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Resumo
O estudo de modelos nos quais a variável de resposta está sujeita a limites de detecção, tem
sido de interesse em muitas áreas da estatística. Este tipo de dados surgem frequentemente
em monitoramento ambiental, medicina, economia, agronomia e biologia. A maioria dos
modelos existentes na literatura para lidar com dados censurados assume uma distribuição
normal para a variável de resposta, e essa suposição pode ser irrealista na presença de
desvios da normalidade ou de outliers. Neste trabalho, propomos uma série de modelos que
consideram distribuições assimétricas e de caudas pesadas, como as distribuições Student-t
e skew-t, para lidar com observações censuradas e/ou faltantes na variável de resposta.

Os parâmetros dos modelos são estimados utilizando o algoritmo Expectation-Maximization
(EM) (Dempster et al., 1977), um método amplamente utilizado para aproximar iterativa-
mente as estimativas de máxima verossimilhança (ML). Este algoritmo exige o cálculo
de algumas esperanças condicionais. Em nossos modelos, isso inclui os dois primeiros
momentos das distribuições Student-t, skew-t e extended skew-t. Para calcular os mo-
mentos da distribuição Student-t, desenvolvemos um método baseado na integração de
Monte Carlo, complementado por resultados derivados da esperança condicional (veja, por
exemplo, Galarza et al., 2021c). Além disso, quando as esperanças condicionais não podem
ser derivadas de forma explícita, empregamos uma versão de aproximação estocástica do
algoritmo EM, conhecido como algoritmo SAEM (Delyon et al., 1999), para a estimação
dos parâmetros. Para cada modelo, também fornecemos procedimentos para aproximar o
erro padrão das estimativas e expressões para prever observações futuras. As propriedades
assintóticas e a robustez das estimativas são demonstradas através de estudos de simulação,
e aplicações em conjuntos de dados reais são apresentadas para esses modelos.

Palavras-chave: Observações censuradas. Família de distribuições elípticas. Algoritmo
EM. Distribuições de caudas pesadas. Distribuições assimétricas. Distribuições truncadas.



Abstract
The study of models where the variable of interest is subjected to threshold values below,
above, or both has been the scope of many areas of the statistic. Such data frequently arise
in environmental monitoring, medicine, economics, agronomy, and biology. While most of
the models to deal with censored data in the literature assume a normal distribution for
the response variable, this assumption can be unrealistic in the presence of deviations from
normality or outliers. In this work, we propose a series of models considering asymmetric
and heavy-tailed distributions, such as the Student-t and skew-t distributions, to handle
censored and missing observations in the response variable.

The parameters of the models are estimated using the Expectation-Maximization (EM)
algorithm (Dempster et al., 1977), a widely used method for iteratively approximating
the maximum likelihood (ML) estimates. This algorithm requires the computation of
certain conditional expectations, specifically for our models, the first two moments from
the Student-t, skew-t, and extended skew-t distributions. To compute these moments
from the Student-t distribution, we develop a method based on Monte Carlo integration
and results derived from the conditional distribution (see, for instance, Galarza et al.,
2021c). Additionally, when conditional expectations cannot be derived in a closed form,
we employ a variation of the EM algorithm, known as the Stochastic Approximation
EM (SAEM) algorithm (Delyon et al., 1999), for parameter estimation. For each model,
we also provide procedures to approximate the standard error of the estimates and
expressions for predicting future observations. The asymptotic properties and robustness
of the estimates are demonstrated through simulation studies, and applications to real
datasets are presented for these models.

Keywords: Censored observations. Elliptical family of distributions. EM algorithm. Heavy-
tailed distributions. Skewed distributions. Truncated distributions.
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Introduction

The study of models where the variable of interest is subjected to certain
threshold values, whether below, above, or both, has been the scope of many statistical
areas. This data type frequently appears in environmental monitoring, medicine, economics,
agronomy, and biology, among others. For instance, Lachos et al. (2017) investigated the
level of contamination by dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin or TCDD) in a
Missouri River, USA, using a spatially censored linear model. This dataset exhibited
various detection limits depending on the measurement instruments employed. Similarly,
Matos et al. (2016) proposed linear and nonlinear censored mixed-effects models to analyze
the human immunodeficiency virus (HIV) behavior from UTI data and clinical trial ACTG
315 data, respectively, focusing on the frequently left-censored quantification of HIV-1
RNA viral load.

Most models in the literature dealing with censored data assume a normal
distribution for the response variable. However, this assumption can be unrealistic when
deviations from normality or outliers exist. The Student-t model, with its robust approach,
offers a practical alternative. For instance, Matos et al. (2013b) and Lachos et al. (2019)
demonstrated that the Student-t linear mixed-effects censored model outperforms the
normal model in analyzing UTI data. This study pertains to the health of 72 perinatal
HIV-infected children.

Moreover, datasets often exhibit skewness alongside censoring. Some authors
have typically analyzed such data using a symmetric distribution, often after a transforma-
tion. Galarza et al. (2022b) proposed a multivariate regression model with a skew-normal
distribution for the error term to circumvent this. They showed that, without transforming
the response, a model with asymmetrical errors better fits the dissolved trace metals
data. Also, using the skew-normal distribution, Mattos et al. (2022b) developed a linear
mixed-effects model for censored responses, concluding that the aforementioned UTI data
exhibit skewness.

Additionally, one of the most popular algorithms for handling missing and
partially observed data is the Expectation-Maximization (EM) (Dempster et al., 1977)
algorithm, which is frequently employed because of its facility to treat censored data.
Typically, this algorithm requires the computation of conditional truncated moments,
usually the first two. Consequently, developing more efficient methods for calculating the
moments of truncated distributions has been an area of significant interest. For example,
recently, Kan & Robotti (2017) proposed a recursive approach for computing arbitrary-
order product moments of truncated multivariate normal (TMVN) distributions, which is
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implemented in the R library MomTrunc (Galarza et al., 2021a). In contrast, Galarza et al.
(2021c) developed a recurrence approach to compute arbitrary-order product moments
of folded and truncated multivariate t (TMVT) distributions. Meanwhile, Galarza et al.
(2022a) derived the moments for a doubly truncated selection elliptical class of distributions,
including some multivariate asymmetric versions of elliptical distributions.

Other algorithms employed to handle partially observed data include the
Stochastic Approximation EM (SAEM) (Delyon et al., 1999) and Monte Carlo EM (MCEM)
(Wei & Tanner, 1990), which replace conditional expectations with approximations requiring
random draws from a truncated distribution. Hence, various methods have been developed
to generate random samples from truncated distributions, with rejection sampling being
the most common technique. However, this method can be inefficient, especially when
the truncation interval is small. To address this, Kotecha & Djuric (1999) proposed an
approach based on the Gibbs sampling algorithm for generating vectors from TMVN
distributions, and Ho et al. (2012) suggested the slice sampling algorithm for generating
random observations from the TMVT distributions.

Therefore, firstly, we develop a general method to simulate from any truncated
multivariate elliptical distribution with a strictly decreasing density generating function
(dgf) as an extension of the algorithm proposed by Ho et al. (2012), improving the
computational time needed for sampling. Using conditional expectation properties, we also
propose an algorithm to approximate the moments of the most common distribution of this
class, such as the truncated multivariate normal, Student-t, slash, contaminated normal,
and Pearson VII distributions. This method requires less CPU time when compared with
the existing ones since it deals with the truncated and non-truncated parts of the vector
separately. Both methods will be used in several applications related to a linear spatial
model with censored responses, censored regression models considering autoregressive
errors with Student-t innovations, multivariate censored regression models with errors
following skew-t distribution, and linear mixed-effect models with censored response using
skew-t distribution.

This thesis unfolds through chapters that apply various models and techniques
to handle censored data. The organization of the thesis is as follows:

Chapter 1: This chapter reviews the background material, including definitions
and methodologies. It also describes the datasets used throughout the thesis.

Chapter 2: We propose an algorithm to generate random numbers from any
member of the truncated multivariate elliptical family of distributions with a strictly
decreasing density generating function based on the slice sampling algorithm (Neal, 2003);
this extends the algorithm initially proposed by Ho et al. (2012). We also provide a
faster approach to approximate the first and the second moments for specific truncated
multivariate elliptical distributions using Monte Carlo (MC) integration for the truncated
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partition and explicit expressions for the non-truncated part (Galarza et al., 2022a).
Methods are accessible in the R library relliptical (Valeriano et al., 2022).

Chapter 3: We compare the EM, SAEM, and MCEM estimates for the
censored spatial linear model previously discussed by Lachos et al. (2017) and Ordoñez
et al. (2018) with parameters estimated via the SAEM algorithm. Additionally, we provide
a methodology to approximate the standard error of the estimates using the squared
root of the inverse of the observed information matrix, following the method proposed by
Louis (1982). All methods are available in the R package RcppCensSpatial (Valeriano
et al., 2021a), which utilizes algorithms from Chapter 2 to generate random numbers and
approximate moments from the TMVN distribution.

Chapter 4: We develop an SAEM algorithm to estimate the parameters of
a censored linear regression model where regression errors are autocorrelated, and the
innovations follow a Student-t distribution. Several simulation studies are conducted to
examine the asymptotic properties and robustness of the estimates. The methods are
illustrated using two datasets with left-censored and missing observations. The codes are
available in the package ARCensReg (Schumacher et al., 2016).

Chapter 5: We propose a multivariate linear model with censored responses
considering the multivariate skew-t distribution for the error term. This work addresses the
need for asymmetric and heavy-tailed distributions in regression error. The proposed EM
algorithm for maximum likelihood estimation employs closed-form expressions at the E-step
based on formulas for the mean and variance of truncated multivariate extended skew-t
(EST), skew-t (ST), and Student-t distributions. Moments from the latter distribution are
computed using the method from Chapter 2.

Chapter 6: This chapter extends the work of Mattos et al. (2022b) by simul-
taneously considering asymmetric and heavy tails in the random effect distribution. We
develop a linear mixed-effects model for censored responses using the skew-t distribution.
Several simulation studies are conducted to evaluate the asymptotic properties and ro-
bustness of the parameter estimates obtained via the EM-type algorithm. The method is
also applied to analyze the RNA viral load in HIV-1 infected patients, with the dataset
being left-censored at the threshold log10p50q. The codes will be available in the package
skewlmm (Schumacher et al., 2023).

Chapter 7: We present final remarks and further research related to this
thesis.
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1 Preliminaries

This chapter provides an overview of the algorithms employed throughout this
thesis to derive the maximum likelihood (ML) estimates for problems involving partially
observed data. Additionally, we introduce essential notations and basic definitions used in
our analyses.

A random variable with a Gamma distribution is denoted by Gammapα, βq,
where α ą 0 is the shape parameter and β ą 0 is the rate parameter. A random variable X
uniformly distributed over the interval pa, bq is represented as X „ Upa, bq. The notation
Nppµ,Σq specifies a p-variate normal distribution with mean vector µ and variance-
covariance matrix Σ. Similarly, tppµ,Σ, νq denotes the p-variate Student-t distribution
with location parameter vector µ P Rp, a positive definite scale matrix Σ P Rpˆp, and ν ą 0
degrees of freedom. The probability density function (pdf) and cumulative distribution
function (cdf) for this distribution are represented by tpp.; µ,Σ, νq and Tpp.; µ,Σ, νq,
respectively. When p “ 1, the index p is omitted. If µ “ 0 and σ2

“ 1 (the standard case),
the notations tp.; νq and T p.; νq are used for the pdf and cdf, respectively.

Additionally, the term ind means independent, and iid stands for independent
and identically distributed. The symbol Ip denotes a p ˆ p identity matrix, AJ represents
the transpose of matrix A, |A| denotes the determinant of a square matrix A, and
Γpaq “

ż 8

0
xa´1e´xdx is the gamma function evaluated at a ą 0.

1.1 The EM, MCEM, and SAEM algorithms

1.1.1 The EM algorithm

The expectation-maximization (EM) algorithm was first introduced by Demp-
ster et al. (1977) and provides a general approach for iteratively computing maximum
likelihood (ML) estimates in the presence of incomplete data. Its name comes from the fact
that each algorithm iteration consists of an expectation step followed by a maximization
step. The main features of the EM algorithm are the ease of implementation and the
stability of monotone convergence.

Let θ be the parameter vector and yc “ pyJ
o ,yJ

mq
J denote the complete data,

where yo and ym are the observed and missing/censored (incomplete) data, respectively.
The EM algorithm maximizes the complete-data log-likelihood function ℓcpθ; ycq at each
iteration until convergence. The algorithm proceeds as follows:

• E-step: Compute the conditional expectation of the complete log-likelihood function
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Qkpθq “ E
”

ℓcpθ; ycq | yo,
pθ

pkq
ı

, where pθ
pkq

is the estimate of θ at the kth iteration.

• M-step: Maximize Qkpθq with respect to θ to update the estimate to pθ
pk`1q

.

This process is iterated until some distance between two successive evaluations of the
actual log-likelihood function becomes small enough.

Although the EM algorithm is a powerful tool when the analytical expressions
required by the E-steps have a closed form, it becomes a problem when the analytical
expressions cannot be evaluated. The required expectations may be approximated using
Monte Carlo (MC) integration techniques in such cases.

1.1.2 The MCEM algorithm

The Monte Carlo EM (MCEM) algorithm is a variation of the standard EM
algorithm that incorporates Monte Carlo methods to approximate the expectation in
the computation of Qkpθq. This approach is based on a large number of independent
simulations of the missing data (Wei & Tanner, 1990). In the MCEM algorithm, the E-step
is replaced by the following two steps:

1. Simulation: Generate L samples of the missing data yplq
m , l “ 1, . . . , L from the

conditional distribution fpym | pθ
pkq

,yoq.

2. Approximation: Update Qkpθq by

pQkpθq “
1
L

L
ÿ

l“1
ℓcpθ; yplq

m ,yoq. (1.1)

If L “ 1, the algorithm reduces to the stochastic EM algorithm (Celeux, 1985).
On the other hand, using large values of L leads to more accurate estimates, but the
algorithm becomes slow (Booth & Hobert, 1999). Hence, Wei & Tanner (1990) suggested
using smaller values of L in the initial iterations when the parameter estimates are
relatively far from their true values, and gradually increasing L as the iterations increase.
However, the MCEM algorithm may not converge in the same manner as the conventional
EM algorithm. Typically, the estimates pθ keep varying around the maximum, and the
variability depends on L. One strategy to mitigate this issue is to average the parameter
estimates over the final iterations of the algorithm.

1.1.3 The SAEM algorithm

As an alternative to the computationally intensive MCEM algorithm, Delyon
et al. (1999) proposed the Stochastic Approximation EM (SAEM) algorithm, which modifies
the E-step to include both a simulation step and an integration step through stochastic
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approximation while leaving the maximization step of the EM algorithm unchanged.
This adaptation, noted for its robust theoretical properties, accurately estimates the true
parameters and converges to the global maximum under general conditions. The E-step of
the SAEM algorithm is structured as follows:

1. Simulation: Draw M samples of the missing data, ypl,kq
m , l “ 1, . . . ,M , from the

conditional distribution fpym | pθ
pkq

,yoq.

2. Stochastic approximation: Update Qkpθq according to

pQkpθq “ pQk´1pθq ` δk

˜

1
M

M
ÿ

l“1
ℓcpθ; ypk,lq

m ,yoq ´ pQk´1pθq

¸

, (1.2)

where δk is a smoothing parameter defined as a decreasing sequence of positive

numbers satisfying
8
ÿ

k“1
δk “ 8 and

8
ÿ

k“1
δ2

k ă 8 (Kuhn & Lavielle, 2005).

Following Galarza et al. (2017), we adopt the variable δk as

δk “

$

&

%

1, if 1 ď k ď cW ;
1

k ´ cW
, if cW ` 1 ď k ď W,

(1.3)

where W is the maximum number of iterations, and c is a cutoff point p0 ď c ď 1q that
determines the percentage of initial iterations with no memory. If c “ 0, the algorithm will
have a memory for all iterations and hence will converge slowly to the ML estimates, and
W needs to be large. If c “ 1, the algorithm will be memory-free, it will converge quickly
to a solution neighborhood, and the algorithm will initiate a Markov chain leading to a
reasonably well-estimated mean after applying the necessary burn-in and thinning steps.
A number between 0 and 1 p0 ă c ă 1q will assure an initial convergence in distribution to
a solution neighborhood for the first cW iterations and an almost sure convergence for the
rest of the iterations.

The choice of c and W could impact the convergence speed; therefore, it is
recommended to choose c and W such that 50 ă cW ă 100 (Kuhn & Lavielle, 2005). A
graphical approach can monitor the convergence of the estimates for all parameters and
determine the values for these constants, as Lavielle (2014) suggested. An advantage of
the SAEM algorithm is that, even though it performs an MCMC E-step, it only requires a
small and fixed sample size M (suggested to be M ď 20), making it much faster than the
MCEM algorithm.

1.2 Standard error approximation
The EM algorithm does not provide the variance-covariance matrix of the

ML estimates. As an alternative, we can approximate it by the inverse of the observed
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information matrix, which can be derived from the negative of the second derivatives
(hessian matrix) of the observed log-likelihood function:

Iopθq “ ´
B2ℓpθ; yoq

BθBθJ
. (1.4)

Calculating the Hessian matrix of the observed log-likelihood can be challenging.
To address this, Louis (1982) introduced a method for extracting the observed information
matrix when utilizing the EM algorithm for ML estimation. Define Scpyc; θq and Bcpyc; θq

as the first derivative and the negative of the second derivative of the complete-data
log-likelihood function with respect to the parameter vector θ, respectively. Similarly, let
Sopyo; θq and Bopyo; θq be the derivatives of the log-likelihood function of the observed
data. The observed information matrix is given by

Iopθq “ Bopyo; θq

“ E rBcpyc; θq | yos ´ E
“

Scpyc; θqSJ
c pyc; θq | yo

‰

` Sopyo; θqSJ
o pyo; θq. (1.5)

The first term in (1.5) represents the conditional expected observed information
matrix of the full data, and the remaining terms denote the observed information matrix
associated with the missing or censored data. The proof of this result can be found in
Louis (1982) or Walsh (2006). The authors also demonstrated that the third term in (1.5)
is equal to ErScpyc; θq|yos, and by definition of the EM algorithm, this term is equal to
zero at the ML estimates pθ, i.e., Sopyo; pθq “ ErScpyc; pθq | yos “ 0. Then, the observed
information matrix at the ML estimate can be expressed as follows

Ioppθq “ E
”

Bcpyc; pθq | yo

ı

´ E
”

Scpyc; pθq SJ
c pyc; pθq | yo

ı

. (1.6)

The computational complexity increases when these expectations are difficult
to calculate analytically, but they can be estimated via the Monte Carlo method as

pIopθq « ´
1
L

L
ÿ

l“1

B2ℓcpθ; yplqq

BθBθJ
´

1
L

L
ÿ

l“1

Bℓcpθ; yplqq

Bθ

ˆ

Bℓcpθ; yplqq

Bθ

˙J

, (1.7)

where yplq
“ pyJ

o ,yplqJ
m q

J, for l P t1, . . . , Lu, represents the complete data composed of the
observed data and simulated missing data from the conditional distribution fpym|θ,yoq.

Furthermore, when the SAEM algorithm is used to estimate the parameters,
Delyon et al. (1999) adapted Louis’ method to compute the observed information matrix.
This adaptation involves calculating additional terms as outlined:

Hk “ ´Gk ` ∆k∆J
k , (1.8)

Gk “ Gk´1 ` δk

˜

1
M

M
ÿ

l“1

˜

B2ℓcpθ; ypk,lqq

BθBθJ
`

Bℓcpθ; ypk,lqq

Bθ

Bℓcpθ; ypk,lqq

Bθ

J
¸

´ Gk´1

¸

, and

∆k “ ∆k´1 ` δk

˜

1
M

M
ÿ

l“1

Bℓcpθ; ypk,lqq

Bθ
´ ∆k´1

¸

,
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with ypk,lq
“ pyJ

o ,ypk,lqJ
m q

J being the complete data at iteration pk, lq for k P t1, . . . ,W u

and l P t1, . . . ,Mu. The inverse of the limiting value of Hk can be used to assess the
dispersion of the estimators (Delyon et al., 1999).

On the other hand, for independent observations, a consistent estimator for
the Fisher information matrix is the empirical information matrix (Meilijson, 1989), which
is given by

Iepθq “

n
ÿ

i“1
spyi; θq spyi; θq

J
´

1
n

Spy; θq Spy; θq
J, (1.9)

where Spy; θq “

n
ÿ

i“1
spyi; θq and spyi; θq “ sipθq is the empirical score function for the ith

sample unit (see Meilijson, 1989; Lin, 2010). According to Louis (1982), the individual
score can be determined as

sipθq “
Bfpyi; θq

Bθ
“ E

„

Bℓicpθ; yiq

Bθ

ˇ

ˇ

ˇ
yo

i ,θ

ȷ

,

with ℓicpθ; yiq and yo
i denoting the complete-data log-likelihood function and the observed

data for the ith observation, respectively. Substituting the ML estimates pθ into θ, we get
Spy; pθq “ 0, then (1.9) is reduced to

Ieppθq “

n
ÿ

i“1
sip

pθq sip
pθq

J. (1.10)

1.3 Case studies
This section presents the datasets that will be analyzed in this thesis.

1.3.1 Missouri dioxin contamination data

The Missouri dioxin contamination dataset pertains to a study of contamination
level by dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin or TCDD) at sampled points along
the road in Missouri, USA (Zirschky & Harris, 1986). This study aimed to determine
contamination levels and identify areas requiring cleanup. The dataset contains 127
observations distributed in an area of 3600 ˆ 65 m2 on the shoulders of a country road,
with 43% of the observations (55 sites) being left-censored, i.e., falling below the detection
limit, which ranges from 0.10 to 0.79 mg{kg. For illustration purposes, the reported data is
treated as coming from a single sampled location. The spatial directions are the x-direction
(measured in 1/100 ft) taken parallel to the road, and the y-direction (in ft) represents
the direction perpendicular to the road. Refer to Zirschky & Harris (1986) and Fridley
& Dixon (2007) for more details. This data is available in the R package CensSpatial
(Ordoñez et al., 2020).

Figure 1 illustrates the sampled locations, where each bold point represents
a censored observation and each white point an observed value. The size of each point
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reflects the magnitude of the observed value, which varies between 0.10 and 48.05 mg{kg.
It is worth mentioning that this data was first analyzed by Zirschky & Harris (1986), who
concluded that the data appeared to be log-normally distributed. Hence, the logarithms
of the observed responses were used in the analysis. The dataset was further examined
by Lachos et al. (2017) and Ordoñez et al. (2018), who employed an SAEM algorithm
to estimate model parameters. Using information criteria (AIC and BIC), both studies
determined that an exponential correlation function best assessed the data’s correlation.
Lachos et al. (2017) also identified four observations as potentially influential in the
estimation of parameters.

Figure 1 – Missouri data. Level of TCDD observed on each location, where ˝ represents
an observed value and ‚ represents a left-censored value.
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1.3.2 Ammonia-nitrogen concentration data

The ammonia-nitrogen (NH3-N) measurements were taken in the Samish River
in Washington State, USA. The data were collected monthly by the Washington State
Department of Ecology, and it is available for free download on the official website
(https://ecology.wa.gov).

In this work, we consider a subset of the data that consists of n “ 248
observations of the NH3-N concentration in mg{L monthly measured from May 1999 to
December 2019. Measurements less than 0.01mg{L were labeled as undetected, and such
concentrations were listed as censored. Another feature to be considered in this data is
that it is not evenly spaced; when this happens, a blank observation is added and treated
as missing. Therefore, the dataset contains 102 (41.13%) censored observations and 3
(1.21%) missing observations. Figure 2 shows the ammonia-nitrogen concentration time
series, where the red dotted line represents the detection limit.

Following De Abreu et al. (2022), the predictors dissolved oxygen (DO) in mg{L,
pH, and temperature (T) in ˝C could have a statistical effect on the ammonia-nitrogen. An
analysis of the temporal behavior of these covariates is therefore conducted. The boxplot

https://ecology.wa.gov
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Figure 2 – Ammonia-concentration data. Time series plot of the NH3 ´ N (black line)
and the detection limit (red dotted line).
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of the covariates by month is shown in Figure 3, where we can see that the DO varies from
9.0 to 13.9 mg/L, decreasing from January to July, remaining constant (in median) from
July to September and then increasing. Besides, the pH varies from 6.6 to 8.4, slightly
increasing from January to July, and then decreasing. On the other hand, the temperature
varies from 0.8˝C to 18.1˝C, with the highest temperatures happening in July. It is worth
mentioning that the summer in Washington goes from June to August, while the lowest
temperatures were observed from December to February during the winter.

Figure 3 – Ammonia-nitrogen concentration data. Boxplot for the dissolved oxygen (mg/L),
pH, and temperature (˝C) by month.
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1.3.3 Phosphorus concentration data

The phosphorus concentration levels indicate the river water quality since, for
instance, excessive phosphorus in surface water may result in eutrophication. Phosphorus
concentration data of West Fork Cedar River at Finchford, Iowa, USA, was collected
under the ambient water quality program conducted by the Iowa Department of Natural
Resources (Iowa DNR). This data is available in the package ARCensReg (Schumacher



Chapter 1. Preliminaries 30

et al., 2016). The data consists of n “ 181 observations of phosphorus concentration
(P ) in mg/L monthly measured from October 1998 to October 2013. The phosphorus
concentration measurement was subject to a detection limit (DL) of 0.02, 0.05, or 0.10
mg/L, depending on the time, and therefore 28 (15.47%) observations are left-censored.
Moreover, there are 7 (3.87%) missing observations from September 2008 to March 2009
due to a program suspension caused by a temporary lack of funding. Figure 4 displays the
phosphorus concentration (P ) time series; the red dotted line represents the DLs.

Figure 4 – Phophorus concentration data. Time series plots of P (black line) and the limit
of detection (red dotted line). Censored observations are marked by circles.
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This dataset was previously analyzed by Schumacher et al. (2017), considering
a censored regression model with independent errors under the normal distribution. The
analysis indicated that the assumption of independent errors is not valid, and hence, a
model with autocorrelated errors was evaluated. Based on information criteria and the
mean squared prediction error (MSPE), this last study concluded that the error modeled
as an autoregressive (AR) process of order one best fits this data. The authors also found
some influential observations. A similar dataset was studied by Wang & Chan (2018), who
proposed a quasi-likelihood estimation method for censored autoregressive models with
exogenous variables.

1.3.4 Trace metals in freshwater streams data

This dataset includes data on the concentration levels of five dissolved trace
metals –copper (Cu), lead (Pb), zinc (Zn), calcium (Ca), and magnesium (Mg)– measured
at 184 randomly selected freshwater sites across Virginia. The concentrations for Cu, Pb,
and Zn are expressed in micrograms per liter (µg/L) of water, while the concentrations for
Ca and Mg are in milligrams per liter (mg/L). The detection limits are set at 0.1 µg/L
for Cu and Pb, 1.0 µg/L for Zn, and vary between 0.5 mg/L and 1.0 mg/L for Ca and
Mg, depending on the timing of measurements. The dataset also indicates the proportion
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of measurements below the detection limits, known as left-censored values: 2.7% for Ca,
4.9% for Cu, 9.8% for Mg, 38.6% for Zn, and 78.3% for Pb.

Figure 5 shows the histogram for each original metal concentration level with
the detection limits and censoring proportion. Here, all the distributions are right-skewed
and heavy-tailed.

Figure 5 – VDEQ data. Histograms of the original five trace metal concentrations: Cu,
Pb, Zn (in µg/L of water), Ca, and Mg (in mg/L of water). The red dashed
lines represent the detection limits.
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Galarza et al. (2022b) recently analyzed this dataset, concluding through a
likelihood ratio test (LRT) that the skewness parameter is different from zero for the model
that considers the original variables. On the other hand, when a logarithmic transformation
is applied, the LRT does not reject the null hypothesis, i.e., λ “ 0.

1.3.5 Stellar abundances data

The Stellar abundances dataset consists of 3 measured variables for n “ 68
solar-type stars, 39 stars known to host planets, and 29 in a control sample of stars without
planets. The proportion of left-censored and missing values is 17.6% and 47.1% for Be
and Li, respectively. Moreover, 51.5% of the stars had all measures fully observed, 32.3%
had one metal partially detected, and the other 16.2% had both partially detected. This
dataset has been analyzed by Santos et al. (2002) using a nonparametric approach, and it
is available in the R package astrodatR (Feigelson, 2014).

Figure 6 shows the scatter plot of the logarithm of beryllium (top) and lithium
(bottom) against the temperature in Kelvin degrees/1000 for stars known to host planets
(right) and the control sample stars (left). Here, black points represent completely observed
values, blue points denote left-censored observations, which are also depicted by the
direction of the arrow, and red symbols are representing missing data.
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Figure 6 – Stellar data. Scatter plot for the logarithm of beryllium (top) and lithium
(bottom) abundances against temperature.
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1.3.6 A5055 data

The A5055 dataset comes from the AIDS clinical trial study A5055 (Wang,
2013), which involves 44 infected patients with the human immunodeficiency virus type
1 (HIV-1). These patients were treated with one of the two potent antiretroviral (ARV)
therapies: IDV 800mg twice daily (q12h) plus RTV 200mg q12h (treatment 1), or IDV
400mg q12h plus RTV 400mg q12h (treatment 2). In AIDS research, plasma viral load
(number of RNA copies) and its trajectories are crucial for diagnosing HIV-1 disease
progression post-ARV treatment (Paxton et al., 1997). Another important immunologic
marker for monitoring disease progression in AIDS studies is the cluster of differentiation
4 (CD4).

The dataset includes plasma viral load measurements (in copies per milliliter)
and CD4 cell counts, collected at approximately days 0, 7, 14, 28, 56, 84, 112, 140, and
168 of follow-up for each patient. This study focuses on the longitudinal trajectories of
RNA viral load, converted to a log-base-10 scale and denoted by log10(RNA). The lower
detection limit for RNA viral load is 50 copies/milliliter, corresponding to 1.698 on the
log-base-10 scale, with 33.5% (106 out of 316) of measurements below this quantification
limit (left-censored). Figure 7 shows the trajectories of immunologic responses over time.
The red dashed line denotes the detection limit, log10p50q, and the blue points represent
the mean of the viral load per week.
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Figure 7 – A5055 data. Trajectories of log10RNA for 44 HIV-1 infected patients who were
randomized in two IDV-RTV regimens. The blue line denotes the mean of the
viral load per week, and the red dashed line indicates the detection limit.
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2 Moments and random number generation
for the Truncated Elliptical family of distri-
butions

2.1 Introduction
The use of truncated distributions arises in a wide variety of statistical mod-

els, such as survival analysis, censored data models, Bayesian models with truncated
parameter space, and abound in agronomy, biology, environmental monitoring, medicine,
and economics. Algorithms like Expectation-Maximization (EM) (Dempster et al., 1977)
are employed frequently in multivariate censored data analysis under a likelihood-based
perspective for its facility to deal with missing and partially observed data. This algorithm
requires the computation of conditional truncated moments, commonly the first two mo-
ments. For example, Matos et al. (2016) and Matos et al. (2013b) estimated the parameters
of a censored mixed-effects model for irregularly repeated measures via the EM algorithm,
which needed to compute the first two moments of a truncated multivariate t (TMVT)
and a truncated multivariate normal (TMVN) distributions, respectively. Variations of the
EM algorithm, such as Stochastic Approximation EM (SAEM) (Delyon et al., 1999) and
Monte Carlo EM (MCEM) (Wei & Tanner, 1990), replace the conditional expectations
with an approximation that requires drawing independent random observations from a
truncated distribution. For instance, Lachos et al. (2017) estimated the parameters of
a linear spatial model for censored data using the SAEM algorithm, which needed to
generate random samples from the TMVN distribution to perform the stochastic approxi-
mation step. More recently, using the SAEM algorithm, Lachos et al. (2019) proposed a
robust multivariate linear mixed model for multiple censored responses based on the scale
mixtures of normal (SMN) distributions. Moreover, Gelfand et al. (1992) showed how to
perform Bayesian analysis for constrained parameters or truncated data problems using
Gibbs sampling. Therefore, sampling random observations and computing moments from
truncated distributions is a task of considerable interest.

There are several methods to generate random samples from a truncated
distribution in the literature, making the rejection sampling (RS) technique the most
common. For instance, in the simplest case, when the non-truncated distribution is
considered as the “proposal” probability density function (pdf), the RS method draws
samples from the latter and retains only the samples inside the support region. However,
the procedure may be inefficient for truncated distributions, especially when the truncation
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interval is too small or located at a less probable area of the pdf. As an alternative,
Robert (1995) proposed an accept-reject algorithm, which dramatically improves the RS
method’s efficiency for simulating one-dimensional truncated normal distributions. This
method is available through the R (R Core Team, 2021) function rtnorm (Hadfield,
2022). Besides, the Gibbs sampler algorithm is the most commonly used Markov Chain
Monte Carlo (MCMC) method, which generates random observations from a multivariate
density by sampling in succession from the full conditional distributions. Nevertheless, its
implementation may need methods for sampling from nonstandard univariate distributions.
See that an extension to the multivariate framework of the accept-reject algorithm was
implemented through a Gibbs sampler (Geman & Geman, 1984; Gelfand & Smith, 1990).

Later, some automatic and self-tuning samplers for univariate distributions
emerged, such as the adaptive rejection sampling (ARS) (Gilks & Wild, 1992), the
adaptive rejection Metropolis sampling (ARMS) (Gilks et al., 1995), the adaptive rejection
Metropolis sampling using Lagrange interpolation polynomials of degree 2 (ARMS2)
(Meyer et al., 2008), the independent doubly adaptive rejection Metropolis sampling
(IA2RMS) (Martino et al., 2015a), among others. ARS is an efficient random generator
for log-concave distributions, which leads to independent samples and ensures that the
sequence of proposals converges to the target pdf. This method reduces the number of
evaluations of the target in RS by improving the proposal after each rejection, which is
piecewise exponential. To deal with non-log-concave distributions, ARMS generalizes the
ARS method by incorporating a Metropolis-Hastings step. This algorithm may return
correlated samples, and it cannot guarantee the convergence of the sequence of proposals
to the target; even so, it has often been preferred over other MCMC techniques due to its
good performance. This method is available in the R library armspp (Bertolacci, 2019). In
contrast, ARMS2 is an extension of ARS and ARMS, whose proposal function is a sequence
of two piecewise exponential and n ´ 2 truncated normal densities, with n representing
the number of elements in the set of support points. On the other hand, IA2RMS is a
variation of ARMS, which ensures that the sequence of proposals converges to the target
leading to a reduction of the correlation. This algorithm, unlike ARMS, decouples the
adaptation mechanism from the proposed construction, allowing one to consider simpler
alternatives for the candidate density.

Another alternative to sampling from truncated multivariate distributions is
the slice sampler algorithm (Neal, 2003), which turns sampling from a truncated density
into sampling repeatedly from uniform distributions instead by introducing an auxiliary
variable. This approach is often easier to implement than Gibbs sampling. In general, it is
easy to code, fast and does not generate samples out of the truncation region, making it
more efficient than the conventional rejection method. The auxiliary variables were also
employed by Damien & Walker (2001) to sample from the TMVN distribution. In the
same way, Ho et al. (2012) used slice sampling to draw random points from the TMVT
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distribution.

Regarding calculating moments from truncated distributions, there are a few
libraries in R that provide truncated multivariate moments. For instance, the package
tmvtnorm (Wilhelm, 2015) computes the mean and the variance of the TMVN distribution
by deriving its moment generating function, which is an extension of the method described
by Tallis (1961). In contrast, the MomTrunc library (Galarza et al., 2021a) uses a recursive
approach method proposed by Kan & Robotti (2017) to compute arbitrary higher-order
moments (Galarza et al., 2022b). For the TMVT distribution, the packages TTmoment
and MomTrunc compute its two first moments. The first library only handles integer
degrees of freedom greater than 4, while the latter can compute even high-order moments
for any degrees of freedom (Galarza et al., 2021c).

To the best of our knowledge, there are no proposals in the literature to generate
samples from other multivariate truncated distributions in the elliptical class other than the
TMVN and TMVT distributions (available in the tmvtnorm and TTmoment packages).
Hence, motivated by the slice sampling algorithm, we propose a general method to
obtain samples from any truncated multivariate elliptical distribution with a strictly
decreasing density generating function (dgf). Using conditional expectation properties, we
also construct an efficient algorithm to approximate the moments of the most common
distribution of this class: the truncated multivariate normal, Student-t, slash, contaminated
normal, and Pearson VII distributions. This method requires less running time than the
existing ones since it deals separately with the truncated and non-truncated parts of the
vector. Our proposal can be reached through the R package relliptical.

Finally, it is worth mentioning that moments of truncated elliptical distributions
can be used to compute truncated moments for the selection elliptical family of distributions.
This wide family includes complex multivariate asymmetric versions of the elliptical
distributions as the extended skew-normal and the unified skew-t distributions, among
others. Therefore, our proposal opens the doors for the calculation of truncated moments
of complex elliptical asymmetric distributions, which are of particular interest for the
development of robust censored models with asymmetry, heavy tails, and missingness (see,
for instance, De Alencar et al., 2021; Galarza et al., 2021b).

This chapter is organized as follows. Section 2.2 shows some results related
to the elliptical and truncated elliptical family of distributions and a brief description of
the slice sampling algorithm. Section 2.3 is devoted to the formulation of the sampling
algorithm for the truncated elliptical distributions, whereas Section 2.4 focuses on our
proposed method to approximate the first and the second moment. For the last two
sections, we present a brief introduction to its respective R function. A simulation study
that compares the mean and covariance matrix for the TMVT distribution estimated
through different methods in R is presented as well.
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2.2 Preliminaries

2.2.1 Elliptical family of distributions

As defined in Muirhead (2009) and Fang (2018), a p-variate random vector X
is said to follow an elliptical distribution with location parameter µ P Rp, positive-definite
scale matrix Σ P Rpˆp, and density generating function g, if its pdf is given by

fXpxq “ cp |Σ|
´ 1

2 g
`

px ´ µq
JΣ´1

px ´ µq
˘

, (2.1)

for x P Rp, where gptq is a non-negative Lebesgue measurable function on r0,8q such that
ż 8

0
tp{2´1gptq dt ă 8.Moreover,

cp “
Γpp{2q

πp{2

ˆ
ż 8

0
tp{2´1gptq dt

˙´1

is the normalizing constant, with Γp¨q representing the complete gamma function. We will
use the notation X „ Eℓppµ,Σ; gq.

Members of the elliptical family of distributions are characterized by their
density-generating function g. Some examples of the elliptical family of distributions are:

• The multivariate normal distribution, X „ Nppµ,Σq, with mean µ and variance-
covariance matrix Σ, arises when the dgf takes the form gptq “ expp´t{2q, t ě 0.

• The multivariate Student-t distribution, X „ tppµ,Σ, νq, with location parameter
µ, scale matrix Σ, and degrees of freedom ν ą 0, is obtained when gptq “ p1 `

t{νq
´pν`pq{2, t ě 0.

• The multivariate power exponential, X „ PEppµ,Σ, βq, is characterized by a kurtosis
parameter β ą 0 and the dgf gptq “ expp´tβ{2q, t ě 0. A particular case of the
power exponential distribution is the normal distribution, which arises when β “ 1.

