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Resumo

No rápido avanço do cloud computing, numerosos desafios surgiram, incluindo os custos
de comunicação e o overhead de transferir informações de um host para outro, conhe-
cido como overhead de comunicação. Para mitigar esses problemas e reduzir os custos
de comunicação, o edge computing foi desenvolvido, distribuindo o processamento para
dispositivos finais ou edge. Com o avanço do hardware, começou o desenvolvimento de
machine learning em grande escala, unindo o poder de recursos computacionais em disposi-
tivos terminais com a necessidade de treinar modelos de aprendizagem de máquina usando
dados sensíveis ou privados. Essa convergência levou ao desenvolvimento da aprendiza-
gem federada, uma estratégia robusta para treinar modelos de aprendizagem de máquina
de maneira distribuída, focando na proteção de dados. Neste contexto, o problema do
overhead de comunicação emerge como um problema crítico que precisa ser abordado para
melhorar e sustentar modelos e infraestruturas eficientes. Esta dissertação de mestrado
foca em abordar o overhead de comunicação na aprendizagem federada, desenvolvendo
uma taxonomia para identificar as abordagens atualmente utilizadas na literatura para
resolver esse problema. Na segunda parte, propõe um algoritmo de seleção de clientes vi-
sando reduzir os custos de comunicação baseado em métricas de adequação para escolher
dispositivos ou clientes para treinamento. Por último, introduz um algoritmo de poda de
esparsidade para reduzir o número de parâmetros ou pesos em uma rede neural a ser com-
partilhada com o servidor, focando na eliminação de pesos que podem ser considerados
irrelevantes. Todas essas contribuições visam abordar de maneira sistemática o problema
descrito.



Abstract

With the rapid advancement of cloud computing, various challenges have emerged, includ-
ing the costs associated with communication and the transfer of information from one host
to another, a process known as communication overhead. To alleviate these issues and
reduce communication costs, edge computing has been developed, distributing processing
to end devices or the edge. Furthermore, advancements in hardware have enabled the
development of large-scale machine learning. This environment of computational power
at the terminal devices, combined with the need to train machine learning models with
sensitive or private data, has led to the emergence of federated learning. Federated learn-
ing is an effective strategy for training machine learning models in a distributed manner
with a focus on data protection. Within this context, communication overhead emerges
as a significant challenge that must be addressed to improve and maintain efficient and
sustainable models and infrastructure. This master’s dissertation focuses on tackling the
issue of communication overhead in federated learning by developing a taxonomy to iden-
tify approaches currently being utilized in the literature. Additionally, it proposes a client
selection algorithm aimed at reducing communication costs based on suitability metrics
for choosing appropriate devices or clients for training. Finally, it introduces a sparsity
pruning algorithm to decrease the amount of parameters or weights in a neural network
that are shared with the server, focusing on reducing or nullifying weights that may be
considered irrelevant. All these contributions are aimed at systematically addressing the
aforementioned problem.
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Chapter 1

Introduction

In recent years, the increasing reliance on mobile and edge devices has sparked a significant
interest in deploying Machine Learning (ML) directly on these platforms [46, 72]. This
shift aims to cater to a growing need for AI applications that are both personalized and
capable of delivering immediate responses. In response to this trend, Federated Learning
(FL) has emerged as a pioneering approach [34] that bases the interaction between the
client and the server on a communication mechanism. It facilitates a distributed form of
machine learning by leveraging a potentially vast network of edge devices, also known as
clients, to perform collaborative computation tasks. This model is especially noteworthy
as it obviates the need for aggregating training data in a central repository, thereby
addressing privacy and data centralization concerns.

One significant challenge in FL is the communication overhead, which arises from the
need to transmit model updates instead of raw data due to privacy concerns and the sheer
scale of devices involved [12]. As highlighted by Liet al. [42], the communication between
the server and potentially millions of devices can be much slower than local computation,
making it essential to develop methods that either reduce the number of communication
rounds or decrease the size of the messages sent during each round. Essentially, com-
munication involves transmitting information from one point to another, encompassing
steps like message creation, symbol representation, encoding for transmission, and deliv-
ery to the recipient, where it is decoded and interpreted. However, in FL, this process
can introduce quality degradation due to system imperfections, affecting model perfor-
mance [53, 42, 32]. Therefore, enhancing communication efficiency emerges as a critical
objective to mitigate performance issues and improve the overall effectiveness of FL sys-
tems. Various strategies have been identified in the literature to enhance communication
efficiency in FL scenarios; according to Shahid et al. [62], we have the following strategies.

• Local Update strategy is notable for its emphasis on minimizing necessary com-
munication. It enables devices to perform extensive calculations locally before trans-
mitting updates to the central server, significantly curtailing network traffic and
enhancing the overall efficiency of the FL system [42].

• Client Selection involves selecting a specific subset of devices for participation
in each training round, rather than engaging all available devices. The selection
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criteria—device availability, data quality, and computing capacity—optimize com-
munication efficiency and foster model convergence [38, 21, 19].

• Model Update Reduction strategy focuses on techniques designed to reduce
the frequency and size of model updates exchanged between devices and the server.
Employing data compression techniques, quantization, and efficient coding schemes
achieves this goal, enhancing communication efficiency [62].

• Decentralized Training and Peer to Peer Learning approaches mitigate the
dependency on a central server by facilitating direct communication among devices
for exchanging model updates. Peer learning is particularly effective in distributing
the workload uniformly and utilizing local network connections to enhance effi-
ciency [42].

• Compression Schemes, including advanced quantization, sparsification, and cod-
ing techniques, is crucial. These methods aim to reduce the size of model updates
before their transmission, managing bandwidth limitations and augmenting the scal-
ability of FL [62].

1.1 Motivation

FL offers a promising approach to decentralized ML while addressing privacy concerns.
Improving model performance and managing low-quality data are common challenges
across ML. However, communication efficiency is a unique concern for FL due to its
reliance on data exchange for maintaining privacy. In scenarios where FL replaces cen-
tralized data servers, communication must be exceptionally efficient to facilitate this ex-
change. Therefore, enhancing communication efficiency emerges as a pivotal challenge,
distinguishing FL research within the broader ML discipline [3]. However, its widespread
adoption faces a critical barrier in communication overhead. The considerable exchange
of parameters between devices and the server in FL introduces substantial communication
overhead, recognized as a significant impediment [82].

This overhead, primarily due to the transfer of vast data volumes, escalates communi-
cation costs [4]. To mitigate this challenge, innovative solutions such as client selection
and model pruning have emerged as pivotal strategies. Client selection determines
which clients should participate in the training round based on various criteria, including
the performance of the model [67], data relevance, availability [38], and device capabili-
ties [49, 48]. This selective approach aims to optimize the training process by involving
only the most contributory clients, thereby reducing unnecessary communication and
enhancing system efficiency [35]. Concurrently, strategies for parameter reduction, par-
ticularly model pruning, have gained attention. Model pruning involves systematically
removing non-critical parameters from the model without significantly compromising its
accuracy. This process effectively reduces the size of the models to be communicated,
further curtailing the communication overhead. These approaches mark crucial progress
in curtailing communication overhead, thus enhancing FL’s practicality in diverse appli-
cations [35, 52].
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1.2 Research Goals

The main objective of this dissertation is to address the communication challenges in FL,
considering non-IID scenarios, where data distribution differs among clients. To achieve
this, the following specific objectives have been established:

1. Contributing to FL Literature: Enrich the field with new perspectives and
solutions, based on empirical findings from conducted studies.

2. Enhancing Communication Efficiency in FL: Focus on improving communi-
cation efficiency in federated learning through a novel client selection mechanism
based on data entropy and model divergence.

3. Implementing and Assessing Single-Stage Model Pruning Techniques: De-
velop and evaluate a single-stage model pruning method to reduce communication
overhead while maintaining accuracy in federated learning.

1.3 Problem Statement

In the realm of FL, the core challenges revolve around optimizing communication efficiency
and model accuracy, while safeguarding data privacy. Despite FL’s promise for decentral-
ized machine learning, its practical implementation faces significant hurdles due to the
high communication overhead and challenges in managing heterogeneous data distribu-
tions across devices. This research addresses these crucial issues by developing innovative
approaches for client selection and model pruning, aiming to enhance the overall efficiency
and effectiveness of FL systems.

1.4 Organization of the Dissertation

This dissertation is structured as follows: In Chapter 1, we provide an overview of Feder-
ated Learning, highlighting its importance and the specific challenges this research aims
to address. Chapter 2 discusses foundational concepts and terminologies in FL, setting
the stage for a deeper exploration of the subject matter. In Chapter 3, we review existing
literature on FL, with a focus on communication efficiency and data privacy, outlining
the state of the art and identifying gaps this research intends to fill. Chapter 4 details the
novel strategies proposed in this dissertation, including their theoretical foundation, devel-
opment process, and potential impact on FL. Chapter 5 describes the strategies developed
to tackle communication overhead in Federated Learning, along with the simulation set-
tings used for evaluation. In Chapter 6, we present the findings from the implementation
of the proposed strategies, offering a critical analysis and discussion on their effectiveness,
implications, and areas for improvement. Finally, Chapter 7 presents the conclusions, de-
scribes future work, and identifies potential research opportunities provided by the studies
presented in this dissertation.
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Chapter 2

Definitions and Basic Concepts

This chapter defines key concepts and models crucial to this dissertation. At the core is
Federated Learning (FL), a model that allows devices to collaboratively learn a model
without centralizing data, thus preserving privacy. We also explore Information Theory to
understand and optimize information flow in FL. Additionally, we discuss Neural Network
Pruning, a technique aimed at reducing neural network complexity for FL by minimizing
the parameters exchanged between clients and servers, enhancing efficiency.

2.1 Mathematical Concepts

Mathematics provides the foundation for many techniques and theories in science and
engineering. Among these, norms and metrics stand out as essential tools for quantifying
and analyzing the properties of mathematical objects.

2.1.1 Norms

A norm is a function that assigns a positive length or size to vectors in a vector space,
except for the zero vector, which is assigned a length of zero. Norms are denoted as
∥·∥ and are used to measure the magnitude of vectors, serving as a foundational tool in
optimization problems, regularization techniques, and error measurement [58].

Definition

Formally, a norm on a vector space V over a field F is a function ∥·∥ : V → R that
satisfies the following properties for all u, v ∈ V and all scalars a ∈ F :

1. Non-negativity: ∥v∥ ≥ 0 with equality if and only if v = 0.

2. Scalar multiplication: ∥av∥ = |a|∥v∥.

3. Triangle inequality: ∥u+ v∥ ≤ ∥u∥+ ∥v∥.



17

Common Norms

Norms are integral to multiple facets of Machine Learning, encompassing regularization,
optimization, and the assessment of model performance. The principal norms utilized in
this context include the following:

L1 Norm (Manhattan Distance) The L1 norm of a vector v ∈ Rn is defined as:

∥v∥1 =
n∑

i=1

|vi|,

where vi is the i-th component of v. This norm is also known as the Manhattan distance.

L2 Norm (Euclidean Distance) The L2 norm, or Euclidean norm, of a vector v is
the most familiar:

∥v∥2 =

√√√√ n∑
i=1

v2i .

This norm measures the "straight-line" distance between the origin and the point repre-
sented by v.

Infinity Norm (Maximum Norm) The infinity norm of a vector v is defined as:

∥v∥∞ = max
1≤i≤n

|vi|.

