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RESUMO 

Os reservatórios de pré-sal no Brasil foram recentemente identificados como uma fonte altamente 

promissora de produção de hidrocarbonetos devido ao seu alto potencial. No entanto, esses 

reservatórios são caracterizados por sistemas porosos extremamente complexos, ricos em vugs e 

fraturas, que geralmente apresentam grande variação no tamanho e geometria dos poros. Essas 

características contribuem para a complexidade da simulação do fluxo de fluidos nos reservatórios, 

aumentando assim a incerteza e a dificuldade na gestão dos mesmos. Para mitigar riscos e 

incertezas associados à produção de reservatórios do pré-sal, é imprescindível obter uma 

compreensão abrangente e uma avaliação apropriada do fluxo de fluidos e das propriedades 

petrofísicas. Isso requer o desenvolvimento de técnicas avançadas de simulação e modelagem 

capazes de capturar efetivamente as características complexas do reservatório e permitir previsões 

precisas do comportamento do reservatório. 

Esta tese apresenta uma investigação abrangente sobre o fluxo de fluidos em meios porosos 

heterogêneos e a caracterização petrofísica de rochas de reservatório usando uma variedade de 

técnicas experimentais, de simulação e de análise de dados. Especificamente, a pesquisa se 

concentra nos reservatórios do Pré-Sal Brasileiro e tem como objetivo desenvolver uma 

compreensão mais abrangente dos processos complexos associados ao fluxo de fluidos nesses 

reservatórios, o que tem implicações significativas para a produção de hidrocarbonetos e 

armazenamento de carbono e hidrogênio. 

Parte da pesquisa envolveu a realização de experimentos e simulações em amostras de afloramento 

da Lagoa Salgada, no Rio de Janeiro, Brasil, para investigar o impacto da geometria dos poros no 

fator de recuperação de fluidos, perfil de saturação e estimativas de permeabilidade relativa. Dados 

de tomografia computadorizada foram empregados para gerar modelos representativos de amostras 

de rochas dos reservatórios de pré-sal. Um algoritmo foi aplicado para manipular e processar as 

imagens adquiridas, e as imagens resultantes foram empilhadas para criar um grid 3D de alta 

resolução do meio poroso dentro dos reservatórios. Isso envolveu a remoção das regiões 

relacionadas às partes externas, a aplicação de regras para definição de segmentação e facies, e a 

estimativa da porosidade e permeabilidade de cada bloco do grid. Para reduzir o tempo 

computacional, foram aplicadas técnicas de upscaling e, em seguida, uma técnica de history 

matching foi empregada para coincidir os resultados experimentais e de simulação e estimar a 



 
 

permeabilidade relativa de duas principais facies definidas dentro dos reservatórios. Esse processo 

permitiu a criação de um modelo de reservatório atualizado capaz de avaliar o desempenho passado 

e presente, bem como prever o comportamento futuro do fluxo de fluidos. Este trabalho fornece 

informações valiosas sobre o fluxo de fluidos em sistemas porosos heterogêneos e serve como base 

para escolhas operacionais. 

Outra parte da pesquisa examinou os efeitos das características da rede de poros e da 

heterogeneidade no fluxo de fluidos através de meios porosos complexos e heterogêneos. Técnicas 

de imagem de CT de alta resolução foram utilizadas para examinar amostras de afloramento, e um 

Modelo de Rede de Poros (PNM) foi empregado para quantificar a relação entre as principais 

características do sistema poroso. Além disso, imagens de alta resolução das amostras foram usadas 

para criar dois cortes transversais para modelagem em escala de poros. A análise mostrou que os 

poros sem saída e as cavidades presentes na amostra causaram uma quantidade significativa de 

fluido a permanecer estagnado, levando a um comportamento de canalização do fluido injetado, a 

uma quebra prematura e a uma baixa eficiência. O estudo também realizou uma série de 

experimentos de fluxo em plugues de rocha , acoplados a digitalização médica por CT para avaliar 

a propagação do fluxo e os perfis de saturação. Os resultados destacaram o impacto da 

heterogeneidade e da presença de poros desconectados ou sem saída nos padrões de fluxo e 

saturação, revelando um deslocamento preferencial e heterogêneo de fluido em algumas regiões os 

plugues. 

A última parte da pesquisa envolveu um estudo abrangente da Formação Barra Velha na Bacia de 

Santos, empregando uma combinação de dados convencionais de perfuração, análises de microCT 

(µCT) de dados de plugue, e descrição de laminas petrgráficas para caracterizar e avaliar com 

precisão as sequências do reservatório. O estudo focou em alcançar uma definição precisa de quatro 

tipos de rochas de reservatório (RRTs) integrando os valores petrofísicos dos plugues e seus dados 

de perfuração correspondentes usando o algoritmo de classificação não supervisionada K-means. 

Os resultados da classificação foram então integrados com diversas técnicas convencionais para 

avaliar a qualidade e as características geológicas da sequência estudada. Além disso, a modelagem 

de rede de poros a partir da análise de µCT de plugues foi utilizada especificamente para a 

caracterização dos poros e gargantas das amostras de núcleos de cada RRT. O estudo utilizou 

algoritmos de aprendizado profundo e aprendizado de máquina para desenvolver modelos 



 
 

preditivos para a porosidade da perfuração e o tipo de rocha com base em dados de registro de 

poços. Os modelos ResNet e 1D CNN foram treinados e avaliados para prever a porosidade da 

perfuração, enquanto o algoritmo XGBoost foi aplicado para prever o tipo de rocha. 

Em resumo, esta tese fornece um estudo abrangente e integrado do fluxo de fluidos e caracterização 

petrofísica de rochas de reservatório, oferecendo valiosos insights nos processos complexos 

associados ao fluxo de fluidos em meios porosos heterogêneos. As descobertas da pesquisa têm 

implicações significativas para a produção de hidrocarbonetos e armazenamento de carbono e 

hidrogênio, podendo facilitar a previsão de tipo de rocha precisa, caracterização petrofísica e o 

desenvolvimento de modelos preditivos confiáveis. 

Palavras-chave: Geometria de poros, meios porosos vugulares, modelagem de rede de poros, 

modelagem em escala de poros, propagação de fluidos, linhas de fluxo de fluido, poros sem saída, 

upscaling, correspondência de histórico, caracterização petrofísica, tipos de rochas reservatórios, 

classificação não supervisionada, aprendizado profundo 

  



 
 

ABSTRACT 

The pre-salt reservoirs in Brazil have recently been identified as a highly promising source of 

hydrocarbon production due to their substantial potential. However, these reservoirs are 

characterized by an intricate pore network, vuggy nature, and heterogeneity, which give rise to 

variations in pore size and geometry. These features contribute to the complexity of simulating 

fluid flow within the reservoirs, thereby increasing uncertainty and difficulty in reservoir 

management. To mitigate risks and uncertainties associated with pre-salt reservoir production, it is 

imperative to obtain a comprehensive understanding and an appropriate assessment of fluid flow 

transfer and petrophysical properties. This necessitates the development of advanced simulation 

and modeling techniques that can effectively capture complex reservoir features and enable 

accurate predictions of reservoir behavior. 

This thesis presents a comprehensive investigation into fluid flow in heterogeneous porous media 

and the petrophysical characterization of reservoir rocks using a range of experimental, simulation, 

and data analysis techniques. Specifically, the research focuses on the Brazilian Pre-salt reservoirs 

and aims to develop a more comprehensive understanding of the complex processes underlying 

fluid flow in these reservoirs, which has significant implications for hydrocarbon production and 

carbon and hydrogen storage. 

Part of the research involved conducting experiments and simulations on outcrop samples from 

Lagoa Salgada in Rio de Janeiro, Brazil, to investigate the impact of pore geometry on fluid 

recovery factor, saturation profile, and relative permeability estimations. CT imaging was 

employed to generate representative models of rock samples. An algorithm was applied to 

manipulate and process the acquired images, and the resulting images were stacked to create a 3D 

fine-scale grid of the porous media within the reservoirs. This involved removing the regions 

related to the exterior parts, applying rules for segmentation and facies definition, and estimating 

the porosity and permeability of each grid block. To reduce computation time, upscaling techniques 

were applied and following this, a history-matching technique was employed to match 

experimental and simulation results and estimate the relative permeability of two main defined 

facies within the reservoirs. This process enabled the creation of an updated reservoir model 

capable of assessing past and present performance, as well as forecasting future fluid flow behavior. 



 
 

This work provides valuable insights into fluid flow in heterogeneous porous systems and serves 

as a foundation for sensible operational choices. 

Another part of the research examined the effects of pore network characteristics and heterogeneity 

on fluid flow through complex and heterogeneous porous media. High-resolution CT imaging 

techniques were used to examine outcrop stromatolite samples, and Pore Network Model (PNM) 

was employed to quantify the relationship between key features of the porous system. Moreover, 

high-resolution images of the samples were used to create two cross-sections from horizontal and 

vertical plates for pore-scale modeling. The analysis showed that dead-end pores and vugs present 

in the sample caused a significant amount of fluid to remain stagnant, leading to a channeling-like 

behavior of the injected fluid, early breakthrough, and low areal-swept efficiency. The study also 

conducted a series of core flooding experiments coupled with medical CT scanning to assess flow 

propagation and saturation profiles. The results highlighted the impact of heterogeneity and the 

presence of disconnected or dead-end pores on flow patterns and saturation, revealing preferential 

and heterogeneous displacement of fluid in some regions of the plugs and bypassing it in others.  

The final part of the research involved a comprehensive study of the Barra Velha Formation in the 

Santos Basin, employing a combination of conventional well log data, microCT (µCT) analyses of 

plug data, and thin section description to accurately characterize and evaluate the reservoir 

sequences. The study focused on achieving a precise definition of four reservoir rock types (RRTs) 

by integrating the petrophysical values of the plugs and their corresponding well log data using the 

K-means unsupervised classification algorithm. The classification results were then integrated with 

several conventional techniques to evaluate the quality and geological characteristics of the studied 

sequence. Additionally, pore network modeling from µCT analysis of plugs was used specifically 

for the characterization of pores and throats of plug samples from each RRT. The study utilized 

deep learning and machine learning algorithms to develop predictive models for plug porosity and 

rock type based on well log data. The ResNet and 1D CNN models were trained and evaluated for 

plug porosity prediction. The XGBoost algorithm was also applied to predict rock type.  

Overall, this thesis provides a comprehensive and integrated study of fluid flow and petrophysical 

characterization of reservoir rocks, offering valuable insights into the complex processes 

underlying fluid flow in heterogeneous porous media. The research findings have significant 

implications for hydrocarbon production and carbon and hydrogen storage and can facilitate 



 
 

accurate rock type prediction, petrophysical characterization, and the development of reliable 

predictive models. 

Keywords: Pore geometry, vuggy porous media, pore network modeling, pore-scale modeling, 

fluid propagation, flow streamlines, dead-end pores, upscaling, history matching, petrophysical 

characterization, reservoir rock types, unsupervised classification, deep learning 
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1 INTRODUCTION 

The Pre-salt reservoirs are a complex geological system with unique challenges for hydrocarbon 

exploration and production. The deposition of the Pre-salt sediments occurred during the early 

stages of the opening of the South Atlantic Ocean, resulting in a complex interplay of tectonic, 

sedimentary, and diagenetic processes that affected the reservoir properties (Bruhn et al., 2017). 

The sediments were deposited in a shallow marine environment, consisting mainly of carbonates, 

siliciclastic, and evaporites, which were subsequently covered by thick layers of salt during the 

Cretaceous period (Mohriak et al., 2008). The salt layers have played a crucial role in preserving 

the reservoirs, but they also pose challenges for drilling and completion operations due to their high 

density and mechanical strength (Jackson and Hudec, 2017). 

The discovery of the Pre-salt reservoirs has attracted significant attention from the oil and gas 

industry due to their large size and high productivity potential. The initial discovery well, was 

drilled in 2006, and since then, several other fields have been discovered, including the giant fields 

of Tupi (former Lula field), Buzios, and Sapinhoa (Petrobras, 2021). The Pre-salt reservoirs are 

estimated to contain up to 100 billion barrels of recoverable oil and gas, making them one of the 

largest hydrocarbon accumulations discovered in recent years (ANP, 2021). Despite the significant 

potential of the Pre-salt reservoirs, their complex geological setting and heterogeneity present 

significant challenges for hydrocarbon exploration and production. The reservoir properties, such 

as porosity, permeability, and rock type, can vary significantly both laterally and vertically, leading 

to significant uncertainties in hydrocarbon reservoir modeling and prediction (Mohriak et al., 

2008). 

In heterogeneous reservoirs, the distribution of various properties can significantly impact 

petrophysical characteristics, including mineralogy, pore size, sedimentology, and physical 

properties of solids and fluids. As a result, the properties of such reservoirs may vary significantly 

from one point to another, making them more challenging to quantify than homogeneous reservoirs 

(Fitch et al., 2015; Abutaha et al., 2022). This multiscale heterogeneity can affect single and 

multiphase fluid flow in permeable geologic media, leading to complex fluid flow behavior (Kang 

et al., 2017; Reynolds et al., 2018; Zahasky et al., 2020). Heterogeneous carbonate rocks, in 
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particular, are more difficult to characterize and find recovery mechanisms than sandstone rocks 

due to their intricate pore structure  (Jensen et al., 2000; Hendry et al., 2021; Sen et al., 2021).  

Developing predictive models for fluid flow in heterogeneous reservoirs is particularly challenging 

due to the high variability in carbonate reservoirs, leading to a high level of uncertainty in the 

estimate of hydrocarbon production (Zahasky et al., 2020). The heterogeneous reservoir properties 

are below the resolution of traditional reservoir model grid blocks, making it difficult to predict 

and match the history of fluid flow and storage in the subsurface. To assess heterogeneity, both 

numerical and experimental measures can be employed. However, laboratory research on 

heterogeneous reservoirs is challenging due to the delicate and fragile structure of these porous 

media, making them more susceptible to damage during experiments. Fluid flow modeling is also 

challenging due to the heterogeneity and complex pore geometry of carbonate reservoirs, which 

can impact fluid flow behavior (Vik et al., 2013). Therefore, designing and implementing enhanced 

recovery techniques is a difficult task, often requiring expensive laboratory core flooding 

experiments to support the decision-making process. 

To better understand the relationship between petrophysical properties and fluid flow in 

heterogeneous reservoirs, a range of numerical and experimental measures can be employed. 

Numerical simulations, such as Pore Network Models (PNM) and pore-scale simulation, can 

provide valuable insights into the fluid flow behavior in porous media by simulating the complex 

pore geometry and fluid-rock interactions. These models can be used to investigate the impact of 

heterogeneity on fluid flow behavior and predict the macroscopic behavior of reservoir rocks. 

Experimental measures, such as core flooding experiments and thin section descriptions, can 

provide direct measurements of petrophysical properties and validate the numerical simulations.  

Non-invasive X-ray computed tomography (CT) imaging has emerged as a powerful tool for the 

petrophysical characterization of reservoir rocks. CT images can provide high-resolution 3D 

images of the rock pore structure, which can be used to estimate porosity, permeability, and pore 

connectivity. The utilization of this method is central to the detection of internal porous media, 3-

D pore and grain characterization, mineralogy analysis, and monitoring single and multiphase fluid 

flow in rock, etc. Furthermore, CT images can be used to generate digital rock models that can be 

used for numerical simulations (Lin et al., 2018; Jackson et al., 2020; Zahasky et al., 2020). 
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This thesis presents a comprehensive analysis and contributes to the understanding of fluid flow in 

heterogeneous porous media, the impact of heterogeneity and pore network characteristics on fluid 

propagation, and the petrophysical characterization of reservoir rocks. The research employs a 

range of techniques to address fundamental questions in the field of reservoir characterization and 

fluid flow in porous media. These techniques include CT imaging, image analysis, Pore Network 

Models, numerical and pore-scale simulation, core flooding experiments, thin section description, 

unsupervised classification algorithms, and deep learning models. By combining these tools, the 

research aims to investigate and analyze the research questions and to develop a more 

comprehensive understanding of the complex processes underlying fluid flow in heterogeneous 

porous media, which has significant implications for hydrocarbon production and carbon and 

hydrogen storage in subsurface reservoirs of the Brazilian Pre-salt reservoirs.  

In this thesis, three main chapters are presented, each addressing a unique aspect of the research 

topic. The chapters provide valuable insights into the fluid flow and petrophysical characterization 

of reservoir rocks, contributing to the development of reliable predictive models and sensible 

operational choices.  

In chapter 2 of this thesis, a paper published in the Geoenergy Science and Engineering Journal 

titled “Core Scale Investigation of Fluid Flow in the Heterogeneous Porous Medium Based on X-

Ray Computed Tomography Images: Upscaling and History Matching Approaches” is presented. 

The paper describes experiments and simulations conducted on outcrop samples from Lagoa 

Salgada in Rio de Janeiro, Brazil, as a possible flow analog to one of the most typical Brazilian 

Pre-salt carbonate reservoirs rocks. The aim of the study was to investigate the impact of pore 

geometry on recovery factor, saturation profile, and relative permeability estimations using both 

experimental and simulation approaches. 

To provide direct visualization of the geometry and description of pore structure, CT imaging was 

integrated with experimental measurements of petrography and core flooding. The resulting data 

was used to create a 3D fine-scale grid to simulate the porous media and the fluid flow. Upscaling 

techniques were then applied to reduce computation time, and the simulated produced fluid cuts 

for different upscaled models were compared with the experimental results from core flooding. A 

history-matching technique was then applied to match experimental and simulation results, 

calculating the relative permeability of two main defined facies and creating an updated model 
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capable of assessing past and present performance and future forecasting. This chapter provides 

valuable insight into fluid flow in heterogeneous porous systems and serves as a foundation for 

sensible operational choices, accurate assessments of oil recovery efficiency, and the development 

of reliable predictive models (Iraji et al., 2023). The workflow of Chapter 2 is presented in Figure 

1-1, which is fully described in the chapter. 

 

Figure 1-1. Applied workflow for Chapter 2. FW represents the formation water, 𝑆𝑜𝑖  and 𝑆𝑜𝑟  denote the initial and 

residual oil saturations, respectively, ROI presents the region of interest. 

Chapter 3 of this study titled “The Impact of Heterogeneity and Pore Network Characteristics on 

Single and Multi-Phase Fluid Propagation in Complex Porous Media: An X-Ray Computed 

Tomography Study” was conducted and submitted to the Journal of Petroleum Science as a part of 

this thesis. This research investigated the effects of pore network characteristics and heterogeneity 

on fluid flow through complex and heterogeneous porous media, specifically using high-resolution 

CT imaging techniques to examine outcrop stromatolite samples of the Lagoa Salgada. The study 

employed Pore Network Model (PNM) to quantify the relationship between key features of the 

porous system, including pore and throat radius, throat length, coordination number, shape factor, 

and pore volume. 

The study also conducted a series of core flooding experiments coupled with medical CT scanning 

to assess flow propagation and saturation profiles. The results highlighted the impact of 
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heterogeneity and the presence of disconnected or dead-end pores on flow patterns and saturation, 

revealing preferential and heterogeneous displacement of fluid in some regions of the plugs and 

bypassed it in others. The study's findings have important implications for various applications, 

including oil and gas recovery, carbon capture and storage, and groundwater management. The 

workflow of the procedure is presented in Figure 1-2 for a quick overview. However, for a 

comprehensive understanding of the method, the chapter provides a detailed description of each 

step involved in the process. 

 

Figure 1-2. Implemented workflow for Chapter 3. SW and DW represent the sea and distilled water, respectively. 

Chapter 4 of this thesis is a paper which has been submitted to the Geoenergy Science and 

Engineering Journal. Titled “Application of Unsupervised Learning and Deep Learning for Rock 

Type Prediction and Petrophysical Characterization using Multi-Scale Data”, it presents a 

comprehensive study of the Barra Velha Formation in the Santos Basin. The chapter employs a 

combination of conventional well log data, microCT (µCT) analyses of plug data, and thin section 

description to accurately characterize and evaluate the reservoir sequences. The study was 

conducted to achieve a precise definition of four reservoir rock types (RRTs) by integrating the 

petrophysical values of the plugs and their corresponding well-log data using the K-means 

unsupervised classification algorithm. 

The classification results were then integrated with several conventional techniques to evaluate the 

quality and geological characteristics of the studied sequence. The chapter also includes the 
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identification of facies and classification of porosity types through thin section description. 

Additionally, pore network modeling from µCT analysis of plugs was used specifically for the 

characterization of pores and throats of plug samples from each RRT. Another objective of this 

chapter was to create predictive models for determining both plug porosity and rock type using 

deep learning and machine learning algorithms, and well log data. Two deep learning models, 

ResNet and 1D CNN, were employed to predict plug porosity and the XGBoost algorithm was 

applied to predict rock type. To assess the models' performance, the predicted outcomes were 

compared with actual data. Overall, this chapter presents a comprehensive and integrated study of 

the Barra Velha Formation, which provides a detailed understanding of the reservoir quality and 

facilitates accurate rock type prediction and petrophysical characterization. Additionally, Figure 

1-3 illustrates the workflow that was applied in Chapter 4, which will be described in detail in the 

subsequent sections. 

 

Figure 1-3. Applied workflow for Chapter 4. 

Appendix I of this thesis includes a paper published in the Energy Geoscience Journal, titled 

“Investigation of pore geometry influence on fluid flow in heterogeneous porous media: a pore-
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scale study”. The paper combines single-phase and multi-phase core flooding with medical-CT 

scanning to generate flow streamlines and assess water flooding efficiency. The study also involves 

microCT scanning of the core sample, from which two cross-sections from horizontal and vertical 

plates were constructed and used as geometry in a numerical simulator (COMSOL Multiphysics) 

to examine the impact of pore geometry on fluid flow and obtain flow streamlines, saturation, and 

velocity profiles in the sample. The paper concludes that the presence of dead-end pores and vugs 

in the sample causes a significant proportion of fluid to remain stagnant, resulting in the 

channeling-like behavior of the injected fluid, fast breakthrough, and low areal-swept efficiency. 

The study also highlights the importance of pore scale modeling to improve the prediction of fluid 

flow in reservoirs.  

Appendix II contains a paper titled “Laboratory and Numerical Examination of Oil Recovery in 

Brazilian Pre-Salt Analogues Based on CT Images”, which was presented at the Third EAGE 

Conference on Pre-Salt Reservoir. This paper discusses a study on the manipulation of 2-D 

tomography images to create a 3-D fine-scale grid for simulating the porous media and fluid flow. 

Additionally, upscaling techniques were applied to create the coarse simulation grids and the oil 

recovery factor and water cut results were calculated for different upscaled models. These results 

were compared with the experimental results obtained from core flooding. The study provides 

valuable insights into the petrophysical properties of the rock samples and can help in improving 

our understanding and modeling of pre-salt reservoirs (Iraji et al., 2022a). 

Appendix III contains a paper titled “Experimental Investigation of Single-Phase Flow Pattern in 

Highly Heterogeneous Carbonates Rocks”, which was presented at the Rio Oil & Gas Conference. 

This paper focuses on the challenges of drainage strategies in heterogeneous microbialite carbonate 

rocks and the impact of pore size distribution on the flow rate through these rocks. The paper also 

describes the core flooding integrated with medical CT scan experiments performed to obtain the 

flow patterns in single-phase flow and the impact of flow rate on these streamlines, in both 

columnar and fine-grained carbonate composite samples. The findings of this paper provide 

valuable insights into the behavior of miscible displacement in this type of rock and the factors that 

influence single-phase flow patterns (Iraji et al., 2022c). 

In Appendix IV of this thesis, a paper titled “Insights into Multi-Phase Flow Pattern Characteristics 

and Petrophysical Properties in Heterogeneous Porous Media” is included, which was presented at 
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the Second EAGE Conference on Pre-Salt Reservoir. This paper presents research on the 

petrophysical characteristics and fluid flow patterns in pre-salt reservoir rocks, using stromatolite 

composite samples from different facies. The paper examines porosity and absolute permeability 

in samples and investigates multi-phase flow patterns during core flooding experiments integrated 

with medical CT scan experiments (Soltanmohammadi et al., 2021). 

Appendix V of this thesis includes a paper titled “Upscaling Challenges of Heterogeneous 

Carbonate Rocks: A Case Study of Brazilian Pre-Salt Analogous”, which was presented at the 

Third EAGE Conference on Pre-Salt Reservoir. This paper discusses the complexities of producing 

petroleum through carbonate pre-salt reservoirs in Brazil, particularly in relation to the 

heterogeneity of porous distribution. The study uses high and low-resolution CT images from 

stromatolite samples for 2D and 3D fluid flow simulation, providing a more trustworthy 

understanding of fluid movement and identifying the optimum upscaling factor number to reduce 

computational time during the numerical simulation (Soltanmohammadi et al., 2022). 

In Appendix VI of this thesis, a paper titled “Experimental investigation of waterflooding 

performance by increasing copper ions in Brazilian Pre-Salt rock” is included. This paper was 

presented at the 83rd EAGE Annual Conference & Exhibition and investigates the effectiveness of 

low-salinity water injection with a laboratory experimental approach. The study includes three 

different core samples from different wells of the Brazilian Pre-Salt carbonate reservoirs to 

examine the variation in oil recovery factor during seawater injection followed by seawater with 

the addition of copper ions. The findings demonstrate the application potential of the low salinity 

water injection process and the effectiveness of the mechanism of desorption of the acidic oil from 

the rock surface by forming acid-copper complexes (Iraji et al., 2022b). 

It is important to highlight the transition from pore scale and plug scale investigation in the initial 

chapters (2 and 3) and appendices to a reservoir scale study in the fourth chapter. The objective of 

this transition was to demonstrate the applicability of the insights gained from the smaller-scale 

investigations and their potential to enhance our understanding and decision-making processes at 

larger scales.  

The first two chapters, along with the accompanying appendixes, focused on analyzing fluid flow 

and petrophysical characterization at the pore scale and plug scale, providing valuable insights into 
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the complex processes underlying fluid flow in heterogeneous porous media. Building upon the 

knowledge obtained from the pore scale and plug scale investigations, the fourth chapter shifted its 

focus to the reservoir scale study, aiming to extend the understanding gained from the smaller 

scales to a larger scale. 

Additionally, this integrated approach can prove invaluable in situations where data availability for 

certain intervals of the reservoir is limited. By leveraging the insights gained from the pore scale 

and plug scale investigations, it becomes possible to extrapolate and infer information about these 

data-scarce intervals. This utilization of knowledge from smaller scales enables the enhancement 

of our understanding and provides valuable insights even in the absence of extensive data coverage. 

In reservoir characterization, where obtaining comprehensive data throughout the entire reservoir 

can be challenging and costly, this approach offers a practical and efficient means to fill in the 

gaps. 

This integrated methodology opens up opportunities for optimizing hydrocarbon recovery and 

developing effective reservoir management plans. By employing a multi-scale approach and 

integrating data from various sources, including advanced imaging techniques, simulations, and 

machine learning algorithms, it becomes possible to bridge the knowledge gap and obtain a more 

comprehensive understanding of the reservoir as a whole. Ultimately, this thesis demonstrates how 

the integration of insights from smaller-scale investigations into larger-scale reservoir studies can 

significantly enhance our understanding and decision-making capabilities, even in instances where 

data may be scarce. It provides a pathway for leveraging existing knowledge and maximizing the 

value of available data, allowing for more informed decisions and improved performance in oil and 

gas reservoirs. 

Overall, this thesis showcases the progressive exploration of fluid flow and petrophysical 

characterization from smaller scales to larger scales, highlighting the value of this integrated 

approach in advancing our understanding of reservoir behavior and supporting decision-making 

processes in the energy industry. 
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ABSTRACT 

In this paper, experiments and simulations were performed on outcrop samples from Lagoa Salgada 

in Rio de Janeiro, Brazil, as a possible flow analog to one of the most typical Brazilian Pre-salt 

carbonate reservoirs rocks. The rocks were microbial carbonates where plugs comprising two main 

facies were sampled, simplified as fine-grained and vugular facies. The plugs were utilized to study 

the impact of pore geometry with both experimental and simulation approaches on recovery factor, 

saturation profile, and relative permeability estimations. To provide direct visualization of the 

geometry, description of pore structure, and calculation of concentration profiles, computed 

tomography (CT) imaging was integrated with experimental measurements of petrography and 

core flooding. The injection of two pore volumes of formation water (FW) resulted in a recovery 

factor between 28 and 34 percent for the plug samples. Furthermore, based on porosity generated 

by dry and wet CT, as well as saturation profiles resulting from CT data collected during drainage 

and imbibition processes along the length of the plugs, it is revealed that the distribution of these 

properties was diverse and heterogeneous. An algorithm was used to process the 2D tomography 

images of the samples to remove the region related to the exterior parts. The images were then 

stacked to create a 3D fine-scale grid to simulate the porous media and the fluid flow by applying 

rules to segment of rock types, porosity, and permeability estimations of each grid block. Coarse-

scale grids were created by applying upscaling techniques to reduce computation time. Simulated 

produced fluid cuts for different upscaled models were compared with the experimental results 

from core flooding. A history-matching technique was then applied to match experimental and 

simulation results, calculating the relative permeability of two main defined facies and creating an 

updated model capable of assessing past and present performance and future forecasting. Since 

relative permeability is essential for accurate simulation, estimating these curves in the 

heterogeneous pre-salt reservoir considering different facies, greatly influences reasonable future 

prediction performance and the ability to make informed operational decisions. 

Keywords: Multiphase Fluid Flow Through Porous Media, Relative Permeability, Heterogeneous 

Porous System, Numerical Modeling/Method, Transport Properties  
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2.1 INTRODUCTION 

The exploration of Brazilian pre-salt Santos and Campos Basins reservoirs has been one of the 

most important oil field discoveries since the 2000s. These unconventional in-situ and reworked 

carbonate rocks were deposited in passive-margin basins after the separation of the South American 

and African plates and the emergence of the South Atlantic Ocean during the Cretaceous, which 

make up the bulk of these reservoirs (Bruhn et al., 2017). These carbonate rocks typically feature 

intricate and heterogeneous geometries and a variety of porosity networking patterns, vugs, and 

fractures (Matula, 1969; Lucia, 1983; Sharma, 2008; Abedi and Kharrat, 2016).  

Petrophysical properties are influenced by the distribution of other characteristics, including 

mineralogy, pore size, sedimentology, and rock and fluids' chemical and physical characteristics. 

As a result, petrophysical characteristics in a heterogeneous reservoir might vary dramatically from 

location to location while remaining moderately stable throughout a homogeneous reservoir (Fitch 

et al., 2015; Abutaha et al., 2022). Compared to sandstone rocks, heterogeneous carbonate rocks 

often make it harder to estimate petrophysical features and discover recovery mechanisms (Jensen 

et al., 2000; Iraji et al., 2015; Iraji and Ayatollahi, 2019; Hadavimoghaddam et al., 2021; Hendry 

et al., 2021; Sen et al., 2021). Single and multiphase fluid flow is influenced by multiscale 

heterogeneity in permeable geologic media (Kang et al., 2017; Reynolds et al., 2018; Zahasky et 

al., 2020). Due to the high heterogeneity in carbonate reservoirs, creating predictive models is 

generally tricky and results in high uncertainty in the estimate for hydrocarbon production. Since 

the variations of heterogeneous reservoir properties occur in the scale below the standard reservoir 

model grid size of blocks, anticipating and history-matching storage and fluid movement in the 

subsurface is extremely difficult (Zahasky et al., 2020). Numerical and experimental measurements 

can evaluate heterogeneity. Due to the fragile structure of this type of porous media, laboratory 

investigations are challenging and fluid flow modeling is highly demanding due to the considerable 

heterogeneity and complex pore geometry of carbonate reservoirs. Designing and implementing 

enhanced recovery procedures is challenging, especially because such expensive decisions often 

require supporting laboratory core flooding work (Vik et al., 2013).  

The predictive power of existing rock analysis techniques is constrained by the inability to define 

multiscale variability (Guice et al., 2014). Recent technological advancements in core analysis can 

reduce uncertainty in identifying reservoir rock characteristics and thus boost profitability. X-ray 
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computed tomography (CT) can reveal unmatched information about the interior structure of 

materials without causing any damage. This method is vital for a wide range of scientific and 

industrial processes; in petroleum engineering and geological sciences, its application is for interior 

porous media detection, 3D pore and grain characterization, mineralogy analysis, and visualizing 

fluid flow in rock. Technological advancements have made it possible to develop novel techniques 

for measuring single and multiphase fluid flow at small sizes using CT images. This technique 

enables the depiction of how multiple fluids are distributed within porous materials, and it also 

allows for the identification of fluid patterns of different phases (Gao et al., 2020; Lin et al., 2021; 

Su et al., 2022). CT imaging is becoming more frequently utilized for centimeter-scale image 

samples with less than ten micro-meter voxel resolutions due to the increased accessibility of 

computational and data management systems (Lin et al., 2018; Abedi et al., 2020; Jackson et al., 

2020; Zahasky et al., 2020).  