• The multivariate slash, X „ SLppµ,Σ, νq, is defined for a random variable X with

dgf gptq “

ż 1

0
uν`p{2´1 expp´ut{2q du, t ě 0, ν ą 0.

• The multivariate contaminated normal, X „ CNppµ,Σ, ν, ρq, 0 ď ν ď 1, 0 ă ρ ď 1,
is characterized by the dgf gptq “ p1 ´ νq expp´t{2q ` ν expp´t{p2ρqq, t ě 0. Here,
ν represents the proportion of contamination, and ρ scales the variance of the
contaminating component relative to the primary distribution.

• The multivariate Pearson VII distribution, X „ PVIIppµ,Σ,m, νq, with parameters
µ P Rp, Σ P Rpˆp, m ą p{2, and ν ą 0 is obtained when gptq “ p1 ` t{νq

´m, t ě 0.

For more distributions belonging to this family, please see Fang (2018).
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2.2.2 Truncated elliptical family of distributions

Let A Ď Rp be a measurable set. We say that a p-variate random vector Y
has a truncated elliptical distribution with support A, location parameter µ P Rp, scale
parameter Σ P Rpˆp, and dgf g, if its pdf is given by

fYpyq “
g
`

py ´ µqJΣ´1
py ´ µq

˘

ş

A
g
`

py ´ µqJΣ´1
py ´ µq

˘

dy
“

fXpyq

PrpX P Aq
, y P A, (2.2)

where X „ Eℓppµ,Σ; gq. We use the notation Y „ TEℓpµ,Σ; g, Aq. Notice that the pdf of
Y is written as the ratio between the pdf of X „ Eℓppµ,Σ; gq and PrpX P Aq, so the pdf
of Y exists if the pdf of X does, which occurs if Σ is positive-definite (see, Morán-Vásquez
& Ferrari, 2021). The variable Y is also said to be an elliptical distribution truncated on
A, being represented by Y d

“ X | pX P Aq, where d
“ means “has the same distribution as”.

As in the elliptical family of distributions, the dgf g determines any distribution
within the truncated elliptical class. For example, if gptq “ p1 ` t{νq

´pν`pq{2, t ě 0, ν ą 0,
then Y has TMVT distribution. We will denote the different members of the truncated
elliptical family defined in the subsection before as Y „ TNppµ,Σ;Aq for the TMVN
distribution, Y „ Ttppµ,Σ, ν;Aq for the TMVT distribution, Y „ TPEppµ,Σ, β;Aq for
the truncated multivariate power exponential, Y „ TSLppµ,Σ, ν;Aq for the truncated mul-
tivariate slash distribution, and Y „ TPVIIppµ,Σ,m, ν;Aq for the truncated multivariate
Pearson VII distribution.

2.2.3 Slice sampling algorithm

A slice sampler is a form of auxiliary variable technique in which one or more
variables are introduced to facilitate the construction of an MCMC method. The idea
of using auxiliary variables in MCMC methods was established for the Ising model by
Swendsen & Wang (1987), and it was brought into the statistical literature by Besag &
Green (1993). Following Neal (2003), an MCMC method can be constructed using the
principle that it can sample from a given distribution by simulating uniformly from the
region under the plot of its density function.

Suppose we are interested in sampling from the distribution of a random
variable X P Rp, whose pdf is proportional to the function fpxq. The slice sampler
algorithm simulates uniformly from the pp ` 1q-dimensional region under the plot of fpxq

by introducing a real auxiliary variable, Y , such that the joint pdf of X and Y is uniform
over the region V “ tpx, yq : 0 ă y ă fpxqu, i.e., fX,Y px, yq9I p0 ă y ă fpxqq, with Ip¨q

being an indicator function. Therefore, we can obtain samples from the distribution of X
by sampling jointly px, yq and then ignoring y.

Note that generating independent random points uniformly distributed on V

may not be easy. To overcome this problem, Neal (2003) defined a Markov Chain that
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converges to this uniform distribution similar to Gibbs sampler or Metropolis-Hastings
algorithms. Then, considering Gibbs sampler steps, the slice sampling at iteration k works
as follows:

1. Given the current value of xk´1, sample yk from Y | pX “ xk´1q „ U p0, fpxk´1qq.

2. Draw xk from the conditional distribution of X given yk, which is uniform over the
region Sk “ tx : yk ă fpxqu, i.e., X | pY “ ykq „ Uptx : yk ă fpxquq.

For all k “ 1, 2, . . . , n, where n is the desired sample size. We can notice that the slice
sampling method is easily implemented for univariate random variables. In contrast, for
the multivariate case (p ą 1), sampling uniformly from the region Sk may be complex, in
which case we can employ some update for x that leaves the uniform distribution invariant
over this slice.

Figure 8 shows the steps of the slice sampling algorithm for a univariate random
variable X. Given an initial value X “ x0,

1. Simulate y1 from Y | pX “ x0q „ U p0, fpx0qq.

2. Simulate x1 from X | pY “ y1q „ UpS1q, with S1 “ tx : y1 ă fpxqu.

These two steps are repeated n times by making x0 “ x1 in the next iteration.

Figure 8 – Slice sampling algorithm for univariate random variables.

x0

y1
Slice

f(x0)

Y|(X = x0) ~ U(0, f(x0))

Step 1

x0x1

y1

Slice

X|(Y = y1) ~ U({ x : y1 < f(x) })

Step 2

2.3 Sampling from the truncated elliptical family of distributions
This section is devoted to describing our slice sampling algorithm with Gibbs

steps to generate random observations from a multivariate elliptical distribution with
strictly decreasing dgf.

We first consider a p-variate truncated elliptical distribution with zero location
parameter, positive-definite scale matrix R P Rpˆp, dgf g, and truncation region A “

tpx1, . . . , xpq
J : a1 ă x1 ă b1, . . . , ap ă xp ă bpu “ tx : a ă x ă bu, a,b P Rp, in other
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words, we will consider X „ TEℓpp0,R; g, Aq. Here R is a correlation matrix, such that
the scale matrix can be written as Σ “ ΛRΛ, where Λ “ diagp

?
σ11,

?
σ22, . . . ,

?
σppq.

The pdf of X is given by

fXpxq 9 g
`

xJR´1x
˘

I px P Aq . (2.3)

Now, in order to sample uniformly from the pp` 1q-dimensional region under
the plot of fXpxq, we introduce an auxiliary variable Y , such that the joint pdf of X and
Y is

fX,Y px, yq 9 I
`

0 ă y ă g
`

xJR´1x
˘˘

I pa ă x ă bq . (2.4)

It is enough to calculate the conditional distributions of Y | X and X | Y to
establish our slice sampling algorithm with Gibbs steps to generate random observations
from the pdf in (2.4). These are given by:

fY |Xpy | xq 9 I
`

0 ă y ă g
`

xJR´1x
˘˘

and

fX|Y px | yq 9 I
`␣

x : y ă g
`

xJR´1x
˘

^ a ă x ă b
(˘

.

Note that sampling y from the distribution of Y | pX “ xq is straightforward, but sampling
from X | pY “ yq is not trivial. Thus, we use the idea of Damien & Walker (2001), and
Ho et al. (2012), which consists in sampling each element of X in succession from the full
conditional distributions; in other words, we will apply the Gibbs sampler algorithm within
the slice sampling mechanism. Therefore, note that the full conditional distributions are

fXj |X´j ,Y pxj|x´j, yq 9 Ipxj P Ajq,

where X´j “ pX1, . . . , Xj´1, Xj`1, . . . , Xpq
J and Aj “ txj : y ă g

`

xJR´1x
˘

^ aj ă xj ă

bju, for all j “ 1, . . . , p. To find the elements of the real set Aj , let y be the value sampled
at the current iteration of the algorithm and κy “ g´1

pyq. Then, we have that

1. Since g is a strictly decreasing function, it follows that y ă gpxJR´1xq is equivalent
to κy ą xJR´1x.

2. Write xJR´1x “ ρjj
pxj ´ λjq

2
´ ρjjλ2

j ` ηj, where ρij is the pi, jqth element of the

inverse of R, ηj “
ÿ

t‰j

ÿ

r‰j

xtxrρ
tr and λj “ ´

1
ρjj

ÿ

r‰j

xrρ
jr.

3. Combining items 1 and 2, we obtain that λj ´ τj ă xj ă λj ` τj, where τj “
ˆ

λ2
j `

1
ρjj

pκy ´ ηjq

˙1{2

.

4. Because xj P paj, bjq, thereby a˚
j “ maxpaj, λj ´ τjq ă xj ă minpbj, λj ` τjq “ b˚

j .
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It follows that Aj “ pa˚
j , b

˚
j q. The steps to draw n samples from a p-variate

truncated elliptical distribution X „ TEℓpp0,R; g, Aq are summarized in Algorithm 1. As
seen, only univariate uniform simulations are involved in the algorithm, which is fast to
compute. Note also that the assumption that the dgf g is strictly decreasing has been used
in step 1. However, when it is not possible to find an analytical expression for κy “ g´1

pyq,
a numerical method is used, leading us to a more computationally expensive algorithm.

Algorithm 1 Slice sampling algorithm

Require: Sample size n ě 1, initial value x0 “ px
p0q

1 , . . . , xp0q
p q

J
P Rp, scale matrix

R P Rpˆp, lower bound a P Rp, upper bound b P Rp, and strictly decreasing dgf
gptq, t ě 0.

1: for i Ð 1 to n do
2: Simulate yi from Y | pX “ xi´1q „ Up0, gpxJ

i´1R´1xi´1qq

3: κy Ð g´1
pyiq

4: for j Ð 1 to p do
5: ηj Ð

ÿ

t‰j

ÿ

r‰j

xtxrρ
tr

6: λj Ð ´
1
ρjj

ÿ

r‰j

xrρ
jr

7: τj Ð

ˆ

λ2
j `

1
ρjj

pκy ´ ηjq

˙1{2

8: Sample xpiq
j from Xj | pX´j “ xpiq

´j, Y “ yq „ Upmaxpaj, λj ´ τjq, minpbj, λj `

τjqq, where xpiq
´j “ px

piq
1 , . . . , x

piq
j´1, x

pi´1q

j`1 , . . . , xpi´1q
p q

J

9: xirjs Ð x
piq
j

10: Xri, js Ð x
piq
j

11: end for
12: end for
Ensure: X

Additionally, the slice sampler method generates random observations condi-
tioned on previous values, resulting in a sequence of correlated samples. Thus, it is essential
to analyze the dependence effect. See, for instance, Robert & Casella (2010), and Section
A.3 from Appendix, where samples generated from specific bivariate distributions were
observed, and the autocorrelation drops quickly, being negligibly small when lags become
large, evidencing well mixing and quickly converging. The sampling method described here
can be extended for a general dgf g by constructing an adequate “slice” at each iteration.
Please refer to Section 4.1 in Neal (2003).

Moreover, members of the truncated elliptical family of distributions are
closed under affine transformations (Fang, 2018). Hence drawing samples from Y „

TEℓppµ,Σ; g, pa,bqq may be readily done by sampling first from X „ TEℓpp0,R; g,
pa˚,b˚

qq and then recovering Y by the following transformation Y “ µ ` ΛX, such that
Σ “ ΛRΛ, a˚

“ Λ´1
pa ´ µq, and b˚

“ Λ´1
pb ´ µq.
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2.4 Moments of truncated multivariate elliptical distributions
Here we describe an adaptation of the method proposed by Galarza et al.

(2022a) to compute the first moment and the variance-covariance matrix of a random
vector whose distribution belongs to the truncated elliptical family. Furthermore, this
method will be applied to some well-known distributions.

Let Y be a p-variate random vector that follows a truncated multivariate
elliptical distribution with location parameter µ P Rp, positive-definite scale matrix
Σ P Rpˆp, dgf g, and support A Ď Rp, i.e., Y „ TEℓppµ,Σ; g, Aq. The more straightforward
approach for computing the first two moments of Y is to use Monte Carlo integration.
Following this method, the moments EpYq,EpYYJ

q, and CovpYq can be approximated
by

zEpYq “
1
n

n
ÿ

i“1
yi,

{EpYYJ
q “

1
n

n
ÿ

i“1
yiyJ

i , and {CovpYq “
{EpYYJ

q ´ zEpYq zEpYq
J

,

where yi is the ith sample draws independently from TEℓppµ,Σ; g, Aq. However, it is
well-known that the execution time needed to perform Monte Carlo integration depends
on the algorithm employed to draw samples, the number of random points (n) used in
the approximation, and the length of the random vector (p). Then, it depends on some
variables that might represent a considerable computational effort. Nevertheless, we can
save time when the random vector Y has non-truncated components, following the idea
of Galarza et al. (2022a). They proposed to decompose Y into two vectors, Y1 and Y2,
in such a way that Y1 is the random vector of truncated components and Y2 is the
non-truncated part. Then, the first two moments for the truncated variables are computed
using any method, and the remaining moments are computed using properties of the
conditional expectation. Before showing our algorithm, we state an extremely important
result.

Proposition 1 (Marginal and conditional distribution of the Elliptical family). Let X be
partitioned into two vectors, X1 and X2 of dimensions p1 and p2, such that p “ p1 ` p2,
and X “ pXJ

1 ,XJ
2 q

J has joint multivariate elliptical distribution as follows

X “

˜

X1

X2

¸

„ Eℓp1`p2

`

µ,Σ; gpp1`p2q
˘

,

with

µ “

˜

µ1

µ2

¸

, Σ “

˜

Σ11 Σ12

Σ21 Σ22

¸

,

partitioned such that µ1 P Rp1, µ2 P Rp2 are location vectors, Σ11 P Rp1ˆp1 ,Σ22 P

Rp2ˆp2 ,Σ12 P Rp1ˆp2 ,Σ21 P Rp2ˆp1 are dispersion matrices, and gpp1`p2q is the dgf. The
distributions of X1 and X2 | pX1 “ xq belong to the elliptical family of distributions, as
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follows

X1 „ Eℓp1

´

µ1,Σ11; gpp1q
¯

X2 | pX1 “ xq „ Eℓp2

´

µ2 ` Σ21Σ´1
11 px ´ µ1q,Σ22 ´ Σ21Σ´1

11 Σ12; gpp2q
x

¯

.

For additional information, refer to Chapter 2 in Fang (2018).

Building on Proposition 1, if Y1 denotes the vector of variables truncated
within region A1 “ ty1 : a1 ă y1 ă b1u and Y2 represents the vector of non-truncated
variables, with the combined truncation region specified as A “ A1 ˆ Rp2 , then it follows
that

Y1 „ TEℓp1pµ1,Σ11; gpp1q, A1q

Y2 | pY1 “ yq „ Eℓp2

`

µ2 ` Σ21Σ´1
11 py ´ µ1q,Σ22 ´ Σ21Σ´1

11 Σ12; gpp2q
y

˘

.

Now let ξ1 “ EpY1q and Ω11 “ CovpY1q. Then, using the results exposed by
Galarza et al. (2022a), the first moment of Y can be computed by

EpYq “ EpEpY | Y1qq “ E

˜

Y1

EpY2|Y1q

¸

“ E

˜

Y1

µ2 ` Σ21Σ´1
11 pY1 ´ µ1q

¸

“

˜

ξ1

µ2 ` Σ21Σ´1
11 pξ1 ´ µ1q

¸

. (2.5)

On the other hand, the variance-covariance matrix of Y is given by

CovpYq “

˜

Ω11 Ω11Σ´1
11 Σ12

Σ21Σ´1
11 Ω11 Ψ22

¸

, (2.6)

where Ψ22 “ ω2.1Σ22 ´ Σ21Σ´1
11

`

ω2.1Ip1 ´ Ω11Σ´1
11
˘

Σ12, ω2.1 “ E phpY1qq, hpY1q “

tr
`

CovpY2|Y1q Σ´1
2.1
˘

{p2, and Σ2.1 “ Σ22 ´ Σ21Σ´1
11 Σ12. Note that hpY1q depends on

the conditional distribution of Y2 | Y1, taking a different expression for each member of
the elliptical family.

Thereby, this work proposes to use Monte Carlo integration to approximate
the truncated moments ξ1, Ω11, and ω2.1 (when necessary) instead of computing them
using recursion-based methods (e.g., Galarza et al., 2021c) which can be computationally
more expensive for high dimensions or complex elliptical distributions. For instance, to
the best of our knowledge, closed-form expressions to compute the first two moments
of truncated elliptical distributions only exist for the TMVN and TMVT distributions.
These expressions are not very efficient (as demonstrated in a simulation study in Section
2.4.2) in practice because, due to their recursive nature, they suffer from error propagation
and require an intensive calculation of probabilities, which in turn depend on numerical
approximation methods. A summary of how our method works is given in Algorithm 2.
The first moment and the variance-covariance matrix are approximated by (2.5)–(2.6).
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Algorithm 2 Mean and variance approximation
Require: Sample size n ě 1, location parameter µ P Rp, scale matrix Σ P Rpˆp, lower

bound a P Rp, upper bound b P Rp, and strictly decreasing dgf gptq, t ě 0.
1: Identify: µ1,µ2,Σ11,Σ22,Σ12, A1 “ ty1 : a1 ă y1 ă b1u

2: for i Ð 1 to n do
3: Draw y1i from Y1 „ TEℓp1pµ1,Σ11; gpp1q, A1q using Algorithm 1
4: end for
5: pξ1 Ð

1
n

n
ÿ

i“1
y1i; pΩ11 Ð

1
n

n
ÿ

i“1
y1iyJ

1i ´ pξ1
pξ

J

1 ; pω2.1 Ð
1
n

n
ÿ

i“1
hpy1iq

6: zEpYq Ð

˜

pξ1
µ2 ` Σ21Σ´1

11 ppξ1 ´ µ1q

¸

7: {CovpYq Ð

ˆ

pΩ11 pΩ11Σ´1
11 Σ12

Σ21Σ´1
11

pΩ11 pΨ22

˙

8: {EpYYJ
q Ð {CovpYq ` zEpYq zEpYq

J

Ensure: zEpYq, {EpYYJ
q, {CovpYq

2.4.1 Mean and variance for the truncated elliptical distributions

This subsection is devoted to analyzing how Algorithm 2 works for some specific
distributions considering all the conditions used previously. Let µ2.1pxq “ µ2 `Σ21Σ´1

11 px´

µ1q, Σ2.1 “ Σ22 ´ Σ21Σ´1
11 Σ12, δ1pxq “ px ´ µ1q

JΣ´1
11 px ´ µ1q, and A “ A1 ˆ Rp2 . Here,

it is considered that Y d
“ X|pX P Aq.

• Normal: If X „ Nppµ, Σq, the marginal distribution is X1 „ Np1pµ1, Σ11q and
the conditional distribution is X2|pX1 “ xq „ Np2pµ2.1pxq, Σ2.1q. Then, to compute
the moments for Y „ TNppµ,Σ;Aq with the conditions above, Algorithm 2 firstly
samples Y1 from the TMVN distribution with location parameter µ1, scale matrix
Σ11, truncation region A1, and ω2.1 “ 1.

• Student-t: If X „ tppµ, Σ, νq, ν ą 0, the marginal and conditional distributions are
X1 „ tp1pµ1, Σ11, νq and X2|pX1 “ xq „ tp2pµ2.1pxq, λpxqΣ2.1, ν` p1q, respectively,
such that λpxq “ pν ` δ1pxqq{pν ` p1q. For this distribution EpXq exists, if ν ą 1
and CovpXq exists, if ν ą 2. Therefore, the moments for Y „ Ttppµ,Σ, ν;Aq are
computed by sampling Y1 from the TMVT distribution with location parameter µ1,
scale matrix Σ11, ν degrees of freedom, truncation region A1, and ω2.1 given by

ω2.1 “
ν ` Epδ1pY1qq

ν ` p1 ´ 2 ,

with Epδ1pY1qq “ trpΩ11Σ´1
11 q ` pξ1 ´ µ1q

JΣ´1
11 pξ1 ´ µ1q. It is worth mentioning

that for doubly truncated variables, variables which are constrained both below and
above, the mean and the variance exist for all ν ą 0. Then, if Y has at least two
doubly truncated components, the mean and the variance-covariance matrix exist
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for all ν ą 0. For more details about the existence of these moments, please refer to
Galarza et al. (2022a).

• Pearson VII: If X „ PVIIppµ, Σ, m, νq, m ą p{2, ν ą 0, then EpXq “ µ and
CovpXq “

ν

2m ´ p ´ 2Σ. In this case, EpXq exists, if m ą pp ` 1q{2 and CovpXq

exists, if m ą pp ` 2q{2. The marginal and the conditional distributions are X1 „

PVIIp1pµ1, Σ11, m´p2{2, νq and X2 | pX1 “ xq „ PVIIp2pµ2.1pxq, Σ2.1, m, δ1pxq`

νq, respectively. So, the proposed algorithm for Y „ TPVIIppµ,Σ,m, ν;Aq was im-
plemented by sampling Y1 from the truncated multivariate Pearson VII distribution
with location parameter µ1, scale matrix Σ11, additional parameters m´p2{2 ą p1{2,
ν ą 0, and truncation region A1. The constant ω2.1 is

ω2.1 “
ν ` Epδ1pY1qq

2m ´ p2 ´ 2 ,

where Epδ1pY1qq is given as in the Student-t distribution. For this distribution, first
and second moments for doubly truncated variables exist for all m ą p{2. Then, if X
has at least two doubly truncated variables, the mean and the variance exist for all
m ą p{2. For more details about the existence of the moments, refer to Subsection
A.1.1 in the Appendix section.

• Slash: If X „ SLppµ, Σ, νq, ν ą 0, then EpXq “ µ and CovpXq “
ν

ν ´ 1Σ. In this
case, CovpXq exists, if ν ą 1. The marginal distribution is X1 „ SLp1pµ1, Σ11, νq

and the conditional distribution is X2 | pX1 “ xq „ Eℓp2pµ2.1pxq, Σ2.1; gpp2q
x q, such

that gpp2q
x ptq “

ż 1

0
uν`p{2´1 expt´upt ` δ1pxqq{2u du. Note that X2 | X1 does not

follow a slash distribution, but its distribution belongs to the elliptical family
(see Appendix, Subsection A.1.2). So, the moments for Y „ TSLppµ,Σ, ν;Aq are
calculated by sampling Y1 from the truncated multivariate slash distribution with
location parameter µ1, scale matrix Σ11, ν degrees of freedom, and truncation region
A1. The constant ω2.1 is

ω2.1 “
ν

ν ´ 1 E
ˆ

SLp1pY1; µ1,Σ11, ν ´ 1q

SLp1pY1; µ1,Σ11, νq

˙

,

where SLppy; µ,Σ, νq denotes the pdf of a p-variate slash distribution with parame-
ters µ,Σ, and ν. As usual, this constant can also be approximated via Monte Carlo
integration.

• Contaminated Normal: If X „ CNppµ,Σ, ν, ρq, 0 ď ν ď 1, 0 ă ρ ď 1, then the
marginal is X1 „ CNp1pµ1, Σ11, ν, ρq and the conditional distribution is X2|pX1 “

xq „ CNp2pµ2.1pxq, Σ2.1, ν2.1pxq, ρq, with ν2.1pxq “ νϕp1px; µ1, ρ
´1Σ11q{κpxq, κpxq “

νϕp1px; µ1, ρ
´1Σ11q ` p1 ´ νqϕp1px; µ1, Σ11q, and ϕppx; µ, Σq denoting the pdf of a

p-variate normal distribution with mean µ and variance Σ evaluated at point x P Rp.
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Thus, our algorithm for Y „ TCNppµ,Σ, ν, ρ;Aq samples Y1 from the truncated
contaminated normal distribution with parameters µ1, Σ11, ν, and ρ. The constant
is ω2.1 “ ν˚

2.1{ρ ` 1 ´ ν˚
2.1, where ν˚

2.1 “ Epν2.1pY1qq. This value is also approximated
via Monte Carlo integration.

• Power exponential: If X „ PEppµ, Σ, βq, β ą 0, then EpXq “ µ and CovpXq “

ωΣ, with ω “ 21{βΓ
ˆ

n ` 2
2β

˙

{

ˆ

nΓ
ˆ

n

2β

˙˙

. The marginal distribution of X1 be-
longs to the elliptical family of distributions with dgf

gpp1q
ptq “ t

p´p1
2

ż 1

0
w

p1´p

2 p1 ´ wq
p´p1

2 ´1 expt´
tβ

2wβ
u dw,

i.e., X1 „ Eℓp1pµ1,Σ11; gpp1q
q. The conditional distribution is X2 | pX1 “ xq „

Eℓp2pµ2.1pxq, Σ2.1; gpp2q
x q where gpp2q

x ptq “ exp
␣

´
1
2pt` δ1pxqq

β
(

(Gómez et al., 1998).
Therefore to approximate the moments for Y „ TPEppµ,Σ, β;Aq, we will use a
different approach that consists of drawing points from the whole random vector of
length p and then approximate the moments using Monte Carlo integration, since
sampling directly from the marginal distribution of Y1 could be really complicated,
as well as to compute ω2.1.

2.4.2 Numerical examples

2.4.2.1 Simulation study I

We illustrate the application of the method by considering a random vector X “

pX1, X2, X3, X4q
J of length 4 with truncated Student-t distribution, X „ Tt4pµ,Σ; pa ,bqq,

characterized by the following parameters:

µ “

¨

˚

˚

˚

˚

˝

0.125
0.25
0.375
0.50

˛

‹

‹

‹

‹

‚

, Σ “

¨

˚

˚

˚

˚

˝

6.321 ´1.780 ´4.596 ´2.630
´1.780 4.149 1.175 0.568
´4.596 1.175 3.494 1.691
´2.630 0.568 1.691 5.738

˛

‹

‹

‹

‹

‚

, a “

¨

˚

˚

˚

˚

˝

´1.297
´8

´0.747
´1.269

˛

‹

‹

‹

‹

‚

, and b “

¨

˚

˚

˚

˚

˝

4.449
8

4.976
3.870

˛

‹

‹

‹

‹

‚

.

In this example, X2 is not truncated, and the other components are doubly
truncated. The objective is to study the performance of the estimates for the mean and the
variance-covariance elements obtained through Algorithm 2, considering a different number
of samples for approximation (n) and thinning, where thinning is a factor for reducing
autocorrelation between observations. After that, we compare those results with the
ones obtained from the R functions meanvarTMD and TT.moment available in packages
MomTrunc and TTmoment, respectively.

Figure 9 displays the boxplot for each element of the mean vector based on
100 estimates obtained through our proposal considering n “ 104 with thinning “ 1 and
3, n “ 105 with thinning “ 3, n “ 3 ˆ 105, and n “ 106 with no thinning (thinning “ 1).
It also shows the results came from functions meanvarTMD and TT.moment. It is worth



Chapter 2. Moments and random number generation for the TE family of distributions 47

noting that even though these two latter functions compute the first two moments using
closed-form expressions, there is a notable variability due to the approximation methods
used during the calculations. Hence, we will refer to the values obtained through these
functions as “estimates” rather than “true values”. On the other hand, the red dashed line
represents the median of the estimates achieved from function TT.moment.

Figure 9 – Boxplot based on 100 estimates of the truncated mean. The red line denotes
the median of TT.moment estimates.
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Method

For the case of n “ 104, the estimates obtained with no thinning have more
variability than those with thinning “ 3 (observations with lower autocorrelation). The
median of TT.moment estimates is closer to the median of our method in most cases,
except for n “ 104 with thinning “ 1. As expected, the variability in the estimates was
reduced when the number of observations was increased. The estimates from our algorithm
with 105 samples and thinning “ 3 were similar to those considering n “ 3 ˆ 105 and no
thinning. Recall that both methods need to generate the same number of samples; the
only difference here is that the first one (thinning “ 3) will need less memory space than
the other one. The best results were obtained throughout TT.moment and meanvarTMD

functions, and those are comparable with the estimates achieved from our proposal with
n “ 106 and no thinning.

Figure 10 shows the boxplot for the variance-covariance elements of the trun-
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Figure 10 – Boxplot based on 100 estimates of the variance-covariance elements. The
red line represents the median of the estimates obtained from function
TT.moment.
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Method

cated random vector considering each method described above. We noticed a slight
reduction in the variability of the estimates when considering a thinning equal to 3.
Another interesting fact is observed when we set n “ 105 and thinning “ 3; in this case,
it returned similar results to estimating the covariances with 3 ˆ 105 samples and no
thinning. The estimates achieved through our proposal considering n “ 106 are comparable
with those from TT.moment. In contrast, the estimates obtained from meanvarTMD are
similar to those from MC with n “ 105 and thinning “ 3 in most cases, except for σ11, σ33,
and σ13. For these parameters, our method showed better performance.

2.4.2.2 Simulation study II

In the previous example, it was observed that the estimates obtained from
Algorithm 2 with n “ 105 and thinning “ 3 are good enough to estimate the mean and
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variance matrix of a multivariate (p “ 4) variable with TMVT distribution, even though the
best results were obtained through the TT.moment function. In this example, our goal is to
analyze the computational time required for our method and the functions meanvarTMD
and TT.moment to estimate the first two moments and the variance-covariance matrix
of a p-variate random vector with TMVT distribution considering p “ 50, 100, and 150.
In each case, we set 10%, 20%, and 40% of the variables doubly truncated. The methods
were run on a Windows 10 machine using R 4.0.3 on an Intel Core i7-7700 Processor with
3.60 GHz and 32 GB of RAM.

Table 1 displays the median of the CPU time (in seconds) required for our
algorithm and functions meanvarTMD and TT.moment. For our proposal, three scenarios
were considered n “ 104 with no thinning, n “ 104, and n “ 105 with thinning “ 3. The
results are based on 100 simulations, and they were computed through the R function
microbenchmark. This table also shows the relative time (R.Time) computed, taking
the time used by our method with n “ 105 and thinning “ 3 as reference. We will refer
to this configuration as the “reference method.”

Table 1 – Median of the CPU time (in seconds) and relative time (R. Time) considering
n “ 105 with thinning “ 3 as the reference method, based on 100 simulations.

Method Measure p “ 50 p “ 100 p “ 150

10% 20% 40% 10% 20% 40% 10% 20% 40%
n “ 104 Median 0.011 0.030 0.139 0.030 0.140 0.952 0.071 0.382 2.842

thinning “ 1 R.Time 0.035 0.035 0.034 0.036 0.035 0.034 0.036 0.034 0.034

n “ 104 Median 0.031 0.084 0.404 0.085 0.405 2.820 0.199 1.118 8.461
thinning “ 3 R.Time 0.100 0.100 0.100 0.100 0.100 0.100 0.101 0.100 0.100

n “ 105 Median 0.314 0.844 4.042 0.846 4.044 28.217 1.974 11.182 84.619
thinning “ 3 R.Time - - - - - - - - -

meanvarTMD
Median 0.118 4.102 49.189 3.781 48.681 367.243 21.209 157.179 1215.630
R.Time 0.375 4.861 12.170 4.467 12.037 13.015 10.746 14.056 14.366

TT.moment
Median 7.452 24.027 94.408 62.026 202.704 789.641 242.701 800.360 3081.367
R.Time 23.767 28.0473 23.358 73.279 50.122 27.984 122.974 71.574 36.414

For our algorithm, we observe that the time required to estimate the moments
depends on the number of random observations sampled and the number of truncated
variables. Note that estimating the moments with n “ 104 took 3.50% of the time required
for the reference method, and it is worth mentioning that the number of samples needed
for the first method is 3.33% of the number of samples used for the reference one. Our
proposal with n “ 104 and thinning “ 3 already needed 10% of the execution time used by
the reference method. Observe that meanvarTMD was faster than the reference procedure
for vectors with 5 doubly truncated variables. It also seems that the time needed by
meanvarTMD depends only on the number of truncated variables. In comparison, the
TT.moment function is much more time-consuming in all scenarios if compared with our
proposal and function meanvarTMD, e.g., for a random vector of length p “ 100 and
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40 doubly truncated variables, it needed 28 times longer than the reference method. An
additional example regarding the computational time required to compute the truncated
moments for other elliptical distributions can be found in Appendix A.2.

2.5 Remarks
This chapter described an algorithm to generate random numbers from mem-

bers of the truncated elliptical family of distributions with a strictly decreasing density
generating function through a slice sampling algorithm with Gibbs sampler steps. In
addition, we presented an efficient approach to approximate the first and the second
moment for these distributions. We briefly introduced the functions available in our R
package relliptical in order to perform sample generation and estimation of the first
two moments. Simulation studies were performed to investigate the properties of estimates
and the robustness of our algorithm. Moreover, we compared our approach with others
available in the R software (only for the normal and Student-t cases), showing that our
approach outperformed others in terms of precision and computational time. In the next
chapters, we will illustrate the usefulness of truncated moments in analysing some datasets
related to spatial censored data, censored time series, multivariate censored data, and
longitudinal censored data. The results presented in this work can be reproduced through
the R package relliptical, available at CRAN for download.

Future extensions of the work include considering a more general class of
density generating functions (not only strictly decreasing) in the sampling method. Other
methods could also be explored to sample from the truncated elliptical family, such as
IA2RMS (Martino et al., 2015a) or the fast universal self-tuned sampler (FUSS) (Martino
et al., 2015b) within Gibbs. The first one is interesting because it returns asymptotically
independent samples and tries to maintain the computational cost bounded (as in ARS
and ARMS). About the latter one, it was demonstrated through simulation studies to be
faster than some well-known MCMC methods for sampling from some specific bivariate
distributions, besides the accuracy and generation of virtually independent samples. On the
other hand, the method used to approximate moments for the truncated elliptical family
can be extended to the context of asymmetric multivariate elliptical distributions, so the
fast computation of their truncated moments may lead the way to propose more flexible
and robust models relating to censored models for mixed-effects models, longitudinal data,
and spatial models, among others.
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3 Spatial censored linear model

3.1 Introduction
The algorithms previously proposed for simulating random observations and

computing moments from the truncated elliptical family of distributions are applied in
various statistical models, including censored data models, survival analysis, and Bayesian
models with truncated parameter space, among others. For example, our relliptical
package has been integrated into the ARpLMEC package (Olivari et al., 2022), which
estimates parameters for censored mixed-effects models using a symmetric elliptical error
distribution. Mattos et al. (2022a) have also employed our methods in semiparametric
mixed models for longitudinal data with censored responses and heavy tails. This chapter
evaluates the performance of our methods and demonstrates their broad applicability. We
focus on the Gaussian spatial censored linear (SCL) model as defined by Lachos et al.
(2017) and Ordoñez et al. (2018).

Spatial data are common in fields such as ecology, environmental health,
hydrology, and epidemiology. The main challenge in analyzing such data is selecting
the correlation model that best fits the observations, such as the Matérn or exponential
correlation structures. An added complexity occurs when data are subject to upper or
lower detection limits. For instance, environmental (spatial) monitoring often deals with
left-censored observations, where values fall below the minimum detectable limits of the
instruments. As discussed by Lachos et al. (2017) and Ordoñez et al. (2018), the SCL model
uses the SAEM algorithm for parameter estimation. This implementation is available
in the R package CensSpatial Ordoñez et al. (2020), which utilizes the rtmvnorm

function (available in the tmvtnorm package) to draw random observations from the
truncated multivariate normal (TMVN) distribution and optimx for optimization.

The main objective of this chapter is to compare the estimates obtained using
the Expectation-Maximization (EM, Dempster et al., 1977), Stochastic Approximation
EM (SAEM, Delyon et al., 1999), and Monte Carlo EM (MCEM, Wei & Tanner, 1990)
algorithms for the SCL model, particularly when random observations and moments are
computed using our proposal (detailed in Chapter 2). We also aim to benchmark our
methods against others available in R, such as CensSpatial and MomTrunc, through
the analysis of real-world data concerning dioxin contamination (2,3,7,8-tetrachlorodibenzo-
p-dioxin or TCDD). All methods discussed in this chapter are accessible via the R library
RcppCensSpatial (Valeriano et al., 2021a).

The chapter is organized as follows. Section 3.2 briefly introduces the linear
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spatial model, and Section 3.3 describes the SCL model and the estimation procedures
involving the EM, SAEM, and MCEM algorithms. Section 3.4 examines the asymptotic
properties of the MCEM and SAEM estimates through simulation studies. Section 3.5
compares the performance of our method with that of CensSpatial by analyzing the
Missouri dioxin contamination data.

3.2 Linear spatial model
Consider the real-valued Gaussian stochastic process tY psq, s P D Ă Rd

u, as
defined in Gaetan & Guyon (2010), where Rd is the d-dimensional Euclidean space. For any
integer n ě 1, it supposes that a realization of this process Y ps1q, . . . , Y psnq is observed at
known sites (locations) si, for i P t1, . . . , nu, where si is a d-dimensional vector of spatial
coordinates, and the data is generated from the model

Y psiq “ µpsiq ` ξpsiq, (3.1)

where both the deterministic term µpsiq and the stochastic term ξpsiq may depend on
the spatial location at which Y psiq is observed. We assume that the stochastic errors are
normally distributed with zero mean, Erξpsiqs “ 0, and the variation between spatial
points is determined by a stationary covariance function Covpξpsiq, ξpsjqq “ Covp||h||q,
where h “ si ´ sj P Rd and || ¨ || denotes the Euclidean distance. Suppose that for some
known functions of si, say x1psiq, x2psiq, . . . , xqpsiq, the mean of the stochastic process is

µpsiq “

q
ÿ

k“1
xkpsiqβk.

Equivalently, in matrix notation, we have the linear spatial model is given by

Y “ Xβ ` ξ, (3.2)

where X is the nˆq matrix with xJ
i “ px1psiq, . . . , xqpsiqq in the ith row, β “ pβ1, . . . , βqq

J

is the q ˆ 1 vector of regression parameters, ξ “ pξps1q, . . . ξpsnqq
J is the nˆ 1 vector of

errors, which has multivariate normal distribution with zero-mean and variance-covariance
matrix Σ “ rCovpsi, sjqs “ σ2Rpϕq ` τ 2In. In geostatistical analysis, the parameter τ 2

ą 0
is referred to as the nugget effect, while σ2

ą 0 represents the partial sill. Additionally,
R “ Rpϕq “ rrijs is defined as the n ˆ n symmetric matrix, where the diagonal elements
rii “ 1 for all i P t1, . . . , nu, and the off-diagonal elements are calculated using an isotropic
spatial correlation function. Various spatial correlation functions were considered, including
exponential, Matérn, Gaussian, and power exponential functions. For further reference, see
works such as Diggle & Ribeiro (2007), Lachos et al. (2017), and Valeriano et al. (2021b).
It is also assumed that Σ is non-singular and that X has full rank.
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3.3 Model formulation and parameter estimation
This section presents the linear spatial model with censored responses previously

formulated by Lachos et al. (2017) and Ordoñez et al. (2018). We explore using the EM,
MCEM, and SAEM algorithms to obtain the maximum likelihood (ML) estimates of the
model parameters and propose a methodology to approximate the standard error estimates
for each method.

3.3.1 Spatial censored linear model

Now, suppose that the linear spatial model defined in (3.2), where ξ „ Nnp0,Σq,
has the particularity that the response variable Yi is not fully observed for all i. Let Ri Ď R
denote the censoring region, such that Yi is not observed if Yi P Ri. Further, let pVi, Ciq be
the observed data at site si, where Ci is the censoring indicator, and Vi is given by

Vi “

#

ri, if Yi P Ri, pcensoredq

Yi, otherwise, pobservedq
(3.3)

where Ri is an interval of the form p´8, riq, pri,8q, or pri1, ri2q for left, right, or interval
censoring, respectively. The constant ri P R is equal to the detection limit for left and right
censoring, and ri “ pri1 ` ri2q{2 for interval censoring. Moreover, missing observations can
be handled by setting Ri “ p´8,8q and ri “ NA. Thus, the spatial censored linear (SCL)
model is defined by (3.2) and (3.3).