It represents the maximum absolute value of the components of v.

2.1.2 Methods for Optimizing

Optimization lies at the heart of machine learning, providing the essential algorithms that
enable models to learn from data[6]. Optimization techniques guide the model towards
minimizing a loss function (or maximizing an objective function) by iteratively adjusting
model parameters. A primary component of these methods is the learning rate. This tun-
ing parameter determines the step size at each iteration while moving toward a minimum
of a loss function. This function maps an event or values of one or more variables onto a
real number intuitively representing some "cost" associated with the event [16].

• Gradient Descent is a cornerstone optimization technique that iteratively adjusts
parameters to minimize a given objective function. For a function f(θ), where θ

represents the parameters of the model, gradient descent updates θ by moving in
the direction of the negative gradient of the function at the current point:

θnew = θold − α∇f(θold),

where α is the learning rate, controlling the size of the steps taken towards the
minimum [57].
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• Stochastic Gradient Descent (SGD) modifies the traditional gradient descent
approach by updating parameters using the gradient of a single sample or a small
batch of samples. This stochastic nature significantly reduces computational costs
and can help in avoiding local minima, making SGD particularly effective for large-
scale data sets common in machine learning [9].

While these methods are widely used in machine learning algorithms, other techniques
like Adaptive Moment Estimation (Adam), an advanced version of SGD that introduces
an adaptive learning rate for each parameter, can further improve the efficiency and
effectiveness of the training process [68].

2.2 Fundamentals of Machine Learning

Machine Learning (ML) is the foundation of modern Artificial Intelligence (AI) systems,
empowering computers to learn from data, improve through experience, and make deci-
sions based on vast amounts of information. At its core, ML seeks to develop algorithms
that can identify patterns, make predictions, or take actions based on input data, with-
out being explicitly programmed to perform the task [22]. These capabilities are realized
through various learning paradigms and algorithms, which will be discussed in the follow-
ing section.

2.2.1 Learning Paradigms and Algorithms

ML offers a wide range of tools for extracting patterns and insights from data. These
tools are categorized into several core learning paradigms. Traditionally, these paradigms
are divided into supervised, unsupervised, and reinforcement learning [20]. Each of these
paradigms plays a distinct role in addressing different types of problems and employs
specific algorithms to achieve their goals, as detailed below:

• Supervised learning is a machine learning paradigm in which a model is trained on
input data along with corresponding target outputs. This allows the model to learn
the relationship between the inputs and outputs, enabling it to make predictions
on new unseen data. Classification problems, where the objective is to assign input
data to discrete categories, and regression problems, where the goal is to predict
continuous variables, are examples of supervised learning tasks [8].

• Unsupervised learning Unlike supervised learning, unsupervised learning involves
training models on data without labeled responses. The goal is to discover inherent
patterns or groupings in the data, which can be useful for clustering, dimensionality
reduction, or associative tasks. Techniques such as k-means clustering and principal
component analysis (PCA) are common examples [28].

Table 2.1 presents a comparison between supervised and unsupervised learning, high-
lighting their distinct characteristics and applications. Beyond these paradigms, the lit-
erature recognizes additional approaches such as Reinforcement Learning [69] and Semi-
Supervised Learning [14]. These methodologies extend the spectrum of machine learning
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Table 2.1: Comparison of supervised and unsupervised learning.

Feature Description

Supervised Learning

Goal Learn from labeled data to predict or classify new data.
Data Type Requires datasets with labeled inputs.
Tasks Classification: Assign data to predefined categories. Regression:

Predict continuous values.
Examples Digit recognition, spam detection, stock price prediction.
Advantages High accuracy for well-defined tasks.
Challenges Requires manual data labeling, which can be costly and time-

consuming.
Common Algorithms Linear regression, logistic regression, decision trees, SVM, neu-

ral networks, Convolutional Neural Networks(CNN) .

Unsupervised Learning

Goal Discover patterns and structures in unlabeled data.
Data Type Works with unlabeled datasets.
Tasks Clustering: Group similar data. Dimensionality Reduction: De-

crease the complexity of the data space. Density Estimation:
Model the probability distribution of data.

Examples Customer segmentation, social network analysis, anomaly de-
tection.

Advantages Can discover unexpected patterns.
Challenges Can be difficult to interpret results and determine model quality.
Common Algorithms K-means, PCA, independent component analysis (ICA), hierar-

chical agglomerative clustering (HAC).

by incorporating both the exploitation of labeled data and the exploration of data-driven
learning where explicit labels may not be extensively available.

2.2.2 Optimizing Model Performance

Loss functions like Mean Squared Error, Cross-Entropy Loss, and Hinge Loss guide
training. Performance is measured via metrics such as accuracy and MSE. Data pre-
processing and hyperparameter tuning (e.g., batch size, learning rate) are critical
for model accuracy and efficiency.

2.3 Federated Learning

FL represents a paradigm shift in machine learning, emphasizing a decentralized and
collaborative approach. In FL, rather than collecting data and training on a central server,
the training process is distributed across multiple devices or nodes, each with its own data.
This methodology not only preserves data privacy but also leverages the computational
resources of the participating nodes, becoming a powerful solution for scenarios where
data centralization is impractical or undesirable.

Within the scope of FL, a formal mathematical representation of model training can
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be formulated as follows: (i) Consider a set C = {c1, c2, . . . , cD}, where each client ck in
the FL system has a local dataset Dk; (ii) The goal in an FL scenario is to minimize a
global objective function, which is a composition of the loss functions calculated by each
client based on their private data. This composition can be mathematically represented
as:

min
x∈Rt

f(x) =
1

D

D∑
k=1

fk(x;Dk) (2.1)

where fk(x;Dk) denotes the loss value calculated by client k based on their local dataset
Dk.

As can be observed, this representation reinforces the decentralized and collaborative
nature of FL, where each client independently calculates the loss based on their data and
contributes to the training of the global model.

2.3.1 Federated Learning Model

FL models usually necessitate an initial training process, typically encompassing the pri-
mary steps, as depicted in Figure 2.1. Consider, furthermore, that for each trained model,
whether at the local or global level, there are associated weights. This arises from the
fact that they are machine learning models.

Figure 2.1: Visual representation of a typical FL training process.

Figure 2.1 depicts the standard aggregation process employed in federated learning,
wherein client cooperation and server communication are established via the Federated
Learning Model. The combination of data and models that make up the isolated system
ensures data privacy preservation, as communication is limited to the distribution and
uploading of model updates. In each isolated system, each local model is characterized
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by its associated weights w. When updates are received, the server uses an aggregation
algorithm to obtain a global model W distributed among the clients.

2.3.2 The Federated Learning Training Process

The FL training process, as introduced by McMahan et al. [52], embodies a novel approach
to machine learning. This methodology preserves data privacy while leveraging distributed
data sources for model training. Unlike traditional centralized machine learning methods,
FL enables a model to learn from diverse datasets located on various devices without the
need to aggregate data in a central repository.

Initialization and Client Selection

The process begins with the server initializing a global model. This model is then dis-
tributed to a subset of selected clients. The selection is based on criteria such as data
availability, device capability, and previous contributions to the learning process. This
phase ensures that only the most suitable clients participate in the training process, op-
timizing both the efficiency and effectiveness of the learning.

Local Model Training

Upon receiving the global model, each selected client trains the model on its local dataset.
This step leverages the principle of data locality, which refers to processing data close to
where it is generated or stored, ensuring that personal or sensitive data never leaves the
device, thus significantly enhancing privacy and security

Model Updates Aggregation

After local training, clients send their model updates, typically in the form of gradients
or model weights, back to the server. The server aggregates these updates to improve
the global model. The Federated Averaging (FedAvg) algorithm, a common method for
aggregation, computes a weighted average of these updates, facilitating the synthesis of a
more robust and accurate global model.

Iteration and Convergence

The cycle of distributing the global model, conducting local training by clients, and aggre-
gating updates is repeated iteratively. With each iteration, the global model’s accuracy
and performance are enhanced. The process continues until the model converges, achiev-
ing or surpassing predefined performance metrics.

2.3.3 Key Concepts for Communication Optimization in FL

In this part, we define the key concepts that are crucial for understanding communication
overhead reduction strategies in Fl.
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• Compression: The process of reducing the size of data or model updates sent from
clients to the server in order to minimize communication costs.

• Local Updates: A strategy where clients perform several training iterations on
local data before communicating with the server, thus reducing the frequency of
updates and overall communication.

• Adaptive Sparsification: Selecting and transmitting only the most important or
relevant model parameters from the client to the server, reducing the volume of data
exchanged.

• Adaptive Sampling: Dynamically selecting a subset of data or updates based on
their importance or relevance, with the goal of minimizing the amount of transmitted
information.

• Domain Adaptation: Adjusting models to align with new client data distribu-
tions, reducing the need for continuous communication between clients and the
server.

• Clustering Data or Clients: Grouping similar data or clients to optimize com-
munication, allowing updates to be shared within clusters rather than across the
entire network.

• Knowledge Distillation: A technique for transferring knowledge from a larger
model to a smaller one, thereby reducing the size of updates that need to be com-
municated between clients and the server.

• Reduce Model Size: Shrinking the number of model parameters in order to de-
crease the amount of information exchanged during communication rounds.

• Model Aggregation: The process of combining model updates from multiple
clients into a single global model at the server, which helps to minimize the total
communication required.

• Adaptive Scheduling: Adjusting the timing or frequency of communication be-
tween clients and the server based on network conditions or model performance, to
improve communication efficiency.

2.4 Information Theory

The concept of Information Theory, introduced by Claude Shannon in 1948, stands as
a cornerstone in the realms of signal processing, telecommunications, and computer sci-
ence [64]. Shannon’s groundbreaking work laid the foundation for understanding how
information is measured, transmitted, and encoded efficiently.

Information, in the context of Information Theory, is essentially a measure of one’s
uncertainty about an event. The more uncertain or surprised one is about an event,
the more information that event is said to contain. Entropy, denoted as H(X) for a
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random variable X, quantifies this uncertainty. It provides a limit on how much a message
can be compressed without loss of information, embodying the essence of information
efficiency [18].

In the domain of ML, the principles of Information theory find extensive application,
guiding the design and evaluation of algorithms [50].

2.4.1 Applications in Machine Learning

In ML, Information Theory supports many algorithmic strategies and evaluation metrics.
Entropy, for instance, is used in decision tree algorithms to determine the best splits
that will maximize information gain - effectively reducing uncertainty in the dataset’s
classification [10]. Similarly, information mutual between variables indicates how much
knowledge the presence of one variable contributes to understanding another, guiding
feature selection and model complexity [5]. The principles of Information Theory, as
outlined by MacKay [50], find extensive application in guiding the design and evaluation
of machine learning algorithms, highlighting the interplay between entropy, information
gain, and mutual information in the development of efficient and effective models.

2.4.2 Information Theory in FL

FL, with its decentralized approach to model training, places a premium on the efficient
transmission and encoding of information. The challenge of minimizing communication
costs while maintaining model accuracy invokes the principles of Information Theory.
In this setting, strategies to reduce the entropy of model updates or to maximize the
information mutual between local and global models can significantly impact the efficiency
and effectiveness of the learning process [34, 52]. Understanding the theoretical limits of
information transmission helps in designing more efficient federated learning systems,
where the goal is to transmit as much relevant information as possible using the least
amount of communication overhead [35]. The work by Konečnỳ et al. and Smith et
al. illustrates the application of these principles, demonstrating how optimizing the flow
of information between devices and servers is crucial for the scalability and viability of
federated learning models.