Laboratory studies on reservoir plug samples often determine the petrophysical parameters for 

reservoir modeling. Therefore, accurate and representative experimental laboratory data are 

required for the petrophysical description of a reservoir. However, the petrophysical properties of 

rocks sampled that disregard the extent of the heterogeneities are likely to change, raising the issue 

of suitable sampling (Vik et al., 2013; Drexler et al., 2022). In this study, conventional petrography 

and core flooding methods were integrated with CT scanning for a precise understanding of a high-

resolution pore network characterization, variability of the porosity, concentration profiles, and 

fluid flow modeling plug samples of outcrops of Lagoa Salgada, Brazil. These outcrops are 

stromatolites, regarded as layered microbial structures, and potentially flow analogous to the most 

productive and heterogeneous Brazilian Pre-salt reservoirs (Rezende et al., 2013; Ceia et al., 2022). 

In this study, two microbiological facies were identified from the comparative pore geometry 

analysis of the rocks, and plugs were collected while considering these facies and heterogeneities.  

The simulations of flow models are required to determine how variability and heterogeneity affect 

fluid flow. However, simulating fluid flow in heterogeneous porous media can be difficult, mainly 

when dealing with multiphase flows. Moreover, for flow modeling, an accurate description of the 

pore space is required (Al-Kharusi and Blunt, 2007). Since the CT imaging technique prepares 

straight visualization of the geometry compared with the other methods available for the 

characterization of the porous system (Withers et al., 2021), in this study, three-dimensional 
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heterogeneous porous media were constructed from CT images of both facies samples and were 

used in simulations. Moreover, this paper utilized a methodology that defines a region of interest 

or cropped image containing only the image of the rock and eliminates the region related to the 

exterior parts in the CT images of heterogeneous plug samples without cylindrical geometry. 

Furthermore, the application of an empirical correlation between porosity and permeability is 

discussed, along with its implementation for upscaling.  

Implementing experimental and simulation results would be beneficial for analyzing different 

solutions and industrial approaches and understanding and selecting applied scenarios. In addition, 

defining the appropriate relative permeability curves is crucial in the execution of numerical 

simulations to estimate reservoir performance, productivity, injectivity, and recovery factor and 

inform operational decisions. Moreover,  these curves are essential for various technological 

applications, including hydrocarbon recovery, carbon sequestration, hydrogen storage, hydrology, 

and microfluidics (Basbug and Karpyn, 2008). Therefore, determining these curves in the 

heterogeneous reservoirs where multiphase fluid flow behavior in porous media encounters 

constraints and limitations is more vital. Here to calculate relative oil and water permeability and 

produce a model representation that align with the current actual reservoir performance and 

reasonable future prediction, history-matching was carried out to compare and match simulation 

results with production history data (oil and water production).   

Although extensive research has been carried out on Brazilian pre-salt reservoirs (Bruhn et al., 

2017; Ceia et al., 2022), there has been no detailed investigation of fluid flow behavior in this 

heterogeneous and vuggy system considering different facies and pore geometry. Therefore, much 

uncertainty still exists about the reservoir performance. By accurately describing the pore space for 

different facies, this study provided an opportunity to advance the understanding of fluid flow 

behavior, obtain models that display an acceptable match with experimental results and saturation 

profiles from CT data, and define appropriate relative permeability curves for this system.  
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2.2 MATERIAL AND METHOD 

2.2.1 MATERIALS 

Experiments were conducted on Lagoa Salgada outcrops from Rio de Janeiro state, southeast 

Brazil. Before drilling plugs, target areas and rock facies were obtained based on the geological 

description and petrography. Regarding the pore size distribution, two primary facies (fine-grained 

with comparatively small pores and vugular (columnar) with huge, linked pores and vugs) were 

chosen for experimental and simulation investigation (Figure 2-1-a). Two fine-grained plug 

samples and one from vugular facies were selected to examine how the geometry affects oil 

recovery, saturation profile, and relative permeability estimations (Figure 2-1-b and Table 2-1). 

Due to plug samples' high heterogeneity and fragility, preserving the flow inside porous media 

during flooding studies was a crucial difficulty. A detailed explanation of the encapsulation 

methods and "from block to plug" procedure to address this issue can be found in section 2.2.2.1.  

                                              a                                                                                   b                                                                

 
Figure 2-1. a) Fine-grained (Facies 1) and vugular (Facies 2) facies of microbial carbonates rock block from Lagoa 

Sagada outcrop, Brazil, b) Selected plug samples for the different facies. 

Table 2-1. Petrophysical characterization of the three plug samples. 

Facies Fine-grained Vugular (columnar) 

Plug Sample F2-5 F2-6 F1-1 

Length, 𝑐𝑚 8.90 9.72 8.90 

Diameter, 𝑐𝑚 3.78 3.77 3.68 

Porosity, % 29.8 24.3 52.4 

Gas Permeability, 𝑚𝐷 963 1200 - 

Due to the massive number of connected vugs and pores in the vugular plug, pressure drop could 

not be monitored during gas injection, resulting in the inability to determine gas permeability. The 

average liquid permeability for this plug sample was 5434.83 𝑚𝐷 using three different flow rates. 

Formation water (FW) as an available aqueous phase with composition given in Table 2-2 and 

crude oil of Brazilian pre-salt reservoir with density, molar mass, and viscosity (at 
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20℃) of 0.8751 𝑔/𝑐𝑚3, 120𝑔/𝑚𝑜𝑙, and 5 𝑐𝑃, water content of 0.01% (ASTM-D1744, 1992),  

and the Acid number of 0.0275 mg 𝐾𝑂𝐻/𝑔 (ASTM-D664, 2011) were utilized in this study. 

Moreover, the SARA tests show the weight percentage of saturates, aromatics, resins, and 

asphaltene components of 93.26, 0.59, 5.82, and 0.33, respectively (ASTM-2007-11, 2012; ASTM-

D6560-12, 2012). 

Table 2-2. Composition of FW aqueous phase. 
Salt Composition, 𝑔/𝐿 
𝑁𝑎𝐶𝑙 163.620 

𝑁𝑎2𝑆𝑂4 0.088 

𝑁𝑎𝐻𝐶𝑂3 0.487 

𝐾𝐶𝑙 6.911 

𝑀𝑔𝐶𝑙2. 6𝐻2𝑂 3.068 

𝐶𝑎𝐶𝑙2. 2𝐻2𝑂 19.100 

𝑆𝑟𝐶𝑙2. 6𝐻2𝑂 0.029 

𝐵𝑎𝐶𝑙2. 2𝐻2𝑂 0.033 

𝐹𝑒𝑆𝑂4. 7𝐻2𝑂 0.022 

TDS, 𝑔/𝐿 193.358 

Figure 2-2 presents a summary of the applied workflow for both the experimental and simulation 

parts, and the following sections provide a comprehensive explanation of each step. 

 
Figure 2-2. Applied workflow for experimental, image processing, and simulation steps. 
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2.2.2 EXPERIMENTAL PROCEDURE 

This study used a high-pressure-temperature core flooding apparatus to conduct required core 

flooding tests. Figure 2-3 depicts the schematic of this core flooding equipment embedded in a 

Siemens industrial tomography device, model SOMATOM Spirit (Spatial resolution, pixel 

resolution, and a slice thickness of 15.5 𝐼𝑃/𝑐𝑚, 512x512, and 1 mm, respectively) third generation 

medical CT scanner. 

 
Figure 2-3. Schematic of the core flooding apparatus embedded in a CT-scanner. 

In the CT scanning method, the X-ray beam is aimed at the material from numerous angles (with 

the third and fourth-generation CT scanners, it is done by rotating the entire X-ray tube or source 

around the central axis of the scanned area in a circular path, while with the first and second 

generations, the sample was rotated at angular intervals). Using the X-rays' penetrating ability, 

several two-dimensional radiographs of the material are acquired. These 2D radiographs are then 

processed to generate cross-sectional slices utilizing a computed reconstruction algorithm (Lamas 

et al., 2019; Withers et al., 2021). The attenuation of each mono-energetic X-ray beam varies as it 

travels through the sample before detecting this transmitted X-ray by a receiver. Multiple angles 

are used to quantify the attenuation, and a 3D matrix is then created. The porosity, mineral 

composition, and saturation variations influence the 3D distribution of the X-ray attenuation 

coefficient in reservoir rocks (Hounsfield, 1973; Withers et al., 2021). 
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for Fluid Injection 
2. Fluid accumulator 

3. CT scanner 

4. Differential pressure 
transmitter 

5. Inlet pressure transmitter 

6. Outlet pressure transmitter 
7. Coreholder 
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System) with Temperature 
Controller 

9. Confining pressure 

transmitter 
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for Confining Pressure 
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12. Gas back pressure regulator 
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15. Data acquisition and 
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To display the spatial arrangement of X-ray attenuation coefficients in the sample, the signals or 

X-ray attenuation numbers are numerically treated and are given in Hounsfield units at each 

location in the processed images. The images often serve as a digital 3D representation and 

visualize the variations in X-ray attenuation. The 3D model can be numerically examined and 

digitally color-coded for better visualization. For instance, in reservoir rocks with consistent 

mineralogy and saturation, bright colors (high CT values) have low porosity, while dark colors 

(low CT values) have high porosity (Abutaha et al., 2022).  

This study seeks to obtain experimental data to help understand flow transfer properties, like 

relative permeability, using simulations and history matching. Therefore, the following 

experimental approach was adopted to acquire the porosity profile and the initial characterization 

of the plug and understand the drainage and imbibition process to build saturation maps based on 

the concentration profile; this approach was repeated for all three plug samples: 

a) Encapsulating the clean and dry plug (section 2.2.2.1) and assembling it into the aluminum 

core holder, increasing and stabilizing temperature and confining pressure to 106℃ and 

2200 𝑝𝑠𝑖, respectively. 

b) Evacuating the air inside the porous system and injecting nitrogen into the plug until the 

pore pressure stabilizes at 735 𝑝𝑠𝑖. Conducting CT scan for the 𝑁2-saturated plug (dry CT). 

c) Evacuating the 𝑁2 inside the porous system of the plug and then injecting FW at the same 

temperature as the experiment into the plug until stabilizing the pressure. Conducting CT 

scan for the FW-saturated plug (wet CT).  

Concurrently, with the measured dry and wet CT data (steps b and c), the mean porosity in each 

cross-section image was obtained by applying the following equation, and the porosity profiles 

along the plug samples were generated as, 

𝜙 =
𝐶𝑇𝑅𝑤 − 𝐶𝑇𝑅𝑔

𝐶𝑇𝑤 − 𝐶𝑇𝑔
 (2-1) 

where 𝐶𝑇𝑅𝑤 and 𝐶𝑇𝑅𝑔 are the average CT value of the FW-saturated plug (wet CT) and 𝑁2-

saturated plug (dry CT). 𝐶𝑇𝑤 and 𝐶𝑇𝑔 are the average CT value of the FW and  𝑁2 at test conditions, 

respectively.   
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d) Injecting two pore volumes of oil with a constant rate of 0.1 𝑚𝑙/𝑚𝑖𝑛 into the FW-saturated 

plug coupled with CT scanning during the injection to reach initial water saturation.  

e) Injecting FW at a constant rate of 0.1 𝑚𝑙/𝑚𝑖𝑛 coupled with CT scanning until 

no additional oil production is observed and reaching residual oil saturation. Recording 

pressure drop, produced water, and oil volumes for the oil recovery factor calculation. 

Meanwhile, fluid saturation distribution and propagation were assessed using measured CT data 

from stages d (drainage) and e (imbibition). During the drainage and imbibition processes, oil 

saturation profiles along the plug samples were calculated as, 

𝑆𝑜 =
𝐶𝑇𝑅𝑤 − 𝐶𝑇𝑅𝑤𝑜

𝜙(𝐶𝑇𝑤 − 𝐶𝑇𝑜)
 (2-2) 

where, 𝐶𝑇𝑅𝑤 and 𝐶𝑇𝑅𝑤𝑜 are the CT value of the FW-saturated plug (wet CT) and plug sample 

containing oil and FW (drainage or imbibition process). 𝐶𝑇𝑤 and 𝐶𝑇𝑜 are the average CT value of 

the FW and oil at test conditions, respectively.   

2.2.2.1 ENCAPSULATION PROCEDURE 

The preliminary plugs underwent a surface cleaning process to remove unconsolidated debris, 

enabling a more precise analysis of their original textural characteristics and petrophysical 

parameters. Creating representative core plugs from these rocks posed a significant challenge due 

to their high heterogeneity and friability. Please refer to Figure 2-4-a for an example of a plug 

sample. 

To encapsulate the plug samples, a thermal plastic material was utilized. This material conforms to 

surfaces when heated, ensuring that the marginal limits of the plug remained unaltered and 

preserving its flow characteristics. Numerous attempts were made to determine the optimal heating 

time and amount of heat applied. Figure 2-4-b depicts a plug sample covered with thermal plastic. 

After achieving a more homogeneous core using thermal plastic, encapsulation resin tests were 

conducted to maintain the integrity of the rock during testing. This resin is a liquid-based material 

to which a catalyzer is added, enhancing its mechanical resistance by altering its properties. Both 

liquids are mixed and poured into a container to surround the sample, as shown in Figure 2-4-c. 

The mixture of liquid resin and catalyzer was left to dry overnight. Following this process, the 



44 
 

 

 

sample was removed from the cylinder, revealing a highly homogeneous encapsulation geometry 

suitable for core flooding activities. Figure 2-4-d showcases a plug encapsulated using liquid resin. 

a 

 
b 

 
                            c                                                                                     d 

        
Figure 2-4. a) Heterogeneous and fragile plug sample, b) plug sample covered with thermal plastic, c) process of 

encapsulating with resin, and d) plug sample encapsulated with thermal plastic and resin. 

2.2.2.1.1 LIMITATIONS AND CHALLENGES ENCOUNTERED 

The initial attempts to encapsulate the samples proved to be challenging, and unfortunately, they 

did not yield the desired results. The resin encapsulation initially involved applying the resin 

directly to the rock surface without the thermoplastic layer. As expected, this led to collapse in the 

vugular spaces, resulting in an irregular plug sample. Figure 2-5-a displays plug sample covered 

with resin, highlighting two main observations from this procedure. Firstly, a pre-layer (in our case, 

the thermo-plastic) is necessary to prevent collapse in the vugular area. Secondly, the thickness of 

the epoxy resin needs to be increased to provide greater mechanical resistance for the plug. 

A second encapsulation trial was performed on a plug with less vugular area, resulting in a more 

representative core (Figure 2-5-b). However, there was still some collapse in the vugular area. 

Consequently, it was decided to incorporate thermo-plastic cover to continue the petrophysical 

characterization and core flooding preparation. 
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                                      a                                                                             b 

      
Figure 2-5. a) First test: applying resin directly over the vugular plug sample, b) Second test: applying epoxy resin 

directly over the fine-grained plug sample. 

The next encapsulation test involved a plug with less vugular area, with the application of thermo-

plastic. In this case, the resin adhered completely to the rock surface, resulting in a homogeneous 

core (Figure 2-6-a). After the resin dried, the final diameter of the core sample reached 43 mm. 

The final encapsulation test aimed to validate the encapsulation protocol on a highly vugular plug 

sample. In this case, the thermo-plastic layer was adjusted, followed by covering the plug sample 

with the conformed thermo-plastic. Finally, the epoxy resin was applied carefully to the core and 

left to dry overnight. As a result of this methodology, Figure 2-6-b demonstrates a plug sample 

with highly vugular areas completely encapsulated. The final diameter remained consistent with 

the previous experiment. 

                                      a                                                                             b 

     
Figure 2-6. a) Third test: applying resin and thermal plastic over the fine-grained plug sample, b) Forth test: applying 

resin and thermal plastic over the vugular plug sample.  

2.2.3 SIMULATION PROCEDURE 

After the acquisition of the 2D CT-scan images of the plug samples during core flooding 

experiments (DICOM files representing cross-sections along the plug length, which contain 

information about the apparatus and the image), a Python routine was operated to process 2D CT 

images to produce porous system structures. The Pixel size for our case was 0.1035 mm (obtained 
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in the RefDs.PixelSpacing attribute). Since each cross-section image had 512×512 pixels (512×512 

matrix containing CT attenuation coefficient values in Hounsfield units (HU) for each pixel), the 

size of the images was roughly 53×53 mm. Therefore, each slice (cross-section) had 1 mm 

thickness, as an example, 88 slices (2D images) were acquired for the F2-5 fine-grained plug 

sample. 

To begin image processing, for each 2D image, a region of interest (ROI) was defined for advanced 

assessment. This ROI represents an edited and cropped image containing only the rock's image 

(pores, vugs, and grains), removing the region related to the exterior parts, including air, 

encapsulation parts (epoxy resin and thermal plastic sleeve), and core holder. Given the presence 

of vugs and large pores, the plug samples were heterogeneous and noncircular. Therefore, an 

algorithm that plots different lines from the midpoint of the images (assuming that the midpoint of 

the image is always in the rock section) to the edges was applied to select the ROI for 2D images. 

When the threshold CT value of the border was detected, the point in the line was selected as a 

boundary point. Considering these boundary points, a polygon was generated, and for each image 

pixel, it was determined whether it was in the interior or exterior of the polygon. The CT values of 

points inside the polygon were considered nonchanged, and outside points were set to NaN or null 

(Lamas et al., 2019).  

Since all plug samples contained fine-grained facies and vugs and large pores, for all three samples, 

both facies were considered in the processing, and the separation of these facies was applied based 

on an adaptive threshold value of CT. With this, points or pixels of images with 𝐶𝑇 > 𝐶𝑇𝑡ℎ𝑟𝑒𝑠 were 

assigned to Rock Type 1 (fine-grained), and points with 𝐶𝑇 < 𝐶𝑇𝑡ℎ𝑟𝑒𝑠 correlated to Rock Type 2 

(vugular). The F1-1 sample contained more regions related to rock type 2, while for F2-5 and F2-

6, most plug areas were considered rock type 1.  

A linear correlation with the CT value was applied to calculate the porosity for each pixel. For the 

fine-grained facies (Rock Type 1) porosity calculations, limits of 0.1% and 35% were considered 

with a linear relationship with the CT values. However, for the vugular facies (Rock Type 2), the 

porosity range of 85% to 98% was considered, again with a linear correlation with CT value.  

For the vugular facies (Rock Type 2), a value of 10 D was considered for the permeability of points. 

However, permeability for fine-grained facies (Rock Type 1) was calculated using the correlation 
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with porosity, and normally the permeability presents a skew or log-normal distribution. Several 

researchers have utilized the relationship between porosity with the logarithm of permeability. 

Therefore, the linear correlation of log (k) with porosity was considered according to (2-3) 

(Chilingar and Long, 2017; Lima et al., 2020; Lamas et al., 2021). It should be mentioned that the 

application of this formula is limited to regions of rock where the heterogeneities are not very 

considerable, which means that it can be applied only in the regions where vugs are not present. 

Therefore, this equation was only applied for rock type 1 as, 

ln(𝑘) = 𝐴𝜙 + 𝐵 (2-3) 

It is possible to determine the coefficients (A and B) using dry and wet CT-scan measurements (the 

calculated porosity for each slice of the plug samples) and the average permeability of the plugs 

(using the permeameter). By considering the permeability of 𝑘𝑖 for each slice with the porosity of 

𝜙𝑖, the average permeability can be calculated according to equation (2-4) (Lamas et al., 2021). 

Moreover, the average permeability should be quantitatively identical to the average permeability 

determined by the permeameter. 

�̅� =
∑ 𝐿𝑖

𝑛
𝑖=1

∑
𝐿𝑖

𝑘𝑖

𝑛
𝑖=1

 
(2-4) 

where, �̅� is the average permeability, n is the number of slices or 2D cross-section images for each 

plug sample, and L is the slice thickness equal to 1 mm.   

Therefore, the resulting average permeability (calculated with an initial guess of A and B 

coefficients and equations (2-3) and (2-4) is compared with the experimental average permeability. 

Suppose the error is not within the tolerance. In that case, the coefficients are updated, and the 

calculations are repeated with the updated A and B until there is an acceptable error between the 

two average permeabilities. At this point, the coefficients are recorded for permeability calculation 

for each image voxel, according to porosity data.  

Figure 2-7 displays the oil and water relative permeabilities for fine-grained and vugular facies; for 

rock type 2, a linear relationship between saturation and relative permeabilities was considered. 

The aim was to optimize these relative permeabilities with the production results obtained from the 
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core flooding experiments.  The core flooding experiments obtained data on residual oil saturation 

and connate water saturation. 

                                 a                                                                 b 

 
Figure 2-7. Relative permeability for a) fine-grained facies (Rock Type 1), b) vugular facies (Rock Type 2). 

Positions and completions of wells were designed to depict the core holder diffuser; one producer 

in the first slice and an injector in the last slice were considered. Figure 2-8 includes the detail of 

the wells. The producer was kept with a constant pressure of 100 𝑘𝑔𝑓/𝑐𝑚2 (1,422 𝑝𝑠𝑖) and the 

injector operated with a flow rate of 0.1 𝑐𝑚3/𝑚𝑖𝑛.  

                a                                    b                       c 

 

Figure 2-8. Position and completions of the injector (a), producer (b), and physical diffuser (c) for F1-1 vugular sample. 

The three-dimensional model (high-fidelity or reference model) was then generated by stacking 

these cross-section images to identify and quantify of the porous phase and flow transfer. The 

output files for the simulation, considering a cartesian grid, were created automatically by the 

Python Code. One simulation block was created from each pixel of the image. For instance, the 

reference model for the F2-5 fine-grained plug sample was composed of 512×512×86 blocks 

(22,544,384 blocks). The output files included all the necessary files for running the simulator 

containing the porosity, permeability, rock type, and null blocks. The simulator used in this work 

was the Computer Modeling Group Ltd. (CMG)-IMEX®, a commercial Black-Oil reservoir 

simulator.   
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Simulations of the complete models (reference models) were time-consuming since they contained 

many grid blocks, and their simulation time was impractical. Hence, it became apparent that an 

upscaling technique and dealing with coarser grids was required before performing any history-

matching procedure. Based on earlier findings, an upscaling Python routine was adapted to create 

upscaled models where groups of blocks were merged into a coarser simulation grid. Then, 

Upscaling was used to find values for attributes in the coarse grid that accurately reflect the values 

in the corresponding fine grid (high-fidelity model) (Lamas et al., 2021).   

The reference model was created directly from CT data, and each image pixel was converted into 

one simulation grid. Preliminary rules were applied to create the upscaling algorithm with any 

given upscaling factor.  

Static features like porosity and fluid saturations can be discovered by applying arithmetic 

averaging. The routine automatically grouped the blocks and averaged the porosity and saturation 

for each block. If null blocks from the reference model were present in the region of the upscaled 

block, in the first step porosity and saturation were set to zero in these blocks, and then the 

arithmetic average was performed. When all the blocks from reference models were null, blocks 

were considered null. Regarding rock type, the value considered was that with the most frequent 

value in the reference blocks. The primary techniques for scaling up permeability can be classified 

into two categories: (a) averaging-based and (b) flow-based techniques. Although flow-based 

methods are generally more suggested, average approaches require less computing work and are 

occasionally a decent choice (Odsæter et al., 2015; Lamas et al., 2021).  Finally, equation (2-5) 

was considered for upscaled permeability calculation, assuming the predicted coefficients do not 

vary with scale as, 

𝑘𝑢𝑝𝑠𝑐𝑎𝑙𝑒𝑑 = 𝑒𝑥𝑝 (
1 

𝑛
∑ 𝑙𝑛 (𝑘𝑖)

𝑛

𝑖=1

) = 𝑒𝑥𝑝 (𝐴
1 

𝑛
∑ 𝜙𝑖

𝑛

𝑖=1

+ 𝐵) (2-5) 

where n is the upscaling factor considering each upscaled (coarse) block to be generated from 

𝑛 × 𝑛 × 1 fine blocks, therefore, upscaling did not apply in the K direction or flow injection 

direction. 

According to (2-5), the relation between porosity and permeability is not restricted to the scale. 

Upscaled permeability can be calculated by both weight averaging of porosity (and using the A 
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and B coefficients) or 𝑙𝑛 (𝑘𝑖). The application of these formulas for calculating upscaled 

permeability has been recently validated and approved (Lamas et al., 2021). 

After making these adjustments to the model and selecting an upscaled model for each plug sample 

as the base model, history-matching was started. History-matching is an efficient method to 

compare and match simulation results with production history data. Kruger carried out the first 

research on history-matching by calculating the areal permeability distribution to produce a 

reservoir representation that was in line with the performance of the actual reservoirs (Kruger, 

1961). A reservoir simulator is used in the history-matching process to adapt relative permeability, 

capillary pressure, porosity, absolute permeability, etc. Many researchers have widely used the 

automatic history-matching approach in core flood investigation as computer technology has 

advanced (Kerig and Watson, 1987; Akin and Demiral, 1997; Akin and Kovscek, 1999; Basbug 

and Karpyn, 2008). In addition, some researchers investigated the applications of this technique 

with computerized X-ray tomography (Farokhpoor et al., 2016; Meneses et al., 2019; Vargas et al., 

2022). 

The generalized history-matching study process started with defining and selecting parameter 

values from the base study, submitting these parameter values and ranges into the simulations' 

dataset to study the experiments' definition, and then selecting the results or objective functions to 

match. The simulations were then run, and the results were analyzed. Experiments were developed 

and run using the base model and defined parameters in CMG's CMOST. As simulated jobs were 

completed, CMOST examined the outcomes to assess how closely they corresponded to historical 

data. Next, the parameter values for new simulation jobs were decided by an optimizer. Finally, 

the results converged to one or more optimal solutions that offered an acceptable history match 

when additional simulation jobs were finished. History match error is calculated utilizing the 

following equations (CMG, 2019) as, 

𝑇𝑒𝑟𝑚𝐸𝑟𝑟𝑜𝑟𝑗 =

√
∑ (𝑌𝑗,𝑡

𝑠 − 𝑌𝑗,𝑡
𝑚)2𝑁𝑡(𝑗)

𝑡=1

𝑁𝑡(𝑗)

∆𝑌𝑗
𝑚 + 4 𝑀𝑒𝑟𝑟𝑗

   
(2-6) 

𝑄𝑗 =
∑ 𝑇𝑒𝑟𝑚𝐸𝑟𝑟𝑜𝑟𝑖,𝑗 . 100%. 𝑡𝑤𝑖,𝑗

𝑁(𝑖)
𝑗=1

∑ 𝑡𝑤𝑖,𝑗
𝑁(𝑖)
𝑗=1

 (2-7) 
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𝑄𝑔𝑙𝑜𝑏𝑎𝑙 =
∑ [𝑤𝑖𝑄𝑖]

𝑁𝑤
𝑖=1

∑ 𝑤𝑖
𝑁𝑤

𝑖=1

 (2-8) 

where 𝑌𝑗,𝑡
𝑠  is the simulated value, 𝑌𝑗,𝑡

𝑚 is the measured value, 𝑁𝑡(𝑗) is the number of measurements, 

∆𝑌𝑗
𝑚 is the maximum difference, and 𝑀𝑒𝑟𝑟𝑗 is the measurement error (standard deviaition from the 

mean). Each local objective function (𝑄𝑗) is made up of a weighted arithmetic average of each of 

the terms, and the global objective function (𝑄𝑔𝑙𝑜𝑏𝑎𝑙) is comprises a weighted arithmetic average 

of the local objective functions (CMG, 2019). 

DECE (Design Exploration Controlled Evolution) method was employed as an optimization 

method for history matching. It can handle continuous, discrete parameters, and hard constraints, 

complete utilization of distributed computing power, and fast and stable convergence (CMG, 

2019). In Design Exploration step, the search space was explored randomly to gather as much 

information as possible about the solution space. In this stage, experimental design and Tabu search 

approaches were used to select parameter values and produce simulation datasets. In controlled 

evolution stage, objective was to perform statistical analyses for simulation results acquired in 

design exploration stage. DECE algorithm carefully examines each applicant value of parameter 

and decides if there is a possibility to enhance result quality by rejecting specific candidate values 

from being selected again (Mirzabozorg et al., 2012; Heidaryan, 2019) (Figure 2-9).  

 
Figure 2-9. History-matching process. 

Define and select 
parameter values 

Substitute parameter 
values into 

simulation dataset 

 

Run simulation 

Analyze results 
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other study 

 

Use results as basis for decisions 
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The main parameters used in the history-matching process for fitting simulation with experiments 

(production history data resulted from core flooding experiments for oil and water production in 

our three plug samples) were those used to calculate oil-water relative permeability curves. The 

curves are described using the following power-law relationships or the Brooks-Corey model, 

respectively:  

𝑘𝑟𝑜 = 𝑘𝑟𝑜,𝑚𝑎𝑥 (
𝑆𝑜 − 𝑆𝑜𝑟

1 − 𝑆𝑜𝑟 − 𝑆𝑤𝑐
)

𝑛𝑜

   (2-9) 

𝑘𝑟𝑤 = 𝑘𝑟𝑤,𝑚𝑎𝑥(
𝑆𝑤 − 𝑆𝑤𝑐

1 − 𝑆𝑜𝑟 − 𝑆𝑤𝑐
)𝑛𝑤  (2-10) 

where 𝑘𝑟𝑜,𝑚𝑎𝑥 and 𝑘𝑟𝑤,𝑚𝑎𝑥 are the maximum relative permeabilities for oil and water, 𝑆𝑜 and 𝑆𝑤 

are oil and water saturation, 𝑆𝑜𝑟 and 𝑆𝑤𝑐 are residual oil and connate water saturation, and 𝑛𝑜 and 

𝑛𝑤 are Corey exponents to oil and water, respectively. All these parameters were considered 

history-matching parameters, and the formulas were applied for relative permeability 

determination.  
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2.3 RESULTS AND DISCUSSION 

2.3.1 EXPERIMENTS 

The collected dry and wet CT data were used to determine the mean porosity in each cross-section 

image (2-1), and the resulting profiles over the longitudinal direction of the plugs are displayed in 

Figure 2-10.  

 
Figure 2-10. Porosity profile for three plug samples. 

For instance, to acquire the first data point for the F1-1 sample in Figure 2-10 (Porosity of 0.55), 

the first CT cross-section images for nitrogen- saturated plug sample (Dry CT) and FW-saturated 

plug sample (Wet CT) (Figure 2-11) were processed to select the ROI (please refer to Figure 2-15-

a and b). Then the average CT value of the chosen area was calculated and porosity was computed 

according to equation (2-1). The CT values of 𝑁2 and FW were -545.52 and 433.028 HU, 

respectively. This procedure was repeated for all other cross-section images of the three samples 

to obtain the porosity profiles along the plugs.  

                               a                                                              b     

 
Average CT value of ROI: 1609.01 HU (𝐶𝑇𝑅𝑔) Average CT value of ROI: 2151.74 HU (𝐶𝑇𝑅𝑤) 

Figure 2-11. First cross-section image of F1-1 vugular plug sample for: (a) 𝑁2-saturated (Dry CT), (b) FW-saturated 

(Wet CT). 
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F1-1 vugular sample with a mean porosity of 0.524 represented a higher profile, which indicates 

the presence of large pores and vugs in this plug. Heterogeneous behavior with fluctuation over the 

length is apparent for all three porosity profiles; the range of [0.45 0.61], [0.23 0.42], and [0.16 

0.33] were detected for F1-1, F2-5, and F2-6 plug samples, respectively. For the vugular sample, 

the porosity reached the peak at approximately the middle of the plug while, for each of the fine-

grained plug samples, the maximum porosity peak occurs at opposite ends of the samples, with one 

peak located on the upstream or injection side and the other on the opposite side 

After acquiring the initial characteristic and porosity profiles of the plug sample, to begin 

investigating the saturation map in the immiscible process and two-phase flow, the drainage 

process started by injecting light oil at the rate of 0.1 𝑚𝑙/𝑚𝑖𝑛 into the FW-saturated samples to 

reach initial water saturation; this flooding experiment was coupled with CT scanning.  In the next 

step, the imbibition started by injection of FW at a rate of 0.1 𝑚𝑙/𝑚𝑖𝑛 followed by CT scanning 

to explore the oil recovery process and saturation map.  

