

UNIVERSIDADE ESTADUAL DE CAMPINAS SISTEMA DE BIBLIOTECAS DA UNICAMP REPOSITÓRIO DA PRODUÇÃO CIENTIFICA E INTELECTUAL DA UNICAMP

Versão do arquivo anexado / Version of attached file:

Versão do Editor / Published Version

Mais informações no site da editora / Further information on publisher's website: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.133.022301

DOI: 10.1103/PhysRevLett.133.022301

Direitos autorais / Publisher's copyright statement:

©2024 by American Physical Society. All rights reserved.

DIRETORIA DE TRATAMENTO DA INFORMAÇÃO

Cidade Universitária Zeferino Vaz Barão Geraldo CEP 13083-970 – Campinas SP Fone: (19) 3521-6493 http://www.repositorio.unicamp.br

Observation of Medium-Induced Yield Enhancement and Acoplanarity Broadening of Low- p_T Jets from Measurements in ppand Central Pb-Pb Collisions at $\sqrt{s_{NN}} = 5.02$ TeV

S. Acharya *et al.*^{*} (ALICE Collaboration)

(Received 7 November 2023; revised 6 May 2024; accepted 13 May 2024; published 9 July 2024)

The ALICE Collaboration reports the measurement of semi-inclusive distributions of charged-particle jets recoiling from a high transverse momentum (high p_T) hadron trigger in proton-proton and central Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV. A data-driven statistical method is used to mitigate the large uncorrelated background in central Pb-Pb collisions. Recoil jet distributions are reported for jet resolution parameter R = 0.2, 0.4, and 0.5 in the range $7 < p_{T,jet} < 140$ GeV/c and trigger-recoil jet azimuthal separation $\pi/2 < \Delta \varphi < \pi$. The measurements exhibit a marked medium-induced jet yield enhancement at low p_T and at large azimuthal deviation from $\Delta \varphi \sim \pi$. The enhancement is characterized by its dependence on $\Delta \varphi$, which has a slope that differs from zero by 4.7σ . Comparisons to model calculations incorporating different formulations of jet quenching are reported. These comparisons indicate that the observed yield enhancement arises from the response of the QGP medium to jet propagation.

DOI: 10.1103/PhysRevLett.133.022301

Matter at very high temperature forms a quark-gluon plasma (QGP), the state of matter in which quarks and gluons are not bound in colorless hadrons [1,2]. A QGP filled the early Universe a few microseconds after the Big Bang, and is generated today in high-energy nuclear collisions at the Large Hadron Collider (LHC) and the Relativistic Heavy Ion Collider (RHIC) [3-7]. Measurements at RHIC and the LHC and their comparison to theoretical calculations show that the QGP flows with low specific shear viscosity [8]. Quantum chromodynamics (QCD) calculations on the lattice show that the effective number of QGP degrees of freedom is $\sim 15\%$ lower than that of freely interacting quarks and gluons, at temperatures well above the deconfinement transition temperature \sim 150 MeV [9,10]. However, understanding the origin of such emergent phenomena in terms of quasiparticle degrees of freedom remains elusive.

QCD jets arise from hard (high momentum-transfer Q^2) scattering of quarks and gluons (partons). The highly virtual scattered partons radiate a gluon shower that hadronizes into a correlated spray of experimentally observable hadrons. Jet measurements in proton-proton (*pp*) collisions provide stringent tests of perturbative QCD (pQCD) calculations [11–13]. In nucleus-nucleus (A-A) collisions jets interact with the QGP, generating observable modifications to jet production and structure ("jet quenching") [14]. Comparison of jet quenching measurements and calculations provides unique insight into QGP dynamics and transport properties [15,16].

Measurements of medium-induced jet angular deflection and substructure modification may elucidate microscopic QGP structure [17–19]. Jet scattering off of QGP quasiparticles is the partonic analog to Rutherford scattering off of atomic nuclei [20]. However, such measurements are challenging in heavy-ion collisions, due to large uncorrelated background. This is especially the case for jets with low transverse momentum ($p_{T,jet}$), for which deflection effects may be sizable.

In this Letter the ALICE Collaboration reports measurements of the semi-inclusive distribution of charged-particle jets recoiling from a high- $p_{\rm T}$ hadron trigger [21,22] in inelastic pp and in central Pb-Pb collisions at center-of-mass energy per nucleon-nucleon collision $\sqrt{s_{\rm NN}} = 5.02$ TeV. Uncorrelated jet yield in central Pb-Pb collisions is corrected using a statistical approach [22], which enables precise recoil jet measurements at low $p_{\rm T,jet}$ and large jet radius *R*, allowing for a comprehensive search for jet deflection effects over broad phase space.

Recoil jet yield distributions are measured as a function of $p_{T,jet}$ and acoplanarity $\Delta \varphi$, the azimuthal separation of the trigger hadron and recoil jet, for jet resolution parameters R = 0.2, 0.4, and 0.5. Recoil jet measurements are reported as a function of $p_{T,jet}$ for $7 < p_{T,jet} < 140 \text{ GeV}/c$ within $|\Delta \varphi - \pi| < 0.6$ and as a function of $\Delta \varphi$ for $\pi/2 < \Delta \varphi < \pi$ within $10 < p_{T,jet} < 100 \text{ GeV}/c$. Theoretical

^{*}Full author list given at the end of the Letter.

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Open access publication funded by CERN.

calculations incorporating jet quenching are compared to the data. Analysis details and additional physics results are reported in a companion article [23].

The ALICE apparatus and its performance are described in Refs. [24,25]. The data for pp collisions at $\sqrt{s} =$ 5.02 TeV were recorded during the 2015 and 2017 LHC runs using a minimum bias (MB) trigger [23]. The data for Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV were recorded during the 2018 run using MB and centrality-enhanced triggers [23]. The Pb-Pb event population is selected for high event activity in the forward V0 detectors, corresponding to the 10% most-central fraction of the total Pb-Pb hadronic interaction cross section. After offline event selection, the analyzed dataset has 1.04B events for pp collisions and 89 M events for central Pb-Pb collisions.

Charged-particle tracks are reconstructed from hits in the ALICE inner tracking system (ITS) and time projection chamber (TPC). The response of these detectors was nonuniform in azimuth and varied between data-taking runs. Tracks are selected to account for such variations, resulting in uniform and stable tracking efficiency [23]. Tracks are accepted within pseudorapidity $|\eta| < 0.9$ and $p_{\rm T} > 0.15 \ {\rm GeV}/c$.

The same analysis is carried out on pp and central Pb-Pb events. Events are selected based on the presence of a high- $p_{\rm T}$ charged-hadron trigger track within $p_{\rm T,low} < p_{\rm T} < p_{\rm T,high}$, denoted TT{ $p_{\rm T,low}, p_{\rm T,high}$ } ("trigger track," units in GeV/c). For events with multiple such tracks, one track is chosen randomly as the trigger. The $p_{\rm T}$ dependence of the resulting TT distribution corresponds to that of inclusive charged-particle production. The analysis utilizes two TT classes, TT{20,50}, denoted "signal," and TT{5,7}, denoted "reference".

For TT-selected events, jet reconstruction with charged tracks is carried out in two passes, using the $k_{\rm T}$ and anti- $k_{\rm T}$ jet reconstruction algorithms and the $p_{\rm T}$ recombination scheme [26–28]. The jet acceptance is $|\eta_{\rm jet}| < 0.9 - R$ over the full azimuth, with additional selection on jet area to suppress unphysical jets [21]. Jets containing tracks with $p_{\rm T} > 100 \text{ GeV}/c$ are rejected; this rejection has negligible effect on the reported results. There is no other rejection of individual jet candidates.

The first reconstruction pass utilizes the $k_{\rm T}$ algorithm to estimate the event-wise median $p_{\rm T}$ density ρ [21,29]. The signal and reference TT-selected event populations have different hard jet distributions, which influence the ρ distribution [22,23]. Precise correction for uncorrelated background yield in central Pb-Pb collisions requires a shift in the reference-TT ρ distribution, determined by a data-driven procedure with sub-per mil precision [23]. This effect is negligible in pp collisions. The second reconstruction pass generates the jet population for physics analysis, utilizing the anti- $k_{\rm T}$ algorithm with R = 0.2, 0.4, and 0.5. The $p_{\rm T}$ of each second-pass jet is adjusted by a rough estimate of the background contribution ρA_{jet} , where *A* is the jet area. This estimate is refined by unfolding, discussed below.

Recoil jet distributions are normalized by the corresponding number of triggers and are semi-inclusive; absent of background they correspond to the production crosssection ratio for hadron-jet coincidences and inclusive hadrons [21] and are perturbatively calculable. The observable Δ_{recoil} is defined as the difference of such signal-TT and reference-TT distributions [21]:

$$\Delta_{\text{recoil}}(p_{\text{T,jet}}, \Delta \varphi) = \frac{1}{N_{\text{trig}}} \frac{d^2 N_{\text{jet}}}{dp_{\text{T,jet}} d\Delta \varphi} \Big|_{p_{\text{T}}^{\text{trig}} \in \text{TT}_{\text{sig}}} - c_{\text{Ref}} \\ \times \frac{1}{N_{\text{trig}}} \frac{d^2 N_{\text{jet}}}{dp_{\text{T,jet}} d\Delta \varphi} \Big|_{p_{\text{T}}^{\text{trig}} \in \text{TT}_{\text{ref}}}.$$
(1)

The scale factor c_{Ref} is extracted from data following the data-driven procedure described in Refs. [21,23]. After scaling by c_{Ref} , the distribution of background jet yield that is uncorrelated with the trigger is identical in the two terms. The subtraction in Δ_{recoil} therefore provides precise correction for this background yield, enabling recoil jet measurements at low $p_{\text{T,jet}}$ and large *R*.

Multiple hard partonic interactions (MPIs) in the same nuclear collision are independent and do not interfere [30]. MPIs, which generate an uncorrelated trigger hadron and recoil jet in the same event constitute a significant background in the search for large-angle jet deflection, since the MPI-generated $\Delta \varphi$ distribution is uniform, masking any $\Delta \varphi$ -dependent physical effect. However, Δ_{recoil} corrects the yield due to all uncorrelated sources, including MPIs, and no additional correction procedure to account for the MPI contribution is warranted in the analysis.

The measured Δ_{recoil} distribution is smeared in $p_{\text{T,jet}}$ and $\Delta \varphi$ due to detector effects and residual background fluctuations [21,22]. Correction for this smearing is carried out using iterative Bayesian unfolding [31] in one dimension ($p_{\text{T,chjet}}$) for measuring $\Delta_{\text{recoil}}(p_{\text{T,chjet}})$, and in two dimensions ($p_{\text{T,chjet}}, \Delta \varphi$) for measuring $\Delta_{\text{recoil}}(\Delta \varphi)$; see Ref. [23] for details and consistency checks. The largest systematic uncertainty in the corrected Δ_{recoil} distribution for pp collisions is due to tracking efficiency, while that for Pb-Pb collisions is due to the choice of prior used for unfolding.

The measurements are compared to theoretical model calculations incorporating jet quenching. All models generate hard processes using PYTHIA8 (Monash tune [32,33]), but differ in the treatment of jet-medium interactions and QGP medium response. JEWEL [34,35] calculates in-medium scattering using pQCD matrix elements. JETSCAPE [16] incorporates a virtuality-dependent interaction based on MATTER [36,37] and LBT [38,39]. The hybrid model [40] describes weakly coupled jet dynamics perturbatively, with strongly coupled jet-medium interactions based on the

FIG. 1. Distributions of recoil jets with R = 0.2, 0.4, and 0.5 in pp and central Pb-Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV. Upper panels: corrected $\Delta_{\text{recoil}}(p_{\text{T,ch jet}})$ distributions. Lower panels: $I_{\text{AA}}(p_{\text{T,ch jet}})$ (see text). Also shown are calculations based on JETSCAPE [16], JEWEL [34,35], and the Hybrid model [40].

