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Highlights 15 

 16 

• Using a spatial-temporal approach, identified deforestation patterns in the Amazon.  17 

• Regions 1 and 2 stand out as critical areas despite covering only 4% of the biome.  18 

• A marked seasonal pattern was observed, influencing the mode and dynamics of deforestation.  19 

 20 

Abstract 21 

 22 

The Amazon biome has experienced significant changes in its landscape, similar to other 23 

tropical forests, primarily due to changes in land use in the area. Despite previously established 24 

strategies to contain the advance of deforestation, we have observed an increase in deforestation 25 

rates recently. Our objective was to analyze deforestation in the biome using clustering and 26 

spatial analysis methods to understand deforestation patterns and spatio-temporal dynamics. 27 

Regions 1 and 2 stood out as priority areas for monitoring and combating deforestation. Human 28 

settlements, agricultural land, and undesignated public forests characterize these areas. 29 

Deforestation in these areas presents a significant level of seasonality in its mode and dynamics. 30 

The results emphasize that annual deforestation changes require strategies addressing territorial 31 

differences. Therefore, prevention and intervention measures must be adapted to seasonal 32 

variations and the specific characteristics of each region to combat deforestation in the Amazon 33 

biome effectively. 34 
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Introduction 42 

 43 

The increasing scarcity of land suitable for agricultural expansion emerges as a global 44 

challenge1–3. This phenomenon intensifies in tropical regions, where the expansion of the 45 

agricultural frontier has found its primary focus4–6. The outcome of this expansion manifested 46 

as a notable increase of approximately 36% in cultivated areas in tropical regions from 1961 to 47 

20217. Although this expansion has contributed to some countries consolidating themselves as 48 

the leading exporters of commodities in the world, this growth model has opposed the 49 

conservation and maintenance of natural resources, given the impact that changes in land use 50 

and land cover have on natural forests, especially the Amazon rainforest8–10. 51 

Tropical forests have experienced significant alterations in recent decades8,10–12. The 52 

tropical forests of South America, especially the Amazon, are not impervious to this situation; 53 

they are gradually changing due to diverse human factors that have substantially altered the 54 

environment13. The impact of these recent transformations goes beyond changing the landscape. 55 

Biogeochemical cycles, biodiversity, and hydrological and climate regulatory systems face 56 

significant challenges due to these changes, even influencing global levels 14–19, as well as land 57 

conflicts and threats to indigenous populations10,20–23. These transformations contribute to the 58 

impoverishment of ecosystems, thus affecting socio-environmental relations at different scales. 59 

The current deforestation scenario in the Brazilian Amazon illustrates this problem. 60 

Around 20% of forest cover has already undergone modification, according to the Project for 61 

Monitoring Deforestation in the Legal Amazon by Satellite (PRODES)24, whose data is 62 

available on the TerraBrasilis platform25. In the wake of a decrease between 2012 and 2014, 63 

subsequent years revealed a significant surge in the deforestation rate, reaching more than 64 

13,000 km²/year in 202124. 65 

The complex spatio-temporal heterogeneity of the deforestation process in the Amazon 66 

requires preventive approaches based on understanding its dynamics and the factors that drive 67 

changes in land cover and use26–29. This understanding is especially crucial in defining solid 68 

indicators to support policies that identify areas susceptible to deforestation. 69 

According to Souza and De Marco (2014), effectively addressing deforestation includes 70 

using satellite data for deforestation measurement, identifying key factors and responsible 71 

parties, and creating models to guide prevention efforts. In summary, the effectiveness of these 72 

models hinges on their foundation in a comprehensive understanding of the intricate interplay 73 

of socioeconomic, political, and environmental factors that drive deforestation 14. 74 