Data in Table 2-3 were calculated by recording produced water and oil volumes during oil and 

water flooding experiments. For each plug sample, the volume of produced water during oil 

injection represents the oil initially in place. For instance, for the F2-6 fine-grained sample, 21 𝑐𝑚3 

water was collected during the oil injection process, and according to the pore volume of 26.26 

𝑐𝑚3, an initial oil saturation of 0.80 and initial water saturation of 0.20 were determined. And the 

volume of oil production during the water injection process was used to calculate residual oil 

saturation (0.571 for F2-6 plug sample) and the recovery factor. Figure 2-12 displays the oil 

recovery factor results for FW injection.  

Table 2-3. Core flooding results for the three plug samples. 

 Facies Fine-grained Vugular (columnar) 

 Plug Sample F2-5 F2-6 F1-1 

 PV, 𝑐𝑚3 29.76 26.26 49.70 

Oil 

Drainage 

OIIP, 𝑐𝑚3 21.00 21.00 32.00 

𝑆𝑤𝑖 , fraction 0.294 0.200 0.356 

FW 

Imbibition 

𝑆𝑜𝑖 , fraction 0.706 0.800 0.644 

𝑆𝑜𝑟 , fraction 0.487 0.571 0.422 

Note: PV is the Pore Volume, OIIP is the Oil Initially in Place, 𝑆𝑤𝑖 is the Initial (connate) water saturation, 𝑆𝑜𝑖 is the Initial oil 

saturation, and 𝑆𝑜𝑟 is the residual oil saturation. 
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Figure 2-12. Oil recovery results for the three plug samples. 

Changes in the oil saturation distribution within all the plug samples were tracked by continuous 

CT scanning over the longitudinal section of the samples during the oil drainage and FW imbibition 

flooding tests. These saturation profiles versus the length of the plugs were also produced from 

analyzing the CT data, like the porosity profiles. Figure 2-13 displays the oil saturation profiles for 

the vugular sample and one fine-grained sample as an example. The oil saturation profiles in these 

figures represent three stages of the experiment: the beginning of the oil injection procedure (0.2 

pore volume oil injection: red line), the end of the oil injection process or the start of FW injection 

process (2.0 pore volume oil injection: blue line), and the end of the FW injection process (2 pore 

volume FW injection: black line). 

For instance, to acquire the first data points for the F1-1 sample for 0.2 and 2.0 PV Oil Inj (oil 

saturation of 0.23 and 0.80), the first cross-section images for the start (PV Oil Inj), end (2.0 PV 

Oil Inj), and after 0.2 PV of oil injection process (Figure 2-14) were processed to select the ROI 

(please refer to Figure 2-15-a and b). Then, the average CT value of the chosen area was calculated 

and oil saturation was computed according to equation (2-2). The CT values of oil and FW were 

29.68 and 433.028 HU, respectively. For each cross-section image, the calculated porosity of the 

corresponding image (from equation (2-1)) was utilized in the formula. This procedure was 

repeated for all other cross-section images of the samples at different injection times of oil of FW 

to obtain the saturation profiles along the samples. 
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a 

 
b 

 
Figure 2-13. Saturation profile during injection of oil and FW injection for a) F1-1 vugular sample, b) F2-5 fine-grained 

sample. 

                         a                                                b                                                 c 

 
Average CT value of ROI: 2061.24 HU 

(𝐶𝑇𝑅𝑤) 

Average CT value of ROI: 2051.45 HU 

(𝐶𝑇𝑅𝑤𝑜 𝑓𝑜𝑟 0.2 𝑃𝑉 𝑂𝑖𝑙 𝐼𝑛𝑗) 

Average CT value of ROI: 2010.95 HU 

(𝐶𝑇𝑅𝑤𝑜 𝑓𝑜𝑟 2.0 𝑃𝑉 𝑂𝑖𝑙 𝐼𝑛𝑗). 

Figure 2-14. First cross-section image of F1-1 vugular plug sample for: a) 0 PV oil injection, b) 0.2 PV oil injection, 

and c) 2.0 PV oil injection. 
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According to Figure 2-13, during all the flooding steps, heterogeneous oil saturation profiles along 

the length of the plugs were observed. In the F1-1 vugular plug sample, the range of oil saturation 

of [0.023 0.257], [0.52 0.97], and [0.21 0.71] were measured for the stages of the start of oil 

injection, the end of oil injection (start of FW injection), and the end of FW injection, respectively. 

While for the F2-5 fine-grained plug sample, slightly more fluctuation was detected for oil 

saturation profiles and the range of [0.002, 0.22], [0.49, 1], and [0.08, 0.84] were measured for the 

same steps of the injection process. For both plug samples, the heterogeneity and variation in the 

profiles were more noticeable at the start and end of FW injection or at the higher level of oil 

saturation. 

The area between the two saturation profiles for the start and end of the oil injection process (blue 

and red) represents the amount of oil accumulated in each plug sample. The area between the two 

saturation profiles for the start and end of FW injection process (blue and black) indicates the 

amount of oil that has been produced from the plug. In other words, more oil was produced in the 

section of the plug sample where the discrepancies between the two lines were raised. Therefore, 

a significant amount of oil remained unswept in the vugular sample at core lengths of 2, 4.5, 5.5, 

and 8 𝑐𝑚. Also, according to the porosity profile, these spots exhibit lower porosity than other 

areas of the plug and suggest that the saturation is greatly influenced by the sample's heterogeneity 

and there is a clear relation between the oil saturation and the porosity profiles. The same results 

can be obtained for the fine-grained sample at the 3.5 𝑐𝑚 point and 6 𝑐𝑚 to the end of the plug 

length in the outlet. Also, in the parts around 6 𝑐𝑚 the oil saturation profile for the end of FW 

injection (black lines) overlapped or was even higher in comparison with the saturation profile at 

the start of FW injection (blue line), indicating the displaced oil by FW injection from the inlet or 

upstream and accumulated in this part. Hence, the changes in the oil saturation profile upstream of 

the plug sample were more noticeable. 

At the end of the oil drainage process, 0.71 and 0.68 average oil saturations were observed for 

vugular and fine-grained plug samples, respectively. These values were reduced to 0.43 and 0.44 

oil saturation at the end of the FW imbibition process. These data obtained from CT values revealed 

an agreement with the saturation data obtained by recording the oil and water production during 

core flooding experiments (𝑆𝑜𝑖 and 𝑆𝑜𝑟 in Table 2-3). 
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2.3.2 SIMULATION 

Figure 2-15-a displays three examples of 2D CT-scan (cross-section DICOM images) of the F1-1 

vugular plug sample acquired during core flooding experiments. Figure 2-15-b indicates the images 

after processing and characterizing ROI by excluding the region related to the exterior parts by 

setting null or NaN for those points. This algorithm was used to process all 2D images or all CT 

image layers of our three plug samples and the images were then used to produce porous system 

structures for three samples.  

a 

 
  b 

 
                                              c                                                                             d 

        
Figure 2-15. a) Examples of 2D CT images of noncircular plug samples b) 2D CT images after processing and 

excluding the exterior region (ROI) c) CT values of line 256 for the first image (Figure 2-15-a) d)histogram of CT 

value of the first image after processing (Figure 2-15-b).   
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Figure 2-15-c plots as an example the CT values of the middle line (line 256) for the first image 

versus pixel. According to this image, it was possible to detect the threshold CT value for observing 

the border. Figure 2-15-d shows the histogram of the CT values for the same image after processing 

(only the rock parts) that shows a bimodal distribution, representing two different fine-grained and 

vugular rock types. By analyzing the histogram of all acquired images, the value of 1500 HU was 

selected for the threshold limit and Rock Type 1 (fine-grained) or Rock Type 2 (vugular) were set 

for each pixel of all images given the fact that the CT value of that point is higher or lower than the 

threshold CT value. 

All the images had 512×512 pixels (with the size of 53×53 mm), and the resulting processed images 

contained many null blocks (all white parts in Figure 2-15-b) so, for simplification, they were first 

converted to 343×343 pixels images by cropping the images (area outside this size in all images 

belong to the null part).   

The 3D models of the samples were generated by stacking the processed 2D images and converting 

each pixel of the images to a simulation grid. As an example, the F2-5 fine-grained sample had 88 

slices or 2D images. For more accuracy, the first and last layers were not considered for generating 

the model. Each slice had 1 mm in length, with a total of 86 mm, or 86 slices for F2-5. The fine 

grid simulation model (without upscaling) for F2-5 was constituted of 343 × 343 × 86 

(10,117,814 blocks) with 7,807,510 active grid blocks (excluding outer regions of the rock) and 

2,310,304 null blocks.     

The porosity of the pixels, or grids, was defined with a linear correlation with the CT value for 

each rock type, considering the limits described in the method section. In the case of permeability 

definition, for each plug sample, the constant value of 10 D was set for grids with Rock Type 2 

facies. However, for Rock Type 1, equation (2-3) was applied. While for each plug sample, 

parameters A and B were calculated by applying the iteration method (please check the method 

section) and comparing the average permeability with experimental permeability. For example, for 

F1-1 vugular plug sample, values of 12.6879 and 3.0178 were calculated for A and B, respectively. 

3D representation models of the porous system (fine or high-fidelity model) for all plug samples 

are indicated in Figure 2-16. For F1-1 vugular plug sample, the process of stacking cross-section 

images was also displayed (Figure 2-16-a).  
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a 

 
                             b                                                                   c 

 
Figure 2-16. 3D representation of the simulation model for a) F1-1 vugular sample (with the process of stacking cross-

section images) b) F2-5 fine-grained sample c) F-6 fine-grained sample. 

Moreover, for each model, two approaches were applied to define the initial oil saturation 

according to the experiment results. In the first approach, average oil saturation obtained from CT 

values after the oil flooding stage and before starting the water injection stage (the average value 

of plot of 2.0 PV Oil Inj in Figure 2-13) was set for grid blocks with Rock type 1. While, for rock 

type 2, initial oil saturation of one was considered for the grids. In this approach, it was assumed 

that during oil injection all the large pores and vugs (Rock type 2) became fully saturated with oil, 

while fine pores or Rock type 1 attained average initial oil saturation of the experiments (As an 

example 0.71 for the F1-1 plug sample according to Figure 2-13-a). This approach is displayed in 

Figure 2-17-a for the F1-1 vugular plug sample. In the second approach, the results from the plot 

of 2.0 PV Oil Inj in Figure 2-13, showing the oil saturation profile after the oil flooding stage for 

each layer of the plugs, were considered for the initial oil saturation of grid blocks in each layer of 

the models (K direction). The visualization of the initial oil saturation distribution of this approach 
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is indicated in Figure 2-17-b for the F1-1 vugular plug sample. By analyzing the results of the 

simulation of the models with these two approaches for initial oil saturation and comparing them 

with experimental results, the second approach proved more realistic and was selected for further 

investigation.  

 
Figure 2-17. First (a) and second (b) approach the definition of initial oil saturation for the F1-1 vugular sample. 

Due to the time-consuming process of simulating these fine models (reference models) with many 

grid blocks, the upscaling technique was applied to build coarser grids using a Python routine 

described in the method section and before performing any history-matching procedure. For every 

three models, upscaled models were created with four upscaling factors (𝑛 = 3, 5, 6, and 12), 

considering each upscaled block to be generated from n×n×1 refined blocks. For example, Figure 

2-18 compares a 3D and 2D (for the J middle plane) porosity visualization for the F1-1 vugular 

plug sample with different upscaling factors. In this figure, 𝑛 = 1 refers to the reference model 

created directly from CT data. In this case, the simulation model comprised 9 294 271, 1 044 775, 

376 119, 265 756, and 66 439 grid blocks and 7 142 385, 802 753, 292 153, 204 446, 56 629 active 

grid blocks for 𝑛 = 1, 3, 5, 6, and 12, respectively.  

The models were run and the results of oil and water production were analyzed. In the case of the 

oil recovery factor, the different coarse models showed no considerable difference. However, for 

the water cut results, bigger differences were observed. Figure 2-19 displays these results for one 

vugular and one fine-grained sample. According to the results, models with 𝑛 = 3 and 5  showed 

an acceptable consonance while models with 𝑛 = 6 and 12 indicated slightly different results 

compared to finer models, especially at the start of production. Therefore, for all the studies, the 

base model with an upscale factor of 5 (with an acceptable processing time and results) was created 

and selected for further analysis during the history-matching process.  

a                                                                                         b 
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a 

 
b 

 
Figure 2-18. Porosity models visualization for the F1-1 vugular sample for upscaling factors of 1, 3, 5, 6 and 12 a) 3D 

view b) 2D view in the middle J plane. 

a 

 
b 

 
Figure 2-19. Water cut results for models with upscaling factors of 3, 5, 6 simulation model for a) F1-1 vugular sample 

and b) F2-5 fine-grained sample. 

Figure 2-20 compares the production history results created by experimental core flooding 

production data for oil and water (in blue circles) with the base model simulation results (in black 

line) for the F2-6 plug sample. In this step, history-matching was conducted for all samples to 

match simulation results with production history data. The parameters of 𝑛𝑜, 𝑛𝑤, 𝑘𝑟𝑜,𝑚𝑎𝑥, 𝑘𝑟𝑤,𝑚𝑎𝑥, 

n=1                                   n=3                                   n=5                                   n=6                                   n=12 

J Plane: 171 of 343           J Plane: 57 of 115            J Plane: 34 of 69              J Plane: 29 of 58              J Plane: 14 of 29 
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𝑆𝑜𝑟, and 𝑆𝑤𝑐 in the Brooks-Corey equation, to measure oil and water relative permeability, were 

defined as the uncertain inputs in the history-matching process. For all the parameters, the ranges 

and the default values were specified. It should be mentioned that the default values for  𝑆𝑜𝑟 and 

𝑆𝑤𝑐 were based on the oil and water produced volume during core flooding experiments of each 

plug sample (Table 2-3). The lower and upper limits were based on the saturation profile obtained 

from CT values at the start and end of the water flooding experiments (2.0 PV Oil Inj and 2.0 PV 

FW Inj graphs in Figure 2-13). In the case of 𝑛𝑜 and 𝑛𝑤, the default, lower limit, and upper limit 

values were set to 3, 1, and 6, respectively, while 0.5, 0.01, and 1 were selected for 𝑘𝑟𝑜,𝑚𝑎𝑥 and 

𝑘𝑟𝑤,𝑚𝑎𝑥. In this study, the objective function was defined to minimize the history-matching error 

between history production data and simulation outcomes by applying the DECE engine, in which 

parameters are carefully chosen to produce the best and optimal results. 

a 

 
b 

 
Figure 2-20. Base model and field history or experimental data for F2-6 plug sample for a) Cumulative oil production 

b) Cumulative water production. 

The experiments progress area displays global history-match error versus the experiment number 

for the base, general, and optimal (red diamond-shaped point) solutions after completing the 

history-matching process for F2-6 plug sample (Figure 2-21). Each experiment is represented by 

one blue data point. As the experiments advanced, more blue data points were added until the run 

was completed. The error for the optimal solution for this plug sample reached 2.15%. Moreover, 

the error values of 2.67% and 5.68% were measured for F2-5 and F1-1 samples, respectively.  
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Figure 2-21. Experiments progress for F2-6 plug sample. 

Figure 2-22 displays Cumulative oil production and Cumulative water production results for the 

base (black line), general (light blue lines), optimal (red line), and field history or experimental 

(dark blue circles) solutions for the F2-6 plug sample.  

a 

 
b 

 
Figure 2-22. Time Series Results for F2-6 plug sample for a) Cumulative oil production b) Cumulative water 

production. 
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For all three models, a high percentage of general solutions had an error of less than six percent, 

so these experiments had acceptable results for further analysis and calculating relative 

permeability curves. Therefore, instead of using the results to obtain parameters for just the optimal 

case with a minimum error value, the results of the best 50 cases were selected since they were 

successfully fit simulation results with experiments. According to the obtained parameter values 

for all the 50 best experiments, oil and water relative permeabilities were calculated by the Brooks-

Corey equation, and the averages of all the best 50 cases' relative permeabilities for the models 

were measured (Figure 2-23). These findings contribute to our understanding of fluid flow transfer 

in heterogeneous pre-salt reservoirs and provide a basis for appropriate evaluation of oil recovery 

efficiency, creating robust predictive models, better characterizing pre-salt reservoirs to lower 

risks, and for wise operational decisions. 

a 

 
                                       b                                                                        c 

 
Figure 2-23. Oil and water relative permeability for a) F1-1 vugular sample b) F2-5 fine-grained sample c) F-6 fine-

grained sample.  
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2.4 CONCLUSION 

In this research, stromatolite carbonate outcrop samples from Lagoa Salgada in Rio de Janeiro 

State, Brazil, as a possible flow analog to typical Brazilian Pre-salt reservoirs rocks, were evaluated 

for their petrophysical characteristics and fluid flow through porous media. Due to the high 

heterogeneity, differentiation, and significant pore size distribution variability, two fine-grained 

and vugular facies were defined for both experimental and simulation investigation to examine the 

effect of pore geometry on oil recovery, saturation profile, and relative permeability estimations. 

During the experimental measurements, conventional methods like petrography and core flooding 

were integrated with CT scanning to develop recovery factors, concentration profiles, and the 

visualization of the pore network geometry within plugs. The porosity profiles calculated with 

acquired CT values revealed a heterogeneous distribution that changed along the plug’s length. 

Core flooding experiment results showed 28% to 34% recovery factor of for three plug samples 

during water injection based on the original oil in place. 

During drainage and imbibition processes, changes in the oil saturation profiles utilizing CT data 

revealed various distributions over the plugs' length. The average of these oil saturation profiles at 

the end of the oil and water injection operation, which represent initial and residual oil saturation, 

agreed with the results from the production data of the core flooding studies. Since different 

pathways were chosen throughout time, there was a change in the saturation profiles forms for 

drainage and imbibition flow transfer.  

An algorithm was operated to process the 2D CT images of the samples, define a region of interest, 

and generate a fine-scale or high-fidelity grid model by converting each pixel of the image into one 

simulation block for the CMG simulator by applying rules for segmentation of rock types, porosity, 

and permeability estimations considering a Cartesian grid. Due to the high computational time for 

simulations of the fine-scale model, in sequence, an algorithm was adapted to create upscaled or 

coarser models where groups of blocks were merged into a coarser grid with any given dimension 

of an upscaled block. The simulation results for different upscaling factors were compared with 

experimental results of cumulative oil and water production from core flooding experiments. 

History-matching was conducted to match these results and calculate relative oil and water 

permeability using the Brooks-Corey model. The identified curves, therefore, assist in our 

understanding of fluid flow in these heterogeneous porous systems and serve as a foundation for 
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sensible operational choices, accurate assessments of oil recovery efficiency, the development of 

reliable predictive models, and a better understanding of pre-salt reservoirs to reduce risks. 
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ABSTRACT 

This study investigates the impact of pore network characteristics on fluid flow through complex 

and heterogeneous porous media, providing insights into the factors affecting fluid propagation in 

such systems. Specifically, high-resolution or micro x-ray computed tomography (CT) imaging 

techniques were utilized to examine outcrop stromatolite samples of the Lagoa Salgada, considered 

flow analogous to the Brazilian Pre-salt carbonate reservoirs. The petrophysical results comprised 

two distinct stromatolite depositional facies, the columnar and the fine-grained facies. By 

generating Pore Network Model (PNM), the study quantified the relationship between key features 

of the porous system, including pore and throat radius, throat length, coordination number, shape 

factor, and pore volume. The study found that the less dense pore network of the columnar sample 

is typically characterized by larger pores and wider and longer throats, but with a weaker 

connection of throats to pores. Both facies exhibited less variability in the radius of the pores and 

throats in comparison to throat length. Additionally, a series of core flooding experiments coupled 

with medical CT scanning was designed and conducted in the plug samples to assess flow 

propagation and saturation fields. The study revealed that the heterogeneity and presence of 

disconnected or dead-end pores significantly impacted the flow patterns and saturation. Two-phase 

flow patterns and oil saturation distribution reveal a preferential and heterogeneous displacement 

that mainly swept displaced fluid in some regions of plugs and bypassed it in others. The relation 

between saturation profiles, porosity profiles, and the number of fluid flow patterns for the samples 

was evident. Only for the columnar plug sample, the enhancement in recovery factor after shifting 

to lower salinity water injection (SW) was observed.  

Keywords: Pore Network Model, heterogeneous porous media, flow patterns, dead-end pores 
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3.1 INTRODUCTION 

Comprehending the fluid flow through porous media is crucial for various industrial uses, including 

the recovery of hydrocarbons, underground water and particle movement, CO2 and hydrogen 

storage in subsurface reservoirs, flow through porous electrodes in fuel cells, and interstitial flow 

in biological tissues (Raeini et al., 2014; Anbari et al., 2018). 

The total, connected pores, and pore geometry of rocks exert considerable control over the fluid 

flow within porous systems. Numerous studies, using numerical simulations and two and three-

dimensional image analysis, show that the degree of connectivity and throat width are key factors 

in determining the characteristics and effective transport of porous rocks. The coordination number, 

which is the total count of throats linked to a specific pore, is used to measure the level of 

connectivity within the pore network (von Bargen and Waff, 1986; Doyen, 1988; Wimert and Hier‐

Majumder, 2012; Thomson et al., 2018; Abedi et al., 2020). These geometric characteristics of the 

pore network can vary depending on a number of variables, however, statistical studies of the 

structure, shape, size, and arrangement of porous systems enable determining these characteristics 

that are essential for the measurement of petrophysical properties (Thomson et al., 2018; Rahmat 

et al., 2020). 

To explain the variability of pore network structure and textural alterations, conventional 

approaches to fundamental rock characteristic description fall short either in directly incorporating 

measurable geometric characteristics or in measuring the spatial distribution of the pores and grains 

in the three-dimension network. X-ray computed tomography (CT) facilitates to assess these 

fundamental qualities and provide a more accurate direct visualization and characterization of the 

porous structure and geometry. This improves our comprehension of the pore volume and pore-

network connectivity and microstructural constraints in various systems (Rezende et al., 2013; 

Thomson et al., 2018; Thomson et al., 2020; Withers et al., 2021).   

A proper description of the pore space is necessary for pore-scale modeling, especially when 

dealing with multi-phase flows (Al-Kharusi and Blunt, 2007). Pore-scale modeling of complex 

carbonate reservoirs is one of the scientific frontiers associated with the Brazilian Pre-salt play. 

The discovery of these reservoirs has been regarded as a significant breakthrough of the past decade 

and the cornerstone of South America's offshore petroleum industry. The main reservoir of the pre-

salt play comprises unusual in-situ carbonate rocks formed by shrub-like and spherulitic calcite 
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fabrics that were accumulated in extensional basins (Bruhn et al., 2017). These formations have 

complex geometries and diverse pore network structures. The growth framework, diagenetic 

modification, and depositional textures influence petrophysical properties based on rock features 

and control the pore volume and pores-throats connectivity (Matula, 1969; Lucia, 1983; Sharma, 

2008). Different carbonate formations have been proposed as analogue rocks for the pre-salt 

reservoirs, including travertines (Claes et al., 2017) and microbialites such as stromatolites and 

thrombolites (Rezende et al., 2013).  

In contrast to sandstone reservoirs, carbonate formations pose significant challenges in accurately 

determining petrophysical properties and characterizing reservoirs due to their high heterogeneity. 

Heterogeneity in reservoir description refers to the dispersion of parameters that impacts fluid flow 

(Jensen et al., 2000; Hendry et al., 2021; Sen et al., 2021). The heterogeneous nature and non-

uniform distribution of petrophysical properties within carbonate formations give rise to significant 

ambiguity in constructing models and forecasting production performance with reasonable 

accuracy. The use of flow experiments allows for a precise evaluation of the influence of 

heterogeneity on fluid flow (Vik et al., 2013; Iraji et al., 2015; Iraji and Ayatollahi, 2019). 

Understanding the dynamics of fluid flow within the media and the behavior of various phases as 

they pass through the porous system is essential for enhancing reservoir recovery, predicting oil 

displacement efficiency and water injection performance, and overcoming the barriers that hinder 

oil retrieval through conventional recovery methods (Gunde et al., 2010). 

The CT technique is a useful tool for observing and quantifying fluid flow and variations in the 

liquid saturation field in porous media in 3𝐷 porous structures. This technique can display the 

spread and distribution of various fluids in porous materials and can also uncover the flow patterns 

of fluids using statistical computations (Su et al., 2022).   

Heterogeneous stromatolite rock blocks collected from outcrops of Lagoa Salgada as the potential 

flow analogous of the Brazilian Pre-salt reservoir rock models (Wright and Tosca, 2016) were 

utilized in this study. Analysis of the geological features and pore geometry of these rock samples 

facilitated the identification of two distinct facies: fine-grained with smaller pores and less-

connected pore networks and columnar (vugular) with a better-connected pore network and large 

vugs. Therefore, plugs were sampled considering these heterogeneities and facies. The first part of 

this study concentrated on providing a thorough account of the processing of the high-resolution 
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or microCT images of the plug samples. The analysis employed digital rock physics (DRP) to 

evaluate and compare the pore network properties and geometry of the fine-grained and columnar 

facies samples. 

The second part of this article encompasses an extensive examination that merges traditional 

techniques such as core flooding with medical CT imaging to provide a characterization of porous 

systems, analyze single-phase and two-phase flow patterns during both drainage and imbibition 

processes, and explore the impact of varying salinity levels of injected water on oil flow. Moreover, 

using acquired CT images during flooding experiments, variations in the concentration profiles and 

saturation field were investigated during different flooding stages of water invasion and oil 

movement within the heterogeneous plug samples. The study aims to improve the understanding 

of the complex geometries and diverse networking patterns of the carbonate rocks, which have 

significant implications for hydrocarbon production and carbon and hydrogen storage in subsurface 

reservoirs of the Brazilian Pre-salt reservoirs. 
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3.2 MATERIAL AND METHODOLOGY 

3.2.1 MATERIALS 

Outcrops of Lagoa Salgada in Rio de Janeiro State, Brazil, were used to perform experiments and 

evaluate the pore geometry and flow pattern. Figure 2-1-a displays Rio de Janeiro State, 

highlighting the coastal zone and location map of the area of study.  

a 

 
                                         b                    c 

   

   
 

Figure 3-1. a) Coastal zone in Rio de Janeiro State with the marked location of the study area (Lagoa Salgada), b) two 

main facies of rock sample, and c) plug samples from the two facies. 

The geological characterization of the block rock sample was performed based on petrology and 

petrography to identify regions of interest and obtain representative rock facies prior to plugging 

samples. Two facies were specified, namely fine-grained and columnar/vugular (Figure 2-1-b). The 

first facies was with relatively small pores while the other had large pores and vugs.  In this work, 

one plug sample from columnar facies and two from fine-grained were drilled (Figure 2-1-c) to 

investigate and compare the effect of pore geometry on network characteristic, single-phase and 

two-phase flow patterns, saturation profile, and oil recovery. Since the plug samples were highly 

Fine-grained 
Plugs 

Columnar 
Plug 
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heterogeneous and frangible, the challenge was the preparation of a representative plug with 

constant marginal limits and maintained flow characteristics during fluid injection. A full 

description of the encapsulation techniques to overcome this challenge has been published 

previously published (Soltanmohammadi et al., 2021; Iraji et al., 2022c; Iraji et al., 2022a; Iraji et 

al., 2022b; Soltanmohammadi et al., 2022).    

Porosity, gas permeability considering Klinkenberg correction, and physical properties of these 

plugs are listed in Table 3-1. For plug from the columnar facies, given the existence of a large 

number of linked pores and vugs, we were unable to calculate pressure drop during injection of gas 

and as a result, we could not measure gas permeability. So liquid permeability calculation was 

conducted with three flow rates of 0.5, 1, and 5 𝑚𝐿/𝑚𝑖𝑛 using core flooding apparatus. The 

average liquid permeability of 5434.83 was determined using Darcy’s law for the fluid flow in 

porous media for columnar plug.  

Table 3-1. Petrophysical characteristics of the plugs. 

Facies Plug  Length, 𝑐𝑚 Diameter, 𝑐𝑚 Porosity, % Gas Permeability, 𝑚𝐷 

Fine-grained 𝐹2 − 5 8.90 3.78 29.8 963 

 𝐹2 − 6 9.72 3.77 24.3 1200 

Columnar 𝐹1 − 1 8.90 3.68 52.4 − 

The study used three different available aqueous solutions, namely distilled water (DW), sea water 

(SW) and formation water (FW). The compositions of FW and SW are displayed in Table 2-2.   

The oil phase utilized in this investigation was obtained from the pre-salt reservoir. The oil was 

centrifuged and passed through a 5 𝜇𝑚 Millipore filter prior to use. The oil properties including 

density, viscosity, molar mass, water content, acid number, and the result of SARA tests showing 

the weight percentage of saturates, aromatics, resins, and asphaltene components are presented in 

Table 3-3.  

Table 3-2. Average composition of SW and FW. 

Salt 
Formation Water (FW)  

Composition, 𝑔/𝐿 

Sea Water (SW) 

Composition, 𝑔/𝐿 

𝑁𝑎𝐶𝑙  163.620 23.470 

𝑁𝑎2𝑆𝑂4   0.088 0.100 

𝑁𝑎𝐻𝐶𝑂3  0.487 0.192 

𝐾𝐶𝑙  6.911 0.724 

𝑀𝑔𝐶𝑙2. 6𝐻2𝑂  3.068 10.550 

𝐶𝑎𝐶𝑙2. 2𝐻2𝑂  19.100 1.466 

𝑆𝑟𝐶𝑙2. 6𝐻2𝑂  0.029 0.039 

𝐵𝑎𝐶𝑙2. 2𝐻2𝑂  0.033 − 

𝐹𝑒𝑆𝑂4. 7𝐻2𝑂  0.022 − 

TDS, 𝑔/𝐿 193.358 36.541 
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Table 3-3. Oil properties. 

Properties Value Method 

Density 0.8751 𝑔/𝑐𝑚3 (ASTM-D1298-12b, 2017) 

Viscosity 5 𝑐𝑃 (ASTM-D7042, 2014) 

Molar mass 120𝑔/𝑚𝑜𝑙 (ASTM-D2503-92, 1992) 

Water content   0.01% (ASTM-D1744, 1992) 

Acid number 0.0275 𝑚𝑔 𝐾𝑂𝐻/𝑔 (ASTM-D664, 2011) 

 SARA Test  

Components Weight Percent, % Method 

Saturates 93.26 

(ASTM-D6560-12, 2012) 
Aromatics 0.59 

Resins 5.82 

Asphaltene  0.33 
 

3.2.2 METHODOLOGY 

Figure 3-2 displays an overview of the implemented workflow and this section offers a thorough 

clarification of each individual stage. 

 
Figure 3-2. Implemented workflow of the study. 

In the first step of the study, microCT image acquisition for both columnar and fine-grained plug 

samples was performed in the ZEISS Xradia Versa X-ray Microscopes, model XRM-500 (Voxel 

size of 44.69 𝜇𝑚) at the Laboratory of Porous Media and Thermophysical Properties of the Federal 

University of Santa Catarina (LMPT/UFSC). Each two-dimensional cross-sectional slice's image 

resolution (pixels) was 1029x999 with a slice thickness of 40 𝜇𝑚. These 2𝐷 microCT images were 

processed and stacked together to create the 3𝐷 representation of the plugs (Figure 3-3). For 

determination and quantification of the porous phase of the plug samples, pore network modeling 
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(PNM) was designed to gather information about the pore distribution, size and geometry of the 

pores and throats, and coordination number.  

 
Figure 3-3. 3𝐷 high-resolution full model of columnar sample. 

In the next step, a series of core flooding experiments were designed and performed in the three 

plug samples to understand single-phase and two-phase flow propagation and saturation profiles in 

the plug samples with different pore geometry. The schematic of the core flooding experimental 

setup equipped with a medical CT scanner is shown in Figure 2-3.  