AdS/CFT correspondence. JEWEL calculations optionally include medium response ("recoils on" or "recoils off"), where the recoils on calculation follows the "4MomSub" prescription [41]. The hybrid model likewise optionally includes medium response ("wake") and elastic scattering from discrete scattering centers [19]. Comparison is also made to a leading-order (LO) pQCD calculation with Sudakov resummation, in which medium-induced broadening is controlled by the jet transport coefficient \hat{q} [42].

Figure 1, upper panels, show $\Delta_{\text{recoil}}(p_{\text{T,chjet}})$, the $\Delta_{\text{recoil}}(p_{\text{T,chjet}}, \Delta \varphi)$ distribution integrated over $|\Delta \varphi - \pi| < 0.6$, for R = 0.2, 0.4, and 0.5 in pp and central Pb-Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV. The distributions cover $7 < p_{\text{T,chjet}} < 140$ GeV/*c*, including the lowest reported $p_{\text{T,jet}}$ value for jet measurements in heavy-ion collisions at the LHC. The distributions are qualitatively similar, though with shape differences for $p_{\text{T,chjet}} \lesssim 30$ GeV/*c*.

Figure 1, lower panels, show $I_{AA}(p_{T,ch\,jet})$, the ratio of the Pb-Pb and $pp \Delta_{recoil}(p_{T,ch\,jet})$ distributions. In the range $p_{T,ch\,jet} < 20 \text{ GeV}/c$, I_{AA} is consistent with or above unity for all *R*. For $20 < p_{T,ch\,jet} \lesssim 60 \text{ GeV}/c$, I_{AA} is below unity for R = 0.2 and 0.4, which is usually interpreted as medium-induced yield suppression due to energy loss [21]. The value of I_{AA} is consistent with or above unity at higher $p_{T,ch\,jet}$ for R = 0.2 and 0.4, and at all $p_{T,ch\,jet}$ for R = 0.5. It is shown in Ref. [43] that energy loss of the trigger-side jet can enhance I_{AA} and it is expected that jets with I_{AA} equal to or even above unity may still experience energy loss, consistent with inclusive jet measurements. It also suggests that increasing $I_{AA}(p_{T,ch\,jet})$ with increasing $p_{T,ch\,jet}$ may indicate evolution in the geometric ("surface") bias of vertices which generate the observed high- p_T hadron triggers [23]. The $I_{AA}(p_{T,ch\,jet})$ distributions for R = 0.2 and 0.4 exhibit broad minima near $p_{T,ch\,jet} \sim$ 20–30 GeV/*c*; comparisons with models above and below this minimum are discussed separately.

In the range $p_{T,chjet} > 20 \text{ GeV}/c$, for R = 0.2 and 0.4 JETSCAPE and the hybrid model (all options) exhibit a similar increase in $I_{AA}(p_{T,chjet})$ with increasing $p_{T,chjet}$ as the data. JETSCAPE also reproduces the magnitude of $I_{AA}(p_{T,chjet})$, while the hybrid model predicts a smaller value. JEWEL (recoils off) agrees with the measured $I_{AA}(p_{T,chjet})$ up to 80 GeV/c for R = 0.2 and up to 40 GeV/c for R = 0.4, but underpredicts it at higher $p_{T,chjet}$. JEWEL (recoils on) similarly underpredicts the data in $p_{T,chjet} > 50 \text{ GeV}/c$. For R = 0.5, JETSCAPE describes the data in $p_{T,chjet} > 50 \text{ GeV}/c$, but underpredicts it below that range. JEWEL (recoils on) accurately describes the measured I_{AA} in $p_{T,chjet} > 20 \text{ GeV}/c$ for R = 0.5, while JEWEL (recoils off) underpredicts it.

For $p_{\text{T,chjet}} < 20 \text{ GeV}/c$, the data exhibit an increase in $I_{\text{AA}}(p_{\text{T,chjet}})$ with decreasing $p_{\text{T,chjet}}$ for R = 0.4, with a less significant or negligible increase for R = 0.2 and 0.5. However, the difference in the magnitude of $I_{\text{AA}}(p_{\text{T,chjet}})$ between different R jets is not significant within uncertainties. Notably, the hybrid model with wake-on (both

FIG. 2. Upper panels: Corrected $\Delta_{\text{recoil}}(\Delta \varphi)$ distributions for R = 0.4 in Pb-Pb and pp collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV, for intervals in recoil $p_{\text{T,chjet}}$: [10,20] (left), [20,30] (middle), and [30,50] (right) GeV/c. Lower panels: $I_{\text{AA}}(\Delta \varphi)$. Predictions from JETSCAPE [16], JEWEL [34,35], and the LO pQCD calculation [42] are also shown.

with and without elastic scattering) and JEWEL (recoils on) reproduce the data for R = 0.4. This suggests that the increase in $I_{AA}(p_{T,ch\,jet})$ towards low $p_{T,ch\,jet}$ may arise from medium response to interactions of higher-energy jets that are correlated with the trigger, although these models do less well at reproducing the low- $p_{T,ch\,jet} I_{AA}(p_{T,ch\,jet})$ for R = 0.5 jets, indicating that the redistribution of jet energy is not fully captured by models.

Figure 2, upper panels, show $\Delta_{\text{recoil}}(\Delta \varphi)$, the $\Delta_{\text{recoil}}(p_{\text{T,chjet}},\Delta\varphi)$ distribution projected onto $\Delta\varphi$ in intervals of $p_{T,ch\,jet}$, for R = 0.4 in pp and central Pb-Pb collisions. The lower panels show their ratio, $I_{AA}(\Delta \varphi)$. For $30 < p_{T,ch\,jet} < 50 \text{ GeV}/c$, medium-induced yield suppression $[I_{AA}(\Delta \varphi) < 1]$ is observed, largely independent of $\Delta \varphi$. For $20 < p_{T,chjet} < 30 \text{ GeV}/c$, suppression is observed at $\Delta \varphi \sim \pi$, with a gradual but significant increase of $I_{AA}(\Delta \varphi)$ at larger deviation from $\Delta \varphi \sim \pi$. Notably, for $10 < p_{T,ch\,jet} < 20 \text{ GeV}/c$, a marked medium-induced excess is observed $[I_{AA}(\Delta \varphi) > 1]$, which increases with increasing deviation from $\Delta \phi \sim \pi$. A linear fit of this distribution in the range $0.5\pi < \Delta \varphi < 0.92\pi$, taking into account uncorrelated uncertainties only, has slope -40.5 ± 8.6 , differing by 4.7σ from zero (which corresponds to no medium-induced modification). This is the first observation of strong acoplanarity broadening in the QGP.

The data in Fig. 1, middle panels, and in Fig. 2 are slices of the same two-dimensional distributions $\Delta_{\text{recoil}}(p_{\text{T,jet}}, \Delta \varphi)$.

Note that $I_{AA}(p_{T,chjet})$ is integrated over $|\Delta \varphi - \pi| < 0.6$, corresponding approximately to the rightmost four points in Fig. 2, which should be considered when comparing the figures.

Figure 2, lower panels, also show theoretical calculations. The LO pQCD calculation is consistent with data in $20 < p_{\rm T,ch\,iet} < 50 {\rm ~GeV}/c$ and $2.4 < \Delta \varphi < \pi$ for 13 < $\langle \hat{q}L \rangle < 26 \text{ GeV}^2$, where L is the in-medium path length. JETSCAPE overpredicts the suppression in $20 < p_{T,chjet} <$ 30 GeV/c, but agrees with data in $30 < p_{\rm T,chjet} <$ 50 GeV/c. JEWEL (recoils on) describes both the data shape and magnitude well for all $p_{T,chjet}$ intervals, including the significant broadening in $10 < p_{T,chiet} <$ 20 GeV/c that is not predicted by JEWEL (recoils off). None of the hybrid model variants describes the observed broadening at low $p_{T,ch\,iet}$. These variants generate different magnitude of suppression but underestimate the measured value of I_{AA} in all $p_{T,ch\,iet}$ bins. Only JEWEL (recoils on) correctly reproduces the marked azimuthal broadening at low $p_{\rm T,ch\,jet}$ seen in data.

Figure 3 shows $I_{AA}(\Delta \varphi)$ for R = 0.2, 0.4, and 0.5, for the $p_{T,chjet}$ intervals in Fig. 2. The medium-induced acoplanarity broadening in Fig. 2, left panel, is seen only in the range $10 < p_{T,chjet} < 20 \text{ GeV}/c$, and only for R = 0.4 and 0.5. The value of $I_{AA}(\Delta \varphi)$ is either consistent with unity or suppressed at larger $p_{T,chjet}$ for R = 0.4 and 0.5, and for all

FIG. 3. $I_{AA}(\Delta \varphi)$ for R = 0.2, 0.4 and 0.5, for intervals in recoil $p_{T,chjet}$: [10,20], [20,30], and [30, 50] GeV/c. The central points and systematic uncertainties are offset from the center of the $\Delta \varphi$ intervals for clarity. The vertical dashed gray lines represent the $\Delta \varphi$ interval edges. Predictions from JEWEL are also shown.

measured $p_{T,chjet}$ for R = 0.2. The JEWEL (recoils on) calculation is likewise consistent within uncertainties with all of these data.

Figures 1–3 present the first observation of mediuminduced jet yield excess and acoplanarity broadening in the QGP. The broadening is significant in $10 < p_{T,chjet} < 20 \text{ GeV}/c$ for R = 0.4 and 0.5 but is negligible for R = 0.2, and at larger $p_{T,chjet}$ for all R. This rapid transition in the acoplanarity distribution shape as a function $p_{T,chjet}$ and R is striking. Possible medium-induced acoplanarity broadening mechanisms include jet scattering from QGP quasiparticles; wake effects [44]; and jet splitting.

The latter two mechanisms do not generate perturbatively interpretable jets, with constituents that are softer in $p_{\rm T}$ and spatially more diffuse. In these scenarios, the rate to generate a correlated "jet" with $p_{\rm T,ch\,jet} > 10~{\rm GeV}/c$ may scale approximately with the jet area, i.e., R^2 , resulting in a strong R dependence of the $I_{AA}(\Delta \varphi)$ enhancement at low $p_{\mathrm{T,ch\,jet}}$, as observed. In contrast, a strong R dependence of the $I_{AA}(\Delta \varphi)$ enhancement is not a natural consequence of jet scattering from QGP quasiparticles, which should generate similar effects for R = 0.2, 0.4, and 0.5. The observed systematic dependence therefore disfavors inmedium jet scattering as the primary origin of in-medium acoplanarity broadening. Both JEWEL and the hybrid model describe the observed low- $p_{T,chjet}$ behavior of $I_{AA}(p_{T,chjet})$, only if jet-medium response is included. None of the models considered here successfully describe all available data.

In summary, measurements of semi-inclusive distributions of charged-particle jets recoiling from a high- $p_{\rm T}$ hadron trigger in pp and central Pb-Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV have been reported over a broad kinematic range, including low $p_{\text{T,jet}}$ and large R. A marked medium-induced enhancement in recoil jet acoplanarity is observed for the first time, but only at low $p_{\text{T,jet}}$ for large R; this favors QGP wake effects or jet splitting as the underlying physical mechanism, and disfavors large-angle jet scattering.