Remark: In cases of missing data, the value ri “ NA is used as a reference
and is excluded from the initial parameter estimation calculations. Instead, the associated
observation Yi is imputed in each iteration of the algorithm, as will be described in
Subsection 3.3.3. This imputation method is valid under the assumption that the data are
missing at random (MAR).

3.3.2 The likelihood function

Let θ “ pβJ, σ2, τ 2, ϕq
J be the vector with all parameters in the SCL model.

To obtain the likelihood function, given the observed sample y “ py1, y2, . . . , ynq
J, we treat

the observed and censored components of y separately. Let yo P Rno and ym P Rnm be the
vector of observed and censored variables, respectively, with n “ no `nm. After reordering
the elements of y, V, X, and Σ, they can be partitioned as

y “

˜

yo

ym

¸

, V “

˜

Vo

Vm

¸

, X “

˜

Xo

Xm

¸

, and Σ “

˜

Σoo Σom

Σmo Σmm

¸

,

where Xj P Rnjˆq, and Σjk P Rnjˆnk , for j, k P to,mu. Then, we have that Yo „

NnopXoβ,Σooq and Ym|Yo „ Nnmpµ,Sq, with µ “ Xmβ ` ΣmoΣ´1
oo pYo ´ Xoβq and



Chapter 3. Spatial censored linear model 54

S “ Σmm ´ ΣmoΣ´1
oo Σom. Let V “ pV1, . . . , Vnq

J and C “ pC1, . . . , Cnq
J be the observed

data, therefore, the likelihood function (using conditional probability arguments, see Vaida
& Liu, 2009) is given by

Lpθq “ Lpθ | V,Cq “ fpyo | θq Prprm
1 ă Ym ă rm

2 | yo,θq

“ ϕnopyo; Xoβ,Σooq PrpYm P B|yoq,

where B “ tym “ pym
1 , . . . , y

m
nm

q
J

|rm
11 ă ym

1 ă rm
12, . . . , r

m
nm1 ă ym

nm
ă rm

nm2u, ϕpx; µ,Σq

denotes the probability density function of Npµ,Σq computed at vector x, and PrpYm P

B | yoq is the conditional probability of Ym being in the set B given the observed responses.

3.3.3 Parameter estimation

Due to challenges in handling the observed log-likelihood function directly,
Lachos et al. (2017) suggested utilizing an EM-type algorithm to derive the ML estimates
for the parameter vector θ “ pβJ, σ2, τ 2, ϕq

J. This estimation approach involves a specific
parameterization for Σ “ σ2Ψ, where Ψ “ R`ν2In and ν2

“ τ 2
{σ2. Such parameterization

aids in improving the identifiability of the parameters. Additional insights into this
methodology can be found in Diggle & Ribeiro (2007).

Excluding constants that do not depend on θ, the complete log-likelihood
function for the complete data yc “ pV,C,yq is expressed as follows

ℓcpθ; ycq “ ´
1
2

"

n ln σ2
` ln |Ψ| `

1
σ2 py ´ Xβq

JΨ´1
py ´ Xβq

*

.

Hence, the EM algorithm works as follows:

• E-step: Let pθ
pkq

be the current estimate of θ, then the conditional expectation of the
complete-data log-likelihood without the constant is

Qkpθq “ E
”

ℓcpθ; ycq|V,C, pθ
pkq
ı

“ ´
1
2

"

ln |Ψ| ` n ln σ2
`

1
σ2

pApkq

*

,

where pApkq
“ trpyyyJ

pkq

Ψ´1
q ´ 2pypkqJΨ´1Xβ ` βJXJΨ´1Xβ. Therefore, the E-step

reduces only to the computation of

yyyJ
pkq

“ E
”

yyJ
|V,C, pθ

pkq
ı

and pypkq
“ E

”

y|V,C, pθ
pkq
ı

. (3.4)

Note that when y is not fully observed, the elements of pypkq and yyyJ
pkq

related to
the censored (Ci “ 1) variables are the first two moments of the TMVN distribution,
TNnmpµ,S; Bq, respectively, with µ,S, and B as defined in the likelihood function. For
Ci “ 0, these components are obtained directly from the observed values.
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• M-step: The conditional maximization step is carried out, and pθ
pkq

is updated by
maximizing pQkpθq over θ to obtain a new estimate pθ

pk`1q

, which leads to the expressions:

pβ
pk`1q

“

´

XJ
pΨ

´1pkq
X
¯´1

XJ
pΨ

´1pkq
pypkq,

pσ2pk`1q “
1
n

"

tr
ˆ

yyyJ
pkq

pΨ
´1pkq

˙

´ 2xyJ
pkq

pΨ
´1pkq

Xpβ
pk`1q

` pβ
Jpk`1q

XJ
pΨ

´1pkq
Xpβ

pk`1q
*

,

pαpk`1q
“ argmax

αPR`ˆR`

ˆ

´
1
2 ln |Ψ| ´

1
2pσ2pk`1q

"

tr
ˆ

yyyJ
pkq

Ψ´1
˙

´ 2xyJ
pkq

Ψ´1Xpβ
pk`1q

`pβ
Jpk`1q

XJΨ´1Xpβ
pk`1q

)¯

,

with α “ pϕ, ν2
q

J. Note that pτ 2 can be recovered by pτ 2pk`1q
“ pν2pk`1q

pσ2pk`1q. An efficient
M-step could be easily accomplished by using, for instance, the roptim package (Pan
& Pan, 2020).

The algorithm is iterated until some distance between two successive parameter
estimations, such as

b

ppθ
pk`1q

´ pθ
pkq

qJppθ
pk`1q

´ pθ
pkq

q, becomes small enough. For comparison
purposes, we consider the EM, MCEM, and SAEM algorithms to estimate the parameters
of the SCL model; hence, the E-step for each algorithm performs as follows:

• In the EM algorithm, the expectations defined in (3.4) are calculated using the R
package MomTrunc. The ML estimates are determined based on the results from the
final iteration of the algorithm. It is important to note that this procedure can be
computationally intensive, particularly when there is a significant proportion of censored
observations.

• In the MCEM algorithm, the expectations are approximated via Monte Carlo integration
as outlined in Section 2.4 (refer to Chapter 2). This approach distinctly handles the
censored and missing observations by exclusively sampling the censored variables using
the proposed slice sampling algorithm, while missing values are imputed based on the
properties of the conditional distribution. Given the inherent variability of Monte Carlo
(MC) methods, the estimates for θ might exhibit slight fluctuations around the true
solution. Consequently, to stabilize these estimates, the final estimates produced by the
MCEM are determined by averaging the estimates from each iteration. This procedure
is done after discarding the first half of the iterations, a process known as burn-in, and
applying a thinning factor of 3.

• In the SAEM algorithm, the E-step is approximated as follows

pypkq
“ pypk´1q

` δk

˜

1
L

L
ÿ

l“1
ypk,lq

´ pypk´1q

¸

, (3.5)

yyyJ
pkq

“ yyyJ
pk´1q

` δk

˜

1
L

L
ÿ

l“1
ypk,lqypk,lqJ

´ yyyJ
pk´1q

¸

, (3.6)
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where δk is the smoothness parameter selected as described in Subsection 1.1.3, L is the
number of samples used in the approximation, and ypk,lq

“ pyJ
o ,ypk,lqJ

m q
J is the vector of

complete data consisting of the observed data yo and ypk,lq
m simulated from the TMVN

distribution Ym|Yo,V,C „ TNpµ,S; Bq, with the same µ,S, and B settings considered
in the likelihood function. For this algorithm, the samples are obtained through the
method proposed in Section 2.3, which is available in the R package relliptical.

3.3.4 Standard error approximation

Following the methodology described in Section 1.2, we compute the asymptotic
covariance of the ML estimates through the observed information matrix using the Louis
method. So, we have that

Iopθq “ E rBcpyc; θq | yos ´ E
“

Scpyc; θqSJ
c pyc; θq | yo

‰

` Sopyo; θqSJ
o pyo; θq, (3.7)

where

Bcpyc; θq “ ´
B2ℓcpθ; ycq

BθBθJ
, Scpyc; θq “

Bℓcpθ; ycq

Bθ
, and Sopyo; θq “ E

“

Scpyc; θq
ˇ

ˇyo

‰

.

The explicit expressions for the elements of E rBcpyc; θq | yos and Sopyo; θq can
be found in Appendix B.1, while for the second term Gpθq “ E

“

Scpyc; θqSJ
c pyc; θq|yo

‰

,
we use an approximation for each proposed method because of the complexity of the
expressions, as follows:

• For the EM and MCEM algorithms

Gpθq «
1
L

L
ÿ

l“1

Bℓcpθ; yplq
c q

Bθ

ˆ

Bℓcpθ; yplq
c q

Bθ

˙J

, (3.8)

where yplq
c “ pyo,yplq

m q
J, l P t1, . . . , Lu is the vector of complete data consisting of the

observed values and the data simulated from the TMVN distribution as described
previously.

• For the SAEM algorithm

Gpθqpkq « Gpθqpk´1q ` δk

¨

˝

1
L

L
ÿ

l“1

Bℓcpθ; ypk,lq
c q

Bθ

˜

Bℓcpθ; ypk,lq
c q

Bθ

¸J

´ Gpθqpk´1q

˛

‚, (3.9)

with the same δk and ypk,lq
“ pyJ

o ,ypk,lqJ
m q

J settings as in the estimation procedure,
for k P t1, . . . ,W u and l P t1, . . . , Lu, where W is the maximum number of SAEM
iterations and L denotes the number of samples used in the approximation.
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3.4 Simulation study
In order to evaluate the performance of the proposed methods, we present

two simulation studies focusing on a) the influence of the number of samples used in the
MC approximation within the MCEM algorithm and b) the asymptotic behavior of the
estimates produced by the MCEM and SAEM algorithms, considering varying sample
sizes and levels of censoring. For simplicity, we generated 300 MC datasets from the
Gaussian spatial model Y “ Xβ ` ξ, where the design matrix X “ p1,X1,X2q includes
a first column of ones, and the elements of the second and third columns independently
simulated from a normal distribution Np0, 1q. The vector of regression parameters was
set as β “ p1, 3,´2q

J. The error vector ξ was simulated from the multivariate normal
distribution with zero mean and variance-covariance matrix Σ “ σ2R ` τ 2In, which was
calculated using

Covpξpsiq, ξpsjqq “ σ2 exp
"

´

ˆ

||h||

ϕ

˙κ*

` τ 2Ipsi “ sjq,

with the partial sill and nugget effect set at σ2
“ 3.50 and τ 2

“ 1, respectively. This
configuration suggests that the spatial process accounts for 77.78% of the variability
observed in the data. The elements of the matrix R were computed using the power
exponential correlation function, characterized by parameters κ “ 1.50 and ϕ “ 4; these
parameters indicate that the correlation drops to less than 0.05 for distances greater than
8.31 (spatial) units. Lastly, the spatial coordinates were randomly selected from within a
20 ˆ 20 square.

3.4.1 Simulation study I: MCEM estimates

In the first study, we aimed to assess the accuracy of the MCEM estimates with
varying numbers of samples (L) used in the MC approximation. It was considered 300 MC
samples of size n “ 200. We examined several scenarios: three with 5% missing and 10%,
20%, and 30% left-censored responses, respectively, and another scenario with 30% censored
observations and 10% missing. The censoring procedure followed the method outlined by
Schelin & Sjöstedt-de Luna (2014), where α% of responses were left-censored, and then
β% of the non-censored observations were randomly selected and treated as missing values.
Additionally, the case without censoring (original data) was included for comparative
purposes. The estimation procedure was conducted using the function MCEM.sclm from
RcppCensSpatial package. For each sample, the E-step was approximated through
MC integration under three configurations: i) L “ 20 random samples, ii) L increasing
linearly from 20 to 5000, and iii) L “ 5000 random samples.

The findings are summarized in Table 2, where MC-AV and MC-SD represent
the mean and the standard deviation of the 300 MC estimates, respectively. The results
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indicate that the mean estimates for β0, β1, and β2 are close to their true values across all
scenarios. It is worth mentioning that the standard deviation for β1 and β2 increases slightly
with the level of censoring, while the variation for β0 remains negligible. It was observed
that the mean of the estimates obtained with L “ 5000 random points is comparable
to that obtained when L increased linearly from 20 to 5000; the standard deviations
in these two scenarios also align closely. The mean estimates were lower than the true
parameter values for the variance structure parameters σ2, ϕ, and τ 2. Nonetheless, the
ratio σ2

{pσ2
` τ 2

q consistently approximated 0.775, suggesting that the spatial process
explains approximately 77.5% of the data variability. This finding aligns closely with the
true value. For additional details on the consistency of this parameter estimation, please
refer to Zhang (2004).

Table 2 – Simulation I. Summary statistics of the MCEM estimates based on 300 samples
of size n “ 200, considering different censoring proportions and number of
observations (L) for the MC method.

Measure
Parameters

Censoring L β0 β1 β2 σ2 ϕ τ2

1.00 3.00 -2.00 3.50 4.00 1.00

0% - MC-AV 1.032 3.001 -1.999 3.295 3.771 0.956
MC-SD 0.570 0.079 0.092 1.054 0.812 0.146

15%

20 MC-AV 1.027 3.004 -1.996 3.302 3.766 0.958
MC-SD 0.573 0.101 0.102 1.055 0.842 0.161

20 - 5000 MC-AV 1.027 3.004 -1.996 3.299 3.762 0.952
MC-SD 0.573 0.101 0.102 1.054 0.841 0.161

5000 MC-AV 1.027 3.004 -1.996 3.299 3.762 0.952
MC-SD 0.573 0.101 0.102 1.054 0.841 0.161

25%

20 MC-AV 1.016 3.011 -2.005 3.330 3.771 0.968
MC-SD 0.570 0.114 0.107 1.085 0.926 0.175

20 - 5000 MC-AV 1.018 3.009 -2.003 3.317 3.762 0.949
MC-SD 0.570 0.114 0.107 1.077 0.922 0.178

5000 MC-AV 1.018 3.009 -2.003 3.317 3.761 0.949
MC-SD 0.570 0.114 0.107 1.077 0.922 0.178

35%

20 MC-AV 0.997 3.028 -2.012 3.382 3.801 1.002
MC-SD 0.582 0.137 0.115 1.155 0.940 0.194

20 - 5000 MC-AV 1.010 3.018 -2.005 3.350 3.781 0.941
MC-SD 0.582 0.136 0.115 1.136 0.933 0.205

5000 MC-AV 1.010 3.018 -2.005 3.350 3.781 0.941
MC-SD 0.582 0.136 0.115 1.136 0.933 0.205

40%

20 MC-AV 0.963 3.045 -2.026 3.418 3.801 1.007
MC-SD 0.585 0.144 0.126 1.175 0.995 0.206

20 - 5000 MC-AV 0.979 3.033 -2.018 3.382 3.778 0.936
MC-SD 0.585 0.143 0.126 1.149 0.985 0.220

5000 MC-AV 0.979 3.033 -2.018 3.382 3.778 0.936
MC-SD 0.585 0.143 0.126 1.150 0.985 0.220
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Figure 11 displays boxplots of the estimates derived via the MCEM algorithm,
segmented by level of censoring and number of random points used for approximation.
In these plots, the solid red line indicates the true parameter value. The plots show that
the median of the estimates for β0, β1, and β2 coincides with the actual value, while the
medians for σ2, ϕ, and τ 2 tend to underestimate the true value of the parameters. The
boxplots for ϕ and σ2 exhibit some outliers across all levels of censoring compared to other
parameters. Further details can be found in Figure 38 (Appendix B.2), which illustrates
the mean bias ˘1 standard deviation for each parameter by censoring proportion and
number of samples (L) used for approximation. This analysis reveals that, across different
levels of censoring, the bias remains close to zero, and the standard deviation is almost
the same independent of L.

Figure 11 – Simulation I. Boxplot of the estimates by level of censoring.
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3.4.2 Simulation study II: Asymptotic properties of the estimates

Aiming to provide empirical evidence for the consistency of the ML estimates
obtained via the MCEM and SAEM algorithms, we considered sample sizes of n “ 100,
300, and 600. Additionally, 10% and 30% of the observations were left-censored or missing,
following the scheme described in the previous section, with 20% of the desired censored rate
randomly selected to be treated as missing. We also evaluated the case without censoring
(original data) for comparison purposes. Our proposed MCEM and SAEM algorithms
were implemented through the functions MCEM.sclm and SAEM.sclm, respectively. The
number of random observations in the MC approximation increased linearly from 20 to



Chapter 3. Spatial censored linear model 60

5000. As shown in Simulation study I, this setting seems to yield results comparable to
using L “ 5000 samples. For the SAEM algorithm, we set M “ 20 and c “ 0.25 (refer to
Subsection 1.1.3 for more details).

For each combination of sample size, level of censoring, and method, we com-
puted the mean (MC-AV) and standard deviation (MC-SD) of the 300 MC estimates, the
mean of the standard error (IM-SE) computed by the inverse of the observed informa-
tion matrix (detailed in Subsection 3.3.4), and the coverage probability (CP) of a 95%
confidence interval.

The results for the MCEM and SAEM estimates, displayed in Tables 3 and 4,
respectively, show that the mean of the estimates (MC-AV) is close to the true parameter
values across all sample sizes and levels of censoring. As expected, discrepancies decrease as
the sample size increases, except for β0. Notably, the mean of the standard errors (IM-SE)
is, in general, close to the standard deviation of the estimates (MC-SD) for all scenarios,
indicating the reliability of the proposed method for obtaining standard errors. It is worth
noting that the standard error for β0 appears constant regardless of the sample size or
censoring level, while for other parameters, the standard error decreases with increasing
sample size and increases with higher levels of censoring. Overall, both methods performed
well in fitting the simulated spatial censored data.

Figures 39 and 40 (found in Appendix B.2) present the boxplot of the MCEM
and SAEM estimates, respectively, by sample size and level of censoring. The real parameter
values are indicated by red lines, showing that the median of the estimates is often close
to the true values, with few outliers observed.

Lastly, we analyzed the mean squared error (MSE) of the estimates for all
scenarios, defined as:

MSEi “
1
n

n
ÿ

j“1
ppθ

pjq

i ´ θiq
2,

where pθ
pjq

i is the estimate of the ith parameter θ “ pβ0, β1, β2, σ
2, ϕ, τ 2

q
J in the jth MC

sample. The MSE results for each parameter, sample size, and censoring level are presented
in Figure 12 for both MCEM (left panel) and SAEM (right panel) estimates. The MSE
tends to zero as the sample size increases, except for β0 with 30% censoring, where a slight
increase is observed for n “ 600. Thus, while the proposed MCEM and SAEM algorithms
provide ML estimates with good asymptotic properties for the spatial censored linear
model, careful attention must be given to the estimates of β0 under high censoring rates.

3.5 Missouri dioxin contamination data
The methodologies discussed will be applied to analyze the Missouri dioxin

contamination dataset described in Subsection 1.3.1. Following the approach suggested by
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Table 3 – Simulation II. Summary statistics of the MCEM estimates based on 300 samples
of sizes n “ 100, 300, and 600 with different censoring proportions.

n Measure
Parameters

Censoring β0 β1 β2 σ2 ϕ τ2

1.00 3.00 -2.00 3.50 4.00 1.00

100

0%

MC-AV 1.049 2.984 -2.009 3.318 3.796 0.901
IM-SE 0.560 0.133 0.137 1.169 1.109 0.260
MC-SD 0.574 0.137 0.152 1.203 1.240 0.267
CP (%) 91.3 94.3 92.0 - - -

10%

MC-AV 1.047 2.981 -2.009 3.317 3.790 0.898
IM-SE 0.563 0.143 0.144 1.184 1.143 0.277
MC-SD 0.582 0.152 0.156 1.213 1.247 0.283
CP (%) 91.0 93.0 92.7 - - -

30%

MC-AV 1.027 2.987 -2.017 3.344 3.782 0.889
IM-SE 0.572 0.170 0.164 1.251 1.244 0.333
MC-SD 0.588 0.183 0.173 1.304 1.361 0.321
CP (%) 89.3 91.7 94.7 - - -

300

0%

MC-AV 0.959 2.997 -2.004 3.303 3.818 0.981
IM-SE 0.532 0.071 0.069 1.027 0.805 0.120
MC-SD 0.567 0.074 0.069 1.070 0.777 0.121
CP (%) 90.3 94.0 95.0 – – –

10%

MC-AV 0.960 2.999 -2.008 3.300 3.823 0.984
IM-SE 0.535 0.078 0.075 1.035 0.820 0.128
MC-SD 0.561 0.079 0.075 1.079 0.797 0.129
CP (%) 90.0 94.3 95.7 - - -

30%

MC-AV 0.946 3.012 -2.016 3.310 3.812 0.992
IM-SE 0.539 0.096 0.087 1.056 0.858 0.150
MC-SD 0.564 0.097 0.088 1.088 0.855 0.147
CP (%) 91.3 96.0 94.3 - - -

600

0%

MC-AV 0.925 3.000 -2.005 3.276 3.798 0.995
IM-SE 0.518 0.045 0.048 0.971 0.709 0.076
MC-SD 0.554 0.044 0.049 0.950 0.695 0.079
CP (%) 90.0 95.7 94.0 - - -

10%

MC-AV 0.922 3.003 -2.005 3.278 3.794 0.994
IM-SE 0.519 0.050 0.052 0.976 0.714 0.081
MC-SD 0.554 0.049 0.052 0.955 0.701 0.085
CP (%) 90.0 95.7 95.0 - - -

30%

MC-AV 0.906 3.011 -2.010 3.293 3.771 0.996
IM-SE 0.521 0.060 0.061 0.991 0.733 0.094
MC-SD 0.561 0.057 0.061 0.965 0.725 0.096
CP (%) 89.7 96.3 95.3 - - -

Zirschky & Harris (1986), we considered the logarithm transformation of the response and
fitted the model:

lnpYiq “ β0 ` ξi, i P t1, . . . , 127u.

The model parameters were estimated using the MCEM, SAEM, and EM
algorithms, each performed over 500 iterations with an exponential correlation function
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Table 4 – Simulation II. Summary statistics of the SAEM estimates based on 300 samples
of sizes n “ 100, 300, and 600 with different censoring proportions.

n Measure
Parameters

Censoring β0 β1 β2 σ2 ϕ τ2

1.00 3.00 -2.00 3.50 4.00 1.00

100

0%

MC-AV 1.049 2.984 -2.009 3.318 3.796 0.901
IM-SE 0.560 0.133 0.137 1.169 1.109 0.260
MC-SD 0.574 0.137 0.152 1.203 1.240 0.267
CP (%) 91.3 94.3 92.0 - - -

10%

MC-AV 1.047 2.981 -2.009 3.318 3.789 0.899
IM-SE 0.563 0.143 0.144 1.184 1.143 0.277
MC-SD 0.582 0.152 0.156 1.214 1.246 0.282
CP (%) 91.3 93.0 92.7 - - -

30%

MC-AV 1.018 2.994 -2.022 3.368 3.777 0.917
IM-SE 0.576 0.177 0.169 1.277 1.269 0.362
MC-SD 0.589 0.184 0.173 1.322 1.366 0.313
CP (%) 90.0 93.0 94.7 - - -

300

0%

MC-AV 0.959 2.997 -2.004 3.302 3.818 0.981
IM-SE 0.532 0.071 0.069 1.027 0.805 0.120
MC-SD 0.567 0.074 0.069 1.070 0.777 0.121
CP (%) 90.3 94.0 95.0 - - -

10%

MC-AV 0.959 3.000 -2.008 3.301 3.823 0.985
IM-SE 0.535 0.078 0.075 1.035 0.821 0.128
MC-SD 0.561 0.079 0.075 1.079 0.797 0.128
CP (%) 90.3 94.3 95.7 - - -

30%

MC-AV 0.936 3.021 -2.022 3.328 3.812 1.021
IM-SE 0.541 0.100 0.089 1.065 0.864 0.159
MC-SD 0.564 0.097 0.089 1.095 0.856 0.141
CP (%) 91.0 96.0 95.0 - - -

600

0%

MC-AV 0.925 3.000 -2.005 3.276 3.797 0.995
IM-SE 0.518 0.045 0.048 0.971 0.709 0.076
MC-SD 0.554 0.044 0.049 0.950 0.695 0.079
CP (%) 90.0 95.7 94.0 - - -

10%

MC-AV 0.922 3.002 -2.005 3.278 3.795 0.994
IM-SE 0.519 0.050 0.052 0.976 0.715 0.081
MC-SD 0.554 0.049 0.052 0.952 0.700 0.085
CP (%) 90.0 96.0 95.0 - - -

30%

MC-AV 0.903 3.014 -2.012 3.300 3.771 1.007
IM-SE 0.522 0.061 0.062 0.994 0.734 0.096
MC-SD 0.562 0.058 0.061 0.966 0.723 0.093
CP (%) 90.0 96.7 95.3 - - -

to assess the variation between spatial points. For the MCEM algorithm, we explored
four scenarios, including one with linearly increasing sample sizes from 100 to 1000. The
other scenarios involved constant sample sizes of 20, 5000, and 105. Two configurations
were used for the SAEM algorithm: one using the rmvtnorm function for simulating and
optimx for optimization, referred to henceforth as SAEM. This method is available in the
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Figure 12 – Simulation II. MSE of the MCEM (left) and SAEM (right) estimates consid-
ering different sample sizes and levels of censoring.
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CensSpatial package. The second configuration employed our proposed slice sampler
for simulation, with optimization executed by the R function roptim, referred to as
SAEM-SS. Moments were computed using the MomTrunc package for the EM algorithm.
Functions for parameter estimation via MCEM, SAEM-SS, and EM are integrated into
the RcppCensSpatial package.

Table 5 – Missouri data. ML estimates and information criteria (AIC and BIC) were ob-
tained through MCEM, SAEM, and EM algorithms considering the exponential
correlation function.

Algorithm L c β0 σ2 ϕ τ2 ℓppθq AIC BIC Time (min)

MCEM

20 -2.355 6.577 14.702 0.213 -143.128 294.257 305.633 0.936
102 - 103 - -2.402 6.808 15.095 0.207 -143.108 294.216 305.592 1.819

5000 - -2.410 6.847 15.076 0.206 -143.095 294.191 305.568 10.206
105 - -2.408 6.845 15.053 0.205 -143.136 294.272 305.649 185.341

SAEM-SS 20 0.25 -2.311 6.218 14.964 0.220 -143.175 294.350 305.727 0.658

SAEM 20 0.25 -2.014 4.858 14.206 0.245 -143.840 295.681 307.057 6.079
105 1.00 -2.010 4.829 14.136 0.245 -143.865 295.729 307.106 9151.149

EM - - -2.417 6.888 15.092 0.206 -143.122 294.244 305.620 1661.472

Table 5 displays the results of the ML estimates where L represents the number
of samples to approximate the conditional mean, and c denotes the percentage of memory-
free iterations in the SAEM algorithm (see Subsection 1.1.3). Final estimates for MCEM
and EM methods were calculated as the mean of the estimates from each iteration after



Chapter 3. Spatial censored linear model 64

applying a burn-in of 250 and thinning of 3 observations. In contrast, estimates from the
SAEM and SAEM-SS were taken from the final iteration. The SAEM-SS estimates are
similar to those from MCEM at L “ 20, while the EM algorithm’s estimates are similar
to MCEM at L “ 5000. The estimated regression coefficient β0 from the MCEM and
EM was -2.400, whereas the SAEM algorithm estimated this parameter at -2.010. The
estimates from MCEM and SAEM for the partial sill σ2 and the nugget effect τ 2 suggest
that the spatial process accounts for 97% and 95% of the data variability, respectively. The
spatial scaling parameter ϕ was estimated at approximately 15.05 and 14.10 by MCEM
and SAEM, respectively, indicating that correlations between observations fall below 0.05
for distances exceeding 45 and 42 feet. This table presents the maximized log-likelihood
values, information criteria (AIC and BIC), and running times. Notably, the information
criteria are nearly identical across all methods, which aligns with expectations.

Figure 13 – Missouri data. Convergence of the parameter estimates via EM, MCEM, and
SAEM algorithm.

(a) EM estimates

−3.0

−2.5

−2.0

−1.5

0 100 200 300 400 500
Iteration

β̂ 0

2

4

6

8

0 100 200 300 400 500
Iteration

σ̂2

7.5

10.0

12.5

15.0

0 100 200 300 400 500
Iteration

φ̂

0.2

0.3

0.4

0.5

0.6

0 100 200 300 400 500
Iteration

τ̂2

(b) MCEM estimates

−3.0

−2.5

−2.0

−1.5

0 100 200 300 400 500
Iteration

β̂ 0

2

4

6

8

0 100 200 300 400 500
Iteration

σ̂2

7.5

10.0

12.5

15.0

0 100 200 300 400 500
Iteration

φ̂

0.2

0.3

0.4

0.5

0.6

0 100 200 300 400 500
Iteration

τ̂2

n = 20 102 − 103 5000 105

(c) SAEM estimates

−3.0

−2.5

−2.0

−1.5

0 100 200 300 400 500
Iteration

β̂ 0

2

4

6

8

0 100 200 300 400 500
Iteration

σ̂2

7.5

10.0

12.5

15.0

0 100 200 300 400 500
Iteration

φ̂

0.2

0.3

0.4

0.5

0.6

0 100 200 300 400 500
Iteration

τ̂2

SAEM−SS (n=20, c=0.25) SAEM (n=20, c=0.25) SAEM (n= 105 , c=1)

Figure 13 shows the convergence of parameter estimates from MCEM, SAEM-
SS, SAEM, and EM algorithms. Notice that the variability in the MCEM estimates
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decreases with increasing sample sizes from 100 to 1000 (aquamarine line). As expected,
MCEM at L “ 20 (gray line) presents more variability than larger sample sizes. Conversely,
MCEM at L “ 105 (black line) exhibits the lowest variability. Estimates from the EM
algorithm show greater variability than those from MCEM at L “ 5000 (red line), likely
due to computational instability in the numerical methods employed by the MomTrunc
package. this is why we decided to consider a burn-in and thinning procedure to compute
the EM final estimates.

3.6 Remarks
In this chapter, we extended the works of Lachos et al. (2017) and Ordoñez

et al. (2018) by employing the MCEM and EM algorithms to estimate the parameters
of the spatial censored linear (SCL) model. We also proposed a variation of the SAEM
algorithm, which utilizes our slice sampling method, detailed in Chapter 2 and available in
the relliptical package. This variation of the SAEM algorithm has been demonstrated
to be faster than the existing method in the CensSpatial package.

Additionally, we developed a method to approximate the standard error of the
estimates using the Louis method, as described in Section 1.2. Based on our simulation
studies, this method has proven to be reliable. The proposed methodologies have been
coded and implemented in the R package RcppCensSpatial, readily available to users
on the CRAN repository.
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4 Censored autoregressive regression models
with Student-t innovations

4.1 Introduction
A linear regression model is a commonly used statistical tool to analyze the

relationship between a response (dependent) and some explanatory (independent) variables.
In these models, the errors are usually considered independent and identically distributed
random variables with zero mean and constant variance. However, observations collected
over time are often autocorrelated rather than independent. Disregarding correlation
in the error term may lead to underestimated standard errors (SE) of the estimated
regression coefficients and fitted values (Gareth et al., 2013); therefore, studying the
dependence among observations is of considerable practical interest (see Tsay, 2005; Box
et al., 2015). Examples of this kind of data abound in economics, medicine, social sciences,
and environmental monitoring; for instance, the total phosphorus concentration measured
monthly in a river with correlated measures over time.

A stochastic model that has been successfully used in many real-world applica-
tions to deal with serial correlation in the error term is the autoregressive (AR) model. In
the AR model, the current state of the process is expressed as a finite linear combination
of previous states and a stochastic shock of disturbance, called an innovation in the time
series literature. In general, it is assumed that the disturbance follows a normal distribution.
For example, Alpuim & El-Shaarawi (2008) proposed a linear regression model with the
sequence of error terms following a Gaussian autoregressive stationary process, in which
the model parameters are estimated using maximum likelihood (ML) and ordinary least
squares. However, it is well known that the normality assumption is often unrealistic,
especially in the presence of outliers.

In this sense, Genton (2004) provides a broad review of extensions to parametric
models using non-normal distributions. Besides, Tiku et al. (1999) suggested considering
non-normal symmetric innovations in a simple regression model with AR(1) error term.
More recently, Nduka (2018) developed an Expectation-Maximization (EM) algorithm to
estimate the parameters in autoregressive models of order p with Student-t innovations.

An additional challenge arises when some observations are censored or missing.
In the first case, values can occur out of the range of a measuring instrument, and in
the second, the value is unknown. Censored time series are frequently encountered in
environmental monitoring, medicine, and economics. Furthermore, there are some proposals
in the literature related to censored autoregressive linear regression models with normal
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innovations. For example, Wang & Chan (2018) suggested a quasi-likelihood method using
the complete-incomplete data framework to estimate the parameters of an autoregressive
censored linear model with Gaussian innovations. Schumacher et al. (2017) estimated the
parameters via an analytically tractable and efficient stochastic approximation of the EM
(SAEM) algorithm (Delyon et al., 1999). Liu et al. (2019) proposed a coupled Monte Carlo
Markov Chain (MCMC)-SAEM algorithm to fit an ARppq regression model with Student-t
innovations accounting for missing data.

Nevertheless, to the best of our knowledge, no studies consider the Student-t
distribution for the innovations in censored autoregressive models from a likelihood-based
perspective. Hence, in this work, we propose an EM-type algorithm to estimate the
parameters of a censored regression model with autoregressive errors and innovations
following a Student-t distribution. Specifically, the SAEM algorithm is considered to
avoid the direct computation of complex expressions on the E-step of the EM algorithm
(Dempster et al., 1977). Its computational effort is much smaller in comparison to the
Monte Carlo EM algorithm (Wei & Tanner, 1990), as shown by Jank (2006).

The chapter is organized as follows. Section 4.2 formulates the censored autore-
gressive model of order p with Student-t innovations, providing the log-likelihood function,
the estimation procedure, the standard error approximation, and the expression to make
predictions. Section 4.3 displays some results of two simulation studies carried out to
examine the asymptotic properties of the estimators and demonstrate the robustness of
the model. Section 4.4 applies the proposed model to the ammonia-nitrogen concentration
dataset, along with an analysis of quantile residuals. Finally, Section 4.5 concludes with a
discussion.

4.2 The censored AR regression model of order p
First, ignoring censoring, consider a linear regression model with autocorrelated

errors as a discrete-time autoregressive process of order p; thus, the model for observation
at time t is given by

Yt “ xJ
t β ` ξt, (4.1)

ξt “ ϕ1ξt´1 ` . . . ` ϕpξt´p ` ηt, ηt
iid
„ F p¨q, t P t1, . . . , nu, (4.2)

where Yt represents the response variable, xt “ pxt1, . . . , xtqq
J is a q ˆ 1 vector of non-

stochastic regressor variables, β is a qˆ 1 vector of unknown regression parameters, and ξt

is the AR error, with autoregressive coefficients ϕ “ pϕ1, . . . , ϕpq
J of length p and shock of

disturbance ηt following a distribution F p¨q. The term ηt is also known as the innovation
in the time series literature (see, for instance, Box et al., 2015; Schumacher et al., 2017;
Wang & Chan, 2018).
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Suppose that the innovation variable ηt in (4.2) follows a Student-t distribution
with location parameter 0, scale parameter σ2

ą 0, and ν ą 0 degrees of freedom, denoted
by ηt „ tp0, σ2, νq, whose probability density function can be written as

fpη;σ2, νq “
Γ
`

ν`1
2

˘

Γ
`

ν
2

˘

pπνσ2q
1
2

ˆ

1 `
η2

νσ2

˙´
ν`1

2

, η P R, (4.3)

where Γpaq denotes the gamma function evaluated at a ą 0. Then, the model defined by
(4.1)–(4.3) will be called the autoregressive regression t model of order p (ARtppq).

Now assume that the response variable Yt is not fully observed for all t, i.e., the
true response lies within an interval instead of being observed exactly. Hence, let Rt Ă R
denote the censoring region, such that Yt is not observed if Yt P Rt. Further, let pVt, Ctq

be the observed data at time t, where Ct is the censoring indicator, and Vt is given by

Vt “

#

ct, if Yt P Rt, pcensoredq

Yt, otherwise, pobservedq
(4.4)

where Rt is an interval of the form p´8, ctq, pct,8q, or pct1, ct2q for left, right, or interval
censoring, respectively. The constant ct P R is equal to the detection limit for left and right
censoring, and ct “ pct1 ` ct2q{2 for interval censoring. Moreover, missing observations
can be handled by setting Rt “ p´8,8q and ct “ NA. Thereby, the model defined by
(4.1)–(4.4) will be referred to the censored autoregressive regression t model of order p
(CARtppq) hereinafter. It is worth mentioning that our proposal assumes that the order p
of the AR model is known in the parameter estimation process, but it can be chosen using
information criteria such as Akaike Information Criterion (AIC) and Bayesian Information
Criterion (BIC).

Next, we discuss an ML approach for estimating the parameters of the CARtppq

model using the SAEM algorithm. Alternatively, Bayesian parameter estimation can
be performed using MCMC algorithms, which also take advantage of the conditional
expressions derived in the Appendices but may require more computational effort.

4.2.1 The log-likelihood function

Let y “ py1, . . . , ynq
J be an observed sample of Y “ pY1, . . . , Ynq

J. Let Ft “

σpY1, Y2, . . . , Ytq denote the σ-field generated by tY1, Y2, . . . , Ytu and θ “ pβJ,ϕJ, σ2, νq
J

be a generic parameter vector. The likelihood function for the ARt(p) model, i.e., the
model with non-censored observations, is given by

Lpθq “ fpy1, . . . , yp | θq

n
ź

t“p`1
fpyt | θ,Ft´1q,

where fpyt | θ,Ft´1q “ fpyt | θ, yt´1, . . . , yt´pq due to the AR(p) representation of
the regression errors ξt. Note also that the conditional distribution of Yt given ypt,pq “
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pyt´1, . . . , yt´pq
J will be a Student-t with location parameter ωt “ xJ

t β`pypt,pq´Xpt,pqβq
Jϕ,

scale parameter σ2, and ν degrees of freedom, where Xpt,pq “ rxt´1 xt´2 ¨ ¨ ¨ xt´ps
J is a

pˆ q matrix with the covariates related to the vector ypt,pq. After suppressing contributions
from the initial p first values, we obtain a simpler conditional likelihood

L˚pθq “

n
ź

t“p`1
fpyt | θ, yt´1, yt´2, . . . , yt´pq.

Now, to compute the log-likelihood function for the CARt(p) model, i.e., a
model with censored/missing observations in the response vector, we treat the observed
and censored components of the outcome y separately, i.e., as a partition. Let yo P Rno

be the vector of dimension no containing the fully observed elements, and let ym denote
the vector of dimension nm of censored or missing components with censoring region
R “ Rt1 ˆRt2 ˆ. . .ˆRtnm

, where t1, t2, . . . , tnm are the times in which censored observations
occur. Thus, the observed (conditional) log-likelihood function can be computed by

ℓpθ; yoq “ ln
˜

ż

R

n
ź

t“p`1
fpyt | θ, yt´1, yt´2, . . . , yt´pq dym

¸

. (4.5)

Then, the ML estimation problem relies on maximizing the expression (4.5) over θ. However,
the observed log-likelihood function given above involves expressions too complex to work
with directly, which makes it not feasible in practical terms. To overcome this problem, we
resort to an EM-type algorithm, which turns the maximization of (4.5) into optimizing a
sequence of simpler approximations of this function.