 
Figure 3-4. A diagram of the experimental setup: core flooding equipment and the medical CT imaging system. 
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The equipment consists of a horizontally held core holder, two high-pressure Quizix pumps for 

injection and confining pressure, liquid accumulators to transfer oil and brine, pressure and 

differential pressure transmitters, a back pressure regulator, a biphasic separator, the heating 

system, and a high precision data acquisition system connected to processing and controlling 

software. The Medical Imaging Systems from SIEMENS, specifically the SOMATOM Spirit 

scanner (Voxel size of 100 𝜇𝑚) at the Center for Energy and Petroleum Studies of the State 

University of Campinas (CEPETRO/UNICAMP), was utilized as a Single Source Computed 

Tomography device to acquire CT data of plug samples during the injection. The image resolution 

(pixels) was 512x512 with a slice thickness of 0.1 𝑐𝑚.  

This step-by-step procedure was followed for the flooding experiments (this process was applied 

to each of the three plugs): 

I. Assemble the dry plug sample into the core holder with respect to encapsulation techniques 

under the experiment conditions (106℃ temperature and 150 𝑏𝑎𝑟 confining pressure). 

II. Vacuum the plug to remove air from the void space.  

III. Inject 𝑁2 into the sample and increase the 𝑁2 injection pressure step by step to the point 

that the pressure reaches 50 𝑏𝑎𝑟 and then properly stabilizes. 

IV. Perform CT scanning on the plug that has been saturated with 𝑁2 (dry CT). 

V. Vacuum the plug to remove 𝑁2 from the void space. 

VI. Inject FW into the plug and continue the process until the pressure stabilizes (All the fluids 

were injected at experiment temperature).   

VII. Perform CT scanning on the plug that has been saturated with FW (wet CT).  

Note: Steps (III) to (VII) were performed to map out the porosity distribution and to obtain the 

initial description of the porous system. 

VIII. Inject 2.0 pore volume (𝑃𝑉) of DW as the tracer with a consistent flow of 0.1 𝑚𝑙/𝑚𝑖𝑛 into 

the sample that has been saturated with FW and perform CT imaging while the process is 

ongoing.  

IX. Inject 2.0 𝑃𝑉 of FW with a consistent flow 0.5 𝑚𝑙/𝑚𝑖𝑛 combined with CT scanning during 

flooding. 

X. Decrease flow rate to 0.1 𝑚𝑙/𝑚𝑖𝑛 and continue FW injection (several 𝑃𝑉) until the total 

removal of the DW tracer.   
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Note: Steps (VIII) to (X) were performed to study single-phase and miscible process flow patterns. 

XI. Inject 2.0 𝑃𝑉 of oil with flow of 0.1 𝑚𝑙/𝑚𝑖𝑛 into the sample that has been saturated with 

FW and acquire CT data during flooding.  

XII. Inject 2.0 𝑃𝑉 of FW at a flow rate of 0.1 𝑚𝑙/𝑚𝑖𝑛 combined with CT scanning during the 

injection. Record the production data including pressure drop and produced volumes of oil 

and water to calculate the recovery factor.  

Note: Steps (XI) to (XII) were performed to study two-phase and immiscible process (drainage and 

imbibition) flow patterns and production of the saturation map during injection process.  

XIII. Inject SW at a constant rate of 0.1 𝑚𝑙/𝑚𝑖𝑛. Continue SW Injection until no further 

production of oil is observed. Keep track of the production data to measure the recovery 

factor and residual oil saturation. 

Note: Step (XIII) was performed to find the efficiency of the ion change and lower salinity water 

injection on oil production. 

It should be noted that, before starting oil injection (step XI) and after preparation of plug samples 

saturated with FW, some experiments were conducted by injection of FW at different flow rates 

(0.1, 0.5, and 1 cc/min for all three samples, for 𝐹1 − 1 vugular sample the higher rate of 5 cc/min 

were also applied to analyze flow regime and validate the application of the Darcy equation for 

these heterogeneous porous media with large pores and vugs. If the Darcy regime is dominant in 

our porous system, by plotting differential pressure over length versus velocity, we will have a 

straight line. Non-Darcy flow is indicated by a deviation from the straight line. This deviation 

demonstrates that, in non-Darcy flow, the pressure drop is greater than in viscous flow (Fetter, 

2018). 

3.2.2.1 IMAGE PROCESSING  

The X-ray is directed to the sample via a variety of directions during CT imaging process. The 

material is imaged in several 2𝐷 slices using the penetrating power of the X-rays (Lamas et al., 

2019; Withers et al., 2021). Every X-ray beam with a single energy level attenuates differently as 

it passes the sample before being collected by a receiver. After measuring the attenuation from 

different angles, a 3𝐷 matrix is constructed. The attenuation numbers are reported in Hounsfield 

units (HU) at all points of the images (each array of the matrix) to show the variation of this 
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parameter in the sample. The spatial distribution of the attenuation coefficient in rock samples is 

affected by differences in the level of empty space, types of minerals present, and degree of 

saturation (Hounsfield, 1973; Withers et al., 2021).   

The current section describes the procedure of image processing. The dataset contains two sets of 

images for the plug samples, one with a high resolution (44.69 𝜇𝑚) and the other with a low 

resolution (100 𝜇𝑚). Medical CT scanning for acquiring low-resolution images was repeated 

during all steps of injection experiments for all samples.  

Once the 2𝐷 CT data or sectional images has been obtained using the microCT scanner, the 3𝐷 

model was generated by layering these images on top of each other in the Digital Rock Analysis 

software (PerGeos software version 2020.2), where the images were first binarized and segmented 

for the recognition and characterization of the porous system. To begin this process:  

I. By cropping the images, a sub-area of the data was extracted. This selected region of interest 

was chosen to make image processing more computationally efficient (Figure 3-5-a-

Cropping). 

II. By applying a non-local means filter, the 8-bit grayscale CT images were treated to remove 

noise (Figure 3-5-a-Denoising).  

Streaks, brightness nonuniformity, and phase shift edges at the rock grain borders are examples of 

these undesired artifacts and noises (Thomson et al., 2018).  

III. Sharpening filters were implemented to the edges of the images to highlight the delimitation 

of the pore and rock edges (Figure 3-5-a-Sharpening) (Iassonov et al., 2009; Markussen et 

al., 2019).  

IV. To partition the different compositional phases of the images (pores/grains separation), 

segmentation was enforced and a grayscale image was turned into a binary image according 

to the X-ray attenuation values of each voxel (Knackstedt et al., 2013). The interactive 

overlay threshold was applied to segment and binarize the images (Figure 3-5-a-

Binarization).  

V. A 3𝐷 model was created by arranging the segmented 2𝐷 images on top of one another. 

Figure 3-6-a to d displays 3𝐷 visualizations of the sample considering grains, total, isolated, 

and connected pore spaces. 
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Figure 3-5. Image processing procedure for a) 2𝐷 microCT scan, b) 2𝐷 medical CT scan images 

VI. The Pore Network Model (PNM) (Figure 3-6-f) was generated using PNM module in 

PerGeos for further processing the 3𝐷 models and to evaluate the connection between the 

characteristics of porous structure, such as the radius of pore and throat, coordination 

number (the number of connecting throats attached to a specific pore), shape factor, and the 

volume of pores.  

Pores and throats are the two main parts of the pore network, where grain corner pores serve as 

junctions between distributed linear throats along grains. PNM module utilizes the hybrid 

algorithm to make a framework of the total pore system. This is achieved by determining the 

minimum spatial separation of voxels in the foreground (empty region) and background, thus 

eroding the pore-grain interface, and calculating the line length and connectivity. Lines with an 

outermost radius larger than their length are classified as pores, while those with a smaller radius 

are designated as throats. In the next step, the resulting image is resized to fill the border of every 

pore and throat, and the radius and length of each throat are calculated (Thomson et al., 2018; 

Thomson et al., 2020). Figure 3-6-e displays the marked image which is the outcome of this 

a                                                                                                        b 
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procedure, with distinct pores and throats dyed in different hues, and Figure 3-6-f displays the 

resulted PNM.  

 

Figure 3-6. 3𝐷 representation of sample obtained from microCT scan images for a) grain (gray), b) grain (gray) 

and total pores (blue), c) total pores (blue), d) connected pores (blue) and isolated pores (gray), e) separated pore 

space, f) pore network model. 

Subsequently, the 2𝐷 images acquired from medical CT scanning during flooding experiments 

were processed. Steps (I) to (V) for binarization, segmentation, and generating 3𝐷 models were 

a b 

c d 

e f 
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repeated and performed for all low-resolution images of plug samples (Figure 3-5-b). 3𝐷 

representation of the sample for grains, total, isolated, and connected pore spaces for medical CT 

images are displayed in Figure 3-7-a to d.  

 
Figure 3-7. 3𝐷 representation of sample obtained from medical CT scan images for a) grain (gray), b) grain (gray) and 

total pores (blue), c) total pores(blue), d) connected pores (blue) and isolated pores (gray), e) connected pores filled 

with oil, f) oil flow pattern. 

Finally, to generate flow patterns, the binary image file of the porous system was used as a mask 

in the separation of fluids. The injected fluids (brine or oil) were segmented according to the 

a b 

c d 

e f 
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watershed algorithm and according to the X-ray attenuation values of each fluid (Table 3-4). After 

this segmentation, the connectivity of the pores was investigated through the Axis Connectivity 

tool, by analyzing the binary 3𝐷 image of all paths of each fluid in the porous system (PerGeos, 

2019). If there is no connectivity between the fluid inside the pores, it may be necessary to perform 

a new segmentation process until connectivity is achieved. This means that the segmentation 

algorithm should be modified or refined to accurately identify and delineate the connected regions 

of the fluid within the pores. The goal is to ensure that the segmented regions represent physically 

connected areas of the fluid, allowing for meaningful analysis and interpretation of the porous 

media. Figure 3-7-e displays the results of the axis connectivity tool using oil attenuation value and 

reveals part of the connected pore space in which the oil flows. Moreover, Figure 3-7-f shows 

resulting oil flow pattern during one flooding experiment. 

Table 3-4. The average CT attenuation data of the fluids at experiment condition. 

Fluid CT value (𝐻𝑈) 

𝑁2 −545.52 

FW 433.03 

DW 389.17 

Oil 29.68 

Meanwhile, using the medical CT images obtained during flooding experiments, the average 

porosity was determined for each slice, which allowed for the creation of a porosity profile along 

the plug (according to dry and wet CT). And as previously stated, medical CT imaging of the plugs 

were performed at each stage of the flooding experiment (every 0.2 𝑃𝑉 fluid injection) to evaluate 

the arrangement of saturation level and indicate the fluid’s movement. The following equations 

were used to obtain porosity and oil saturation profiles during the drainage and imbibition.  

𝜙 =
𝐶𝑇𝑅𝑤 − 𝐶𝑇𝑅𝑔

𝐶𝑇𝑤 − 𝐶𝑇𝑔
   (3-1) 

𝑆𝑜 =
𝐶𝑇𝑅𝑤 − 𝐶𝑇𝑅𝑤𝑜

𝜙(𝐶𝑇𝑤 − 𝐶𝑇𝑜)
   (3-2) 

where, 𝐶𝑇𝑅𝑤, 𝐶𝑇𝑅𝑔, and 𝐶𝑇𝑅𝑤𝑜 represent the CT attenuation coefficient of the plug saturated with 

FW, saturated with 𝑁2, and saturated with both oil and FW. 𝐶𝑇𝑤, 𝐶𝑇𝑔 , and 𝐶𝑇𝑜 represent the mean 

CT attenuation coefficient of the FW, 𝑁2 and oil under experimental pressure and temperature, 

respectively.   
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In more detail, for calculating porosity and saturation curves during experiments, a script written 

in the Python programming language was created specifically for the purpose of analyzing and 

manipulating 2𝐷 medical CT images. The first step of this process involves defining a region of 

interest (ROI) by including both grain and pore spaces of plugs and excluding the components 

located on the outer side (encapsulation materials, sleeve, core holder, and air). See (Iraji et al., 

2023) for additional information about this algorithm for non-cylindrical and vugular samples. In 

the next step, average CT values of the ROI for acquired images during different stage of 

experiments were utilized to calculate saturation and porosity profiles during the process 

(Equations (3-1) and (3-2)). 
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3.3 RESULTS AND DISCUSSION 

3.3.1 POROSITY AND PORE NETWORK MODELING 

Applying the PNM, the entire porous system was categorized as a system of pores and throats. 

Figure 3-8 and Figure 3-9 demonstrate the 3𝐷 visualization of the porous space structure and pore 

network model for the columnar and one fine-grained facies sample, respectively. The PNM 

illustrations (Figure 3-8 and Figure 3-9-c) use gray cylinders to depict the throats and spheres 

representing pores. The columnar sample features fewer, broader throats connecting the pores and 

a less dense pore network, while a compact network of narrow throats makes up the model of the 

fine-grained sample. 

 
Figure 3-8. 3𝐷 visualization of 𝐹1 − 1 columnar sample obtained from microCT scan images for a) grain (gray) and 

total pores (blue), b) connected pores (blue), c) pore network model. 

 

Figure 3-9. 3𝐷 visualization of 𝐹2 − 6 fine-grained sample obtained from microCT scan images for a) grain (gray) 

and total pores (blue), b) connected pores (blue), c) pore network model. 

Figure 3-10 compares the probability distribution plots of the pore geometry properties for both 

facies. The plots demonstrate the distribution of coordination number (Figure 3-10-a and b), shape 

factor (Figure 3-10-c), throat length (Figure 3-10-d), pore (Figure 3-10-e), and throat radius(Figure 

a b c 

a b c 
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3-10-f). Since most data for coordination number fell between one and 25, two plots were 

considered, one focusing on all the data in the log scale and the other on most of the data in the 

linear scale. 

                                       a                                                                           b 

 
                                       c                                                                           d 

 
                                       e                                                                           f 

 

Figure 3-10. Probability distribution graphs of PNM properties for columnar (blue) and fine-grained (red) samples for 

a) coordination number in Log scale for the entire data set, b) coordination number in linear scale for the most frequent 

data set, c) shape factor, d) throat length, e) pore radius, f) throat radius. 
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The medians of all the PNM properties are listed in Table 3-5. Samples from both facies displayed 

the same median coordination number of 3. However, compared to the fine-grained sample, the 

columnar sample exhibits substantially higher relative frequency for the coordination number of 

less than 3, but for higher coordination numbers, the fine-grained sample displayed more frequency 

(Figure 3-10-a and b), indicating improved pore connectivity. Additionally, the pore network in 

the fine-grained sample was composed of pores typically 86 𝜇𝑚 in radius and throats 43 and 207 

𝜇𝑚 in radius and length, respectively. While median values of 142, 80, and 272 𝜇𝑚 for pore radius, 

throat radius, and throat length, were measured for the network of the columnar sample. For 

columnar sample, the pore network was generally comprised of larger pores, wider and longer 

throats, but with the weaker connection and fewer junctions of throats to pores.  

Table 3-5. Summary of the median of pore network characteristics of both facies sample. 

Facies 

Plug 

Fine-grained 

𝐹2 − 6 

Columnar 

𝐹1 − 1 

Coordination Number, - 3 3 

Shape factor, - 0.0387 0.0437 

Pore Radius, 𝜇𝑚 86.029 141.985 

Throat Radius, 𝜇𝑚 43.090 80.132 

Throat Length, 𝜇𝑚 207.446 271.683 

Pore Cross Section Area, 𝜇𝑚2 39,790 114,839 

Pore Volume, 𝜇𝑚3 9,996,530 40,610,900 

Number of Pores 90,790 12,128 

Number of Throats 207,354 20,090 

The shape factor refers to a unitless parameter used to quantify the degree of irregularity of a given 

geometric shape and represents a shape that matches the pore cross-section. It is defined as,  

𝐺 =
𝐴

𝑆2
   (3-3) 

where, 𝐴 and 𝑆 are the area and perimeter of the pore cross-section, respectively. If G ≤ √3/36 then 

a triangle with the same G number is the idealized shape; if √3/36 <G ≤ 1/16 then it is a square, 

and if 1/16 < G then it is a circle describing the pore cross-section (Helland et al., 2008). Typically, 

the triangle represented the pores’ cross-section from both facies. However square pores were also 

available in both samples. 

Figure 3-11 displays the correlation between the cross-sectional area and volume of pores for both 

samples and compares them with sphere and tetrahedron pores. In both fine-grained and columnar 



92 
 

 

 

samples, for a given cross-section area, the volume of the most pores are in the same range, and 

greater in size than sphere and tetrahedron pores. 

  
Figure 3-11. The correlation between the pore area and pore volume columnar (blue) and fine-grained (red) samples. 

Gaining a deeper understanding of the nature of pore space connectivity requires quantifying the 

correlation between the key pore geometry characteristics determined by pore network modeling. 

The relationships between important factors related to pores and throats are shown in Figure 3-12-

a and b: coordination number versus pore radius and c and d: throat length versus throat radius. To 

plot graphs b and d, the pore and throat radius data from each sample were separated into 500 𝜇𝑚 

intervals. The intermediate amounts of the intervals were shown, and the standard deviation of each 

range was plotted as the error bar. According to Figure 3-12-a and b, the pore radius and 

coordination number have an almost positive relation for fine-grained sample, meaning that larger 

pores often connect to more throats, however, for columnar sample, this relation was weaker. 

Which means that different slopes can be observed for the two facies, in the fine-grained sample 

as pore radius rise, the rise in coordination number is more considerable, while in the columnar 

sample, larger pores are less connected. Figure 3-12-c and d reveal a more evident correlation 

between throat length and radius in both facies and depicts a significantly smaller variability in 

throat radius compared with variation in throat length. In comparison to the columnar sample, there 

are few throats in the fine-grained sample that are longer and wider.  
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                                       a                                                                           b 

 
                                       c                                                                          d 

 

Figure 3-12. The relationship between: a and b) coordination number and pore radius, c and d) throat length and throat 

radius: in columnar (blue) and fine-grained (red) samples. 

The variabilities of pore radius, throat radius, and throat length expressed through their respective 

coefficients of variation are additional pore geometry features that can be used to describe the 

PNM. The coefficient of variation is a unitless parameter that can be used as an all-encompassing 

description of pore geometry despite changes in porosity and mineral composition (Bernabé et al., 

2010; Thomson et al., 2018). These results are listed in Table 3-6. The coefficient of variation 

greater than 1, indicates an unusually high standard deviation of the parameters, which is in good 

agreement with the high heterogeneity of our sample.  

The porosity value for each 2𝐷 slice was calculated using the obtained medical CT images from 

dry and wet flooding experiments and porosity curves were generated over the length of the 

samples. The curves are shown in Figure 2-10 with the means of 0.524, 0.298, and 0.243 for 𝐹1 −

1, 𝐹2 − 5, and 𝐹2 − 6 plugs, with a higher profile for the columnar sample that reveals the 
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existence of large-scale void spaces in this sample. Each of three profiles exhibits diverse porosities 

that differ in magnitude throughout the lengths, with the porosity varies between 0.45 and 0.61, 

from 0.23 and 0.42, and from 0.16 and 0.33 for 𝐹1 − 1, 𝐹2 − 5, and 𝐹2 − 6 plugs. In the case of 

the columnar sample, the porosity attained its highest point around the center of the sample. 

However, for fine-grained plugs, the highest porosity peaks are located at the ends of the plugs. 

Table 3-6. Coefficient of variation for pore radius, throat radius, and throat length for both facies sample. 

Facies 

Plug 

Fine-grained 

𝐹2 − 6 

Columnar 

𝐹1 − 1 
𝜎𝑟

〈𝑟〉⁄  Pore 0.8369 0.8555 

𝜎𝑟
〈𝑟〉⁄  Throat 1.1897 0.9491 

𝜎𝑙
〈𝑙〉⁄  Throat 1.8045 1.7470 

 
Figure 3-13. Porosity distribution for the samples. 

Figure 3-14 displayed the 3𝐷 visualization model of the porous system for three samples. Blue 

segmentations show connected pores and gray segmentations show disconnected pores. In these 

models white (background color) segmentations indicate grains. The disconnected pores (gray 

segmentation) are more dominant in the columnar sample. There is a high number of disconnected 

pores and dead-end pores in too many areas of the samples that would probably block the flow in 

that direction and cause non-continuity in flow patterns.  Since fluid flow patterns in these 3𝐷 

models were not easy to observe (red lines), the upcoming 3𝐷 flow patterns (next figures) were 

displayed in a 2𝐷 plane of the porous system for better visualization and analysis, which means 

that flow patterns were generated and displayed for all the pores in the 3𝐷 model, while the 

connected pore system (only blue segmentations) of one longitudinal cross-section of the plugs 

was displayed as a background. 

Min: 0.45

Max: 0.61

Min: 0.23

Max: 0.42

Min: 0.16

Max: 0.33

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 2 3 4 5 6 7 8 9 10

P
o

ro
si

ty
 /

 -

Length / cm

Columnar, F1-1
Fine-grained, F2-5
Fine-grained, F2-6



95 
 

 

 

 

    
Figure 3-14. Porous system for a) 𝐹1 − 1 columnar plug, b) 𝐹 − 5 fine-grained plug, c) 𝐹2 − 6 fine-grained plug. 

3.3.2 SINGLE-PHASE STUDIES 

The first step of the single-phase studies was the injection of the DW at 0.1 𝑚𝑙/𝑚𝑖𝑛 injection rate 

as a tracer into the plug saturated with FW in conjunction with CT scanning. The process was 

followed by the injection of FW at a constant injection rate of 0.5 𝑚𝑙/𝑚𝑖𝑛 and the conduction of 

CT scanning during the flooding. To generate flow patterns, the CT image files were processed, 

and the signals were split into two parts to separate fluids and show the flowlines of displaced and 

displacing fluid during injection processes.  

The flow lines of DW (yellow lines) during displacement of FW by DW in the porous medium for 

the three samples are indicated in Figure 3-15. As mentioned before, the blue parts in these images 

indicate connected pores of one longitudinal cross-section of the plugs. 

In the case of the columnar sample, flow lines are distributed in only some parts of the sample 

(Figure 3-15-a) and the upper left side of the plug is practically lacks flow patterns. It implies that 

the heterogeneity and disconnected/dead-end pores significantly affect the flow patterns. However, 

there is a more homogenous distribution of flow lines and better dispersion of the fluid along the 

samples for fine-grained plugs (Figure 3-15-b and c) during this miscible process, indicating higher 

sweep efficiency.  

To obtain further in-depth information on the single-phase studies, after injection of DW the 

process was followed by the injection of FW with rate of 0.5 ml/min coupled with CT scanning to 

a  

         b                                                                                     c 
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see the effect of the high rate on the flow patterns. The flow lines of FW (red lines) during this 

miscible displacement for the three samples are shown in Figure 3-16. 

 

 

Figure 3-15. Flow lines of DW (yellow lines) during flooding of DW and displacement of FW for a) 𝐹1 − 1 columnar 

plug, b) 𝐹 − 5 fine-grained plug, c) 𝐹2 − 6 fine-grained plug. 

 

 
Figure 3-16. Flow lines of FW (red lines) during injection of FW and displacement of DW for a) 𝐹1 − 1 columnar 

plug, b) 𝐹 − 5 fine-grained plug, c) 𝐹2 − 6 fine-grained plug. 

By analyzing the flow lines of FW in Figure 3-16-a again we can see the poor distribution of flow 

lines in the columnar sample, indicating unswept areas. During this high-rate miscible fluid 

transportation, 𝐹2 − 5 revealed significantly better fluid dispersion in comparison with 𝐹2 − 6 

(Figure 3-16-b and c), which has a good agreement with the high amount of connected pore and 

their homogenous distribution in this sample (blue parts in Figure 3-14-b).  

       b                                                                             c 

      b                                                                                 c 

a  

a  
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To conclude the single-phase step and prepare the sample for two-phase studies (preparation of 

fully FW-saturated plug), the injection rate for FW decreased to 0.1 𝑚𝑙/𝑚𝑖𝑛 until the total removal 

of the DW and then FW was injected at different flow rates to validate the application of the Darcy 

law. Figure 3-17 displays the example of the result of experiments for analyzing flow regimes in a 

vugular and a fine-grained plug. For all three samples, the dominant flow regime was Darcy and 

no deviation from the straight line was observed in the plot of differential pressure over length 

versus velocity (Figure 3-18).   

                                       a                                                                           b 

  

Figure 3-17. Analyzing flow regimes for a) 𝐹1 − 1 columnar plug, b) 𝐹2 − 6 fine-grained plug. 

 

Figure 3-18. Analyzing flow regimes graph. 

3.3.3 TWO-PHASE STUDIES 

3.3.3.1  OIL INJECTION (OIL DRAINAGE) 

In this step, the oil was injected (to achieve initial water saturation) at the rate of 0.1 𝑚𝑙/𝑚𝑖𝑛 into 

the samples in order to gain a clearer comprehension of the immiscible process and two-phase flow.  
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Again, flow lines for this injection process were generated by processing the CT image data. Like 

the previous section the flow paths and the behavior of fluid during transportation were analyzed. 

The flow lines of oil (displacing fluid: yellow lines) during displacement of FW in the porous 

system for the three samples are displayed in Figure 3-19. 

 

 
Figure 3-19. Flow lines of oil (yellow lines) during flooding of oil and displacement of FW for a) 𝐹1 − 1 columnar 

plug, b) 𝐹 − 5 fine-grained plug (white elliptic displays the area with an increase in the number of oil flow lines), c) 

𝐹2 − 6 fine-grained plug. 

The oil flow pattern for all samples revealed a preferential displacement and mainly swept FW in 

some regions of plugs and bypassed it in other parts. The oil flooding yielded a relatively 

heterogeneous reduction of FW saturation, which can be seen from the number of flow lines in 

different regions of plugs. There are some spaces without any flow lines, indicating that oil was 

not imbibed into those FW-saturated parts of the porous network, however, in other parts, we can 

see many oil flow lines that cover most of the pore system.  

By analyzing the production data including the amounts of produced oil and water volumes during 

tests, the same results representing bypassing of FW in the plug were observed. For the columnar 

sample, the total amount of produced water during oil flooding was approximately 32 𝑐𝑚3 (the 

pore volume was 49.70 𝑐𝑚3) representing the connate water saturation of 0.356. Table 3-7 (oil 

drainage columns) provides the results for the three samples.    

Although the number of flow lines is more considerable in the columnar sample compared to the 

fine-grained samples, it resulted in lower level of initial oil saturation at the final step of the oil 

flooding process (Table 3-7). This could be due to the large pore volume (around 50 𝑐𝑚3) of this 

a  

      b                                                                                 c 
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sample given the existence of large pores, which cause more streamlines of fluid in this process, 

but still, there are areas that remained untouched during this flooding process. 

Table 3-7. The outcomes of core flooding experiments conducted on three plugs. 

   Oil Drainage 
FW 

Imbibition 

SW 

Imbibition 

Facies Plug  𝑃𝑉, 𝑐𝑚3 
𝑂𝑂𝐼𝑃, 

𝑐𝑚3 

𝑆𝑤𝑐 , 

fraction 

𝑆𝑜𝑖 , 

fraction 
𝑆𝑜𝑟 , fraction 

𝑆𝑜𝑟 , fraction 

Fine-grained 𝐹2 − 5 29.76 21.0 0.294 0.706 0.487 0.487 

 𝐹2 − 6 26.26 21.0 0.200 0.800 0.571 0.571 

Columnar 𝐹1 − 1 49.70 32.0 0.356 0.644 0.422 0.392 

Description: 𝑃𝑉 refers the Pore Volume, OOIP stands for Oil Original in Place, 𝑆𝑤𝑐  represents the connate water saturation, 

𝑆𝑜𝑖  represents the Initial oil saturation, and 𝑆𝑜𝑟  refers to the residual oil saturation. 

Throughout both oil and FW injection experiments (next section), the alterations in the level of oil 

saturation in the plugs were regularly monitored and analyzed over time by utilizing medical CT 

imaging throughout the tests (Equation (3-2)). The correlations between amount of oil injection 

and oil saturation values versus length for the columnar and one fine-grained plug are shown in 

Figure 3-20. The two oil saturation curves in the graphs correspond to the initial and the final steps 

of oil flooding experiments. According to Figure 3-20, the following observations can be made: 

• All curves clearly show variability in oil saturation value over the length. In case of the 

columnar sample, the saturation varies between 0.02 and 0.25 at initial step of oil flooding, and 

between 0.52 and 0.97 at the final step of flooding. In case of the fine-grained sample, the 

values ranged from 0.002 to 0.22, and from 0.49 to 1 at two stages of flooding. 

• As the oil saturation level increased, the spatial differences in the oil saturation values became 

increasingly noticeable. 

• Oil breakthrough was observed shortly after the beginning of injection and the level of oil 

saturation in both samples reached around 0.1 in the final layer (end of plugs) after 0.2 𝑃𝑉 oil 

injection. 

• Featuring the lowest point at around midpoint of the core length, the oil saturation curves (for 

the two steps of the experiments) of the columnar sample displayed a strong correlation with 

the average porosity curve (Figure 3-13). This can also be observed by the reduced number of 

flow lines in the middle of the sample (Figure 3-19-a). 

• For the fine-grained sample, at the end of the injection, a peak with oil saturation of one was 

observed at around one-third of the end of the plug; at the same area we can see an increase in 

the number of oil flow lines (marked white area in Figure 3-19-b). 
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• For both samples, compared to the initial oil saturation profile (0.2 𝑃𝑉 oil-injected), a shift in 

the shape of the profiles (believed to be caused by the selection of different preferential paths 

during the flow transfer) was noted at the end of the drainage experiment (2 𝑃𝑉 oil-injected). 

However, this change is more considerable for the fine-grained sample. 

• Mean oil saturation at the final step of oil flooding, 0.71 for the 𝐹1 − 1 columnar sample and 

0.68 for the 𝐹2 − 5 fine-grained plug, represents initial oil saturation (equivalent to 0.29 and 

0.32 connate water saturation). By analyzing the data of core flooding tests, the same results 

were calculated (𝑆𝑤𝑐 and 𝑆𝑜𝑖 in Table 3-7) and show acceptable concurrence with the saturation 

information acquired from CT measurements. 

a 

 
b 

 
Figure 3-20. Saturation curves for oil drainage stage for a) 𝐹1 − 1 columnar plug, b) 𝐹2 − 5 fine-grained plug. 
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3.3.3.2 FW INJECTION (WATER IMBIBITION) 

After the oil injection and reaching initial water saturation, FW was injected at flow rate of 0.1 

𝑚𝑙/𝑚𝑖𝑛 in conjunction with CT imaging to investigate the process of oil production and to derive 

flow lines and saturation map for this two-phase immiscible process. Like the previous sections the 

flow paths and the behavior of fluid during transportation were analyzed. The flow lines of oil 

(displaced fluid: yellow lines) during displacement of oil (FW imbibition) in the porous system for 

the three samples are displayed in Figure 3-21. 

 

 
Figure 3-21. Flow lines of oil (yellow lines) during injection of FW and displacement of oil for a) 𝐹1 − 1 columnar 

plug, b) 𝐹 − 5 fine-grained plug, c) 𝐹2 − 6 fine-grained plug. 

For the three samples, the oil flow patterns showed preferential displacement, particularly sweeping 

oil in some parts and bypassing it in others. The number of flow lines in various plug locations 

indicates that the FW flooding resulted in a rather diverse drop in oil saturation. While there are 

many spaces without any particular flow lines, we can see a significant number of oil flow lines 

that cover nearly the whole region of the pore system in other parts, indicating that FW was imbibed 

better into those parts of the porous network. This indicates that we were unable to produce a 

significant portion of the oil due to the heterogeneity in the plugs. Core flooding results for this 

step showed 0.42, 0.49, and 0.571 residual oil saturation after FW injection for the 𝐹1 − 1, 𝐹2 −

5, and 𝐹2 − 6 plugs (Table 3-7).  

The samples were CT-scanned periodically throughout the FW injection test to track the oil 

saturation level within the plugs and the resulted saturation curves are displayed in Figure 3-22 for 

                b                                                                             c 

a  
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the columnar and a fine-grained sample. The two oil saturation curves in these plots correspond to 

the initial and the final steps of FW flooding experiments.   

a 

 
b 

 
Figure 3-22. Saturation curves for FW imbibition stage for a) 𝐹1 − 1 columnar plug, b) 𝐹2 − 5 fine-grained plug. 
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• The change in oil saturation level over the length is seen for both samples. During the final 

stage of the FW flooding, the oil saturation levels for the columnar sample were between 0.21 

to 0.71. On the other hand, the curve for the fine-grained sample revealed more heterogeneity, 

which varied between 0.08 and 0.84. 

• The variations between the two curves exhibit the quantity of oil production. It indicates that 

oil production was more noticeable from the portion of the plug that the differences between 
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the two lines increased (for example, at the beginning and end of the plug length for the 

columnar sample).  