2.4.3 Shannon Entropy

Shannon entropy plays a key role in quantifying uncertainty and characterizing the average
information content of a data source, as discussed by Orlandi et al. [55]. The Shannon
entropy is computed as follows.

H(X) = −
n∑

i=1

P (xi) log2 P (xi) (2.2)
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where:

H(X) represents the entropy of the random variable X.

P (xi) is the probability of event xi.

Clients with high-entropy datasets have the potential to enhance the federated learning
model’s performance by providing diverse and informative data.

2.5 Optimizing Client Selection in FL

In FL, the process of selecting clients is crucial for determining the participants in the
model’s distributed training phase [52]. This selection is pivotal for enhancing federated
learning’s overall efficiency and effectiveness, primarily by reducing communication over-
head and safeguarding the global model’s integrity [32]. Optimal client selection strategies
meticulously evaluate factors such as the diversity of data across devices, their computa-
tional power, and the relevance of their data to the specific learning objective at hand.

2.5.1 Factors Influencing Optimal Client Selection

Optimizing client selection involves balancing several critical factors:

• Data Heterogeneity: Clients often hold data that is non-IID (non-independent and
identically distributed), meaning the data across clients can vary significantly. En-
suring that selected clients represent a diverse range of data types is important for
reducing bias and improving the model’s ability to generalize to unseen data.

• Computational Resources: The computational power of client devices can differ
widely. Selecting clients with sufficient computational power ensures that training
tasks are completed in a timely manner without causing delays due to slow devices.

• Communication Capabilities: Clients with poor network conditions can introduce
significant delays in the aggregation process. Optimizing for clients with stable and
high-bandwidth connections helps reduce communication overhead and accelerates
the training rounds.

2.6 Pruning Techniques in Machine Learning

Model pruning is a critical technique in deep learning aimed at reducing model complexity
and enhancing computational efficiency. This section explores various pruning method-
ologies and their implications, and applications within FL environments. Pruning refers
to the process of removing unnecessary parameters from a neural network without signifi-
cantly affecting its performance. As highlighted by Torsten Hoefler et al. , the integration
of pruning techniques can significantly enhance the performance of neural networks by
reducing the redundancy in the model parameters without substantially sacrificing accu-
racy [26]. In the literature focusing on the training process, we find:
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• One-Shot Pruning involves removing parameters at a single instance before the
training process begins, based on certain criteria like weight magnitudes.

• Iterative Pruning contrasts with one-shot by gradually removing parameters
across several training cycles, allowing the model to adapt and potentially recover
performance between pruning steps.

Moreover, Fine-tuning refers to the process of retraining a pruned model to regain or
improve its accuracy by adjusting the remaining parameters with continued training. In
one-shot pruning, this process is often unnecessary.

2.6.1 Structured vs. Unstructured Pruning

• Unstructured Pruning targets individual weights across the network, leading to
sparse matrices without altering the network architecture.

• Structured Pruning removes entire channels or filters, potentially yielding models
that are more hardware-friendly due to the reduction in model dimensions

Table 2.2: Comparative between structured and unstructured pruning.

Aspect Structured Pruning Unstructured Pruning
Target Channels/filters Individual weights
Matrix Dense matrices Sparse matrices
Hardware More friendly Less friendly
Performance May alter significantly Minor changes
Complexity Reduction High Variable
Recovery Requires retraining Easier to recover

Table 2.2 summarizes the main differences between structured and unstructured prun-
ing techniques, highlighting their impact on model performance, hardware compatibility,
and complexity reduction.

Figure 2.2 compares the original network, non-structural pruning, and structural prun-
ing techniques. In Figure 2.2(a), we illustrate the original neural network, where all neu-
rons are connected in a fully dense manner. This serves as the baseline for comparing the
pruning methods. Figure 2.2(b) demonstrates non-structural pruning. In this approach,
individual connections are removed between neurons, while the overall structure of the
network remains intact. The random removal of some connections reduces the model’s
complexity without drastically altering its architecture. In contrast, Figure 2.2(c) shows
structural pruning. This method involves the removal of entire neurons, along with their
associated connections. This significantly changes the architecture by reducing the num-
ber of active neurons, resulting in a more compact network.
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(a) Original network

(b) Non-structural pruning

(c) structural pruning

Figure 2.2: Original network, non-structural pruning, and structural pruning

2.6.2 Model Pruning in Federated Learning

In FL, model pruning techniques are essential for adapting to decentralized data. These
techniques not only aim to compress and personalize models but also reduce communi-
cation and computational costs, thereby enhancing communication efficiency. Crucially,
they maintain model accuracy across distributed devices while preserving data privacy.
Such strategies are specifically designed to operate efficiently within FL scenarios [30, 31].
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Chapter 3

Related Work

This chapter reviews existing research on communication overhead in FL, adopting a
comprehensive approach to understanding its impact and mitigation strategies. It sets
the stage for the innovative solutions introduced in chapter 4. The structure of this
chapter is organized around key issues:

• Communication overhead in FL from a general perspective.

• The role of client selection in minimizing communication overhead.

• Strategies for model pruning and masking to alleviate communication overhead in
FL.

3.1 Perspectives on Communication Overhead in FL:
A Review

The literature on FL addresses communication overhead from various perspectives. How-
ever, much of the existing work tends to focus on specific solutions rather than providing
a comprehensive analysis of the underlying problem. In this section, we take a more
fundamental approach, focusing on understanding the root causes and implications of
communication overhead in FL systems, without being limited to particular strategies or
algorithms. Table 3.1 compiles research that explicitly addresses or mentions communi-
cation overhead, highlighting the attention given to this issue rather than the solutions
proposed. Our goal is to provide a clearer characterization of the problem itself, laying
the groundwork for the development of strategies aimed at addressing communication
challenges in FL.
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Table 3.1: Works focused on communication overhead in FL.

Paper Key Focus Contribution Relation to Communica-
tion Overhead

Abdulrahman et
al. (2021) [2]

Overview of fed-
erated learning

Proposes new tax-
onomies for FL

Explores FL broadly, with
a particular emphasis on
delineating communication
challenges.

Guendouzi et
al. (2023) [23]

Challenges, ag-
gregation meth-
ods

Systematic review of
FL challenges

Highlights the significance
of communication overhead
in the broader spectrum of
FL challenges.

Almanifi et
al. (2023) [3]

Communication
and computa-
tion efficiency

Strategies for enhanc-
ing efficiency in FL

Specifically targets im-
proving communication
efficiency among FL de-
vices.

Wang et
al. (2023) [74]

Communication
compression
techniques

Reviews compression
strategies for dis-
tributed learning

Focuses on reducing the
data transmitted to miti-
gate communication over-
head.

Janbi et
al. (2023) [29]

Distributed AI
taxonomy

Framework for provi-
sioning DAI services

Discusses communication
overhead within the broader
context of DAI provision-
ing.

Pfeiffer et
al. (2023) [56]

FL for con-
strained devices

Surveys FL im-
plementation in
heterogeneous devices

Considers communication
overhead as part of the
challenges in implementing
FL on diverse devices.

Ye et al. (2023)
[76]

Heterogeneity in
FL

Reviews solutions for
HFL challenges

Addresses communication
strategies within heteroge-
neous FL environments.

Soni et al. (2022)
[66]

ML in cloud
computing
paradigms

Taxonomy and review
of ML techniques

Indirectly touches on
communication overhead
through the lens of cloud
computing.

Sabah et
al. (2024) [59]

Model optimiza-
tion in PFL

Survey on optimiza-
tion techniques in
PFL

Focuses on model optimiza-
tion as a means to reduce
communication overhead.

The works compiled in Table 3.1 reflect a diverse range of approaches to address-
ing communication overhead in FL. While many studies, such as [2] and [23], provide
broad overviews and taxonomies of FL, they also emphasize the significance of commu-
nication challenges in distributed systems. More focused contributions, like those in [3]
and [74], specifically target communication efficiency, either through enhanced strategies
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or compression techniques, which are essential for reducing the data transmitted between
devices.

Several works, including [29] and [56], consider communication overhead within the
context of constrained and heterogeneous environments, highlighting the importance of
optimizing communication in scenarios where device resources are limited. Moreover,
studies like [76] delve deeper into how heterogeneity in data and devices impacts com-
munication strategies, showing that addressing non-uniform client participation remains
a critical issue.

The review of the literature indicates that while communication overhead is widely
recognized as a fundamental challenge in FL, the specific strategies to tackle this problem
vary significantly. There is a clear need for solutions that are tailored to specific envi-
ronments, whether focused on constrained devices, heterogeneous data, or system-wide
optimizations, as different approaches may be required depending on the nature of the
FL system.

3.2 Client Selection Strategies

This section explores various strategies for selecting clients in federated learning envi-
ronments. Effective client selection is crucial for optimizing learning outcomes, reducing
communication overhead, and ensuring the scalability of federated learning systems. We
review criteria and algorithms proposed for selecting clients that contribute most effec-
tively to the learning process, taking into consideration factors such as data quality,
availability, and computational capabilities.

A notable approach is CMFL (Communication-Mitigated Federated Learning) intro-
duced by Wang et al. [72]. CMFL employs sign-based metrics to determine whether to
transmit local updates to the server, contingent on a threshold. This threshold is reliant
on data distribution and necessitates an exploratory investigation. CMFL also guarantees
convergence. In contrast, EntropicFL dynamically computes the threshold in each round
using divergence weights between local and global models, allowing each client to deter-
mine whether to send updates to the server, consequently reducing the communication
overhead.

Zhao et al. [81], weight divergence in non-IID data is examined, revealing higher
divergence compared to IID data. They propose enhancing accuracy in non-IID data by
establishing a shared, small global dataset among clients. Our research leverages model
divergence to detect irrelevant client updates.

The FedMCCS framework, introduced by Abdulrahman et al. in their 2021 work
(Abdulrahman, 2021) [1], focuses primarily on improving client selection and participa-
tion in federated learning, particularly addressing issues related to client diversity and
resource constraints. However, one significant aspect that has not been addressed in this
framework is the optimization of client model update efficiency during the federated learn-
ing process. In our research, we introduce an approach where we integrate a divergence
model to predict the influence of each client’s update on the global model and decide if
this contribution is relevant or irrelevant to consider communicating to the server.
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CSFedAvg in [80] utilizes weight divergence to measure the non-iid degree and prefers
participants with lower divergence. However, it necessitates server-side model training
and auxiliary data, offering no communication overhead reduction assurance. In our pro-
posal, clients determine server updates based on weight divergence criteria, and reducing
communication overhead is guaranteed.

In the work by Orlandi [55], they introduce FedAvgBE a framework designed to mit-
igate the impact of non-IID by identifying problematic data blocks within clients’ local
datasets using mean global entropy calculations. While FedAvgBE effectively reduces
communication costs, it falls short in addressing the issue of “communication overhead”.
This oversight could potentially necessitate an increase in the number of training rounds
or the addition of more local epochs to improve the model’s accuracy.

