approximately
25% of the resources. The disaggregation script consumes

109673

IEEE Access

L. C. B. C. Ferreira et al.: Edge Computing and Microservices Middleware for Home Energy Management Systems

approximately 5% of RAM. Notably, no significant differ-
ence is observed between the scenarios with 0.5 s and 5 s time
intervals between requests.

These results show that the proposed middleware can
respond to up to 250 simultaneous requests with no errors,
with a reasonable response time, and consuming reasonable
computational resources, regardless of employing limited
hardware/software. Even in the stress test with 400 simul-
taneous requests, the error rate is under 5%. Therefore, the
proposed middleware can provide reliable service for up to
400 devices in a real scenario.

Therefore, the specifications of the hardware and software
components used in these tests (shown in Table 5) are the
minimum requirements to guarantee a good performance of
the proposed middleware.

The estimated cost of the hardware components shown
in 5, using information from websites of major hardware
distributors at low volumes, is under US$ 40. Hence, the
proposed middleware is an affordable option for large-scale
applications, providing all the features required for applica-
tion in HEMS.

VI. CONCLUSION

This work introduced a middleware for a Home Energy
Management System (HEMS). The architecture is based on
established concepts in the literature and was developed
considering specific requirements for a HEMS application,
providing solid grounding and a good perspective for further
usage.

The middleware was designed following the edge comput-
ing perspective, then providing services closer to the end-
user. Besides, the proposed middleware aims at low-cost
hardware platforms with computational constraints in terms
of storage, processing, and communication.

The concept of microservices was employed to offer
the middleware functionalities by using standard forms
to access user and configuration data. Additionally, the
independence of the services, intrinsic to the use of
microservices, provides greater robustness, performance, and
interoperability.

Field trials were performed to simulate real application
scenarios as a proof of concept. The middleware proved to
be functional and fulfilled the requirements, achieving good
performance concerning the proposed tasks.

Furthermore, performance tests were carried out with the
middleware that showed its capability to support a large
number of devices and, therefore, its ability to be used in
small, medium, and large applications. The minimum hard-
ware and software requirements were determined to guide
potential users and developers based on the performance
tests. Moreover, the proposed middleware is open at a Github
project (RT-DSP/SHArM), promoting the specifications for
HEMS applications.

The middleware presented in this paper is set to be
improved and tested in new scenarios and applications on
field trials, continuing the research work. As it was developed

109674

for low cost hardware, using flexible architecture such as
microservices, this middleware can be a valuable contribution
for developers of IoT solutions, especially those related to
rational use of resources.

REFERENCES

[1] S. Nizeti¢, P. §olié, D. L.-D.-1. Gonzilez-de-Artaza, and L. Patrono,

“Internet of Things (IoT): Opportunities, issues and challenges towards

a smart and sustainable future,” J. Cleaner Prod., vol. 274, Nov. 2020,

Art. no. 122877.

A. Polianytsia, O. Starkova, and K. Herasymenko, “Survey of hardware

10T platforms,” in Proc. 3rd Int. Sci.-Practical Conf. Problems Infocom-

mun. Sci. Technol. (PIC ST), Oct. 2016, pp. 152-153.

[3] M. Alam, J. Rufino, J. Ferreira, S. H. Ahmed, N. Shah, and Y.

Chen, ““Orchestration of microservices for IoT using Docker and

edge computing,” IEEE Commun. Mag., vol. 56, no. 9, pp. 118-123,

Sep. 2018.

T. Vaiyapuri, V. S. Parvathy, V. Manikandan, N. Krishnaraj, D. Gupta,

and K. Shankar, “A novel hybrid optimization for cluster-based routing

protocol in information-centric wireless sensor networks for IoT based

mobile edge computing,” Wireless Pers. Commun., vol. 116, pp. 1-24,

Jan. 2021.

[5] S. Qanbari, S. Pezeshki, R. Raisi, S. Mahdizadeh, R. Rahimzadeh,

N. Behinaein, F. Mahmoudi, S. Ayoubzadeh, P. Fazlali, K. Roshani,
A. Yaghini, M. Amiri, A. Farivarmoheb, A. Zamani, and S. Dustdar, “IoT
design patterns: Computational constructs to design, build and engineer
edge applications,” in Proc. IEEE 1st Int. Conf. Internet-of-Things Design
Implement. (IoTDI), Apr. 2016, pp. 277-282.

[6] Y. K. Teoh, S. S. Gill, and A. K. Parlikad, “IoT and fog computing

based predictive maintenance model for effective asset management in

industry 4.0 using machine learning,” [EEE Internet Things J., early
access, Jan. 11, 2021, doi: 10.1109/JI0T.2021.3050441.

V. Velepucha and P. Flores, ‘““Monoliths to microservices—Migration prob-

lems and challenges: A SMS,” in Proc. 2nd Int. Conf. Inf. Syst. Softw.