• Based on the differences between the two curves in the columnar sample, a high quantity of oil 

was left behind at around 2, 4.5, 5.5, and 8 𝑐𝑚 of length; these points also have lower level of 

porosity. 

• As it was observed in the oil injection saturation results, the correlation among the saturation 

and the porosity curves was again evident. 

• In case of fine-grained sample, the oil saturation was decreased further on the upstream side 

than on the downstream side, and less variation was observed during FW flooding compared 

to oil flooding. 

• In the last third of the fine-grained sample, it was observed that at some points the oil saturation 

at the final step of the process (2 𝑃𝑉 FW Inj) was more than at the initial step (0 𝑃𝑉 FW Inj), 

it appears that oil has been pushed out from upstream areas and stacked here. The same results 

can be assessed in Figure 3-21-b where the increasing number of flow lines in downstream of 

the plug can reveal oil accumulation. 

• Compared to the initial oil saturation values (0 𝑃𝑉 FW Inj), a shift in the shape of the oil 

saturation profile (2 𝑃𝑉 FW Inj) was more noticeable for the fine-grained sample. 

• In case of the columnar sample, the oil flow lines during oil drainage (Figure 3-19) and FW 

imbibition (Figure 3-21) are distinct from one another and oil had selected various routes 

throughout these processes.  

• Mean oil saturation at the end of FW injection (0.43 and 0.44 for the columnar and fine-grained 

sample, respectively), representing residual oil saturation of this process, have a respectable 

concurrence with the saturation data obtained from core flooding results (FW imbibition 𝑆𝑜𝑟 in 

Table 3-7). 

To conclude the two-phase step, SW was injected at a rate of 0.1 𝑚𝑙/𝑚𝑖𝑛 into plug samples, Figure 

3-23 indicates recovery factor for FW flooding and after switching to SW injection. For fine-

grained plugs, the recovery remained practically unchanged with further SW injection. For the 

columnar sample, the enhancement in oil recovery (extra 4.7 %) during this lower salinity water 

injection (SW) is believed to be caused by the osmosis mechanism, osmotic water transportation 

to large dead-end pores and mobilization of oil. 
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Figure 3-23. The results of oil recovery factor for FW and SW flooding.  
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3.4 CONCLUSION 

The primary objective of this investigation was to evaluate the impact of pore geometry, network 

characteristics, and heterogeneity on fluid flow through complex porous media. To achieve this 

goal, three plugs were extracted from two distinct facies, namely fine-grained and vugular, which 

were identified based on the geological examination of the Lagoa Salgada outcrop samples. 

For the determination of the structure and geometry of the porous system, PNM was employed for 

the microCT images of samples from both facies to measure the connection between the features 

of the porous system, such as the radius of pore and throat, throat length, coordination number, 

shape factor, and the volume of pores. The median coordination number in samples from both 

facies was 3. Compared to the fine-grained sample, the less dense pore network of the columnar 

sample was typically comprised of larger pores, wider and longer throats, but with a weaker 

connection of throats to pores (fine-grained: pores radius ~86 𝜇𝑚 and throats radius ~43 𝜇𝑚, and 

columnar: pores radius ~142 𝜇𝑚 and throats radius ~80 𝜇𝑚). For the fine-grained sample, the pore 

radius and coordination number showed an almost positive relation, meaning that pores with a 

greater size often linked to more channels, while in the columnar sample, larger pores were less 

connected. Both facies depicted significantly less variation in throat radius compared with throat 

length. 

Medical CT imaging was employed in conjunction with core flooding experiments to provide a 

comprehensive characterization of the porous system, single-phase and two-phase flow patterns, 

and concentration profiles. Single-phase flow patterns suggested that the heterogeneity and 

disconnected/dead-end pores greatly affect the flow patterns and there was a more homogenous 

distribution of flow lines and better fluid dispersion along the samples with better pore network 

connectivity (fine-grained sample).   

Two-phase flow patterns (both drainage and imbibition) for all samples revealed a preferential and 

heterogeneous displacement that mainly swept displaced fluid in some regions of plugs and 

bypassed it in other parts. There were some pore spaces without any specific flow lines, while in 

other areas, there was a sizable number of flow lines that completely covered the pore system, 

which indicates that displacing fluid was more effectively imbibed into those parts of the porous 

network. The CT data enabled the identification of oil saturation levels throughout the flooding 

stages, exhibiting diverse and non-homogenous values. The mean connate water and residual oil 
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saturations ascertained from CT data at the final step of the oil and water flooding process, 

exhibited a satisfactory concurrence with the saturation values derived from the amount of 

produced oil and brine. The heterogeneity of the sample significantly affects the flow patterns and 

saturation, and the correlation among the saturation and porosity distributions, and the number of 

fluid flow patterns for the samples was evident. An alteration in the shape of the saturation curves 

was observed during the oil and water flooding, resulting from the selection of diverse pathways 

over time. This change was more prominent in the fine-grained sample. 

Only for the columnar plug sample, the enhancement in oil recovery after shifting to lower salinity 

water injection (SW) was observed according to the osmosis mechanism, while for the fine-grained 

samples, the recovery remained practically unchanged with further SW injection.  

Overall, the results of this study emphasize the importance of understanding the heterogeneity and 

pore size distribution of porous media for predicting fluid propagation and fluid saturation in 

subsurface systems. These findings have implications for a wide range of applications, including 

oil and gas recovery, carbon capture and storage, and groundwater management. 
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ABSTRACT 

Well log data, routine core analyses, microcomputed X-ray tomography (µ𝐶𝑇) images, and 

sedimentary petrography were integrated to accurately characterize and evaluate the carbonate 

reservoirs of the Barra Velha formation (Aptian) of the Santos Basin in Brazilian pre-salt. In these 

carbonate reservoirs, the porous system is extremely diverse and variable, making it challenging to 

establish rock typing with comparable petrophysical properties. Based on this integrated study, the 

reservoir sequences were characterized and a precise definition of four reservoir rock types (RRTs) 

was performed by integrating the petrophysical values of the plugs and their corresponding well 

log data of two cored wells using K-means unsupervised classification algorithm. The classification 

results were integrated with several conventional techniques to evaluate the quality and geological 

characteristics of the studied sequence by assessing different parameters such as flow and storage 

capacity, reservoir quality index, flow zone indicator, pore spaces interpretation, and average pore 

and throat radius. The study involved a detailed analysis of thin sections to identify various facies 

such as shrubstones, reworked, and spherulitestone, and to classify different types of porosity such 

as interparticle, intraparticle, intercrystalline, vug, moldic, fracture, and growth framework 

porosity. Pore Network Modeling from µ𝐶𝑇 analysis of plugs was used specifically for the 

characterization of pores and throats of plug samples from each RRT. These data sets were utilized 

as supporting evidence to provide a more precise and comprehensive knowledge of reservoir 

quality. The study aimed to develop predictive models by implementing deep learning and machine 

learning algorithms trained on well log data to estimate plug porosity and rock type. Two deep 

learning models, ResNet and 1D CNN, were trained and evaluated for plug porosity prediction, 

with the 1D CNN model showing superior performance. Additionally, the XGBoost algorithm was 

applied to predict rock type, achieving high accuracy on both the training and validation datasets. 

The predicted results were compared with actual data to assess the effectiveness of the models and 

were then used to estimate plug permeability values. The results demonstrate the potential of deep 

learning and machine learning approaches in reservoir characterization and management, enabling 

the evaluation of subsurface reservoir properties even with incomplete datasets, which could lead 

to an improved understanding of the reservoir properties and better management of the reservoir. 

This integrated study provides deeper insight into the complex reservoir properties and can aid in 

improving decision-making processes and optimizing management and production strategies in the 

challenging pre-salt carbonate reservoirs or similar complex reservoirs. 
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4.1 INTRODUCTION 

The Exploration of the massive Pre-salt carbonate reservoirs located in the southeastern part of 

Brazil is known to be the cornerstone of South America's offshore petroleum industry. This 

discovery has firmly established Brazil among the leading offshore hydrocarbon producers (Bruhn 

et al., 2017; Soltanmohammadi et al., 2021; Iraji et al., 2022b).  

Determining the spatial dispersion pattern of petrophysical characteristics in the carbonates of the 

sub-salt interval is challenging, since they are very varied and heterogeneous regarding grain 

arrangement, pore structure, and geological changes over time (Rezende and Pope, 2015; Wright 

and Barnett, 2015; Iraji et al., 2022c; Soltanmohammadi et al., 2022). The quality-reducing (e.g., 

cementation, silicification, compaction, neomorphism, authigenic minerals) and quality-enhancing 

(e.g., fracturing and dissolution) diagenetic processes fundamentally influence and control the 

petrophysical properties (Shehata et al., 2021). Rock type and flow unit determination could be 

used as diagnostic tools to discriminate and assess reservoir quality. Rock types can be 

accomplished by implementing different conventional methods of the effective pore radius 𝑅35 of 

Winland (Winland, 1972; Kolodzie, 1980), reservoir quality index (𝑅𝑄𝐼) and flow zone indicator 

(𝐹𝑍𝐼) plot (Amaefule et al., 1993; Bize Forest et al., 2019), discrete rock types (𝐷𝑅𝑇) technique 

(Shenawi et al., 2007; El Sawy et al., 2020), the global hydraulic elements (𝐺𝐻𝐸) system (Corbett 

and Potter, 2004; Hosa et al., 2020), and flow unit from SML plot (stratigraphic modified Lorenz) 

(Maglio-Johnson, 2001; Omeje et al., 2022). A recent study conducted in the Santos Basin of the 

Brazilian pre-salt reservoir examined the Barra Velha Formation using data from different wells. 

The study tested multiple rock-typing methods, including FZI and Winland R35, for identifying 

flow units and successfully subdivided the formation into four distinct flow units (Rebelo et al., 

2022). 

Micro-computed tomography (microCT/µCT) and petrographic analysis could be used as 

supporting techniques to assess reservoir quality. The evaluation of the microCT images is 

important since they bring a direct internal structural visualization of the rock samples, which 

enables the characterization of distinct categories of pore structures, pore connectivity and also the 

calculation of void spaces (do Nascimento et al., 2015; Lima et al., 2020; Iraji et al., 2023). On the 

other hand, the petrographic analysis contributes to the characterization of pore types and 
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mineralogy, and assessment of depositional environments and diagenetic processes during basin 

formation (Iraji and Ayatollahi, 2019; Rubo et al., 2019; Belila et al., 2020). 

The diverse characteristics of the Pre-salt carbonate reservoirs poses challenges in creating clear 

clustering of the samples based on conventional methods, resulting in uncertainties in defining rock 

types and reservoir descriptions. Therefore, a precise understanding of the appropriate cluster 

number and classification of rock types with distinct lithotypes, based on their characteristics is 

necessary. In this regard, the K-mean unsupervised learning technique was applied to categorize 

different rock types based on their petrophysical characteristics (well logs and plug data), with the 

number of clusters considered as a hyperparameter. The results were then used to integrate with 

the mentioned conventional techniques to assess reservoir quality. 

Supervised learning and unsupervised learning are the two primary categories of machine learning. 

Supervised learning is a machine learning approach that uses labeled datasets (training sets) to 

instruct models and generate the intended response. A set of input data and their corresponding 

correct outputs are included in this training dataset, allowing the model to assess its accuracy 

through the loss function, learn over time, and adjust until reducing the error to an acceptable level. 

Unsupervised learning methods, on the other hand, such as the mentioned K-mean technique, do 

not employ labeled data to determine the pattern between inputs. There are two main categories of 

problems in supervised learning with two main tasks: classification and regression. In classification 

problems, machine learning algorithms are utilized to effectively categorize test data into discrete 

categories/classes (e.g., lithology, facies, rock types). While in regression problems, an algorithm 

is used to analyze and comprehend the connection between features for predicting accurate 

predictions (for instance, porosity, saturation, permeability) (Xu et al., 2019; IBM, 2020). 

In the past few years, machine learning has been frequently applied in the analysis of well logs, 

lithofacies and depositional environments, and seismic data inversion (Qi and Carr, 2006; Maiti et 

al., 2007; Motie et al., 2018; Ahmadi et al., 2020; Hadavimoghaddam et al., 2021; Zhao et al., 

2021; Gholami et al., 2022). Several attempts were made to use artificial neural architectures to 

forecast petrophysical characteristics in uncored wells or intervals to improve reservoir 

characterization using multiple well log data (Wong et al., 1995; Bhatt and Helle, 2002; Lim and 

Kim, 2004; Verma et al., 2012; Okon et al., 2021).  
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Although several studies have been carried out on Barra Velha formation, limited studies have used 

a precise technique like deep learning to characterize the reservoir properties of the Barra Velha 

formation in the Santos Basin, SE Brazil. This study set out to describe the reservoir's 

characteristics of this formation, using the integration of well log data, borehole imaging, both 

conventional and microCT analyses of plug data, and thin section description. Deep Learning was 

employed in our research to predict porosity, permeability, and rock types.    

4.1.1 GEOLOGICAL SETTING 

The creation of the passive margin Santos Basin started in the Upper Jurassic/Early Cretaceous 

period owing to the breakup of Western Gondwana and the opening of the South Atlantic Ocean 

(Heilbron et al., 2000; Mohriak et al., 2008; Beasley et al., 2010; Belila et al., 2020; Iraji et al., 

2022c). This basin is in the southwest segment of the Brazilian continental margin, between Cabo 

Frio High and the Florianopolis High (Moreira et al., 2007) (Figure 4-1).   

The geological evolution of the Santos basin is connected to the presence of an extensional tectonic 

regime. The sub-salt interval in the Santos Basin correlated with the Guaratiba Group, which spans 

the Neovalanginian to Neoaptian and ends with the Ariri Formation's evaporite deposition (Moreira 

et al., 2007). The Camboriú Formation encompasses the basalts that are linked to the rift phase 

during the Gondwana breakup. This formation marks the initial stages of the Santos basin 

deposition and the formation of its economic substrate (Chang et al., 1992; Mohriak et al., 2008). 

The Camburiú Formation is overlaid in the slow development of the rift system over time by the 

Piçarras Formation formed during the Barremian age in the early rift phases. Piçarras Formations 

is composed of the deposition of alluvial fans of conglomerates and polymictic sandstones in the 

proximal regions and sandstones, siltstones, and shales in the lacustrine portions (Moreira et al., 

2007; Carlotto et al., 2017).  

The main sub-salt reservoir rocks were deposited from the Neobarremian to Eoaptian and 

correspond to the Itapema and Barra Velha Formations. The Itapema Formation contains 

intercalations of high-energy calcirudites, consist of shell fragments, black shales with high organic 

matter in the more distal parts, and alluvial fans of conglomerate and sandstone in the proximal 

parts (Moreira et al., 2007). The Barra Velha Formation represents the sag/post-rift and it composes 

of in-situ precipitates including different morphologies of calcite shrub-like growths and 
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spherulites, reworked carbonates such as intraclastic grainstones, and carbonate mud with variable 

content of authigenic magnesian clay minerals (Wright and Barnett, 2015; Gomes et al., 2020).   

Changes in lake chemistry and the diversity of deposition found in this formation were a result of 

the source of water input, climate and alteration in the accommodation space (Sabato Ceraldi and 

Green, 2017; Farias et al., 2019). The lake that allowed the deposition of the facies in the Barra 

Velha Formation was interpreted as a highly evaporated endorheic saline lake (Farias et al., 2019). 

The Ariri Formation is the last sequence deposited in the Guaratiba Group and contains evaporites 

that originated in a closed ocean basin (Chang et al., 1992; Moreira et al., 2007).  

For pre-salt carbonate reservoirs, different interpretations have been made associated with 

microbial formation (Moreira et al., 2007; Saller et al., 2016; Iraji et al., 2022a) or chemical and 

depositional controls (Wright and Barnett, 2015; Farias et al., 2019; Lima and De Ros, 2019; 

Gomes et al., 2020). Gomes et al., 2020 proposed a new facies categorization system for the pre-

salt lacustrine carbonates, applied in this work, derived from the abundance of three main elements: 

mud, spherulites, and shrubs.  

 
Figure 4-1. Location of the Santos Basin, South Atlantic, offshore Brazil, showing the polygon (green) that delimitates 

the pre-salt occurrences and the location of the wells (A and B). 
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4.2 MATERIALS AND METHODS 

4.2.1 DATASET AND WORKFLOW 

Two wells namely A and B were chosen from the Barra Velha Formation. A full collection of 

standard open borehole well log measurements was accessible for the target reservoir zone of these 

wells. Table 4-1 includes the available logs and information about their application. In addition, 

the intergranular porosity curve (PIGN) and mineralogy composition (clay, calcite, dolomite, and 

quartz volume) were established through petrophysical interpretation of wireline log and were 

included as part of the available dataset. Besides, the porosity profile generated from the borehole 

image log (BHI) by interpreting porosity and matrix according to the color scale was employed as 

a dataset in this study. Figure 4-2 displays the resolution of different datasets employed in this 

study, the values featured in the figure were sourced from (Schlumberger, 1991; Tiab and 

Donaldson, 2015). In addition, the available data included routine core analysis including gas 

permeabilities and helium porosity for 774 plug samples (208 plug samples for well A and 566 

plug samples for well B), microCT images for 12 plug samples, and 239 thin sections (109 from 

core and 130 from sidewall core samples). 

Table 4-1. Applications of available well logs.  

Well log  Application 

Density (RHOB)  
Porosity, bulk density, fluid density, acoustic impedance, mineralogy, and 

fracture identification   

Gamma-ray (GR)  
Lithology, shale content, mineralogy, facies, and sequence stratigraphy 

identification   

Neutron (NPHI)  Porosity, gas content, and lithology identification   

Photoelectric factor (PEF)  Minerology and lithological identification   

Nuclear Magnetic Resonance 

(NMR) 
 

Porosity, irreducible water saturation, permeability, residual oil saturation, 

hydrocarbon typing, and oil viscosity estimation 

Electric resistivity logs (Deep: 

RD-EP and Shallow: RS-EP) 
 Fluid saturations, geology, sedimentology, and geochemistry identification   

Borehole Image (BHI)  
Fractures, bedding planes, sedimentary structures, and reservoir property 

characterization 

These logs were integrated with the plug data and borehole image for rock typing classification. 

Different conventional rock typing techniques, microCT analyses of plug, and thin section 

description were applied to characterize the reservoir. Machine learning was applied for the 

estimation of variables (porosity, permeability, and rock types). The summary of the applied 

methodology is illustrated in Figure 4-3, and a detailed explanation of these steps is presented in 

the following sections.  
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Figure 4-2. Comparison of radius of investigation and vertical resolution for well logs, core, plugs, and thin sections. 

 
Figure 4-3. Applied workflow image for rock typing classification and reservoir quality evaluation. 

4.2.2 RESERVOIR ROCK TYPES (RRTS) AND HYDRAULIC FLOW UNITS (HFUS)  

Reservoir rock types (RRTs) are rock formations that were deposited under similar environmental 

factors and have a similar composition. They have undergone the same diagenetic processes 

resulting in distinct petrophysical observances, such as comparable pore network characteristic, 

productivity, and transmissibility potential (Gunter et al., 2014). Furthermore, hydraulic flow unit 
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(HFU) is a word that alludes to a ceaseless stratigraphic unit that features an indicated rock type 

with similar stream speed (Amaefule et al., 1993; Opuwari et al., 2021).    

The present plug data were subjected to reservoir rock typing utilizing several approaches, which 

were subsequently correlated with the HFUs produced. To support the defined rock categories, 

well log measurements were utilized. The hydraulic flow units were created by partitioning the 

examined reservoir into various flow units utilizing the SML graph.  

4.2.2.1 K-MEANS UNSUPERVISED LEARNING ALGORITHM 

The K-Means clustering technique was applied to partition the data into distinct groups and ensure 

that the information within each cluster has the same properties. The main advantage of K-means 

clustering is high-speed clustering of the tabular datasets, and ease of implementation. The 

algorithm determines the center of each group and splits the data points into the matching groups 

based on the input data (plug samples and corresponding log data) and the number of partitions can 

be selected using the elbow curve method (Duong et al., 2019), or Silhouette analysis (Rousseeuw, 

1987). Based on the points' distance from the center of the groups, we assume each data point 

belongs to only one of the groups (Duong et al., 2019).  

In the K-Means method, the number of k clusters is considered a hyperparameter that should be 

ascertained before clustering, to achieve precise outcomes this hyperparameter needs to be tuned. 

Therefore, the Elbow method was employed to determine whether k is the appropriate cluster 

number. This approach works by performing the clustering problem for the input data set over a 

range of k values. The Sum of Squared Error (𝑆𝑆𝐸 = ∑ (𝑦𝑖 − �̂�𝑖)
2𝑁

𝑖=1 ) deviation of data belonging 

to a group versus the cluster's centroid will be calculated for each value k. Then, for each value of 

k, the SSE line graph is plotted. If the line chart resembles an arm, the "elbow" on the arm yields 

the best k value. This algorithm aims to have a small SSE, however, as k increases SSE tends to 

decrease to 0. As a result, the goal is to choose an optimum value of k where SSE is low (Duong 

et al., 2019).  

4.2.2.2 EFFECTIVE PORE RADIUS (𝑹𝟑𝟓) OF WINLAND 

Winland presented a quantitative formula that correlates porosity (𝜙) and permeability (𝑘) with the 

effective pore radius (𝑅) using the analysis of mercury injection curves obtained from different 

sandstone rocks. The foremost trustworthy connection between these variables was set up when 

the level of Hg saturation reaches 35% (Winland, 1972; Kolodzie, 1980). The link between these 
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three parameters allows foreseeing successful pore-size of each RRT and HFU unit (Gunter et al., 

2014; Shalaby, 2021). For this purpose, the following equation is used.  

𝐿𝑜𝑔 𝑅35 = 0.732 + 0.588 𝐿𝑜𝑔 𝑘 − 0.864 𝐿𝑜𝑔 𝜙   (4-1) 

where, 𝑘 is permeability in 𝑚𝐷, 𝜙 is porosity in %, and 𝑅35 is the pore throat radius in 𝜇𝑚 obtained 

at 35th% of Hg saturation. In this study, to obtain a continuous 𝑅35 dataset, the Winland formula 

was utilized with plug permeability and porosity. 

4.2.2.3 FLOW ZONE INDICATOR (FZI) AND RESERVOIR QUALITY INDEX (RQI) 

Amaefule et al. proposed the 𝑅𝑄𝐼 and 𝐹𝑍𝐼 parameters to measure the quality of a reservoir. These 

variables were utilized and evaluated to classify and differentiate a reservoir into a set of 𝑅𝑅𝑇𝑠, 

and 𝐻𝐹𝑈𝑠 (Amaefule et al., 1993; Bize Forest et al., 2019). These parameters can be computed as, 

𝑅𝑄𝐼 = 0.0314√
𝑘

𝜙
 (4-2) 

𝜙𝑧 =
𝜙

1 − 𝜙
 (4-3) 

𝐹𝑍𝐼 =
𝑅𝑄𝐼

𝜙𝑧
=

0.0314√
𝑘
𝜙

𝜙
1 − 𝜙

 (4-4) 

where, 𝑘 is permeability in 𝑚𝐷, 𝜙 is porosity in fraction, 𝜙𝑧 is the normalized porosity in fraction. 

𝑅𝑄𝐼 and 𝐹𝑍𝐼 are expressed in 𝜇𝑚. 

4.2.2.4 DISCRETE ROCK TYPES (DRTS) 

Shenawi et al. (Shenawi et al., 2007; El Sawy et al., 2020) suggested the discrete rock type (𝐷𝑅𝑇) 

approach that involves dividing reservoirs into different 𝑅𝑅𝑇𝑠 according to the 𝐹𝑍𝐼 parameter. In 

this approach, the reservoir is partitioned into different rock types using the formula below. 

𝐷𝑅𝑇 = 𝑅𝑜𝑢𝑛𝑑(2 𝐿𝑛(𝐹𝑍𝐼) + 10.6) (4-5) 

where, DRT is the discrete rock type and FZI is the flow zone indicator in 𝜇𝑚. 
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4.2.2.5 GLOBAL HYDRAULIC ELEMENTS CURVES (GHE) 

The Kozeny-Carman equation is an example of an empirical formula that is extensively applied to 

establish a connection between porosity and permeability (Kozeny, 1927; Carman, 1937). It is also 

sometimes used to forecast permeability based on porosity, as:  

𝑘 =
1

𝑐𝑆2

𝜙3

(1 − 𝜙)2
 (4-6) 

where 𝑘 represents permeability in 𝑚𝐷, 𝜙 denotes porosity in fraction, c is the Kozeny constant 

and S is the specific surface area. To characterize a particular set of petrophysical rock types, 

Corbett et al. proposed the word 'petrotype.' The term 'petrotype' refers to a set of global hydraulic 

elements (𝐺𝐻𝐸) characterized by a systematic arrangement of 𝐹𝑍𝐼 values and prescribed graphs 

according to the Kozeny-Carman formula, as:  

𝑘 =
𝐹𝑍𝐼2

0.03142

𝜙3

(1 − 𝜙)2
 (4-7) 

In the 𝐺𝐻𝐸 system, the ordered arrangement of 𝐹𝑍𝐼 values is selected to cluster data and identify 

separate fields with common petrophysical characteristics and geologic significance. Trends can 

be easily determined by plotting plug data on the GHE's 'basemap' and these trends can convey 

geologic meaning (Corbett and Potter, 2004; Hosa et al., 2020). 

4.2.2.6 STRATIGRAPHIC MODIFIED LORENZ (SML) 

The 𝑆𝑀𝐿 plot is a cumulative visual representation of storage and flow capacities considering 

depth. The calculation of storage capacity (𝜙ℎ) and flow capacity (𝑘ℎ) is achieved by multiplying 

the porosity and permeability data with their corresponding bed thicknesses (ℎ):  

(𝑘ℎ)𝑐𝑢𝑚 = 𝑘1(ℎ1 − ℎ0) + 𝑘2(ℎ2 − ℎ1) + ⋯ + 𝑘𝑖(ℎ𝑖 − ℎ𝑖−1)/ ∑ 𝑘𝑖(ℎ𝑖 − ℎ𝑖−1) (4-8) 

(𝜙ℎ)𝑐𝑢𝑚 = 𝜙1(ℎ1 − ℎ0) + 𝜙2(ℎ2 − ℎ1) + ⋯ + 𝜙𝑖(ℎ𝑖 − ℎ𝑖−1)/ ∑ 𝜙𝑖(ℎ𝑖 − ℎ𝑖−1) (4-9) 

It aids in determining the involvement of each 𝐻𝐹𝑈 in the entire flow capacity. In this plot, each 

individual slope variation demonstrating a distinct 𝐻𝐹𝑈 (Maglio-Johnson, 2001; Omeje et al., 

2022). 
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4.2.3 THIN SECTION DESCRIPTION AND µCT ANALYSIS 

The thin section description was carried utilizing a polarizing microscope under transmitted light, 

emphasizing the characterization of textural features, types of pore space, and diagenetic elements. 

The process of recognizing and categorizing of the facies were according to (Gomes et al., 2020) 

and the textural features according to (Claes et al., 2017). The classification of porosity types was 

established using (Choquette and Pray, 1970). To differentiate calcite-dolomite, the examined thin 

sections underwent staining using an acid solution of alizarin red, and, for a better characterization 

of the pore space, they were impregnated with blue epoxy resin. 

The cylindrical rock samples (plugs) were subjected to microCT imaging at the Laboratory of 

Porous Media and Thermophysical Properties of the Federal University of Santa Catarina 

(LMPT/UFSC) using a ZEISS Xradia Versa XRM-500 Scanner (RES 40 𝜇𝑚). The equipment 

utilizes a transmission source that generates polychromatic X-rays with a maximum power of 10 

W and an energy range between 30 and 160 kV. For the µCT analysis, the 3D models were 

developed in the PerGeos software – Thermo Fisher Scientific by stacking the 2D cross-sections 

from plugs. The image resolution of each plug was 40.8 µm. The images were processed, and each 

image was subjected to filtering and segmentation. The segmentation step determines the porous 

system resulting in a binary image, which represents the pore and solid material phases. This step 

was set by manually choosing threshold values of each interval with the “Interactive Overlay 

Threshold” tool.  The phases (pore and solid material) were defined by their grayscale color, which 

was a function of the X-ray attenuation coefficient, based on their respective densities. With those 

steps, we can quantify and identify the total and effective porosity and the tortuosity. Pore Network 

Modeling (PNM) allows obtaining the relationship between the parameters of pore geometry, such 

as pore and throat radius. 

4.2.4 POROSITY, PERMEABILITY, AND ROCK TYPE PREDICTION BY MACHINE 

LEARNING ALGORITHMS 

The present study implemented the residual neural network (ResNet) approach as well as one-

dimensional convolutional neural network (1D CNN) model to estimate the continuous variable of 

porosity and Extreme Gradient Boosting (XGBoost) Machine Learning Algorithm to predict the 

discrete variable of rock type in the studied sequence. The objective was to evaluate the reservoir 

quality and predict well performance for uncored intervals/wells. For deep learning approaches 
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such as ResNet and 1D CNN-based methods, the weights that produce the best results for the 

validation data are saved and applied to the test dataset.  

The ResNet approach is a deep neural network that utilizes residual blocks to capture complex 

features from the data. It leverages skip connections to preserve and concatenate important features 

from the early layers, which are then utilized in the subsequent layers. This technique has been 

shown to be highly effective in deep neural network architectures by addressing the vanishing 

gradient problem and allowing for the successful training of much deeper networks (Khan et al., 

2020). In contrast, 1D CNNs are a class of neural networks designed for analyzing data in a 

sequential order. The network consists of one or more layers of convolutional filters that apply a 

sliding window over the input data to extract features, and mainly used for 2D inputs such as 

images. These filters learn to detect patterns and relationships in the data and can capture local 

dependencies between neighboring data points. The resulting features are then fed into fully 

connected layers for classification or regression tasks (Harbola and Coors, 2019). In this study both 

ResNet and 1D-CNN-based techniques has been coded in Python and we used TensorFlow 2 

framework to generate models.  

The XGBoost model is frequently employed to solve supervised learning issues. A final estimate 

is produced by merging the forecasts from all the decision tree models that were built as part of the 

ensemble learning technique. The decision tree models are trained using a gradient-boosting 

method, which entails iteratively adding new models to the ensemble in order to remedy the errors 

of the earlier models. XGBoost also incorporates several advanced features, such as weight 

regularization, tree pruning, and a custom loss function, to further improve model accuracy and 

generalization (Chen and Guestrin, 2016).  

In this study, all neural network models were trained using 15 input variables, which comprised of 

all well log data as described in the Dataset and Workflow section. The ResNet architecture used 

in this study was customized for the specific task of predicting porosity. The input is first passed 

through a dense layer with 64 nodes, followed by a batch normalization layer and the ReLU 

(Rectified Linear Unit) activation function. Next, three residual blocks with skip connections (each 

consisting of two layers) followed by another dense layer were used to learn complex features from 

data. The number of nodes in each residual block varied, with the initial block having 64 units and 

the subsequent blocks having 128 and 256 units. The ReLU activation function was used for all 
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layers in this study, and batch normalization was applied before the activation function in each 

layer to improve the training process. To prevent overfitting, the Dropout layer with a constant 

coefficient of 0.2 was incorporated for regularization, meaning that 20% of units were randomly 

excluded from each epoch. The structure of this model, including the number of layers and units, 

was visualized and presented in Figure 4-4.  

a 

 
b 

 
Figure 4-4. a) The architecture of the Residual neural network (ResNet) model, b) one layer of each residual block. 

In our study, the network of 1D CNN-based model started with two 1-dimensional convolutional 

layers. A 1-dimensional max pooling layer to reduce the spatial dimensions of the feature maps 

was then applied. The process of applying two convolutional layers, followed by a max pooling 
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layer was repeated and the output was flattened into a one-dimensional vector, which is then passed 

through dense layers with ReLU activation function and dropout layers to reduce overfitting. Figure 

4-5 illustrates and presents the structure of this model. As represented in Figure 4-5,  

the architecture of the model begins with two convolutional layers, each having 64 filters and a 

kernel size of three. ReLU is used as the activation function, and SAME padding is used to ensure 

that the spatial dimensions of the output feature map are the same as those of the input data. 

Following the first convolutional layers, a Maxpooling layer with a pool size of 2 is added. 