In the state of the art, the reduction of “communication overhead” is approached from
multi-objective perspectives and through data analysis to establish server update crite-
ria. However, it is important to note that data analysis and the search for appropriate
thresholds may require additional experiments in some cases. This article presents En-
tropicFL, an approach designed to leverage entropy metrics for client selection, allowing
us to gauge the data uncertainty associated with each client’s dataset and select suit-
able participants for federated learning. Moreover, our methodology establishes criteria
on the client side to determine whether an update should be communicated, effectively
reducing communication overhead. This dual-pronged approach enhances the extraction
of valuable insights from client data while safeguarding data privacy and optimizes the
communication process.

3.3 Model Pruning

Here, we examine the techniques of model pruning strategies to further reduce the compu-
tational and communication load in FL. Model pruning involves systematically removing
less significant parameters from neural networks to create sparser models that require less
communication bandwidth for updates. Masking strategies, on the other hand, focus on
selectively updating only the most impactful parameters. Both approaches aim to stream-
line model training and deployment across distributed networks, thereby enhancing the
efficiency of FL systems.

This section describes a set of related works considering the problem of reducing com-
munication cost based on model pruning techniques. For instance, FedMP is an adaptive
model pruning framework in FL, which enhances both resource efficiency and model ac-
curacy [31]. The solution excels in heterogeneous scenarios, delivering performance up to
4.1 times faster than other methods. However, challenges such as limited communication
bandwidth and device heterogeneity were previously overlooked. Namely, this indicates
the need for more efficient solutions that address these challenges in FL environments.
FedMP, while innovative in FL with adaptive pruning in heterogeneous environments,
faces challenges. Its adaptation to each device increases implementation complexity and
may be problematic in environments with a diversity of devices. Moreover, this adaptabil-
ity can cause variations in model quality among nodes, potentially affecting the coherence
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and generalization of the global model.
Li et al. [41] introduce LotteryFL, an approach that adapts the lottery ticket hypothe-

sis to the context of FL. This hypothesis posits that it is feasible to identify sub-networks
(winning tickets) that perform as well or better than the unpruned network and with
high generalization capability. Thus, LotteryFL focuses on both model personalization
and communication cost reduction. This allows each client to train a specialized sub-
network to enable efficient communication. LotteryFL was tested on non-IID datasets,
where it showed notable improvements in personalization and communication efficiency
compared to other approaches. This methodology is particularly innovative in address-
ing the challenges associated with non-IID data distribution in FL. However, LotteryFL
presents some drawbacks, such as excessive personalization that may limit generaliza-
tion and the identification/training of optimal sub-networks for each client, which can be
complex and resource-intensive.

Lee et al. [40] introduced a method for pruning neural networks before training, called
SNIP. This approach, based on connection sensitivity, identifies structurally important
connections, allowing for a significant reduction in network complexity without the need
for iterative cycles of pruning and retraining. It is applicable to various architectures,
including convolutional, residual, and recurrent networks. The method offers simplicity
and versatility, making it robust to architectural variations and eliminating the need for
pre-training and complex pruning schedules. However, this approach is centralized and
may encounter scalability issues.

Jiang et al. [30] introduced PruneFL, a FL approach that features adaptive and
distributed parameter pruning. The approach aims to efficiently train models on edge
devices with limited computational and communication resources. PruneFL achieves this
by adapting the model size during training, reducing both communication and computa-
tional overhead. Furthermore, it incorporates initial pruning on a selected client, followed
by additional distributed pruning during the FL process. The approach effectively main-
tains model accuracy while significantly reducing training time. However, selecting only
one client for pruning may introduce bias.

Isik et al. [27] presented Federated Probabilistic Mask Training (FedPM). This so-
lution improves communication efficiency in FL by training a stochastic binary mask
instead of the model weights. It maintains the weights at their initial random values
and discovers an ideal sparse random network within the original dense network. While
this is not a model pruning technique, it involves searching for subnetworks within dense
architectures, aiming to optimize communication without altering the entire model struc-
ture. This approach shows improvements in accuracy, communication efficiency, and con-
vergence speed, making it suitable for scenarios with limited communication resources.
However, its use may degrade other trained model properties, such as fairness, robustness,
and data leakage. Moreover, the approach is complex to implement compared to SNIP.

Vallapuram et al. [70] introduced a FL framework that addresses challenges such
as statistical heterogeneity and resource constraints on client devices, called HideNSeek.
The approach combines server-side pruning at initialization and the use of a signal super-
mask, where the terms satisfy the condition of belonging to the set {−1, 1}. HideNSeek
employs one-shot pruning on the server side to determine a sub-network, enabling faster
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model convergence with compression rates similar to existing methods. HideNSeek re-
duces communication cost while maintaining superior learning capability for data with
diverse heterogeneities. However, bias may occur when performing server-side pruning.
Moreover, HideNSeek’s performance decreases in scenarios with high data heterogeneity.

Chang et al. [13] propose a model pruning method for FL to address local computation
and communication bottlenecks, while maintaining accuracy comparable to that of the
original model. The method improves communication efficiency by reducing the number of
transmitted model parameters and optimizing both the pruning ratio and device selection.
The server determines the number of model layers, K, for which clients are required to
randomly send updates. After collecting the local model parameters from the clients, the
server separates the parameters of each layer for aggregation, based on the current layer’s
parameters.



33

Chapter 4

Proposed and developed strategies

This chapter presents our strategies to address the challenge of communication overhead
in FL. Our approach encompasses several key strategies designed to optimize the efficiency
and effectiveness of FL processes.

We propose a comprehensive taxonomy designed to classify strategies to reduce com-
munication overhead in FL. This taxonomy serves as a framework for understanding
and categorizing various approaches, facilitating a clearer insight into the landscape of
communication efficiency in federated learning. Through this taxonomy, we aim to high-
light the diverse methodologies employed to tackle communication challenges, providing
a structured overview of the field’s current state and future directions.

The first strategy, EntropicFL, is an algorithm for client selection in FL. This algo-
rithm enhances the decision-making process, allowing clients to determine the relevance
and necessity of communicating updates from the client to the server during the FL pro-
cess. This selective participation is crucial for minimizing unnecessary communications,
reducing overhead, and improving overall system performance.

Additionally, we introduce FedSNIP, a strategy focused on reducing the amount of
parameters that must be communicated between clients and the server. This is achieved
through a neural network pruning technique, which effectively decreases the complexity of
the model without sacrificing accuracy. By pruning redundant or less significant param-
eters, FedSNIP ensures that only essential information is transmitted, further alleviating
the communication burden.

4.1 Taxonomy in Communication Overhead in Feder-
ated Learning

In this part, we present a structured overview of our taxonomy, categorized into three
main areas based on the operational domain: client-side strategies, server-side strategies,
and hybrid strategies. Each area addresses unique challenges in reducing communication
overhead, employing specific techniques and methodologies to enhance federated learning
efficiency.
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4.1.1 Review Technique

This section outlines the methodology employed to conduct a comprehensive literature
review focusing on communication overhead strategies in federated learning. It details
the electronic databases and digital platforms leveraged for the search and acquisition of
relevant scholarly articles. Furthermore, it elucidates the selection of general and specific
keywords pivotal for identifying pertinent literature, as well as the criteria and processes
adopted for the qualitative assessment of these articles.

4.1.2 Search Criteria

The systematic approach to this literature, was designed to encompass a broad spectrum
of research contributions within the domain of FL, particularly emphasizing strategies
that address communication efficiency. Recognized electronic databases such as IEEE
Xplore, ACM Digital Library, and ScienceDirect served as primary sources for retrieving
articles, supplemented by targeted searches on Google Scholar to ensure comprehensive
coverage.

Keywords and search terms were meticulously chosen to capture the multifaceted
nature of communication overhead in federated learning. These included but were not
limited to “federated learning communication efficiency”, “data compression in federated
learning”, “client-side optimization in federated learning”, “server-side aggregation strate-
gies”, and “hybrid communication strategies in federated learning”. The search strategy
was iteratively refined to include emerging terms and concepts discovered during the initial
review phases.

A multistep assessment procedure was implemented to ascertain the relevance and
quality of the articles. Initially, titles and abstracts were screened to exclude studies
not directly related to communication strategies in federated learning. Subsequently, a
thorough evaluation of the full text of selected articles was conducted, focusing on the
novelty, methodological rigor, and impact of the findings. Special attention was given to
studies that proposed innovative approaches, provided empirical evidence of effectiveness,
or contributed significantly to the theoretical understanding of communication challenges
in FL environments.

Table 4.1: Research question and motivation focused on communication overhead in FL.

# Research Question Motivation
1 Which strategies and techniques

have been proposed to reduce
communication overhead in feder-
ated learning?

Review existing and
emerging solutions for
minimizing communi-
cation costs.

4.1.3 Overview of the Taxonomy

Based on the analysis of existing literature and the process describe in subsection 4.1.2,
we have selected key and representative articles to construct the taxonomy depicted in
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Figure 4.1. This taxonomy illustrates the strategies employed by clients, servers, or both
to minimize communication overhead in FL.

Taxonomy
of Commu-

nication
Overhead

Client-Side
Strategies

Hybrid
Strategies

Server-Side
Strategies

* Compression
* Local Updates

* Adaptive
Sparsification
* Adaptive
Sampling
* Domain

Adaptation

Clustering
data or clients

Knowledge
Distillation

Reduce
model size

Model Ag-
gregation
Adaptive

Scheduling

Figure 4.1: Visual taxonomy of communication overhead strategies in federated learning.

• Client-Side Strategies Focus on reducing the data size transmitted from clients
to the server. This includes data compression techniques and local model update to
minimize the frequency and size of communications.

• Server-Side Strategies Aim at optimizing the aggregation process and managing
communications from the server’s perspective. Strategies involve efficient model
aggregation and adaptive scheduling to handle incoming client updates.

• Hybrid Strategies Involve coordinated efforts between clients and the server to
jointly optimize communication efficiency. These strategies balance computational
load and communication requirements across the federated network.

4.1.4 Strategies the literature for Reducing Communication Over-
head

This part of disertation provides a synthesis of research strategies aimed at addressing
the challenges of reducing communication overhead, as outlined in Table 4.1.
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Table 4.2: Overview of recent FL research categorized by strategies and approaches.

Paper Category Subcategory Description
Wang et
al. [72]

Client-Side Local Model Up-
dates

Offers a feedback system for
clients to synchronize their up-
dates with overall trends, leading
to significant boosts in communi-
cation efficiency and reducing the
quantity of updates to the server.

Li et
al. [43]

Hybrid
Strategies

Clustering FedOES surpasses federated aver-
aging by employing cluster train-
ing and top-k gradient sparsifi-
cation, enhancing communication
efficiency and reducing overhead
through gradient compression.

Wen et
al. [75]

Hybrid
Strategies

Knowledge Dis-
tillation

Introduces Fed2KD, a concise,
communication-efficient FL
framework leveraging Two-step
Knowledge Distillation to tackle
communication bottlenecks and
non-IID data challenges in IoT.

Lyu et
al. [47]

Hybrid
Strategies

Knowledge Dis-
tillation

Proposes a knowledge
distillation-based framework
for federated learning that fa-
cilitates collaborative learning
across heterogeneous clients and
servers with diverse model struc-
tures, architectures, and resource
capabilities.

Mohamed
et al. [54]

Server-Side Adaptive
Scheduling

Proposes an algorithm to signifi-
cantly lower communication over-
head and enhance convergence in
FL.