Technol. (ICI2ST), Mar. 2021, pp. 135-142.

[8] S. Bandyopadhyay, M. Sengupta, S. Maiti, and S. Dutta, “‘Role of mid-
dleware for Internet of Things: A study,” Int. J. Comput. Sci. Eng. Surv.,
vol. 2, no. 3, pp. 94-105, 2011.

[9] J. Han, C.-S. Choi, and I. Lee, “More efficient home energy man-
agement system based on ZigBee communication and infrared remote
controls,” IEEE Trans. Consum. Electron., vol. 57, no. 1, pp. 85-89,
Feb. 2011.

[10] J. Han, C.-S. Choi, W.-K. Park, I. Lee, and S.-H. Kim, “Smart home
energy management system including renewable energy based on ZigBee
and PLC,” IEEE Trans. Consum. Electron., vol. 60, no. 2, pp. 198-202,
May 2014.

[11] A.R. Al-Ali, I. A. Zualkernan, M. Rashid, R. Gupta, and M. Alikarar,
“A smart home energy management system using IoT and big data analyt-
ics approach,” IEEE Trans. Consum. Electron., vol. 63, no. 4, pp. 426-434,
Nov. 2017.

[12] S.Zhou, Z. Wu, J. Li, and X. Zhang, “‘Real-time energy control approach
for smart home energy management system,” Electr. Power Compon. Syst.,
vol. 42, nos. 3—4, pp. 315-326, 2014.

[13] H. Shareef, E. Al-Hassan, and R. Sirjani, ‘“Wireless home energy manage-
ment system with smart rule-based controller,” Appl. Sci., vol. 10, no. 13,
p. 4533, Jun. 2020.

[14] P.Pawar and M. TarunKumar, ““An IoT based intelligent smart energy man-
agement system with accurate forecasting and load strategy for renewable
generation,” Measurement, vol. 152, Feb. 2020, Art. no. 107187.

[15] B. Setz, S. Graef, D. Ivanova, A. Tiessen, and M. Aiello, “A compar-
ison of open-source home automation systems,” IEEE Access, vol. 9,
pp. 167332-167352, 2021.

[16] S. Nagalakshmi, M. Prabha, R. Senthamarai, and G. Rohini, “‘Design and
implementation of Aurdino based smart home energy management system
using renewable energy resources,” Int. J. ChemTech Res., vol. 10, no. 6,
pp. 696-701, 2017.

[17] E.D.L.Oliveira, R. D. Alfaia, A. V. F. Souto, M. S. Silva, C. R. L. Francés,
and N. L. Vijaykumar, “SmartCoM: Smart consumption management
architecture for providing a user-friendly smart home based on metering
and computational intelligence,” J. Microw., Optoelectron. Electromagn.
Appl., vol. 16, no. 3, pp. 736-755, Sep. 2017.

[2

[

[4

=

[7

—

VOLUME 10, 2022

L. C

B. C. Ferreira et al.: Edge Computing and Microservices Middleware for Home Energy Management Systems

IEEE Access

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

J. Rodriguez-Molina and D. M. Kammen, “Middleware architectures for
the smart grid: A survey on the state-of-the-art, taxonomy and main open
issues,” IEEE Commun. Surveys Tuts., vol. 20, no. 4, pp. 2992-3033,
4th Quart., 2018.

B. Mahapatra and A. Nayyar, “Home energy management system
(HEMS): Concept, architecture, infrastructure, challenges and energy
management schemes,” Energy Syst., vol. 13, pp. 643-669, Aug. 2022.

I. Machorro-Cano, G. Alor-Herndndez, M. A. Paredes-Valverde,
L. Rodriguez-Mazahua, J. L. Sanchez-Cervantes, and
J. O. Olmedo-Aguirre, “HEMS-IoT: A big data and machine learning-
based smart home system for energy saving,” Energies, vol. 13, no. 5,
p. 1097, Mar. 2020.

M. A. A.D. Cruz, J. J. P. C. Rodrigues, J. Al-Muhtadi, V. V. Korotaev, and
V. H. C. de Albuquerque, ““A reference model for Internet of Things mid-
dleware,” IEEE Internet Things J., vol. 5, no. 2, pp. 871-883, Apr. 2018.

C. M. Mohammed and S. R. Zebaree, *“Sufficient comparison among cloud
computing services: IaaS, PaaS, and SaaS: A review,” Int. J. Sci. Bus.,
vol. 5, no. 2, pp. 17-30, 2021.

M. A. A. D. Cruz, J. J. P. C. Rodrigues, A. K. Sangaiah, J. Al-Muhtadi,
and V. Korotaev, “Performance evaluation of IoT middleware,” J. Netw.
Comput. Appl., vol. 109, pp. 53-65, May 2018.