Subsequently, there are two more convolutional layers, each with 128 filters. These layers keep the 

same parameters as the previous convolutional layers. After the second set of convolutional layers, 

there is another Maxpooling layer with a pool size of 2. The next stage incorporates two more 

convolutional layers, each with 256 filters and a kernel size of 3. The CNN section's output is then 

flattened, and two Dense blocks are added. Each Dense block contains a Dense layer with 256 

nodes, followed by a Dropout layer. Also, the model has two Dropout blocks, each with 128 units, 

similar to the preceding blocks. Finally, the model concludes with a Dense layer consisting of 1 

unit using a linear activation function. It is important to note that the dropout coefficient is treated 

as a hyperparameter, just as in the previous model. After thorough evaluation of various values, we 

determined that a dropout coefficient of 0.5 for the Dense layers with 256 units and 0.4 for the 

Dense layers with 128 units aided in preventing overfitting and achieving optimal error reduction. 

 
Figure 4-5. The architecture of the 1D Convolutional neural network model.  

For optimization, the Adam optimizer was utilized with a learning rate of 1e-3. It is worth noting 

that this study began with a fixed learning rate of 1e-3. We later introduced a variable learning rate 

approach to further investigate the impact of the learning rate on the model's performance. In this 

scenario, we set the initial learning rate to 1e-3 again, but this time we let it vary as a parameter 
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during training. We used a dynamic adjustment mechanism for the learning rate in particular. If the 

validation loss function did not decrease after 50 consecutive epochs, we changed the learning rate 

dynamically by multiplying it by 0.5. This adaptive learning rate strategy sought to optimize the 

model's convergence and training process. The outcomes of these implementations revealed that 

the influence of the learning rate appeared to be insignificant. Both fixed and variable learning rate 

cases showed similar trends throughout the learning process, indicating that the impact of this 

hyperparameter is still limited in our particular context. These findings add to our understanding 

of the model's sensitivity to the learning rate and provide useful insights for future training process 

optimization. The loss function was the mean squared error (𝑀𝑆𝐸 =
1

𝑁
∑ (𝑦𝑖 − �̂�𝑖)

2𝑁
𝑖=1 : 𝑦𝑖 is the 

𝑖𝑡ℎvalue of the y-variable to be predicted, �̂�𝑖 presents the predicted value of 𝑦𝑖, and 𝑁 is the amount 

of observations). The batch size for both deep learning models was 32, and we run the model for 

1,000 epochs (where in both cases the plateau behavior observed in training process). The training 

data constituted 80% of the total dataset, with the remaining 20% being used as the test set. The 

number of parameters of CNN-based model was 694,209, and for ResNet was 178,305.  

Moreover, since the well-log data were in varying orders of magnitude, normalization was 

performed on all the data (ranging from 0 to 1). It is important to note that the architecture of the 

neural network (number of layers, units, activation function, regularization, different types of 

residual networks, etc.) and the dropout coefficient were hyperparameters that were adjusted to 

improve the outcomes. Dropout was used in this study with varying coefficient ranges ranging 

from 0.05 to 0.3 to determine the optimal value that not only produced the lowest loss function but 

also effectively prevented overfitting. The results clearly show that the Dropout with a coefficient 

of 0.2 produced the best results.  
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4.3 RESULTS  

4.3.1 BASIC PETROPHYSICS  

This section uses data from 208 plug samples for well A and 566 plug samples for well B with 

their corresponding well log data, microCT images for 12 plug samples, and 239 thin sections of 

the Barra Velha Formations. Figure 4-6-a, the plug porosity histogram for well A, reveals a fairly 

symmetric distribution of the values. Two frequency peaks appear in a graph, which could indicate 

a mixing of porosity distribution from different geological units and rock types.  However, the 

porosity histogram for well B in Figure 4-6-b, shows less symmetric distribution. The permeability 

distribution of plug samples data for both wells are skewed positively, however, the log k 

distribution is much more symmetric than the permeability distribution (Figure 4-6-c and d). 

                                         a                                                                       b           

            
                                         c                                                                       d           

            
Figure 4-6. a, b) Porosity histogram for plug samples of well A and well B, c, d) permeability histogram for plug 

samples of well A and well B. 

Table 4-2 provides the summary statistics for plug samples. For porosity data of well A, the mean 

and median are closer to each other in comparison with well B, indicating a symmetric distribution. 

In contrast, the median for the permeability data of both wells is much smaller than the mean, 
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suggesting a distribution with a positive skew. The coefficient of variation shows that variation in 

porosity is small, while for the permeability data indicates order of magnitude variations within the 

sample data. 

Table 4-2. Summary statistics for plug samples of wells A and B.   

 Statistics  
well A well B 

𝜙, % k, 𝑚𝐷 𝐿𝑜𝑔𝑘 𝜙, % k, 𝑚𝐷 𝐿𝑜𝑔𝑘 

Mean  11.99 19.43 0.40 9.10 13.52 -1.59 

Median  11.80 1.27 0.24 8.60 0.21 -1.57 

Mode  8.30 0.03 -3.51 6.10 0.001 -6.91 

Minimum  3.30 0.01 -4.61 0.50 0.001 -6.91 

Maximum  25.10 597.00 6.39 24.30 726.00 6.59 

Percentile 25  8.95 0.32 -1.16 5.90 0.01 -4.96 

Percentile 50  11.80 1.27 0.24 8.60 0.21 -1.57 

Percentile 75  14.80 7.60 2.03 11.60 4.13 1.42 

Variance  1E-03 4236.90 5.64 2E-03 2889.10 12.96 

Standard Deviation  3.76 65.09 2.38 4.46 53.75 3.60 

Coefficient of Variation  0.31 3.35 6.00 0.49 3.98 -2.26 

Range  21.80 596.99 11.00 23.80 726.00 13.50 
 

4.3.2 FACIES DESCRIPTIONS 

The core interval studied in this work from Barra Velha Formation was grouped in three main 

facies: (1) Crystal Shrub-dominated facies; (2) Reworked facies, and (3) Spherulitestone facies. 

The reworked facies were the most recurrent, comprising 80% of the analyzed thin section. This 

facies is composed of transported sediments with poor to moderate sorting. Crystal shrub-

dominated and spherulitestone facies corresponded to more than 10% and around 8% of the total 

analyzed thin section, respectively. The identified depositional facies are described below. 

4.3.2.1 CRYSTAL SHRUB-DOMINATED FACIES 

The crystal shrub-dominated facies includes shrubstones, spherulitic shrubstones, and occurrences 

of the shrubstones layers intercalated with thick reworked facies such as rudstones and grainstones 

(Figure 4-7). The crystal shrubs vary in terms of size and morphology. The size ranges from 1mm 

to 8mm, however, larger shrubs can reach 2 𝑐𝑚. The crystal shrub micromorphology varies 

fromfan, dendritic to pustular and macromorphology from arborescent, dendriform, topustular 

(Claes et al., 2017; Erthal et al., 2017). The secondary component in this facies was spherulites 

with spherical and fractured morphology and size that varied in diameter from 0.05 to 2.2 mm. 

The pore types of this facies were growth framework, interparticle, intraparticle intercrystalline, 

and some occurrences of vug porosity. The most common porosity was the intercrystalline and the 

growth framework porosity. A cementing phase, mainly dolomite, occured in abundance among 

the grains, and the growth framework porosity was developed among the crystal shrubs and their 
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branches, and sometimes this porosity was enhanced by the dissolution process.  Dolomite 

cementation, dissolution, and dedolomitization were the main diagenetic processes observed in this 

facies. 

 

Figure 4-7. Aspects of the Crystal shrub-dominated facies: a, b) photomicrography showing crystal shrubs among 

dolomitic cement and pore space (blue), yellow arrow highlighting the growth framework porosity, c, d) 

photomicrograph showing crystal shrub surrounded by dolomite cement and partially preserved growth framework 

pores (yellow arrow), e, f) photomicrograph of the spherulitic shrubstone with dominated intercrystalline porosity (blue 

arrow) and interparticle porosity (red arrow) growth framework pore obliterated by dolomite. shr - crystal shrub; sphl 

- spherulite; dol - dolomite cement. 
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4.3.2.2 REWORKED FACIES 

The reworked facies includes grainstones and rudstone; the main component gives a rock name, 

such as intraclastic, bioclastic, and spherulitic (Figure 4-8). This facies are generally grains 

supported and composed of intraclastic carbonates, spherulites and shrubs and fragments of both, 

phosphatic bioclasts, ooids, silicified particles, Mg-silicate intraclasts, volcanic fragments, and 

sulfides. The fabric is defined by poor to moderate sorting, tight to normal packing, and significant 

variations in the shape of grains to rounded to angular grains. The grain size ranges from 0.1 𝑚𝑚 

to 8 𝑚𝑚, however, larger grains can reach 1 𝑐𝑚.  In some cases, the grains show compacted and 

oriented according to the lamination and fractures following the lamination.  

The primary depositional texture was intensely affected by diagenetic events, such as dolomite and 

silica cementation, silicification, dedolomitization, dissolution, and compaction. Cementation and 

silicification obstructed most of the primary porosity filling the interparticle porosity. The 

compaction process was observed in sutured contacts between grains, crushed and fractured grains, 

and sometimes filled with dolomite cement. The grains affected by dissolution developed 

intraparticle porosity, and shrub fragments are the main component altered by the dissolution. The 

main porosity type in this facies was intercrystalline formed between the dolomite crystal cement 

and interparticle, other types were intraparticle, vug, moldic, and rare fracture. 

4.3.2.3 SPHERULITESTONE FACIES 

The samples were classified as spherulitestone facies when the most abundant component were 

calcite spherulites (Figure 4-9). Spherulites are generally spherical to elliptical forms of crystals 

radiating from a common core composed of carbonate (Chafetz et al., 2018; Gomes et al., 2020). 

The spherulite grains show a diameter varying from 0.15 mm to 1.5 mm and their recognition is 

easily done in crossed-polarized light. The main morphology of the spherulites is spherical, but 

they present other micromorphologies, such as composed and fractured. 

In this facies the intercrystalline was the dominant porosity type; dolomite and silica were the main 

types of cement. The frequently pervasive dolomitization caused the replacement of the clay 

minerals and may destroy the spherulite's original morphology and also may obliterate primary 

porosity. The compaction affected the grains resulting in spherulites fragmented and showing a 

sutured contact. 
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Figure 4-8. Aspects of the reworked facies: a, b) photomicrography showing an spherulitic rudstone with preserved 

interparticle porosity (blue area), red arrow highlighting the interparticle porosity and orange arrow showing the 

intraparticle porosity, c, d) photomicrograph showing an intraclastic grainstone cemented by dolomite (blue arrow 

highlights the intercrystalline porosity), e, f) thin section scan image of bioclastic rudstone (coq - coquinas fragments) 

with interparticle porosity (red arrow) and moldic porosity (green arrow), g, h) thin section scan image of volcanic 

rudstone with interparticle porosity (red arrow). sphl - spherulite; coq - coquinas fragments; vol - volcanic intraclast. 
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Figure 4-9. Aspects of the spherulitestone facies: a, b) photomicrography showing an spherulitestone cemented by 

dolomite, c, d) photomicrograph showing an spherical spherulite surrounded by dolomite cement and presence of 

vugular porosity (purple arrow), e, f) thin section scan image of spherulitestone with dominated intercrystalline 

porosity (blue arrow). sphl - spherulite; dol - dolomite cement. 

4.3.3 RESERVOIR ROCK TYPES (RRTS) 

The porosity-permeability plot of 774 multi-well plug samples data in Figure 4-10 reveals high 

variability and heterogeneity and makes it difficult to generate clear clustering of the samples based 

on conventional methods, resulting in uncertainties in defining rock types and reservoir 

descriptions. In this regard, the permeability and porosity data and their corresponding well log 

data were discriminated into RRTs according to K-means unsupervised classification algorithm for 
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wells A and B. The Elbow method was employed to determine the appropriate cluster number (k). 

Therefore, the clustering approach for the input data set was performed over a range of k values. 

The Sum of Squared Error (𝑆𝑆𝐸 = ∑ (𝑦𝑖 − �̂�𝑖)2𝑁
𝑖=1 , where 𝑦𝑖 is the 𝑖𝑡ℎvalue of the y-variable to be 

predicted, �̂�𝑖 is the predicted value) deviation of data points belonging to a cluster versus the 

cluster's centroid was calculated and plotted for each value k. The graph in the Figure 4-11 

resembles an arm, so the elbow on the arm was chosen as an optimum value of k (number four) 

that describes best the distribution of 774 samples. 

                                                                        a                                                 b 

 

Figure 4-10. Porosity-permeability plot of the 774 data from wells A and B: a) permeability in linear scale, b) 

permeability in log scale. 

 

Figure 4-11. Elbow Diagram to determine the appropriate cluster number. 
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Using K-means algorithm, the samples were classified into these four groups with distinctive 

lithotypes based on their characteristics from different logs. Figure 4-12 displays the resulted 

porosity-permeability plot based on these four rock types according to this clustering algorithm. In 

this regard, statistical analysis was performed between different logs with plug permeability and 

porosity to find the more appropriate logs for clusterization. Neutron porosity, density log, NMR 

porosity, porosity profile based on image log, and mineralogy model (calcite, clay, dolomite, and 

quartz volume) were selected as the main parameters. The grouping was done by minimizing the 

sum of the distances between each object (plug porosity and permeability and the corresponding 

values of mentioned logs) and the group or cluster centroid. Table 4-3 presents summary statistics 

for plug samples data, reservoir quality parameters and well log data for all the classified reservoir 

rock types. 

                                            a                                                                     b 

 

Figure 4-12. Porosity-permeability plot of the studied reservoir sequence discriminated into four RRTs according to 

K-means unsupervised classification algorithm: a) permeability in linear scale, b) permeability in log scale.  
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Table 4-3. Summary statistics for plug samples data, reservoir quality parameters and well log data. 
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The resulted RRTs according to K-means unsupervised classification algorithm were integrated 

and supported with several techniques including the 𝑅35 of Winland (Figure 4-13-a), FZI-RQI of 

Amaefule (Figure 4-13-b), the DRT values of Shenawi, and GHE of Corbett (Figure 4-13-c).  

a 

 

b 
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c 

 
Figure 4-13. The resulted RRTs of the studied reservoir interval for the: a) Porosity-permeability graph merged with 

the 𝑅35 technique of Winland (Winland, 1972), b) RQI-𝜙𝑧 plot and the segmented FZI values merged with the FZI-

RQI technique of Amaefule (Amaefule et al., 1993), c) Porosity-permeability graph merged with the GHE technique 

of Corbett (Corbett and Potter, 2004). 

Based on these plots four mathematical equations were created to predict the mean permeability 

(in 𝑚𝐷) with respect to the corresponding porosity values (in %) as follows. 

𝑅𝑅𝑇1:                      𝑘 = 0.0495  𝜙3.5158 (4-10) 

  15≤𝐷𝑅𝑇≤16         7≤GHE≤8                   3.07 ≤ 𝑅35 ≤ 25.15 

𝑅𝑅𝑇2:                      𝑘 = 0.0212 𝜙3.411 (4-11) 

  14≤𝐷𝑅𝑇≤15         6≤GHE≤7                   0.73 ≤ 𝑅35 ≤ 20.11 

𝑅𝑅𝑇3:                      𝑘 = 0.01107  𝜙3.0466 (4-12) 

  12≤𝐷𝑅𝑇≤14         5≤GHE≤6                   0.299 ≤ 𝑅35 ≤10.17 

𝑅𝑅𝑇4:                      𝑘 = 1.455e − 05 𝜙4.621 (4-13) 

  1≤𝐷𝑅𝑇≤12           1≤GHE≤5                   0.0068 ≤ 𝑅35 ≤ 3.98  
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Figure 4-14. Porosity-permeability plot of the studied reservoir sequence and mathematical models of permeability 

estimation. 

𝑅𝑄𝐼 could be a coordination sign of the capacity of reservoirs to transport fluids. Plots were 

generated to display the 𝑅𝑄𝐼 values in relation to both permeability and porosity (Figure 4-15-a 

and b) for subdivided samples into different rock types to examine their key contributions to the 

reservoir quality.  The RRTs contained various pore types (from tight to very good), resulting in 

the plots indicating a relatively small impact of porosity and permeability on the 𝑅𝑄𝐼 parameter.  

                                         a                                                                     b 

 

Figure 4-15. The resulted RRTs of the studied reservoir for the: a) RQI- permeability plot, b) RQI- porosity plot.  

On the other hand, for reservoir quality evaluation, the RQI-FZI plot was used, where the sequence 

of wells is defined as tight to very good reservoir with the lowest quality attributed to RRT4, and 

the highest reservoir quality allocated to RRT1 (Figure 4-16).  
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Figure 4-16. The resulted RRTs for the RQI-FZI plot of the studied reservoir. 

RRT1, holds the best flow capacity with very good and good permeability (max. value 726 𝑚𝐷), 

interpreting the pore spaces as macro pores with higher permeability routes. The storage capacity 

is less than the other RRT with the porosity ranging from tight to fair (max. value 14.9%). The 

highest flow zone indicator is 18.85 𝜇𝑚 with mean of 13.11 𝜇𝑚 and the mean 𝑅𝑄𝐼 of 1.16 𝜇𝑚. 

The Winland curves demonstrate the maximum pore throat diameter of 25.15 𝜇𝑚. The findings 

were presented in a manner where the various 𝐺𝐻𝐸 fields were 7 and 8. The ranges of the well log 

data for all RRT are display in Table 4-2. Unfortunately, there was no available thin section and 

µCT images classified as RRT1. 

RRT2, with maximum flow zone indicator and reservoir quality index of 9.68 and 1.86 𝜇𝑚, 

respectively is the second-best for reservoir quality. It is with better porosity compared to RRT1 

ranging from tight to good (max 20.2%), while the permeability is lower than that of RRT1 ranging 

from poor to very good (max 600 𝑚𝐷). The interpretation of the pore spaces suggests that they are 

comprised of both mesopores and macropores, while the maximum pore throat radius is reported 

as 20.1 𝜇𝑚. The GHE of this kind varies between 6 and 7. In this RRT, both categories of reworked 

and in situ facies, such as shrubstonesand spherulitestones were found. All facies with low to 

moderate cementation, preserve depositional features with the predominance of interparticle. 

Vugular porosity and growth framework also occurred, in some cases, the growth framework 

porosity was enhanced by the dissolution. From the µCT, four plugs were classified as RRT2, two 

plugs of reworked facies (grainstone and rudstone), one shrubstone, and one spherulitestone. The 

mean pore radius, mean throat radius, and mean tortuosity were 69 𝜇𝑚, 50 𝜇𝑚, and 2, respectively 

(Figure 4-17 and Table 4-4). 
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Figure 4-17. Aspects of plugs from reservoir rock type 2 showing average values of R35, FZI, mean pore radius (p) and 

mean throat radius (t). a, b) CT-scan of crystal shrub-dominated facies with growth framework porosity and its 

distribution of pores and throats with tortuosity of 1.9, c, d) CT-scan of reworked facies with interparticle porosity and 

its distribution of pores and throats with tortuosity of 2.6. 

For RRT3 the mean 𝐹𝑍𝐼 and 𝑅𝑄𝐼 show values of 2.8 and 0.35 𝜇𝑚. The pore spaces classified as 

Micro and Meso pores with porosity from tight to excellent (average value 25.1%). the 𝑅35 value 

shows the average of 3.18 𝜇𝑚 and permeability values displays the wide extend from very tight to 

very good (average value 27.06 𝑚𝐷). This RRT follow GHE of 5 and 6. Reworked facies 

(grainstones and rudstones) and shrubstones, both with moderate to high cementation were 

classified as RRT3. Diagenetic processes were mainly dolomite cementation and silicification. 

Dissolution also acted by increasing some pores, as an example of growth framework porosity. The 

porosity in this RRT was predominantly intercrystalline and interparticle, with intraparticle 

occurrence in almost all thin sections, growth framework, vulgar, moldic, and the presence of 

fractures. From the PNM µCT analysis following results were obtained: the mean pore radius, 

mean throat radius, and mean tortuosity were 67 𝜇𝑚, 49 𝜇𝑚, and 2.5, respectively (Figure 4-18 

and Table 4-4). 
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Figure 4-18. Aspects of crystal shrub-dominated facies plugs from reservoir rock type 3 showing average values of 

R35, FZI, mean pore radius (p) and mean throat radius (t). a, b) CT-scan with vug porosity and silica and dolomite 

cementation and its distribution of pores and throats with tortuosity of 3, c, d) CT-scan with intercrystalline porosity 

and its distribution of pores and throats with tortuosity of 1.9. The distribution of pores and throats was affected by the 

cementation process. 

The RRT4 has the lowest reservoir quality with mean 𝐹𝑍𝐼 and 𝑅𝑄𝐼 of 0.58 and 0.07 𝜇𝑚, 

respectively. From tight to very good, porosity ratings range from 0.8 to 24.3%. The permeability 

values, on the other hand, range from very tight to good, with an average of 1.71 𝑚𝐷. The pore 

space shifts in the range from Nano to Meso pores. The greatest pore throat radius is measured as 

3.98 𝜇𝑚 and the GHE distributed between 1 and 5. In this RRT, there are samples representing all 

facies, such as shrubstones facies, reworked facies, and spherulitestones, however, the reworked 

facies represented more than 80% of the thin sections. The cementation is moderate to high, which 

compromised the porosity dominating the intercrystalline porosity. Other porosity types are 

interparticle, intraparticle, vug, moldic, and rare occurrences of fracture and growth framework 

porosity. From the µCT, six plugs were classified as RRT4, five plugs of reworked facies 

(grainstone and rudstone), and one shrubstone. The mean pore radius, mean throat radius, and mean 

tortuosity were 58 𝜇𝑚, 41 𝜇𝑚, and 2.3, respectively (Figure 4-19 and Table 4-4). 
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Figure 4-19. Aspects of plugs from reservoir rock type 4 showing average values of R35, FZI, mean pore radius (p) 

and mean throat radius (t). a, b) CT-scan of intraclastic grainstone moderated cemented with dominated interparticle 

porosity and its distribution of pores and throats with tortuosity of 2.4, c, d) CT-scan of spherulitic grainstone with 

intercrystalline porosity and its distribution of pores and throats with tortuosity of 2.2. 

 

Table 4-4. Summary of the mean value of pore network characteristics of different reservoir rock types. 

  Total pore spaces Connected pore spaces 

Total pore spaces  RRT 2 RRT 3 RRT 4 RRT 2 RRT 3 RRT 4 

Number of pores  304745 205534 415973 152696 102506 170114 

Number of throats   354009 245819 447835 314621 217787 364457 
 Min 0 0 0 1.00 1.00 1.00 

Coordination number Mean 2.32 2.33 2.17 4.09 4.16 4.26 

  Max 136.50 113.50 114.50 130.25 103.50 109.83 
 Min 2.37 2.04 2.01 1.98 1.88 1.82 

Pore radius (𝜇𝑚) Mean 69.37 66.79 57.71 88.47 87.42 72.05 

  Max 660.52 682.13 576.48 658.62 682.38 572.18 
 Min 2.27 1.98 1.92 1.86 1.78 1.73 

Throat radius (𝜇𝑚) Mean 50.07 49.09 41.29 50.41 49.67 40.56 

  Max 401.43 466.91 400.95 398.41 463.32 390.02 

Tortuosity  2.00 2.47 2.32 2.08 2.34 2.56 

Aspect ratio  3.24 3.31 512.64 3.34 3.37 3.20 

4.3.4 HYDRAULIC FLOW UNITS (HFUS) 

Stratigraphic modified Lorenz (SML) graph was utilized to partition the reservoir sections into 

several separate flow units through the inclination of the fitted line segments (Figure 4-20). In this 
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plot, steep slope segments with sharp angles indicate high flow capacity compared to storage 

capacity, resulting in a high-quality 𝐻𝐹𝑈, while gentle slope segments with low or angles 

approaching zero indicate very low flow capacity, resulting in very low-quality 𝐻𝐹𝑈 or sealing 

layers such as barrier zones or baffle. The SML plots for well A and B, along with the defined 

HFUs, are displayed in Figure 4-20-a and b. 

Application of 𝑆𝑀𝐿 graph to well A shows the existence of five HFUs (Figure 4-20-a). HFU2 and 

4 are responsible for around 60% of the flow capacity, while the remaining fluid flow contribution 

is conveyed between the HFU1 and 5 and the HFU3 acts as a barrier (5% flow capacity). Whereas, 

the 𝑆𝑀𝐿 graph of B well shows that about 80% of the flow capacity is contributed by HFU1 and 

3, while HFU4 acts as a barrier with around 3% of flow capacity (Figure 4-20-b).  

  
b 

 
Figure 4-20. Stratigraphic modified Lorenz (SML) plot: a) well A, b) well B.   

a 
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4.3.5 POROSITY, PERMEABILITY, AND ROCK TYPE PREDICTION BY MACHINE 

LEARNING ALGORITHMS 

In this study, two deep learning models, ResNet and 1D CNN, were applied and trained on a well-

log dataset to predict plug porosity ranging from 0.5 to 25.1 %. The training data consisted of 80% 

of the dataset, with the remaining 20% used as the testing and validation set. Both models were 

trained for 1000 epochs and the training and validation loss functions were monitored during 

training. The loss functions versus epoch plots for each model during training and validation are 

shown in Figure 4-21. Both models showed a decreasing trend in the loss function over the epochs, 

indicating successful learning of the data patterns (Since the batch size is not same as full dataset 

size, although the overall trend of loss function is reducing, there is oscillation in the loss function). 

The 1D CNN model reached a lower loss value than the ResNet model in both the training and 

validation phases, indicating better generalization ability of the 1D CNN model.   

a 

 
b 

 
Figure 4-21. The loss function curves for porosity prediction for: a) ResNet model, b)1D CNN model. 
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The performance of the ResNet and 1D CNN models was evaluated using the mean squared error 

(MSE) metric. The MSE values for the ResNet and 1D CNN models on the test set were 13.79 and 

11.85, respectively, and 12.3 and 3.19 on the train set. This indicates that the 1D CNN model 

outperformed the ResNet model in terms of predictive accuracy.  

Figure 4-22 shows the plug porosity and predicted porosity versus depth plots for the ResNet and 

1D CNN models for wells A and B. The 1D CNN model shows better alignment between the 

predicted and actual porosity values compared to the ResNet model and provides more accurate 

predictions. Figure 4-23 shows the cross plot of plug porosity versus predicted porosity for the 

ResNet and 1D CNN models.  

                                      a                                                                          b 

 
Figure 4-22. The plug porosity and predicted porosity using ResNet and 1D CNN models for: a) Well A, b) Well B. 
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Figure 4-23 Cross plot of plug porosity versus predicted porosity for ResNet and 1D CNN models. 

The XGBoost algorithm was applied to predict rock type based on well log data. Again, the dataset 

was randomly divided into 80% training and 20% validation sets. The XGBoost model was trained, 

and its performance was evaluated. The XGBoost model achieved an accuracy of 93.5 % on the 

training set and 90.3 % on the validation set, indicating good generalization ability. The model's 

performance was evaluated further by plotting the calculated (using K-means unsupervised 

learning algorithm) and predicted (using XGBoost algorithm) rock types for two wells, as shown 

in Figure 4-24. Red arrows indicate the depths at which the calculated and predicted rock types 

differ. The XGBoost model was able to accurately predict the rock type for most of the depths, but 

there were few depths at which the predicted and actual rock types differed.  

A cross plot was also generated to visualize the relationship between the predicted rock type (using 

XGBoost algorithm) and actual rock type (using K-means unsupervised learning algorithm), as 

shown in Figure 4-25. The plot shows the amount of data points for each combination of predicted 

and actual rock types, allowing us to evaluate the model's performance in more detail. The diagonal 

of the plot represents the instances where the predicted rock type matches the actual rock type. The 

majority of data points fall along the diagonal, indicating that the model is able to accurately predict 

the rock type. However, there are some data points that fall outside the diagonal, indicating errors 

in the model's predictions. Overall, the XGBoost algorithm showed promising results in predicting 

rock type based on well log data, achieving high accuracy on both the training and validation sets. 
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Figure 4-24. The actual and predicted rock type using XGBoost model for: a) Well A, b) Well B, with red arrows 

indicating the depths at which the two rock types differ. 

 
Figure 4-25. Cross plot of predicted versus actual rock types, with the percentage of data points labeled for each 

combination of rock types. 

1      2      3      4 1      2      3      4 1      2      3      4 1      2      3      4 

RRT Predicted RRT RRT Predicted RRT 

a b 
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The porosity and rock type predictions were then used to estimate plug permeability, where we 

presented four mathematical models (Equations (4-10) to (4-13)) for each of the four defined rock 

types in the previous section. These models calculate plug permeability from predicted plug 

porosity for each predicted reservoir rock type. To validate our approach, these mathematical 

formulas for each corresponding predicted rock type were used and permeability values were 

calculated with predicted porosity obtained from the two different deep-learning approaches. 

Figure 4-26 illustrates a comparison of permeability versus depth for plug data and predicted 

permeability obtained from correlation with porosity values of the two different machine learning 

approaches for the two wells studied. The mean absolute error (𝑀𝐴𝐸 =
1

𝑁
∑ |𝑦𝑖 − �̂�𝑖|

𝑁
𝑖=1 ) values for 

permeability prediction from porosity values were calculated to be 8.64 for the CNN model data 

and 12.35 for the ResNet model data. Figure 4-27 shows the cross plot of plug permeability versus 

predicted permeability. 

These results have significant implications for the use of deep learning models in reservoir 

characterization and management, which can improve our understanding of subsurface reservoir 

properties by enabling the evaluation of a reservoir even with incomplete datasets. Machine 

learning predictions based on available data can help to fill in the gaps and make accurate 

predictions, which can be vital in effective reservoir management. However, the differences 

between predicted and actual values at certain depths could be due to various factors, such as the 

complexity of the geological formation or measurement errors in well log or plug petrophysical 

data. These differences underscore the challenges associated with accurately predicting reservoir 

properties in heterogeneous porous media using well log data alone, highlighting the need for 

further research to improve our understanding of subsurface geological formations. 
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Figure 4-26. The plug permeability and predicted permeability using mathematical formulas for each reservoir rock 

type and correlation with predicted porosity values from ResNet and 1D CNN models for: a) Well A, b) Well B. 

 
Figure 4-27. Cross plot of plug permeability versus predicted permeability using mathematical formulas for each 

reservoir rock type and correlation with predicted porosity values from ResNet and 1D CNN models.  
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4.4 CONCLUSIONS 

• According to K-means unsupervised classification algorithm, supported with several 

conventional techniques, the sequences of two wells in the Barra Velha Formation in the 

Santos Basin discriminated into a number of reservoir rock types (RRTs) and hydraulic 

flow units (HFUs) by integrating the well log data, plug data, µCT studies, and thin section 

description. 

• Number 4 was selected as an optimum value of rock typing clusters, employing the elbow 

method by calculating the sum of squared error deviation of data points belonging to a 

cluster versus the cluster's centroid. 

• The quality of the four defined rock types (RRT1 to RRT4) was evaluated using reservoir 

quality index (RQI), flow zone indicator (FZI), effective pore radius (𝑅35), global hydraulic 

element (GHE), and discrete rock types (DRT). RRT1 and RRT2 were determined to be of 

"Very Good" and "Good" quality, respectively, while RRT3 and RRT4 had "Poor to fair" 

and "Tight to poor" reservoir quality. 

• The studied sequence was partitioned into five and four HFUs for well A and B, 

respectively.  For well A, HFU2 and 4 were responsible for around 60% of the flow 

capacity, and the HFU3 acted as a barrier. While HFU1 and 3 supplied around 80% of the 

flow capacity for well B, and HFU4 behaved as a barrier. 

• Three groups of facies were characterized from petrological descriptions supported by thin 

sections from sub-salt lacustrine carbonates from Barra Velha Formation: crystal shrub-

dominated facies, reworked facies and spherulitestone facies. 

• The defined reservoir rock types showed a variety of facies and porosity type that 

compound it. The porosity in the RRT2 was interparticle, while for RRT3 and RRT4 was 

mainly intercrystalline. Mean pore radius, throat radius and tortuosity were: (RRT2:  91 

𝜇𝑚, 53 𝜇𝑚, and 1.9); (RRT3:  87 𝜇𝑚, 50 𝜇𝑚, and 2.5), and (RRT4: 72 𝜇𝑚, 41 𝜇𝑚, and 

2.3).  

• Deep learning models of ResNet and 1D CNN, were successfully trained on well-log 

datasets to predict plug porosity with good accuracy. 