Wang et
al. [71]

Client-Side Adaptive Sparsi-
fication

An algorithm that enhances FL
efficiency through adaptive gradi-
ent sparsification, drastically cut-
ting the data volume transmitted
to the central server and boosting
communication effectiveness.

Continued on next page
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Table 4.2 – continued from previous page
Paper Category Subcategory Description
Wang et
al. [73]

Client-Side Adaptive Sam-
pling

Introducing two novel
communication-efficient learning
algorithms, rFedAvg and rFe-
dAvg+, which surpass current
methods in reducing communica-
tion rounds.

Jiang et
al. [30]

Client-Side Reduce Model
Size

Introduces an innovative Fl
method that maintains accuracy
on par with the original model
while enhancing both commu-
nication and computational
efficiency during training and
inference phases.

Chen et
al. [15]

Client-Side Compression Minimize communication over-
head in federated learning by
leveraging data normalization
and exploiting statistical prop-
erties of local gradients to
cut both computational and
communication costs.

Liu et
al. [44]

Server-Side Model Aggrega-
tion

Adaptive quantization dynami-
cally adjusts quantization reso-
lution based on gradient norm
changes per training round, while
heterogeneous quantization as-
signs lower resolutions to slower
clients, aligning training times
across devices to alleviate com-
munication bottlenecks.

Shu et
al.[65]

Client-Side Adaptive Sam-
pling

Proposed an adaptive sampling
method for federated learning
that efficiently balances compu-
tation and communication, sig-
nificantly cutting communication
costs while maintaining an opti-
mal accuracy-efficiency trade-off.

Continued on next page
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Table 4.2 – continued from previous page
Paper Category Subcategory Description
Zhou et
al [83]

Hybrid
Strategies

Knowledge Dis-
tillation

A local model pruning and
bidirectional distillation (Bi-
distillation) strategy is designed
for efficient training, alongside
a global model splitting and
lightweight data augmentation
approach that optimizes aggre-
gation weights within a divided
neural network structure (en-
coder and classifier) for targeted
improvement. This integrated
method significantly cuts com-
munication costs and mitigates
the non-IID issue.

Lou et
al. [45]

Client-Side Clustering Introduce the DFL-DF tech-
nique, blending data feature
transfer with neighbor selection
to tackle high communication ex-
penses and non-IID local datasets
efficiently.

Yue et
al [78]

Client-Side Compression Introduce FedVote an innova-
tive federated learning approach
that enhances communication ef-
ficiency, learning dependability,
and deployment speed, while also
improving resistance to Byzan-
tine attacks.

Zhang et
al [79]

Client-Side Adaptive Sparsi-
fication

Introduce a stochastic gradient
descent algorithm with a delay
compensation feature (FedDgd)
optimized for asynchronous feder-
ated training.

Sattler et
al. [61]

Client-Side Adaptive Sam-
pling

Introducing Sparse Ternary Com-
pression (STC), a tailored frame-
work for federated learning that
enhances top-k gradient sparsi-
fication with innovative down-
stream compression, ternariza-
tion, and efficient Golomb encod-
ing for weight updates.

Continued on next page
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Table 4.2 – continued from previous page
Paper Category Subcategory Description
Kang et
al. [33]

Client-Side Domain Adapta-
tion

Introduces a Federated Domain
Adaptation framework merging
FL with Unsupervised Domain
Adaptation, offering optimization
strategies to lower both computa-
tion and communication burdens
during training.

Sattler et
al [60]

Hybrid
Strategies

Knowledge Dis-
tillation

Introduces Federated Distillation
as an innovative approach within
Federated Learning, character-
ized by unique communication
properties.

Yue et
al [77]

Hybrid
Strategies

Knowledge Dis-
tillation

Introduces a predictive coding
compression approach for feder-
ated learning that dynamically
selects predictors to enhance com-
pression efficiency, substantially
lowering bandwidth and commu-
nication expenses.

Mao et
al [51]

Client-Side Compression Introduces an efficient FL frame-
work Adaptive Quantized Gra-
dient (AQG) that dynamically
modifies quantization levels in re-
sponse to local gradient updates,
optimizing the use of local data
distribution heterogeneity to min-
imize unnecessary data transmis-
sion.

Table 4.2 summarizes the primary focus areas within FL, highlighting the diverse meth-
ods employed to enhance communication efficiency, model performance, and adaptability
across various client and server-side implementations.

In examining the taxonomy generated, it becomes evident that most approaches are
predominantly focused on the client side, followed by hybrid strategies. This observation
aligns well with the underlying paradigm of Edge Computing, which emphasizes shifting
computational processes towards the edge devices. Such a trend underscores the growing
emphasis on leveraging the computational capabilities of edge devices, thereby minimizing
the reliance on central servers and reducing communication overheads.

Furthermore, the analysis reveals that hybrid strategies play a pivotal role in refining
the model’s performance and efficiency. These strategies primarily concentrate on op-
timizing the identification of hyperparameters and thresholds, which are crucial for the
adaptive tuning of federated learning models. Through such optimization, it is possible to
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achieve significant improvements in model accuracy and generalization while simultane-
ously addressing challenges related to scalability and heterogeneity of data distributions.
The focus on hybrid strategies highlights the ongoing efforts to balance between leverag-
ing edge devices capabilities and the need for centralized coordination to achieve optimal
federated learning outcomes.

4.2 EntropicFL

This section presents the system model and outlines the design of our metrics-based
approach in EntropicFL, which aims to reduce communication overhead through client
selection and criteria for determining updates to submit to the server. Our approach
builds on the concepts of statistical and system heterogeneity in client selection discussed
by Fu et al. [21]. Specifically, we incorporate the Model-Based Utility Measurement to
effectively address these challenges.

4.2.1 Determining Update Relevance

One of the key challenges in FL is determining the relevance and impact of each client’s
update on the global model. This becomes more difficult when client updates are un-
reliable, as this can lead to model divergence, hindering efficient learning and delaying
convergence, as noted by Shanmugarasa et al. [63]. Additionally, the heterogeneity of
data and devices complicates the situation further, making it essential to measure the
similarity or divergence between local and global models. Various metrics can be used
to assess this and decide whether local updates should be transmitted to the server. In
EntropicFL, we use the following metrics:

• Normalized Model Divergence refers to a computational approach that quantifies
the dissimilarity between local and global models by employing a particular norm.
It calculates the mean value of a norm function applied to the weight disparity
between client i and the global model. Specifically, when utilizing the L1 norm, the
equation is as follows:

dvi =
1

|w|

|w|∑
j=1

|wij − w̄j

w̄j

| (4.1)

Where, w represents the model’s weights, while w denotes the weights of the global
model. The terms wij and wj refer to the j-th weight of client i and the global
model, respectively. A small value implies a close alignment between the models,
while a larger distance implies a significant discrepancy.

Our approach employs the Normalized Model Divergence metric with a threshold com-
puted based on the updates clients share with the central server. This threshold is deter-
mined as a weighted average of the normalized model divergence from each client. This
approach enables us to evaluate the significance of a client’s update before transmitting
it to the central server. By implementing this methodology, we can significantly reduce
communication overhead and enhance the overall efficiency of the FL process.
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4.2.2 Suitability Score

Let C be a set of clients participating in a federated learning system. For each client
c ∈ C, let Ac denote the accuracy, and Ec denote the entropy of client c. The suitability
Dc of client c is defined as the weighted sum of its accuracy and entropy, representing its
contribution to the global model, as shown in Equation 4.2.

Dc = γ · Ac + (1− γ) · Ec (4.2)

Where γ is a non-negative coefficient representing the relative importance of each
attribute. This metric effectively assesses a client’s performance by considering two crucial
factors: the accuracy of its local model and entropy, indicating data diversity and richness.
It is a valuable tool to evaluate individual client data quality and their contribution to
the FL training process.

4.2.3 Details and Algorithms

EntropicFL encompasses activities that require execution on both the client and server
sides. In this section, we refer to “information” on the client side as a set comprising
entropy, accuracy, and Normalized Model Divergence.

ServerClients ServerClients

Selected
clients

1

ServerClients

4

5

2

3

Timeline

Figure 4.2: Overview of EntropicFL.

Figure 4.2 illustrates the process of our proposed architecture. In 1 , clients who
have previously received the model from the server train and communicate their updates
and information, which in our case are specifically the weights, back to the server. This
process is detailed in Algorithm 1. Then, the server receives client information accuracy,
entropy, and a quantity of data in 2 and calculates the Normalized Model Divergence.
In 3 , the server performs client selection, algorithm 1 line11, which takes the client’s
information and the server’s capacity K as input. This algorithm normalizes entropy and
uses the “ChooseByWeights” method based on Equation 4.2 to perform a random weighted
selection, where the weight is associated with Equation 4.2 for each client. Subsequently,
two clients from the selected group are prioritized randomly. Finally, in 4 , clients execute
Algorithm 2, and in step 5 , the clients calculate the entropy of its data and assess the
Normalized Model Divergence between the weights communicated by the server and the
local weights obtained after training using Equation 4.1. Subsequently, they transmit
their updates (line 9).
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Algorithm 1: Central Server
// Initialize the model

1 foreach round t ∈ T do
2 if round == 0 then
3 wt ← RandomInitialization( ) ;
4 MDt ← MeanDivergence(∞,∞) ;
5 foreach client n ∈ N do
6 wn

t+1 ← LocalUpdate(MDt, wt, dn);

7 else
8 E ,A,D, |d|, wt ← ReceiveClientInformation( );

9 MDt+1 ←
∑|N|

i=1 Di×|di|∑|N|
i=1 |di|

;

// Aggregates the gradients received

10 wt+1 ←
∑|N |

i=1w
n
t+1 ;

// Client selection phase
11 ClientSelecion(E ,K);

12 ClientSelection (E ,K):
13 C ← NormalizeEntropy(E);
14 L ← ∅;
15 for ac, ec ∈ C do
16 c, w ← Dc(ac, ec);
17 L ← L ∪ {c, w};
18 S ← ∅;
19 i = 0;
20 while i ̸= K do
21 ct ← ChooseByWeights(L);
22 S ← S ∪ {ct};
23 delete ct from L;
24 K ← K + 1;

25 return S

4.3 Applying SNIP for Federated Learning

This section introduces the FedSNIP strategy, which utilizes the SNIP (Single-shot Net-
work Pruning) algorithm [40] to decrease the number of parameters communicated from
clients to the server in a federated learning context. By leveraging SNIP, FedSNIP aims
to enhance communication efficiency without compromising the learning model’s perfor-
mance.

4.3.1 Parameter Reduction via SNIP

According to the SNIP algorithm, a certain percentage of neural network parameters,
denoted by W , are identified as zeros, indicating parameter sparsity (θ). This approach is
classified under One-Shot Pruning, a method where pruning is executed once before the
training process begins. This preemptive pruning generates a mask that is applied to the
network, effectively reducing its complexity by eliminating non-essential connections.
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Algorithm 2: Client
// Receives global model wt and mean global divergence MDt

1 LocalUpdate (wt,MDt):
// Entropy calculation using Shannon

2 E ← CalcEntropy( );
// Compute divergence with global and client weights

3 D ← ComputeDivergence(wt, w
c
t);

// Accuracy
4 A ← 0;
5 if client is selected then
6 wc

t ← wt;
7 wt+1 ← ExecuteLocalTrain( );
8 D ← ComputeDivergence(wt, w

c
t+1);

9 if D ≤MDt OR client is priorized then
10 return E ,A,D, |d|, wt

11 return E ,A,D, |d|, wt

4.3.2 Detailed Implementation of FedSNIP

FedSNIP employs SNIP in the federated learning framework to systematically reduce the
quantity of parameters required for effective model training and communication. This
subsection delves into the specifics of integrating SNIP within federated learning, out-
lining the steps to achieve optimal parameter sparsity while maintaining or enhancing
model accuracy. The methodology for creating and applying the sparsity mask before
model training commences is described, highlighting the advantages of this approach in a
distributed learning environment.

