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We study in this'work the ambiguity between two definition of vacuum energy,
namely, the energy of the Zero-Point fields and the minimum of the Effective
Potential, first devised by E. Myers!. We name their difference Zero-Point
Anomaly (ZPA) and show that for a real scalar field in the geometry of Casimir
plates the ZPA there exists but it is undetectable via Casimir forces. We point
out possible generalizations of ZPA and physical implications.

Some years ago Eric Myers® published a very interesting work on a possible ambiguity
of the definition of vacuum energy. He pointed out that we can define vacuum energy as
due to Zero-Point fields fluctuations and on the other hand as the minimum of the Effective
Potential. Although both definitions coincide for Casimir Effect in electrodynamics, they
will give different answers for interacting and/or massive fields. The difference between
these two vacuum energies we name Zero-Point Anomaly (ZPA).

In this work we took seriously this ZPA and we calculate it for a general real scalar
field (including mass and self-interaction). Surprisingly we found that ZPA there exists
(as antecipated by Myers), but it is undetectable via Casimir forces. In other words, the
ZPA is a constant, independent on the distance between the Casimir plates, or in more
general terms, it is independent on the parameters of the geometry.

We follow, for a easier reading, the notation and definitions of reference 1.

Let ¢(z) be a single real scalar field in a N-dimensional Minikowsky space-time,
where N = m + 1 and m is the number of spatial dimensions.

The Effective Potential to the first order in the loop expansion (or equivalently in
powers of h)? is given by
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where ¢ = () is the classical field, S[¢] is the classical Action, Qm .is .the volume of the
background space-time manifold and in the Classical Potential V(@) is mc!uded mass.and
interactions terms. Making the usual analytic continuation to the Euclidian space-time,
the classical Action can be written as

516 = [ d"al50,0,0 + VA() 2
From (2) we get the matrix M(z,y) of the quadratic variation of the action § (4]
— 525[-&] = §N(z — u)[—648.8, + V" 1. (3)
M(l‘, y) = 6¢($)6¢(y) - 6 (.’D y)[ pvv c1(¢)]

Now, M is a elliptical operator (because of the Euclidean analytic continuation) and
for these kind of operators we can define the so-called Generalized Zeta Function {a(s)-

Let {);} the eigenvalues of the operator M(z,y). The Generalized Zeta Function
associated to' M is defined by

(u(s) = T (0)™ (4)

It is well known the relation®

d
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where 4 is a unkpown parameter (with units of a mass) which should be determined by
suplementary renormalizations conditions.
Now, let us consider the Casimir’s device in which the field ¢ satisfies Dirichlet

boundary conditions on two paralel plates placed at a distance a from each other. In this
case, the ¢ Function in (4) is given by
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For convenience, we drop the constant Q/a until the formulas (15)-(18) in which
we include it again.

Using the integral
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with A% = p + V,i(#), we can write (6) as
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The sum in the above expression has the form Z(n2 + ¢?)7*. So, we can use the

n=1

formula?
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and substituting these values in (9) we get
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Now, we proceed to calculate first V;;(#) by (5) and later the Zero-Point Energy
E, using the same regularization method. We prefer the ( Function regularization for its
elegance and for later comparison with the Myer’s results.
We see that (a(s) in (10) is a sum of three terms, say

Cm(s) = Gi(s) + Ca(s) + (a(s) (11)
Using the analytical properties of modified Bessel Functions K, (z), it is not difficult
to show that (3(0) = 0. Then
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From ((0) we obtain:
a) for m add
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Substitutiné (12), (13) and (14) in (5) and after substituting this expression in (1)
we obtain the Effective Potential. For Casimir plates at a distance a from each other, it
1s written as: .
a) for m odd
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b) for m even
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The term independent on a in Eq(s) (15) and (16) corresponds to the Effective
Potential for the unconstrained ﬁeld namely:
. a) for m odd ’
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b) for.m even
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Now, as is well known, the physical (renormé;lized) vacuum energy is given by the
usual subtracting procedure. We have
a) formodd
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On the other hand, we have the familiar Zero-Point Energy

E=Y fu. @

For the Casimir plates the w; are given by

’ 1/2
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where ¢ is the point of minimum for the Classical Potential V(¢),

If the plates have a surface with area L, then (21) and (22) give for the Zero-Point
Energy

i 1/2 dm—lll’_‘l o R
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Again, we deﬂne the ¢ Function associated to (23) as
.
Culw) = Zo [+ B 4 i s (24)

where the subscript H at the ( Function means that w; are eingenvalues of the Hamlltoman
operator.

The Zero-Point Energy js, then, given by
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Substituting (24) in (25) we find the ZPE for plates at a distance a,
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Again for the free field at the same volume = L™! a, the ZPE is given by
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The physical (renormalized) Zero-Point Energy density is defined by the usual sub-
traction

=i (28)
Substituting (26) and (27) in (28) we get
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Now, we define the renormalized Zero-Point Anomaly AP as the difference between
the Effective Potential ((19) and (20)) and the Zero-Point Energy density (29)

AR VB R (30)
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In (31) and (32) we have used the aproximation ¢ 2 @y. This is correct in first
aproximation in % and therefore (31) and (32) are the ZPA with quantum corrections in
first order in h, as we can see from above analysis. '

Also observe that the ZPA there exists only in even dimensions but, even in this
case, Casimir forces (atraction between two plates) will not able to distinguishe between
the two definitions above,.that is, there will not be any detectable shift in the Casimir

Energy. This is because .AR in (30) is proportional to a‘1 and then the shift in the Casimir
pressure is given by -

0 ( 4R
AF = —2-(aA®) =0 | (33)
The important point in this work is that ZPA is a new concept about vacuum energy
that depends on the experimental apparatus, or in other words, it depends crucially (as

the sign of Casimir Enexgy) on the geometry. In this sense, it would be interesting to
search for a geometry in which the ZPA is nonvanishing.
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