Current model calculations incorporating jet quenching do not reproduce all of these observations. Further modeling developments, and their comparison to these and similar data, promise significant new understanding of the mechanisms governing energy transport and the dynamics of the QGP.

We thank Daniel Pablos, Krishna Rajagopal, Zachary Hulcher, Shuyi Wei, and Guangyou Qin for providing theoretical calculations. We thank the JETSCAPE Collaboration for guidance in using the JETSCAPE framework, and Raghav Kunnawalkam Elayavalli for providing the medium parameters for JEWEL simulations. The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: A. I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences, Austrian Science Fund (FWF): [Grant DOI: 10.55776/M 2467-N36] and Nationalstiftung für Forschung, Technologie und Entwicklung, Austria; Ministry of Communications and High Technologies, National Nuclear Research Center, Azerbaijan; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (Finep), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Universidade Federal do Rio Grande do Sul (UFRGS), Brazil; Bulgarian Ministry of Education and Science, within the National Roadmap for Research Infrastructures 2020–2027 (object CERN), Bulgaria; Ministry of Education of China (MOEC), Ministry of Science & Technology of China (MSTC) and National Natural Science Foundation of China (NSFC), China; Ministry of Science and Education and Croatian Science Foundation, Croatia; Centro de Tecnológicas y Desarrollo Aplicaciones Nuclear (CEADEN), Cubaenergía, Cuba; Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic; The Danish Council for Independent Research-Natural Sciences, the VILLUM FONDEN and Danish National Research Foundation (DNRF), Denmark; Helsinki Institute of Physics (HIP), Finland; Commissariat à l'Energie Atomique (CEA) and Institut National de Physique Nucléaire et de Physique des Particules (IN2P3) and Centre National de la Recherche Scientifique (CNRS), France; Bundesministerium für Bildung und Forschung (BMBF) and GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany; General Secretariat for Research and Technology, Ministry of Education, Research and Religions, Greece; National Research, Development and Innovation Office, Hungary; Department of Atomic Energy Government of India (DAE), Department of Science and Technology, Government of India (DST), University Grants Commission, Government of India (UGC) and Council of Scientific and Industrial Research (CSIR), India; National Research and Innovation Agency-BRIN, Indonesia; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) and Japan Society for the Promotion of Science (JSPS) KAKENHI, Japan; Consejo Nacional de Ciencia (CONACYT) y Tecnología, through Fondo de Cooperación Internacional en Ciencia y Tecnología (FONCICYT) and Dirección General de Asuntos del Personal Academico (DGAPA), Mexico; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; The Research Council of Norway, Norway; Commission on Science and Technology for Sustainable Development in the South (COMSATS), Pakistan; Pontificia Universidad Católica del Perú, Peru; Ministry of Education and Science,

National Science Centre and WUT ID-UB, Poland; Korea Institute of Science and Technology Information and National Research Foundation of Korea (NRF), Republic of Korea; Ministry of Education and Scientific Research, Institute of Atomic Physics, Ministry of Research and Innovation and Institute of Atomic Physics and University Politehnica of Bucharest, Romania; Ministry of Education, Science, Research and Sport of the Slovak Republic, Slovakia; National Research Foundation of South Africa, South Africa; Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW), Sweden; European Organization for Nuclear Research, Switzerland; Suranaree University of Technology (SUT), National Science and Technology Development Agency (NSTDA) and National Science, Research and Innovation Fund (NSRF via PMU-B B05F650021), Thailand; Turkish Energy, Nuclear and Mineral Research Agency (TENMAK), Turkey; National Academy of Sciences of Ukraine, Ukraine; Science and Technology Facilities Council (STFC), United Kingdom; National Science Foundation of the USA (NSF) and U.S. Department of Energy, Office of Nuclear Physics (DOE NP), USA. In addition, individual groups or members have received support from European Research Council, Strong 2020-Horizon 2020 (Grant No. 950692, No. 824093), European Union; Academy of Finland (Center of Excellence in Quark Matter) (Grants No. 346327, No. 346328), Finland.

- W. Busza, K. Rajagopal, and W. van der Schee, Heavy ion collisions: The big picture, and the big questions, Annu. Rev. Nucl. Part. Sci. 68, 339 (2018).
- [2] J. W. Harris and B. Müller, QGP signatures revisited, arXiv:2308.05743.
- [3] I. Arsene *et al.* (BRAHMS Collaboration), Quark gluon plasma and color glass condensate at RHIC? The perspective from the BRAHMS experiment, Nucl. Phys. A757, 1 (2005).
- [4] K. Adcox *et al.* (PHENIX Collaboration), Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX Collaboration, Nucl. Phys. A757, 184 (2005).
- [5] B. B. Back *et al.* (PHOBOS Collaboration), The PHOBOS perspective on discoveries at RHIC, Nucl. Phys. A757, 28 (2005).
- [6] J. Adams *et al.* (STAR Collaboration), Experimental and theoretical challenges in the search for the quark gluon plasma: The STAR Collaboration's critical assessment of the evidence from RHIC collisions, Nucl. Phys. A757, 102 (2005).
- [7] ALICE Collaboration, The ALICE experiment—A journey through QCD, arXiv:2211.04384.
- [8] U. Heinz and R. Snellings, Collective flow and viscosity in relativistic heavy-ion collisions, Annu. Rev. Nucl. Part. Sci. 63, 123 (2013).

- [9] S. Borsanyi, Z. Fodor, C. Hoelbling, S. D. Katz, S. Krieg, and K. K. Szabo, Full result for the QCD equation of state with 2 + 1 flavors, Phys. Lett. B 730, 99 (2014).
- [10] A. Bazavov *et al.* (HotQCD Collaboration), Equation of state in (2 + 1)-flavor QCD, Phys. Rev. D **90**, 094503 (2014).
- [11] V. Khachatryan *et al.* (CMS Collaboration), Measurement of the double-differential inclusive jet cross section in proton–proton collisions at $\sqrt{s} = 13$ TeV, Eur. Phys. J. C **76**, 451 (2016).
- [12] M. Aaboud *et al.* (ATLAS Collaboration), Measurement of inclusive jet and dijet cross sections in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, J. High Energy Phys. 05 (2018) 195.
- [13] S. Acharya *et al.* (ALICE Collaboration), Measurements of inclusive jet spectra in *pp* and central Pb-Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV, Phys. Rev. C **101**, 034911 (2020).
- [14] L. Cunqueiro and A. M. Sickles, Studying the QGP with Jets at the LHC and RHIC, Prog. Part. Nucl. Phys. 124, 103940 (2022).
- [15] A. Majumder and M. Van Leeuwen, The theory and phenomenology of perturbative QCD based jet quenching, Prog. Part. Nucl. Phys. 66, 41 (2011).
- [16] S. Cao *et al.* (JETSCAPE Collaboration), Determining the jet transport coefficient *q̂* from inclusive hadron suppression measurements using Bayesian parameter estimation, Phys. Rev. C **104**, 024905 (2021).
- [17] D. A. Appel, Jets as a probe of quark-gluon plasmas, Phys. Rev. D 33, 717 (1986).
- [18] J. P. Blaizot and L. D. McLerran, Jets in expanding quarkgluon plasmas, Phys. Rev. D 34, 2739 (1986).
- [19] F. D'Eramo, K. Rajagopal, and Y. Yin, Molière scattering in quark-gluon plasma: Finding point-like scatterers in a liquid, J. High Energy Phys. 01 (2019) 172.
- [20] E. Rutherford, The scattering of alpha and beta particles by matter and the structure of the atom, Phil. Mag. Ser. 6 21, 669 (1911).
- [21] J. Adam *et al.* (ALICE Collaboration), Measurement of jet quenching with semi-inclusive hadron-jet distributions in central Pb–Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV, J. High Energy Phys. 09 (2015) 170.
- [22] L. Adamczyk *et al.* (STAR Collaboration), Measurements of jet quenching with semi-inclusive hadron + jet distributions in Au + Au collisions at $\sqrt{s_{\text{NN}}} = 200$ GeV, Phys. Rev. C **96**, 024905 (2017).
- [23] S. Acharya *et al.* (ALICE Collaboration), companion article, Measurements of jet quenching using semi-inclusive hadron + jet distributions in *pp* and central Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, Phys. Rev. C **110**, 014906 (2024).
- [24] K. Aamodt *et al.* (ALICE Collaboration), The ALICE experiment at the CERN LHC, J. Instrum. 3, S08002 (2008).
- [25] B. Abelev *et al.* (ALICE Collaboration), Performance of the ALICE experiment at the CERN LHC, Int. J. Mod. Phys. A 29, 1430044 (2014).

- [26] http://fastjet.fr/repo/doxygen-3.1.3/.
- [27] M. Cacciari, G. P. Salam, and G. Soyez, The anti- k_t jet clustering algorithm, J. High Energy Phys. 04 (2008) 063.
- [28] M. Cacciari, G. P. Salam, and G. Soyez, FastJet user manual, Eur. Phys. J. C 72, 1896 (2012).
- [29] M. Cacciari and G. P. Salam, Pileup subtraction using jet areas, Phys. Lett. B 659, 119 (2008).
- [30] J. C. Collins, D. E. Soper, and G. F. Sterman, Factorization of hard processes in QCD, Adv. Ser. Dir. High Energy Phys. 5, 1 (1989).
- [31] T. Adye, Unfolding algorithms and tests using RooUnfold, in PHYSTAT 2011 (CERN, Geneva, 2011), pp. 313–318, arXiv:1105.1160.
- [32] T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel, C. O. Rasmussen, and P. Z. Skands, An introduction to PYTHIA8.2, Comput. Phys. Commun. **191**, 159 (2015).
- [33] P. Skands, S. Carrazza, and J. Rojo, Tuning PYTHIA8.1: The Monash 2013 tune, Eur. Phys. J. C 74, 3024 (2014).
- [34] K. Zapp, G. Ingelman, J. Rathsman, J. Stachel, and U. A. Wiedemann, A Monte Carlo model for 'Jet Quenching', Eur. Phys. J. C 60, 617 (2009).
- [35] K. C. Zapp, JEWEL2.0.0: Directions for use, Eur. Phys. J. C 74, 2762 (2014).
- [36] A. Majumder, Incorporating space-time within mediummodified jet event generators, Phys. Rev. C 88, 014909 (2013).
- [37] A. Majumder, The in-medium scale evolution in jet modification, arXiv:0901.4516.
- [38] Y. He, T. Luo, X.-N. Wang, and Y. Zhu, Linear Boltzmann transport for jet propagation in the quark-gluon plasma: Elastic processes and medium recoil, Phys. Rev. C 91, 054908 (2015); 97, 019902(E) (2018).
- [39] X.-N. Wang and Y. Zhu, Medium modification of γ -jets in high-energy heavy-ion collisions, Phys. Rev. Lett. **111**, 062301 (2013).
- [40] J. Casalderrey-Solana, D. C. Gulhan, J. G. Milhano, D. Pablos, and K. Rajagopal, A hybrid strong/weak coupling approach to jet quenching, J. High Energy Phys. 10 (2014) 019; 09 (2015) 175(E).
- [41] R. Kunnawalkam Elayavalli and K. C. Zapp, Medium response in JEWEL and its impact on jet shape observables in heavy ion collisions, J. High Energy Phys. 07 (2017) 141.
- [42] L. Chen, G.-Y. Qin, S.-Y. Wei, B.-W. Xiao, and H.-Z. Zhang, Probing transverse momentum broadening via dihadron and hadron-jet angular correlations in relativistic heavy-ion collisions, Phys. Lett. B **773**, 672 (2017).
- [43] Y. He, M. Nie, S. Cao, R. Ma, L. Yi, and H. Caines, Deciphering yield modification of hadron-triggered semiinclusive recoil jets in heavy-ion collisions, arXiv:2401 .05238.
- [44] S. Cao and X.-N. Wang, Jet quenching and medium response in high-energy heavy-ion collisions: A review, Rep. Prog. Phys. 84, 024301 (2021).