Figure 4.3 illustrates the workflow of FedSNIP. In Stage 1, the server distributes the
model to the clients (Label 1 ). In Stage 2, after receiving the model, the clients perform
pruning using the SNIP technique, resulting in a high zero rate in the weights (Label
2 ). After the pruning process, the clients train their models. For retransmitting these
weights to the server, compression techniques based on sparse matrices are employed, and
then the pruned weights are sent to the server (Label 3 ). In Stage 3, after receiving the
weights from the clients, the server applies a sparse matrix representation and proceeds
with the aggregation of the data, setting up the model for the next training phase (Label
4 ). Finally, the server sends the aggregated model back to the clients (Label 5 ) and
initiates a new training round (Stage 1).

FedSNIP applies the SNIP technique, known to be a pruning method without the need
for fine-tuning and that preserves good accuracy, in a federated environment. Thus, the
proposed approach adapts SNIP to the context of FL, demonstrating its efficacy in this
new scenario, integrating the concept of one-shot pruning, based on connection sensitivity.
Each client in the FL network independently applies a sensitivity-based pruning method to
their local model during training, effectively reducing the number of parameters without
significant loss of model accuracy.
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Figure 4.3: System architecture employed by FedSNIP.

The core of FedSNIP lies in its unique pruning process, represented by:

Wpruned = W ⊙M (4.3)

In this context, W denotes the weight matrix integral to the neural network architec-
ture. Alongside, M , a binary mask, is produced via sensitivity analysis. This analysis
crucially identifies the least sensitive connections within the network, marking them as
zero within the mask. Based on this, FedSNIP initiates its process by establishing a global
model symbolized by W . This model is characterized by its initialization with randomly
assigned weights.

The algorithm 3 describes the main steps involved in the operation of FedSNIP. Fed-
SNIP is a FL approach that integrates one-shot sensitivity-based pruning into the feder-
ated training process. Each client (line 3) in the federated network first prunes its local
model based on connection sensitivity, ensuring that the remaining parameters are below
a defined threshold θ (Line 5). This step is crucial to reduce communication overhead
and maintain model efficiency. Subsequently, clients locally train their pruned models on
their datasets (line 6). The updated models or their parameters are then sent back to the
server for aggregation (line 7). The server aggregates these updates to refine the global
model, which is redistributed to clients for further training (lines 8 and 9). The process
repeats until the global model converges or meets specified stopping criteria (line 2).

Additionally, the PruneModel function used in FedSNIP is inspired by the SNIP
approach. algorithm 4 exemplifies the process employed in this step. This method involves
a one-shot pruning process applied at the initialization of the neural network, based on
the sensitivity of connections. The connection sensitivity is determined by calculating the
impact of each connection on the loss function, allowing the identification of the most
crucial connections for the task (line 4). The process involves creating a sensitivity score
for each connection and retaining only the top κ percent based on the defined sparsity level
k (lines 4 and 7). The pruned model Npruned is generated based on the retained connections
and returned by the function (lines 9 and 10). This approach allows for effective model
compression without the need for iterative pruning or pre-training, making it particularly
suitable for FL environments.
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Algorithm 3: FedSNIP

Input: Global model M , pruning threshold θ
Output: Pruned and trained global model

1 Initialize global model M
2 foreach round t until convergence do
3 foreach client ck do
4 Receive global model M from the server

/* Sensitivity-based pruning */
5 Mk ← PruneModel(M, θ)

/* Local training */
6 Train Mk on local data Dk

7 Send model updates to the server

/* Server aggregation */
8 M ← AggregateUpdates(M,Mk)

/* Transmission of updated model */
9 Send updated model M to all clients

Algorithm 4: Function PruneModel

Input: Untrained neural network N , training dataset D, sparsity level κ
Output: Pruned model Npruned

1 Initialize network N with random weights
2 Sample a mini-batch Db from D

3 foreach connection j ∈ N do
4 Calculate gradient gj of the loss with respect to the connection
5 Calculate sensitivity score sj = |gj|
6 Normalize sensitivity scores
7 Sort connections by sensitivity and retain the top κ percent
8 Prune connections with lower sensitivity scores
9 Generate pruned model Npruned based on retained connections

10 return Npruned
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Chapter 5

General Simulation Settings

In this chapter, we detail the environment and configuration settings employed to evaluate
the efficacy of the strategies and algorithms proposed for minimizing communication costs.
An in-depth exploration of these settings is critical to understanding the context in which
the proposed solutions operate and their potential impact on federated learning systems.
By meticulously outlining the experimental setup, we aim to provide a comprehensive
foundation for replicating and assessing the effectiveness of these strategies in reducing
the communication overhead associated with distributed learning models.

5.1 Simulator Environment

The experimental framework for our study is built on the Flower framework [7], chosen
for its versatility and support for federated learning scenarios across various versions
of TensorFlow, specifically versions 1.6.0 and 2.15.0. Flower facilitates the simulation
of a federated learning environment where each client trains a model with local data
and communicates with a central server using gRPC technology. This setup is further
streamlined by employing Ansible 1 for efficient configuration of one server and 10 client
machines, allowing for seamless deployment and management of experiments.

5.2 Dataset and Generation

Our experiments leverage the widely recognized MNIST dataset [39] and CIFAR-10 [36],
comprising 70, 000 grayscale images of handwritten digits, divided into 60, 000 training
images and 10, 000 test images. Each image, sized at 28 × 28 pixels, is labeled with the
corresponding digit, offering a comprehensive benchmark for evaluating machine learning
model performance in classification tasks. The CIFAR-10 dataset, in contrast, consists
of 60,000 color images across 10 classes, with 6,000 images per class. It is segmented
into 50,000 training images and 10,000 testing images, with each image being 32 × 32

pixels in size. This assortment provides a broad base for appraising machine learning
models in various visual object recognition tasks, thereby enriching the benchmarking
scope alongside grayscale image datasets.

1https://www.ansible.com/

https://www.ansible.com/
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In FL research, addressing the challenges of non-Identically and Independently Dis-
tributed (non-IID) data is crucial. In this dissertation two approaches were utilized to
simulate non-IID-scenarios: a custom implementation using the Dirichlet distribution
and the FedArtML toolkit [24]. The custom code directly manipulates data allocation
per client by adjusting the Dirichlet distribution’s concentration parameter (α), offer-
ing granular control over the degree of non-IID-ness. In contrast, FedArtML provides
a high-level interface for data partitioning, supporting both Dirichlet-based and alter-
native methods for inducing label and feature distribution skew across nodes. Non-IID
data, characterized by unequal and diverse data distributions among clients, poses signif-
icant challenges to federated learning models, requiring robust strategies to ensure model
accuracy and generalization.

The scenario presented in Figure 5.1 shows the non-IID distribution of data across
different clients. The data for each client was partitioned using a Dirichlet distribution
with a concentration parameter α = 0.1, which leads to a highly imbalanced distribu-
tion of labels across clients. This setting simulates real-world scenarios where data is
heterogeneously distributed among participants, often referred to as non-IID data.

Figure 5.1(a) shows the distribution of training labels across clients, while the Fig-
ure 5.1(b) presents the distribution for test labels. In this FL setting, each client has
access to its own partition of data, which is used for local training and evaluation. To as-
sess the overall model performance, a distributed test accuracy metric is used, aggregating
the results from all clients after local testing on their respective datasets.

Figure 5.2 shows the data distribution across ten clients. Figure 5.2(a) illustrates the
quantity and distribution of training data per client, while Figure 5.2(b) presents the
validation data. Unlike the previous scenario, all clients have the same validation data,
which is used to assess the generalization of the method, as reflected in the test accuracy.

During the process of generating the non-IID scenario, we observed that the FedArtML
tool is more flexible and offers more configuration options for data generation. This
contrasts with other implementations that rely heavily on random generation, limiting
their control over the scenario.

5.3 Client Configuration in FL Environments

In our exploration, we developed scenarios tailored to FL environments to evaluate the
strategies shown in Chapter 4. This approach aimed to evaluate actionable insights to
refine FL systems under varied operational frameworks, emphasizing optimizing client
configurations and data distribution strategies.

5.3.1 Simulation with Constrained Capacity

To accurately reflect the limitations present in real-world federated learning (FL) deploy-
ments, we employed a simulation tool from the Flower framework [7]. This simulation
instantiated 30 client nodes while restricting the server’s capacity to handle only 15 clients
concurrently. This approach was designed to mimic scenarios where the server possesses
limited resources, impacting the FL training and aggregation processes. The simulation
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highlights the challenges and considerations necessary when designing FL systems under
resource constraints, emphasizing the need for efficient client and server coordination.

5.3.2 Realistic Client Deployment Scenario

The fidelity and effectiveness of federated learning simulations are heavily dependent
on the realistic configuration of client nodes. Utilizing the Ansible automation tool, we
configured 10 client machines, each designed to represent a unique computing environment
within the federated network. These clients were each allocated a segment of the dataset
dataset, distributed according to a non-IID model to mimic the diverse and uneven data
distributions encountered in real-world settings. This configuration underlines the critical
role of client diversity in evaluating the resilience, performance, and scalability of federated
learning models. Through this approach, we aim to contribute insights into optimizing
federated learning architectures for heterogeneous and distributed environments.

Figure5.3 shows a FL system where clients (Client 1 to Client N) communicate with
a central server using the Flower framework for orchestration. Ansible is responsible for
provisioning both the server and the clients, ensuring automated setup and deployment.
The connections between the server and the clients are bidirectional (Send/Receive), while
SSH is used to manage secure connections to the clients for additional operations or
management.

5.4 Architectures of Neural Networks Employed

In this dissertation, we examine the implementation of two seminal neural network ar-
chitectures: AlexNet, as introduced in [37], and LeNet-5, proposed in [39]. AlexNet,
known for its pivotal role in advancing deep learning within the field of computer vision,
showcases the power of convolutional neural networks (CNNs) in image recognition tasks.
On the other hand, LeNet-5, one of the earliest CNNs, laid the foundational concepts
for modern deep learning approaches in digit recognition. This exploration not only un-
derscores the evolution of neural network designs but also their applicability in solving
complex pattern recognition problems.

Figure 5.4 shows the architectures used in the experiments for the proposed algorithms.
Figure 5.4(a) presents the layers of the LeNet-5 architecture, which is applied to the
MNIST dataset. In contrast, Figure 5.4(b) illustrates the AlexNet architecture, which
has been adapted for the CIFAR-10 dataset, even though AlexNet was originally designed
for ImageNet. In both architectures, the output consists of 10 classes, representing the
categories the networks are trained to identify.
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(a) Training data distribution CIFAR-10
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(b) Test data distribution CIFAR-10

Figure 5.1: Distribution CIFAR-10 across clients using a Dirichlet distribution with α =
0.1.
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(a) Training data distribution MNIST
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(b) Test data distribution MNIST

Figure 5.2: Distribution MNIST across clients using a Dirichlet distribution with α = 0.5.