In this context, spatial-temporal analysis dynamics presents a powerful tool for the agile 75 

and precise identification of priority areas that demand interventions, as highlighted by Harris 76 

et al. (2017). The authors also highlight that, in the context of forest conservation, this approach 77 

makes it possible to reveal trends in forest loss without relying exclusively on prior information 78 

about the underlying factors that drive or shape these trends. 79 

The central objective of this study is to craft a methodological approach for discerning 80 

and evaluating deforestation patterns and trends within the Amazon. The method combines 81 

deforestation alerts from the Real-Time Deforestation Detection System (DETER) with 82 

information on land categories (environmental protection area (APA), settlements (ASS), rural 83 

properties (CAR), undesignated public forests (FPND), indigenous lands and conservation units 84 

(UC)). The integration of this data will enable the identification of areas at risk of deforestation, 85 

strengthening inspection and control activities aimed at combating deforestation in the Amazon. 86 

 87 

Results 88 

 89 

From the clustering analysis considering the entire period (2017 to 2020), four internally 90 

homogeneous but externally heterogeneous regions were identified (wss=141.374, k=n, and 91 

R²=0.57). Fig. 1 presents the spatially explicit distribution of clusters/regions obtained 92 

considering a) deforested area (km²), b) alert counts, and c) the number of quarters in which 93 

deforestation alerts were recorded. It is observed that deforestation in the biome exhibits a 94 

strong spatial concentration pattern. According to Aguiar et al. (2007) and Alves (2001), this 95 

occurs because deforestation tends to happen closer to previously opened areas. 96 



 97 

Fig. 1. Spatial distribution of regions according to the cluster analysis (k-means) considering 98 
deforestation alerts between the period of 2017 to 2020, aggregated by quarters. 99 

 100 

In the context of the spatial distribution of regions, it can be observed that Region 4 101 

covers the majority of the biome, approximately 82.47%, followed by Region 3 (14.07%), 102 

Region 1 (3.36%), and Region 2 (0.10%). Despite covering a smaller percentage of areas, 103 

Regions 1 and 2 have higher values in terms of area, the number of alerts, and the number of 104 

quarters with alert occurrences (Fig. 2). In Regions 1 and 2, the average deforested area is 105 

around 3 and 5 km², respectively. However, it was observed that in some areas, the deforested 106 

area reached 44 km² in Region 1 and 67 km² in Region 2.  107 

In addition to having more extensive areas of deforestation alerts, Regions 1 and 2 also 108 

presented a higher frequency of deforestation alerts during the analyzed period, with an average 109 

of 4 and 3 alerts per cell. The cells are the units of analysis and have a 25 x 25 km resolution. 110 

Furthermore, there was a higher prevalence of deforestation occurrence regardless of the region. 111 

However, the highest prevalence was observed in Region 1, where, on average, 84% of the 112 

analyzed period showed recurring alerts. Region 1 encompasses the states of Pará (56,676.20 113 

km²), Rondônia (37,000.47 km²), Mato Grosso (28,884.85 km²), Amazonas (28,250.34 km²), 114 

and Acre (877.60 km²).  115 

 116 







 154 

Fig. 4. Spatial distribution of regions according to the cluster analysis (k-means) considering 155 
deforestation alerts between the period from 2017 to 2020, based on the analyzed quarter: a) JFM - 156 
January, February, and March; b) AMJ - April, May, and June; c) JAS - July, August, and September; 157 
and d) OND - October, November, and December. 158 

 159 

Partially, this seasonal behavior is related to the dry season in the Amazon, which shows 160 

spatiotemporal variability 35. When comparing the most critical regions (1 and 2) with the work 161 

conducted by Carvalho et al. 35, it was observed that in the quarters with the highest 162 

deforestation alert rates (AMJ and JAS), the regions coincide either entirely or partially with 163 

the beginning and end of the dry season. 164 

After the clustering analysis and the identification of regions that are similar in terms of 165 

deforestation patterns and dynamics, a comparison was made between the most critical regions 166 