4.2.2 The SAEM algorithm for ML Estimation

This section is devoted to obtaining the ML estimates of the CARt(p) model
using the SAEM algorithm. It is worth mentioning that this approach enables the automatic
approximation of the standard errors and the direct imputation of the censored and/or
missing observations.

To implement an EM-type method, we require a representation of the model
in terms of the missing data. Let’s start by considering that if Yt | ypt,pq „ tpωt, σ

2, νq, we
can use the stochastic representation of the Student-t distribution to express Yt | ypt,pq

as Yt | ypt,pq

d
“ ωt ` U

´1{2
t Zt, where Zt and Ut are two independent random variables.

Specifically, Zt follows a univariate normal distribution with zero-mean and variance σ2,
and Ut follows a gamma distribution with shape and rate parameters equal to ν{2, (see,
for instance, Kotz & Nadarajah, 2004). The expression d

“ means “equality in distribution”.
Consequently, it follows that

Yt | pYpt,pq “ ypt,pq, Ut “ utq „ Npωt, σ
2
{utq,

Ut „ Gammapν{2, ν{2q,
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for all t P tp ` 1, . . . , nu. This relationship is a convenient hierarchical representation
and will be helpful in the E-step of the EM algorithm (Dempster et al., 1977), which is
discussed next.

To use an EM-type algorithm, we must regard both y “ py1, . . . , ynq
J and

u “ pup`1, . . . , unq
J as hypothetical missing data and pV,Cq as observed data, with

V “ pV1, . . . , Vnq
J and C “ pC1, . . . , Cnq

J. The resulting complete response is yc “

pyJ,uJ,VJ,CJ
q

J, and the complete (conditional) log-likelihood function ℓcpθ; ycq will
take the form

ℓcpθ; ycq “
1
2

«

gpνq ´ pn ´ pq ln σ2
´

1
σ2

n
ÿ

t“p`1
utpyt ´ ωtq

2

ff

` cte,

where cte represents a constant independent of the vector of parameters θ, θ “ pβJ,ϕJ, σ2,
νq

J, and gpνq “ pn ´ pqg1pνq ` νg2 with g1pνq “ ν ln pν{2q ´ 2 ln Γ pν{2q and g2 “
n
ÿ

t“p`1
plnputq ´ utq. Therefore, the EM algorithm proceeds as follows:

E-step: Let pθ
pkq

denote the current estimate of θ. The E-step calculates the conditional
expectation of the complete data log-likelihood function, i.e.,

Qkpθq “ E
”

ℓcpθ; ycq | V,C, pθ
pkq
ı

.

For the proposed CARt(p) model, this step requires the computation of some conditional
expectations provided in detail in Appendix C.1. However, the EM algorithm is not
doable because of the difficulties in calculating the conditional expectations, specifically
when we have successive censored observations. As an alternative, Wei & Tanner (1990)
proposed the MCEM algorithm, which replaces the calculation of the expectations with a
Monte Carlo approximation based on a large number of independent simulations of the
missing data. However, due to the computational intensity, another option to consider is a
stochastic approximation of these expectations, as Delyon et al. (1999) suggested with
the so-called SAEM algorithm, which requires a much smaller number of observations for
their approximation and makes more efficient use of the imputed missing values.

The SAEM algorithm splits the E-step of the EM algorithm into a simulation
and an integration step (using a stochastic approximation), while the maximization step
remains identical, except for the conditional expectations. Then, at the kth iteration, it
proceeds as follows:

Step E-1 (Sampling). Simulate L samples from the conditional distribution of the latent
variables via Gibbs sampler according to the following scheme:

‚ Step 1 : Sample ypk,ℓq
m from fpym | V,yo,upk,ℓ´1q, pθ

pkq

q, which corresponds to the trun-
cated multivariate normal distribution with location parameter m and scale matrix S as
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defined at the end of Appendix C.2, and truncation region R “ Rt1 ˆRt2 ˆ . . .ˆRtnm
.

Then update the full vector of observations as ypk,ℓq
“ pyJ

o ,ypk,ℓqJ
m q

J.

‚ Step 2 : Sample upk,ℓq from fpu | ypk,ℓq, pθ
pkq

q, where each component upk,ℓq

t is simulated
independently from a Gammapat, btq distribution, for all t P tp ` 1, . . . , nu and ℓ P

t1, . . . , Lu, as demonstrated in Appendix C.2.

Step E-2 (Stochastic Approximation). Update pQkpθq as

pQkpθq “ pQk´1pθq ` δk

˜

1
L

L
ÿ

ℓ“1
ℓcpθ; ypk,ℓq

c q ´ pQk´1pθq

¸

, (4.6)

where ypk,ℓq
c “ pypk,ℓqJ,upk,ℓqJ,VJ,CJ

q
J and δk is a smoothing parameter, a decreasing

sequence of positive numbers such that
8
ÿ

k“1
δk “ 8 and

8
ÿ

k“1
δ2

k ă 8, which was selected as

described in Subsection 1.1.3.

M-step: Update the estimate pθ
pkq

as pθ
pk`1q

“ argmax
θ

pQkpθq.
The resulting expressions to estimate the model parameters are given in Appendix C.1,
where closed-form expressions were obtained for β, ϕ, and σ2, while ν is estimated through
an optimization procedure.

The steps above are iterated until some distance between two successive param-
eter estimations, such as

´´

pθ
pk`1q

´ pθ
pkq

q
J

ppθ
pk`1q

´ pθ
pkq
¯¯1{2

, becomes small enough. The
initial values used in the SAEM algorithm were calculated by considering the censored
values as observed ones and proceeding as in the Supplementary Material of Schumacher
et al. (2017). Initial tests suggest that this choice of initial values is expected to give good
numerical properties. However, to ensure that the estimates obtained by the EM-type algo-
rithm correspond to a global maximum, it is recommended that users rerun the algorithm
using a few different options of initial values and examine the attained log-likelihood value.

4.2.3 Standard error approximation

The Fisher information matrix is a good measure of the amount of information
a sample dataset provides about the parameters of a given model, and it can be used to
compute the asymptotic variance of the estimators. Louis (1982) developed a procedure
for extracting the observed information matrix when the EM algorithm is applied to find
the ML estimates in problems with partially observed data. On the other hand, Delyon
et al. (1999) adapted the Louis method for the SAEM algorithm, resulting in the following
stochastic approximation:
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Hk “ ´Fk ´ Gk ` ∆k∆J
k ,

Fk “ Fk´1 ` δk

˜

1
L

L
ÿ

l“1

ˆ

B2ℓcpθ; ypk,ℓq
c q

BθBθJ

˙

´ Fk´1

¸

, (4.7)

Gk “ Gk´1 ` δk

˜

1
L

L
ÿ

l“1

ˆ

Bℓcpθ; ypk,ℓq
c q

Bθ

˙ˆ

Bℓcpθ; ypk,ℓq
c q

Bθ

˙J

´ Gk´1

¸

,

∆k “ ∆k´1 ` δk

˜

1
L

L
ÿ

l“1

Bℓcpθ; ypk,ℓq
c q

Bθ
´ ∆k´1

¸

,

where ypk,ℓq
c is the complete data sampled at iteration pk, ℓq, for k P t1, . . . ,W u and

ℓ P t1, . . . , Lu, with W denoting the maximum number of iterations and L the number of
MC samples for the stochastic approximation. The inverse of the limiting value of Hk can
be used to assess the dispersion of the estimators (Delyon et al., 1999). The analytical
expressions for the first and second derivatives of the complete data log-likelihood function
are given in Appendix C.3.

4.2.4 Prediction

Interested in predicting values from the CARtppq model, we denote by yobs the
n-vector of random variables corresponding to the given sample and by ypred the vector of
random variables of length npred corresponding to the time points that we are interested
in predicting.

Let yobs “ pyJ
o ,yJ

mq
J, where yo is the vector of uncensored observations,

and ym is the vector of censored/missing observations. To deal with the incomplete
values existing in yobs, we use an imputation procedure that consists of replacing the
censored values with the values obtained in the last iteration of the SAEM algorithm, i.e.,
pym “ Erym | V,C, pθ

pW q

s « pypW q

m , since elements of pypkq

m can also be updated during Step
E-2 of the SAEM algorithm as

pypkq

m “ pypk´1q

m ` δk

˜

1
L

L
ÿ

l“1
ypk,ℓq

m ´ pypk´1q

m

¸

, k P t1, . . . ,W u, (4.8)

with the same δk, L, and W settings considered in the estimation procedure. The new
vector of observed values will be denoted by yobs* “ pyJ

o , py
pW qJ

m q
J.

Now, supposing that all values in yobs* are completely observed and that the
explanatory variables for ypred are available, the forecasting procedure will be performed
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recursively (Box et al., 2015) as follows

pyn`kpθq “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

xJ
n`kβ `

p
ÿ

j“k

ϕjy
˚
n`k´j, k “ 1,

xJ
n`kβ `

k´1
ÿ

i“1
ϕipy

˚
n`k´i `

p
ÿ

j“k

ϕjy
˚
n`k´j, 1 ă k ď p,

xJ
n`kβ `

p
ÿ

j“1
ϕjpy

˚
n`k´j, p ă k ď npred,

such that y˚
i “ yi ´ xJ

i β. In practice, yn`k is obtained by substituting pθ in the last
expression, i.e., pyn`k “ pyn`kppθq, where pθ is the SAEM estimate. Therefore, the resulting
vector with the predicted values is pypred “ ppyn`1, pyn`2, . . . , pyn`npredq

J.

4.3 Simulation Study
In this section, we examine the asymptotic properties of the SAEM estimates

through a simulation study considering different sample sizes and levels of censoring. A
second simulation study is performed to demonstrate the robustness of the estimates
obtained from the proposed model when the data are perturbed.

4.3.1 Simulation study I

This study aims to provide empirical evidence about the consistency of the
ML estimates under different scenarios. Therefore, 300 MC samples were generated with
different sample sizes: n “ 100, 300, and 600. The data were generated from the model
defined by (4.1)–(4.3). The parameters were set as σ2

“ 2, ν “ 4, β “ p5, 0.50, 0.90q
J,

ϕ “ p´0.40, 0.12q
J, and the vector of covariables xt “ p1, xt1, xt2q

J, with xt1 and xt2

simulated from a normal Np0, 1q and a uniform Up0, 1q distribution, respectively, for
t P t1, . . . , nu. From this scenario, two analyses were conducted and will be discussed next.

4.3.1.1 Asymptotic properties

Aiming to have scenarios with an average level of censoring/missing of 5%,
20%, and 35%, respectively, we considered the following detection limits: 1.60, 3.45, and
4.30, i.e., values that fall below the detection limits (DL) are replaced with the detection
limit value. Furthermore, 20% of the desired censored rate corresponds to observations
randomly selected to be treated as missing. Additionally, we considered the case without
censoring (original data) for comparison.

For each sample size and censoring level, we computed the mean (MC-Mean)
and standard deviation (MC-SD) of the 300 MC estimates, the mean of the standard
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Table 6 – Simulation I. Summary statistics of parameter estimates for the CARt(2) model
based on 300 samples of sizes n “ 100, 300, 600, and different levels of censoring.

Average Parameter
n DL censoring Measure β0 β1 β2 ϕ1 ϕ2 σ2 ν

level 5.00 0.50 0.90 -0.40 0.12 2.00 4.00

100

No 0%

MC-Mean 4.988 0.501 0.937 -0.409 0.093 1.779 4.150
IM-SE 0.325 0.141 0.565 0.086 0.086 0.531 2.612
MC-SD 0.334 0.149 0.567 0.090 0.091 0.465 2.089
CP (%) 94.0 91.3 94.0 - - - -

1.60 5.10%

MC-Mean 4.984 0.502 0.942 -0.409 0.092 1.781 4.345
IM-SE 0.319 0.141 0.557 0.091 0.088 0.533 3.326
MC-SD 0.339 0.149 0.576 0.096 0.094 0.494 2.692
CP (%) 94.3 92.0 94.3 - - - -

3.45 19.59%

MC-Mean 4.977 0.505 0.931 -0.418 0.089 1.812 4.559
IM-SE 0.337 0.150 0.586 0.105 0.099 0.584 3.957
MC-SD 0.349 0.156 0.588 0.110 0.103 0.516 2.914
CP (%) 93.3 93.7 93.3 - - - -

4.30 34.11%

MC-Mean 4.939 0.511 0.928 -0.434 0.077 1.856 4.930
IM-SE 0.371 0.163 0.644 0.122 0.115 0.721 4.872
MC-SD 0.372 0.171 0.642 0.126 0.120 0.571 3.517
CP (%) 94.0 93.7 93.3 - - - -

300

No 0%

MC-Mean 5.015 0.501 0.893 -0.401 0.115 1.937 4.162
IM-SE 0.167 0.084 0.299 0.048 0.048 0.293 1.172
MC-SD 0.180 0.090 0.312 0.052 0.050 0.295 1.266
CP (%) 93.3 93.7 93.7 - - - -

1.60 5.31%

MC-Mean 5.017 0.501 0.889 -0.399 0.115 1.944 4.244
IM-SE 0.169 0.085 0.303 0.053 0.051 0.314 1.444
MC-SD 0.182 0.091 0.319 0.055 0.051 0.311 1.498
CP (%) 93.0 94.0 93.0 - - - -

3.45 20.58%

MC-Mean 4.999 0.507 0.891 -0.409 0.110 1.997 4.645
IM-SE 0.177 0.090 0.317 0.060 0.057 0.365 2.122
MC-SD 0.191 0.095 0.332 0.061 0.058 0.341 1.935
CP (%) 93.7 92.3 93.7 - - - -

4.30 35.44%

MC-Mean 4.958 0.518 0.901 -0.409 0.110 2.080 5.043
IM-SE 0.194 0.098 0.341 0.068 0.065 0.421 2.716
MC-SD 0.199 0.106 0.339 0.074 0.069 0.385 2.258
CP (%) 95.0 93.3 95.3 - - - -

600

No 0%

MC-Mean 5.001 0.507 0.909 -0.400 0.118 1.966 4.072
IM-SE 0.125 0.063 0.225 0.037 0.036 0.221 0.889
MC-SD 0.125 0.064 0.226 0.038 0.037 0.212 0.918
CP (%) 93.0 94.7 92.3 - - - -

1.60 5.11%

MC-Mean 4.999 0.508 0.911 -0.401 0.117 1.977 4.145
IM-SE 0.125 0.063 0.225 0.037 0.036 0.221 0.899
MC-SD 0.124 0.065 0.224 0.038 0.037 0.212 0.937
CP (%) 92.7 94.3 92.0 - - - -

3.45 19.99%

MC-Mean 4.981 0.513 0.921 -0.405 0.117 2.034 4.447
IM-SE 0.132 0.066 0.235 0.042 0.040 0.254 1.252
MC-SD 0.127 0.069 0.229 0.042 0.041 0.239 1.342
CP (%) 94.0 93.7 94.3 - - - -

4.30 34.64%

MC-Mean 4.939 0.521 0.933 -0.410 0.112 2.113 4.826
IM-SE 0.142 0.072 0.251 0.048 0.045 0.300 1.672
MC-SD 0.139 0.074 0.251 0.049 0.046 0.284 1.657
CP (%) 93.7 94.7 94.7 - - - -

errors (IM-SE) computed by the inverse of the observed information matrix given in (4.7),
and the coverage probability (CP) of a 95% confidence interval, i.e.,

MC-Meani “ p̄θi “
1

300

300
ÿ

j“1

pθ
pjq

i , MC-SDi “

g

f

f

e

1
299

299
ÿ

j“1

´

pθ
pjq

i ´ p̄θi

¯2
, and
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IM-SEi “
1

300

300
ÿ

j“1
SE

´

pθ
pjq

i

¯

,

where pθ
pjq

i is the estimate of the ith parameter of θ “ pβ0, β1, β2, ϕ1, ϕ2, σ
2, νq

J in the jth
MC sample.

The results are shown in Table 6, where we can observe that the mean of the
estimates (MC-Mean) is close to the true parameter value in all combinations of sample
size and censoring levels, except for the scale parameter σ2 for a sample size of n “ 100.
As expected, this difference decreases as the sample size increases. Notice that the mean
of the standard errors obtained through the inverse of the observed information matrix
(IM-SE) is, in general, close to the standard deviation of the estimates (MC-SD) for all
scenarios, indicating that the proposed method to obtain the standard errors is reliable.

Figure 14 – Simulation I. Boxplot of the estimates for CARt(2) model by sample size and
detection limit.
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Figure 14 shows the boxplots of the estimates for each parameter by sample
size and detection limit. The solid red line represents the true parameter value. In general,
the median of the estimates is close to the real value independent of the sample size and
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censoring level. However, for ϕ2 and σ2, the median underestimates the true value in
samples of size n “ 100, i.e., the smallest sample size in the simulation study. Furthermore,
interquartile ranges decrease as sample sizes increase, suggesting the consistency of the
estimates. Additionally, boxplots for the estimates of ν are shown in Appendix C.4.1,
Figure 41.

To study the asymptotic properties of the estimates, we analyzed the mean
squared error (MSE) of the estimates obtained from the proposed algorithm for all scenarios,
which can be defined by

MSEi “
1
n

n
ÿ

j“1
ppθ

pjq

i ´ θiq
2.

The results for each parameter, sample size, and detection limits are shown in Figure 15,
where we may note that the MSE tends to zero as the sample size increases. Thus, the
proposed SAEM algorithm seems to provide ML estimates with good asymptotic properties
for our proposed autoregressive censored linear model with Student-t innovations.

Figure 15 – Simulation I. MSE of the estimates for the CARt(2) model by sample size
and detection limit.
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4.3.1.2 Residual Analysis

Checking the specification of a statistical model usually involves statistical
tests and graphical methods based on residuals. However, conventional residuals (such
as Pearson’s residuals) are not appropriate for some models since they may lead to
erroneous inference, as Kalliovirta (2012) demonstrated for models based on mixtures of
distributions. As an alternative, Dunn & Smyth (1996) developed the quantile residuals
method for regression models with independent responses, which produces normally
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distributed residuals by inverting the fitted distribution function for each response value
and finding the equivalent standard normal quantile. These results assume the model is
correctly specified and parameters are consistently estimated. The method can be extended
to dependent data by expressing the likelihood as a product of univariate conditional
likelihoods.

Figure 16 – Simulation I. Plots of quantile residuals for a sample of size n “ 600 generated
from the CARt(2) model considering different levels of left censoring.
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To compute the quantile residuals for the CARtppq model, we first impute the
censored or missing observations as defined in (4.8) in Subsection 4.2.4. Then, considering
all values as completely observed, the residual for the tth observation is computed by

prt “ Φ´1 `T
`

yt; ω̂t, pσ
2, pν

˘˘

, t P tp ` 1, . . . nu, (4.9)

where Φ´1
p¨q denotes the inverse of the cumulative distribution function (cdf) of the stan-

dard normal distribution, T pyt; ω̂t, σ̂
2, ν̂q is the cdf of the univariate Student-t distribution

with location parameter pωt “ xJ
t
pβ ` pypt,pq ´Xpt,pq

pβq
J
pϕ, scale parameter σ̂2, and ν̂ degrees

of freedom evaluated at point yt. Here pθ refers to the ML estimates of θ obtained through



Chapter 4. Censored autoregressive regression models with Student-t innovations 78

the SAEM algorithm. Note that the quantile residual is calculated only for the latest n´ p

observations.

Figure 17 – Simulation I. Plots of the residuals for a sample of size n “ 600 generated from
the CARt(2) model and fitting a model with normal innovations, considering
different levels of left censoring.
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To analyze how the quantile residuals behave for the proposed model, they were
computed for a simulated dataset of sample size n “ 600, and we considered four levels of
left censoring: 0%, 5.17%, 20%, and 34.67%. Figure 16 shows the Quantile-Quantile (Q-Q)
plot, the quantile residual time series, the histogram, and the residual autocorrelation
coefficients. For all levels of censoring, the histogram seems to correspond to a histogram
of a normally distributed variable, and the dispersion plot shows independent residuals.
We can deduce through the Q-Q plot that the residuals are roughly normally distributed
because all points form a roughly straight line inside the confidence band. However, for
samples with 20% and 34.67% of censoring, the Q-Q plots present a slight deviation from
the center line in the lower tail, which might be due to the high proportion of censored
values.
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For comparison, we fitted the same dataset assuming the normal distribution
(i.e., disregarding the heavy tails) and computed the corresponding quantile residuals. The
resulting plots are given in Figure 17, where we can see clear signs of non-normality, such
as large residuals and several points outside the confidence band in the Q-Q plots.

This illustration indicates that this method can help check the CARtppq model
specification. Nevertheless, more caution is needed in analyzing residuals for significant
levels of censoring since our proposal imputes the unobserved data by its conditional
expectation.

4.3.2 Simulation study II: Robustness of the estimators

This simulation study aims to compare the performance of the estimates for
two censored AR models in the presence of outliers on the response variable. In this
case, we simulated 300 MC samples of size n “ 100 under the model defined in (4.1)–
(4.2), considering the standard normal distribution for the innovations. The parameters
were set as β “ p4, 0.50q

J, ϕ “ p0.48,´0.20q
J, and the covariates xt “ p1, xt1q

J, where
xt1 „ N p0, 1q, t P t1, . . . , 100u.

After generating the data, each MC sample was perturbed under the following
scheme: the maximum value was increased in ϑ times the sample standard deviation,
i.e., ypert “ maxpyq ` ϑSDpyq, for ϑ P t0, 1, 2, 3, 4, 5, 7u. Furthermore, we considered three
different levels of censoring: the first case corresponds to the case without censoring; the
second case considered 2.34 as a detection limit, where all values lower or equal than
2.34 were substituted with this particular value. (which implied an average of 10.04%
of censoring); and finally the third scenario considered a limit of 3.31 (which yielded an
average of 30% of censoring). For each scenario, we fitted two models: the first considers
normal innovations, denoted by CAR(2), and the second one is our proposal CARt(2).

Table 7 displays the mean of the estimates for each parameter by the level
of perturbation and censoring rate. To obtain comparable values of σ2 for the model
with Student-t innovations, we reported the estimated variance of the innovation pσ2˚

“

pνpσ2
{ppν ´ 2q, where pσ2 is the estimate of the scale parameter under our proposal. Moreover,

the last column of Table 7 reports the percentage of times in which our model detected
the perturbed observation as influential. This value was computed as the number of times
the estimated weight (pui, calculated during the E-step in the SAEM algorithm) of the
perturbed observation was the lowest, divided by the number of MC samples.

Table 7a and Figure 18a show the results for the non-censored dataset. For
the normal distribution, it is possible to observe that the bias increases as the pertur-
bation increases. However, when Student-t innovations are considered, the bias is much
smaller, illustrating the robustness of the model against atypical observations. As expected,
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Table 7 – Simulation II. Mean of the estimates for CAR(2) and CARt(2) model based on
300 MC samples of size n “ 100 for different levels of perturbation.

a. Level of censoring: 0%
Pert. CAR(2) CARt(2)
(ϑ) β0 β1 σ2 ϕ1 ϕ2 β0 β1 σ2˚ ϕ1 ϕ2 ν DI (%)

0 4.007 0.510 0.963 0.478 -0.215 4.007 0.510 0.979 0.480 -0.216 24.424 17.0
1 4.021 0.526 1.030 0.469 -0.209 4.008 0.518 1.042 0.464 -0.207 17.098 73.3
2 4.036 0.541 1.135 0.447 -0.195 3.999 0.518 1.130 0.433 -0.186 9.568 98.7
3 4.050 0.557 1.275 0.416 -0.175 3.991 0.515 1.229 0.398 -0.162 6.064 99.7
4 4.064 0.572 1.449 0.383 -0.154 3.987 0.513 1.328 0.369 -0.140 4.896 100.0
5 4.079 0.588 1.655 0.349 -0.133 3.986 0.510 1.426 0.346 -0.121 4.324 100.0
7 4.107 0.619 2.160 0.287 -0.100 3.985 0.508 1.628 0.309 -0.090 3.710 100.0

b. Level of censoring: 10.04%
Pert. CAR(2) CARt(2)
(ϑ) β0 β1 σ2 ϕ1 ϕ2 β0 β1 σ2˚ ϕ1 ϕ2 ν DI (%)

0 4.006 0.511 0.966 0.478 -0.214 4.006 0.511 0.997 0.478 -0.213 20.892 21.0
1 4.018 0.529 1.044 0.468 -0.208 4.007 0.519 1.079 0.460 -0.203 14.290 77.7
2 4.027 0.549 1.165 0.445 -0.194 4.002 0.518 1.207 0.424 -0.180 7.764 98.7
3 4.036 0.570 1.327 0.415 -0.175 3.999 0.514 1.362 0.387 -0.155 5.061 99.7
4 4.044 0.592 1.527 0.383 -0.156 3.999 0.511 1.535 0.357 -0.133 4.105 100.0
5 4.052 0.614 1.764 0.351 -0.138 4.000 0.509 1.704 0.332 -0.115 3.668 100.0
7 4.065 0.659 2.340 0.294 -0.109 4.003 0.505 2.170 0.295 -0.088 3.166 100.0

c. Level of censoring: 30%
Pert. CAR(2) CARt(2)
(ϑ) β0 β1 σ2 ϕ1 ϕ2 β0 β1 σ2˚ ϕ1 ϕ2 ν DI (%)

0 4.014 0.505 0.944 0.476 -0.219 4.015 0.503 0.972 0.476 -0.218 19.338 24.7
1 4.014 0.532 1.050 0.464 -0.213 4.011 0.513 1.076 0.454 -0.206 12.553 82.3
2 4.007 0.562 1.213 0.439 -0.199 4.007 0.512 1.230 0.415 -0.181 6.854 98.3
3 3.996 0.594 1.429 0.409 -0.182 4.006 0.507 1.406 0.376 -0.156 4.651 100.0
4 3.982 0.628 1.694 0.378 -0.165 4.008 0.503 1.616 0.344 -0.135 3.803 100.0
5 3.965 0.664 2.005 0.349 -0.151 4.010 0.500 1.837 0.318 -0.118 3.386 100.0
7 3.926 0.737 2.760 0.301 -0.130 4.016 0.495 2.428 0.280 -0.092 2.926 100.0

estimates for ν decrease as the perturbation grows. Note that the observation with the
maximum value was detected as influential in only 17% of the non-perturbed samples,
but this percentage increases fast as the perturbation increases. The results for samples
with an average of 10.04% censoring are displayed in Table 7b and Figure 18b, where the
estimates for β0 have a distribution similar to the non-censored case. On the other hand,
for β1, a more significant difference was observed between the real value and its estimate
in the normal model. In contrast, the model with heavy-tailed innovations performs better
in recovering the true parameter values, with a mean value of ν smaller than previously
observed.

Results for the scenario with an average of 30% left censoring are shown in
Table 7c and Figure 18c. For the normal case, the bias for β1 is larger than was observed in
the previous two cases. At the same time, the mean and median of the estimates obtained
from the CARt(2) model are not much affected by the perturbations. For β0, the normal
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model returned estimates close to the real value only for levels of perturbation lower than 4
(ϑ ă 4), while for larger perturbations, the model tends to underestimate it. These results
confirm that the heavy tails of the Student-t distribution allow our model to mitigate the
effect of outliers, i.e., a much more robust method against atypical values.

Figure 18 – Simulation II. Boxplot of the estimates obtained from CAR(2) and CARt(2)
model based on 300 MC samples of size n “ 100.
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c. Level of censoring: 30%
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4.4 The ammonia-nitrogen concentration data
This section provides an application of the CARtppq model to a real environmen-

tal dataset with both missing and censored observations. We consider the ammonia-nitrogen
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(NH3-N) measurements taken in the Samish River in Washington State, USA, and described
in Subsection 1.3.2. The data were collected monthly by the Washington State Department
of Ecology, available for free download on the official website (https://ecology.wa.gov).
Following IPCS (1986) and De Abreu et al. (2022), some water parameter factors that
could have a statistical effect on the ammonia-nitrogen levels are the dissolved oxygen
(DO) in mg/L, pH, and temperature (T) in ˝C. In this study, we are interested in tracking
the relationship between NH3-N and those variables over time as an indicator of the river
water quality.

Preliminary analysis (reported in Appendix C.4.2) for the linear regression
model yt “ β0 ` βDODOt ` βpHpHt ` βTTt ` ξt, considering the errors as independent
and identically normal distributed variables, indicates the presence of serial residual
autocorrelation, hence we model ξt as an autoregressive process. Then, we fit the following
censored regression model:

yt “ β0 ` βDODOt ` βpHpHt ` βTTt ` ξt, t “P t1, . . . , 248u,

where ξt is considered as an AR model of order p “ 1 and 2, with innovations ηt independent
and identically distributed as either N p0, σ2

q or tp0, σ2, νq (denoted by CAR(p) and
CARt(p), respectively).

Parameter estimates and their corresponding standard errors (SEs) are displayed
in Table 8. For model selection, we computed the observed conditional log-likelihood
ℓpθ; yoq defined in (4.5) by a Monte Carlo approximation, which is also shown, along with
AIC and BIC values, in Table 8. We note that the estimated intercept (β0) under the
CARt(p) model is lower than the estimate from the CAR(p) model. The estimates for the
dissolved oxygen, pH, and temperature regression coefficients are all negative, indicating an
inverse relationship between those variables and the ammonia-nitrogen concentration. The
ones provided by the CARt(p) model are larger than those obtained based on normality.
The nitrification process could explain the inverse relationship between temperature and
ammonia levels. According to Shammas (1986), the nitrification process increases as
temperature increases (for T ď 35oC), and this process reduces the concentration of
ammonia-nitrogen. Besides, the optimal pH for nitrification is between 7.5 and 8.5 (De
Abreu et al., 2022). In our study, the pH ranged between 6.6 and 8.4. Then, the increase
in pH, within the range analyzed, provides more adequate conditions for the nitrification
process; therefore, the concentration of ammonia-nitrogen is reduced. Nevertheless, we do
not have evidence that the pH effect is significant.

Regarding the autoregressive coefficient ϕ1, the normal estimate was smaller
than the value estimated through CARt(1) model and ϕ2 is not statistically significant for
both CAR(2) and CARt(2). Therefore, comparing the AR(1) models based on information
criteria (AIC and BIC), we conclude that the heavy-tailed Student-t model (with pν “ 4.091)
provides a better fit to the ammonia-nitrogen concentration data.

https://ecology.wa.gov
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Table 8 – Square-root of NH3-N (µg/L). Parameter estimates and their standard errors
(SE) for the CAR(p) and CARt(p) model, for p “ 1 and 2.

Param. CAR(1) CAR(2) CARt(1) CARt(2)
Est. SE Est. SE Est. SE Est. SE

β0 17.958 3.533 18.277 3.589 16.441 3.016 16.667 3.140
βDO -0.904 0.184 -0.888 0.184 -0.689 0.167 -0.661 0.171
βpH -0.253 0.445 -0.331 0.461 -0.432 0.377 -0.522 0.406
βT -0.269 0.059 -0.262 0.059 -0.224 0.055 -0.213 0.057
σ2 1.462 0.161 1.462 0.163 0.745 0.163 0.751 0.167
ϕ1 0.319 0.067 0.285 0.073 0.341 0.070 0.295 0.076
ϕ2 - 0.086 0.078 - 0.119 0.072
ν - - 4.091 1.384 4.197 1.370

ℓppθ; yoq -302.957 -301.226 -297.503 -295.853
AIC 617.914 616.452 609.007 607.705
BIC 638.970 640.989 633.572 635.748

Figure 19 – Square-root of NH3-N (µg/L). Quantile residuals for the CAR(1) and CARt(1)
models.
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Graphs related to the quantile residuals computed for the CAR(1) and CARt(1)
models are shown in Figure 19. The Q-Q plot for the CAR(1) model presents several
points outside the confidence bands on the upper and lower tails, indicating that the
distribution is heavy-tailed. Additionally, we see larger residual values from the histogram
and residual plot. For the CARt(1) model, we see in the Q-Q plot that all points form a
roughly straight line and lie within the confidence bands. Further, the histogram seems
to correspond to a normally distributed variable, and the autocorrelation coefficients fall
within the two standard error bounds. Therefore, the CARt(1) model seems to fit better
the ammonia-nitrogen concentration data than the CAR(1) model, which is confirmed
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through a likelihood-ratio test whose p-value is less than 0.001.

Figure 20 shows the observed values (solid black line) and the imputed values
for the censored and missing observations from May 1999 to December 2019 under the
CAR(1) and CARt(1) models. Blank spaces in the time series represent the missing values.

Figure 20 – Square-root of NH3-N (µg/L). Observed (black solid line) and imputed values
considering Student-t (pink line) and normal (light blue line) innovations.
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In addition, for assessing the convergence of SAEM parameter estimates, con-
vergence plots are displayed in Figure 21. Finally, an additional application related to the
total phosphorus concentration can be found in Appendix C.4.3.

Figure 21 – Square-root of NH3-N (µg/L). Convergence of the parameter estimates for
CARt(1) model.
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4.5 Remarks
Extending autoregressive regression methods to include censored response

variables is a promising area of research. This chapter introduced a novel model that can
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handle left, right, or interval-censoring time series while simultaneously modeling heavy
tails and missing observations, which can be treated as interval-censored observations. Our
approach extends some previous works, such as Schumacher et al. (2017) and Liu et al.
(2019).

The proposed methods were applied to several simulation studies, which revealed
that our model provides ML estimates with good asymptotic properties since the MSE
of the estimates tends to zero as the sample size increases. The model with Student-t
innovations (our proposal) was more robust against atypical values than the normal model.
In addition, the quantile residuals could help check the CARt(p) model specification;
however, for significant levels of censoring, more caution is needed in analyzing residuals.
The proposed methods have been coded and implemented in an R package ARCensReg.

It is important to remark that we assumed the dropout/censoring mechanism
to be missing at random (MAR) (see Diggle et al., 2002, p. 283). However, when MAR with
ignorability is not realistic, the relationship between the unobserved measurements and
the censoring process should be further investigated. Future directions point to tackling
the limitation of assuming that the first p observations are fully observed to fit a CARtppq

model. Furthermore, a natural and interesting path for future research is to extend this
model to a multivariate framework.
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5 Likelihood-based inference for the skew-t
regression model for multiple outcomes with
censored or missing responses

5.1 Introduction
The study of models in which the variable of interest is subject to certain

threshold values below or above which the measurements are not quantifiable has been
a common topic of interest in the statistical literature in recent years. For example, in
environmental research, the concentration levels of the dissolved trace metals in freshwater
streams in Virginia are subject to multiple limits of detection values (see, for instance,
Galarza et al., 2022b). In AIDS research, the quantification of viral load measurements is
typically assessed according to certain upper and lower detection limits. As a result, the
viral load responses are either left or right-censored depending on the diagnostic assays
used (Wu, 2010). This kind of data can be modeled using censored regression (CR) models,
or the Tobit model, and has become quite common in the literature with a wide range
of applications in biology, biometrics, genetics, medicine, finance, and marketing, among
many others.

CR models usually use the normal distribution for mathematical convenience
for continuous data. However, it is well known that the normal distribution (N-CR) is
sensitive to outliers. Moreover, the use of N-CR may be unsuitable for a set of data
containing observations with heavy tails or asymmetric behavior. It can unduly affect the
fit of the CR model. This inconsistency in the N-CR model led to the development of
less sensitive estimators to the assumption of normality. Several authors have studied CR
models involving response variables with heavier tails than the normal distribution in
recent years. For instance, Massuia et al. (2015) have studied CR models based on the
univariate Student-t distribution (T-CR). In a multivariate setting, Galarza et al. (2021c)
(see also Matos et al., 2013b; Garay et al., 2017) advocated the use of the multivariate
Student-t distribution in the context of CR models, where a simple and efficient EM-
type algorithm for iteratively computing maximum likelihood (ML) estimates of the
parameters was presented. They demonstrated the robustness aspects of the T-CR model
against outliers through extensive simulations using the Expectation-Maximization (EM)
algorithm, which is based on the first two moments of the multivariate truncated Student-t
distribution. More recently, Galarza et al. (2022b) proposed the multivariate skew-normal
(SN) distribution to analyze censored or missing data (SN-CR), and a fully likelihood-based
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approach is carried out, including the implementation of an EM-type algorithm for ML
estimation. However, neither the T-CR model nor the SN-CR model is appropriate when
data simultaneously present skewness and heavy-tailed behavior.

In this paper, we attempt to overcome these limitations in the aforementioned
CR models by proposing a more adapted and robust CR model that can simultaneously deal
with the issues of censored and/or missing data, skewness, and heavy-tailed and atypical
data. Our contribution extends the recent works of Galarza et al. (2021c) and Galarza et al.
(2022b) since they considered only the Student-t and the SN distribution, respectively,
which are particular cases of the skew-t (ST) family of distributions, including the popular
normal one. We show that the E-step reduces to computing the first two moments of a
truncated multivariate Student-t, skew-t, and extended skew-t distributions, which are
implemented in the MomTrunc (Galarza et al., 2021a) and relliptical (Valeriano
et al., 2022) R packages. The likelihood function is easily computed as a by-product of
the E-step and is used for monitoring convergence and model selection. Furthermore, we
consider a general information-based method for obtaining the asymptotic covariance
matrix of the ML estimates.

The paper is organized as follows. Section 5.2 introduces some notations
and outlines the main results of the ST and truncated skew-t (TST) distributions. In
Section 5.3, the ST censored regression model (ST-CR) and related likelihood-based
inference are presented, including the implementation of an EM-type algorithm called the
Expectation/Conditional Maximization Either (ECME) algorithm (Liu & Rubin, 1994) for
obtaining ML estimates of the parameters. Section 5.4 presents some simulation studies to
illustrate the performance of the proposed method. Section 5.5 discusses two real data
applications in environmental and astronomical research. Finally, Section 5.6 concludes
with some discussion and possible directions for future research.

5.2 Preliminaries
We start by defining the multivariate ST distribution and multivariate extended

ST (EST) distribution and some of their useful properties. Some versions and extensions
of the ST family are discussed in works such as Arellano-Valle & Genton (2005, 2010b,a);
Azzalini & Capitanio (2003), and Sahu et al. (2003).

5.2.1 The multivariate skew-t distribution

We say that a continuous p-dimensional random vector Y follows a multivariate
ST distribution with location vector µ P Rp, positive definite dispersion matrix Σ P Rpˆp,
parameter vector λ P Rp, and degrees of freedom ν ą 0, denoted by Y „ STppµ,Σ,λ, νq,
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if its pdf is given by

STppy; µ,Σ,λ, νq “ 2tppy; µ,Σ, νqT

"c

ν ` p

ν ` δpyq
λJΣ´1{2

py ´ µq; ν ` p

*

, (5.1)

where δpyq ” δpy; µ,Σq “ py ´ µq
JΣ´1

py ´ µq is the squared Mahalanobis distance, and
Σ´1{2 is the unique square root matrix of Σ´1 such that Σ´1

“ Σ´1{2Σ´1{2. It is well known
that when ν Ñ 8, we retrieve the multivariate skew-normal distribution. Furthermore,
if λ “ 0, then (5.1) reduces to the multivariate symmetric tppµ,Σ, νq pdf. The following
propositions of the ST distribution are helpful for our theoretical developments; we start
with the cdf of an ST random vector. The proof of the propositions can be found in
Arellano-Valle & Genton (2010b).