P. Bellavista, C. Giannelli, S. Lanzone, G. Riberto, C. Stefanelli, and
M. Tortonesi, “A middleware solution for wireless IoT applications in
sparse smart cities,” Sensors, vol. 17, no. 11, p. 2525, Nov. 2017.

I. Ungurean, N. C. Gaitan, and V. G. Gaitan, “A middleware based
architecture for the industrial Internet of Things,” KSII Trans. Internet Inf.
Syst., vol. 10, no. 7, pp. 2874-2891, 2016.

A. S. Gaur, J. Budakoti, and C.-H. Lung, “Design and performance
evaluation of containerized microservices on edge gateway in mobile IoT,”
in Proc. IEEE Int. Conf. Internet Things (iThings) IEEE Green Comput.
Commun. (GreenCom) IEEE Cyber, Phys. Social Comput. (CPSCom)
IEEE Smart Data (SmartData), Jul. 2018, pp. 138-145.

A. H. Ngu, M. Gutierrez, V. Metsis, S. Nepal, and Q. Z. Sheng, “ToT
middleware: A survey on issues and enabling technologies,” IEEE Internet
Things J., vol. 4, no. 1, pp. 1-20, Feb. 2017.

A. Palade, C. Cabrera, G. White, M. A. Razzaque, and S. Clarke, “Mid-
dleware for Internet of Things: A quantitative evaluation in small scale,”
in Proc. IEEE 18th Int. Symp. World Wireless, Mobile Multimedia Netw.
(WoWMoM), Jun. 2017, pp. 1-6.

R. Ramakrishnan and L. Gaur, ““Smart electricity distribution in residential
areas: Internet of Things (IoT) based advanced metering infrastructure
and cloud analytics,” in Proc. Int. Conf. Internet Things Appl. (IOTA),
Jan. 2016, pp. 46-51.

C. Perera, P. P. Jayaraman, A. Zaslavsky, D. Georgakopoulos, and
P. Christen, “MOSDEN: An Internet of Things middleware for resource
constrained mobile devices,” in Proc. 47th Hawaii Int. Conf. Syst. Sci.,
Jan. 2014, pp. 1053-1062.

B. Butzin, F. Golatowski, and D. Timmermann, ‘“Microservices approach
for the Internet of Things,” in Proc. IEEE 21st Int. Conf. Emerg. Technol.
Factory Autom. (ETFA), Sep. 2016, pp. 1-6.

D. A. M. Lemes, T. W. Cabral, G. Fraidenraich, L. G. P. Meloni,
E.R.De Lima, and F. B. Neto, “Load disaggregation based on time
window for HEMS application,” IEEE Access, vol. 9, pp. 70746-70757,
2021.

JMeter. (2021) JMeter. Accessed: Jun. 10, 21. [Online]. Available:
https://jmeter.apache.org/

LUIZ C. B. C. FERREIRA received the B.Sc.
degree in computer science and the master’s degree
in electrical engineering. He is currently pursuing
the Ph.D. degree in electrical engineering with
the State University of Campinas—UNICAMP,
Brazil. He is also a Lecturer at the Federal Insti-
tute of Education, Science and Technology of
South Minas Gerais, Brazil. His research inter-
ests include wireless sensor networks, the Inter-
net of Things, communication protocols, and
middleware for IoT applications.

VOLUME 10, 2022

]

ANDREZA DA ROSA BORCHARDT received
the B.Sc. degree in electrical engineering from
the Federal Institute of Education, Science and
Technology of Rio Grande do Sul (IFSul), Brazil,
in 2020. She is currently pursuing the M.Sc. degree
in electrical engineering with the State University
of Campinas (UNICAMP) focusing in middleware
for IoT and microsservices.

GUSTAVO DOS SANTOS CARDOSO received
the B.Sc. degree in electrical engineering from
the Federal Institute of Science and Technology
Sul-Rio-Grandense (IFSul), Brazil, in 2020. He is
currently pursuing the M.Sc. degree in electrical
engineering with the State University of Campinas
(UNICAMP), Brazil, focusing in IoT and middle-
ware for IoT applications.

DIMAS AUGUSTO MENDES LEMES received
the B.Sc. degree in telecommunications engineer-
ing from the Federal University of Sao Jodo
Del-Rey (UFSJ), Brazil, in 2014, and the M.Sc.
degree in electrical engineering from the State
University of Campinas (UNICAMP), Brazil,
in 2018, where he is currently pursuing the
Ph.D. degree in electrical engineering focusing in
machine learning, load disaggregation, and MIMO
systems.

GABRIEL RODRIGUES DOS REIS DE SOUSA
is currently pursuing the bachelor’s degree in
electrical engineering with the State University
of Campinas (UNICAMP). He is also a Techni-
cian in maintenance electrician and a Mathemat-
ics Teacher at the Popular Cram School. He has
knowledge in high level desktop and web software
development focused on end user and also in the
embedded systems programming.