Server running Flower
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Figure 5.3: FL system where Ansible provisions the server and clients over SSH. Flower
runs on the server and clients, with gRPC used for communication.
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(a) Architecture of LeNet-5

Input (32x32x3)

Conv2D (64 filters, 3x3)

MaxPooling (2x2)

BatchNorm

Conv2D (192 filters, 3x3)

MaxPooling (2x2)

Conv2D (384 filters, 3x3)

Conv2D (256 filters, 3x3)

Conv2D (256 filters, 3x3)

MaxPooling (2x2)

Flatten

Dense (4096 units)

Dropout (0.5)

Dense (4096 units)

Dropout (0.5)

Softmax (10 units)

(b) Architecture of AlexNet
for CIFAR-10

Figure 5.4: LeNet-5 and AlexNet architectures.
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Chapter 6

Results and Discussion

In this chapter, we present and analyze the results obtained from the experiments con-
ducted to evaluate the performance of EntropicFL and FedSNIP, comparing them with
strategies from the literature and considering non-IID scenarios.

6.1 EntropicFL Analysis

As previously described, to test EntropicFL, we trained it using the AlexNet architecture,
adapted to the non-IID dataset. The model was trained with 30 clients, as defined in
Subsection 5.3.1, while the server was configured to handle up to 15 clients simultaneously.
This scenario was designed to establish a criterion for client selection and assess its impact
on performance. For comparison, we selected the CMFL algorithm, as it offers a fast
criterion to optimize FedAvg and works in non-IID scenario. In our approach, we use
model weights to evaluate divergence, contrasting with the original paper, which used
gradients. Another strategy we selected is FedAvgBE, designed to handle the impact
of non-IID data environments by using entropy as a criterion for batch selection and
mitigating the effects of non-IID scenarios. We included FedAvg as a baseline because it
is widely used in the literature and employs random client selection. This same random
selection strategy is also adopted by other methods, such as CMFL and FedAvgBE.

Other strategies, such as Oort, presented by Fan et al. [38], were not considered in
this experiment, were not considered, as they combine criteria for both data and system
heterogeneity, which focus on data and hardware differences, respectively.

During the execution of our experiments, the accuracy achieved by EntropicFL was
found to be comparable to that of the FedAvg method throughout the FL process. How-
ever, a discernible difference emerges due to a performance decline observed in certain
rounds. This decline can be attributed to the process of client selection and the evalua-
tion of model divergence, which influences the decision of each client regarding the sharing
of their model weights with the server.

EntropicFL is configured as previously outlined, and successfully addresses the issue
of communication overhead, as demonstrated in Figures 6.1(a), 6.1(b), and 6.1(c), with
the parameter γ set at 0, 0.5, and 1, respectively. When γ is set to 0, the selection criteria
primarily rely on the metric defined in equation 4.2, with entropy playing a pivotal role.
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The accuracy observed under this configuration closely aligns with the results when γ is
fixed at 1. Remarkably, adjustments to the γ parameter were found not to significantly
alter accuracy levels, which consistently mirrored those achieved by the conventional
FedAvg method. The noteworthy aspect of this observation is the substantial reduction
in communication overhead costs despite the maintained accuracy.

Figure 6.2 present the reduction in communication overhead for different values of γ. In
particular, Figure 6.2(a) shows the results when γ = 0, demonstrating the communication
overhead reduction achieved under this setting. Similarly, Figure 6.2(b) displays the
overhead reduction for γ = 0.5, while Figure 6.2(c) illustrates the case where γ = 1.
All figures compare the performance of the proposed method with the FedAvg baseline,
highlighting the effectiveness of the approach across varying values of γ.

Table 6.1: Comparison of EntropicFL with other methods

Method Non-IID Data Comm. Reduction Accuracy Evaluation Metric
CMFL Yes Yes High Gradients / Weights
FedAvgBE Yes None Moderate Entropy
FedAvg No No High Random
EntropicFL Yes Yes High Model Weights

Table 6.1 compares our proposed method with CMFL, FedAvgBE, and FedAvg. All
methods, except FedAvgBE, maintain high accuracy. However, FedAvgBE is noted for its
moderate accuracy, as it is tailored to handle non-IID data environments.

In terms of communication reduction, EntropicFL stands out as it reduces communi-
cation overhead, unlike CMFL and FedAvgBE, which do not reduce communication at all.
Furthermore, CMFL utilizes both gradients and model weights for divergence evaluation,
while FedAvgBE relies on entropy, and FedAvg applies a random selection strategy.

Our proposal, EntropicFL, combines model weights for divergence evaluation and re-
duces communication overhead, providing a more comprehensive approach to address
federated learning challenges, especially in non-IID scenarios.

According to the taxonomy shown in Figure 4.1, EntropicFL is a client-server strategy
that reduces updates to the server based on specific criteria. It requires interaction with
the server to compute and receive information, such as model divergence, to determine
whether an update should be communicated. This process helps reduce uplink commu-
nication. Additionally, the server uses data entropy and client accuracy to establish a
selection criterion.

One issue that may arise is potential bias, as two clients should be prioritized, even in
situations where their updates are not relevant. This could happen when the model has
not yet reached the required number of iterations. Another problem is that the server
assumes the information provided by clients is accurate, which is not addressed by this
strategy, nor is it evaluated by other approaches.

Finally, throughout the experiment, entropy is identified as a useful metric for selecting
clients, but it should be combined with other metrics. In this case, it was combined with
accuracy, as the goal is to maintain the highest possible accuracy while selecting high-
quality data. This approach also reduces communication overhead through a criterion
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based on model divergence.

6.2 FedSNIP Analysis

As described in Algorithm 3, FedSNIP is a strategy where clients perform SNIP pruning
once they receive the model. To validate FedSNIP, the CMFL strategy from the literature
was selected for comparison. Other strategies, such as stochastic training or pruned
structures, were not considered. FedAvg was used to validate accuracy performance, and
CMFL was used to assess the reduction of communication overhead based on the model
parameters.

The MNIST dataset was used, and the simulation setup, as described in Subsec-
tion 5.3.2, involved 10 clients and one server. The clients were trained using the LeNet-5
network, which was chosen due to its relatively low number of parameters, making it
suitable for resource-constrained devices. Since SNIP requires multiplying weights by a
mask, simpler networks are more realistic for devices with limited computational power.

An exploratory analysis was conducted to determine the optimal hyperparameters for
the solutions discussed in the literature. As a result, the learning rate was set to 0.001,
with a batch size of 32, using the Stochastic Gradient Descent (SGD) method. These
parameters were selected to establish a balanced criterion for training, as hyperparameters
significantly influence training time. For example, reducing the batch size increases the
time required for training.

The experiments were conducted at various sparsity levels—60%, 70%, 80%, and
90%—represented by the parameter θ in Algorithm 3. In the figures, these levels are
labeled directly as "sparsity" rather than using the symbol θ. The aggregated results,
shown in Figure 6.3, indicate each sparsity level and include comparisons with algorithms
from the literature, such as CMFL [72] and FedAvg [53]. It is worth noting that CMFL
does not require complex configuration, making it easier to implement. However, the
threshold chosen for CMFL depends heavily on the distribution of the data, which can
affect its overall performance. The results underscore the feasibility of the proposed ap-
proach, demonstrating a notable balance between reducing communication overhead and
preserving model accuracy. Figures 6.3(a), 6.3(b), 6.3(c), and 6.3(d) display the global
model’s accuracy at different sparsity levels. During the experiments, it was observed that
a sparsity level of 90% led to a decrease in convergence rate. However, a positive reversal
of this trend was noted over the communication rounds, suggesting continuous improve-
ment in model performance. The CMFL approach manages to reduce communication
costs and achieve acceptable accuracy, although there were instances of accuracy drops.
This is due to the adopted criterion within the approach, which determines whether the
total parameters will or will not be communicated, thus influencing accuracy in certain
rounds.

Figure 6.3 presents the impact of various sparsity levels on model accuracy. Notably,
this figure demonstrates that reducing the number of parameters to zero does not sub-
stantially degrade the accuracy of the model.

Furthermore, Figures 6.4(a), 6.4(b), 6.4(c), and 6.4(d) illustrate a comparison in the
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volume of communicated parameters, with FedAvg serving as the reference standard. The
results from these experiments indicate that FedSNIP consistently outperforms CMFL in
reducing the amount of communicated parameters, showcasing a significant efficiency
improvement. This reduction was largely uniform across different test scenarios, albeit
with some minor fluctuations.

Although FedSNIP reduces communication overhead, our analysis shows that the num-
ber of accumulated parameters is consistent with the selected sparsity level (θ). When
a higher level of sparsity is chosen, accuracy is lower in the initial rounds. On the other
hand, selecting a lower sparsity level leads to higher accuracy, but the number of param-
eters communicated to the server increases.

Regarding the convergence of the algorithm, we can intuitively observe that as the
sparsity level decreases, it approaches the behavior of FedAvg, suggesting a potential for
convergence. However, this requires further study and should be formally proven with a
convergence analysis.

The architecture’s impact is also significant, influencing the time to convergence or the
need for more communication rounds. Larger models with more parameters increase the
number of operations required, generate more masks, and significantly raise the compu-
tational overhead. While FedSNIP effectively reduces communication overhead in smaller
networks, further studies are necessary to assess its performance in larger networks and
to determine, based on resource capacity, which clients can do pruning of the model.

Finally, after analyzing the development of both strategies, EntropicFL and FedSNIP,
it is important to note that these approaches should not be viewed as direct competi-
tors, but rather as complementary strategies. Each method addresses different aspects
of federated learning challenges. EntropicFL focuses on optimizing client selection and
reducing communication overhead by leveraging model divergence and entropy, making it
well-suited for environments with limited communication resources. On the other hand,
FedSNIP integrates model pruning to further reduce the number of parameters shared
with the server, which is particularly beneficial in resource-constrained environments with
short and medium models.

By combining the strengths of both strategies, it is possible to achieve more efficient
federated learning systems that adapt to varying client capabilities and network con-
straints. Instead of comparing the two approaches, they should be seen as complementary
solutions that can work together to enhance overall system performance.

