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a b s t r a c t

The inter-well connectivity calculated from reservoir dynamic production data reflects formation het-

erogeneity quantitatively. Currently, the calculated inter-well connectivity between pair wells is mainly

used as a tool for water flood management but not for quantitative reservoir characterization. This study

proposes an innovative, dynamic data integration workflow that can integrate inter-well connectivity

with a static reservoir model. In the workflow, the first step is calculating the inter-well connectivity

vectors from the reservoir pairwise injector and producer wells. The second step covers interpolation in

the domain of interest. The third step is to update the permeability model based on the Bayesian

updating method. The result of this study shows that integrating the calculated inter-well connectivity

with the static models enhances model reliability and it also provides an insight to deeper geological

understanding reflected from dynamic data integration in reservoir modeling.

© 2023 The Authors. Publishing services provided by Elsevier B.V. on behalf of KeAi Communication Co.

Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/

by-nc-nd/4.0/).

1. Introduction

For reservoir modeling, the static data usually include core

analysis results, well logs interpretations, and seismic interpreta-

tion. There are also some dynamic data, such as wellhead pressure

(WHP) or bottom-hole pressure (BHP), tracer data, fluid level, and

fluid production observed data available when doing reservoir

modeling, especially for a mature reservoir. Fully integrating dy-

namic data with static data can enhance the quality of the reservoir

models generated and reduce the uncertainties of simulated flow

production scenarios. It requires exploring, modeling, and

analyzing their discipline-specific data to understand the under-

ground reservoir better (Pyrcz and Deutsch, 2002). The maximum

value of these data is only realized when integrated to create a

more detailed reservoir model. Only the obtained reservoir can

provide the reservoir engineers with a better basis for reservoir

simulation and management and allows a more realistic economic

evaluation (Cunningham and Begg, 2008; Bratvold et al., 2009).

The current reservoir modeling procedure has many best prac-

tices to integrate various static data (Kelkar, 2000; Azim, 2016;

Rahimi and Riahi, 2020; Yousefi et al., 2021). Most of them can

integrate various sources for data, such as core, open-hole logs,

wireline formation tester pretests, vertical interference tests, pro-

duction logs, and downhole pressure buildup and injection falloff

tests are all integrated to infer different scale heterogeneity (Queipo

et al., 2002; Ma et al., 2013; Soroush et al., 2014). However, inte-

grating the dynamic data with a static reservoir model is still a

challenge in petroleum reservoir modeling.

Integrating dynamic data into the reservoir model is usually

solved as an inverse problem. The geological reservoir-related pa-

rameters are determined by minimizing an objective function be-

tween the observed and calculated dynamic data. Some other

efforts also include generating subsurface fracture into the static

model. Iterative loops have been used between the static reservoir

model and dynamic welletest data to optimize the subsurface

fracture generation (Kashib and Srinivasan, 2003, 2006; Zhao et al.,

2016).

For various dynamic data, the production and injection rates are

the most abundant data available in reservoir development. Injec-

tion and production rate data are easily accessible, and using them

does not incur the costs of running field tests. Due to the reservoir

geology complexity and heterogeneity, quantitative calculation of

Inter-well connectivity can be challenging. Various quantitative

methods have been proposed to calculate the inter-well
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connectivity, such as Spearman rank correlation (Alizadeh and

Salek, 2021), a linear model with coefficients (Yousefi et al.,

2021), etc.

Among them, the most widely used inter-well connectivity

calculation method is called Capacitance-Resistance Model (CRM)

(Sayarpour et al., 2009b; Yousef et al., 2009; Dastgerdi et al., 2020).

It integrates flow rate and BHP in a nonlinear signal-processing

model to provide a more robust interpretation result of the inter-

well connectivity. Several published references show that the

CRM method can accurately predict well performances and deter-

mine the connectivity distribution between wells (Sayarpour et al.,

2009a, 2009b; Mamghaderi and Pourafshary, 2013; Moreno and

Lake, 2014; Mamghaderi et al., 2020). Since it was proposed, it

has been used in dynamic data integration and analysis to calculate

the injection and production fluctuation data analysis. It also has

been used to characterize the flow barrier detection through

capacitanceeresistance calculation of inter-well connectivity (Ogali

and Orodu, 2022).