(1 and 2) and the deforestation alert data observed in 2021. Fig. 5 presents the spatial overlap 167 

of deforestation alerts in 2021, categorized by area in square kilometers versus Regions 1 and 168 

2. The data were analyzed according to the period and seasonality. Based on this verification, 169 



it is observed that the highest deforestation alerts observed in 2021 occurred in Regions 1 and 170 

2 or the surrounding areas. 171 

 172 

Fig. 5. Spatial distribution of the overlap between deforestation alert data in 2021 and Regions 1 and 2 173 
identified by the clustering analysis: a) Period - considering the entire period between 2017 and 2020; 174 
b) JFM - January, February, and March; c) AMJ - April, May, and June; d) JAS - July, August, and 175 
September; and e) OND - October, November, and December. 176 

 177 



According to Table 1, the regions identified as critical (1 and 2) encompassed, on 178 

average, 55% of alerts with an area greater than 10 km² and 36% between 5 and 10 km². The 179 

highest similarity values between Regions 1 and 2 and the 2021 alerts occurred in the 3rd 180 

quarter - JAS, approximately 84.62%, considering alerts larger than 10 km², and 75.63% for 181 

alerts with an area less than 10 km² and greater than or equal to 5 km². The 1st quarter presented 182 

the lowest similarity values; however, this behavior should correlate with the fact that, during 183 

this period, the number and extent of alerts were smaller and more random. 184 

 185 

Table 1. Number of deforestation alerts in 2021 and the percentage of occurrence (similarity) in Regions 186 
1 and 2. 187 

 

Number of alerts 

2021 

Region 

1 2 1+2 

Intervals 

5  x  10 

km² 

x >10  

km² 
5  x  10 

km² 

x >10  

km² 
5  x  10 

km² 

x >10  

km² 
5  x  10 

km² 

x >10 

km² 

 Nº % 

Period 263 208 22.81 61.54 0.38 1.92 23.19 63.46 

JFM 14 6 0.00 16.67 7.14 0.00 7.14 16.67 

AMJ 93 59 2.15 6.78 23.66 37.29 25.81 44.07 

JAS 119 52 12.61 50.00 63.03 34.62 75.63 84.62 

OND 28 6 21.43 33.33 28.57 33.33 50.00 66.67 

 188 

The cross-analysis observed that deforestation patterns tend to occur in regions where 189 

the process occurs historically, reinforcing the theory of spatial concentration of solids 36,37. 190 

However, it stands out that these patterns may change with changes in agricultural frontiers and 191 

the advancement of specific activities (such as soybean production and mining). Another factor 192 

that can influence the pattern is the dynamics/behavior of the process itself. Like the location 193 

of alert occurrences, the quantity also showed new patterns. 194 

Fig. 6 shows the distribution of the local spatial association index of deforestation alert 195 

areas in the analyzed period (2017 to 2021). The spatial autocorrelation observed over the years 196 

(I = 0.40, on average) indicates that deforestation occurs regionally and is related to neighbors' 197 

behavior. From 2017 to 2021, there is a prevalence of areas where the analysis unit (cell) 198 

exhibits high values and its neighboring cells. These areas mainly encompass Regions 1 to 3 199 

and are near consolidated deforestation areas. However, these areas are increasing in the state 200 

of Roraima. When analyzing the surrounding areas, it is possible to see that they have low 201 

deforestation values but are adjacent to areas with high values, which may become deforestation 202 

expansion areas in the medium and long term due to neighborhood pressure. Additionally, there 203 



is a change in the spatial pattern of primary forest with an increase in scattered deforestation 204 

that does not exhibit spatial autocorrelation. 205 

 206 

Fig. 6. Distribution of the local spatial association index for deforestation alert areas in the 207 

analyzed years: a) 2017, b) 2018, c) 2019, d) 2020, and e) 2021. 208 

 209 

 210 

 211 

 212 



Discussion 213 

 214 

The spatially explicit and temporal approach proposed in this study contributes to global 215 