Proposition 2 (cdf of the ST). If Y „ STppµ,Σ,λ, νq, then for any y P Rp

FYpyq “ PrpY ď yq “ 2Tp`1
`

pyJ, 0q
J; µ˚,Ω, ν

˘

,

where µ˚
“ pµJ, 0q

J, Ω “

˜

Σ ´∆
´∆J 1

¸

, and ∆ “ Σ1{2λ{p1 ` λJλq
1{2.

Proposition 3 (Hierarchical representation of the ST). The p-variate random vector
Y „ STppµ,Σ,λ, νq admits the following hierarchical representation

Y | pU “ u, T “ tq „ Nppµ ` ∆t, u´1Γq, T | pU “ uq „ TNp0, u´1; p0,8qq,

U „ Gammapν{2, ν{2q,

where TNpµ, σ2; pa, bqq denotes a univariate truncated normal distribution with location
parameter µ, scale parameter σ2, and truncation region pa, bq, and Gammapα, λq represents
the gamma distribution with shape and rate parameters α and λ, respectively; ∆ as given
in Proposition 2, and Γ “ Σ ´ ∆∆J.

It is worth noting that the multivariate ST distribution is not closed under
conditioning, as discussed in Arellano-Valle & Genton (2010b). Consequently, we present
its generalization, known as the multivariate extended skew-t (EST) distribution.

5.2.2 The multivariate extended skew-t distribution
We say that a p-dimensional random vector Y follows an EST distribution

with location vector µ P Rp, positive definite dispersion matrix Σ P Rpˆp, skewness
parameter vector λ P Rp, shift parameter τ P R, and degrees of freedom ν ą 0, denoted
by Y „ ESTppµ,Σ,λ, τ, νq, if its pdf is given by

ESTppy; µ, Σ, λ, τ, νq “
tppy; µ, Σ, νq

T pτ{
a

1 ` λJλ; νq
T

"c

ν ` p

ν ` δpyq

´

τ ` λJΣ´1{2py ´ µq

¯

; ν ` p

*

.

(5.2)
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Note that when τ “ 0, we retrieve the ST distribution defined in (5.1), that is,
ESTppy; µ,Σ,λ, 0, νq “ STppy; µ,Σ,λ, νq. Here, we employed a variation in the parametri-
zation of the EST distribution compared to that described in Arellano-Valle & Genton
(2010b). Specifically, the shape parameter λ˚ as introduced in Definition 1 of the referenced
work corresponds to our parameterization through the relationship λ “ Σ̄1{2

λ˚, where
Σ̄ “ ω´1Σω´1 and ω “ diagpΣq

1{2. It is evident from the reference that

ESTppy; µ,Σ,λ, τ, νq ÝÑ tppy; µ,Σ, νq, τ Ñ `8.

The following propositions are related to the stochastic representation, cdf, and
the marginal and conditional distribution of the EST random vector.

Proposition 4 (Stochastic representation of the EST). Let X “ pXJ
1 , X2q

J
„ tp`1pµ˚,Ω, νq.

If
Y d

“ pX1|X2 ă τ̃q,

it follows that Y „ ESTppµ,Σ,λ, τ, νq, with µ˚ and Ω as in Proposition 2, and τ̃ “

τ{p1 ` λJλq
1{2.

The stochastic representation of an EST is also provided in Arellano-Valle
& Genton (2010b, Proposition 1) under a different parametrization. Now letting Z “

Σ´1{2
pY ´ µq, it follows that Z „ ESTpp0, I,λ, τ, νq. Thence, the mean vector and

variance-covariance matrix of Z can be computed using the stochastic representation given
in Proposition 4, which are

ErZs “ ´η1∆˚, CovrZs “ γpIp ´ ∆˚∆˚J
q ` pη2 ´ η2

1q∆˚∆˚J,

with ∆˚
“ λ{p1`λJλq

1{2, γ “
ν ` η2

ν ´ 1 , η1 “ ErX2|X2 ă τ̃ s “
ν

1 ´ ν

ˆ

1 `
τ̃ 2

ν

˙

tpτ̃ ; νq

T pτ̃ ; νq
, ν ą

1, and η2 “ ErX2
2 |X2 ă τ̃ s “

νpν ´ 1q

ν ´ 2
T p

a

pν ´ 2q{ν τ̃ ; ν ´ 2q

T pτ̃ ; νq
´ ν, ν ą 2.

Then, the mean vector and variance-covariance matrix of Y can be easily
computed as

ErYs “ µ ` Σ1{2ErZs, CovrYs “ Σ1{2CovrZsΣ1{2. (5.3)

Proposition 5 (cdf of the EST). If Y „ ESTppµ,Σ,λ, τ, νq, then for any y P Rp

FYpyq “ PrpY ď yq “
Tp`1

`

pyJ, τ̃qJ; µ˚,Ω, ν
˘

T pτ̃ ; νq
.

Proof. The proof is a direct consequence of Proposition 4.

Proposition 6 (Marginal and conditional distribution of the EST). Let Y „ ESTppµ,Σ,λ,
τ, νq be partitioned as Y “ pYJ

1 ,YJ
2 q

J of dimensions p1 and p2 (p1 ` p2 “ p), respectively.
Let

Σ “

˜

Σ11 Σ12

Σ21 Σ22

¸

, µ “ pµJ
1 ,µ

J
2 q

J, and φ “ pφJ
1 ,φ

J
2 q

J
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be the corresponding partitions of Σ, µ, and φ “ Σ´1{2λ. Then,

Y1 „ ESTp1pµ1,Σ11, c12Σ1{2
11 φ̃1, c12τ, νq,

Y2|Y1 “ y1 „ ESTp2pµ2.1,Σ22.1{ν2
py1q,Σ1{2

22.1φ2, νpy1qτ2.1, ν ` p1q,

where c12 “ p1`φJ
2 Σ22.1φ2q

´1{2, φ̃1 “ φ1 `Σ´1
11 Σ12φ2, Σ22.1 “ Σ22 ´Σ21Σ´1

11 Σ12, µ2.1 “

µ2 ` Σ21Σ´1
11 py1 ´ µ1q, τ2.1 “ τ ` φ̃J

1 py1 ´ µ1q, and ν2
py1q “ pν` p1q{pν` δpy1; µ1,Σ11qq.

Proof. See Appendix D.1.

Now, we introduce a key concept to our theory, namely the truncated extended skew-t
(TEST) distribution.

5.2.3 The truncated extended skew-t distribution

Let A be a Borel set in Rp. The random vector Y has a TEST distribution on A
when Y has the same distribution as W | pW P Aq such that W „ ESTppµ,Σ,λ, τ, νq. We
use the notation tY P Au “ ta ď Y ď bu, where a “ pa1, . . . , apq

J and b “ pb1, . . . , bpq
J

are vectors of lower and upper limits. Moreover, if A has the form

A “ tpy1, . . . , ypq
J

P Rp : a1 ď y1 ď b1, . . . , ap ď yp ď bpu “ ty P Rp : a ď y ď bu,

we say that the distribution of Y is doubly truncated. Analogously, we define tY ě au

and tY ď bu, we say that the distribution of Y is truncated from below and truncated
from above, respectively.

The pdf of Y is given by

fpy | µ,Σ,λ, τ, ν; Aq “
ESTppy; µ,Σ,λ, τ, νq

PrpW P Aq
Ipy P Aq.

We use the notation Y „ TESTppµ,Σ,λ, τ, ν; Aq. For convenience, we also use the
notation Y „ TESTppµ,Σ,λ, τ, ν; ra,bsq. For λ “ 0 and τ “ 0, Y follows a truncated
Student-t distribution on ra,bs, which can be denoted by Y „ Ttppµ,Σ, ν; ra,bsq.

We also define the normalizing constant Pppa,b; µ,Σ,λ, τ, νq “ PrpW P Aq as

Pppa,b; µ,Σ,λ, τ, νq “

ż b

a
ESTppw; µ,Σ,λ, τ, νq dw. (5.4)

For the ST distribution pτ “ 0q, we simply omit the τ parameter, that is,
Pppa,b; µ,Σ,λ, νq “ Pppa,b; µ,Σ,λ, 0, νq. If either all λ and τ are equal to zero, or
τ Ñ `8, we have the normalizing constant of the symmetric Student-t distribution as
follows

Pppa,b; µ,Σ,0, 0, νq ” Pppa,b; µ,Σ, νq “

ż b

a
tppw; µ,Σ, νq dw. (5.5)
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5.3 The ST censored regression model for multiple outcomes
This section is devoted to formulating the ST-CR model for multiple outcomes,

which has asymmetric and heavy-tailed distribution on the error term. We also develop an
EM-type algorithm to obtain the ML estimates and propose a method to approximate the
standard errors of the estimates based on the empirical information matrix. Hence, let
Yi “ pYi1, . . . , Yipq

J be a p ˆ 1 response vector for the ith sample unit. The ST regression
model is defined as

Yi “ Xiβ ` ξi, i P t1, . . . , nu, (5.6)

where Xi “ Ip b xJ
i is the design matrix for the ith observation, having dimensions p ˆ q,

and xJ
i “ p1, xi1, . . . , xi,q{p´1q is the transposed vector of covariates. Here, β represents

the q-dimensional vector of population-average regression coefficients, and ξi denotes
the p ˆ 1 error vector. It is assumed that ξi

ind
„ STppκ∆,Σ,λ, νq, where for ν ą 1,

κ “ ´pν{πq
1{2Γppν ´ 1q{2q{Γpν{2q, and ∆ “ Σ1{2λ{p1 ` λJλq

1{2. In addition, the chosen
location parameter ensures that Erξis “ 0, so that ErYis “ Xiβ, for each i “ 1, . . . , n,
and the regression parameters are all comparable. Thus, the distribution of Yi is given by

Yi
ind
„ STppµi,Σ,λ, νq, (5.7)

with location vector µi “ Xiβ ` κ∆, dispersion matrix Σ “ Σpαq depending on an
unknown and reduced parameter vector αΣ, skewness parameter λ, and degrees of freedom
ν.

However, the response vector Yi “ pYi1, . . . , Yipq
J may not be fully observed

due to censoring, so we define pVi,Ciq the observed data for the ith sample unit. Let
Rij Ď R denote the censoring region for observation pi, jq, such that Yij is censored if
Yij P Rij, for j P t1, . . . , pu. Further, let Vi “ pVi1, . . . , Vipq

J and Ci “ pCi1, . . . , Cipq
J,

where Cij is the censoring indicator, and Vij is given by

Vij “

#

rij, if Yij P Rij, pcensoredq

Yij, otherwise, pobservedq
(5.8)

where Rij is an interval of the form p´8, rijq, prij,8q, or prij1, rij2q for left, right, or
interval censoring, respectively. The constant rij P R is equal to the detection limit for
left and right censoring, and rij “ prij1 ` rij2q{2 for interval censoring. Moreover, missing
observations can be handled by setting Rij “ p´8,8q and rij “ NA. The NA values serve
as references and are excluded from the initial parameter estimation process, as detailed
in Subsection 3.3.1. In this case, (5.7) along with (5.8) define the skew-t interval-censored
regression model for multiple outcomes (hereafter, the ST-CR model).

5.3.1 The likelihood function

Let y “ pyJ
1 , . . . ,yJ

n q
J, where yi “ pyi1, . . . , yipq

J is a realization of Yi „

STppµi,Σ,λ, νq. To obtain the likelihood function of the ST-CR model, we first treat,
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separately, the observed and censored components of yi, i.e., yi “ pyoJ
i ,ycJ

i q
J, where

Cik “ 0 for all elements in the po
i -dimensional vector yo

i , and Cik “ 1 for all elements
in the pc

i -dimensional vector yc
i . According to that, we write Vi “ pVoJ

i ,VcJ
i q

J, where
Vc

i “ pVc
1i,Vc

2iq with

µi “ pµoJ
i ,µcJ

i q
J, Σ “ Σpαq “

˜

Σoo
i Σoc

i

Σco
i Σcc

i

¸

, φi “ pφoJ
i ,φcJ

i q
J,

with φi “ Σ´1{2λ. To compute the likelihood function, we need to know the marginal and
conditional distribution of an ST variable. Then, from Proposition 6, we have that

Yo
i „ STpo

i
pµo

i ,Σoo
i , λ̃

o

i , νq, Yc
i | pYo

i “ yo
i q „ ESTpc

i
pµco

i , Σ̃
cc.o

i ,λco
i , τ

co
i , ν

co
i q,

with λ̃
o

i “ coc
i Σoo 1{2

i φ̃o
i , coc

i “ p1 ` φcJ
i Σcc.o

i φc
iq

´1{2, µco
i “ µc

i ` Σco
i Σoo´1

i pyo
i ´ µo

i q, Σ̃cc.o

i “

Σcc.o
i {ν2

pyo
i q, Σcc.o

i “ Σcc
i ´Σco

i pΣoo
i q

´1Σoc
i , ν2

pyo
i q “ pν`po

i q{pν`δpyo
i qq, λco

i “ Σcc.o 1{2
i φc

i ,
τ co

i “ νpyo
i qφ̃oJ

i pyo
i ´ µo

i q, φ̃o
i “ φo

i ` Σoo ´1
i Σoc

i φc
i , and νco

i “ ν ` po
i .

Let V “ vecpV1, . . . ,Vnq and C “ vecpC1, . . . ,Cnq denote the observed data,
with vecpAq representing the operator that transforms a matrix into a column vector by
vertically stacking the columns of the matrix. Therefore, the log-likelihood function of
θ “ pβJ,αJ

Σ ,λ
J, νq

J, where αΣ denotes a minimal set of parameters such that Σpαq is
well defined (e.g., the upper triangular elements of Σ in the unstructured case), for the
observed data pV,Cq is

ℓpθ | V,Cq “

n
ÿ

i“1
lnLi, (5.9)

where Li represents the likelihood function of θ for the ith sample, given by

Li ” Lipθ | Vi,Ciq “ Prprc
1i ă yc

i ă rc
2i | yo

i ,θqfpyo
i | θq

“ Ppc
i
prc

1i, rc
2i; µco

i , Σ̃
cc.o

i ,λco
i , τ

co
i , ν

co
i qSTpo

i
pyo

i ; µo
i ,Σoo

i , λ̃
o

i , νq,

where tyc
i P Rpc

i : rc
i1 ď yc

i ď rc
i2u “ tpyc

i1, . . . , y
c
ipc

i
q

J
P Rpc

i : ri11 ď yc
i1 ď rc

i12, . . . , ripc
i 1 ď

yc
ipc

i
ď rc

ipc
i 2u denotes the censoring region of all partially observed data for sample unit i and

Prpα,β; µ,Σ,λ, τ, νq denotes the integral defined in (5.4), which can be easily evaluated
by using the R package MomTrunc.

Then, to estimate the parameters of the multivariate ST-CR model, an alter-
native is to maximize its log-likelihood function directly. However, this procedure can be
quite cumbersome. In the next section, we propose a simple EM-type algorithm (Dempster
et al., 1977) to obtain the ML estimates. The EM algorithm is a general iterative method
of ML estimation for incomplete data.

5.3.2 Parameter estimation via EM-type algorithm

This section describes how to carry out ML estimation for the ST-CR model.
Initially proposed by Dempster et al. (1977), the EM algorithm is a popular iterative
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optimization strategy commonly used to obtain ML estimates for incomplete data problems.
This algorithm has many attractive features, such as numerical stability, implementation
simplicity, and quite reasonable memory requirements (McLachlan & Krishnan, 2008).
However, ML estimation for the ST-CR model is complicated because of the censoring,
while the EM algorithm is less advisable due to the computational difficulty at the M-step.
To overcome this problem, we use an extension of the EM called the ECME algorithm
(Liu & Rubin, 1994). The ECME replaces the M-step with a sequence of conditional
maximization (CM) steps. A key feature of this algorithm is that it preserves the stability
of the EM and has a typically faster convergence rate than the original EM.

To propose the ECME algorithm for our ST-CR model, we first consider
the marginal stochastic representation of a multivariate ST random vector given in
Proposition 3. The model defined in (5.6) and (5.7) can be written hierarchically as

Yi | pUi “ ui, Ti “ tiq
ind
„ NppXiβ ` ti∆, u´1

i Γq, Ti|Ui “ ui
ind
„ TNpκ, u´1

i ; pκ,8qq,

Ui
iid
„ Gammapν{2, ν{2q, i P t1, . . . , nu,

with ∆ “ Σ1{2λ{

a

1 ` λJλ and Γ “ Σ´∆∆J. In the sequel, we define y “ pyJ
1 , . . . ,yJ

n q
J,

u “ pu1, . . . , unq
J, and t “ pt1, . . . , tnq

J such that py,u, tq are hypothetical missing data,
and augmenting with the observed data V,C corresponding to the censoring mechanism.
Consequently, we set the complete data vector as yc “ pV,C,y,u, tq. Then, fixing the
value of ν, the complete data log-likelihood function of an equivalent set of parameters θ “

pβJ,∆J,αJ
Γ q

J, where αΓ “ vechpΓq denotes the column vector obtained by vectorizing

only the lower triangular part of Γ, is given by ℓcpθq “

n
ÿ

i“1
ℓicpθq, where the individual

complete data log-likelihood is as follows

ℓicpθq “ ´
1
2

!

ln |Γ| ` uipyi ´ Xiβ ´ ti∆q
JΓ´1

pyi ´ Xiβ ´ ti∆q

)

` Kipνq ` c,

with c being a constant that does not depend on θ, Kipνq being a function that depends
only on ν, and |A| denoting the determinant of the square matrix A. Subsequently, the
EM algorithm for the ST-CR model can be summarized as follows:

E-step: Given the current estimate pθ
pkq

“ ppβ
pkqJ

, p∆
pkqJ

, pαpkqJ

Γ q
J at the kth step

of the algorithm, the E-step provides the conditional expectation of the complete data
log-likelihood function, i.e.,

Qpθ | pθ
pkq

q “ E
”

ℓcpθq | V,C, pθ
pkq
ı

“

n
ÿ

i“1
Qipθ | pθ

pkq

q,

where

Qipθ | pθ
pkq

q 9 ´
1
2 ln |Γ| ´

1
2tr

”!

yuy2
i

pkq

` pui
pkqXiββJXJ

i ` xut2i
pkq

∆∆J
´ 2 xuyi

pkq
βJXJ

i

´2yutyi

pkq∆J
` 2xuti

pkq∆βJXJ
i

)

Γ´1
ı

,
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with yuyr
i

pkq

“ EUiTiYi
rUiYr

i | Vi,Ci, pθ
pkq

s, xutri
pkq

“ EUiTiYi
rUiT

r
i | Vi,Ci, pθ

pkq

s (for r P t1, 2u

with Y1
i “ Yi and Y2

i “ YiYJ
i ), yutypkq

i “ EUiTiYi
rUiTiYi | Vi,Ci, pθ

pkq

s, and pupkq

i “

EUiTiYi
rUi | Vi,Ci, pθ

pkq

s.

M-step: Conditionally maximizing Qpθ | pθ
pkq

q “

n
ÿ

i“1
Qipθ | pθ

pkq

q with respect

to each entry of θ, we update the estimate pθ
pkq

“ pβ̂
pkqJ

, p∆
pkqJ

, pαpkqJ

Γ q
J by

pβ
pk`1q

“

#

n
ÿ

i“1
pui

pkqXJ
i
pΓ

´1pkq

Xi

+´1 n
ÿ

i“1
XJ

i
pΓ

´1pkq
!

xuyi
pkq

´ xuti
pkq
p∆

pkq
)

, (5.10)

p∆
pk`1q

“

#

n
ÿ

i“1

xut2i
pkq

+´1 n
ÿ

i“1

!

yutyi

pkq

´ xuti
pkqXi

pβ
pk`1q

)

, (5.11)

pΓ
pk`1q

“
1
n

n
ÿ

i“1

!

yuy2
i

pkq

` pui
pkqXi

pβ
pk`1q

pβ
pk`1qJ

XJ
i ` xut2i

pkq

p∆
pk`1q

p∆
pk`1qJ

` pA
pkq

i

)

, (5.12)

where pA
pkq

i “ pA
pkq

1i ´ pA
pkq

2i ´ pA
pkq

3i , with pA
pkq

1i “ xuti
pkq

pXi
pβ

pk`1q
p∆

pk`1qJ

` p∆
pk`1q

pβ
pk`1qJ

XJ
i q,

pA
pkq

2i “ xuyi
pkq
pβ

pk`1qJ

XJ
i ` Xi

pβ
pk`1q

xuyi
pkqJ, and pA

pkq

3i “ yutyi

pkq
p∆

pk`1qJ

` p∆
pk`1q

yutyi

pkqJ.

Then we update the parameter ν by maximizing the marginal log-likelihood
function with respect to ν, as follows

pνpk`1q
“ argmax

ν

n
ÿ

i“1
ln fpVi | Ci, pθ

pk`1q

; νq.

We employ the algorithm proposed by Brent (2013), a combination of golden sec-
tion search and successive parabolic interpolation, to perform the maximization procedure.
It was designed for use with continuous functions of one variable.

The EM algorithm is iterated until a suitable convergence rule is satisfied. Once
converged, we can recover pΣ and pλ using the expressions

pΣ “ pΓ ` p∆ p∆
J

, pλ “ p1 ´ p∆
J
pΣ

´1
p∆q

´1{2
pΣ

´1{2
p∆.

It is important to stress that, from (5.10) to (5.12), the E-step reduces to the computation
of pui

pkq, xuyi
pkq, yuy2

i

pkq

, xuti
pkq, xut2i

pkq

, and yutyi

pkq. The computations of these conditional
expectations are discussed next.

5.3.3 Details for the expectations in the EM algorithm

To compute the expected values needed in the E-step, first note that for any
multiplicative separable measurable function of Ui, Ti, and Yi, such that gpUi, Ti,Yiq “

g1pYiqg2pUiqg3pTiq, we have that

EUiTiYi
rgpUi, Ti,Yiq | Vi,Cis “ EYi

rg1pYiqEUiTi
rg2pUiqg3pTiq|Yis | Vi,Cis

“ EYi
rg1pYiqEUi

rg2pUiqETi
rg3pTiq|Ui,Yis | Yis | Vi,Cis.
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Hence,

yuyr
i “ EUiTiYi

rUiYr
i |Vi,Cis “ EYi

rYr
iEUi

rUi|Yis | Vi,Cis,

xutri “ EUiTiYi
rUiT

r
i |Vi,Cis “ EYi

rEUiTi
rUiT

r
i |Yis | Vi,Cis,

yutyr
i “ EUiTiYi

rUiTiYr
i |Vi,Cis “ EYi

rYr
iEUiTi

rUiTi|Yis | Vi,Cis,

for r P t0, 1, 2u. From Cabral et al. (2012), we know that

EUiTi
rUiTi|Yis “ pκ ` ζiqEUi

rUi|Yis ` ϱ ϕpθ,Yiq, (5.13)
EUiTi

rUiT
2
i |Yis “ ϱ2

` pκ ` ζiq
2 EUi

rUi|Yis ` ϱp2κ ` ζiqϕpθ,Yiq, (5.14)

with ϱ “ p1 ` ∆JΓ´1∆q
´1{2, ζi “ ϱ2∆JΓ´1

pYi ´ µiq, and

ϕpθ,Yiq “ EUi

«

U
1{2
i

ϕ1pU
1{2
i λJΣ´1{2

pYi ´ µiqq

Φ1pU
1{2
i λJΣ´1{2

pYi ´ µiqq

ˇ

ˇ

ˇ

ˇ

ˇ

Yi

ff

.

As noted, both expectations EUiTi
rUiTi|Yis and EUiTi

rUiT
2
i |Yis depend on EUi

rUi|Yis and
ϕpθ,Yiq. From Lachos et al. (2010), we have also that

EUi
rUi|Yis “

2ν2pyiq tppyi; µi,Σ, νq

STppyi; µi,Σ,λ, νq
T

ˆ
c

ν ` p ` 2
ν ` δi

Ai; ν ` p ` 2
˙

and
ϕpθ,yiq “

2 tppyi; µi,Σ, νq

STppyi; µi,Σ,λ, νq

Γppν ` p ` 1q{2q
?
πΓppν ` pq{2q

pν ` δiq
pν`pq{2

pν ` δi ` A2
i qpν`p`1q{2 ,

where ν2
pyiq “ pν ` pq{pν ` δiq, δi “ δpyi; µi,Σq, and Ai “ λJΣ´1{2

pyi ´ µiq.

By using the fact that tppyi; µi,Σ, νq “ tppyi; µi,
ν

ν`2Σ, ν ` 2q{ν2
pyiq, |Σ| “

p1 ` λJλq|Γ|, δi “
ν

ν ` 2δpyi; µi,
ν

ν`2Σq, and δi ` A2
i “

ν

ν ` 1δpyi; µi,
ν

ν ` 1Γq, we can
easily propose simplified versions of the equations above after straightforward algebraic
manipulations as follows

EUi
rUi|Yis “

STppyi; µi,
ν

ν`2Σ,λ, ν ` 2q

STppyi; µi,Σ,λ, νq
(5.15)

and

ϕpθ,yiq “
2

b

πνp1 ` λJλq

Γpν`1
2 q

Γpν
2 q

tppyi; µi,
ν

ν`1Γ, ν ` 1q

STppyi; µi,Σ,λ, νq
. (5.16)

Now, let us define the expectation of interest yϕyr
i “ EYi

rYr
iϕpθ,Yiq|Vi,Cis,

for r P t0, 1, 2u. Next, we present two crucial propositions to compute these expectations,
proofs can be found in the Appendix D.1.

Proposition 7. Let Y „ STppµ,Σ,λ, νq. For any measurable function gpYq, it holds that

E rϕpθ,YqgpYq | α ď Y ď βs “
2

b

πνp1 ` λJλq

Γpν`1
2 q

Γpν
2 q

Pppα,β; µ, ν
ν`1Γ, ν ` 1q

Pppα,β; µ,Σ,λ, νq
ErgpW1qs,

(5.17)
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and

ErU gpYq | α ď Y ď βs “
Pppα,β; µ, ν

ν`2Σ,λ, ν ` 2q

Pppα,β; µ,Σ,λ, νq
ErgpW2qs, (5.18)

where W1 „ Ttppµ,
ν

ν ` 1Γ, ν ` 1; pα,βqq, W2 „ TSTppµ,
ν

ν ` 2Σ,λ, ν ` 2; pα,βqq, Γ “

Σ ´ ∆∆J, and ∆ “ Σ1{2λ{p1 ` λJλq
1{2.

Proposition 8. Let Y „ STppµ,Σ,λ, νq be partitioned as Y “ pYJ
1 ,YJ

2 q
J of dimensions

p1 and p2 (p1 ` p2 “ p), respectively. Let

Γ “

˜

Γ11 Γ12

Γ21 Γ22

¸

, α “ pαJ
1 ,α

J
2 q

J, β “ pβJ
1 ,β

J
2 q

J

be the corresponding partitions of Γ, α, and β. For a multiplicative separable measurable
function g, it follows that

Erϕpθ, YqgpYq| Y1, α2 ď Y2 ď β2s “ g1py1q
tp1py1; µ1, ν

ν`1Γ11, ν ` 1q

STp1py1; µ1, Σ11, λ̃1, νq

2
b

πνp1 ` λJλq

Γpν`1
2 q

Γpν
2 q

ˆ
Pp2pα2, β2; µ2.1, ν2.1

ν2.1`1 Γ̃22.1, ν2.1 ` 1q

Pp2pα2, β2; µ2.1, Σ̃22.1, λ2.1, τ2.1, ν2.1q
Erg2pW˚

1qs,

(5.19)

and

ErU gpYq|Y1, α2 ď Y2 ď β2s “ g1py1q
STp1py1; µ1, ν

ν`2Σ11, λ̃1, ν ` 2q

STp1py1; µ1, Σ11, λ̃1, νq

ˆ
Pp2pα2, β2; µ2.1, ν2.1

ν2.1`2Σ̃22.1, λ2.1,
b

ν2.1`2
ν2.1

τ2.1, ν2.1 ` 2q

Pp2pα2, β2; µ2.1, Σ̃22.1, λ2.1, τ2.1, ν2.1q

ˆ Erg2pW˚
2qs, (5.20)

where gpYq “ g1pY1qg2pY2q, W˚
1 „ Ttp2pµ2.1,

ν2.1
ν2.1`1Γ̃22.1, ν2.1 ` 1; pα2,β2qq, and W˚

2 „

TESTp2pµ2.1,
ν2.1

ν2.1`2Σ̃22.1,λ2.1,
a

pν2.1 ` 2q{ν2.1τ2.1, ν2.1 ` 2; pα2,β2qq, with ν2.1 “ ν ` p1,
Γ̃22.1 “ pΓ22´Γ21Γ´1

11 Γ12q{υ2
py1q, υ2

py1q “ pν`p1q{pν`δpy1; µ1,Γ11qq, τ2.1 “ νpy1qpφ̃J
1 py1´

µ1qq, and the remaining parameters as in Proposition 6.

Subsequently, according to expressions (5.13)–(5.20), we have the implementable
expressions to the conditional expectations under the following three possible scenarios:

1. If the ith subject has only non-censored components, EUiTiYi
rYr

i |Vi,Cis “ yr
i ; then

yuyr
i

pkq
“ pu

pkq

i yr
i , pu

pkq

i “ EUi
rUi|Yi, pθ

pkq

s, xutri
pkq

“ EUiTi
rUiT

r
i |Yi, pθ

pkq

s,

yutyr
i

pkq
“ yr

iEUiTi
rUiTi|Yi, pθ

pkq

s,

where y0
i “ 1, y1

i “ yi, and y2
i “ yiyJ

i .
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2. If the ith subject has only censored components, we have

yuyr
i

pkq
“ pui

pkq
ywr

2i

pkq
,

pui
pkq

“
Pppv1i,v2i; µ̂

pkq

i , ν̂pkq

ν̂pkq`2Σ̂
pkq
, λ̂

pkq
, ν̂pkq ` 2q

Pppv1i,v2i; µ̂
pkq

i , Σ̂
pkq
, λ̂

pkq
, ν̂pkqq

,

xuti
pkq

“ pκpkq
pui

pkq
` ϱ̂2pkq∆̂

pkqJ
Γ̂

´1pkq
´

xuyi
pkq

´ pui
pkqµ̂

pkq

i

¯

` ϱ̂pkq
yϕy0

i

pkq

,

xut2i
pkq

“ ϱ̂2pkq
` pϱ2pkq∆̂

pkqJ
Γ̂

´1pkq

„

2pκpkq
p xuyi

pkq
´ pui

pkq
pµi

pkq
q ` ϱ̂pkq

pyϕy1
i

pkq

´ µ̂
pkq

i
yϕy0

i

pkq

q

`pϱ2pkq
pyuy2

i

pkq

´ 2 xuyi
pkq

µ̂
Jpkq

i ` pui
pkqµ̂

pkq

i µ̂
Jpkq

i qΓ̂
´1pkq

∆̂
pkq

ȷ

` pκ2pkq
pui

pkq
` 2pκpkq

pϱpkq
yϕy0

i

pkq

,

yutyi

pkq
“ pκpkq

xuyi
pkq

` ϱ̂2pkq
pyuy2

i

pkq

´ xuyi
pkq

µ̂
pkqJ

i qΓ̂
´1pkq

∆̂
pkq

` ϱ̂pkq
yϕy1

i

pkq

,

with

yϕyr
i

pkq
“

2
b

πν̂pkqp1 ` λ̂
pkqJ

λ̂
pkq

q

Γp ν̂pkq`1
2 q

Γp ν̂pkq

2 q

Pppv1i, v2i; µ̂
pkq

i , ν̂pkq

ν̂pkq`1 Γ̂pkq
, ν̂pkq ` 1q

Pppv1i, v2i; µ̂
pkq

i , Σ̂pkq
, λ̂

pkq
, ν̂pkqq

pwrpkq

1i ,

where pwpkq

si “ ErWsi | pθ
pkq

s and pw2pkq

si “ ErWsiWJ
si | pθ

pkq

s for s P t1, 2u, with

W1i „ Ttpi
pµi,

ν
ν`1Γ, ν`1; pv1i,v2iqq and W2i „ TSTpi

pµi,
ν

ν`2Σ,λ, ν`2; pv1i,v2iqq.

3. If the ith subject has both censored and uncensored components and given that the
following processes pYi | Vi,Ciq and pYi | Vi,Ci,Yo

i qare equivalent, we have

xuypkq

i “ ErUiYi | yo
i ,Vi,Ci, pθ

pkq

s “ pui
pkq vecpyo

i , pw
cpkq

2i q,

yuy2
i

pkq

“ ErUiYiYJ
i | yo

i ,Vi,Ci, pθ
pkq

s “

˜

pui
pkqyo

i yoJ
i pui

pkqyo
i pw

cpkqJ

2i

pu
pkq

i pwcpkq

2i yoJ
i pui

pkq
pw2cpkq

2i

¸

,

pu
pkq

i “ ErUi | yo
i ,Vi,Ci, pθ

pkq

s “
STpo

i
pyo

i ; µ̂
opkq

i , ν̂pkq

ν̂pkq`2Σ̂
oopkq

i , λ̃
opkq

i , ν̂pkq ` 2q

STpo
i
pyo

i ; µ̂
opkq

i , Σ̂
oopkq

i , λ̃
opkq

i , ν̂pkqq

ˆ

Ppc
i
pvc

1i,vc
2i; pµ

copkq

i ,
ν̂

copkq

i

ν̂
copkq

i `2
Σ̃cc.opkq

i , λ̂
copkq

i ,

c

ν̂
copkq

i `2
ν̂

copkq

i

τ̂
copkq

i , ν̂
copkq

i ` 2q

Ppc
i
pvc

1i,vc
2i; pµ

copkq

i , Σ̃cc.opkq

i , λ̂
copkq

i , τ̂
copkq

i , ν̂
copkq

i q

,

with xuti
pkq, xut2i

pkq

, and yutyi

pkq as in item 2, and

yϕyr
i

pkq

“
2

b

πν̂pkqp1 ` λ̂
pkqJ

λ̂
pkq

q

Γp ν̂pkq`1
2 q

Γp ν̂pkq

2 q

Ppc
i
pvc

1i,vc
2i; pµ

copkq

i ,
ν̂

copkq

i

ν̂
copkq

i `1
Γ̃cc.opkq

i , ν̂
copkq

i ` 1q

Ppc
i
pvc

1i,vc
2i; pµ

copkq

i , Σ̃cc.opkq

i , λ̂
copkq

i , τ̂
copkq

i , ν̂
copkq

i q

ˆ
tpo

i
pyo

i ; µ̂
opkq

i , ν̂pkq

ν̂pkq`1Γ̂
oopkq

i , ν̂pkq ` 1q

STpo
i
pyo

i ; µ̂
opkq

i , Σ̂
oopkq

i , λ̃
opkq

i , ν̂pkqq

pwrpkq

1i ,
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where pwpkq

si “ ErW˚
si | pθ

pkq

s and pw2pkq

si “ ErW˚
siW˚J

si | pθ
pkq

s for s P t1, 2u, with

W˚
1i „ Ttpc

i

´

µco
i ,

νco
i

νco
i `1Γ̃cc.o

i , νco
i ` 1; pvc

1i,vc
2iq

¯

,

W˚
2i „ TESTpc

i

ˆ

µco
i ,

νco
i

νco
i `2Σ̃cc.o

i ,λco
i ,

c

νco
i ` 2
νco

i

τ co
i , ν

co
i ` 2; pvc

1i,vc
2iq

˙

,

with Γi being partitioned like Σi, τ co
i “ νpyo

i qpφ̃oJ
i pyo

i ´µo
i qq, νco

i “ ν`po
i , Γ̃cc.o

i “ pΓcc
i ´

Γco
i Γoo´1

i Γoc
i q{υ2

pyo
i q, and the remaining parameters as in Proposition 8. Superscripts

pkq have been omitted for simplicity.

The computation of the truncated moments pwpkq

si and pw2pkq

si (for s P t1, 2u), in items 1
to 3, is based on Galarza et al. (2022a), which is available through the MomTrunc and
relliptical R packages.

5.3.4 Initial values and stopping criterion

A reasonable convergence is attained using least squares estimates for the initial
values of β and Σ, that is,

pβ
p0q

“

˜

n
ÿ

i“1
XJ

i Xi

¸´1 n
ÿ

i“1
XJ

i yi, pΣ
p0q

“
1
n

n
ÿ

i“1
pyi ´ Xi

pβ
p0q

qpyi ´ Xi
pβ

p0q

q
J,

while for the skewness parameter λ, we use the coefficient of sample skewness of the
residuals ri “ yi ´ Xi

pβ
p0q

, i P t1, . . . , nu.

We have adopted the stopping criterion |ℓppθ
pk`1q

|V,Cq{ℓppθ
pkq

|V,Cq ´ 1| ă ϵ,
for example, ϵ “ 10´6, i.e., the algorithm stops when the relative distance between two
successive evaluations of the log-likelihood defined in (5.9) is less than tolerance.

5.3.5 Standard error approximation

According to large sample theory, the asymptotic covariance of the ML estimates
can be approximated by the empirical information matrix, which evaluated at the ML
estimates is reduced to

Ieppθ|yq “

n
ÿ

i“1
psipθqpsipθq

J.