This paper's inter-well connectivity calculation is not the main

focus point. The main contribution is to propose a method to raster

it to the spatial static model domain. And also, the current study

provides an innovative way to integrate it into a static reservoir

model to get amore reliable reservoir model based on theweighted

Bayesian updated methodology. All of the works are based on the

understanding that the inter-well connectivity, inferred from dy-

namic production data, can be looked at as a reflection of the un-

derground reservoir heterogeneity. Indeed, this, in turn, will

significantly reduce the static model uncertainty, improve the

history matching and even help to discover more geological fea-

tures that might be unlikely to be characterized by static data.

2. Theory background

2.1. Well pair connectivity calculation

This study implements the most widely used capacitance model

in the inter-well connectivity calculation. Here is a short intro-

duction, and the following references can give more details (;

Sayarpour et al., 2009a, Sayarpour et al., 2009a, 2009b; Liang, 2010;

Kim et al., 2012; Mamghaderi and Pourafshary, 2013; Kaviani et al.,

2014). Based on the capacitance model, it is proved that with one

injector/producer well paired in a drainage volume, the estimated

total production rate qðtÞ of producer j is written as:

bqðtÞ¼ lijqjðt0Þe
�ðt�t0Þ

tij

þ
XNw

i¼1

lijw
0
ijðtÞ þ

Xk¼K

k¼1

wij

(
pwfk

ðt0Þe
�ðt�t0Þ
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(1)

where bqðtÞ is the estimated total production rate, w0
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ðtÞ
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The weight factor lij indicates the connectivity for the ij well

pair, tij is the time constant for the medium between injector i and

producer j, w0 is the filtered injector rate of injector i on producer j,

p0
wfkj

ðtÞ is the convolved BHP of producer k on producer j, wij is a

coefficient that determines the effect of the changing BHP of pro-

ducer k on producer j, qjðt0Þ is the initial total production rate of

producer j, tij is the resultant item constant of the primary pro-

duction component, and tkj is the time constant between producer

k on producer j. The time constants in the BHP term (and the def-

initions for convolved BHP) have been changed from tj to tkj to

account for additional interactions.

Usually, an iterative, nonlinear optimization procedure is

required to determine the optimum values of the above parameter,

such as t and l. More details of the optimization procedure can be

found in the literature (Al-Yousef, 2006; Holanda et al., 2018). At the

end of the optimization procedure, the obtained optimum lij, tij
and other parameters allow us to use the error estimates of the

weights based on MLR.

In this study, the quantitative inter-well connectivity, lij will be

used to update the permeability model in static model updating as

the two are highly correlated. While variable tij is a reflection of

porosity between the pair wells. During static updating, the

porosity model will not update as it is more related to oil in place,

which is well built-in static modeling with less uncertainty. So in

this study, lij, inferred from dynamic production injection data is

explicated and used to update the static permeability model to

achieve production data integration in the geoemodeling

procedure.

2.2. Interewell connectivity spatial rasterization

Usually, a static model is built using various cell-basedmodeling

approaches (Isaaks and Srivastava, 1988; Desbarats and Srivastava,

1991; Deutsch and Journel, 1998; Syed et al., 2022). Each cell will

get a porosity, permeability, and oil saturation values for flow

simulation in the model. The inter-well connectivity coefficient is

an overall reflection of the reservoir heterogeneity between the

well pairs and is expressed as a vector. In order to use the con-

nectivity coefficient to update the static model, it must be projected

into all the cells between each producer and injector pair. The

connectivity coefficient also must be rasterized into the model

spatial area first.

Given a homogeneous reservoir, the streamlined shape of the

controlled region between injection-production wells will follow

an ellipse shape theoretically (Whitaker 1986; Feng and Yu, 2015;

Song, 2018; Barletta, 2019). Therefore, in this study, the connec-

tivity between injection-producer will be assumed to have an el-

lipse effluence region, as shown in the right Fig. of Fig. 1. The major

axis of the ellipse is the distance between injection-production

wells Lij. The minor axis of the ellipse Bij determines the

controlled region of the connectivity coefficient. Out of the region,

it is believed that the connectivity coefficient can be neglected and

not affect the property between injector and producer.