efforts to combat deforestation and address climate change. Differing from other studies 38–42 216 

that also sought to understand deforestation in the Amazon, this study uniquely integrated 217 

deforestation data and land information to identify areas potentially at greater risk of 218 

deforestation events based on both space and time. 219 

The results emphasize the need to formulate deforestation control strategies that 220 

consider heterogeneity between territories and at different times of the year. Interannual 221 

seasonal variability emerges as a critical consideration since the patterns and trends reveal that 222 

regions with higher occurrence and recurrence of deforestation events change according to the 223 

analyzed period. In this context, emerging systems that monitor and assess deforestation risks 224 

can benefit significantly from this proposed approach. By enabling the identification of priority 225 

areas for deforestation control and insights into its dynamics, this approach can strengthen such 226 

monitoring and intervention structures. 227 

Furthermore, the dynamic and complex interaction between socioeconomic factors 43, 228 

ecological dynamics 44, and climatic influences 45 requires a holistic approach to combat 229 

deforestation effectively. The variations identified in critical deforestation hotspots throughout 230 

the year emphasize the importance of adaptive strategies that can accommodate spatial and 231 

temporal changes in deforestation patterns. 232 

In light of these findings, policymakers, conservation organizations, and local 233 

communities can adjust their efforts more effectively, recognizing the multifaceted nature of 234 

deforestation dynamics. Integrating this approach into existing conservation initiatives can 235 

enhance their accuracy and impact, ultimately contributing to protecting the Amazon biome 236 

and its vital role in global climate regulation and biodiversity preservation. However, Barlow 237 

et al. (2016) emphasize that policy interventions should go beyond mere forest cover 238 

maintenance, as maintaining forest cover alone does not necessarily reduce anthropogenic 239 

forest disturbances. 240 

As we move forward, integrating real-time monitoring systems, predictive modeling, 241 

and collaborative stakeholder engagement can further expand the practical application of these 242 

findings. As our understanding of deforestation dynamics evolves, incorporating these insights 243 

into policy frameworks and sustainable land use practices can collectively shape a more 244 

resilient and sustainable future for the Amazon and the planet. 245 

 246 



Materials and Methods 247 

  248 

Study area 249 

 250 

The Amazon, a biome of continental proportions with a tropical climate, covers an area 251 

of approximately 4 million km² 47,48, which corresponds to 49.5% of Brazil's total territory. This 252 

region encompasses nine states in whole or in part, with the states of Amazonas and Pará 253 

standing out for occupying the most extensive areas, at 37% and 29% of the biome, respectively. 254 

The territorial structure of the Amazon is marked by the presence of dense forests, 255 

predominantly the ombrophilous dense (48%) and open (24%) forests, as well as an extensive 256 

network of rivers and floodplain areas 48. Regarding land ownership, the region showcases a 257 

broad spectrum of properties, ranging from small family holdings to large-scale commercial 258 

farms where soybean, corn, and cattle farming. 259 

Agricultural activities in the Amazon face significant challenges, notably associated 260 

with deforestation and transforming forested areas into lands for agriculture and livestock. 261 

Historically, since the 1960s and 70s, there has been a considerable loss of forest cover in the 262 

Amazon, initially concentrated in the area known as the "Deforestation Arc" and later spreading 263 

along new roads and colonization projects, especially during the military period 34,49–53. More 264 

recently, this deforestation trend has shifted to the central region of the biome. 265 

 266 

Data source: Deforestation and Land Categories 267 

 268 

In addition to the alert data from the DETER system, from the National Institute for 269 

Space Research (INPE) through the TerraBrasilis platform 25, land category information was 270 

compiled, enabling an understanding of deforestation patterns and dynamics. Table 2 presents 271 

the data utilized in the spatiotemporal analysis of deforestation patterns in the Amazon biome. 272 

 273 

 274 

 275 

 276 

 277 

 278 

 279 

 280 

 281 

 282 



Table 2. Selected factors for the spatiotemporal analysis. 283 

 Factors Description Source 
D

ef
o

re
st

a
ti

o
n

 

Deforestation alerts 

(DETER) 

Notifications of evidence of forest cover change in 

the Amazon to support surveillance and control of 

deforestation and forest degradation. 