For the ST-CR model, let pθ “ ppβ
J

, pαJ

Σ,
pλ

J

, pνq
J denote the vector of ML

estimates obtained at the last iteration of the EM algorithm, with pαΣ “ ppα1, . . . , pαppp`1q{2q
J

representing the ppp ` 1q{2 vector of distinct elements of pΣ, then the vector psipθq “

ppsipβq
J,psipαΣq

J,psipλq
J,psipνqq

J has elements

psipβq “ XJ
i
pΓ

´1 ´
xuyi ´ puti p∆ ´ puiXi

pβ
¯

,
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psipαΣq “
`

psipα1q,psipα2q, . . . ,psipαppp`1q{2q
˘J
, psipλq “ ppsipλ1q,psipλ2q, . . . ,psipλpqq

J ,

psipνq “
1
2

"

ln
ˆ

pν

2

˙

` 1 ´ ψ

ˆ

pν

2

˙

` E
”

lnUi|Vi,Ci, pθ
ı

´ pui

*

,

with ψpxq “ Γ1
pxq{Γpxq representing the digamma function,

psipαlq “ ´
1
2tr

!

pΓ
´1

9Γαl
` pAi

9Γ´1
αl

`

”

xut2
i

´

9∆αl
p∆

J
` p∆ 9∆J

αl

¯

´ 2 9∆αl
p yutyi ´ xutiXi

pβqJ
ı

pΓ
´1)

,

psipλjq “ ´
1
2tr

!

pΓ
´1

9Γλj
` pAi

9Γ´1
λj

`

”

xut2
i

´

9∆λj
p∆

J
` p∆ 9∆J

λj

¯

´ 2 9∆λj
p yutyi ´ xutiXi

pβqJ
ı

pΓ
´1)

,

where

pAi “ yuy2
i ` ppuiXi

pβ ´ 2 xuyi ` 2xuti p∆qpβ
J

XJ
i ` p∆pxut2i

p∆ ´ 2yutyiq
J, 9Γ

´1
αl

“ ´pΓ
´1

9Γαl
pΓ

´1
,

9Γαl
“

BΓ
Bαl

ˇ

ˇ

ˇ

α“pα
“ 9Σαl

´ 9∆αl
p∆

J

´ p∆ 9∆
J

αl
, 9Γ

´1
λj

“ ´pΓ
´1

9Γλj
pΓ

´1
, 9Γλj

“ ´ 9∆λj
p∆

J

´ p∆ 9∆
J

λj
,

9∆αl
“

B∆
Bαl

ˇ

ˇ

ˇ

α“pα
“

9Σ
1{2
αl

pλ

p1 ` pλ
J
pλq1{2

, 9∆λj
“

B∆
Bλj

ˇ

ˇ

ˇ

λ“pλ
“ pΣ

1{2
˜

9λj

p1 ` pλ
J
pλq1{2

´
pλj
pλ

p1 ` pλ
J
pλq3{2

¸

,

for l P t1, . . . , ppp ` 1q{2u, j P t1, . . . , pu, i P t1, . . . , nu. Additionally, 9λj “
Bλ

Bλj

denotes

the p ˆ 1 vector with 1 in the jth entry and 0 otherwise, 9Σαl
“

BΣ
Bαl

represents the p ˆ p

matrix with 1 in the position of the element αl and the remaining elements equal to 0,

and 9Σ
1{2
αl

“
BΣ1{2

Bαl

ˇ

ˇ

α“pα
is computed by

vec
´

9Σ
1{2
αl

¯

“
`

Σ1{2
‘ Σ1{2˘´1 vec

´

9Σαl

¯

,

where Σ1{2
‘ Σ1{2

“ Σ1{2
b In ` In b Σ1{2 represents the Kronecker sum with b denoting

the Kronecker product. Since Σ is positive definite, Σ1{2 is positive definite, and hence
the Kronecker sum is positive definite.

It is important to stress that the standard error (SE) of ν depends on the
calculation of ErlnUi|Vi,Ci, pθs, which would rely on computationally intensive Monte
Carlo integration or other numerical methods. Therefore, we focus solely on studying the
SEs of the parameters β, αΣ, and λ.

5.3.6 Imputation of censored components

Let yc
i be the true unobserved response vector for the censored components of

the ith subject. Now, as a by-product of the EM algorithm, we can obtain the predictor of
the censored components, denoted by pyc

i , as follows

pyc
i “ E

”

Yc
i | yo

i ,Vi,Ci, pθ
ı

, (5.21)

which is obtained considering two possible cases:
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1. If subject i has only censored components

pyc
i “ E

”

Yi | Vi,Ci, pθ
ı

,

where Yi | Vi,Ci, pθ „ TSTpppµi, pΣ, pλ, pν; Aiq, with pµi “ Xi
pβ ` κ p∆, Ai “ tyi P Rp :

v1i ă yi ă v2iu, yi “ pyi1, . . . , yipq
J, v1i “ pv1i1, . . . , v1ipq

J, and v2i “ pv2i1, . . . , v2ipq
J.

2. If subject i has both censored and uncensored components, then

pyc
i “ E

”

Yc
i | yo

i ,Vi,Ci, pθ
ı

,

where Yc
i | yo

i ,Vi,Ci, pθ „ TESTpc
i
ppµco

i , Σ̃
cc.o

i , pλ
co

i , pτ
co
i , pν

co
i ; Aiq, with Ai “ tyc

i P Rpc
i :

vc
1i ă yc

i ă vc
2iu, yc

i “ pyi1, . . . , yipc
i
q

J, vc
1i “ pvc

1i1, . . . , v
c
1ipc

i
q

J, and vc
2i “ pvc

2i1, . . . , v
c
2ipc

i
q

J.
The remaining parameters of the distribution are given as in Proposition 6.

5.4 Simulation Studies
This section is dedicated to examining the performance of the proposed methods.

We present four simulation studies to investigate: i) the asymptotic behavior of the ML
estimates for our proposal under different scenarios, ii) the effect of the skewness parameter
λ in the estimation procedure for left-censored responses, iii) the impact on the parameter
estimates of model misspecification, and iv) the robustness of the estimates when the data
is perturbed.

In all simulation studies, we considered 500 Monte Carlo (MC) samples gen-
erated from the model Yi “ Xiβ ` ξi, for i P t1, . . . , nu, where the errors follow a
bivariate skew distribution. We set the parameters β “ p1,´2, 2,´1q

J, the design matrix
Xi “ I2 b xJ

i , with I2 being the identity matrix of dimension 2 ˆ 2, xJ
i “ p1, xi1q, and

xi1 being independent simulated from the standard normal distribution. The elements of
Σ equal to σ11 “ 4, σ12 “ ´0.50, and σ22 “ 1.50. Moreover, we consider the skewness
parameter vector λ “ p2,´3q

J for simulations I, III, and IV.

5.4.1 Simulation study I: Asymptotic properties

Aiming to provide empirical evidence about the consistency of the ML estimates
obtained through the proposed method, we simulated samples of sizes n “ 50, 100, 200,
and 400 from the bivariate skew-t distribution, Yi

ind
„ ST2pXiβ ` κ∆,Σ,λ, νq, with ν “ 4

degrees of freedom, κ, and ∆ as in Section 5.3. In addition, we study the effect of censoring
on the parameter estimates. Thus, three scenarios were evaluated: without censoring, an
average of 15% left-censored, and an average of 15% right-censored observations. The
detection limits were set vc

2 “ p´2, 0.50q
J and vc

1 “ p4.14, 3.69q
J for the left and right-

censored datasets, respectively. These values ensure almost the same censoring proportion
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for each component of the response vector Y P Rnˆ2. For each sample size and type of
censoring, we computed the mean (MC-AV), median (MC-MD), and standard deviation
(MC-SD) of the 500 MC estimates. To examine the consistency of the approximated
method to get standard errors, we calculated the average of the standard error estimates
(denoted by IM-SE). We compared it with the empirical MC-SD for each scenario.

Table 9 displays results obtained for data without censoring, where we can
see that the mean (MC-AV) and median (MC-MD) of the estimates for the regression
coefficients (β10, β11, β20, and β21) are close to the true parameter value for all sample
sizes. Additionally, there is a bias in the estimates of σ11, σ12, σ22,λ, and ν, but it gets
smaller as n increases. One can also observe that MC-AV overestimates λ and ν for
samples of size n “ 50, but the median was a better estimator. On the other hand, the
estimation methods of the SE for β and αΣ provide results close to the empirical ones, and
the closeness improves as the sample size increases. Besides, the inverse of the empirical
information matrix was unreliable in estimating the SE of the skewness parameter λ for
the two smallest sample sizes n “ 50 and 100; however, very decent results were obtained
for samples of size n “ 200 and 400, as expected.

Table 9 – Simulation I. Summary statistics based on 500 MC samples of size n “

50, 100, 200, and 400 without censoring. MC-AV, MC-MD, and MC-SD re-
fer to the mean, median, and standard deviation of the estimates, respectively.
IM-SE denotes the average of standard errors obtained as described in Subsection
5.3.5.

β10 β11 β20 β21 σ11 σ12 σ22 λ1 λ2 ν
n Measure 1.00 -2.00 2.00 -1.00 4.00 -0.50 1.50 2.00 -3.00 4.00

MC-AV 1.036 -2.033 2.009 -1.013 4.592 -0.410 1.613 18.354 -25.286 13.355
MC-MD 1.013 -2.026 2.021 -1.018 4.123 -0.391 1.533 2.867 -3.952 4.728
MC-SD 0.379 0.329 0.192 0.163 2.090 0.842 0.683 34.010 41.34250

IM-SE 0.491 0.381 0.287 0.207 1.753 0.762 0.641 864.88 1147.8
MC-AV 1.009 -2.003 2.014 -1.002 4.169 -0.438 1.507 3.432 -4.807 5.589
MC-MD 0.989 -2.005 2.024 -1.002 3.942 -0.429 1.427 2.113 -3.064 4.182
MC-SD 0.248 0.196 0.127 0.097 1.312 0.449 0.446 7.224 8.753100

IM-SE 0.244 0.196 0.129 0.096 1.060 0.428 0.393 22.924 26.016
MC-AV 0.996 -1.992 2.008 -0.994 4.033 -0.442 1.485 2.065 -3.069 4.345
MC-MD 0.981 -1.996 2.004 -0.994 3.944 -0.417 1.455 1.937 -2.935 4.130
MC-SD 0.174 0.135 0.095 0.066 0.790 0.301 0.303 0.783 0.923200

IM-SE 0.167 0.142 0.089 0.068 0.727 0.289 0.276 0.788 0.970
MC-AV 0.997 -2.011 2.007 -1.001 3.983 -0.452 1.474 1.930 -2.901 4.160
MC-MD 0.995 -2.014 2.008 -1.002 3.947 -0.447 1.468 1.903 -2.861 4.046
MC-SD 0.120 0.095 0.067 0.046 0.531 0.196 0.209 0.469 0.562400

IM-SE 0.117 0.096 0.062 0.045 0.510 0.201 0.194 0.493 0.604

To evaluate how the type of censoring affects the parameter estimates, we
considered samples with an average of 15% of censored observations. Results are shown in
Tables 10 and 11 for the left-censored and right-censored datasets, respectively. From these
tables, we can see that the mean (MC-AV) and median (MC-MD) of the estimates for the
regression coefficients β are close to the true parameter value for each type of censoring,
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and this difference decreases as the sample size increases. Regarding the scale matrix
elements for left-censored data, the method returned reasonable estimates for σ11, but
it had problems recovering σ12 and σ22. It could happen since left-censored observations
affect the lower tail of the distribution and then the retrieval of λ2, the skewness parameter
with the negative signal. On the other hand, for right-censored datasets, the proposed
EM algorithm achieved MC-AV close to the true parameter value for σ22. However, as
expected, we got biased estimates for σ11 and σ12. It happens since right-censored data
affects the upper tail of the distribution and then the recovery of λ1, the positive skewness
parameter. Even though there is a bias in the estimates of σ11, σ12, and σ22, it gets smaller
as n increases, indicating the consistency of the EM estimates.

In both cases, MC-AV for ν is close to the true parameter value (ν “ 4) for
samples greater than 100, while the median (MC-MD) was approximately 4 for all sample
sizes. Additionally, notice that the mean of the SE of β and αΣ, obtained through the
inverse of the empirical information matrix, is close to the empirical standard deviation of
the estimates (MC-SD) for all scenarios, indicating that the proposed method to obtain
the standard error of these parameters is reliable. Once again, the variability of λ is more
complex to be estimated for small sample sizes (see e.g., n “ 50) compared to the location
and scale parameter. Therefore, more caution is necessary when performing inference for
λ under small sample sizes.

Table 10 – Simulation I. Results based on 500 MC samples of size n “ 50, 100, 200, and
400 with an average 15% of left-censored observations.

Censoring Measure β10 β11 β20 β21 σ11 σ12 σ22 λ1 λ2 ν
n Level 1.00 -2.00 2.00 -1.00 4.00 -0.50 1.50 2.00 -3.00 4.00

MC-AV 1.119 -2.030 2.054 -1.015 4.757 -0.147 1.160 7.241 -9.125 13.754
MC-MD 1.091 -2.012 2.065 -1.016 4.190 -0.168 1.015 2.210 -1.763 4.143
MC-SD 0.385 0.364 0.183 0.172 2.336 0.651 0.599 55.990 89.32150 14.4%

IM-SE 0.400 0.373 0.204 0.192 2.084 0.655 0.481 14.199 19.711
MC-AV 1.074 -1.996 2.057 -1.004 4.527 -0.309 1.155 2.395 -2.267 6.691
MC-MD 1.046 -2.011 2.061 -1.004 4.238 -0.294 1.071 2.156 -1.900 4.321
MC-SD 0.262 0.212 0.128 0.099 1.589 0.394 0.397 1.221 1.634100 15.5%

IM-SE 0.257 0.213 0.128 0.102 1.327 0.390 0.328 1.435 1.416
MC-AV 1.082 -1.972 2.070 -0.996 4.543 -0.315 1.068 2.124 -1.719 4.695
MC-MD 1.065 -1.982 2.067 -0.999 4.386 -0.302 1.026 2.073 -1.613 4.233
MC-SD 0.188 0.157 0.101 0.070 1.040 0.272 0.258 0.614 0.731200 16.3%

IM-SE 0.180 0.153 0.089 0.076 0.953 0.251 0.212 0.759 0.654
MC-AV 1.068 -1.998 2.063 -1.002 4.527 -0.392 1.128 2.060 -1.816 4.332
MC-MD 1.064 -1.999 2.059 -1.002 4.472 -0.397 1.109 2.053 -1.789 4.166
MC-SD 0.126 0.101 0.069 0.047 0.721 0.184 0.196 0.415 0.507400 14.9%

IM-SE 0.127 0.101 0.062 0.050 0.655 0.176 0.158 0.476 0.425

Figure 46 (of Appendix D.2.1) presents the boxplot of the estimates obtained
through the ST-CR model by sample size and censoring, where the red line indicates
the real parameter value. In most cases, we observe that the median is close to the true
parameter value, and there are some outliers for σ11, σ12, and σ22.

Finally, we analyzed the mean square error (MSE) of the regression coefficients
β and the scale matrix elements Σ estimated from the ST-CR model for sample sizes
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Table 11 – Simulation I. Results based on 500 MC samples of size n “ 50, 100, 200, and
400 with an average 15% of right-censored observations.

Censoring Measure β10 β11 β20 β21 σ11 σ12 σ22 λ1 λ2 ν
n Level 1.00 -2.00 2.00 -1.00 4.00 -0.50 1.50 2.00 -3.00 4.00

MC-AV 0.989 -2.025 1.989 -1.024 3.800 -0.141 1.510 2.915 -5.466 13.993
MC-MD 0.991 -2.012 2.008 -1.007 3.512 -0.163 1.409 1.581 -3.306 4.138
MC-SD 0.354 0.361 0.208 0.209 1.575 0.709 0.668 5.150 7.33550 12.0%

IM-SE 0.388 0.411 0.204 0.210 1.600 0.703 0.601 7.354 10.394
MC-AV 0.965 -2.007 1.998 -1.001 3.635 -0.215 1.484 1.541 -3.109 6.126
MC-MD 0.949 -1.997 2.013 -0.999 3.492 -0.210 1.402 1.337 -2.792 4.105
MC-SD 0.247 0.205 0.138 0.107 1.100 0.425 0.458 1.262 1.820100 15.1%

IM-SE 0.249 0.210 0.133 0.107 0.962 0.437 0.420 1.199 1.828
MC-AV 0.947 -1.995 1.994 -0.992 3.550 -0.246 1.494 1.404 -2.922 4.367
MC-MD 0.948 -1.996 1.993 -0.991 3.459 -0.238 1.463 1.316 -2.771 4.017
MC-SD 0.171 0.146 0.100 0.079 0.670 0.286 0.318 0.655 0.905200 12.1%

IM-SE 0.171 0.158 0.093 0.077 0.622 0.290 0.294 0.655 1.009
MC-AV 0.943 -2.014 1.995 -1.001 3.546 -0.264 1.511 1.313 -2.756 4.181
MC-MD 0.942 -2.006 1.996 -0.999 3.525 -0.275 1.503 1.288 -2.727 4.065
MC-SD 0.119 0.103 0.068 0.055 0.447 0.195 0.241 0.408 0.527400 15.5%

IM-SE 0.120 0.105 0.065 0.053 0.447 0.206 0.212 0.401 0.619

n “ 50, 100, 200, and 400. The idea is to provide empirical evidence about the consistency
of the ML estimates. The MSE measure is defined by

MSEi “
1
n

n
ÿ

j“1

´

pθ
pjq

i ´ θi

¯2
, (5.22)

where pθpjq

i is the ML estimate of parameter θi in the jth sample for θ “ pβ10, β11, β20, β21, σ11,
σ12, σ22q

J. Figure 22 shows that the MSE of the parameter estimates tends to zero as
the sample size increases, providing empirical evidence about the consistency of the ML
estimates of the ST-CR model for the three evaluated scenarios.

Figure 22 – Simulation I. MSE of parameter estimates under the ST-CR model, based on
500 Monte Carlo samples simulated from the skew-t distribution considering
different sample sizes and types of censoring.
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5.4.2 Simulation study II: Effect of skewness on left-censored data

This simulation study seeks to assess the effect of the skewness parameter λ

in the estimation process for datasets with an average of 15% of left-censored responses.
Hence, we simulated 500 MC datasets of size n “ 300 from the bivariate ST-CR model
with the same parameter values described above, and the following four scenarios for λ

and the detection limit vc
2:

i) λ “ p2,´3q
J, vc

2 “ p´2.090, 0.490q
J;

ii) λ “ p2, 3q
J, vc

2 “ p´2.230, 0.290q
J;

iii) λ “ p´2, 3q
J, vc

2 “ p´1.960, 0.455q
J; and

iv) λ “ p´2,´3q
J, vc

2 “ p´2.220, 0.315q
J.

The values of vc
2 assure almost the same number of censored observations on

each component of the bivariate response vector. For each case, we fitted the ST-CR
model. The summary statistics are shown in Table 12, where MC-AV denotes the mean
of the 500 MC estimates, and IM-SE represents the average of the 500 standard errors
approximated from the empirical information matrix. From this table, we can see that the
mean (MC-AV) of the estimates for the regression coefficients (β10, β11, β20, and β21) are
close to the true parameter value independent of the skewness parameter.

Table 12 – Simulation II. Mean of the estimates (MC-AV) and average of the approximated
standard errors (IM-SE) based on 500 MC samples of size 300 generated from
the bivariate skew-t distribution with skewness parameter λ “ pλ1, λ2q

J and
average 15% of left-censored observations.

Par. λ1 “ 2, λ2 “ ´3 λ1 “ 2, λ2 “ 3 λ1 “ ´2, λ2 “ 3 λ1 “ ´2, λ2 “ ´3

MC-AV IM-SE MC-AV IM-SE MC-AV IM-SE MC-AV IM-SE
β10 1.064 0.145 1.200 0.203 1.070 0.139 1.081 0.155
β11 -1.996 0.119 -1.956 0.115 -1.993 0.128 -2.016 0.129
β20 2.065 0.071 2.103 0.111 2.007 0.076 2.005 0.085
β21 -1.004 0.058 -0.968 0.061 -1.001 0.064 -1.015 0.065
σ11 4.544 0.760 3.269 0.534 3.528 0.509 3.864 0.563
σ12 -0.381 0.205 -0.478 0.176 -0.240 0.239 -0.842 0.252
σ22 1.122 0.182 1.098 0.186 1.510 0.246 1.563 0.288
λ1 2.122 0.580 2.761 0.815 -1.284 0.481 -1.030 0.511
λ2 -1.870 0.521 3.620 0.934 2.798 0.763 -2.333 0.653
ν 4.404 2.473 4.239 4.723

As demonstrated in Simulation study I for left-censored datasets, the algorithm
has some difficulties recovering the skewness component of the negative signal since left-
censored observations affect the lower tail of the distribution. This is also observed for
scenarios i), iii), and iv), i.e., cases with at least one negative λj, j P t1, 2u. For scenario ii),
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where all components of the skewness parameter are positive, our method overestimated
the true value of λ. For this case, it is worth noting that the mean of the ν estimates is
equal to 2.473, whereas, for the other three cases, it is close to the true value (ν “ 4).

Moreover, this simulation study was also performed considering different de-
tection limits to generate left-censored datasets. The new limits guarantee that the first
component of the response vector has approximately 70% of the desirable censoring rate.
The results are displayed in Table 25 (see Appendix D.2.2), where we can notice that this
configuration returned similar results as shown above.

5.4.3 Simulation study III: Model misspecification

To evaluate the performance of the proposed model and the impact of estimating
with the wrong distribution, we simulated 500 MC datasets from the model Yi “ Xiβ ` ξi,
for i P t1, . . . , 300u, considering the same parameter values as above. For data generation,
two scenarios were considered:

i) Yi
ind
„ SN2pXiβ ` κ1∆,Σ,λq and

ii) Yi
ind
„ SSL2pXiβ ` κ2∆,Σ,λ, νq, with ν “ 1.15,

where SN2pµ,Σ,λq and SSL2pµ,Σ,λ, νq denote the bivariate skew-normal and skew-slash

distribution, respectively, with κ1 “ ´

c

2
π

and κ2 “ ´

c

2
π

ˆ

ν

ν ´ 1{2

˙

.

For comparison, we considered two scenarios: one without censoring (original
data) and another with an average of 15% right-censored observations. The detection
limits were set vc

1 “ p3.81, 3.40q
J for the skew-normal and vc

1 “ p4.46, 3.96q
J for the

skew-slash distribution, i.e., yij “ vc
1j if yij ě vc

1j and it keeps unchangeable otherwise, for
i P t1, . . . , 300u and j P t1, 2}. We fitted the SN-CR and ST-CR models for each simulated
dataset. The SN-CR model was previously studied by Galarza et al. (2022b). The model
selection criteria AIC and BIC and the estimates of the model parameters were recorded at
each simulation. Summary statistics are reported, such as the MC mean estimate (MC-AV),
and the standard error approximated through the empirical information matrix (IM-SE).

Table 13 shows the results for data simulated from the SN distribution by
censoring proportion and model fitting. Notice that both models estimate the regression
coefficients well (i.e., MC-AV is close to the true value) with approximately the same
standard error. Note that the mean of the ν estimates are 80.610 and 65.383 for the
original and censored data, respectively. It is worth mentioning that the scale matrix
components are not comparable directly. Moreover, both models returned close values for
the information criteria AIC and BIC. Figure 23 displays the bias of pβ10, pβ11, pβ20, and pβ21
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for both censoring proportions when estimating with SN-CR and ST-CR models, where
we can see that both distributions seem to fit the data equally well.

Table 13 – Simulation III. Results based on 500 MC samples of size n “ 300 when
generating data from the SN distribution considering different censoring levels
(c) and estimating the models SN-CR and ST-CR. MC-AV and IM-SE denote
to the mean of the estimates and the average of the standard error, respectively.

c “ 0% c “ 15%

Par. SN-CR ST-CR SN-CR ST-CR

MC-AV IM-SE MC-AV IM-SE MC-AV IM-SE MC-AV IM-SE

β10 0.994 0.103 0.991 0.103 0.993 0.107 0.992 0.108
β11 -1.998 0.097 -1.999 0.097 -1.996 0.107 -1.996 0.109
β20 1.999 0.051 2.001 0.051 2.001 0.054 1.995 0.054
β21 -0.997 0.047 -0.997 0.046 -1.002 0.054 -0.998 0.054
σ11 3.942 0.728 3.805 0.576 3.920 0.834 3.353 0.538
σ12 -0.374 0.322 -0.395 0.228 -0.271 0.344 -0.150 0.267
σ22 1.416 0.267 1.381 0.212 1.371 0.270 1.356 0.230
λ1 1.771 1.426 1.835 0.652 1.476 0.951 1.080 0.599
λ2 -2.728 1.387 -2.769 0.765 -2.482 1.070 -2.409 0.767
ν - 80.610 - 65.383
AIC 1937.2 1937.7 1792.4 1795.3
BIC 1976.8 1981.6 1831.9 1839.3

Figure 23 – Simulation III. Mean bias ˘1 standard deviation for the estimates of β
obtained under the SN-CR and ST-CR models, based on 500 MC samples
simulated from the SN distribution considering two cases: (a) without censoring
and (b) average 15% of right-censored observations.
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Finally, results for data generated from the skew-slash (SSL) distribution with
ν “ 1.15 are displayed in Table 14. Notice that the mean (MC-AV) for the regression
coefficients under the ST-CR model is close to the true value, except for β10 with an average
of 15% left-censored observations, where the mean underestimates the true parameter
value. On the other hand, the SN-CR model returned bias estimates for β10 and β20, the
intercepts. Observe that the mean of the standard errors (IM-SE) under the ST-CR model
is smaller than the estimate under the SN-CR model. Based on information criteria AIC
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and BIC, we conclude that the ST-CR model fits better with the simulated data. It is
worth noting that both models recover the correct signal for the skewness parameters. For
the ST-CR model, the mean of λ1 and λ2 are close to the true values in data without
censoring (original), but the model underestimates λ1 for censored datasets, as expected.
It happens since right-censored observations affect the upper tail of the distribution and
then the retrieval of the positive skewness parameter. Moreover, Figure 24 shows the bias
of pβ10, pβ11, pβ20, and pβ21 for both censoring rates, where we see that estimating disregarding
the heavy tail increases the variance of the estimator.

Table 14 – Simulation III. Summary statistics based on 500 MC samples of size n “ 300
when generating data from the SSL distribution with ν “ 1.15 considering
different censoring levels (c) and estimating the models SN-CR and ST-CR.
MC-AV and IM-SE denote to the mean of the estimates and the average of
the standard error, respectively.

c “ 0% c “ 15%

Par. SN-CR ST-CR SN-CR ST-CR

MC-AV IM-SE MC-AV IM-SE MC-AV IM-SE MC-AV IM-SE

β10 1.319 0.300 1.003 0.197 0.737 0.205 0.851 0.196
β11 -2.002 0.285 -1.995 0.152 -1.993 0.208 -1.998 0.161
β20 1.633 0.165 2.004 0.108 1.690 0.132 1.985 0.111
β21 -0.996 0.152 -0.997 0.071 -1.086 0.132 -0.994 0.078
σ11 26.919 1.587 6.609 0.998 12.909 1.112 5.693 0.806
σ12 -2.474 0.754 -0.792 0.398 1.356 0.933 -0.342 0.410
σ22 11.297 0.627 2.503 0.390 12.838 0.632 2.643 0.432
λ1 4.283 3.500 2.049 0.637 1.331 5.772 1.200 0.466
λ2 -6.704 5.148 -3.137 0.816 -7.412 9.436 -3.051 0.840
ν - 3.258 - 3.409
AIC 2888.4 2617.8 2534.8 2380.3
BIC 2927.9 2661.8 2574.4 2424.2

Figure 24 – Simulation III. Mean bias ˘1 standard deviation for the estimates of β
obtained under the SN-CR and ST-CR models, based on 500 MC samples
simulated from the SSL distribution with ν “ 1.15 considering two cases: (a)
without censoring and (b) average 15% of right-censored observations.
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5.4.4 Simulation study IV: Robustness of the estimators

This simulation aims to compare the performance of the estimates in the
presence of outliers on the response variable. In this case, 500 MC samples of size n “ 300
were simulated from a bivariate skew-normal distribution, Yi

ind
„ SN2pXiβ ` κ∆,Σ,λq,

with κ “ ´
a

2{π and the remaining parameters described in the introduction of this
section. After generating the data, each MC sample was perturbed considering the following
scheme: the maximum value of each column of Y P Rnˆ2 was increased in ϑ times the
sample standard deviation, i.e., yj,pert “ maxpy¨jq`ϑSDpyq, for y¨j “ py1j, y2j, . . . , y300jq

J,
ϑ P t0, 1, 2, 3, 4, 5, 6, 7u, and j P t1, 2u. Furthermore, we considered two different levels of
censoring: the first case corresponds to the case without censoring, and the second case
considered vc

2 “ p´1.75, 0.61q
J as detection limits, i.e., yij “ vc

2j if yij ď vc
2j and it keeps

unchangeable otherwise. The latter scenario implies that each dataset has around 15% of
left-censored observations.

Figure 25 shows the MSE of the estimates of β10, β11, β20, and β21 obtained
after fitting the SN-CR and ST-CR models by levels of perturbation. These plots reveal,
in most cases, that the MSE computed from the ST-CR is lower than the obtained from
the SN-CR model for levels of perturbation greater and equal to two sample standard
deviations (except for β10 in datasets with left-censored observations for ϑ ď 4).

Figure 25 – Simulation IV. MSE of β estimated from the SN-CR and ST-CR models,
based on 500 MC samples of size n “ 300 simulated from the bivariate SN
distribution considering different perturbation levels and censoring proportions.
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Figure 26 displays the boxplot for the estimates of β10, β11, β20, and β21 obtained
from the SN-CR and ST-CR model by level of perturbation and censoring type. Here we
can observe that the median of the ST estimates is close to the true value (red line), while
the difference between the median of the SN estimates and the true value increases along
the perturbation level. Note also, for the SN, that the interquartile range increases with
the level of perturbation for all scenarios.

Yet, Figure 27 shows the MSE for the variance-covariance elements σ11, σ12,
and σ22, computed using expression (4) in Ferreira et al. (2016) for the SN-CR, and
(5.3) for the ST-CR model. Here, we can note that for σ12 and σ22, the MSE for the ST
distribution is quite smaller than the SN one for ϑ ě 2. Regarding σ11, we have a better
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Figure 26 – Simulation IV. Boxplot of the β estimates obtained from the SN-CR and
ST-CR model, based on 500 MC samples of size n “ 300 simulated from the
bivariate SN distribution considering two levels of censoring.
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performance of the ST model for ϑ ě 4 when data is left-censored and for ϑ ě 5 under no
censoring. It is worth mentioning that the variance-covariance elements depend on the
skewness parameter, whose estimation relies on the censoring type (left, right, or interval).
For instance, under right-censoring, σ11 and σ22 behavior would be the opposite. These
results confirm that the heavy tails of the skew-t distribution allow our model to mitigate
the effect of outliers, i.e., a much more robust method against atypical values.

Figure 27 – Simulation IV. MSE of the estimates for the variance-covariance elements
obtained from the SN-CR and ST-CR model, based on 500 MC samples of size
n “ 300 simulated from the bivariate SN distribution, considering different
levels of perturbation.
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5.5 Applications
In order to show the usefulness of the method developed in this work, we analyze

two datasets: a) the trace metals in freshwater streams across the commonwealth of Virginia
and b) the stellar abundances dataset. The first has interval-censored observations, and
the second has left-censored and missing observations.

5.5.1 Trace metals in freshwater streams across the Commonwealth of Virginia

Aiming to illustrate the performance of our proposal, we consider the trace
metals concentration dataset described in Subsection 1.3.4, which was previously analyzed
by Hoffman & Johnson (2015). They proposed a pseudo-likelihood approach for estimating
parameters considering the multivariate normal and log-normal models, while recently,
Galarza et al. (2022b) analyzed this data by fitting the multivariate SN-CR model.

It is important to note that the concentration levels of trace metals are strictly
positive measures; to guarantee this, we consider an interval censoring approach. Specifically,
we set the lower detection limits to zero for all trace metals, while the upper detection
limits are variable-specific as detailed in Subsection 1.3.4. The analysis then proceeds with
the assessment of the following model:

yi “ µ ` ξi, i P t1, . . . , 184u, (5.23)

with yi “ pyi1, yi2 . . . , yi5q
J representing the ith 5 ˆ 1 response vector containing the

concentration level of Cu, Pb, Zn, Ca, and Mg, respectively, µ denoting the population-
average, and ξi the vector of errors. Moreover, censored responses and the asymmetric
behavior of the data led us to evaluate the multivariate skew-t (ST-CR) and skew-normal
(SN-CR) censored models. We also fit the multivariate Student-t (T-CR) and normal
(N-CR) censored models for comparison.

The ML estimates and the standard error (SE) for the population-average pµ

are displayed in Table 15, as well as the skewness parameter pλ, the degrees of freedom
pν, the log-likelihood, and the information criteria AIC and BIC. Based on information
criteria AIC and BIC, our ST-CR model fits this data better since it shows the lower
values for these statistics.In other words, the result indicates that the asymmetric model
is necessary for modeling the VDEQ data.

For the sake of comparison, we fitted the logarithm of the response using
the ST-CR, SN-CR, T-CR, and N-CR models, obtaining that the T-CR has the best
performance based on information criteria (see Table 16). Then, the log transformation
does its job for this dataset by symmetrizing the data enough to make asymmetric models
unnecessary. This can be evidenced in Table 16, where the estimates for λ’s obtained
through the ST-CR are not significantly different from zero. However, the AIC of the
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Table 15 – VDEQ data. ML estimate, approximated standard error (SE), and model
comparison criteria (AIC and BIC) from fitting the ST-CR, SN-CR, T-CR,
and N-CR to the trace metals concentration dataset.

Par. ST-CR SN-CR T-CR N-CR
Estimate SE Estimate SE Estimate SE Estimate SE

µ1 0.650 0.075 0.559 0.081 0.396 0.023 0.556 0.078
µ2 0.129 0.017 0.098 0.034 0.072 0.010 0.099 0.030
µ3 2.233 0.538 2.320 0.751 1.261 0.139 2.314 0.639
µ4 9.890 2.361 12.821 1.896 6.041 0.957 12.084 2.298
µ5 3.564 0.614 4.020 1.232 2.190 0.249 3.814 0.734
λ1 21.461 16.978 -1.730 6.346 - -
λ2 21.632 15.455 0.230 2.100 - -
λ3 30.568 26.840 3.001 11.954 - -
λ4 28.895 17.177 26.956 70.259 - -
λ5 21.697 11.935 8.438 27.712 - -
ν 2.186 - 2.019 -
ℓppθq -1647.309 -1936.688 -1673.541 -2007.606
AIC 3346.617 3923.376 3389.081 4055.212
BIC 3472.051 4043.985 3490.393 4151.699

SN-CR is close to the AIC of the T-CR model, indicating a lack of adequacy of the
symmetry distribution. Note also that the estimates for µ’s are roughly the same for
the SN-CR, T-CR, and N-CR models. As seen, the logarithm transformation performs
exceptionally well on this dataset due to the strong positive skewness and a large number
of observations near zero; however, we will see in the following application a case where
more than transformation is needed.

Table 16 – log-VDEQ data. ML estimate, approximated standard error (SE), and model
selection criteria (AIC and BIC) from fitting the ST-CR, SN-CR, T-CR, and
N-CR to the logarithmic transformation of the trace metals concentration
dataset.

Par. ST-CR SN-CR T-CR N-CR
Estimate SE Estimate SE Estimate SE Estimate SE

µ1 -0.753 0.119 -0.875 0.066 -0.822 0.060 -0.873 0.067
µ2 -2.201 0.126 -3.309 0.301 -3.069 0.204 -3.249 0.259
µ3 0.459 0.219 0.294 0.094 0.263 0.085 0.281 0.098
µ4 1.808 0.228 1.931 0.087 1.846 0.087 1.914 0.094
µ5 0.817 0.193 0.905 0.071 0.868 0.078 0.874 0.088
λ1 -1.101 2.046 -0.934 0.581 - -
λ2 10.953 8.067 -2.781 2.028 - -
λ3 3.147 3.243 1.773 1.263 - -
λ4 1.400 3.149 2.309 1.289 - -
λ5 -0.111 2.839 3.795 1.936 - -
ν 2.010 - 5.725 -
ℓppθq -899.975 -857.227 -861.032 -875.996
AIC 1851.950 1764.455 1764.065 1791.992
BIC 1977.384 1885.064 1865.376 1888.480
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5.5.2 Stellar abundances data

In astronomical research, a previously identified sample of objects (stars, galax-
ies, quasars, x-ray sources, etc.) is observed at some new wavebands. Due to limited
sensitivities, some object features may be undetected or partially detected, leading to
missing and censored data. In fact, astronomical data are typically left-censored. The
probability of finding a new planet is related to the star’s metal content; however, it is
unclear whether this arises from the metallicity at birth or a later accretion of planetary
bodies (Feigelson & Babu, 2012).

Here, we study whether the presence or absence of a giant planet is correlated
with the level of lithium (Li) and beryllium (Be) in the photosphere of the host star. The
dataset consists of n “ 68 solar-type stars, 39 stars known to host planets, and 29 stars
without planets, see Subsection 1.3.5 for more details. The proportion of left-censored and
missing values is 17.6% and 47.1% for Be and Li, respectively. Therefore, we propose the
following model:

yi “
“

I2 b xJ
i

‰

β ` ξi, i P t1, . . . , 68u, (5.24)

where for the ith object, yi “ pln Be, ln LiqJ
i is the bivariate response of interest containing

the natural logarithm of beryllium and lithium, and β “ pβJ
b ,β

J
l q

J is the 6 ˆ 1 vector,
with βb and βl being 3 ˆ 1 regression coefficients vectors for ln Be and ln Li. The vector
of covariates is xi “ p1,Typei,Tempi ´ Tempq

J, where Typei indicates planet-hosting
stars (=1), Tempi is the effective stellar surface temperature (in Kelvin degrees/1000),
and Temp “ 5.708 represents the average temperature. The error term, denoted by
ξi “ pξbi, ξliq

J, is considered independent and identically distributed. Note that model in
(5.24) is equivalent to fit simultaneously

#

ln Bei “ βb0 ` βb1Typei ` βb2pTempi ´ Tempq ` ξbi.

ln Lii “ βl0 ` βl1Typei ` βl2pTempi ´ Tempq ` ξli.

This model considers a correlation structure between the ln Be and ln Li, since covpξb, ξlq ‰

0.

Due to censored responses and asymmetric behavior of the Stellar abundance
data, we propose to fit the skew-t censored (ST-CR) model. The multivariate skew-normal
(SN-CR), Student-t (T-CR), and normal (N-CR) models are also fitted for comparison.
Table 17 shows the estimated values for the regression coefficients pβ, scale matrix pΣ, and
skewness parameter pλ obtained using the EM algorithm. The log-likelihood ℓppθq, AIC,
and BIC information criteria are considered for model selection. Based on AIC and BIC,
the ST-CR model is suitable to fit this data,indicating that the asymmetric model with
heavy tails is necessary.

Considering the results obtained from the ST-CR model, we observe that at
temperatures of 5708 Kelvin degrees, the expected logarithm concentration of beryllium
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Table 17 – Stellar data. ML estimate, approximated standard error (SE), and model
selection criteria (AIC and BIC) from fitting the ST-CR, SN-CR, T-CR, and
N-CR to the natural logarithm of beryllium and lithium.

Par. ST-CR SN-CR T-CR N-CR
Estimate SE Estimate SE Estimate SE Estimate SE

βb0 0.797 0.051 0.736 0.071 0.957 0.047 0.859 0.126
βb1 0.064 0.046 0.086 0.094 0.055 0.058 -0.022 0.123
βb2 0.486 0.088 0.428 0.176 0.473 0.069 0.445 0.174
βl0 0.947 0.226 1.053 0.253 1.184 0.161 1.187 0.252
βl1 -0.453 0.235 -0.392 0.371 -0.411 0.247 -0.511 0.344
βl2 4.077 0.556 2.983 0.722 4.077 0.547 2.970 0.735
σbb 0.050 0.015 0.285 0.043 0.021 0.005 0.148 0.032
σbl 0.093 0.047 0.346 0.147 0.047 0.017 0.202 0.089
σll 0.436 0.201 1.195 0.546 0.389 0.127 1.046 0.445
λb -3.681 1.865 -9.485 11.441 - -
λl -1.957 1.236 -3.823 4.191 - -
ν 2.026 - 2.213 -
ℓppθq -61.384 -80.526 -68.178 -101.989
AIC 146.768 183.053 156.357 221.978
BIC 181.720 215.092 185.484 248.192

is 0.797 for stars without planets and 0.861 for planet-hosting stars, evidencing slight
differences between these two types of stars. On the other hand, the expected level of the
logarithm of lithium is 0.494 for planet-hosting stars and 0.947 otherwise. This last result
shows a correlation between the lithium level and the presence or absence of a planet.