 S. Acharya[®],¹²⁸ D. Adamová[®],⁸⁷ G. Aglieri Rinella[®],³³ M. Agnello[®],³⁰ N. Agrawal[®],⁵² Z. Ahammed[®],¹³⁶ S. Ahmad[®],¹⁶ S. U. Ahn[®],⁷² I. Ahuja[®],³⁸ A. Akindinov[®],¹⁴² M. Al-Turany[®],⁹⁸ D. Aleksandrov[®],¹⁴² B. Alessandrov[®],⁵⁷ H. M. Alfanda[®], ⁶ R. Alfaro Molina[®], ⁶⁸ B. Ali[®], ¹⁶ A. Alici[®], ²⁶ N. Alizadehvandchali[®], ¹¹⁷ A. Alkin[®], ³³ J. Alme[®], ²¹ G. Alocco^{5,3} T. Alt^{6,65} A. R. Altamura^{6,51} I. Altsybeev^{6,96} J. R. Alvarado^{5,45} M. N. Anaam^{6,6} C. Andrei^{6,46} N. Andreou[®],¹¹⁶ A. Andronic[®],¹²⁷ V. Anguelov[®],⁹⁵ F. Antinori[®],⁵⁵ P. Antonioli[®],⁵² N. Apadula[®],⁷⁵ L. Aphecetche[®],¹⁰⁴ H. Appelshäuser[®],⁶⁵ C. Arata[®],⁷⁴ S. Arcelli[®],²⁶ M. Aresti[®],²³ R. Arnaldi[®],⁵⁷ J. G. M. C. A. Arneiro[®],¹¹¹ I. C. Arsene[®],²⁰ M. Arslandok[®],¹³⁹ A. Augustinus[®],³³ R. Averbeck[®],⁹⁸ M. D. Azmi[®],¹⁶ H. Baba,¹²⁵ A. Badalà[®],⁵⁴ J. Bae[®],¹⁰⁵ M. Arstandok, A. Augustinus, K. Averbeck, M. D. Azmi, H. Baba, A. Badala, J. Baeb,
Y. W. Baek, ⁴¹ X. Baib, ¹²¹ R. Bailhache, ⁶⁵ Y. Bailung, ⁴⁹ A. Balbino, ³⁰ A. Baldisseri, ¹³¹ B. Balis, ² D. Banerjee, ⁴ Z. Banoo, ⁹² R. Barbera, ²⁷ F. Barile, ³² L. Barioglio, ⁹⁶ M. Barlou, ⁷⁹ B. Barman, ⁴² G. G. Barnaföldi, ⁴⁷ L. S. Barnby, ⁸⁶ V. Barret, ¹²⁸ L. Barreto, ¹¹¹ C. Bartels, ¹²⁰ K. Bartho, ³³ E. Bartsch, ⁶⁵ N. Bastido, ¹²⁸ S. Basu, ⁷⁶ G. Batigne, ¹⁰⁴ D. Battistini, ⁹⁶ B. Batyunya, ¹⁴³ D. Bauri, ⁴⁸ J. L. Bazo Alba, ¹⁰² I. G. Bearden, ⁸⁴ C. Beattie, ¹³⁹ P. Becht, ⁹⁸ D. Behera, ⁴⁹ I. Belikov, ¹³⁰ A. D. C. Bell Hechavarria, ¹²⁷ F. Bellini, ²⁶ R. Bellwied, ¹¹⁷ S. Belokurova[®],¹⁴² Y. A. V. Beltran[®],⁴⁵ G. Bencedi[®],⁴⁷ S. Beole[®],²⁵ Y. Berdnikov[®],¹⁴² A. Berdnikova[®],⁹⁵ S. Belokurova⁶, ¹⁰ Y. A. V. Beltran⁶, ¹⁰ G. Bencedi⁶, ¹⁰ S. Beole⁶, ¹⁰ Y. Berdnikova⁶, ¹⁰ A. Bilandzic⁶, ⁹⁶ G. Biro⁶, ⁴⁷ S. Biswas⁶, ⁴ N. Bize⁶, ¹⁰ N. Bize⁶, ¹⁰ J. T. Blair⁶, ¹⁰⁹ D. Blau⁶, ¹⁴² M. B. Blidaru⁶, ⁹⁸ N. Bluhme, ³⁹ C. Blume⁶, ⁶⁵ G. Boca⁶, ^{22,56} F. Bock⁶, ⁸⁸ T. Bodova⁶, ²¹ A. Bogdanov, ¹⁴² S. Boi⁶, ²³ J. Bok⁶, ⁵⁹ L. Boldizsár⁶, ⁴⁷ M. Bombara⁶, ³⁸ P. M. Bond⁶, ³³ G. Bonomi⁶, ^{56,135} H. Borel⁶, ¹³¹ A. Borissov⁶, ¹⁴² A. G. Borquez Carcamo⁶, ⁹⁵ H. Bossi⁶, ¹³⁹ E. Botta⁶, ²⁵ Y. E. M. Bouziani⁶, ⁶⁵ L. Braun-Munzinger⁶, ⁸⁸ M. Bregant⁶, ¹¹¹ M. Broz⁶, ³⁶ G. E. Bruno⁶, ^{32,97} M. D. D. I. I. a. ¹⁴² H. D. ¹⁴² H. D. ¹⁴² H. D. ¹⁴² H. D. ¹ M. D. Buckland[®], ²⁴ D. Budnikov[®], ¹⁴² H. Buesching[®], ⁶⁵ S. Bufalino[®], ³⁰ P. Buhler[®], ¹⁰³ N. Burmasov[®], ¹⁴² Z. Buthelezi[®], ^{69,124} A. Bylinkin[®], ²¹ S. A. Bysiak, ¹⁰⁸ M. Cai[®], ⁶ H. Caines[®], ¹³⁹ A. Caliva[®], ²⁹ E. Calvo Villar[®], ¹⁰² J. M. M. Camacho[®], ¹¹⁰ P. Camerini[®], ²⁴ F. D. M. Canedo[®], ¹¹¹ S. L. Cantway[®], ¹³⁹ M. Carabas[®], ¹¹⁴ A. A. Carballo[®], ³³ B. Carabas[®], ¹¹² J. M. Carabas[®], ¹¹⁴ A. A. Carballo[®], ³³ B. Carabas[®], ¹²⁹ L. Cantway[®], ¹³⁹ M. Carabas[®], ¹¹⁴ A. A. Carballo[®], ³³ B. Carabas[®], ¹¹⁴ A. A. Carballo[®], ³³ B. Carabas[®], ¹¹⁴ A. A. Carballo[®], ³⁴ B. Carabas[®], ¹¹⁴ A. A. Carballo[®], ³⁵ B. Carabas[®], ¹¹⁴ A. A. Carballo[®], ³⁶ B. Carabas[®], ¹¹⁴ A. ³⁶ B. Carbas[®], ¹¹⁴ A. ³⁶ B. ³⁷ B. ³⁶ B. ³⁷ B. ³⁶ B. F. Carnesecchi[®], ³³ R. Caron[®], ¹²⁹ L. A. D. Carvalho[®], ¹¹¹ J. Castillo Castellanos[®], ¹³¹ F. Catalano[®], ^{25,33}
 C. Ceballos Sanchez[®], ¹⁴³ I. Chakaberia[®], ⁷⁵ P. Chakraborty[®], ⁴⁸ S. Chandra[®], ¹³⁶ S. Chapeland[®], ³³ M. Chartier[®], ¹²⁰ S. Chattopadhyay⁰, ¹³⁶ S. Chattopadhyay⁰, ¹⁰⁰ T. Cheng⁰, ^{6,98} C. Cheshkov⁰, ¹²⁹ B. Cheynis⁰, ¹²⁹ V. Chibante Barroso⁰, ³³ D. D. Chinellato⁰, ¹¹² E. S. Chizzali⁰, ^{96,b} J. Cho⁰, ⁵⁹ S. Cho⁰, ⁵⁹ P. Chochula⁰, ³³ D. Choudhury, ⁴² P. Christakoglou⁰, ⁸⁵ C. H. Christensen[®], ⁸⁴ P. Christiansen[®], ⁷⁶ T. Chujo[®], ¹²⁶ M. Ciacco[®], ³⁰ C. Cicalo[®], ⁵³ F. Cindolo[®], ⁵² M. R. Ciupek, ⁹⁸ G. Clai, ^{52,c} F. Colamaria[®], ⁵¹ J. S. Colburn, ¹⁰¹ D. Colella[®], ^{32,97} M. Colocci[®], ²⁶ M. Concas[®], ³³ G. Conesa Balbastre[®], ⁷⁴ Z. Conesa del Valle⁰, ¹³² G. Contin⁰, ²⁴ J. G. Contreras⁰, ³⁶ M. L. Coquet⁰, ¹³¹ P. Cortese⁰, ^{57,134} M. R. Cosentino⁰, ¹¹³
F. Costa⁰, ³³ S. Costanza⁰, ^{22,56} C. Cot⁰, ¹³² J. Crkovská⁰, ⁹⁵ P. Crochet⁰, ¹²⁸ R. Cruz-Torres⁰, ⁷⁵ P. Cui⁰, ⁶ A. Dainese⁰, ⁵⁵
M. C. Danisch⁰, ⁹⁵ A. Danu⁰, ⁶⁴ P. Das⁰, ⁸¹ P. Das⁰, ⁴ S. Das⁰, ⁴ A. R. Dash⁰, ¹²⁷ S. Dash⁰, ⁴⁸ A. De Caro⁰, ²⁹ G. de Cataldo,⁵¹ J. de Cuveland,³⁹ A. De Falco,²³ D. De Gruttola,²⁹ N. De Marco,⁵⁷ C. De Martin,²⁴ S. De Pasquale^(b),²⁹ R. Deb^(b),¹³⁵ R. Del Grande^(b),⁹⁶ L. Dello Stritto^(b),²⁹ W. Deng^(b),⁶ P. Dhankher^(b),¹⁹ D. Di Bari^(b),³² S. De Pasqualeb, R. Debb, R. Del Grandeb, L. Dello Strittob, W. Dengb, P. Dnanknerb, D. Di Barrb,
A. Di Maurob, ³³ B. Diabb, ¹³¹ R. A. Diazb, ^{7,143} T. Dietelb, ¹¹⁵ Y. Dingb, ⁶ J. Ditzelb, ⁶⁵ R. Diviàb, ³³ D. U. Dixitb, ¹⁹ Ø. Djuvsland, ²¹ U. Dmitrievab, ¹⁴² A. Dobrinb, ⁶⁴ B. Dönigusb, ⁶⁵ J. M. Dubinskib, ¹³⁷ A. Dublab, ⁹⁸ S. Dudib, ⁹¹ P. Dupieuxb, ¹²⁸ M. Durkac, ¹⁰⁷ N. Dzalaiova, ¹³ T. M. Ederb, ¹²⁷ R. J. Ehlersb, ⁷⁵ F. Eisenhutb, ⁶⁵ R. Ejima, ⁹³ D. Eliab, ⁵¹ B. Erazmusb, ¹⁰⁴ F. Ercolessib, ²⁶ B. Espagnonb, ¹³² G. Eulisseb, ³³ D. Evansb, ¹⁰¹ S. Evdokimovb, ¹⁴² L. Fabbiettib, ⁹⁶ M. Fagginb, ²⁸ J. Faivreb, ⁷⁴ F. Fanb, ⁶ W. Fanb, ⁷⁵ A. Fantonib, ⁵⁰ M. Faselb, ⁸⁸ A. Feliciellob, ⁵⁷ G. Feofilovb, ¹⁴² L. ⁴⁵ A. Fernández Téllez^(b),⁴⁵ L. Ferrandi^(b),¹¹¹ M. B. Ferrer^(b),³³ A. Ferrero^(b),¹³¹ C. Ferrero^(b),^{57,d} A. Ferretti^(b),²⁵ V. J. G. Feuillard[®],⁹⁵ V. Filova[®],³⁶ D. Finogeev[®],¹⁴² F. M. Fionda[®],⁵³ E. Flatland,³³ F. Flor[®],¹¹⁷ A. N. Flores[®],¹⁰⁹ S. Foertsch⁰,⁶⁹ I. Fokin⁰,⁹⁵ S. Fokin⁰,¹⁴² E. Fragiacomo⁵,⁵⁸ E. Frajna⁰,⁴⁷ U. Fuchs⁰,³³ N. Funicello⁰,²⁹ C. Furget⁰,⁷⁴ A. Furs⁽¹⁾, ¹⁴² T. Fusayasu⁽¹⁾, ⁹⁹ J. J. Gaardhøje⁽¹⁾, ⁸⁴ M. Gagliardi⁽¹⁾, ²⁵ A. M. Gago⁽¹⁾, ¹⁰² T. Gahlaut, ⁴⁸ C. D. Galvan⁽¹⁾, ¹¹⁰ D. R. Gangadharan[®],¹¹⁷ P. Ganoti[®],⁷⁹ C. Garabatos[®],⁹⁸ T. García Chávez[®],⁴⁵ E. Garcia-Solis[®],⁹ C. Gargiulo[®],³³ P. Gasik[®], ⁹⁸ A. Gautam[®], ¹¹⁹ M. B. Gay Ducati[®], ⁶⁷ M. Germain[®], ¹⁰⁴ A. Ghimouz, ¹²⁶ C. Ghosh, ¹³⁶ M. Giacalone[®], ⁵²
G. Gioachin[®], ³⁰ P. Giubellino[®], ^{57,98} P. Giubilato[®], ²⁸ A. M. C. Glaenzer[®], ¹³¹ P. Glässel[®], ⁹⁵ E. Glimos[®], ¹²³ D. J. Q. Goh, ⁷⁷ V. Gonzalez⁽⁰⁾,¹³⁸ P. Gordeev⁽⁰⁾,¹⁴² M. Gorgon⁽⁰⁾,² K. Goswami⁽⁰⁾,⁴⁹ S. Gotovac,³⁴ V. Grabski⁽⁰⁾,⁶⁸ L. K. Graczykowski⁽⁰⁾,¹³⁷ E. Grecka[®],⁸⁷ A. Grelli[®],⁶⁰ C. Grigoras[®],³³ V. Grigoriev[®],¹⁴² S. Grigoryan[®],^{1,143} F. Grosa[®],³³ J. F. Grosse-Oetringhaus[®],³³ R. Grosso[®],⁹⁸ D. Grund[®],³⁶ N. A. Grunwald,⁹⁵ G. G. Guardiano[®],¹¹² R. Guernane[®],⁷⁴ M. Guilbaud[®],¹⁰⁴ K. Gulbrandsen[®],⁸⁴ T. Gündem[®],⁶⁵ T. Gunji[®],¹²⁵ W. Guo[®],⁶ A. Gupta[®],⁹² R. Gupta[®],⁹² R. Gupta[®],⁴⁹