FERNANDO BAUER NETO received the degree
in electrical engineering from the State Univer-
sity of Santa Catarina (UDESC) and the M.B.A.
degree in project management from Getulio Vargas
Foundation (FGV). He worked as a Technology
Engineer in a multinational industry and cur-
rently works as an Electrical Engineer with the
Innovation Management Department, Compan-
hia Paranaense de Energia—COPEL, acting as
a Project Coordinator for the Energy Efficiency

Program (PEE) and the Research and Development Program (R&D), both
regulated by the National Agency of Electric Energy (ANEEL). He received
the title of Specialist in energy efficiency from the Federal Technological
University of Parand (UTFPR).

109675

IEEE Access

L. C. B. C. Ferreira et al.: Edge Computing and Microservices Middleware for Home Energy Management Systems

EDUARDO RODRIGUES DE LIMA received the
degree in EE from the University of Sdo Paulo
State—UNESP and the Ph.D. degree from the
Technical University of Valencia—UPYV, Spain.
He is currently the Research and Development
Manager of the Exploratory Hardware Design
Department, Eldorado Research Institute, and
a Visiting Professor at UNICAMP, Campinas,
Brazil. His current research interests include the

) implementation and theoretic aspects of physical
layers of wireless and wired communications systems. He has more than
20 years of experience in telecommunications systems. Currently, he coordi-
nates several research and development projects related to microelectronics,
embedded system, smart grid, and IoT. He is also a MCTI/CNPq Fellow of
Technological Productivity.

GUSTAVO FRAIDENRAICH was born in Pernam-
buco, Brazil, in 1977. He received the Graduate
degree in electrical engineering from the Federal
University of Pernambuco (UFPE), Brazil, and the
M.Sc. and Ph.D. degrees from the State Univer-
sity of Campina—UNICAMP, Brazil, in 2002 and
2006, respectively. From 2006 to 2008, he worked
as a Postdoctoral Fellow at Stanford University
(Star Lab Group), USA. Currently, he is an Assis-
tant Professor at UNICAMP. His research interests
include multiple antenna systems, cooperative systems, radar systems, and
wireless communications in general. He has been an Associate Editor of the
ETT journal for many years. He was a recipient of the Fundagdo de Amparo a
Pesquisa do Estado de Sdo Paulo (FAPESP) Young Researcher Scholarship,
in 2009. He has published more than 50 international journal articles and
more than 100 conference papers of the first line. He is the President of the
Technical Board of Venturus Company, a branch from Ericsson Company.

109676

PAULO CARDIERI received the B.S. degree from
the Maud School of Engineering, Brazil, in 1987,
the M.Sc. degree from the State University of
Campinas, Campinas, Brazil, in 1994, and the
Ph.D. degree from the Virginia Polytechnic Insti-
tute and State University, Blacksburg, VA, USA,
all in electrical engineering. He is currently an
Associate Professor at the School of Electrical and
Computer Engineering, State University of Camp-
inas (UNICAMP). Prior to joining the Faculty of
UNICAMP, he was with CPgD Foundation, Campinas, Brazil, where he
was involved with several research projects on communications, including
satellite and wireless communications. From November 1991 to August
1992, he was a Visiting Researcher at the Centro Studi e Laboratori Tele-
comunicazioni, Turin, Italy. His current research interests include wireless
ad-hoc networks, sensor networks, and modeling of communication systems.

LUiS GERALDO P. MELONI received the B.E.
degree in electrical engineering/electronics and the
M.Sc. degree in electrical engineering/automation
from the Unversity of Campinas—UNICAMP,
Brazil, in 1980 and 1982, respectively, and the
Ph.D. degree in automation/signal processing from
the Université of Nancy I, France, in 1985. He is
currently a Professor at the School of Electrical
and Computer Engineering (FEEC), UNICAMP.
He has vast academic and industrial experience in
telecommunications and worked previously in several telecommunication
companies. He was a member of the Council of the Brazilian System
for Digital Television Forum, from 2012 to 2016, for coordinating works
of standardization of technologies for interactive channel at the Brazilian
Association of Technical Standards (ABNT). He was the Coordinator of the
Faculty Outreach at FEEC for four years. He was a Lecturer at the University
of Brasilia (1990-1993). He is also the Director of University Outreach
at UNICAMP. His current research interests include new technologies for
wireless communications, hypercomplex algebra, artificial intelligence, mid-
dleware architectures for home energy management systems, the Internet of
Things, and software-defined radio technologies. He has many publications
in international journals and symposia and has also been an instructor in
continuing education programs for telecommunication professionals.

VOLUME 10, 2022