INPE 24 

C
a

te
g

o
ri

a
s 

F
u

n
d

iá
ri

a
s 

Indigenous lands 

(TI) 

Lands traditionally inhabited by indigenous 

communities, including those used for permanent 

residence, productive activities, the preservation of 

essential environmental resources for their well-

being, and their physical and cultural reproduction 

per their customs and traditions. 

BRASIL54 

 

Conservation units 

(Federal and State) 

(UC) 

Protected natural areas established by law have 

unique characteristics related to the local fauna and 

flora. 

Settlements 

(Federal and State) 

(ASS) 

Set of agricultural units created by Incra on a rural 

property. For each family of farmers or rural workers 

without the economic conditions to acquire a rural 

property, Incra allocates an agricultural unit. 

Environmental 

Protection Area 

(APA) 

Natural area intended to protect and conserve biotic 

attributes (fauna and flora). Allows a certain degree 

of human occupation. It aims to protect biodiversity 

by reconciling the occupation process and the 

sustainable use of natural resources. 

Rural 

Environmental 

Registry  

(CAR) 

The Rural Environmental Registry is a mandatory 

national electronic public record for all rural 

properties. It aims to integrate environmental 

information from rural properties, creating a 

database for environmental and economic planning, 

monitoring, and combating deforestation. 

SICAR 55 

Public Forests Not 

Designated  

(FPND) 

Public forests, mainly owned by states or the federal 

government, have yet to be designated for use by 

society. 

BRAZIL 56 

 284 

Integrating deforestation alert data with land category information enables a 285 

comprehensive method for comprehending deforestation processes. While DETER alerts 286 

provide information about the location and magnitude of changes in forest cover, land 287 

categories offer insights into the involved agents and underlying reasons for deforestation. 288 

 289 

Integration of data 290 

 291 

Analysis unit 292 

 293 

The data was organized into a cell-based information plan (cellular space) at a resolution 294 

of 25 x 25 km using the FillCell plugin 57,58, following the steps described in Fig. 7. The 295 



definition of this resolution was determined by on previous studies 36,47,59, as well as the web 296 

tool "Situation Room" 60, which aims to support territorial intelligence actions through the 297 

synoptic visualization of deforestation critical area indicators, integrating alerts from the Near 298 

Real-Time Deforestation Detection system. The use of cellular space allowed for data 299 

standardization regardless of its original format (vector data, raster data, among others), 300 

aggregating them into the same spatiotemporal database using operators (e.g., Percentage of 301 

each class, Minimum distance) applied according to the geometric representation and semantics 302 

of the input data attributes. 303 

 304 

 305 
 306 

Fig. 7. Flowchart of the data preparation and database setup for the spatiotemporal analysis of 307 
deforestation patterns. A detailed description of the aggregation metrics used is available at 308 
http://www.terrame.org/packages/doc/terralib/doc/files/Layer.html 309 
 310 
 311 

Spatiotemporal analysis of deforestation patterns in the Amazon biome 312 

 313 

Cluster analysis: determination of regions 314 

 315 

Cluster analysis (Fig. 8a) aimed to identify and segment deforestation alert observations 316 

from 2017 to 2020. Segmentation divided them into internally homogeneous groups but 317 

heterogeneous among themselves. The groupings were determined using the k-means method 318 



(non-hierarchical clustering), as this method performs well and is easy to understand when 319 

working with a large set of observations 61–66. The number of clusters was determined using the 320 