K. Gwizdziel[®],¹³⁷ L. Gyulai[®],⁴⁷ C. Hadjidakis[®],¹³² F. U. Haider[®],⁹² S. Haidlova[®],³⁶ H. Hamagaki[®],⁷⁷ A. Hamdi[®],⁷⁵ Y. Han[®],¹⁴⁰ B. G. Hanley[®],¹³⁸ R. Hannigan[®],¹⁰⁹ J. Hansen[®],⁷⁶ M. R. Haque[®],¹³⁷ J. W. Harris[®],¹³⁹ A. Harton[®],⁹ H. Hassan^(b), ¹¹⁸ D. Hatzifotiadou^(b), ⁵² P. Hauer^(b), ⁴³ L. B. Havener^(b), ¹³⁹ S. T. Heckel^(b), ⁹⁶ E. Hellbär^(b), ⁹⁸ H. Helstrup^(b), ³⁵ H. Hassano, D. Hatzhouadouo, P. Hauero, L. B. Havenero, S. I. Heckelo, E. Hellbaro, H. Helstrupo,
M. Hemmero, ⁶⁵ T. Hermano, ³⁶ G. Herrera Corralo, ⁸ F. Herrmann, ¹²⁷ S. Herrmanno, ¹²⁹ K. F. Hetlando, ³⁵ B. Heybecko, ⁶⁵
H. Hillemannso, ³³ B. Hippolyteo, ¹³⁰ F. W. Hoffmanno, ⁷¹ B. Hofmano, ⁶⁰ G. H. Hongo, ¹⁴⁰ M. Horsto, ⁹⁶ A. Horzyko, ²
Y. Houo, ⁶ P. Hristovo, ³³ C. Hugheso, ¹²³ P. Huhn, ⁶⁵ L. M. Huhtao, ¹¹⁸ T. J. Humanico, ⁸⁹ A. Hutsono, ¹¹⁷ D. Huttero, ³⁹
R. Ilkaev, ¹⁴² H. Ilyaso, ¹⁴ M. Inabao, ¹²⁶ G. M. Innocentio, ³³ M. Ippolitovo, ¹⁴² A. Isakovo, ^{85,87} T. Isidorio, ¹¹⁹
M. S. Islamo, ¹⁰⁰ M. Ivanovo, ¹³ M. Ivanovo, ⁹⁸ V. Ivanovo, ¹⁴² K. E. Iverseno, ⁷⁶ M. Jablonskio, ² B. Jacako, ⁷⁵ N. Jacazioo, ²⁶
P. M. Jacobso, ⁷⁵ S. Jadlovska, ¹⁰⁷ J. Jadlovsky, ¹⁰⁷ S. Jaelanio, ⁸³ C. Jahnkeo, ¹¹¹ M. J. Jakubowskao, ¹³⁷ M. A. Janiko, ¹³⁷ T. Janson,⁷¹ S. Ji[®],¹⁷ S. Jia[®],¹⁰ A. A. P. Jimenez[®],⁶⁶ F. Jonas[®],^{88,127} D. M. Jones[®],¹²⁰ J. M. Jowett[®],^{33,98} J. Jung[®],⁶⁵ M. Jung[®],⁶⁵ A. Junique[®],³³ A. Jusko[®],¹⁰¹ J. Kaewjai,¹⁰⁶ P. Kalinak[®],⁶¹ A. S. Kalteyer[®],⁹⁸ A. Kalweit[®],³³ V. Kaplin[®],¹⁴² M. Jungo, A. Juniqueo, A. Juskoo, J. Kaewjai, P. Kaimako, A. S. Kaiteyero, A. Kaiweito, V. Kapinto,
A. Karasu Uysalo, ^{73,e} D. Karatovico, ⁹⁰ O. Karavichevo, ¹⁴² T. Karavichevao, ¹⁴² P. Karczmarczyko, ¹³⁷ E. Karpechevo, ¹⁴²
M. J. Karwowskao, ^{33,137} U. Kebschullo, ⁷¹ R. Keidelo, ¹⁴¹ D. L. D. Keijdener, ⁶⁰ M. Keilo, ³³ B. Ketzero, ⁴³ S. S. Khadeo, ⁴⁹
A. M. Khano, ¹²¹ S. Khano, ¹⁶ A. Khanzadeevo, ¹⁴² Y. Kharlovo, ¹⁴² A. Khatuno, ¹¹⁹ A. Khuntiao, ³⁶ B. Kilengo, ³⁵
B. Kimo, ¹⁰⁵ C. Kimo, ¹⁷ D. J. Kimo, ¹¹⁸ E. J. Kimo, ⁷⁰ J. Kimo, ¹⁴⁰ J. S. Kimo, ⁴¹ J. Kimo, ⁵⁹ J. Kimo, ⁷⁰ M. Kimo, ¹⁹
S. Kimo, ¹⁸ T. Kimo, ¹⁴⁰ K. Kimurao, ⁹³ S. Kirscho, ⁶⁵ I. Kiselo, ³⁹ S. Kiselevo, ¹⁴² A. Kisielo, ¹³⁷ J. P. Kitowskio, ² J. L. Klay[®],⁵ J. Klein[®],³³ S. Klein[®],⁷⁵ C. Klein-Bösing[®],¹²⁷ M. Kleiner[®],⁶⁵ T. Klemenz[®],⁹⁶ A. Kluge[®],³³ A. G. Knospe[®], ¹¹⁷ C. Kobdaj[®], ¹⁰⁶ T. Kollegger, ⁹⁸ A. Kondratyev[®], ¹⁴³ N. Kondratyev[®], ¹⁴² E. Kondratyuk[®], ¹⁴² J. Konig[®], ⁶⁵ S. A. Konigstorfer[®], ⁹⁶ P. J. Konopka[®], ³³ G. Kornakov[®], ¹³⁷ M. Korwieser[®], ⁹⁶ S. D. Koryciak[®], ² A. Kolligo, ⁸⁷ V. Kovalenko⁹, ¹⁴² M. Kowalski⁹, ¹⁰⁸ V. Kozhuharov⁹, ³⁷ I. Králik⁹, ⁶¹ A. Kravčáková⁹, ³⁸ L. Krcal⁹, ^{33,39} M. Krivda⁹, ^{61,101} F. Krizek⁹, ⁸⁷ K. Krizkova Gajdosova⁹, ³³ M. Kroesen⁹, ⁹⁵ M. Krüger⁹, ⁶⁵ D. M. Krupova⁹, ³⁶ M. Krivda, A. F. Krizeko, K. Krizkova Gajdosovao, M. Kroeseno, M. Krugero, D. M. Krupovao,
E. Krysheno, ¹⁴² V. Kučerao, ⁵⁹ C. Kuhno, ¹³⁰ P. G. Kuijero, ⁸⁵ T. Kumaoka, ¹²⁶ D. Kumar, ¹³⁶ L. Kumaro, ⁹¹ N. Kumar, ⁹¹ S. Kumaro, ³² S. Kunduo, ³³ P. Kurashvilio, ⁸⁰ A. Kurepino, ¹⁴² A. B. Kurepino, ¹⁴² A. Kuryakino, ¹⁴² S. Kushpilo, ⁸⁷ V. Kuskovo, ¹⁴² M. J. Kweono, ⁵⁹ Y. Kwono, ¹⁴⁰ S. L. La Pointeo, ³⁹ P. La Roccao, ²⁷ A. Lakrathok, ¹⁰⁶ M. Lamannao, ³³ A. R. Landouo, ^{74,116} R. Langoyo, ¹²² P. Larionovo, ³³ E. Laudio, ³³ L. Lautnero, ^{33,96} R. Lavickao, ¹⁰³ R. Leao, ^{56,135} H. Leeo, ¹⁰⁵ I. Legrando, ⁴⁶ G. Legraso, ¹²⁷ J. Lehrbacho, ³⁹ T. M. Lelek, ² R. C. Lemmono, ⁸⁶ I. León Monzóno, ¹¹⁰ M. M. Lesch[©], ⁹⁶ E. D. Lesser[©], ¹⁹ P. Lévai[©], ⁴⁷ X. Li, ¹⁰ J. Lien[©], ¹²² R. Lietava[©], ¹⁰¹ I. Likmeta[©], ¹¹⁷ B. Lim[©], ²⁵ S. H. Lim[©], ¹⁷ V. Lindenstruth[©], ³⁹ A. Lindner, ⁴⁶ C. Lippmann[©], ⁹⁸ D. H. Liu[©], ⁶ J. Liu[©], ¹²⁰ G. S. S. Liveraro[®], ¹¹² I. M. Lofnes^(a), ²¹ C. Loizides^(b), ⁸⁸ S. Lokos^(b), ¹⁰⁸ J. Lömker^(b), ⁶⁰ P. Loncar^(b), ³⁴ X. Lopez^(b), ¹²⁸ E. López Torres^(b), ⁷ P. Lu^(b), ^{98,121} F. V. Lugo^(b), ⁶⁸ J. R. Luhder^(b), ¹²⁷ M. Lunardon^(b), ²⁸ G. Luparello^(b), ⁵⁸ Y. G. Ma^(b), ⁴⁰ M. Mager^(b), ³³ A. Maire⁽¹⁾, ¹³⁰ E. M. Majerz,² M. V. Makariev⁽³⁾, ³⁷ M. Malaev⁽³⁾, ¹⁴² G. Malfattore⁽³⁾, ²⁶ N. M. Malik⁽³⁾, ⁹² Q. W. Malik, ²⁰ S. K. Malik⁽³⁾, ⁹² L. Malinina⁽³⁾, ^{143,a,f} D. Mallick⁽³⁾, ^{81,132} N. Mallick⁽³⁾, ⁴⁹ G. Mandaglio⁽³⁾, ^{31,54} S. K. Mandal⁽³⁾, ⁸⁰ V. Manko⁽³⁾, ¹⁴² F. Manso⁽³⁾, ¹²⁸ V. Manzari⁽³⁾, ⁵¹ Y. Mao⁽³⁾, ⁶ R. W. Marcjan⁽³⁾, ² G. V. Margagliotti⁽³⁾, ²⁴ A. Margotti⁽³⁾, ⁵² A. Marín[®], ⁹⁸ C. Markert[®], ¹⁰⁹ P. Martinengo[®], ³³ M. I. Martínez[®], ⁴⁵ G. Martínez García[®], ¹⁰⁴ M. P. P. Martins[®], ¹¹¹ S. Masciocchi[®], ⁹⁸ M. Masera[®], ²⁵ A. Masoni[®], ⁵³ L. Massacrier[®], ¹³² O. Massen[®], ⁶⁰ A. Mastroserio[®], ^{51,133}
O. Matonoha[®], ⁷⁶ S. Mattiazzo[®], ²⁸ A. Matyja[®], ¹⁰⁸ C. Mayer[®], ¹⁰⁸ A. L. Mazuecos[®], ³³ F. Mazzaschi[®], ²⁵ M. Mazzilli[®], ³³
J. E. Mdhluli[®], ¹²⁴ Y. Melikyan[®], ⁴⁴ A. Menchaca-Rocha[®], ⁶⁸ J. E. M. Mendez[®], ⁶⁶ E. Meninno[®], ¹⁰³ A. S. Menon[®], ¹¹⁷ M. Meres⁽⁰⁾, ¹³ S. Mhlanga, ^{69,115} Y. Miake, ¹²⁶ L. Micheletti⁽⁰⁾, ³³ D. L. Mihaylov⁽⁰⁾, ⁹⁶ K. Mikhaylov⁽⁰⁾, ^{142,143} A. N. Mishra⁽⁰⁾, ⁴⁷ D. Miśkowiec⁽⁹⁾⁹⁸ A. Modak⁽⁹⁾, ⁴ B. Mohanty, ⁸¹ M. Mohisin Khan⁽⁹⁾, ^{16,g} M. A. Molander⁽⁹⁾, ⁴⁴ S. Monira⁽⁹⁾, ¹³⁷ C. Mordasini⁽⁹⁾, ¹¹⁸ D. A. Moreira De Godoy⁽⁹⁾, ¹²⁷ I. Morozov⁽⁹⁾, ¹⁴² A. Morsch⁽⁹⁾, ³³ T. Mrnjavac⁽⁹⁾, ³³ V. Muccifora⁽⁹⁾, ⁵⁰ S. Muhuri⁽⁹⁾, ¹³⁶ J. D. Mulligan⁽⁹⁾, ⁷⁵ A. Mulliri⁽⁹⁾, ²³ M. G. Munhoz⁽⁹⁾, ¹¹¹ R. H. Munzer⁽⁹⁾, ⁶⁵ H. Murakami⁽⁹⁾, ¹²⁵ S. Murray⁽⁹⁾, ¹¹⁵ L. Munurio, * J. D. Mulligano, * A. Mullirio, * M. G. Munnozo, * R. H. Munzero, * H. Murakamio, * S. Murrayo, L. Musao, ³³ J. Musinskyo, ⁶¹ J. W. Myrchao, ¹³⁷ B. Naiko, ¹²⁴ A. I. Nambratho, ¹⁹ B. K. Nandio, ⁴⁸ R. Naniao, ⁵² E. Nappio, ⁵¹ A. F. Nassirpouro, ¹⁸ A. Natho, ⁹⁵ C. Nattrasso, ¹²³ M. N. Naydenovo, ³⁷ A. Neagu, ²⁰ A. Negru, ¹¹⁴ E. Nekrasova, ¹⁴² L. Nelleno, ⁶⁶ R. Nepeivodao, ⁷⁶ S. Neseo, ²⁰ G. Neskovico, ³⁹ N. Nicassioo, ⁵¹ B. S. Nielseno, ⁸⁴ E. G. Nielseno, ⁸⁴ S. Nikolaevo, ¹⁴² S. Nikulino, ¹⁴² V. Nikulino, ¹⁴² F. Noferinio, ⁵² S. Noho, ¹² P. Nomokonovo, ¹⁴³ J. Normano, ¹²⁰ N. Novitzkyo, ⁸⁸ P. Nowakowskio, ¹³⁷ A. Nyanino, ¹⁴² J. Nystrando, ²¹ M. Oginoo, ⁷⁷ S. Oho, ¹⁸ A. Ohlson[®], ⁷⁶ V. A. Okorokov[®], ¹⁴² J. Oleniacz[®], ¹³⁷ A. C. Oliveira Da Silva[®], ¹²³ A. Onnerstad[®], ¹¹⁸ C. Oppedisano[®], ⁵⁷ A. Ortiz Velasquez[®], ⁶⁶ J. Otwinowski[®], ¹⁰⁸ M. Oya, ⁹³ K. Oyama[®], ⁷⁷ Y. Pachmayer[®], ⁹⁵ S. Padhan[®], ⁴⁸ D. Pagano[®], ^{56,135} G. Paić⁶, ⁶⁶ S. Paisano-Guzmán⁹, ⁴⁵ A. Palasciano⁹, ⁵¹ S. Panebianco⁹, ¹³¹ H. Park⁹, ¹²⁶ H. Park⁹, ¹⁰⁵ J. Park⁹, ⁵⁹