Finally, Figure 28 displays scatter plots and fitted regression lines for the
logarithm of beryllium (top panel) and lithium (bottom panel) abundances against centered
temperature in Kelvin degrees/1000. The dashed line denotes the regression line fitted under
the skew-t model for the error term to points with no treatment, i.e., considering censored
data as observed. In contrast, the solid line results from our proposed ST-CR model with
blue points denoting the predicted values for the censored and missing observations. Here,
we can see some differences in the intercepts and slopes for the lithium concentration,
evidencing the importance of considering a proper model to deal with missing and/or
censored data.

5.6 Remarks
This chapter introduced a robust multivariate regression model for censoring

and/or missing data using the multivariate skew-t distribution, extending the recent work
by Galarza et al. (2022b); Garay et al. (2017); Matos et al. (2019), among many others.
The main advantage of the proposed ST-CR model is that it can reduce the negative
impact of distributional misspecification and outliers on the estimation of the parameters.
Moreover, the ST class has a convenient framework for implementing the EM algorithm.
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Figure 28 – Stellar data. Scatter plot for the logarithm of beryllium (top) and lithium
(bottom) abundances against temperature together with the regression lines
fitted to points with no treatment, i.e., considering censored data as observed
(dashed line) and under our proposed ST-CR model (solid line). Plots for
non-planets-hosting stars are shown in the left panels.
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The experimental results and the analysis of two real datasets support the usefulness
and effectiveness of our proposal for handling multiple censoring and/or missing in the
presence of asymmetric heavy-tailed data.

In a recent paper, Mattos et al. (2018) considered the problem of censored
linear regression models using the univariate class of scale mixtures of skew-normal
(SMSN) distributions. Therefore, it would be worthwhile to investigate the applicability
of a likelihood-based treatment in the context of multivariate SMSN censored regression
models. Other extensions of the current work include, for example, a generalization of the
ST-CR model to the nonlinear setting (Matos et al., 2019), censored mixed-effects models
with skew-t random effects as will be proposed in the next chapter, or a finite mixture of
censored data using the multivariate skew-t distribution (De Alencar et al., 2021).
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6 Likelihood-based inference for the censored
linear mixed-effects skew-t model

6.1 Introduction
Linear mixed-effects (LME) models have been extensively used to analyze

longitudinal, hierarchical, or grouped data. These models are particularly useful in fields
such as biology, medicine, and agriculture, where data often exhibit correlation and non-
constant variability within groups. LME models address these complexities by incorporating
both fixed and random effects. Fixed effects estimate the overall impact of predictor
variables of interest across all units, while random effects capture variations at the group
level.

Traditionally, the most popular LME models assume that random effects and
error terms follow normal distributions (LME-N). This assumption can be seen in Verbeke
et al. (1997) and Pinheiro & Bates (2000). However, these restrictive assumptions often
lead to robustness issues against the presence of deviations from normality and can
result in invalid statistical inferences, particularly when the data exhibit heavy tails or
outliers. Outliers can be particularly problematic in LME models compared to fixed
effects models because they may occur in the random effects, the within-subject errors,
or both, complicating their detection and treatment. Consequently, several models have
been developed to accommodate heavy-tailed, asymmetric, or mixed distributions in both
the random effects and error terms, as discussed in works by Verbeke & Lesaffre (1996),
Pinheiro et al. (2001), and Schumacher et al. (2021).

Although conventional LME models assume that the response variable is
fully observed, some observations may be censored in many practical scenarios. This
censorship can occur due to limitations in measurement instruments or other methodological
constraints. Addressing this, researchers such as Vaida & Liu (2009) and Matos et al.
(2013a) have extended LME models to effectively handle censored data, assuming that
the random effects and errors follow a normal distribution. Further advancements have
been made to account for heavy tails in the data, as explored in studies by Matos et al.
(2013b), Wang et al. (2018), and Lachos et al. (2019).

Moreover, employing asymmetric distributions has proven beneficial for data
types like virologic responses, which often exhibit censored observations and non-normal
features such as skewness with heavy tails. This approach avoids unrealistic normality
assumptions and eliminates the need for data transformations, as proposed in a Bayesian
context by Bandyopadhyay et al. (2012) and further extended in a likelihood framework by
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Mattos et al. (2022b). The latter work considered a damped exponential correlation (DEC)
for the within-subject dependence structure, replacing the independence assumption used
in previous research.

No previous work has investigated LMEC models based on skew-t (ST) distribu-
tions from a likelihood-based perspective. Thus, this paper explores the linear mixed-effects
censored skew-t (LMEC-ST) model, which incorporates the skewness and heavy-tailed
nature of the random effects. The model assumes that the random effects for each subject
follow an ST distribution (Arellano-Valle & Genton, 2005), while the within-subject errors
follow a multivariate t distribution. We employ the Expectation/Conditional Maximization
Either (ECME) algorithm (Liu & Rubin, 1994) for parameter estimation, chosen for its
facility in computing the E-step, which involves calculating moments from the truncated
multivariate extended skew-t (EST), ST, and t distributions (Galarza et al., 2021c). The
log-likelihood function is easily computed as a byproduct of the E-step and is used for
monitoring convergence and model selection. All code used in this study will be available
in the R library skewlmm.

The structure of the chapter is as follows: Section 6.2 details the LMEC-ST
model, the computation of the log-likelihood function, and the parameter estimation
process via the ECME algorithm. It also outlines methods for approximating the standard
error of estimates, estimating random effects, and predicting future observations. Section
6.3 presents simulation study results that provide evidence about the asymptotic properties
and robustness of the estimates obtained. The application of the model to a real dataset
is described in Section 6.4, where we demonstrate that a model accounting for asymmetry
and heavy tails better fits the data based on information criteria. We conclude with a
discussion in Section 6.5.

6.2 The linear mixed-effects skew-t model for censored responses
This section introduces a linear mixed-effects model for censored observations in

the response variable. It is assumed that the random effects are characterized by an asym-
metric and heavy-tailed distribution, whereas the error term is modeled with a symmetric
heavy-tailed distribution. Furthermore, an EM-type algorithm is developed to derive the
maximum likelihood (ML) estimates. We also propose a method for approximating the
standard errors of these estimates based on the empirical information matrix.

6.2.1 The linear mixed-effects model

Consider a scenario where a variable of interest, along with several covariates,
is repeatedly measured across a set of n subjects at specific occasions during a study
period. Let Yi “ pYi1, . . . , Yini

q
J be the ni ˆ 1 vector of observed continuous responses
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related to the ith sample individual. The linear mixed-effects regression model is given by

Yi “ Xiβ ` Zibi ` ξi, i P t1, . . . , nu, (6.1)

where Xi is the ni ˆ ℓ design matrix corresponding to the fixed effects, β is the ℓˆ 1 vector
of fixed effects, Zi is the ni ˆ q design matrix corresponding to the q ˆ 1 random effects
vector bi, and ξi is the ni ˆ 1 vector of random errors. It is assumed that the random
effects and the error components are independently distributed as bi

iid
„ STqpκ∆,D,λ, νq

and ξi
ind
„ tni

p0,Ωi, νq. The qˆ q random effects covariance matrix D may be unstructured
or structured. Here, it is considered an unstructured matrix, which has at most qpq ` 1q{2
different elements. On the other hand, the ni ˆ ni error covariance matrix Ωi is commonly
written as Ωi “ σ2Ri, where Ri “ Ripϕq can be a known matrix or a structured
matrix depending on a vector of parameter, say ϕ “ pϕ1, . . . , ϕℓq

J. For ν ą 1, the

parameters κ “ ´pν{πq
1{2 Γppν ´ 1q{2q

Γpν{2q
and ∆ “ D1{2λ{p1`λJλq

1{2 assure that Erbis “ 0,

consequently ErYis “ Xiβ, for each i P t1, . . . , nu. Then, the marginal distribution of Yi

is given by
Yi

ind
„ STni

pXiβ ` κZi∆,Σi, λ̄i, νq, (6.2)

where Σi “ Ωi ` ZiDZJ
i and λ̄i “ Σ´1{2

i ZiDζ{p1 ` ζJΛiζq
1{2, with ζ “ D´1{2λ and

Λi “ pD´1
` ZJ

i Ω´1
i Ziq

´1. This result is demonstrated using Proposition 5 from Arellano-
Valle & Genton (2010b) in Appendix E.1. We refer to the model defined by (6.1) and (6.2)
as the linear mixed-effects skew-t model (LME-ST).

The LME-ST model can be represented hierarchically as follows:

Yi | bi, Ui “ ui
ind
„ Nni

pXiβ ` Zibi, u
´1
i σ2Riq

bi |Ti “ ti, Ui “ ui
ind
„ Nqpti∆, u´1

i Γq

Ti |Ui “ ui
ind
„ TNpκ, u´1

i , pκ,8qq (6.3)
Ui

iid
„ Gammapν{2, ν{2q,

with Γ “ D ´ ∆∆J, ∆ “ D1{2λ{

a

1 ` λJλ, D1{2 denoting the square root of D, and
TNpµ, σ2; pa, bqq the univariate normal distribution with parameters µ and σ2, truncated
on the interval pa, bq. This representation will be useful in Section 6.2.3 to implement the
EM-type algorithm.

Additionally, in order to introduce flexibility in modeling the within-subject
dependence structure, we consider three correlation structures: uncorrelated (UNC),
autoregressive dependence of order p (ARppq), and damped exponential correlation (DEC).
The UNC model assumes that the error terms are conditionally uncorrelated, i.e., Ri “ Ini

,
where Ini

denotes the identity matrix of dimensions ni ˆ ni. However, measurements taken
over time are generally correlated, invalidating the use of a UNC model. Therefore, we
consider other structures that account for the within-subject serial correlation.
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The ARppq structure assumes that the observations are measured at regularly
discrete time points, then the correlation matrix is given by Ri “ 1{p1 ´ ϕ1ρ1 ´ . . . ´

ϕpρpqrρ|r´s|s, where r, s P t1, . . . , niu and ρ1, . . . , ρp are the theoretical autocorrelations of
the process, and thereby they are functions of autoregressive parameters ϕ “ pϕ1, . . . , ϕpq

J,
and satisfy the Yule-Walker equations ρk “ ϕ1ρk´1 ` . . . ` ϕpρk´p, ρ0 “ 1, k P t1, . . . , pu

(see for instance Lin & Lee, 2007; Box et al., 2015).

On the other hand, the DEC model computes the entry pj, kq of the correlation
matrix Ri by Rpj,kq

i “ ϕ
|tij´tik|ϕ2
1 , where tij and tik denote the times at which the jth and

kth observation were measured for the ith subject. In this model, 0 ď ϕ1 ă 1 and ϕ2 ě 0.
However, there are certain combinations of ϕ1 and ϕ2 that yield matrices which are not
positive definite. Some particular cases of the DEC model are the compound symmetry
correlation structure (CS), which occurs when ϕ2 “ 0, the CAR(1) correlation is obtained
when ϕ2 “ 1, and the moving-average of order 1 (MA(1)) is attained when ϕ2 tends to
`8. For further details on these correlations, please refer to Schumacher et al. (2021).

6.2.2 The likelihood function

From now on, it is assumed that the response vector Yi “ pYi1, . . . , Yini
q

J is
not fully observed due to censoring, i.e., the true response lies within a region instead
of being observed exactly. Let Rij Ď R denote the censoring region, such that Yij is not
observed if Yij P Rij , for j P t1, . . . , niu. Further, let pVij, Cijq be the observed data at time
tj for subject i, where Cij is the censoring indicator, and Vij is given by

Vij “

#

rij, if Yij P Rij, pcensoredq

Yij, otherwise, pobservedq
(6.4)

where Rij is an interval of the form p´8, rijq, prij,8q, or prij1, rij2q for left, right, or
interval censoring, respectively. The constant rij P R is equal to the detection limit for
left and right censoring, and rij “ prij1 ` rij2q{2 for interval censoring. Moreover, missing
observations can be handled by setting Rij “ p´8,8q and rij “ NA. Thereby, the model
defined by (6.1)–(6.4) will be referred to as the linear mixed-effects censored skew-t model
(LMEC-ST).

Therefore, let y “ pyJ
1 ,yJ

2 , . . . ,yJ
n q

J be the vector of all responses, where
yi “ pyi1, . . . , yini

q
J is a realization of Yi „ STni

pµi,Σi, λ̄i, νq, with µi “ Xiβ ` κZi∆.
In order to obtain the likelihood function of the LMEC-ST model, we treat, separately,
the observed and censored components of yi, i.e., yi “ pyoJ

i ,ycJ
i q

J, where Cij “ 0 for all
elements in the no

i -dimensional vector yo
i , and Cij “ 1 for all elements in the nc

i -dimensional
vector yc

i of censored components. According to this partition, we write

Vi “ pVoJ
i ,VcJ

i q
J, µi “ pµoJ

i ,µcJ
i q

J, Σi “

˜

Σoo
i Σoc

i

Σco
i Σcc

i

¸

, and φi “ pφoJ
i ,φcJ

i q
J,
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where φi “ Σ´1{2
i λ̄i. To compute the likelihood function, we need to know the marginal

and conditional distribution of an ST variable. Then, from Proposition 6, we have that

Yo
i „ STno

i
pµo

i ,Σoo
i , λ̃

o

i , νq,

Yc
i | Yo

i “ yo
i „ ESTnc

i
pµco

i , Σ̃
cc.o

i ,λco
i , τ

co
i , ν

co
i q,

with λ̃
o

i “ coc
i Σoo 1{2

i φ̃o
i , coc

i “ p1 ` φcJ
i Σcc.o

i φc
iq

´1{2, µco
i “ µc

i ` Σco
i Σoo´1

i pyo
i ´ µo

i q, Σ̃cc.o

i “

Σcc.o
i {ν2

pyo
i q, Σcc.o

i “ Σcc
i ´Σco

i pΣoo
i q

´1Σoc
i , ν2

pyo
i q “ pν`no

i q{pν`δpyo
i qq, λco

i “ Σcc.o 1{2
i φc

i ,
τ co

i “ νpyo
i qφ̃oJ

i pyo
i ´ µo

i q, φ̃o
i “ φo

i ` Σoo ´1
i Σoc

i φc
i , and νco

i “ ν ` no
i .

Let V “ pVJ
1 , . . . ,VJ

n q
J and C “ pCJ

1 , . . . ,CJ
n q

J denote the observed data.
Therefore, the log-likelihood function of θ “ pβJ,αJ

D, σ
2,ϕ,λJ, νq

J, where αD denotes a
minimal set of parameters such that D is well defined (e.g., the upper triangular elements
of D in the unstructured case), for the observed data pV,Cq is

ℓpθ | V,Cq “

n
ÿ

i“1
lnLi, (6.5)

where Li represents the likelihood function of θ for the ith subject, given by

Li ” Lipθ | Vi,Ciq “ Prprc
i1 ď yc

i ď rc
i2 | yo

i ,θqfpyo
i | θq

“ Pnc
i
prc

i1, rc
i2; µco

i , Σ̃
cc.o

i ,λco
i , τ

co
i , ν

co
i qSTno

i
pyo

i ; µo
i ,Σoo

i , λ̃
o

i , νq,

with tyc
i P Rnc

i : rc
i1 ď yc

i ď rc
i2u “ tpyc

i1, . . . , y
c
inc

i
q

J
P Rnc

i : ri11 ď yc
i1 ď rc

i12, . . . , rinc
i 1 ď

yc
inc

i
ď rc

inc
i 2u denoting the censoring region of all partially observed data for subject i, and

Prpα,β; µ,Σ,λ, τ, νq denotes the integral defined in (5.4), which can be easily evaluated
by using the R package MomTrunc (Galarza et al., 2021a).

The estimation procedure for the model parameters θ is performed by maxi-
mizing the log-likelihood function given in (6.5). This process is not straightforward, as
the expression involves intractable integrals required to compute the probabilities of an
EST distribution for censored cases. Consequently, an EM-type algorithm is the most
widely used method to address this complexity. This algorithm optimizes a sequence of
simpler approximations of the observed log-likelihood function. Further details on the
implementation of the algorithm will be discussed in the subsequent section.

6.2.3 Parameter estimation via EM-type algorithm

The EM algorithm, as introduced by Dempster et al. (1977), is a widely used
method for deriving ML estimates in scenarios involving partially observed data, such as
censored or missing data. This algorithm iteratively estimates parameters by maximizing
the conditional expectation of the complete-data log-likelihood function. The EM algorithm
is noted for its numerical stability, simplicity of implementation, and modest memory
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requirements (McLachlan & Krishnan, 2008). However, ML estimation for the LMEC-
ST model presents challenges due to censoring issues, rendering the EM algorithm less
suitable due to computational complexities during the M-step. To address these challenges,
we employ an extension of the EM algorithm known as the Expectation-Conditional
Maximization Either (ECME) algorithm (Liu & Rubin, 1994). The ECME algorithm
modifies the M-step with a series of conditional maximization (CM) steps, maintaining the
stability characteristic of the EM algorithm and typically achieving a faster convergence
rate than the original EM.

In order to develop the ECEM algorithm for parameter estimation in the
LMEC-ST model, we adopt the hierarchical representation of the model as expressed in
(6.3). Define y “ py1, . . . ,ynq

J, u “ pu1, . . . , unq
J and t “ pt1, . . . , tnq

J as the hypothetical
missing data, complemented by the observed data V and C, which correspond to the
censoring mechanism. The complete dataset, therefore, comprises yc “ pV,C,y,u, tq.
Holding the value of ν constant, we define the complete-data log-likelihood function for a
corresponding set of parameters θ˚

“ pβ, σ2,ϕ,∆,αΓq
J by

ℓcpθ
˚

| ycq “

n
ÿ

i“1
ℓicpθ

˚
| yicq,

where

ℓicpθ
˚

| yicq “ ´
1
2

”

ln |Ri| ` ln |Γ| `
ui

σ2 pyi ´ Xiβ ´ Zibiq
JR´1

i pyi ´ Xiβ ´ Zibiq

`ni ln σ2
` uipbi ´ ∆tiq

JΓ´1
pbi ´ ∆tiq

ı

` Kpνq ` c,

with c denoting a constant that does not depend on the vector of parameters θ˚, Kpνq

is a function that depends only on ν, and |A| represents the determinant of the square
matrix A.

Therefore, the EM-type algorithm for the LMEC-ST model can be summarized
in two steps:

E-step: Given the estimates of pθ
˚pkq

“ ppβ
pkq

, pσ2pkq, pϕ
pkq

, p∆
pkq

, pα
pkq

Γ q
J at the kth iteration

of the algorithm, the E-step provides the conditional expectation of the complete-data
log-likelihood function:

Qpθ˚
|pθ

˚pkq

q “ E
”

ℓcpθ
˚
|ycq|V,C, pθ

˚pkq
ı

“

n
ÿ

i“1
E
”

ℓcpθ
˚
|yicq|Vi,Ci, pθ

˚pkq
ı

“

n
ÿ

i“1

pQ
pkq

i pθ˚
q.

It is possible to demonstrate that pQ
pkq

i pθ˚
q can be decomposed as follows

pQ
pkq

i pθq “ pQ
pkq

1i pβ, σ2,ϕq ` pQ
pkq

2i pα,λq ` pQ3ipνq,
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where
pQ

pkq

1i pβ, σ2,ϕq “ ´
1
2 ln |Ri| ´

1
2σ2 tr

ˆ

R´1
i

„

yuy2
i

pkq

` Zi
yub2

i

pkq

ZJ
i ´ 2Zi

{ubyJ
i

pkq
ȷ˙

´
ni

2 ln σ2
´

1
2σ2

´

pui
pkqXiβ ´ 2yuyi

pkq
` 2Zi

yubi

pkq
¯J

R´1
i Xiβ.

pQ
pkq

2i pα,λq “ ´
1
2 ln |Γ| ´

1
2tr

ˆ

Γ´1yub2
i

pkq
˙

`
zutbJ

i

pkq

Γ´1∆ ´

xut2i
pkq

2 ∆JΓ´1∆,

such that pu
pkq

i “ ErUi|Vi,Ci, pθ
pkq

s, xut2i
pkq

“ ErUiT
2
i |Vi,Ci, pθ

pkq

s, yubr
i

pkq

“ ErUibr
i |Vi,Ci,

pθ
pkq

s, zutbi

pkq

“ ErUiTibi|Vi,Ci, pθ
pkq

s, {ubyJ
i

pkq

“ ErUibiYJ
i |Vi,Ci, pθ

pkq

s, and yuyr
i

pkq
“

ErUiYr
i |Vi, Ci, pθ

pkq

s, for r P t1, 2u, such that b1
i “ bi, b2

i “ bibJ
i , Y1

i “ Yi, and
Y2

i “ YiYJ
i . The computation of these conditional expectations is detailed in Appendix

E.2, where expressions for each scenario are provided (cases where the response vector is
uncensored, cases where all components are censored, and cases where only some compo-
nents are censored). These moments can be approximated using the R libraries MomTrunc
(Galarza et al., 2021a) and relliptical (Chapter 2).

M-step: Conditionally maximizing Qpθ˚
|pθ

˚pkq

q with respect to each entry of θ˚, we update
the estimated pθ

˚pkq

by:

pβ
pk`1q

“

˜

n
ÿ

i“1
pu

pkq

i XJ
i
pΩ

´1pkq

i Xi

¸´1 n
ÿ

i“1
XJ

i
pΩ

´1pkq

i

´

yuyi
pkq

´ Zi
yubi

pkq
¯

,

pσ2pk`1q
“

1
N

n
ÿ

i“1

"

tr
ˆ

pR
´1pkq

i

„

yuy2
i

pkq

` Zi
yub2

i

pkq

ZJ
i ´ 2Zi

{ubyJ
i

pkq
ȷ˙

`

´

pui
pkqXi

pβ
pk`1q

´ 2yuyi
pkq

` 2Zi
yubi

pkq
¯J

pR
´1pkq

i Xi
pβ

pk`1q
*

,

pϕ
pk`1q

“ argmax
ϕ

n
ÿ

i“1

"

´
1

2pσ2pk`1q
tr
ˆ

R´1
i

„

yuy2
i

pkq

` Zi
yub2

i

pkq

ZJ
i ´ 2Zi

{ubyJ
i

pkq
ȷ˙

´
1
2 ln |Ri| ´

1
2pσ2pk`1q

´

pui
pkqXi

pβ
pk`1q

´ 2yuyi
pkq

` 2Zi
yubi

pkq
¯J

R´1
i Xi

pβ
pk`1q

*

,

p∆
pk`1q

“

řn
i“1

zutbi

pkq

řn
i“1

xut2i
pkq

,

pΓ
pk`1q

“
1
n

n
ÿ

i“1

"

yub2
i

pkq

´ zutbi

pkq
p∆

pk`1qJ

´ p∆
pk`1q

zutbi

pkqJ

` xut2i
pkq

p∆
pk`1q

p∆
pk`1qJ

*

,

where N “

n
ÿ

i“1
ni. Additionally, estimates for certain parameters associated with the

random effects, such as the unstructured scale matrix D and the skewness parameter λ,
can be obtained using the following expressions

pD
pk`1q

“ pΓ
pk`1q

` p∆
pk`1q

p∆
pk`1qJ

and pλ
pk`1q

“
pD

´1{2pk`1q
p∆

pk`1q

´

1 ´ p∆
pk`1qJ

pD
´1pk`1q

p∆
pk`1q

¯1{2 .
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To update the degrees of freedom ν, we maximize the marginal log-likelihood
function, given in (6.5), with respect to ν as follows

pνpk`1q
“ argmax

ν

#

n
ÿ

i“1
ln
´

Lipν|pθ
pk`1q

,Vi,Ciq

¯

+

.

To perform the maximization procedure, we employ the algorithm proposed by Brent (2013),
which is a combination of golden section search and successive parabolic interpolation,
designed for use with continuous functions of a single variable. The EM algorithm iterations
continue until the difference between two successive values of the observed log-likelihood
function is less than a specified tolerance level, denoted as tol (e.g. tol ă 10´5).

6.2.4 Standard error approximation

According to the large sample theory, the standard error of the ML estimates
can be approximated by the inverse of the observed information matrix. However, in
the presence of censored observations, this matrix cannot be expressed in closed form.
Consequently, we adopt the strategies detailed by Lin (2010) and Meilijson (1989), which
utilize the empirical information matrix instead of the observed one. Therefore, the
empirical information matrix, evaluated at the ML estimates, is defined as follows:

Ieppθ|yq “

n
ÿ

i“1
psipθqpsipθq

J.

For the LMEC-ST model, let pθ “ ppβ
J

, pσ2, pϕ
J

, pαJ

D,
pλ

J

, νq
J denote the vector

of ML estimates obtained at the last iteration of the EM-type algorithm, with pαD “

ppα1, . . . , pαqpq`1q{2q
J representing the qpq ` 1q{2 vector of distinct elements of pD, then the

vector psipθq “ ppsipβq
J,psipσ

2
q, psipϕq

J,psipαDq
J,psipλq

J,psipνqq
J has elements

psipβq “ XJ
i
pΩ

´1
i

´

xuyi ´ Zi
xubi ´ puiXi

pβ
¯

,

psipσ
2
q “ ´

ni

2pσ2 `
1

2pσ4

”

pai ´ 2pβ
J

XJ
i
pR

´1
i

´

xuyi ´ Zi
xubi

¯

` pui
pβ

J

XJ
i
pR

´1
i Xi

pβ
ı

,

psipϕq “ ppsipϕ1q,psipϕ2q, . . . ,psipϕrqq
J ,

psipαDq “
`

psipα1q,psipα2q, . . . ,psipαqpq`1q{2q
˘J
,

psipλq “ ppsipλ1q,psipλ2q, . . . ,psipλqqq
J , and

psipνq “
1
2

"

ln
ˆ

pν

2

˙

` 1 ´ ψ

ˆ

pν

2

˙

` E
”

lnUi|Vi,Ci, pθ
ı

´ pui

*

,

with pai “ trpR´1
i

pAiq such that pAi “ yuy2
i ` Zi

yub2
i ZJ

i ´ 2Zi
{ubyJ

i , and ψpxq “ Γ1
pxq{Γpxq

represents the digamma function. Note that psipνq depends on the calculation of ErlnUi|Vi,
Ci, pθs, which relies on computationally intensive Monte Carlo integration, then we focus
on computing the remaining elements of psipθq. The rest of the elements are given by
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psipϕkq “
1

2pσ2 tr
!”

pAi ` puiXi
pβpβ

J
XJ

i ´ 2pxuyi ´ Zi
yubiqpβ

J
XJ

i

ı

pR
´1
i

9Riϕk
pR

´1
i

)

´
1
2 tr

!

pR
´1
i

9Riϕk

)

,

psipαlq “ ´
1
2 tr

"

pΓ
´1

9Γαl
´ pEi

pΓ
´1

9Γαl
pΓ

´1
´ ryutbi

9∆
J

αl
` 9∆αl

yutb
J

i spΓ
´1

` xut2
i r 9∆αl

p∆
J

` p∆ 9∆
J

αl
spΓ

´1
*

,

psipλjq “ ´
1
2 tr

"

pΓ
´1

9Γλj
´ pEi

pΓ
´1

9Γλj
pΓ

´1
´ ryutbi

9∆
J

λj
` 9∆λj

yutb
J

i spΓ
´1

` xut2
i r 9∆λj

p∆
J

` p∆ 9∆
J

λj
spΓ

´1
*

,

where
pEi “

yub2
i ´ yutbi

p∆
J

´ p∆yutb
J

i ` xut2i
p∆ p∆

J

,

9Γαl
“

BΓ
Bαl

ˇ

ˇ

ˇ

α“pα
“ 9Dαl

´ 9∆αl
p∆

J

´ p∆ 9∆
J

αl
, with 9∆αl

“
9D

1{2
αl

pλ

p1 ` pλ
J
pλq1{2

, and

9Γλj
“

BΓ
Bλj

ˇ

ˇ

ˇ

λ“pλ
“ ´ 9∆λj

p∆
J

´ p∆ 9∆
J

λj
, with 9∆λj

“ pD
1{2

˜

9λj

p1 ` pλ
J
pλq1{2

´
pλj
pλ

p1 ` pλ
J
pλq3{2

¸

,

for k P t1, . . . , ru, l P t1, . . . , qpq ` 1q{2u, j P t1, . . . , qu, and i P t1, . . . , nu. Additionally,
9λj “

Bλ

Bλj

denotes the q ˆ 1 vector with 1 in the jth entry and 0 otherwise, 9Dαl
“

BD
Bαl

represents the q ˆ q matrix with 1 in the position of the element αl and the remaining

elements equal to 0, and 9D
1{2
αl

“
BD1{2

Bαl

ˇ

ˇ

α“pα
is computed by

vec
´

9D
1{2
αl

¯

“

´

D1{2
b In ` In b D1{2

¯´1
vec

´

9Dαl

¯

,

where vecpDq represents the operator that transforms a matrix into a column vector by
vertically stacking its columns. Given that D is positive definite, the matrix square root
D1{2 is unique and positive definite. Consequently, the associated Kronecker sum is also
positive definite and non-singular. These results are similar to those presented in Chapter
5 for the multivariate censored skew-t distribution.

6.2.5 Estimation of random effects

To approximate the random effects for each individual, we consider the result
presented in (6.3), which corresponds to the hierarchical representation of the ST model.
From this foundation, it follows that Yi | bi “ bi, Ui “ ui „ Nni

pXiβ ` Zibi, u
´1
i Ωiq and

bi | pUi “ uiq „ SNqpκ∆, u´1
i D,λq. Consequently, given pYi, Uiq, the distribution of bi

falls within the extended skew-normal (ESN) family, as follows:

bi | pYi “ yi, Ui “ uiq „ ESNqpµbi, u
´1
i Λi,Λ1{2

i ζ, τbiq, (6.6)

where µbi “ κ∆ ` DZJ
i Σ´1{2

i y0i and τbi “ u
1{2
i ζJDZJ

i Σ´1{2
i y0i, with y0i “ Σ´1{2

i pyi ´

Xiβ ´ κZi∆q and ζ “ D´1{2λ. Therefore, the conditional mean of bi given Yi “ yi can
be computed by

Erbi|Yi “ yi,θs “ ErErbi|Ui,Yi “ yi,θs | Yi “ yi,θs

“ µbi `
ErU

´1{2
i WΦpU

1{2
i λ̄

J

i y0iq | Yi “ yi,θs
a

1 ` ζJΛiζ
Λiζ,
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with WΦpaq “ ϕpaq{Φpaq. The minimum mean-squared error (MSE) estimator of bi is
obtained by the conditional mean of bi given the observed values pVi,Ciq (Lachos et al.,
2010), which is given by

pbipθq “ Er bi|Vi,Ci,θs “ ErErbi|Yi,θs | Vi,Ci,θs

“ c∆ ` DZJ
i Σ´1

i ppyi ´ Xiβ ´ κZi∆q `
pξiΛiζ

a

1 ` ζJΛiζ
,

where pyi “ ErYi|Vi,Ci,θs and pξi “ ErErU
´1{2
i WΦpU

1{2
i λ̄

J

i y0iq|Yi “ yi,θs | Vi,Ci,θs

depend on the censoring scheme of the ith subject.

6.2.6 Prediction of future observations

Interested in predicting values from the LMEC-ST model, we denote by yi,obs

the ni,obs-vector of random variables corresponding to the given sample for subject i and
by yi,pred the vector of random variables of length ni,pred corresponding to the time points
that we are interested in predicting. Let X˚

i “ pXi,obs,Xi,predq and Z˚
i “ pZi,obs,Zi,predq

be the n˚
i ˆ p and n˚

i ˆ q design matrices corresponding to ȳi “ pyJ
i,obs,yJ

i,predq
J, with

n˚
i “ ni,obs ` ni,pred.

Let yi,obs “ pyoJ
i ,ycJ

i q
J, where yo

i and yc
i denote the uncensored and censored

components of yi,obs, respectively. To deal with the incomplete values existing in yi,obs,
we use an imputation procedure that consists of replacing the censored values by pyc

i “

ErYc
i | Vi,Ci, pθs the conditional mean obtained from the EM algorithm. The new vector of

complete dataset will be denoted by y˚
i,obs “ pyoJ

i , pycJ

i q
J. The reason to use the imputation

procedure is that it avoids computing truncated conditional expectations of the skew-t
multivariate distribution originated by the censoring scheme. Hence, we have that

Ȳ˚

i “ pY˚J
i,obs,YJ

i,predq
J

„ STn˚
i
pX˚

i β ` κZ˚
i ∆,Σ˚

i , λ̄
˚

i , νq, (6.7)

such that Σ˚
i “ Ω˚

i ` Z˚
i DZ˚J

i “

˜

Σ˚
i11 Σ˚

i12

Σ˚
i21 Σ˚

i22

¸

, λ̄
˚

i “ Σ˚´1{2
i Z˚

i Dζ{p1 ` ζJΛ˚
i ζq

1{2,

with ζ “ D´1{2λ and Λi “ pD´1
` Z˚J

i Ω˚´1
i Z˚

i q
´1. Using Proposition 6, we obtain that

the distribution of Yi,pred given Y˚
i,obs “ yi belongs to the extended skew-t family, as

follows

Yi,pred | pY˚
i,obs “ yiq „ ESTni,predpµ˚

i ,Σ˚
i22.1{ν2

pyiq,Σ
˚1{2
i22.1φ

pred
i , τ˚

i , ν ` ni,obsq,

where µ˚
i “ Xi,predβ ` κZi,pred∆ ` Σ˚

i21Σ˚´1
i11 pyi ´ µi,obsq, τ˚

i “ νpyiqφ̃
J
i pyi ´ µi,obsq,

µi,obs “ Xi,obsβ ` cZi,obs∆, Σ˚
i22.1 “ Σ˚

i22 ´ Σ˚
i21Σ˚´1

i11 Σ˚
i12, ν2

pyiq “ pν`ni,obsq{pν` δpyiqq,
φ̃i “ φobs

i ` Σ˚´1
i11 Σ˚

i12φ
pred
i , and φ˚

i “ pφobsJ
i ,φpredJ

i q
J

“ Σ˚´1{2
i λ̄

˚

i . Following Lachos
et al. (2010), the minimum MSE predictor of future measurements of Yi is the conditional
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mean of Yi,pred given Y˚
i,obs “ yi, which can be easily computed from (5.3), i.e.,

pyi,predpθq “ ErYi,pred | Y˚
i,obs “ yi,θs “ µ˚

i `
η̃Σ˚

i22.1φ
pred
i

b

1 ` φpredJ
i Σ˚

i22.1φ
pred
i

, (6.8)

with

η̃ “

ˆ

ν ` ni,obs

ν ` ni,obs ´ 1

˙ˆ

ν ` δpyiq

ν ` ni,obs

˙1{2 ˆ

1 `
τ̃ 2

i

ν ` ni,obs

˙

tpτ̃i; ν ` ni,obsq

T pτ̃i; ν ` ni,obsq
,

δpyiq “ δpyi; µi,obs,Σ˚
i11q and τ̃i “ τ˚

i {p1 ` φpredJ
i Σ˚

i22.1φ
pred
i q

1{2.

The prediction of yi,pred can be obtained by substituting the ML estimates pθ

into (6.8), leading to {yi,pred “ pyi,predppθq.

6.3 Simulation studies
This section presents the results from three simulation studies. The first study

evaluates the asymptotic properties of parameter estimates obtained through the proposed
method. The second simulation study assesses the robustness of our approach, specifically
its capacity to handle perturbed and censored data simulated from the linear mixed-effect
censored skew-normal (LMEC-SN) model. The final study examines the impact of model
misspecification, where the data originate from a population with a distribution that
differs from the one assumed for parameter estimation.

For the three simulation studies, we considered 300 Monte Carlo (MC) samples
simulated from the model Yi “ pβ0 ` b0iq110 ` β1xi ` ξi, i P t1, . . . , nu, with n being
the number of subjects (sample units). Here, 110 denotes a vector with all elements
equal to one of length 10, xi “ p1, 2, . . . , 10q

J represents the vector of times at which
the measurements were taken, and ξi is the error term, which was simulated from a
multivariate distribution with zero mean and variance-covariance matrix Ωi “ σ2Ri, where
σ2

“ 0.25 and Ri “ Ripϕq computed from the correlation function of an AR(2) process
with parameters ϕ1 “ 0.60 and ϕ2 “ ´0.20. The regression parameters were set to β0 “ 1
and β1 “ 2. The random effect b0i was simulated from a distribution with scale parameter
D “ 2 and skewness parameter λ “ 3.

6.3.1 Simulation I. Asymptotic properties

In this simulation study, we want to evaluate the asymptotic properties of the
ML estimates obtained from the proposed EM-type algorithm. Therefore, we simulated
samples consisting of n subjects with 10 repeated observations for each sample unit, for
n P t50, 100, 200, 400u. The observations were simulated considering that the error term
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follows a multivariate Student-t distribution, ξi
ind
„ t10p0,Ωi, νq, and the random effect

b0i
iid
„ ST pκ∆, D, λ, νq, with κ selected such that Epb0iq “ 0, the degrees of freedom ν “ 6,

and the remaining parameters were set as mentioned above.

Additionally, we investigated the effect of censoring on the parameter estimates.
Two scenarios were evaluated: one with an average of 10% left-censored observations
and another with an average of 10% right-censored observations. The scenario without
censoring was previously evaluated by Schumacher et al. (2021). An observation was
considered censored if it fell within the interval Rij “ p´8, 3.92q for left-censored cases,
and Rij “ p20,`8q for right-censored cases, where i P t1, . . . , nu and j P t1, . . . , 10u.

Table 18 presents the mean (MC-AV), median (MC-MD), and standard devia-
tion (MC-SD) calculated from 300 MC samples. To assess the consistency of the method in
approximating standard errors, we computed the average of the standard error estimates
(denoted by IM-SE) and compared it with the MC-SD. The results for the left-censored
observations are detailed in the upper table, while those for the right-censored observations
are shown in the lower table. These findings indicate that the estimates for the regression
coefficients (β0, β1) and the parameters related to the error term (σ2, ϕ1, ϕ) closely match
the true parameter values, which are denoted in parentheses. Furthermore, a lower increase
in the bias of estimates for β0 was observed for the right-censored cases. Notably, the
standard error estimates decrease as the sample size increases, aligning consistently with
those derived via MC-SD. This consistency indicates that the inverse of the empirical
information matrix, as detailed in Subsection 6.2.4, is reliable for approximating the SE of
these parameters.

For the degrees of freedom ν, the estimates obtained through the mean and
median approach the true value (ν “ 6) in samples of size n ě 100, while for samples of
size n “ 50, the median (MC-MD) proved to be a more accurate estimator. Regarding
the parameters associated with the random effect (D,λ), the estimates show some bias,
which diminishes as the sample size increases. It is also worth noting that IM-SE provides
a reliable estimate of the standard error for D, though it is less precise for λ. However, as
expected, the discrepancy between IM-SE and MC-SD narrows with increasing sample
size. Note also that the IM-SE for λ is greater for right-censored observations than for
left-censored observations across all sample sizes; this could occur because the chosen values
for the skewness parameter of the response vector vary from 0.80 to 0.87 for each individual,
slightly more affecting right-censored observations than those that are left-censored.