• The 1D CNN model outperformed the ResNet model in terms of predictive accuracy, 

demonstrating better generalization ability. 
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• The XGBoost algorithm was also applied to predict rock type based on well log data, 

achieving high accuracy on both the training and validation sets. 

• The porosity, permeability, and rock type prediction results demonstrate the potential of 

machine learning in reservoir characterization and management, providing valuable 

insights for effective reservoir management and production optimization. 
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5 CONCLUSIONS 

• The part of study presents a comprehensive analysis of heterogeneous stromatolite 

carbonate outcrop samples from Lagoa Salgada in Rio de Janeiro State, Brazil, aimed at 

evaluating their petrophysical features, pore geometry, network characteristics, and fluid 

flow behavior through porous media. The research was motivated by the potential of these 

outcrop samples to serve as flow analogs for typical Brazilian Pre-salt reservoir rocks. The 

findings have implications for oil and gas recovery, carbon capture and storage, and 

groundwater management. 

• Due to the high heterogeneity, differentiation, and significant pore size distribution 

variability, two fine-grained and vugular facies were defined for both experimental and 

simulation investigation to examine effect of pore geometry on oil recovery, saturation 

profile, and relative permeability estimations. 

• Pore network modelling was employed for the microCT images of samples to determine 

the structure and geometry of the porous system and measure the connection between 

features of porous network. 

• The median coordination number in samples from both facies was 3, and the columnar 

sample had a less dense pore network of larger pores, wider and longer throats, but weaker 

throat-pore connections. 

• Pore radius and coordination number had a positive relation in the fine-grained sample, 

while larger pores were less connected in the columnar sample, and both facies showed less 

variation in throat radius than throat length. 

• The single-phase core flooding with two distinct flow rates (0.1 and 0.5 𝑚𝐿/𝑚𝑖𝑛) in 

combination with medical-CT scanning showed that the heterogeneity and 

disconnected/dead-end pores greatly affect the flow patterns, and there was a more 

homogenous distribution of flow lines and better fluid dispersion along the samples with 

better pore network connectivity (fine-grained sample). Moreover, there were connected 

pores in the columnar plug sample that no streamline passes through and the fluid remains 

stagnant inside them.  

• Two-phase flow patterns revealed a preferential and heterogeneous displacement of fluids, 

with some pore spaces without specific flow lines and other areas with a sizable number of 
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flow lines, indicating that the displacing fluid was more effectively imbibed into those parts 

of the porous network. 

• The distribution of oil saturation using medical CT data indicated heterogeneous profiles 

over the longitudinal section of the plugs that vary during oil and water injection. 

Furthermore, the analysis of images of both oil drainage and water imbibition processes 

revealed early breakthroughs. 

• Since different pathways were chosen throughout time, there was a change in the saturation 

profiles' form for drainage and imbibition flow transfer.  

• The heterogeneity of the sample significantly affects the flow patterns and saturation, and 

the relation between the saturation profiles, the porosity profiles, and the number of fluid 

flow patterns for the samples was evident.  

• The average of these oil saturation profiles at the end of the oil and water injection operation 

representing initial and residual oil saturation, respectively, agreed rather well with the 

results from the production data of the core flooding studies.  

• Core flooding experiment results showed the recovery factor in the range of 28 to 34 percent 

for our three plug samples during formation water injection based on the original oil in 

place.  

• Only for the columnar plug sample, the enhancement in oil recovery after shifting to lower 

salinity water injection (SW) was observed according to the osmosis mechanism, while for 

the fine-grained samples, the recovery remained practically unchanged with further SW 

injection. 

• To precisely evaluate the flow streamlines inside the vuggy porous material, two cross-

sections were formed from high-resolution CT images and used as geometry for single and 

two-phase flow modeling. The velocity profile, flow streamlines, and pressure profile were 

derived and assessed using Navier-Stokes and continuity equations to simulate single-phase 

flow (water flooding). Although there are huge connected dead-end vugs with diameters in 

the centimeter range, the pressure fluctuation and velocity inside these regions are 

negligible, and fluid streamlines indicate that fluid within these zones remains stagnant. 

• The lattice Boltzmann equation (LBE) was implemented to model multi-phase flow in each 

cross-section and obtain a saturation profile during water flooding. The findings show that 

the oil remained stuck in dead-end zones even close to the inlet. This remarkable volume 
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of bypassed oil resulted in high oil saturation and low oil recovery factor. The magnitude 

and volume of these dead-end regions have a significant impact on the time that 

breakthrough happens. 

• An algorithm was operated to process the 2-D CT images of the samples, define a region 

of interest, and generate a fine-scale or high-fidelity grid model by converting each pixel 

of the image into one simulation block for the CMG simulator by applying rules for 

segmentation of rock types, porosity, and permeability estimations considering a Cartesian 

grid. 

• Due to the high computational time for simulations of the fine-scale model, in the sequence, 

an algorithm was adapted to create upscaled or coarser models, where groups of blocks 

were merged into a coarser grid with any given dimension of an upscaled block. 

• The simulation results for different upscaling factors were compared with experimental 

results of cumulative oil and water production from core flooding experiments and history 

matching was conducted to match these results and calculate relative oil and water 

permeability using the Brooks-Corey model. 

• The identified curves improve our understanding of fluid flow in heterogeneous porous 

systems, providing a foundation for accurate assessments of oil recovery efficiency, 

sensible operational choices, reliable predictive models, and a better understanding of pre-

salt reservoirs to minimize risks.  

• In other part of research, the Barra Velha Formation in Brazilian pre-salt carbonate 

reservoirs was characterized and evaluated using well log data, conventional and micro-

computed tomography (µCT) analyses of plug data, and thin section description to 

accurately understand the reservoir's characteristics.  

• The unsupervised classification algorithm known as K-means was utilized to analyze the 

sequences of two wells in the Barra Velha Formation of the Santos Basin. This analysis 

was supported by various conventional techniques and aimed to distinguish different types 

of reservoir rock (RRTs) and hydraulic flow units (HFUs) by integrating well log data, plug 

data, µCT studies, and thin section descriptions. 

• To determine the optimal number of rock typing clusters, the elbow method was employed, 

which involved calculating the sum of squared error deviation of data points belonging to 
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a cluster versus the cluster's centroid. The analysis determined that four clusters were the 

optimal number, referred to as RRT1 to RRT4. 

• The reservoir quality index (RQI), flow zone indicator (FZI), effective pore radius (𝑅35), 

global hydraulic element (GHE), and discrete rock types (DRT) were also determined for 

each of the RRTs. These parameters provide important information about the characteristics 

of the reservoir: (RRT1: very good reservoir quality, RRT2: good reservoir quality, RRT3:  

poor to fair reservoir quality, and RRT4: tight to poor reservoir quality). 

• The study sequence was divided into five and four hydraulic flow units (HFUs) for well A 

and well B, respectively. The analysis found that HFU2 and HFU4 were responsible for 

approximately 60% of the flow capacity for well A, while HFU3 acted as a barrier. For well 

B, HFU1 and HFU3 supplied about 80% of the flow capacity, and HFU4 acted as a barrier. 

• Three groups of facies were identified from petrological descriptions supported by thin 

sections of sub-salt lacustrine carbonates from the Barra Velha Formation: crystal shrub-

dominated facies, reworked facies, and spherulitestone facies. 

• The different reservoir rock types exhibited a variety of facies and porosity types. For 

example, RRT2 had interparticle porosity, while RRT3 and RRT4 mainly exhibited 

intercrystalline porosity. The mean pore radius, throat radius, and tortuosity for each of the 

RRTs were: RRT2 - 91 𝜇𝑚, 53 𝜇𝑚, and 1.9; RRT3 - 87 𝜇𝑚, 50 𝜇𝑚, and 2.5; and RRT4 - 

72 𝜇𝑚, 41 𝜇𝑚, and 2.3.   

• ResNet and 1D CNN models were trained on well-log datasets to accurately predict plug 

porosity, with the 1D CNN model performing better than the ResNet model in terms of 

generalization ability. Additionally, the XGBoost algorithm was utilized to predict rock 

type based on well log data, achieving high accuracy on both the training and validation 

sets. These findings showcase the potential of machine learning in reservoir 

characterization and management, offering valuable insights for optimizing production and 

effectively managing reservoirs. 

(Jensen et al., 2000; Mohriak et al., 2008; Vik et al., 2013; Fitch et al., 2015; Bruhn et al., 2017; 

Jackson and Hudec, 2017; Kang et al., 2017; Lin et al., 2018; Reynolds et al., 2018; Jackson et 

al., 2020; Zahasky et al., 2020; ANP, 2021; Hendry et al., 2021; Petrobras, 2021; Sen et al., 

2021; Abutaha et al., 2022) (Soltanmohammadi et al., 2021; Iraji et al., 2022c; Iraji et al., 

2022a; Iraji et al., 2022b; Soltanmohammadi et al., 2022; Iraji et al., 2023)  
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ABSTRACT 

Brazilian pre-salt reservoirs are well-known for their intricate pore networks and vuggy nature, 

making it challenging to model and simulate fluid flow within these carbonate reservoirs. 

Despite their excellent petrophysical properties such as high porosity and permeability, the 

recovery factor in these reservoirs is typically very low, in some cases below 10%. Previous 

studies have shown that injecting 𝐶𝑂2, in the form of WAG (water alternating gas), can 

significantly increase the recovery factor in pre-salt reservoirs, with improvements of up to 

20%. However, the mechanisms by which 𝐶𝑂2 injection improves the recovery factor while 

water flooding exhibits poor recovery are unclear. In this study, we investigated the fluid flow 

behavior in similar heterogeneous porous material by utilizing a plug sample collected from a 

vugular segment of a Brazilian stromatolite outcrop, known to be flow analogous to some pre-

salt reservoirs. Single-phase and multi-phase core flooding experiments were conducted in 

combination with medical-CT scanning to generate flow streamlines and assess water flooding 

efficiency. MicroCT scanning of the core sample was then performed, and two cross-sections 

from horizontal and vertical plates were constructed and used as geometry in a numerical 

simulator to examine the impact of pore geometry on fluid flow. The pore-scale modeling and 

experimental data analyses revealed that due to the presence of dead-end pores and vugs, a 

significant proportion of the fluid remains stagnant in these regions, leading to channeling-like 

behavior of the injected fluid in the sample, fast breakthrough, and low areal swept efficiency. 

The numerical simulation results also demonstrated that regardless of the size of the dead-end 

regions, the pressure variation within the dead-end vugs and pores is negligible. Despite the 

stromatolite’s proper petrophysical properties (relatively high porosity and permeability and the 

existence of linked huge vugs), the recovery factor during water flooding remained low due to 

early breakthrough. The results of this study match the field data obtained from pre-salt 

reservoirs, providing an explanation for the low recovery factor recorded in pre-salt reservoirs 

during water flooding. 

Keywords: Pore-scale Modeling, Pore Geometry, Flow Streamlines, Computational Modeling, 

Digital Rock Analysis   
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7.1 INTRODUCTION 

The discovery of pre-salt reservoirs in 2006 greatly impacted the Brazilian petroleum industry. 

According to the Brazilian Oil and Natural Gas Agency (ANP), pre-salt reservoirs will account for 

more than 70% of the total produced oil (approximately 2.5 million barrels per day) in 2021 in 

Brazil (Alves and Polette, 2021). Producing petroleum from pre-salt reservoirs entails many 

challenges, including contamination by 𝐶𝑂2 and H2S in the gas phase, ultra-deepwater scenarios, 

thick salt layer drilling complexities, and, most importantly, the heterogeneous nature of lacustrine 

carbonate pre-salt formations (da Costa Fraga et al., 2015). Given this, having a thorough 

understanding of fluid flow within heterogeneous porous media is essential for ensuring 

dependable production. Since the discovery of pre-salt reservoirs, various enhanced oil recovery 

(EOR) and improved oil recovery (IOR) methods have been examined to improve oil recovery 

factor and production. Traditionally, due to the presence of seawater and high levels of dissolved 

𝐶𝑂2 in reservoir fluid, along with gas storage limitations in offshore fields and the detrimental 

effects of 𝐶𝑂2 emissions on climate, water-alternating-gas (WAG) injection, which involves the 

combination of desulfated seawater and gas, has been widely regarded as an effective enhanced oil 

recovery (EOR) method implemented in Brazilian pre-salt reservoirs (Ligero and Schiozer, 2014; 

Waterworth and Bradshaw, 2018). In fact, WAG injection is presently the most commonly 

employed EOR method in Brazilian pre-salt reservoirs. However, there has been a recent surge in 

research into other techniques, such as polymer and surfactant injection (chemical EOR) and low 

salinity water injection, for application in pre-salt reservoirs(Soltanmohammadi et al., 2021). Water 

injection in Brazilian pre-salt reservoirs had revealed an early breakthrough in production wells, 

poor injectivity, low oil recovery factor, as well as high residual oil saturation. However, in the 

Lula field, within the pre-salt cluster of the Santos Basin which contains light oil, water alternative 

gas injection (primarily 𝐶𝑂2 as the gas phase) provides a substantially higher oil recovery factor, 

owing to oil swelling and viscosity reduction (Feng et al., 2004; de Araujo Cavalcante Filho et al., 

2020). Indeed, during the WAG process, the swelling and coalescence of isolated oil ganglia appear 

to have a considerable impact on the oil recovery factor (Sohrabi et al., 2009). Nevertheless, early 

breakthroughs in production wells were still detected (Branco, 2012; Drexler et al., 2022). 

The diversity of pore types in Brazilian pre-salt reservoirs is categorized by interparticle, vugular, 

fracture, karts, and dissolution horizons or “super-k” layers (da Rocha et al., 2019; De Lima et al., 
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2019; Ferreira et al., 2021). As a result, pre-salt reservoir modeling and simulation have typically 

been carried out with a significant degree of uncertainty (Correia et al., 2015; Bruhn et al., 2017; 

Alvarez et al., 2021). In this study, we collected a sample of stromatolite outcrop, which has the 

potential to be an flow analogue for pre-salt reservoirs (Muniz and Bosence, 2015), to better 

understand the petrophysical properties of pre-salt reservoirs and gain insight into fluid propagation 

within this type of porous media. Earlier investigations classified stromatolite core samples into 

two distinct subgroups, namely vugular and fine-grained, based on their average pore size. Vugular 

core samples have remarkably larger and connected pores that are typically centimeters in size, 

while fine-grained samples have smaller pore sizes (Frolov et al., 2011; Callefo et al., 2018). The 

main goal of this study is to investigate fluid movement within the vuggy porous medium and 

understand the flow streamline within this complex and heterogeneous porous system. To achieve 

this, we obtained a plug sample from the vugular section of the stromatolite outcrop and analyzed 

its pore geometry using micro computed tomography (microCT) and core flooding in conjunction 

with medical-CT scanning to determine its petrophysical properties. Previous research on similar 

stromatolite outcrops has found high permeability (800 to 1200 𝑚𝐷) and high porosity (30 to 60%), 

as well as a low oil recovery factor (less than 30%) even after a reasonably long period of water 

flooding in a core saturated with ultra-light oil (Soltanmohammadi et al., 2022). However, the 

reason why the oil recovery factor is poor in core samples with high porosity and permeability and 

largely connected vugs remains unclear. This phenomenon has also been observed in pre-salt 

reservoirs, where the porosity and connectivity of the pores are remarkable, but the recovery factor 

is low, even in some cases below 10% (Branco, 2012; Godoi and dos Santos Matai, 2021). 

Therefore, it is crucial to have a comprehensive pore-scale study to understand the flow pattern in 

these types of heterogeneous rocks. In this study, in addition to the experimental section, we used 

2D microCT images as geometry in our numerical simulations to obtain flow streamlines, 

saturation, and velocity profiles in the core sample. These simulations helped to explain why we 

recorded low oil recovery factors and early breakthrough during core flooding in stromatolite 

samples, as well as in pre-salt reservoirs. In general, the main objective of this study was to 

investigate the impact of pore geometry on fluid flow in porous media by combining numerical 

simulation and experimental results. Specifically, we aimed to examine how the presence of dead-
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end pores and vugs, in addition to their size, can affect flow patterns, recovery factors, and 

breakthrough times. 

The structure of this paper is as follows: Section 2 provides a description of the geological setting 

and the location from where the core samples were collected. Section 3 details the materials and 

methods used in this study, including a comprehensive discussion of the experimental 

configuration and numerical simulation. In Section 4, we analyze and examine the results obtained 

from both the experiments and numerical simulation. Finally, Section 5 presents a summary of the 

main findings and conclusions of this work. 

7.1.1 GEOLOGICAL SETTING 

This study made use of outcrops from Lagoa Salgada in Rio de Janeiro, Brazil, where microbial 

carbonate rocks were identified as similar to one of the most commonly occurring pre-salt reservoir 

rocks in Brazil (Wright and Tosca, 2016). The geological layout of the study area is depicted in 

Figure 7-1, which shows the coastal zone of Rio de Janeiro State and a map of the study area. The 

latitude and longitude of the study location are also shown in Figure 7-1. Specifically, the latitude 

and longitude of the core sample investigated in this study were 041° 07′ 58′′ 𝑊 and 

21° 54′ 10′′ 𝑆, respectively. 

 
Figure 7-1. Rio de Janeiro State, highlighting the coastal zone and the location of the study area. The latitude 

and longitude of the core sample discussed in this paper were 041° 07′ 58′′ 𝑊 and 21° 54′ 10′′ 𝑆.  
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7.2 MATERIALS AND METHODOLOGY 

7.2.1 MATERIALS 

Figure 7-2 (a) compares the sample from a Brazilian stromatolite outcrop with a sample from a 

pre-salt reservoir. These two sorts of rocks are remarkably similar. The medical CT scanner was 

used to identify regions of interest and collect representative rock phases of the outcrop samples; 

the rock samples were then classified into two facies based on pore size and geometry: fine-grained 

and columnar/vugular. The medical CT scanner used in this study was a Siemens SOMATOM 

Spirit scanner with a resolution of 15.5 𝐼𝑃/𝑐𝑚. Fine-grained facies have far smaller pores than 

columnar facies, which contain huge, linked vugs with pore diameters in the centimeter range. 

Figure 7-2 (a) highlights the columnar/vuggy facies. To gain a firm understanding of fluid flow in 

columnar facies, one core sample with a length of 8.9 𝑐𝑚 and a diameter of 3.68 𝑐𝑚 was drilled 

and selected from the indicated columnar facies, Figure 7-2 (b). The pore geometry within the core 

sample was obtained using a microCT scanner after the core sample had been cleaned. We utilized 

a ZEISS XRadia Versa XRM-500 scanner with 40 µ𝑚 voxel size for this task. The stromatolite 

columnar core sample was fragile and extremely heterogeneous, making core flooding studies 

problematic. The encapsulation process for this core sample was launched by heating a 

thermoplastic material to core surfaces to guarantee that the core’s marginal limits remained 

consistent during experimental section and core flooding. To preserve the rock’s integrity during 

the experiment, epoxy resin was poured to the thermoplastic’s surface. Figure 7-2 (c) depicts the 

resulting encapsulated core. 

                                                      a                                                       b                                 c 

 
Figure 7-2. a): comparison of microbialite outcrops of Lagoa Salgada (with highlighted columnar facies) and Pre-salt 

rock, b) columnar plug sample, c) encapsulated plug sample. 



168 
 

 
 

Three different aqueous phases, namely distilled water (DW), seawater (SW), and formation water 

(FW), were utilized in the core flooding process. Table 7-1 provides the composition of SW and 

FW. 

Table 7-1. Composition of SW and FW. 

Salt 
Sea water (SW) 

Composition (𝑔/𝐿) 

Formation water (FW) 

Composition (𝑔/𝐿) 

𝑁𝑎𝐶𝑙 23.47 163.62 

𝑁𝑎2𝑆𝑂4 0.1 0.088 

𝑁𝑎𝐻𝐶𝑂3 0.192 0.487 

𝐾𝐶𝑙 0.724 6.911 

𝑀𝑔𝐶𝑙2 . 6𝐻2𝑂 10.55 3.068 

𝐶𝑎𝐶𝑙2. 2𝐻2𝑂 1.466 19.1 

𝑆𝑟𝐶𝑙2. 6𝐻2𝑂 0.039 0.028 
𝐵a𝐶𝑙2. 2𝐻2O - 0.033 

 

The light-dead-oil used in the experimental section was sourced from a pre-salt reservoir in Brazil. 

The oil was centrifuged and filtered through a 5 µm Millipore filter prior to use. The density, molar 

mass, and viscosity of the oil sample at 20 ℃ and standard pressure are 0.8751 𝑔/𝑐𝑚3, 120 𝑔/𝑚𝑜𝑙, 

and 5 centipoises (𝑐𝑃), respectively. 

7.2.2 EXPERIMENT PROCEDURE 

Figure 7-3 presents the schematic diagram of the core flooding apparatus, which enables the 

experimentation of high pressure-temperature conditions indicative of Brazilian pre-salt reservoirs 

(Iraji et al., 2022).The device is made up of the following components: A high-pressure injection 

pump, a heating jacket capable of raising the temperature to 106 ℃, fluid accumulator vessels, a 

coreholder, pressure transducers, a backpressure regulator capable of maintaining a pressure of 

1000 𝑝𝑠𝑖, valves and lines, the medical CT scanner, and a biphasic separator. Furthermore, for 

pressure, temperature, flow rates, and production data, a computer-controlled system with a highly 

precise data acquisition was used. 

One purpose of this study was to assess the flow streamlines within vuggy porous media. To 

precisely characterize flow patterns in single and multi-phase flows utilizing core flooding coupled 

with medical CT scanning, the encapsulated core sample was first assembled in a core holder with 

high confining pressure and temperature, 106 ℃ and 2200 𝑝𝑠𝑖. After achieving these conditions, 

the air inside the core was evacuated using a vacuum pump. Nitrogen was then pumped into the 
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sample until the pore pressure reached 735 𝑝𝑠𝑖. The first CT scan (dry CT) was taken after the 

nitrogen had been sufficiently stabilized. Then, the nitrogen was then removed from the sample 

using a vacuum pump, and formation water (FW) was pumped into the core at the same temperature 

of 106 ℃, until pressure stabilization and the core was fully saturated with FW. In this step the 

second CT scan (wet CT) was conducted. The porosity distribution profile obtained in this step 

after analysing CT images. The dry and wet CT data would provide the initial porosity profile by 

the segmentation of the attenuation coefficient from the acquired images, as it shown in Equation 

(3-1) (Park et al., 2017). 

𝜙 =
𝐶𝑇𝑅𝑤 − 𝐶𝑇𝑅𝑔

𝐶𝑇𝑤 − 𝐶𝑇𝑔
   (7-1) 

Where, 𝐶𝑇𝑅𝑤 is the CT value of the sample completely saturated with formation water, 𝐶𝑇𝑅𝑔 is 

the CT value of the sample completely saturated with nitrogen, 𝐶𝑇𝑤 and 𝐶𝑇𝑔 are the average CT 

value of FW and nitrogen at test conditions, and ϕ is the calculated porosity. Then, at a constant 

rate of 0.1 ml/min, 2 PV of distilled water (DW) was injected into the FW-saturated core as the 

tracer. It is imperative to note that the differential CT attenuation coefficient exhibited by distilled 

water (DW) in comparison to formation water (FW) renders DW a suitable tracer for employment 

in this study. The attenuation coefficients for FW and DW, as determined in the current 

investigation, are 433.03 and 389.17, respectively. CT scans were taken while the injection was 

being administered. Following that, CT scanning was done while a 2.0 PV of FW was injected at 

a constant rate of 0.5 ml/min. The rate was subsequently dropped to 0.1 ml/min, and the injection 

was continued until the DW tracer was eliminated completely. The major goal of this section was 

to find flow streamlines in single-phase flow within the vuggy porous medium while accounting 

for the effect of different rates. 

Following the injection of various pore volumes of FW and the removal of DW, light oil was 

injected at a rate of 0.1 ml/min to examine the effect of an immiscible injection and to generate the 

saturation profile. During this step, 2 PV of oil was injected, and CT scan data were analyzed to 

determine the saturation profile for the drainage process and two-phase flow patterns. After 

reaching initial water saturation, 2 PV of FW with the rate of 0.1 ml/min were injected to displace 

the crude oil, creating an imbibition saturation map and flow patterns. PerGeos software was used 
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to analyze the CT images and generate the flow pattern model in each flooding process step. 

Experiments were finalized by injection of SW into the core until reaching residual oil saturation. 

Furthermore, the amount of oil and water production was recorded during the flooding steps to 

determine the recovery factor. 

 
Figure 7-3. Schematic diagram of the core flooding apparatus, illustrating the experimental setup used in this 

study. 

7.2.3 UNDERLYING PHYSICS 

Reynolds number is one of the main parameters that affect fluid flow in porous media, particularly 

in vuggy porous medium. Therefore, first of all, we calculate the Reynolds number. Reynolds 

number is a criterion, assists to detect a flow regime; it represents the relation between inertial and 

viscose forces. Equation (7-2) displays Reynolds number equation, where ρ is fluid density in 

𝑘𝑔/𝑚3, 𝑣 is Darcy velocity divided by porosity (𝑣 =  𝑢/𝜙) in 𝑚/𝑠, 𝑑50 is median grain size of 

the porous media as a proxy for characteristic pore length in 𝑚, and finally µ is fluid viscosity in 

𝑘𝑔/𝑚. 𝑠 (Bear; van Lopik et al., 2017). 
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𝑅𝑒 =
𝜌𝑣𝑑50

µ
=

𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙 𝑓𝑜𝑟𝑐𝑒

𝑣𝑖𝑠𝑐𝑜𝑠𝑒 𝑓𝑜𝑟𝑐𝑒
   (7-2) 

In general, the flow regime is divided into two distinct sections based on Reynolds number. 

Laminar flow exists when the Reynolds number is less than 2000. Turbulent flow, on the other 

hand, is defined as a flow regime with a Reynolds number greater than 2000 (Blick, 1966). The 

laminar flow itself, divided into the Darcy flow region, which Darcy’s law is valid, and the 

Forchheimer flow regime (Liu et al., 1994). Darcy’s law applies when viscose force dominates the 

inertia term and does not take the flow diffusion effect into account. Empirical Forchheimer law is 

a Darcy’s law extension that takes into account the inertia term and is used when the Reynolds 

number exceeds 10; in this case, the viscous force can no longer dominate the inertia force (Nguyen 

and Balakotaiah, 1994; Buchori et al., 2017). 

After determining the flow regime and calculating the Reynolds number, to gain a better 

understanding of the pore scale fluid pattern within the columnar core sample, we created a 3D 

model of the core using the microCT scanning outcomes, as shown in Figure 7-4. Figure 7-4 depicts 

the complex geometry of the core, which includes linked massive vugs and pores. To create 

geometry in the simulator, we generate two two-dimensional (2D) microCT images from the center 

of the core by intersecting it with one horizontal and one vertical plate, the yellow and blue cross-

sections in Figure 7-4 respectively. 

 
Figure 7-4. Using horizontal and vertical plates, perpendicular plates, two cross-sections are obtained and used 

as geometry in COMSOL Multiphysics (simulator). 
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Figure 7-5 (a and b) illustrates the two-dimensional (2D) microCT images obtained by intersecting 

the core with horizontal and vertical plates, respectively. The pore space is displayed in black, 

while the solid grains are shown in blue. In Figure 7-5 (c and d), the simulator’s region of interest 

is depicted in light blue. The inlet and outlet are highlighted in dark green and dark red, 

respectively. Additionally, the intersection between the solid-grain and pore space is marked, and 

the zero-flux term boundary condition is applied to it. 

  
(a) A 2D cress-section was obtained using a 

horizontal plate; the black and blue colors 

represent pore space and solid grains, respectively. 

(b) A vertical 2D geometry used in simulator. 

 

(c) In the horizontal cross-section, the region of interest (connected pores), inlet, and outlet are 

indicated. 

 
(d) The region of interest is shown in a vertical cross-section. 

Figure 7-5. Using a 3D model, 2D microCT images were acquired and employed in numerical simulator. 
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Utilizing the 2D images, single-phase water-flooding has been modeled to procure velocity field; 

moreover, flow streamlines are drawn to clarify the flow pattern inside the vugular sample. Zero 

flux term (𝑢 =  0) boundary condition is applied around the solid grains (Harlow and Amsden, 

1971). Chemical reaction between water and rock is considered negligible. In this simulation, we 

assumed that fluid was injected through the left-hand side of Figure 7-5 (inlet with constant flow 

rate) and expelled through the right-hand side. Navier–Stokes equations for conservation of 

momentum, Equation (7-3), and the continuity equation, Equation (7-4), for conservation of mass 

applied to model single-phase fluid flow (Doering and Gibbon, 1995). The gravity force in the 

momentum equation does not involve and is supposed to be negligible, (𝜌 − 𝜌𝑟𝑒𝑓)𝑔 = 0 (Gal-

Chen and Somerville, 1975). 

𝜌 (
𝜕𝑢

𝜕𝑡
+ 𝑢. ∇𝑢) = −∇𝑝 + ∇. (𝜇(∇𝑢 + (∇𝑢)𝑇) −

2

3
(𝜇(∇. 𝑢)𝐼) + 𝐹   (7-3) 

𝜕𝜌

𝜕𝑡
+ ∇. (𝜌𝑢) = 0   (7-4) 

In Equation (7-3), term 𝜌 (
𝜕𝑢

𝜕𝑡
+ 𝑢. ∇𝑢)corresponds to inertial forces, term −∇𝑝 is representing the 

pressure forces, ∇. (𝜇(∇𝑢 + (∇𝑢)𝑇) −
2

3
(𝜇(∇. 𝑢)𝐼) represents viscous forces, and 𝐹 corresponds to 

external forces applied to fluid. Furthermore, 𝑢 is fluid velocity, 𝑝 is fluid pressure, 𝜌 is fluid 

density, and µ is fluid dynamic viscosity, all in 𝑆𝐼 units (Momani and Odibat, 2006). 

We assumed that water was incompressible (𝐶𝑤 = 0), and in the beginning, the core was fully 

saturated by water; then, we injected water with constant velocity (𝑢𝑖𝑛𝑗 = 1.4 × 10−4𝑚/𝑠) through 

the inlet. We considered suppressing backflow pressure is 50 𝑏𝑎𝑟 (𝑝0  = 50 𝑏𝑎𝑟), initial pressure 

and temperature was 150 𝑏𝑎𝑟 and 379.15 𝐾 (𝑝𝑖 = 150 𝑏𝑎𝑟, 𝑇𝑖 = 379.15 𝐾), based on 

experiments. Temperature remains constant in the entire core flooding process. The rock 

compressibility is negligible, and the porosity remains constant during flooding (𝐶𝑟 = 0,
𝜕∅

𝜕𝑡
= 0). 

To simulate two-phase flow at the pore-scale, the lattice Boltzmann equation (LBE) was employed. 

In the simulation we assumed that the initial temperature and pressure is like single phase model, 

and we inject water with constant flow rate of 0.1 ml/min, through inlet. The two-phase flow 

simulation assumes a zero-backflow pressure and neglects its effect. The relative permeability 
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calculation was carried out using a Corey-type function, as represented by Equation (7-5) 

(Firoozabadi and Aziz, 1986).  

𝑘𝑟𝑤 = 𝑘𝑟𝑤
𝑒 𝑆𝑤𝑁

𝑛𝑤                 𝑘𝑟𝑜 = 𝑘𝑟𝑜
𝑒 (1 − 𝑆𝑤𝑁

𝑛𝑜 ) 

𝑆𝑊𝑁 =
𝑆𝑤 − 𝑆𝑤𝑐

1 − 𝑆𝑜𝑟𝑤 − 𝑆𝑤𝑐
 

  (7-5) 

Capillary pressure was considered negligible. Relative permeability and simulation parameters 

exhibit in Table 7-2. 

Table 7-2. Relative permeability and simulation parameters. 

Parameter Value 

𝑘𝑟𝑤
𝑒  0.95 

𝑘𝑟𝑜
𝑒  0.9 

𝑆𝑤𝑐  0.3 

𝑆𝑜𝑟𝑤 0.05 

𝐷𝑐  (Capillary diffusion) 0 

𝑞𝑖𝑛𝑗 0.1 𝑚𝑙/𝑚𝑖𝑛  

T 379.15 𝐾 

𝐶𝑟 , 𝐶𝑤 , 𝐶𝑟𝑜 0 

𝑘 1179 𝑚𝐷 
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7.3 RESULTS AND DISCUSSION 

In this section, we provide a comprehensive analysis of both the experimental and numerical 

simulation sections’ outcomes. We analyze the outcomes of CT scanning during core flooding in 

order to determine the oil saturation and recovery factor profile. In addition, we undertake a 

comprehensive investigation of the flow streamline in single phase and generate a saturation profile 

using numerical simulation during core flooding. 