J. E. Parkkila⁽⁰⁾, ³³ Y. Patley⁽⁰⁾, ⁴⁸ R. N. Patra, ⁹² B. Paul⁽⁰⁾, ²³ H. Pei⁽⁰⁾, ⁶ T. Peitzmann⁽⁰⁾, ⁶⁰ X. Peng⁽⁰⁾, ¹¹ M. Pennisi⁽⁰⁾, ²⁵ S. Perciballi^(a),²⁵ D. Peresunko^(a),¹⁴² G. M. Perez^(a),⁷ Y. Pestov,¹⁴² V. Petrov^(b),¹⁴² M. Petrovici^(a),⁴⁶ R. P. Pezzi^(a),^{67,104} S. Piano[®],⁵⁸ M. Pikna[®],¹³ P. Pillot[®],¹⁰⁴ O. Pinazza[®],^{33,52} L. Pinsky,¹¹⁷ C. Pinto[®],⁹⁶ S. Pisano[®],⁵⁰ M. Płoskoń[®],⁷⁵ M. Planinic,⁹⁰ F. Pliquett,⁶⁵ M. G. Poghosyan[®],⁸⁸ B. Polichtchouk[®],¹⁴² S. Politano[®],³⁰ N. Poljak[®],⁹⁰ A. Pop[®],⁴⁶ M. Planinic, ⁵⁰ F. Pliquett, ⁵⁰ M. G. Poghosyan⁶, ⁵⁰ B. Polichtchouk⁶, ¹² S. Politano⁶, ⁵⁰ N. Poljak⁶, ⁵⁰ A. Pop⁶, ¹⁰ S. Porteboeuf-Houssais⁶, ¹²⁸ V. Pozdniakov⁶, ¹⁴³ I. Y. Pozos⁶, ⁴⁵ K. K. Pradhan⁶, ⁴⁹ S. K. Prasad⁶, ⁴ S. Prasad⁶, ⁴⁹ R. Preghenella⁶, ⁵² F. Prino⁶, ⁵⁷ C. A. Pruneau⁶, ¹³⁸ I. Pshenichnov⁶, ¹⁴² M. Puccio⁶, ³³ S. Pucillo⁶, ⁵² Z. Pugelova, ¹⁰⁷ S. Qiu⁶, ⁸⁵ L. Quaglia⁶, ²⁵ S. Ragoni⁶, ¹⁵ A. Rai⁶, ¹³⁹ A. Rakotozafindrabe⁶, ¹³¹ L. Ramello⁶, ^{57,134} F. Rami⁶, ¹³⁰ T. A. Rancien, ⁷⁴ M. Rasa⁶, ²⁷ S. S. Räsänen⁶, ⁴⁴ R. Rath⁶, ⁵² M. P. Rauch⁶, ²¹ I. Ravasenga⁶, ⁸⁵ K. F. Read⁶, ^{88,123} C. Reckziegel⁶, ¹¹³ A. R. Redelbach⁶, ³⁹ K. Redlich⁶, ^{80,h} C. A. Reetz⁶, ⁹⁸ H. D. Regules-Medel, ⁴⁵ A. Rehman, ²¹ F. Reidt⁶, ³³ H. A. Reme-Ness⁶, ³⁵ Z. Rescakova, ³⁸ K. Reygers⁶, ⁹⁵ A. Riabov⁶, ¹⁴² V. Riabov⁶, ¹⁴² R. Ricci⁶, ²⁹ M. Richter⁶, ²⁰ A. A. Riedel⁶, ⁹⁶ W. Riegler⁶, ³³ A. G. Riffero⁶, ²⁵ C. Ristea⁶, ⁶⁴ M. V. Rodriguez⁶, ³³ M. Packé^{6,45} S. A. Packé^{6,45} K. Packe^{6,46} M. V. Rodriguez⁶, ³⁴ K. M. Rodríguez Cahuantzi[®],⁴⁵ S. A. Rodríguez Ramírez[®],⁴⁵ K. Røed[®],²⁰ R. Rogalev[®],¹⁴² E. Rogochaya[®],¹⁴³ T. S. Rogoschinski[©], ⁶⁵ D. Rohr[©], ³³ D. Röhrich[©], ²¹ P. F. Rojas, ⁴⁵ S. Rojas Torres[©], ³⁶ P. S. Rokita[©], ¹³⁷ G. Romanenko[©], ²⁶ F. Ronchetti[©], ⁵⁰ A. Rosano[©], ^{31,54} E. D. Rosas, ⁶⁶ K. Roslon[©], ¹³⁷ A. Rossi[©], ⁵⁵ A. Roy[©], ⁴⁹ S. Roy[©], ⁴⁸ N. Rubini[©], ²⁶ D. Ruggiano[®], ¹³⁷ R. Rui[®], ²⁴ P. G. Russek[®], ² R. Russo[®], ⁸⁵ A. Rustamov[®], ⁸² E. Ryabinkin[®], ¹⁴² Y. Ryabov[®], ¹⁴² A. Rybicki[®], ¹⁰⁸ H. Rytkonen[®], ¹¹⁸ J. Ryu[®], ¹⁷ W. Rzesa[®], ¹³⁷ O. A. M. Saarimaki[®], ⁴⁴ S. Sadhu[®], ³² S. Sadovsky[®], ¹⁴² J. Saetre⁰,²¹ K. Šafařík⁰,³⁶ P. Saha,⁴² S. K. Saha⁰,⁴ S. Saha⁰,⁸¹ B. Sahoo⁰,⁴⁸ B. Sahoo⁰,⁴⁹ R. Sahoo⁰,⁴⁹ S. Sahoo,⁶² D. Sahu⁽⁰⁾,⁴⁹ P. K. Sahu⁽⁰⁾,⁶² J. Saini⁽⁰⁾,¹³⁶ K. Sajdakova,³⁸ S. Sakai⁽⁰⁾,¹²⁶ M. P. Salvan⁽⁰⁾,⁹⁸ S. Sambyal⁽⁰⁾,⁹² D. Samitz⁽⁰⁾,¹⁰³ I. Sanna[®], ^{33,96} T. B. Saramela, ¹¹¹ P. Sarma[®], ⁴² V. Sarritzu[®], ²³ V. M. Sarti[®], ⁹⁶ M. H. P. Sas[®], ³³ S. Sawan, ⁸¹
 J. Schambach[®], ⁸⁸ H. S. Scheid[®], ⁶⁵ C. Schiaua[®], ⁴⁶ R. Schicker[®], ⁹⁵ F. Schlepper[®], ⁹⁵ A. Schmah, ⁹⁸ C. Schmidt[®], ⁹⁸
 H. R. Schmidt, ⁹⁴ M. O. Schmidt[®], ³³ M. Schmidt, ⁹⁴ N. V. Schmidt[®], ⁸⁸ A. R. Schmier[®], ¹²³ R. Schotter[®], ¹³⁰ A. Schröter[®], ³⁹ H. K. Schinder, M. Schinder, M. Schinder, N. V. Schinder, A. K. Schindere, K. Schötere, A. Schötere, J. Schukrafto, ³³ K. Schweda⁹, ⁹⁸ G. Scioli⁹, ²⁶ E. Scomparin⁹, ⁵⁷ J. E. Seger⁹, ¹⁵ Y. Sekiguchi, ¹²⁵ D. Sekihata⁹, ¹²⁵ M. Selina⁸⁵ I. Selyuzhenkov⁹, ⁹⁸ S. Senyukov⁹, ¹³⁰ J. J. Seo⁹, ^{59,95} D. Serebryakov⁹, ¹⁴² L. Šerkšnytė⁹, ⁹⁶ A. Sevcenco⁹, ⁶⁴ T. J. Shaba⁹, ⁶⁹ A. Shabetai⁹, ¹⁰⁴ R. Shahoyan, ³³ A. Shangaraev⁹, ¹⁴² A. Sharma⁹¹ B. Sharma⁹, ⁹² D. Sharma⁹, ⁴⁸ H. Sharma^{9,55} M. Sharma^{9,92} S. Sharma^{9,77} S. Sharma^{9,92} U. Sharma^{9,92} A. Shatato, ¹³² O. Sheibani, ¹¹⁷ K. Shigaki^{9,93} M. Shimomura, ⁷⁸ J. Shin, ¹² S. Shirinkin^{9,142} Q. Shou^{9,40} Y. Sibiriak^{9,142} S. Siddhanta^{9,53} T. Siemiarczuk[®],⁸⁰ T. F. Silva[®],¹¹¹ D. Silvermyr[®],⁷⁶ T. Simantathammakul,¹⁰⁶ R. Simeonov[®],³⁷ B. Singh⁹,⁹² B. Singh[®],⁹⁶ K. Singh[®],⁴⁹ R. Singh[®],⁸¹ R. Singh[®],⁹² R. Singh[®],⁴⁹ S. Singh[®],¹⁶ V. K. Singh[®],¹³⁶ V. Singhal[®],¹³⁶ T. Sinha[®],¹⁰⁰ B. Sitar[®],¹³ M. Sitta[®],^{57,134} T. B. Skaali,²⁰ G. Skorodumovs[®],⁹⁵ M. Slupecki[®],⁴⁴ N. Smirnov[®],¹³⁹ R. J. M. Snellings[®],⁶⁰ B. State, M. Sittae, T. B. Skaan, C. Skoloduniovse, M. Supeckie, N. Sininove, K. J. M. Sieningse, E. H. Solheim⁶, ²⁰ J. Song⁶, ¹⁷ C. Sonnabend⁶, ^{33,98} F. Soramel⁶, ²⁸ A. B. Soto-hernandez⁶, ⁸⁹ R. Spijkers⁶, ⁸⁵ I. Sputowska⁶, ¹⁰⁸ J. Staa⁶, ⁷⁶ J. Stachel⁶, ⁹⁵ I. Stan⁶, ⁶⁴ P. J. Steffanic⁶, ¹²³ S. F. Stiefelmaier⁶, ⁹⁵ D. Stocco⁶, ¹⁰⁴ I. Storehaug⁶, ²⁰ P. Stratmann⁶, ¹²⁷ S. Strazzi⁶, ²⁶ A. Sturniolo⁶, ^{31,54} C. P. Stylianidis, ⁸⁵ A. A. P. Suaide⁶, ¹¹¹ C. Suire⁶, ¹³² M. Sukhanov⁶, ¹⁴² M. Suljic⁶, ³³ R. Sultanov⁶, ¹⁴² V. Sumberia⁶, ⁹² S. Sumowidagdo⁶, ⁸³ S. Swain, ⁶² I. Szarka⁶, ¹³¹ M. Szymkowski[®], ¹³⁷ S. F. Taghavi[®], ⁹⁶ G. Taillepied[®], ⁹⁸ J. Takahashi[®], ¹¹² G. J. Tambave[®], ⁸¹ S. Tang[®], ⁶ Z. Tang[®], ¹²¹ J. D. Tapia Takaki[®], ¹¹⁹ N. Tapus, ¹¹⁴ L. A. Tarasovicova[®], ¹²⁷ M. G. Tarzila[®], ⁴⁶ G. F. Tassielli[®], ³² A. Tauro[®], ³³ A. Tavira García[®], ¹³² G. Tejeda Muñoz[®], ⁴⁵ A. Telesca[®], ³³ L. Terlizzi[®], ²⁵ C. Terrevoli[®], ¹¹⁷ S. Thakur[®], ⁴ D. Thomas[®], ¹⁰⁹ A. Tavira Garcia[®], ⁷ G. Tejeda Munoz[®], ⁷ A. Telesca[®], ⁷ L. Terlizzi[®], ⁷ C. Terrevoli[®], ⁸ S. Thakur[®], D. Thomas[®], ⁶ A. Tikhonov[®], ¹⁴² N. Tiltmann[®], ¹²⁷ A. R. Timmins[®], ¹¹⁷ M. Tkacik, ¹⁰⁷ T. Tkacik[®], ¹⁰⁷ A. Toia[®], ⁶⁵ R. Tokumoto, ⁹³
K. Tomohiro, ⁹³ N. Topilskaya[®], ¹⁴² M. Toppi[®], ⁵⁰ T. Tork[®], ¹³² V. V. Torres[®], ¹⁰⁴ A. G. Torres Ramos[®], ³² A. Trifiro[®], ^{31,54} A. S. Triolo[®], ^{31,33,54} S. Tripathy[®], ⁵² T. Tripathy[®], ⁴⁸ S. Trogolo[®], ³³ V. Trubnikov[®], ³ W. H. Trzaska[®], ¹¹⁸
T. P. Trzcinski[®], ¹³⁷ A. Tumkin[®], ¹⁴² R. Turrisi[®], ⁵⁵ T. S. Tveter[®], ²⁰ K. Ullaland[®], ²¹ B. Ulukutlu[®], ⁹⁶ A. Uras[®], ¹²⁹ G. L. Usai[®], ²³ M. Vala, ³⁸ N. Valle[®], ²² L. V. R. van Doremalen, ⁶⁰ M. van Leeuwen[®], ⁸⁵ C. A. van Veen[®], ⁹⁵ R. J. G. van Weelden[®],⁸⁵ P. Vande Vyvre[®],³³ D. Varga[®],⁴⁷ Z. Varga[®],⁴⁷ P. Vargas Torres,⁶⁶ M. Vasileiou[®],⁷⁹ A. Vasilev[®],¹⁴² O. Vázquez Doce[®],⁵⁰ O. Vazquez Rueda[®],¹¹⁷ V. Vechernin[®],¹⁴² E. Vercellin[®],²⁵ S. Vergara Limón,⁴⁵ R. Verma,⁴⁸ L. Vermunt[©],⁹⁸ R. Vértesi[©],⁴⁷ M. Verweij[©],⁶⁰ L. Vickovic,³⁴ Z. Vilakazi,¹²⁴ O. Villalobos Baillie[©],¹⁰¹ A. Villani[©],²⁴ A. Vinogradov[©],¹⁴² T. Virgili[©],²⁹ M. M. O. Virta[©],¹¹⁸ V. Vislavicius,⁷⁶ A. Vodopyanov[©],¹⁴³ B. Volkel[©],³³ M. A. Völkl⁰,⁹⁵ K. Voloshin,¹⁴² S. A. Voloshin⁰,¹³⁸ G. Volpe⁰,³² B. von Haller⁰,³³ I. Vorobyev⁰,⁹⁶ N. Vozniuk⁰,¹⁴² J. Vrláková[®],³⁸ J. Wan,⁴⁰ C. Wang[®],⁴⁰ D. Wang,⁴⁰ Y. Wang[®],⁴⁰ Y. Wang[®],⁶ A. Wegrzynek[®],³³ F. T. Weiglhofer,³⁹ S. C. Wenzel[®],³³ J. P. Wessels[®],¹²⁷ J. Wiechula[®],⁶⁵ J. Wikne[®],²⁰ G. Wilk[®],⁸⁰ J. Wilkinson[®],⁹⁸ G. A. Willems[®],¹²⁷ B. Windelband[®], ⁹⁵ M. Winn[®], ¹³¹ J. R. Wright[®], ¹⁰⁹ W. Wu, ⁴⁰ Y. Wu[®], ¹²¹ R. Xu[®], ⁶ A. Yadav[®], ⁴³ A. K. Yadav[®], ¹³⁶