Table 6.2 highlights the key differences and complementarities between EntropicFL
and FedSNIP. While EntropicFL focuses on optimizing client selection based on model di-
vergence and entropy, FedSNIP reduces communication overhead through SNIP pruning.
Both strategies were evaluated on different models, with EntropicFL tested on AlexNet
(CIFAR-10) and FedSNIP on LeNet-5 (MNIST).
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Table 6.2: Comparison between EntropicFL and FedSNIP

Feature Description
Objective EntropicFL: Optimize client selection

FedSNIP: Reduce communication overhead
Primary Mechanism EntropicFL: Model divergence and entropy

FedSNIP: SNIP pruning to reduce parameters
Impact on Communication EntropicFL: Fewer updates sent

FedSNIP: Fewer parameters communicated
Model Evaluated EntropicFL: AlexNet (CIFAR-10)

FedSNIP: LeNet-5 (MNIST)
Sparsity Levels EntropicFL: Not applicable

FedSNIP: 60%, 70%, 80%, 90%
Target Scenario EntropicFL: Limited communication

FedSNIP: Resource-constrained environments
Complementarity EntropicFL: Combines well with FedSNIP

FedSNIP: Can be used with EntropicFL for optimization
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(c) Accuracy for γ = 1

Figure 6.1: Distributed test accuracy with varying γ values in Equation 4.2 using AlexNet.
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(a) Communication overhead reduction for γ = 0

(b) Communication overhead reduction for γ = 0.5

(c) Communication overhead reduction for γ = 1

Figure 6.2: Communication overhead reduction with varying γ values compared to the
FedAvg baseline.
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Figure 6.3: Test accuracy of the global model at different sparsity levels with LeNet-5.
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Figure 6.4: Parameter reduction communicated to the server in relation to FedAvg per
communication round considering different levels of sparsity.
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Chapter 7

Conclusion

The problem of communication overhead in FL is crucial, particularly when focusing on
the processes involving edge devices and their capability to train complex neural networks.
In this dissertation, we analyze approaches to reduce communication overhead and present
two algorithms designed to address this issue. These algorithms have been validated in
non-IID scenarios, demonstrating their effectiveness. The following contributions are
provided:

1. Effectiveness of the Implemented Strategies: The experiments and simula-
tions conducted have demonstrated that client selection strategies, one based on
entropy and the other on one-shot model pruning, effectively reduce communication
overhead in FL. The first strategy employs entropy metrics as a means to identify
high-quality client data, thus offering a method to select clients based on data qual-
ity while maintaining FL’s core principle of data privacy. This strategy reduces
communication overhead by leveraging model divergence to determine whether a
client’s update should be transmitted or not. Meanwhile, the strategy based on
model pruning decreases communication overhead by removing connections, effec-
tively reducing the number of parameters that need to be shared with the server.

2. Impact on Communication: In both proposed algorithms, a reduction in the
volume of data transmitted between clients and the server was observed, using
relative communication rounds to measure this change. This confirms the initial
hypothesis that these strategies could enhance communication efficiency in federated
learning scenarios. One approach involved using model divergence as a measure of
the quality of an update. It was noted that in some rounds, accuracy decreased but
subsequently recovered in the following rounds.

3. Contributions to the Field of FL: This dissertation contributes to the field FL
by presenting and validating approaches that minimize communication overhead,
utilizing strategic client selection and model pruning. Additionally, it identifies
promising directions for future research, which include refining pruning techniques
and developing dynamic client selection methods that leverage real-time metrics.
Furthermore, this study proposes the investigation of more sophisticated compres-
sion techniques, supported by robust mathematical foundations.
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7.1 Future Work

One of the main challenges in Federated Learning is the high communication cost associ-
ated with distributed training. This issue is critical because communication overhead can
affect both the efficiency and scalability of FL systems. As part of our future work, we
will explore methods to reduce communication overhead based on criteria to preserve the
quantity of information and quality. Additionally, we plan to conduct a theoretical study
of the convergence of the proposed algorithms. Understanding and improving convergence
is key to ensuring the reliability of the algorithms as we work to reduce communication
overhead. We also aim to develop a compression scheme that minimizes data transmission
and establish a benchmark to evaluate the performance of the FL training process..

Another direction will be the incorporation of context-aware techniques to enhance
decision-making processes. By adapting to the environment in which the system operates,
we expect to further reduce communication costs while optimizing the hyperparameters of
the model. In addition, we plan to discuss possible adaptations for a peer-to-peer (P2P)
network. A P2P network could offer a more decentralized structure, which may help
reduce communication demands and make the system more scalable. We will also explore
how different types of data influence the pruning parameters. By adjusting pruning based
on the data, we hope to minimize the amount of data communicated, contributing to
lower communication costs.

Moreover, we plan to analyze how the behavior of the network affects decision-making
in the model. Understanding network conditions such as latency or bandwidth can help
optimize when and how communication occurs, potentially reducing unnecessary data
transfer. Finally, we will consider implementing the system using OpenMPI or OpenMP.
These tools are designed for efficient data handling and parallel processing, which could
further reduce both computational and communication costs. Alongside this, we will
conduct a study of the computational costs to ensure that any improvements are cost-
effective in terms of both resources and time.

7.2 Production
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Appendix A

Generating Non-IID Data for FL

In this appendix, we outline methods for generating non-IID data distributions among
clients using the Dirichlet distribution. This includes an implementation guide with the
FedArtML library and a custom code example, both aimed at controlling data hetero-
geneity.

A.1 Generating non-IID Data Using Dirichlet Distri-
bution

The challenge of simulating real-world FL scenarios involves creating non-IID data distri-
butions among clients. Here, we use the Dirichlet distribution to control data heterogene-
ity, providing an implementation guide with the FedArtML library and a custom code
snippet for tailored distribution.

A.1.1 Generating non-IID Data with Dirichlet Distribution

non-IID data distributions can be simulated effectively using the Dirichlet distribution,
which allows for the control over the degree of data heterogeneity among clients through
the concentration parameter α. A lower value of α results in higher data disparity among
clients, simulating a more challenging federated learning environment.

Method:

The following steps outline the general procedure for generating non-IID data among
clients using the Dirichlet distribution. This approach ensures controlled data partition-
ing, allowing for varying levels of heterogeneity across clients. The method can be adapted
to different datasets and federated learning environments as needed:

1. Initialize the necessary parameters for data distribution among clients, including
the total number of clients and the desired α value for the Dirichlet distribution,
which controls the level of data heterogeneity.

2. Assign indices for the training and testing datasets based on the Dirichlet distribu-
tion, ensuring that each client receives a specific portion of the data.
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3. Extract the data subsets for each client according to the assigned indices, maintain-
ing the intended level of non-IID distribution across the clients.

This method provides flexibility by allowing researchers to experiment with various
levels of data skewness, enabling more realistic simulations for FL research. Additionally,
the tool incorporates metrics like Jensen-Shannon Distance (JSD) and Hellinger Distance
(HD) to quantify the degree of non-IID-ness, ensuring that the heterogeneity across clients
is measurable and consistent [25].

A.1.2 Custom Implementation for non-IID Data Generation

In addition to the standard approach, a custom method was developed to further refine
the data distribution process. This method ensures that the indices for both training and
testing datasets are generated based on the Dirichlet distribution, thereby controlling the
degree of heterogeneity among clients.

Method:

The process begins by defining the type of distribution to be used for partitioning the
data, such as the Dirichlet distribution. Once the distribution is selected, the following
steps are carried out:

1. Define the distribution type: The Dirichlet distribution is chosen as the basis
for generating indices that will be used to partition the dataset.

2. Generate indices for training and testing data: For both the training and
testing datasets, indices are generated using a method that allocates data samples
according to the specified Dirichlet distribution. This ensures that the degree of
non-IID-ness is controlled by the concentration parameter α.

• For each dataset, a function is called to generate these indices, ensuring that the
data is distributed across clients in a way that reflects the chosen heterogeneity.

3. Extract and assign data: Based on the generated indices, the corresponding
subsets of data and their associated labels are extracted for both the training and
testing sets.

4. Return the partitioned data: Finally, the subsets of data for training and test-
ing are returned, ready for use in the federated learning process, with each client
receiving a portion of the data according to the previously defined distribution.

This custom implementation allows for precise control over how data is distributed
among clients, generating indices based on the Dirichlet distribution to achieve the desired
level of heterogeneity. The method ensures that the training and testing data subsets are
partitioned in a way that reflects real-world scenarios, where data is often non-IID.

These approaches to generating non-IID data using the Dirichlet distribution provide
two effective methods to simulate realistic federated learning (FL) environments.
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The FedArtML tool, which relies on predefined functions, offers a straightforward
and efficient way to distribute data among clients based on the Dirichlet distribution. It
allows for control over heterogeneity through the concentration parameter α, providing
flexibility in the distribution of data. This method is particularly useful for quickly setting
up non-IID scenarios with minimal customization and is ideal for general use cases where
a simple, predefined structure is sufficient.

In contrast, the custom implementation goes a step further by allowing more gran-
ular control over the partitioning process, enabling the generation of indices for both
training and testing datasets based on specific requirements. While this approach offers
flexibility, the FedArtML tool stands out due to its integration of advanced metrics like
Jensen-Shannon Distance (JSD) and Hellinger Distance (HD). These metrics provide a
quantifiable measure of the degree of non-IID-ness among clients, ensuring that the data
distribution is not only controlled but also measurable.

This capacity to quantify heterogeneity makes FedArtML the superior tool for most
applications, as it allows researchers to fine-tune the non-IID characteristics with preci-
sion, offering better insights into the behavior of FL algorithms in diverse and imbalanced
data scenarios.
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Appendix B

Computational Resources for
Simulation

This appendix provides detailed information about the computational resources employed
for the simulations conducted in this research. The simulations were carried out using
both local and cloud-based infrastructure to ensure robustness and scalability of the ex-
periments.

B.1 Computational Resource

The simulations and testing were conducted on a dedicated local machine with high com-
putational capacity. This machine was specifically selected to ensure efficient processing
and handling of the large-scale datasets used for FL simulations. The specifications of
the machine are as follows:

Table B.1: Specifications of the local machine used to simulations.

Specification Details
CPU Model Intel(R) Xeon(R) Silver 4210R @ 2.40 GHz
CPU Cores and Threads 20 cores, 40 threads
CPU Frequency Max: 3.20 GHz, Min: 1.00 GHz
Cache Memory L1: 640 KiB, L2: 20 MiB, L3: 27.5 MiB
RAM 251 GiB total, 236 GiB available
Primary Storage (SSD) 98 GiB
Secondary Storage (HDD) 5.5 TiB
Network Attached Storage (NAS) 8.2 TiB
CPU Load (Idle) 93.7% idle, 5.9% user
Operating System Ubuntu 20.04 LTS (64-bit)
Virtualization VT-x enabled

The specifications outlined in Table B.1 detail the computational resources of the ma-
chine used for simulations in this dissertation, which was instrumental in conducting the
simulations for this research. These capabilities encompass a high-performance processor,
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extensive RAM, and substantial storage capacity, ensuring the efficient execution of com-
plex computational tasks inherent to our simulation processes. Based on the hardware
configuration of the system, the theoretical floating-point performance can be estimated.
The Intel Xeon Silver 4210R CPU supports AVX-512 instructions, which can execute 16
floating-point operations per cycle in single precision (8 in double precision). Given the
processor’s specifications, the theoretical FLOPS performance is calculated as follows:

• Number of cores: 20

• FLOP per cycle (single precision): 16

• Processor frequency: 3.20 GHz

Thus, the estimated theoretical performance is:

FLOPS (single precision) = 20× 16× 3.2× 109 = 1.024TFLOPS

In double precision, the theoretical performance is:

FLOPS (double precision) = 20× 8× 3.2× 109 = 0.512TFLOPS

These values represent the peak theoretical performance of the system.

B.2 Cloud-Based Infrastructure: Digital Ocean

For scalable simulations and larger experiments, cloud-based resources from Digital Ocean
were utilized. The primary configuration of the droplets used is detailed below:

• Memory (RAM): 4 GB

• CPUs: 2 virtual CPUs

• Disk: 80 GB SSD

• Network Transfer: 4 TB

The selection of Digital Ocean droplets was driven by their optimal balance of com-
putational power and cost-efficiency, enabling extensive simulations without substantial
financial burden. These droplets are well-adapted for distributed computing tasks, crucial
for federated learning simulations.

The combination of a powerful local machine and flexible cloud-based droplets pro-
vided a comprehensive computational environment that supported all stages of the re-
search, from development and testing to large-scale simulation.
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