Based on the above reasonable assumption, we can define a

region between each producer and injector pair, as shown in Fig. 2.

Within each controlled region, one connectivity coefficient value

will be given to the cells within the region. From Fig. 2, it can be

seen that there is an overlap between different injection and pro-

duction wells on the ellipse influence region. In the rasterization

process, the maximum connectivity value is taken at the over-

lapping grid as the value of the grid connectivity. One example of

the obtained spatial connectivity coefficient field is shown in Fig. 3.

Also, it should be noted that we have to do normalization in the

whole spatial domain to reflect the distance of each effluence re-

gion. Based on the definition of connectivity coefficient:
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lij¼
Tij

PN0

j¼1

Tij

(4)

where the conductivity Tij is defined as:

Tij ¼
kijAij

mLij
(5)

The conductivity is the result of the combined effect of the

viscosity of crude oil m, the cross-section area of injection-

production well Ai j, injector-producer distance Lij and the

average permeability between injection and production wells kij. It

is reasonable to assume that the viscosity of crude oil m and the

cross-section area of the injection-production well Aij are the same

between any pair of injection-productionwells from a static model.

Then, the difference in the inter-well connectivity coefficient is

mainly determined by the injector-producer distance Lij and the

average permeability between injection and production wells kij.

Then, a normalized connectivity coefficient blij can be calculated as:

blij ¼
lijLij

PN0

j¼1

lijLij

(6)

One example of normalized rasterized inter-well connectivity is

shown in Fig. 4. The spatial rasterized inter-well connectivity is

now sampled in the spatial modeling domain and could be used as

a posterior message to update the static model.

2.3. Bayesian formalism

Bayesian formalism has been shown as a powerful tool for

integrating geological static models with dynamic data (Cunha,

2004; De Luca et al., 2022). Following Bayesian formalism, the

given static model will be considered a prior distribution. The

heterogeneity characterized by the connectivity coefficient will be

looked at as likelihood information to the permeability distribu-

tion. The Bayesian updating to the prior static model will obtain a

Fig. 1. Theoretical inter-well connectivity shape

Fig. 2. An inter-well connectivity shape calculation example for a 9epoint well group.

Fig. 3. Interewell connectivity coefficient field rasterization illustration.

Fig. 4. Normalized Interewell connectivity coefficient.
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posterior distribution.

The prior distribution expresses our uncertainty about the

spatial distribution value of the underground reservoir. It is

assumed that the distribution would follow any statistics distri-

bution. However, it can be transformed into a normal distribution.

Thus, it can be characterized by a mean and variance. This study

assumed that permeability is log-normal with ln(K). Usually, given

a specified variogram model, the log-permeability field will follow

multivariate Gaussian distribution.

The probability density function (pdf) of a normal distribution

(Gaussian distribution) is:

f ðxÞ¼ 1

s

ffiffiffiffiffiffi
2p

p e
ðm�xÞ2

2s2 (7)

Given the inter-well connectivity information from dynamic

production data is inferred, it is defined as new information in

Bayesian formalism (Banerjee et al., 2009). Based on Bayesian sta-

tistics, the sample information from the same process can be used

to obtain a posterior normal distribution.

In this study, it is believed that the sample of observations

within the inter-well connectivity effluence region can be repre-

sented with a new normal distribution with sample mean m0 and a

sample variance s0. Then, a posterior or updated mean and variance

will be a weighted combination of the mean and variance from the

prior and the sample. The larger the sample and the smaller the

sample variance, the higher the weight the sample information

receives.

In the case of an initial permeability, the new information are

those observations within the effluence area confined by the well

connection area. It will be local area around the prospect to be

evaluated. A new property means will be proposed to fit the

objective inter-well connectivity. The prior distribution will be

updated according to the new information. The posterior mean

ðm00 Þ and variance ðm002Þ under the above assumptions are calcu-

lated as:

m
00 ¼s

0m0 þ ns02m

ns02
(8)

and

s

002 ¼ s
2
s
02

ns02 þ s
2

(9)

Where n is the reservoir model cell number within the target inter-

well connectivity effluence region. Given the posterior mean and

variance, adopting a Monte Carlo procedure to update all the

permeability values within the connectivity inter-well region is

accessible.