S. Yalcin[®],⁷³ Y. Yamaguchi[®],⁹³ S. Yang,²¹ S. Yano[®],⁹³ Z. Yin[®],⁶ I.-K. Yoo[®],¹⁷ J. H. Yoon[®],⁵⁹ H. Yu,¹² S. Yuan,²¹ A. Yuncu[®],⁹⁵ V. Zaccolo[®],²⁴ C. Zampolli[®],³³ F. Zanone[®],⁹⁵ N. Zardoshti[®],³³ A. Zarochentsev[®],¹⁴² P. Závada[®],⁶³

N. Zardoshu, Y. Zardoshu, Y. Zardoshu, Y. Zardoshu, A. Zardchentsev, P. Zavada, Y. N. Zaviyalov, ¹⁴² M. Zhalovo, ¹⁴² B. Zhango, ⁶ C. Zhango, ¹³¹ L. Zhango, ⁴⁰ S. Zhango, ⁴⁰ X. Zhango, ⁶ Y. Zhang, ¹²¹ Z. Zhango, ⁶ M. Zhaoo, ¹⁰ V. Zherebchevskiio, ¹⁴² Y. Zhi, ¹⁰ D. Zhouo, ⁶ Y. Zhouo, ⁸⁴ J. Zhuo, ^{6,55} Y. Zhu, ⁶ S. C. Zugravelo, ⁵⁷ and N. Zurloo^{56,135}

(ALICE Collaboration)

¹A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation, Yerevan, Armenia ²AGH University of Krakow, Cracow, Poland ³Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, Kiev, Ukraine

⁴Bose Institute, Department of Physics and Centre for Astroparticle Physics and Space Science (CAPSS), Kolkata, India

⁵California Polytechnic State University, San Luis Obispo, California, USA

⁶Central China Normal University, Wuhan, China

⁷Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Havana, Cuba

⁸Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City and Mérida, Mexico

Chicago State University, Chicago, Illinois, USA

¹⁰China Institute of Atomic Energy, Beijing, China

¹¹China University of Geosciences, Wuhan, China

¹²Chungbuk National University, Cheongju, Republic of Korea

¹³Comenius University Bratislava, Faculty of Mathematics, Physics and Informatics, Bratislava, Slovak Republic

¹⁴COMSATS University Islamabad, Islamabad, Pakistan

¹⁵Creighton University, Omaha, Nebraska, USA

¹⁶Department of Physics, Aligarh Muslim University, Aligarh, India

¹⁷Department of Physics, Pusan National University, Pusan, Republic of Korea

¹⁸Department of Physics, Sejong University, Seoul, Republic of Korea

¹⁹Department of Physics, University of California, Berkeley, California, USA

²⁰Department of Physics, University of Oslo, Oslo, Norway

²¹Department of Physics and Technology, University of Bergen, Bergen, Norway

²²Dipartimento di Fisica, Università di Pavia, Pavia, Italy

²³Dipartimento di Fisica dell'Università and Sezione INFN, Cagliari, Italy

²⁴Dipartimento di Fisica dell'Università and Sezione INFN, Trieste, Italy

²⁵Dipartimento di Fisica dell'Università and Sezione INFN, Turin, Italy

²⁶Dipartimento di Fisica e Astronomia dell'Università and Sezione INFN, Bologna, Italy

²⁷Dipartimento di Fisica e Astronomia dell'Università and Sezione INFN, Catania, Italy

²⁸Dipartimento di Fisica e Astronomia dell'Università and Sezione INFN, Padova, Italy

²⁹Dipartimento di Fisica 'E.R. Caianiello' dell'Università and Gruppo Collegato INFN, Salerno, Italy

³⁰Dipartimento DISAT del Politecnico and Sezione INFN, Turin, Italy

³¹Dipartimento di Scienze MIFT, Università di Messina, Messina, Italy

³²Dipartimento Interateneo di Fisica 'M. Merlin' and Sezione INFN, Bari, Italy

³³European Organization for Nuclear Research (CERN), Geneva, Switzerland

³⁴Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Split, Croatia

⁵Faculty of Engineering and Science, Western Norway University of Applied Sciences, Bergen, Norway

³⁶Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic

⁷⁷Faculty of Physics, Sofia University, Sofia, Bulgaria

³⁸Faculty of Science, P.J. Šafárik University, Kŏsice, Slovak Republic

³⁹Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany

⁴⁰Fudan University, Shanghai, China

⁴¹Gangneung-Wonju National University, Gangneung, Republic of Korea

²Gauhati University, Department of Physics, Guwahati, India

⁴³Helmholtz-Institut für Strahlen- und Kernphysik, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany

⁴⁴Helsinki Institute of Physics (HIP), Helsinki, Finland

⁴⁵High Energy Physics Group, Universidad Autónoma de Puebla, Puebla, Mexico

⁴⁶Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania

⁴⁷HUN-REN Wigner Research Centre for Physics, Budapest, Hungary

⁴⁸Indian Institute of Technology Bombay (IIT), Mumbai, India

⁹Indian Institute of Technology Indore, Indore, India

⁵⁰INFN, Laboratori Nazionali di Frascati, Frascati, Italy

⁵¹INFN, Sezione di Bari, Bari, Italy

⁵²INFN, Sezione di Bologna, Bologna, Italy

⁵³INFN, Sezione di Cagliari, Cagliari, Italy

⁵⁴INFN, Sezione di Catania, Catania, Italy

⁵⁵INFN, Sezione di Padova, Padova, Italy

⁵⁶INFN, Sezione di Pavia, Pavia, Italy ⁵⁷INFN, Sezione di Torino, Turin, Italy

⁵⁸INFN, Sezione di Trieste, Trieste, Italy

⁵⁹Inha University, Incheon, Republic of Korea

⁶⁰Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University/Nikhef, Utrecht, Netherlands

⁶¹Institute of Experimental Physics, Slovak Academy of Sciences, Kösice, Slovak Republic

⁶²Institute of Physics, Homi Bhabha National Institute, Bhubaneswar, India

⁶³Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic

⁶⁴Institute of Space Science (ISS), Bucharest, Romania

⁶⁵Institut für Kernphysik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany

⁶⁶Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico City, Mexico

⁶⁷Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil

⁶⁸Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico

⁶⁹iThemba LABS, National Research Foundation, Somerset West, South Africa

⁷⁰Jeonbuk National University, Jeonju, Republic of Korea

⁷¹Johann-Wolfgang-Goethe Universität Frankfurt Institut für Informatik, Fachbereich Informatik und Mathematik, Frankfurt, Germany

²Korea Institute of Science and Technology Information, Daejeon, Republic of Korea

⁷³*KTO Karatay University, Konya, Turkey*

⁷⁴Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS-IN2P3, Grenoble, France

⁷⁵Lawrence Berkeley National Laboratory, Berkeley, California, USA

⁷⁶Lund University Department of Physics, Division of Particle Physics, Lund, Sweden

⁷⁷Nagasaki Institute of Applied Science, Nagasaki, Japan

⁸Nara Women's University (NWU), Nara, Japan

⁷⁹National and Kapodistrian University of Athens, School of Science, Department of Physics, Athens, Greece

⁸⁰National Centre for Nuclear Research, Warsaw, Poland

⁸¹National Institute of Science Education and Research, Homi Bhabha National Institute, Jatni, India

⁸²National Nuclear Research Center, Baku, Azerbaijan

⁸³National Research and Innovation Agency - BRIN, Jakarta, Indonesia

⁸⁴Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark

⁸⁵Nikhef, National institute for subatomic physics, Amsterdam, Netherlands

⁸⁶Nuclear Physics Group, STFC Daresbury Laboratory, Daresbury, United Kingdom

⁸⁷Nuclear Physics Institute of the Czech Academy of Sciences, Husinec-Řež, Czech Republic

⁸⁸Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA

⁸⁹Ohio State University, Columbus, Ohio, USA

⁹⁰Physics department, Faculty of science, University of Zagreb, Zagreb, Croatia

⁹¹Physics Department, Panjab University, Chandigarh, India

⁹²Physics Department, University of Jammu, Jammu, India

⁹³Physics Program and International Institute for Sustainability with Knotted Chiral Meta Matter (SKCM2),

Hiroshima University, Hiroshima, Japan

⁹⁴Physikalisches Institut, Eberhard-Karls-Universität Tübingen, Tübingen, Germany

⁹⁵Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany

⁹⁶Physik Department, Technische Universität München, Munich, Germany

⁹⁷Politecnico di Bari and Sezione INFN, Bari, Italy

⁹⁸Research Division and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH,

Darmstadt, Germany

⁹⁹Saga University, Saga, Japan

¹⁰⁰Saha Institute of Nuclear Physics, Homi Bhabha National Institute, Kolkata, India

¹⁰¹School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom

¹⁰²Sección Física, Departamento de Ciencias, Pontificia Universidad Católica del Perú, Lima, Peru

¹⁰³Stefan Meyer Institut für Subatomare Physik (SMI), Vienna, Austria

¹⁰⁴SUBATECH, IMT Atlantique, Nantes Université, CNRS-IN2P3, Nantes, France

¹⁰⁵Sungkyunkwan University, Suwon City, Republic of Korea

¹⁰⁶Suranaree University of Technology, Nakhon Ratchasima, Thailand

¹⁰⁷Technical University of Košice, Košice, Slovak Republic

PHYSICAL REVIEW LETTERS 133, 022301 (2024)

¹⁰⁸The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland

⁰⁹The University of Texas at Austin, Austin, Texas, USA

¹¹⁰Universidad Autónoma de Sinaloa, Culiacán, Mexico

¹¹¹Universidade de São Paulo (USP), São Paulo, Brazi

¹¹²Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil

¹¹³Universidade Federal do ABC, Santo Andre, Brazil

¹¹⁴Universitatea Nationala de Stiinta si Tehnologie Politehnica Bucuresti, Bucharest, Romania

¹¹⁵University of Cape Town, Cape Town, South Africa

¹¹⁶University of Derby, Derby, United Kingdom

¹¹⁷University of Houston, Houston, Texas, USA

¹¹⁸University of Jyväskylä, Jyväskylä, Finland

¹¹⁹University of Kansas, Lawrence, Kansas, USA

¹²⁰University of Liverpool, Liverpool, United Kingdom

¹²¹University of Science and Technology of China, Hefei, China

¹²²University of South-Eastern Norway, Kongsberg, Norway

¹²³University of Tennessee, Knoxville, Tennessee, USA

¹²⁴University of the Witwatersrand, Johannesburg, South Africa ¹²⁵University of Tokyo, Tokyo, Japan

¹²⁶University of Tsukuba, Tsukuba, Japan

¹²⁷Universität Münster, Institut für Kernphysik, Münster, Germany

¹²⁸Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France

¹²⁹Université de Lyon, CNRS/IN2P3, Institut de Physique des 2 Infinis de Lyon, Lyon, France

¹³⁰Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France, Strasbourg, France

¹³¹Université Paris-Saclay, Centre d'Etudes de Saclay (CEA), IRFU, Départment de Physique Nucléaire (DPhN), Saclay, France

¹³²Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France

³³Università degli Studi di Foggia, Foggia, Italy

¹³⁴Università del Piemonte Orientale, Vercelli, Italy

¹³⁵Università di Brescia, Brescia, Italy

¹³⁶Variable Energy Cyclotron Centre, Homi Bhabha National Institute, Kolkata, India

³⁷Warsaw University of Technology, Warsaw, Poland

¹³⁸Wayne State University, Detroit, Michigan, USA

¹³⁹Yale University, New Haven, Connecticut, USA

¹⁴⁰Yonsei University, Seoul, Republic of Korea

¹⁴¹Zentrum für Technologie und Transfer (ZTT), Worms, Germany

¹⁴²Affiliated with an institute covered by a cooperation agreement with CERN

¹⁴³Affiliated with an international laboratory covered by a cooperation agreement with CERN

^aDeceased.

^bAlso at Max-Planck-Institut fur Physik, Munich, Germany.

^cAlso at Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Bologna, Italy.

^dAlso at Dipartimento DET del Politecnico di Torino, Turin, Italy.

^eAlso at Yildiz Technical University, Istanbul, Türkiye.

^fAlso at An institution covered by a cooperation agreement with CERN.

^gAlso at Department of Applied Physics, Aligarh Muslim University, Aligarh, India.

^hAlso at Institute of Theoretical Physics, University of Wroclaw, Poland.