Elbow method 67. This method suggests that the number of groupings with the most significant 321 

bend should be chosen as the optimal number of clusters, thus minimizing the total variation 322 

inside the groups (or the total sum of squares). Additionally, we compared the optimal number 323 

of clusters determined by the Elbow method with the values of the one-way analysis of variance 324 

(ANOVA) coefficient of determination (R²), calculated from the ratio of the sum of squares 325 

between groups to the sum of all the squares for each of the variables used in the analysis 62. 326 

 327 

Fig. 8. Flowchart of the cluster analysis stage (a). Flowchart of the spatial dependence analysis stage 328 
(spatial autocorrelation) of the dynamics of deforestation patterns (b). 329 

 330 

Analysis of the spatiotemporal relationship of deforestation patterns. 331 

 332 

Fig. 8b illustrates the development of this stage, which aims to analyze the spatial and 333 

temporal dynamics of deforestation patterns, test the hypothesis that spatial dependence 334 

influences deforestation dynamics, and determine whether deforestation distribution occurs 335 

randomly or follows some systematic spatial pattern.  336 

Based on the analysis, spatial autocorrelation statistics, including the Global Spatial 337 

Association Index (I) by Moran, which provides an overall measure of spatial association, and 338 



the Local Spatial Association Index (LISA) 68. The latter identifies similar clusters and outliers 339 

and allows for creating a map of local spatial dependence. 340 

To calculate the Moran Index (I), equation (1) 69 was used: 341 

 342 

I(k)= 
n∑ ∑ wij

(k)(zi-z̅)(zj-z̅)n
j=1

n
i=1 ∑ (zi-z̅)2n

i=1
 (1) 343 

 344 

Where n is the number of evaluated cells; zi represents the attribute value of area i; zj 345 

is the attribute value of area j; z is the mean value of the attribute across all cells; wij
k represents 346 

the elements of the normalized spatial proximity matrix of order k. 347 

The Moran's index takes values between -1 and 1. Values close to the extremes, whether 348 

negative or positive, represent the existence of spatial autocorrelation. Values close to zero 349 

indicate the absence of spatial autocorrelation. In this analysis, the tested hypotheses were as 350 

follows: 351 

 352 

H0: I = 0 (There is no spatial dependence)); 353 

H1: I > 0 (There is spatial dependence). 354 

 355 

The calculation of the Local Spatial Association Index (LISA) used equation (2) 69: 356 

Ii= 
zi∑ wijzj

n
j=1∑ zj

2n
j=1

 (2) 357 

 358 

Where n is the number of cells studied; zi represents the normalized attribute value in 359 

cell i; zj is the attribute value of cell j; wij represents the normalized spatial proximity matrix 360 

elements. 361 

 362 

Validation of the developed approach. 363 

 364 

The effectiveness of the proposed approach was verified by crossing the most critical 365 

regions and the deforestation alert data observed in 2021. The 2021 deforestation data served 366 

as test data. 367 

 368 

Conclusion 369 

 370 

The present study focused on proposing a methodological approach that would enable 371 

the determination and spatialization of deforestation patterns, aiming to contribute to 372 



discussions on priority areas in deforestation combat and their dynamics through the spatial 373 

analysis of deforested areas over the analyzed period. 374 

The approach holds relevance in the context of efforts to understand and define 375 

strategies to combat deforestation, which has risen in recent years. The results demonstrated 376 

that the pattern and dynamics of deforestation in the biome are not homogeneous and have 377 

undergone changes during the analyzed period. However, it was possible to identify priority 378 

areas (Regions 1 and 2) in deforestation control and monitoring. Furthermore, the approach 379 

allowed for assessing the effect of seasonality on deforestation dynamics and, consequently, on 380 

the definition of critical areas. 381 

The methodological approach proved useful, timely, and efficient in establishing 382 

deforestation risk areas. Although this approach has proven useful, it is essential to establish 383 

relationships that allow the projection of future deforestation areas. 384 

 385 
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