As a quick summary, the updating procedure based on Bayesian

will follow these four steps.

(1) Calculation of the prior distribution using kriging;

(2) Calculate the mean of likelihood distribution based on the

inter-well connection based on dynamic data of each well affect

region;

(3) Updating the prior distribution with the likelihood distri-

bution to get the updated distribution;

(4) Performing the back transformation using the posterior

distribution and Monte-Carlo simulation using the updated

mean and variance.

3. Workflow and implementation example

3.1. Workflow

The above inter-well connectivity analysis and Bayesian

formalism are the theoretical basis for the current proposed static

model and dynamic data assimilation. The overall workflow is

shown in Fig. 5.

The core part is an iteration procedure to match the target inter-

well connectivity calculated from actual production well data.

Before iteration begins, the target inter-well connectivity is based

on the theory given in section 2.1. It is rasterized following the

principle given in section 2.2. For each iteration, the model will be

locally updated according to the comparison between current

inter-well connectivity ðlmodelÞ calculated from the current model

and the target inter-well connectivity ðltargetÞ. The updating to get a

renewed model is based on the Bayesian updating given in section

2.3. The above workflow will be illustrated with a case study in the

coming sections.

3.2. Geological model and basic dynamic production background

The geological studies show the facies feature of the research

area is a fluvial channelized reservoir formation, as shown in Fig. 6.

The permeability distribution is heterogeneous, whereas the

porosity distribution is uniform. There is no capillary pressure,

rocks are incompressible, and dead oil andwater PVT properties are

defined using superficial relationships. It is produced under water

flooding conditions with eight water injectors and four producers.

The producers operate under constant bottomehole pressure

(395 bar) and eight water injectors with a given injection rate

(60e120 m3/day). A fiveespot layout is used for the well's location.

The heterogeneous permeability distribution affects the time of

water appearance in the production wells. This information is

collected in the first ten years (120months) of production time. The

purpose of this study will show that it can provide valuable infor-

mation for static model building.

Fig. 5. Workflow based on Bayesian formalism
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3.3. Inter-well connectivity calculation and spatial rasterization

Based on the inter-well connection theory introduced in section

2.1, a Matlab program is developed for current case study. Feeding

the collected production data into the programwith other essential

information such as location and production data, a 2D spatial

rasterized inter-well connectivity coefficient between injection and

production wells can be calculated as shown in Fig. 7.

3.4. Model updating

For illustration, only one step of the updated permeability

model is shown in Fig. 8, compared to the initial permeability

model. From those two geological models, one can observe that

inter-well connectivity information is reflected in certain areas of

the updated model, such as between well pair of INJ1 and PROD2.

After iteration is converged, the calculated inter-well connec-

tivity can be very close to the production data. Based on the

updated permeability model, geological understanding could also

be updated. Fig. 9 shows that the fluvial channel shape is adjusted

according to this reservoir's message obtained from dynamic data.

4. Conclusions

In this study, the CRM model calculates the connectivity be-

tween wells, and the connectivity coefficient can reflect the

geological information. Thus, based on the dynamic production

data, we can calculate the inter-well connectivity between wells,

Fig. 6. Initial permeability model of the research area from a target reservoir model

Fig. 7. Inter-well connectivity and rasterization from the well production data

Fig. 8. One updated permeability model during iteration.
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which can be used to guide the updating of the geological model

and also gain deeper geological understanding as well.

The novel inter-well connectivity rasterization approach pro-

vides a way for other similar quantitative vector data integration in

reservoir characterization and flow simulation.

In this study, the Bayesian updating method combines well

connectivity information with a permeability model updating. The

reservoir heterogeneity reflected from the dynamic data is inte-

grated into the static model. The coupling of dynamic data inte-

gration and static model updating provides a way of automatic

assisted history matching.

It could also be used as quantitative criterion to check the static

model quality when multiple models are available. And it provides

a kind of clear clue of howwe should update those static models to

fit the truth of underground heterogeneity.
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