7.3.1 EXPERIMENTAL RESULTS 

The porosity of the core sample was determined to be 52.5% through measurements using the 

CoreLab Company porosimeter. Figure 7-6 shows the porosity profile of the columnar core sample, 

which was obtained through medical-CT imaging. The porosity distribution in the vuggy core 

sample ranges from 44% to 61% along the length of the core. A Core flooding apparatus was 

employed to inject water into the core holder using a pump, and the pressure drop across the plug 

was measured. To obtain the difference between the inlet and outlet pressures of the core, a 

differential pressure transducer was installed in the setup. Using these measurements, the 

permeability of the core sample was calculated and determined to be 1179.02 millidarcy (𝑚𝐷). 

 
Figure 7-6. Visualization of the porosity distribution along the length of the core sample using medical-CT 

scanning. 

7.3.1.1 TRACER INJECTION (SINGLE PHASE FLOW) 

Upon conducting an analysis of medical-CT images acquired during single-phase FW injection, 

we have generated Figure 7-7 using PerGeos software. The figure depicts gray segmentation 

sections that represent disconnected pores, while the blue color corresponds to connected pore 

areas. Additionally, red lines have been employed to depict the flow streamlines within the porous 
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media. Our in-depth analysis of the medical-CT scan data has revealed that a significant proportion 

of connected pores have remained unutilized, with no flow passing through them. Notably, the flow 

streamlines do not traverse a substantial area of interconnected pores, as evidenced by the lateral 

view of the core in Figure 7-7 (a). A remarkable region located in the bottom right side of the core, 

consisting of large linked vugs, has remained completely unaffected by the flow, with no existing 

flow streamline that has passed through this area. These findings suggest a need for further 

investigation into the factors affecting the flow of fluids within porous media. By expanding our 

knowledge in this area, we can improve our understanding of fluid flow behavior and optimize 

fluid transport processes in porous media applications. To investigate the flow streamline in a 

heterogeneous-vuggy porous system, a 2D cross-section was generated from microCT images in 

the simulation section. This approach was adopted because it allows for a more comprehensive 

examination of the complex flow dynamics within the porous medium. 

a 

 
b 

 
Figure 7-7. The 3D model of the core and pores with flow streamlines during single-phase FW injection. The 

figures on the top and bottom show the core from the lateral and top views, respectively. 
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To precisely investigate the flow path inside porous media and understand why a substantial portion 

of the connected pores remain untouched, we visualized the 3D flow streamlines on a 2D cross-

section of the core, obtained from the medical-CT scanner, in subsequent studies. 

The flow pattern investigation continued with the single-phase injection of the tracer. 2 PV of DW 

were initially injected into the core at a constant rate of 0.1 𝑐𝑚3/𝑚𝑖𝑛. Concurrently, medical-CT 

scanning was performed to get the concentration profile for generating the flow pattern. Following 

that, a 2 PV of FW was injected at a continuous rate of 0.5 𝑐𝑚3/𝑚𝑖𝑛 while CT scanning was 

performed, and the injection was continued until the DW tracer was fully depleted. 

Figure 7-8 (a) illustrates the flow streamlines of DW (yellow lines) during the displacement of FW 

by DW. The blue areas of the images in Figure 7-8 represent connected pores in a longitudinal 

cross-section of the core sample, obtained using medical-CT scanning. Next, the FW was injected 

with the flow rate of 0.5 𝑐𝑚3/𝑚𝑖𝑛 to gain more insights of effect of flow rate on the flow patterns 

in the vuggy core sample. Figure 7-8 (b) depicts the flow streamlines of FW (red lines) during DW 

displacement by FW. The greater number of streamlines in Figure 7-8 (b) compared with the 

previous step, Figure 7-8 (a), clearly shows a higher fluid velocity, which corresponds to a higher 

injection flow rate. However, the key result after examining the data in Figure 7-8 was the 

significant fraction of pores and vugs that remained unaffected during core flooding. In fact, while 

the FW is being injected, we observe a channeling-like behavior of FW, and a strikingly large, 

connected area stays unswept. The CT scan results revealed that these untouched areas are mostly 

associated with dead-end zones. 

 a                                                                          b 

 
Figure 7-8. Flow streamlines in 2D cross-sections that derived from medical-CT scanning during single phase 

flow. The figure on the left shows DW displacing FW (flow rate = 0.1 𝑐𝑚3/𝑚𝑖𝑛), whereas the one on the right 

shows FW displacing DW (flow rate = 0.5 𝑐𝑚3/𝑚𝑖𝑛). 
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7.3.1.2 TWO PHASE FLOW 

It is worth noting that a prior investigation of a similar core, utilizing contact angle tests and the 

analysis of medical CT images, revealed that the core exhibits an oil-wet nature. Indeed, the 

analysis of medical CT images from earlier studies exhibited oil covering the rock surface, while 

water bubbles were observed in the middle. The oil was then injected into the columnar core sample 

at the rate of 0.1 𝑐𝑚3/𝑚𝑖𝑛 to gain a better understanding of the immiscible two-phase flow. After 

processing the medical-CT image data, flow streamlines are generated. Figure 7-9 (a) depicts the 

flow patterns of the oil (yellow lines) during the displacement of the FW by oil (oil drainage). 

Analyzing the flow streamlines in Figure 7-9 (a) reveals that the oil is unable to penetrate some 

pores and vugs, such as the large dead-end vug in the middle of the core shown in the Figure 7-9 

(a), which remains nearly full of FW. We observed that produced water was approximately 32 

𝑐𝑚3, which by considering the effective pore volume of 49.7 𝑐𝑚3, represents that the water 

saturation after oil drainage process was 35.6% and the oil saturation was 64.4%. This information 

was obtained by recording production data such as produced water and oil during oil flooding. 

Moreover, the intensity of the number of streamlines in Figure 7-9 (a) shows high oil velocity 

within specific regions, while the velocity of the fluid is markedly low in a notable volume, more 

explicitly inside the dead-end pores and vugs. Medical-CT scanning was used to track changes in 

the oil saturation distribution within the core sample throughout the two-phase flow process along 

the longitudinal of the sample (Figure 7-10). Figure 7-10 (a) shows the oil saturation profiles for 

two steps: after 0.2 PVI of oil and after 2 PVI (end of the oil drainage process). Both the produced 

oil during core flooding and the medical-CT results exhibited oil breakthrough shortly after the 

injection begins. In fact, after 0.2 PVI, Figure 7-10 (a) reveals that the oil saturation at the outlet is 

greater than 10%, implying an early breakthrough. The lowest oil saturation, obtained from CT 

data, after the oil flooding operation was 52% and was found in the middle of the core (Figure 7-10 

(a)), where there are fewer flow lines and more the dead zones exist (Figure 7-9 (a)). 

Following the injection of oil, FW was injected at a flow rate of 0.1 𝑐𝑚3/𝑚𝑖𝑛, followed by 

medical-CT scanning to investigate the oil recovery and to drive flow streamlines in a two-phase 

immiscible process. Figure 7-9 (b) depicts the flow pattern of the displaced fluid, oil (yellow line), 

during the displacement of oil by FW (FW imbibition process). Preferential displacement was 

observed in the oil flow pattern, notably in some areas fluid was swept and bypassed in others. The 
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intensity and quantity of flow streamlines in Figure 7-8 and Figure 7-9 show that fluid velocity is 

higher near the outlet, but because there are dead-end zones in this region (Figure 7-7), the fluid 

remains stagnant in many pores and vugs near the outlet during core flooding. According to an 

assessment of CT scan data, the average residual oil saturation after FW injection was 42.2%. To 

track changes in the distribution of oil saturation within the core during the FW injection (water 

imbibition) process, the core sample was regularly CT-scanned. Figure 7-10 (b) shows the findings 

of the medical-CT data, where the oil saturation profiles correspond to two stages: 0 PVI of FW 

injection (immediately after 2.0 PVI of oil), and the results after 2.0 PVI of FW. We also observed 

the breakthrough during the preliminary stage of the FW injection. In fact, it appears that the 

existence of a remarkable volume of dead-end zones, as well as suitable petrophysical features of 

the core sample (relatively high porosity and permeability, as well as the presence of linked vugs), 

prompted the breakthrough. Similar behavior, early breakthrough, has been observed in pre-salt 

reservoirs as well, during both water flooding and WAG process. 

a                                                                          b 

 

Figure 7-9. a): the flow of oil streamlines (yellow lines), during the process of oil drainage, pushing FW by oil; 

b): the water flow lines (yellow lines) during the displacement of oil and injection of FW. 

a 
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b 

 
Figure 7-10. a): oil saturation profile after 0.2 and 2.0 PV of oil injection; b): oil saturation during FW injection, 

obtained from CT images examination. 

After injecting 2 PV of formation water (FW), we subsequently injected seawater (SW) and 

measured the produced liquid to determine the recovery factor. The resulting recovery factor during 

both FW and SW injections is presented in Figure 7-11. Our findings indicate that oil production 

began shortly after FW injection, and after less than 1 PVI, a breakthrough occurred, resulting in 

no further oil production during FW injection. Following FW injection, the residual oil saturation 

was found to be 42.2%, which was reduced to 39.2% after SW injection. Notably, SW has a lower 

salinity than FW, as illustrated in Table 7-1. Interestingly, our results show that the oil recovery 

factor increased by 4.7% following SW injection, likely due to the osmosis mechanism. 

Specifically, the oil was mobilized due to osmotic water transfer to dead-end pores. 

 

Figure 7-11. Oil recovery factor determined by measuring produced liquid during FW and SW injection 

experiments. 

FW SW 
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This study’s recovery factor results are consistent with data from Brazilian pre-salt reservoirs. In 

both instances, a rapid breakthrough occurred despite the presence of porous media with suitable 

petrophysical properties, and the recovery factor remained low. Despite the fact that medical CT 

images revealed that certain areas remained undisturbed, and that fluid does not pass through 

certain large pores, the low resolution of these images makes it difficult to determine the precise 

causes of this phenomenon. Using microCT images, which have a much higher resolution than 

medical CT, additional numerical models were developed to acquire further insight. These models 

were created to investigate this matter in greater depth. 

7.3.2 NUMERICAL MODELING 

This section presents an analysis of two cross-sections obtained from microCT imaging. Using 

these cross-sections, we generate flow streamlines, velocity profiles, and pressure profiles for 

single-phase flow using the Navier-Stokes equation. Additionally, we obtained a saturation profile 

for a two-phase flow model. Finally, we conduct an analysis of the calculated results to better 

understand the behavior of fluids in stromatolite samples. 

7.3.2.1 SINGLE PHASE FLOW 

To understand the flow regime in our core sample, using Equation (7-2), we obtained the Reynolds 

number alongside the core length. Figure 7-12 displays the Reynolds number during water flooding 

in two different flow rates (𝑞1 =  0.1 𝑐𝑚3/𝑚𝑖𝑛, 𝑞2 =  0.5 𝑐𝑚3/𝑚𝑖𝑛). The findings demonstrated 

that even at a higher experimental flow rate of 0.5 cc/min, the Reynolds number is still less than 

10, despite the fact that our stromatolite core sample had connected vugs with diameters in the 

centimeter range. 

 

Figure 7-12. The Reynolds number alongside the core length. 
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To gain a better insight of fluid pattern inside vuggy porous media, two 2D cross-sections, one 

horizontal and one vertical (Figure 7-4), were generated using microCT data and used as geometry 

in the simulator. Figure 7-5 depicts the cross-sections. First, single-phase water flooding was 

modeled using Navier-Stokes and continuity equations (Equations (7-3) and (7-4)). The numerical 

simulation was carried out using COMSOL Multi- physics, a finite-element-based software. 

Figure 7-13(a and b) demonstrate the velocity profiles of horizontal and vertical cross-sections, 

respectively. The fluid velocity increases dramatically when the fluid passes through throats, as 

illustrated. In fact, we injected water through the inlet at a constant velocity of 1.4 × 10−4 𝑚/𝑠 in 

both cases. However, because the diameter of throats in Figure 7-13(b) is smaller, the maximum 

velocity can reach up to 3.67 × 10−3 𝑚/𝑠, whereas the maximum velocity in Figure 7-13(a) is 1.33 

× 10−3 𝑚/𝑠. Moreover, we noticed negligible fluid velocity inside dead-end zones in both cross-

sections. To better illustrate the velocity in each cross-section, we picked a dead-end vug and a 

dead-end pore and zoomed in. As shown in Figure 7-13, the fluid velocity inside dead-end zones 

is nearly zero (red color displays the velocity of 2 × 10−7 𝑚/𝑠), and fluid remains stagnant within 

these regions despite the large vulome that they may have. 

a 
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b 

 
Figure 7-13. a): velocity profile inside horizontal cross-section, we zoomed inside a dead-end vug and a dead-end pore 

as well to evaluate velocity in dead-end regions; b): velocity profile in vertical cross-section that obtained from 

microCT data. The color bars beside each figure represent the velocity value, dark-red represents high and dark-

blue low water velocity. 

Figure7-14 shows streamlines, which are used to visualize vector quantities by depicting curves 

tangent to a vector field. The density of streamlines varies with the magnitude velocity vector field 

in Figure7-14; arrows on streamlines represent flow direction, and the color displays water 

velocity. The flow patterns confirm the experimental findings, that some dead-end vugs with 

significant volume remain untouched during flooding. Numerical simulation revealed that dead-

end zones correspond to unswept regions. Indeed, streamlines provided us with a solid intuition 

about fluid propagation in single-phase flow in vuggy porous media; streamlines rendered the 

effect of dead-end zones on modifying flow path; this phenomenon, which was previously 

dismissed in most Brazilian pre-salt reservoir modeling, can now be implemented in future 

simulations to provide more reliable models. 
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a 

 

b 

 
Figure7-14. a): streamlines inside the horizontal cross-section; b): streamlines inside the vertical cross-section. 

The color of streamlines and the arrows designate velocity and flow direction, respectively. 

In order to track the pressure exchange within the dead-end zones, we next obtained the relative 

pressure variation within the horizontal cross-section. Figure 7-15 illustrates how the related 

pressure gradually decreases from 490 𝑃𝑎 at the input to 0 𝑃𝑎 at the outlet. The pressure change 

inside the dead-end zones, on the other hand, is small and nearly zero, as predicted by the velocity 

profile. 
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Figure 7-15. Variation in relative pressure within the horizontal cross-section. The relative pressure also appears 

in magnified dead-end zones. The color bar represents the pressure value. 

7.3.2.2 MULTIPHASE FLOW 

To evaluate the saturation profile during water flooding and investigate the effect of dead-end 

zones, the simulator was equipped with the pertinent relative permeability data, numerical 

simulation parameters, and assumptions as presented in Table 7-2. The implementation of these 

parameters and assumptions was aimed at accurately capturing the behavior of the fluid flow in the 

porous media system. Specifically, the relative permeability data was utilized to model the fluid 

phase behavior, while the numerical simulation parameters were employed to govern the 

computational processes of the simulator. By considering these factors, the study aimed to provide 

a robust analysis of the fluid flow dynamics and the effect of dead-end zones in the porous media 

system. Figure 7-16 and Figure 7-17 illustrate, respectively, the saturation profiles for the 

horizontal and vertical cross-sections for each time step of 0.2 PVI, from 0.2 to 1.2 PVI. In this 

simulation, water is injected at a constant rate of 0.1 𝑐𝑚3/𝑚𝑖𝑛, and early breakthrough is detected 

in both cross-sections; furthermore, the saturation profile does not vary appreciably after 

breakthrough. The findings show that oil in dead-end areas cannot be displaced by water. Even 

inside large vugs close to inlet, there was still a significant amount of bypassed oil present after 

core flooding. When Figure 7-16 and Figure 7-17 are examined, it is clear that the horizontal cross-
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section has more dead-end zones than the vertical does, which causes to have a lower areal swept 

efficiency and faster breakthrough, in 2D simulation. 

 
(a) 0.2 PVI 

 
(b) 0.4 PVI 

 
(c) 0.6 PVI 

 
(d): 0.8 PVI 

 
(e) 1.0 PVI 

 
(f) 1.2 PVI 

 
(g) 𝑆𝑤 bar 

Figure 7-16. Saturation profile during water flooding (horizontal cross-section). The color bar depicts the water 

saturation profile, where blue represents higher water saturation and red represents greater oil saturation. 

 

 
(a) 0.2 PVI 

 
(b) 0.4 PVI 

 
(c) 0.6 PVI 

 
(d): 0.8 PVI 

 
(e) 1.0 PVI 

 
(f) 1.2 PVI 

 
(g) 𝑆𝑤 bar 

Figure 7-17. Saturation profile of vertical cross-section in each 0.2 PVI, during water flooding with constant flow 

rate of 0.1 𝑐𝑚3/𝑚𝑖𝑛. 

Figure 7-18 (a) depicts the average water saturation in each cross-section, whereas Figure 7-18 (b) 

displays the water saturation in produced fluid (in the outlet). In both cases, we record merely the 

oil production at first, and then the water monitored in the outlet after the breakthrough. Prior to 

the breakthrough, we observed linear behavior in the average water saturation in each cross-section. 

However, following the breakthrough, the tangent of the water saturation line gradually declined, 

even though in both cases a notable amount of oil was still present in dead-end regions. 
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a 

 

b 

 
Figure 7-18. a): average water saturation during water flooding in each cross-section; b): water saturation in 

produced liquid (water saturation in outlet). 

The findings show that, regardless of the size of the dead-end zones, the oil was still bypassed in 

these regions, resulting in low areal swept efficiency. Simulation outcomes on both microCT 

images clearly show poor recovery factor following flooding with water, which is congruent with 

laboratory and field results. Indeed, one of the observations gained from this simulation is that, in 

order to boost the recovery factor, we need to push oil out of dead-end zones by different EOR 

techniques such as 𝐶𝑂2 injection, which causes oil swelling (Rezk and Foroozesh, 2018). Similar 

outcomes have also been reported for the light oil-containing Lula field in Brazilian pre-salt 

reservoirs, where water flooding caused a poor oil recovery factor but water alternative gas (𝐶𝑂2 

as gas phase) was associated with a remarkably higher recovery factor (McGuire et al., 2005). 
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This paper presents a study investigating the influence of pore geometry on fluid flow pattern, 

saturation profile, pressure profile, recovery factor, and fluid velocity during fluid injection in 

porous media. Our findings demonstrate that, in addition to petrophysical properties and fluid-rock 

characterization, pore geometry significantly impacts fluid flow pattern in porous media. We 

compared our results to previous field data for 𝐶𝑂2 injection and water flooding in Brazilian pre-

salt reservoirs, revealing a match with the previously reported low recovery factor (in some cases 

around 10%). Although our study provides comprehensive insight into the impact of porous 

structure on fluid flow, future research should consider 3D simulation of 𝐶𝑂2 injection, while also 

taking into account the chemical reactions between 𝐶𝑂2, brine, oil, and rock. It is worth noting that 

while this study was conducted using plug samples collected from stromatolites in Brazil, the same 

methodology can be applied to simulate fluid flow in other types of porous media. 
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7.4 CONCLUSIONS 

This study’s primary goal was to assess the petrophysical characteristics and flow pattern within a 

vuggy core plug obtained from a Brazilian stromatolite outcrop, located in Lagoa Salgada in Rio 

de Janeiro, which is known to be flow analogous to Brazilian pre-salt reservoirs. The study has 

yielded the following results: 

• The experimental findings indicate that the core samples collected from Lagoa Salgada 

field possess desirable petrophysical properties, including an average permeability of 

1179.02 millidarcy and a porosity of 52.5%. 

• The single-phase core flooding with two distinct flow rates (0.1 and 0.5 𝑐𝑚3/𝑚𝑖𝑛) in 

combination with medical-CT scanning indicated that there are connected pores in the 

core sample that no streamline passes through and the fluid remains stagnant inside them. 

The same phenomenon was seen during the process of oil drainage and water imbibition. 

• The results indicate a low oil recovery factor due to the specific fluid flow pattern 

observed after the injection of formation water and seawater in a core that was saturated 

with light oil for a reasonably long time. Furthermore, the analysis of medical-CT 

images of both oil drainage and water imbibition processes revealed early breakthrough. 

• To precisely evaluate the flow streamlines inside the vuggy porous material, microCT 

scanning with high resolution (40 µ𝑚/𝑣𝑜𝑥𝑒𝑙) was conducted, and two cross-sections 

were formed and used as geometry for single and two-phase flow modeling. The velocity 

profile, flow streamlines, and pressure profile were derived and assessed using Navier-

Stokes and continuity equations to simulate single-phase flow (water flooding). Although 

there are huge connected dead-end vugs with diameters in the centimeter range, the 

pressure fluctuation and velocity inside these regions are negligible, and fluid streamlines 

indicate that fluid within these zones remains stagnant. 

• The lattice Boltzmann equation (LBE) was implemented to model multi-phase flow in each 

cross-section and obtain a saturation profile during water flooding. The findings show 
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that the oil remained stuck in dead-end zones even close to the inlet. This remarkable 

volume of bypassed oil resulted in high oil saturation and low oil recovery factor. The 

magnitude and volume of these dead-end regions have a significant impact on the time 

that breakthrough happens. 

In summary, this study aimed to elucidate the factors underlying the low oil recovery factor 

observed in Brazilian pre-salt reservoirs, despite possessing favorable oil-producing properties and 

being characterized by the presence of large, interconnected vugs and pores. Furthermore, this 

paper investigates the impact of pore geometry on fluid patterns using a combination of 

experimental and computational modeling techniques. The field data, in previous studies, observed 

that the injection of 𝐶𝑂2 results in a significant increase in the recovery factor, and this study aimed 

to provide insight into the underlying mechanisms, and in particular impact of porous geometry, 

responsible for this observation. 

7.5 ACKNOWLEDGMENTS 

We gratefully acknowledge the support of EPIC-Energy Production Innovation Center, hosted by 

the University of Campinas (UNICAMP) and sponsored by FAPESP - Sao Paulo Research 

Foundation (2017/15736-3 process). We acknowledge the support and funding from Equinor 

Brazil and support of ANP (Brazil’s National Oil, Natural Gas and Biofuels Agency) through the 

R&D levy regulation. Acknowledgments are extended to the Center for Energy and Petroleum 

Studies (CEPETRO) and School of Mechanical Engineering (FEM). 

 

  



191 
 

 
 

7.6 REFERENCES 

Alvarez, L.L., Guimarães, L.J.d.N., Gomes, I.F., Beserra, L., Pereira, L.C., de Miranda, T.S., 

Maciel, B., Barbosa, J.A., 2021. Impact of fracture topology on the fluid flow behavior of naturally 

fractured reservoirs. Energies 14, 5488. 

Alves, J.A., Polette, M., 2021. Political, economic, and institutional aspects of oil and gas 

exploration and production in Brazil. América Latina en la historia económica 28. 

Bear, J., Dynamics of fluids in porous media (Courier Corporation, 1988). Google-Books-ID: 

lurrmlFGhTEC. 

Blick, E.F., 1966. Capillary-orifice model for high-speed flow through porous media. Industrial & 

Engineering Chemistry Process Design and Development 5, 90-94. 

Branco, C.C., 2012. Challenges in implementing an EOR project in the pre-salt province in deep 

offshore Brasil, SPE EOR Conference at Oil and Gas West Asia. OnePetro. 

Bruhn, C.H., Pinto, A.C., Johann, P.R., Branco, C., Salomão, M.C., Freire, E.B., 2017. Campos 

and Santos basins: 40 Years of reservoir characterization and management of shallow-to ultra-deep 

water, post-and pre-salt reservoirs-Historical overview and future challenges, OTC Brasil. 

OnePetro. 

Buchori, L., Supardan, M., Bindar, Y., Sasongko, D., Makertihartha, I., 2017. The Effect of 

Reynolds Number at Fluid Flow in Porous Media. Reaktor 6, 48-55. 

Callefo, F., Arduin, D., Ricardi-Branco, F., Galante, D., Rodrigues, F., Branco, F., 2018. The giant 

stromatolite field at Santa Rosa de Viterbo, Brazil (Paraná Basin)–A new paleoenvironmental 

overview and the consequences of the Irati Sea closure in the Permian. Journal of South American 

Earth Sciences 84, 299-314. 

Correia, M., Hohendorff, J., Gaspar, A., Schiozer, D., 2015. UNISIM-II-D: Benchmark case 

proposal based on a carbonate reservoir, SPE Latin American and Caribbean Petroleum 

Engineering Conference. OnePetro. 

da Costa Fraga, C.T., Capeleiro Pinto, A.C., Branco, C.C.M., da Silva Paulo, C.A., 2015. Brazilian 

pre-salt: An impressive journey from plans and challenges to concrete results, Offshore 

Technology Conference. OnePetro. 

da Rocha, H.O., da Costa, J.L.S., Carrasquilla, A.A.G., Carrasco, A.M.V., 2019. Petrophysical 

characterization using well log resistivity and rock grain specific surface area in a fractured 

carbonate pre-salt reservoir in the Santos Basin, Brazil. Journal of Petroleum Science and 

Engineering 183, 106372. 

de Araujo Cavalcante Filho, J.S., Santos Silva, V.L., de Sant'Anna Pizarro, J.O., 2020. Assessment 

of miscible WAG injection performance in a giant carbonate reservoir using analytical and 

numerical approaches, SPE Improved Oil Recovery Conference. OnePetro. 

De Lima, A., Fourno, A., Noetinger, B., Schiozer, D.J., 2019. Characterization and modeling of 

the fault network of a Brazilian pre-salt reservoir and upscaling results, SPE Annual Technical 

Conference and Exhibition. OnePetro. 

Doering, C.R., Gibbon, J.D., 1995. Applied analysis of the Navier-Stokes equations. Cambridge 

university press. 

Drexler, S., Bastos Alves, R., Silos, V., Ferreira De Siqueira, M., Toelke, J., 2022. New Method to 

Simulate Digital Petrophysical Properties in Heterogeneous Carbonates Using Multiscale Micro 

Computed Tomography Imaging and Customized Laboratory Experiments, International 

Petroleum Technology Conference. OnePetro. 



192 
 

 
 

Feng, Q.-x., Di, L.-c., Tang, G.-q., Chen, Z.-y., Wang, X.-l., Zou, J.-x., 2004. A visual micro-model 

study: The mechanism of water alternative gas displacement in porous media, SPE/DOE 

Symposium on Improved Oil Recovery. OnePetro. 

Ferreira, D.J.A., Dias, R.M., Lupinacci, W.M., 2021. Seismic pattern classification integrated with 

permeability-porosity evaluation for reservoir characterization of presalt carbonates in the Buzios 

Field, Brazil. Journal of Petroleum Science and Engineering 201, 108441. 

Firoozabadi, A., Aziz, K., 1986. Relative permeability from centrifuge data, SPE California 

Regional Meeting. OnePetro. 

Frolov, S.V., Akhmanov, G.G., Kozlova, E.V., Krylov, O.V., Sitar, K.A., Galushkin, Y.I., 2011. 

Riphean basins of the central and western Siberian Platform. Marine and Petroleum Geology 28, 

906-920. 

Gal-Chen, T., Somerville, R.C., 1975. On the use of a coordinate transformation for the solution 

of the Navier-Stokes equations. Journal of Computational Physics 17, 209-228. 

Godoi, J.M.A., dos Santos Matai, P.H.L., 2021. Enhanced oil recovery with carbon dioxide 

geosequestration: first steps at Pre-salt in Brazil. Journal of Petroleum Exploration and Production 

11, 1429-1441. 

Harlow, F.H., Amsden, A.A., 1971. A numerical fluid dynamics calculation method for all flow 

speeds. Journal of Computational Physics 8, 197-213. 

Iraji, S., Soltanmohammadi, R, De Almeida, T Rodrigues, Munoz, E.R., Vidal, A.C., 2022. 

Experimental investigation of single-phase flow pattern in highly heterogeneous carbonates rocks, 

Rio Oil & Gas 2022. IBP, Rio de Janeiro | Brasil. 

Ligero, E.L., Schiozer, D.J., 2014. Miscible WAG-CO2 light oil recovery from low temperature 

and high pressure heterogeneous reservoir, SPE Latin America and Caribbean Petroleum 

Engineering Conference. OnePetro. 

Liu, S., Afacan, A., Masliyah, J., 1994. Steady incompressible laminar flow in porous media. 

Chemical engineering science 49, 3565-3586. 

McGuire, P., Redman, R., Jhaveri, B., Yancey, K., Ning, S., 2005. Viscosity reduction WAG: an 

effective EOR process for North Slope viscous oils, SPE Western Regional Meeting. OnePetro. 

Momani, S., Odibat, Z., 2006. Analytical solution of a time-fractional Navier–Stokes equation by 

Adomian decomposition method. Applied Mathematics and Computation 177, 488-494. 

Muniz, M., Bosence, D., 2015. Pre-salt microbialites from the Campos Basin (offshore Brazil): 

image log facies, facies model and cyclicity in lacustrine carbonates. Geological Society, London, 

Special Publications 418, 221-242. 

Nguyen, D., Balakotaiah, V., 1994. Flow maldistributions and hot spots in down-flow packed bed 

reactors. Chemical engineering science 49, 5489-5505. 

Park, H., Jiang, L., Kiyama, T., Zhang, Y., Ueda, R., Nakano, M., Xue, Z., 2017. Influence of 

sedimentation heterogeneity on CO2 flooding. Energy Procedia 114, 2933-2941. 

Rezk, M.G., Foroozesh, J., 2018. Determination of mass transfer parameters and swelling factor of 

CO2-oil systems at high pressures. International Journal of Heat and Mass Transfer 126, 380-390. 

Sohrabi, M., Riazi, M., Jamiolahmady, M., Ireland, S., Brown, C., 2009. Mechanisms of oil 

recovery by carbonated water injection, SCA annual meeting, pp. 1-12. 

Soltanmohammadi, R., Iraji, S., De Almeida, T.R., Munoz, E.R., Fioravanti, A.R., Vidal, A.C., 

2021. Insights into Multi-Phase Flow Pattern Characteristics and Petrophysical Properties in 

Heterogeneous Porous Media, Second EAGE Conference on Pre-Salt Reservoir. European 

Association of Geoscientists & Engineers, pp. 1-5. 



193 
 

 
 

Soltanmohammadi, R., Iraji, S., De Almeida, T.R., Munoz, E.R., Vidal, A.C., 2022. Upscaling 

Challenges of Heterogeneous Carbonate Rocks: A Case Study of Brazilian Pre-Salt Analogous, 

Third EAGE Conference on Pre Salt Reservoirs. 

van Lopik, J.H., Snoeijers, R., van Dooren, T.C., Raoof, A., Schotting, R.J., 2017. The effect of 

grain size distribution on nonlinear flow behavior in sandy porous media. Transport in Porous 

Media 120, 37-66. 

Waterworth, A., Bradshaw, M.J., 2018. Unconventional trade-offs? National oil companies, 

foreign investment and oil and gas development in Argentina and Brazil. Energy policy 122, 7-16. 

Wright, P., Tosca, N., 2016. A geochemical model for the formation of the pre-salt reservoirs, 

Santos Basin, Brazil: implications for understanding reservoir distribution. AAPG Search and 

Discovery, article 51304. 

 



194 
 

 
 

8 APPENDIX II: LABORATORY AND NUMERICAL 

EXAMINATION OF OIL RECOVERY IN BRAZILIAN PRE-SALT 

ANALOGUES BASED ON CT IMAGES 
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9 APPENDIX III: EXPERIMENTAL INVESTIGATION OF SINGLE-

PHASE FLOW PATTERN IN HIGHLY HETEROGENEOUS 

CARBONATES ROCKS 
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10 APPENDIX IV: INSIGHTS INTO MULTI-PHASE FLOW 

PATTERN CHARACTERISTICS AND PETROPHYSICAL 

PROPERTIES IN HETEROGENEOUS POROUS MEDIA 
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11 APPENDIX V: UPSCALING CHALLENGES OF 

HETEROGENEOUS CARBONATE ROCKS: A CASE STUDY OF 

BRAZILIAN PRE-SALT ANALOGOUS 
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12 APPENDIX VI: EXPERIMENTAL INVESTIGATION OF 

WATERFLOODING PERFORMANCE BY INCREASING COPPER 

IONS IN BRAZILIAN PRE-SALT ROCK 
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