The results previously discussed are summarized in the boxplots shown in
Figure 29. We consider cases without censoring (No), with an average of 10% left-censored
(Left) and 10% right-censored (Right) observations. It can be observed that the median of
the estimates is close to the true parameter value (indicated by the red solid line) for the
regression coefficients (β0, β1) and the parameters related to the error term (σ2, ϕ1, ϕ2, ν).
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Table 18 – Simulation I. Summary statistics are presented for 300 Monte Carlo (MC)
samples of sizes n “ 50, 100, 200, and 400, each with an average of 10% left-
censored (upper table) and right-censored (lower table) observations, simulated
from the LMEC-ST model. The statistics MC-AV, MC-MD, and MC-SD refer
to the mean, median, and standard deviation of the estimates, respectively.
IM-SE denotes the average of the standard errors as detailed in Subsection
6.2.4. The true parameter values are provided in parentheses for reference.

n
cens. Measure β0 β1 σ2 ϕ1 ϕ2 D λ ν
(%) (1.00) (2.00) (0.25) (0.60) (-0.20) (2.00) (3.00) (6.00)

Left-censored observations

50 9.96

MC-AV 1.002 2.001 0.250 0.595 -0.204 1.886 3.039 6.973
MC-MD 0.999 2.001 0.248 0.593 -0.204 1.773 2.466 6.371
MC-SD 0.186 0.013 0.029 0.059 0.061 0.708 2.104 -
IM-SE 0.199 0.015 0.030 0.064 0.066 0.747 187.722 -

100 9.96

MC-AV 0.999 1.999 0.249 0.598 -0.197 1.820 2.612 6.290
MC-MD 0.987 2.000 0.248 0.600 -0.197 1.797 2.477 6.018
MC-SD 0.131 0.010 0.019 0.040 0.044 0.460 1.148 -
IM-SE 0.134 0.010 0.021 0.043 0.045 0.495 27.026 -

200 10.00

MC-AV 0.993 2.000 0.251 0.597 -0.197 1.858 2.487 6.156
MC-MD 0.987 2.000 0.249 0.598 -0.194 1.869 2.429 5.975
MC-SD 0.093 0.007 0.014 0.029 0.032 0.331 0.713 -
IM-SE 0.093 0.007 0.015 0.030 0.032 0.346 9.348 -

400 10.01

MC-AV 0.994 2.000 0.251 0.598 -0.200 1.872 2.471 6.089
MC-MD 0.996 2.001 0.250 0.599 -0.199 1.863 2.449 6.043
MC-SD 0.069 0.005 0.011 0.020 0.022 0.237 0.459 -
IM-SE 0.065 0.005 0.010 0.021 0.022 0.241 4.905 -

Right-censored observations

50 10.16

MC-AV 0.978 2.000 0.247 0.596 -0.206 1.889 3.483 6.928
MC-MD 0.970 2.000 0.245 0.598 -0.205 1.784 2.894 6.352
MC-SD 0.178 0.014 0.028 0.064 0.062 0.692 2.381 -
IM-SE 0.192 0.015 0.030 0.064 0.066 0.718 240.409 -

100 10.07

MC-AV 0.973 1.999 0.246 0.597 -0.201 1.823 2.928 6.353
MC-MD 0.969 1.999 0.246 0.601 -0.199 1.824 2.775 6.160
MC-SD 0.128 0.010 0.019 0.041 0.045 0.463 1.406 -
IM-SE 0.129 0.010 0.021 0.043 0.045 0.479 41.722 -

200 10.06

MC-AV 0.967 2.000 0.248 0.594 -0.198 1.855 2.751 6.200
MC-MD 0.963 2.000 0.248 0.594 -0.198 1.854 2.642 6.047
MC-SD 0.086 0.007 0.014 0.029 0.031 0.320 0.839 -
IM-SE 0.089 0.007 0.014 0.030 0.031 0.336 12.584 -

400 10.09

MC-AV 0.966 2.000 0.249 0.598 -0.201 1.857 2.686 6.134
MC-MD 0.964 2.000 0.248 0.599 -0.200 1.840 2.686 6.120
MC-SD 0.064 0.005 0.011 0.020 0.023 0.243 0.523 -
IM-SE 0.062 0.005 0.010 0.021 0.022 0.234 6.233 -

However, for the parameters associated with the random effects, D and λ, the median
underestimates the true parameter value across all sample sizes and types of censoring.
Notably, the interquartile range decreases as the sample size increases for all parameters.
The boxplots also reveal some outliers in the estimates for most parameters, with a notably
higher number of outliers in the estimates of λ and ν.

Finally, we analyzed the mean square error (MSE) of the parameters estimated
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Figure 29 – Simulation I. Boxplot of the estimates for the LMEC-ST model considering
different sample sizes and types of censoring: without censoring (No), left-
censored (Left), and right-censored (Right) observations. The red line denotes
the true value.
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from the LMEC-ST model across samples of size n “ 50, 100, 200, 400, with each subject i
having ni “ 10 observations. This analysis aimed to provide empirical evidence regarding
the consistency of the ML estimates. The MSE for each parameter is defined as follows

MSEi “
1
m

m
ÿ

j“1

´

pθ
pjq

i ´ θi

¯2
,

where m is the number of MC samples, in this case, m “ 300; pθpjq

i denotes the estimate of
the ith parameter obtained by the proposed EM-type algorithm from the jth MC sample;
and θi represents the true value of the ith parameter of θ “ pβ0, β1, σ

2, ϕ1, ϕ2, D, λ, νq
J.
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The MSE results are displayed in Figure 30 for each sample size, with datasets
without censoring represented by a solid line, those with left censoring by a dashed line,
and right censoring scenarios by dotted lines. It is observable that the MSE tends to
decrease toward zero as the sample size increases, substantiating the consistency of the
ML estimates of the LMEC-ST model across the three evaluated scenarios.
Figure 30 – Simulation I. MSE of the estimates for the LMEC-ST model considering

different sample sizes and types of censoring.
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6.3.2 Simulation II. Robustness of the estimators

Aiming to provide evidence about the robustness of the estimates obtained by
our proposal (LMEC-ST model), we simulated 300 MC samples, each containing n “ 300
subjects with ni “ 10 observations per subject. The dataset was generated from the
skew-normal distribution, assuming that the error term ξi

ind
„ N10p0,Ωiq and the random

effects b0i
iid
„ SNpκ∆, D, λq, with κ “ ´

a

2{π. This model was developed by Mattos
et al. (2022b), and the values for the remaining parameters were set as described in the
introduction of this section.

After generating the data, each MC sample was perturbed by replacing the
lowest 20 observations (1%) with the value ρ “ minpyq ´ φSDpyq, where minpyq and
SDpyq denote the minimum value and the standard deviation of the simulated values,
and φ varied among t1, 2, 3, 4u. The case without perturbation, i.e., ρ “ yij, was also
considered for comparison. Subsequently, we censored an average of 10% of observations,
considering as censored those that fell within the interval Rij “ p20,`8q, constituting
the right-censored cases.

We fitted both the LMEC-SN and our proposed LMEC-ST model for comparison
purposes. Table 19 displays the means of the estimates obtained by the LMEC-SN (SN)
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and LMEC-ST (ST) models for different values of φ, with the case without perturbation
denoted by φ “ 0. In the unperturbed scenario, both models performed similarly, as the
means of the estimates were close to the true parameter values for each model parameter.
It was also noted that the estimate for ν was approximately equal to 95, suggesting that
our algorithm tends to approximate the SN distribution.

For the other values of φ (t1, 2, 3, 4u), the estimates obtained by the LMEC-SN
model showed a bias for all parameters, with the bias increasing as the perturbation level
increased. Conversely, the mean of the estimates for the regression coefficients by the
LMEC-ST model proved to be a better estimator than that obtained by the LMEC-SN
model, exhibiting a smaller increase in bias for β0; this could be related to the presence of
a random effect in the intercept and the difficulty for the model to estimate the skewness
parameter, λ, a challenge also observed in the right-censored datasets in Simulation Study
I. Additionally, the mean of the estimates for the degrees of freedom ν tended to decrease
as the perturbation level increased, demonstrating the method’s mechanism for dealing
with outliers.

Table 19 – Simulation II. Mean of the estimates obtained after fitting the LMEC-SN
(SN) and LMEC-ST (ST) models, based on 300 MC samples of size n “ 300
simulated from the SN distribution considering 10% of right-censored and 1%
of perturbed observations.

Param. φ “ 0 φ “ 1 φ “ 2 φ “ 3 φ “ 4

SN ST SN ST SN ST SN ST SN ST

β0(1) 0.999 0.997 0.437 1.003 -0.032 0.958 -0.433 0.921 -0.791 0.915
β1(2) 2.000 2.000 2.088 1.998 2.168 1.996 2.240 1.995 2.306 1.994
σ2(0.25) 0.249 0.245 0.840 0.255 2.108 0.248 4.073 0.245 6.746 0.245
ϕ1(0.6) 0.597 0.597 0.704 0.619 0.638 0.613 0.538 0.611 0.452 0.610
ϕ2(-0.2) -0.202 -0.202 -0.095 -0.168 -0.066 -0.168 -0.050 -0.169 -0.039 -0.168
D(2) 1.826 1.808 1.103 0.665 2.869 0.642 3.917 0.636 4.525 0.633
λ(3) 2.571 2.652 -0.124 -0.332 -3.303 -0.341 -4.212 -0.349 -4.377 -0.344
ν - 97.165 - 3.407 - 2.433 - 2.073 - 2.002

Figure 31 displays the MSE for the regression coefficients (β0, β1) and the
parameters related to the error term (σ2, ϕ1, ϕ2) by perturbation level and by the model
fitted. The black line represents the LMEC-SN model, and the grey line represents the
LMEC-ST model. Results for datasets without censoring are shown with solid lines,
while dashed lines indicate right-censored datasets. These plots reveal that the MSE
computed from the LMEC-ST model is lower than those from the LMEC-SN model across
all perturbation levels. It is also observable that the MSE increases with the level of
perturbation for all models and levels of censoring, except for the estimates of ϕ1 through
the LMEC-SN model, which shows a decrease from φ “ 1 to φ “ 2, and then increase for
φ ě 2. Additionally, the censored datasets generally exhibit higher MSE values than the
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uncensored datasets, except for the estimates of ϕ2 through the LMEC-SN model, which
displayed a different behavior for φ ě 2. These results confirm that the heavy tails of the
skew-t distribution enable our model to mitigate the effects of outliers, thereby providing
a more robust method against atypical values.

Figure 31 – Simulation II. MSE estimated from the LMEC-SN and LMEC-ST models,
based on 300 MC samples of size n “ 300 simulated from the SN distribution
considering 1% of perturbed observations and two censoring cases: without
censoring and an average of 10% right-censored observations.
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6.3.3 Simulation III. Model misspecification

To evaluate the performance of the proposed model and the impact of estimating
parameters with the wrong distribution, we simulated 300 MC samples, each containing
300 subjects with ni “ 10 observations per subject. In this study, we explored various
scenarios in which data were generated from the following distributions:

1. ξi
ind
„ N10p0,Ωiq, b0i

iid
„ SNpκ1∆, Dq and κ1 “ ´

a

2{π;

2. ξi
ind
„ t10p0,Ωi, νq, b0i

iid
„ ST pκ2∆, D, νq, κ2 “ ´pν{πq

1{2 Γppν ´ 1q{2q

Γpν{2q
and ν “ 6;

and,

3. ξi
ind
„ SL10p0,Ωi, ν2q, b0i

iid
„ SSLpκ3∆, D, ν2q, κ3 “ ´

a

2{π
ν

ν ´ 1{2 and ν “ 1.15.



Chapter 6. Likelihood-based inference for the censored linear mixed-effects skew-t model 132

Each scenario corresponds to data simulated from the skew-normal, skew-t,
and skew-slash distribution. After generating the datasets, approximately 10% of the
observations were censored. An observation was considered censored if it fell within the
region Rij “ p´8, rijq, with the threshold rij varying according to the simulated data
distribution. Specifically, the detection limits were set at rij “ 4 for the skew-normal
distribution, rij “ 3.81 for the skew-t distribution, and rij “ 3.57 for the skew-slash
distribution.

Table 20 displays the mean of the 300 estimates obtained after fitting the
LMEC-ST (our proposal). For comparative analysis, we also fitted the LMEC-SN model
across the three scenarios and the LMEC-t model specifically for the skew-t distribution
data. For data simulated from the skew-normal distribution, the means of the estimates
computed from both models are close to the true parameter values, suggesting that both
distributions seem to fit the data equally well.

Table 20 – Simulation III. Mean of the estimates obtained after fitting the LMEC-SN (SN)
and LMEC-ST (ST) models, based on 300 MC samples of size n “ 300 simulated
from different distributions considering 10% of left-censored observations.

a) LMEC-SN b) LMEC-ST c) LMEC-SSL
SN ST SN ST t SN ST

β0(1) 0.998 1.002 1.005 0.993 0.866 1.112 1.070
β1(2) 2.000 2.000 2.001 2.000 2.000 2.017 2.000
σ2(0.25) 0.250 0.245 0.376 0.251 0.253 1.414 0.454
ϕ1(0.6) 0.598 0.598 0.598 0.599 0.601 0.594 0.601
ϕ2(-0.2) -0.202 -0.202 -0.197 -0.198 -0.195 -0.210 -0.200
D(2) 1.897 1.748 3.359 1.857 0.924 13.106 3.791
λ(3) 2.695 2.352 4.216 2.467 - 7.561 2.841
ν - 97.610 - 6.147 6.204 - 3.605

For the skew-t distribution data, the LMEC-t model tends to underestimate
the true value of β0 and compensates for the skewness in the distribution of the random
effects by underestimating D. Conversely, the means of the estimates for β0 and β1 via
the LMEC-SN model are close to the true values, although the interquartile range, as seen
in the boxplot (Figure 32), is wider for the LMEC-SN estimates compared to those from
the LMEC-ST.

Finally, when analyzing data simulated from the heavy-tailed skew-slash distri-
bution (with ν “ 1.15), the LMEC-ST model outperforms the LMEC-SN model, which
tends to overestimate the regression coefficients. In contrast, the LMEC-ST model’s es-
timates are much closer to the true parameter values. Figure 32 further illustrates that
estimates of β0 and β1 from the LMEC-SN model show significantly more outliers than
those from the LMEC-ST model.
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Figure 32 – Simulation III. Boxplot of the estimates for the regression coefficients obtained
after fitting the LMEC-SN (SN) and LMEC-ST (ST) models to data simulated
from different distributions incorporating 10% of left-censored observations.
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6.4 Application: A5055 data
To illustrate the proposed model, we analyze the dataset A5055 from the AIDS

clinical trial study by Wang (2013), which involved 44 HIV-1 infected patients. The dataset
includes measurements of plasma viral load (in copies per milliliter) and CD4 cell counts,
collected at approximately days 0, 7, 14, 28, 56, 84, 112, 140, and 168 of follow-up for each
patient. This study focuses on the longitudinal trajectories of RNA viral load, converted to
a log-base-10 scale and denoted by log10(RNA). The lower detection limit for RNA viral
load is 50 copies/milliliter, corresponding to 1.698 on the log-base-10 scale, with 33.5%
(106 out of 316) of measurements below this quantification limit (left-censored). Figure 33
(left panel) shows the trajectories of immunologic responses over time. For assessing the
model’s predictive performance, we partitioned the dataset into training and test sets, with
the former comprising 304 observations and the latter 12 observations, which represent
the last two data points from six randomly selected patients.

Figure 33 – A5055 data. (Left panel) Individual profiles for HIV viral load are displayed
on a log10 scale. (Right panel) Boxplot of the random effects b1i predicted
from the t-LMEC model.
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It is worth mentioning that this dataset was previously analyzed by Wang et al.
(2018) using a multivariate t linear mixed-effects model for censored observations. Addi-
tionally, Lachos et al. (2019) fitted a multivariate linear mixed-effects model incorporating
scale mixtures of normal distribution, while Mattos et al. (2022b) employed the LMEC-SN
model. In this study, we propose to analyze the dataset using the following model

yij “ β0 ` pβ1 ` b1iqtij ` β2
a

tij ` β3CD4`
` ϵij,

where yij represents log10pRNAq for subject i measured approximately at dayij, tij “

dayij{7 (week), CD4` is the scaled CD4 variable, b1i is the random effect for the ith
subject, and ϵij denotes the error term. To evaluate the necessity of considering a skewed
distribution, we initially fitted an LMEC-t model with different correlation structures
for the error term. Based on the Akaike Information Criterion (AIC) and the Bayesian
Information Criterion (BIC), the model that best fitted this dataset included an AR(1)
correlation process. Figure 33 (right panel) displays the boxplot of the random effects
predicted from the LMEC-t model with an AR(1) correlation, which appears to correspond
to a right-skewed distribution.

Given the results obtained earlier, we fitted a model with skew-t distributed
random effects and t distributed error terms, which suggests that the response variable
itself follows a skew-t distribution. For comparative analysis, we applied the LMEC-ST
model using five different correlation structures for the error terms. These structures
included the unstructured (UNC) model, the damped exponential correlation (DEC), the
compound symmetry correlation (CS), and the autoregressive models of order 1 and 2
(AR(1) and AR(2)). The log-likelihood functions evaluated at the maximum likelihood
(ML) estimates and the information criteria (AIC and BIC) are displayed in Table 21.
Here, we observe that the lowest values for these statistics were obtained with the AR(1)
correlation, mirroring the results found for the LMEC-t model.

Table 21 – A5055 data. Information criteria were obtained after fitting the LMEC-ST
model with different correlation structures.

Information Correlation structure
criterion UNC DEC CS AR(1) AR(2)

ℓppθq -312.406 -279.012 -292.648 -278.755 -279.407
AIC 640.811 578.023 603.296 575.510 578.813
BIC 670.548 615.194 636.749 608.963 615.984

Additionally, we fitted the LMEC-SN and LMEC-N models, considering the
AR(1) correlation for the error term. Table 22 presents the parameter estimates and
their standard errors (SE), approximated through the inverse of the empirical information
matrix as described in Subsection 6.2.4. This table also includes the information criteria
(AIC and BIC) along with the log-likelihood evaluated at the ML estimates. Note that the
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estimates for β0 and β3 are similar between the LMEC-ST and LMEC-t models. However,
for the skew-normal and normal models, these estimates are lower compared to those
obtained through heavy-tailed distributions. The estimated SEs are nearly identical across
all models. The estimates for β1 are around 0.120, while β2 is roughly estimated at -0.95,
with the greater value estimated in the LMEC-N model. In the LMEC-ST and LMEC-t
models, the estimated variance of the error term, σ2, was 0.10. This estimate is notably
lower, specifically half, compared to the variance of 0.20 estimated in both the skew-normal
and normal models. The estimate for the skewness parameter λ in the LMEC-ST model
was 1.668, corroborating the findings shown in Figure 33. Additionally, the AIC favors our
proposal, as it shows the lowest values for this statistic, while the BIC is nearly identical
for both heavy-tailed models, confirming the adequacy of the LMEC-ST model.

Table 22 – A5055 data. Parameter estimates (Est.) and standard error (SE) obtained after
fitting some LMEC models with AR(1) structure.

Parameter LMEC-ST LMEC-SN LMEC-t LMEC-N
Est. SE Est. SE Est. SE Est. SE

β0 3.734 0.131 3.619 0.131 3.709 0.129 3.582 0.139
β1 0.129 0.027 0.119 0.027 0.110 0.023 0.115 0.023
β2 -0.969 0.077 -0.923 0.077 -0.953 0.086 -0.910 0.091
β3 -0.344 0.098 -0.474 0.098 -0.365 0.118 -0.482 0.102
σ2 0.102 0.022 0.209 0.022 0.113 0.214
ϕ1 0.866 0.030 0.860 0.030 0.863 0.857
D 0.002 0.002 0.004 0.002 0.002 0.003
λ 1.668 0.001 1.009 0.001 - -
ν 2.946 - 3.633 -

ℓppθq -278.755 -290.640 -281.161 -291.201
AIC 575.510 597.280 578.322 596.401
BIC 608.963 627.016 608.058 622.421

Figure 34 displays the observed values of log10(RNA) against the week of
observation for six patients, depicted by black solid lines. The fitted and predicted values
are represented by solid grey lines for the LMEC-ST model (dark grey) and the LMEC-
t model (light grey), with the last two points indicating predictions. The dotted line
marks the detection limit (log10p50q) for censored observations. It is evident that both
models strive to match the dynamics of the observed data, with the LMEC-ST model
demonstrating superior performance. To quantitatively assess the predictive capabilities of
our model, the mean squared prediction error (MSPE) was calculated, excluding censored
observations. The results show that the MSPE for the LMEC-ST model is significantly
lower at 1.863 compared to 2.844 for the LMEC-t model. This suggests that the LMEC-ST
model, which accounts for skewness and heavier tails, is better suited for fitting this
dataset.
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Figure 34 – A5055 data. Observed viral loads on a log10 scale (black solid line) for six
subjects, alongside fitted trajectories for the LMEC-ST (dark grey) and LMEC-
t (light grey) models, both incorporating the AR(1) structure. The final two
observations were reserved to assess the predictive capabilities of the models.
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6.5 Remarks
This chapter introduced a robust linear mixed-effects regression model for

handling censored and/or missing data using the skew-t distribution. This model extends
the works of Schumacher et al. (2021), Lachos et al. (2019), and Mattos et al. (2022b),
among many others. A key advantage of our proposed LMEC-ST model is its ability to
mitigate the negative impacts of distributional misspecification and outliers on parameter
estimation, as evidenced by our simulation studies. The skew-t class of distributions also
offers a convenient framework for implementing the EM-type algorithm since its moments
and probabilities can be calculated from the expressions derived by Galarza et al. (2021c)
and implemented in the MomTrunc package. Furthermore, the effectiveness of our method
was demonstrated through the analysis of a real dataset, particularly in managing multiple
left-censored observations in the presence of asymmetric heavy-tailed data.

Future extensions of this research could include several promising directions.
One possibility is developing a multiple-outcome skew-normal and skew-t linear mixed-
effects model, extending the works of Wang et al. (2018) and Lachos et al. (2019). Another
direction could involve generalizing the LMEC-ST model to a nonlinear framework,
extending the methodologies introduced by Matos et al. (2013b). Additionally, exploring a
multiple-outcome skew-t nonlinear mixed-effects model could further advance the findings
of Lin & Wang (2017).
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7 Final Considerations

This section describes the technical production developed in this thesis.

7.1 Published papers

• Valeriano, K. A., Galarza, C. E., and Matos, L. A. (2023). Moments and random
number generation for the truncated elliptical family of distributions. Statistics and
Computing, DOI: 10.1007/s11222-022-10200-4.

• Valeriano, K. A., Galarza, C. E., Matos, L. A., and Lachos, V. H. (2023). Likelihood-
based inference for the multivariate skew-t regression with censored or missing
responses. Journal of Multivariate Analysis, DOI: 10.1016/j.jmva.2023.105174.

• Valeriano, K. A., Schumacher, F. L., Galarza, C. E., and Matos, L. A. (2024).
Censored autoregressive regression models with Student-t innovations. Canadian
Journal of Statistics, DOI: 10.1002/cjs.11804.

7.2 R packages
The research conducted in this thesis resulted in the development of two

new R packages, relliptical and RcppCensSpatial, while in other instances, the
proposed methodologies were incorporated into existing packages such as ARCensReg and
skewlmm (currently in progress). A brief description of each package is provided below:

• relliptical: The Truncated Elliptical Family of Distributions

It offers random numbers generation from members of the truncated multivariate
elliptical family of distribution, such as the truncated versions of the Normal, Student-
t, Laplace, Pearson VII, Slash, and Logistic, among others. Particular distributions
can be provided by specifying the density generating function. It also computes the
first two moments (covariance matrix as well) for some particular distributions.

• RcppCensSpatial: Spatial Estimation and Prediction for Censored/Missing Re-
sponses

It provides functions to estimate parameters in linear spatial models with cen-
sored/missing responses via the Expectation-Maximization (EM), the Stochastic
Approximation EM (SAEM), or the Monte Carlo EM (MCEM) algorithm. These
algorithms are widely used to compute the maximum likelihood (ML) estimates in

https://doi.org/10.1007/s11222-022-10200-4
https://doi.org/10.1016/j.jmva.2023.105174
https://doi.org/10.1002/cjs.11804
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problems with incomplete data. This package also approximates the standard error
of the estimates using the Louis method. Moreover, it has a function that performs
spatial prediction in new locations.

• ARCensReg: Fitting Univariate Censored Linear Regression Model with Autoregres-
sive Errors

It fits a univariate left, right, or interval-censored linear regression model with
autoregressive errors, considering the normal or the Student-t distribution for the
innovations. It provides estimates and standard errors of the parameters, predicts
future observations, and supports missing values on the dependent variable.

• skewlmm: Scale Mixture of Skew-Normal Linear Mixed Models

It fits a scale mixture of skew-normal linear mixed models using an expecta-
tion–maximization (EM) type algorithm, including some possibilities for modeling
the within-subject dependence and censoring or missing observations in the response
variable.

7.3 Conclusions
This thesis explored a frequentist approach to modeling censored and missing

responses using the Student-t and skew-t distributions. These models extend the work of
Schumacher et al. (2017) within the context of time series and Mattos et al. (2022b) in linear
mixed-effects models. For multivariate regression, we proposed a model featuring skew-t
errors, building upon the skew-normal model developed by Galarza et al. (2022b). These
distributions are particularly attractive due to their ability to accommodate heavy tails
and skewness. Moreover, this research accounts for the missingness mechanism, assuming
it to be missing at random (MAR).

Additionally, we developed a method for generating random numbers from
the family of truncated elliptical distributions, extending the work of Ho et al. (2012).
This method was driven by the necessity to simulate from truncated distributions, which
facilitate the estimation procedures for the models discussed. For maximum likelihood
(ML) estimation, the EM and the Stochastic Approximation of the EM (SAEM) algorithms
were employed, accommodating both censored and missing responses.

Several simulation studies demonstrated the asymptotic properties of the ML
estimates, validated the reliability of standard error calculated by the Louis method or
the empirical information matrix, and confirmed the robustness of our proposed models in
scenarios involving perturbed observations. We also assessed model performance under
misspecification, particularly when data arise from heavy-tailed distributions. The practical
applicability of these models was further illustrated using real datasets. Each model has



Chapter 7. Final Considerations 139

been implemented in an R package, except the multivariate skew-t regression model
(Chapter 5).

Moreover, this thesis conducted a comparative analysis of the EM, MCEM,
and SAEM algorithms for estimating the parameters of a Gaussian spatial censored linear
(SCL) model (Lachos et al., 2017; Ordoñez et al., 2018). It also proposed a new package,
RcppCensSpatial, which estimates parameters and approximates the standard errors
more efficiently than the previously established R package CensSpatial (Ordoñez et al.,
2020). This new package offers enhanced computational speed, improving its predecessor.

7.4 Future research
Future extensions in Chapter 2 may consider a broader class of density gener-

ating functions beyond the strictly decreasing ones currently used in the sampling method.
Additionally, alternative sampling methods for the truncated elliptical family could be
explored, such as IA2RMS (Martino et al., 2015a) and the fast universal self-tuned sam-
pler (FUSS) (Martino et al., 2015b) within a Gibbs framework. IA2RMS is noteworthy
for generating asymptotically independent samples while keeping computational costs
comparable to ARS and ARMS. FUSS, demonstrated through simulation studies, offers
faster sampling than some well-known MCMC methods for specific bivariate distributions,
with high accuracy and virtually independent sample generation.

In Chapter 4, future research directions include relaxing the assumption that
the first p observations are fully observed in order to fit a CARtppq model. Additionally, a
natural and interesting path for further research is extending this model to a multivariate
framework.

Further work in Chapter 5 might include generalizing the skew-t censored
regression model to a nonlinear context or developing a finite mixture of censored data
models using the multivariate skew-t distribution. This would be an extension of the
skew-normal finite mixture model proposed by De Alencar et al. (2021).

Extensions of Chapter 6 could involve developing a multiple-outcome skew-
normal and skew-t linear mixed-effects model, building on the contributions of Wang et al.
(2018) and Lachos et al. (2019). Another direction may involve adapting the LMEC-ST
model to a nonlinear framework, extending methodologies like those introduced by Matos
et al. (2013b). Moreover, exploring a multiple-outcome skew-t nonlinear mixed-effects
model could advance the findings of Lin & Wang (2017).
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APPENDIX A – CHAPTER 2

A.1 Further results for some multivariate elliptical distributions

A.1.1 The multivariate Pearson VII distribution

A p-dimensional random vector X is said to have a multivariate Pearson VII
distribution with location parameter µ P Rp, positive-definite scale matrix Σ P Rpˆp, extra
parameters m ą p{2 and ν ą 0, if its pdf is given by

fXpxq “
Γpmq

pπνqp{2Γpm ´ p{2q
|Σ|

´1{2
ˆ

1 `
1
ν

px ´ µq
JΣ´1

px ´ µq

˙´m

,

with x P Rp. The random vector X can also be represented as a scale mixture of normal
(SMN) distributions, i.e., X “ µ ` U´1{2Z, where Z has a p-variate normal distribution
with mean 0 P Rp and variance-covariance matrix Σ P Rpˆp. Here, U follows Gamma
distribution with scale parameter m´ p{2 and rate parameter ν{2, and Z is independent
of U . This implies that X | pU “ uq „ Nppµ, u´1Σq and U „ Gammapm ´ p{2, ν{2q.

Therefore, the mean and the variance-covariance matrix of X are

EpXq “ EpEpX | Uqq “ µ, m ą
p ` 1

2 .

CovpXq “ CovpEpX | Uqq ` EpCovpX | Uqq “ EpU´1
qΣ “

νΣ
2m ´ p ´ 2 , m ą

p ` 2
2 .

A.1.1.1 Marginal and conditional distribution

Now suppose that the vector X is partitioned into two random vectors X1 and
X2 of dimensions p1 and p2, such that p “ p1 ` p2, and consider the partition of µ and Σ
used in Proposition 1, i.e.,

X “

˜

X1

X2

¸

, µ “

˜

µ1

µ2

¸

, and Σ “

˜

Σ11 Σ12

Σ21 Σ22

¸

.

First, notice that pX ´ µq
JΣ´1

pX ´ µq “ δ1pX1q ` δ2.1pX2.1q, where δ1pX1q “ pX1 ´

µ1q
JΣ´1

11 pX1´µ1q, δ2.1pX2.1q “ pX2´µ2.1q
JΣ´1

2.1pX2´µ2.1q, µ2.1 “ µ2`Σ21Σ´1
11 pX1´µ1q,

and Σ2.1 “ Σ22 ´ Σ21Σ´1
11 Σ12. By the results above, the marginal pdf of X1 is given by

fX1px1q “

ż

Rp2
fXpxqdx2

“
Γpmq

pπνqp{2Γpm ´ p{2q
|Σ|

´1{2
ż

Rp2

ˆ

1 `
δ1px1q

ν
`
δ2.1px2.1q

ν

˙´m

dx2

“
Γpmq

pπνqp{2Γpm ´ p{2q
|Σ|

´1{2
ˆ

1 `
δ1px1q

ν

˙´m ż

Rp2

ˆ

1 `
δ2.1px2.1q

ν ` δ1px1q

˙´m

dx2
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fX1px1q “
Γpm ´ p2{2q

pπνqp1{2Γpm ´ p{2q
|Σ11|

´1{2
ˆ

1 `
δ1px1q

ν

˙´pm´p2{2q

, x1 P Rp1 .

Hence, the marginal distribution of X1 is also Pearson VII with parameters µ1, Σ11,m´p2{2
and ν, i.e., X1 „ PVIIp1pµ1,Σ11,m´ p2{2, νq. On the other hand, the conditional pdf of
X2 | pX1 “ x1q is given by

fX2|X1px2 | x1q “
fXpx1, x2q

fX1px1q

“
Γpmq |Σ2.1|´1{2

pπpν ` δ1px1qqqp2{2Γpm ´ p2{2q

ˆ

1 `
δ2.1px2.1q

ν ` δ1px1q

˙´m

,

x1 P Rp1 , x2 P Rp2 . Therefore, the conditional distribution has also a Pearson VII
distribution with parameters µ2.1, Σ2.1, m, and ν ` δ1px1q, i.e., X2 | pX1 “ x1q „

PVIIp2pµ2.1,Σ2.1,m, ν ` δ1px1qq.

A.1.1.2 Existence of its truncated moments

Let X „ PVIIppµ,Σ,m, νq,m ą p{2, ν ą 0, and let A Ď Rp be a truncation
region of interest. Then, the expectation and the variance-covariance matrix of X given
X P A exist in the following cases:

• If A “ Rp or A is unbounded (at most one finite limit in each dimension), so the
expectation exists for m ą pp`1q{2 and the covariance matrix exists for m ą pp`2q{2,
as usual.

• If A is bounded (all truncation points are finite), then EpX | X P Aq and CovpX | X P

Aq exist for all m ą p{2, since the distribution is bounded.

• If X can be partitioned into two random variables X1 and X2 of dimensions p1 and
p2, such that the truncation region associated to X1 (say, A1) is bounded, from the
last item we have EpX1 | X P Aq and CovpX1 | X P Aq exist for all m ą p{2 and
ν ą 0. On the other hand, it follows from Fubini’s theorem that EpX2 | X P Aq will
exist if and only if EpX2 | X1q exists; this occurs for all m ą pp2 ` 1q{2. Note that the
existence of EpX2 | X1q also implies that CovpX1,X2 | X P Aq exists. Additionally,
CovpX2 | X P Aq exists if and only if CovpX2 | X1q exists, which holds for all m ą

pp2 ` 2q{2.

Remark: It is equivalent to saying that EpX | X P Aq exists for all m if at least one
dimension containing a finite limit exists. Besides, if at least two dimensions containing
finite limits exist, we have that CovpX | X P Aq exists for all m ą p{2.
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In order to illustrate the result, consider X „ PVII2pµ,Σ,m, νq, with ν “ 1,

µ “ 0, and Σ “

˜

1 0.20
0.20 1

¸

. We are interested in observing what happens with

the elements of EpX | X P Aq and CovpX | X P Aq for A “ tx P R2 : a ă x ă bu in the
following three scenarios:

a) m “ 2, b “ p8,8q
J;

b) m “ 1.40, b “ p0.80,8q
J;

c) m “ 2, b “ p0.80,8q
J;

and lower limit a “ p´0.80,´0.60q
J for all scenarios. Figure 35 displays the trace evolution

of the MC estimates for the mean and variance-covariance elements µ1, µ2, σ11, σ12 and
σ22 for each case. The red dashed line represents the value for the parameter estimated
via MC with 106 samples, and we refer to this value as the “true value".

Figure 35 – Trace plots of the evolution of the MC estimates for the mean and variance-
covariance elements of X | pX P Aq under scenarios a), b), and c). The red
dashed line represents the true estimated value computed using numerical
methods

a) Two non-truncated variables, parameters m “ 2 and ν “ 1.
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b) One doubly truncated variable, parameters m “ 1.40 and ν “ 1.
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c) One doubly truncated variable, parameters m “ 2 and ν “ 1.
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For the first case, we have that pp ` 1q{2 “ 3{2 ă 2 “ m, then only the
first moment exists. Therefore, we observe in the first row of Figure 35 that only the
estimates of µ1 and µ2 converge to their true values as the sample size increases. In the
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second scenario (middle row), we have that all elements converge except σ22. This happens
because the truncation limits for the first variable are finite and m ą pp2 ` 1q{2 “ 1. In
the last case, scenario c), convergence is attained for all parameters, since the condition
m ą pp2 ` 2q{2 “ 3{2 holds. Note that even with 2000 MC simulations there exists a
significant variability in the chains.

A.1.2 The multivariate Slash distribution

A random vector X of length p has multivariate slash distribution with location
parameter µ P Rp, positive-definite scale matrix Σ P Rpˆp, and ν ą 0 degrees of freedom,
denoted by X „ SLppµ,Σ, νq, if its pdf is given by

fXpxq “ ν

ż 1

0
uν´1ϕp

`

x; µ, u´1Σ
˘

du, x P Rp,

where ϕppx; µ,Σq is the pdf of a p-variate normal distribution with mean µ and covariance
matrix Σ. We denote its pdf by SLppx; µ,Σ, νq which can be evaluated through numerical
methods, e.g., using the R function integrate. The random vector X can also be
represented in the family of the SMN distributions, this is, X “ µ ` U´1{2Z, where
the random variables U and Z are both independent and have Betapν, 1q and Npp0,Σq

distributions, respectively. Therefore, the mean and variance-covariance matrix of the
random vector X are given by

EpXq “ E pEpX | Uqq “ Epµq “ µ.

CovpXq “ CovpEpX | Uqq ` EpCovpX | Uqq “ EpU´1
qΣ “

ν

ν ´ 1Σ, ν ą 1.

A.1.2.1 Marginal and conditional distribution

Considering a partition in the same manner as used for the Pearson VII
distribution, the marginal pdf of X1 is given by

fX1px1q “

ż

Rp2
fXpxqdx2 “

ż

Rp2
ν

ż 1

0
uν´1ϕp

`

x; µ, u´1Σ
˘

du dx2

“ ν

ż

Rp2

ż 1

0
uν´1ϕp1

`

x1; µ1, u
´1Σ11

˘

ϕp2

`

x2; µ2.1, u
´1Σ2.1

˘

du dx2

“ ν

ż 1

0
uν´1ϕp1

`

x1; µ1, u
´1Σ11

˘

ż

Rp2
ϕp2

`

x2; µ2.1, u
´1Σ2.1

˘

dx2 du

“ ν

ż 1

0
uν´1ϕp1

`

x1; µ1, u
´1Σ11

˘

du.

Thus, X1 follows a slash distribution with location parameter µ1 P Rp1 , scale matrix
Σ11 P Rp1ˆp1 , and ν ą 0 degrees of freedom. On the other hand, the conditional pdf of
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X2 | pX1 “ x1q is

fX2|X1px2 | x1q “
fXpx1,x2q

fX1px1q

“
ν

fX1px1q

ż 1

0
uν´1ϕp

`

x; µ, u´1Σ
˘

du

“
ν

fX1px1q

ż 1

0
uν´1ϕp1

`

x1; µ1, u
´1Σ11

˘

ϕp2

`

x2; µ2.1, u
´1Σ2.1

˘

du.

Then, it is possible to notice that the slash distribution is not closed under condition-
ing. Furthermore, the pdf of X2 | pX1 “ x1q belongs to the elliptical family of distri-

butions with dgf gpp2q
x1 ptq “

ż 1

0
uν`p{2´1 expt´upt ` δ1px1qq{2u du, i.e., X2 | pX1 “ x1q „

Eℓpµ2.1,Σ2.1, ν; gpp2q
x1 q. To determine the mean of the random vector X2 | pX1 “ x1q, we

compute the conditional expected value of the ith element of X2 as follows

EpX2i | X1 “ x1q “

ż

Rp2
x2ifX2|X1px2 | x1qdx2

“
ν

fX1px1q

ż

Rp2
x2i

ż 1

0
uν´1ϕp1

`

x1; µ1, u´1Σ11
˘

ϕp2

`

x2; µ2.1, u´1Σ2.1
˘

du dx2

“
ν

fX1px1q

ż 1

0
uν´1ϕp1

`

x1; µ1, u´1Σ11
˘

ż

Rp2
x2iϕp2

`

x2; µ2.1, u´1Σ2.1
˘

dx2 du

“
µ

piq
2.1ν

fX1px1q

ż 1

0
uν´1ϕp1

`

x1; µ1, u´1Σ11
˘

du “ µ
piq
2.1, @i, ν ą 0,

where µpiq
2.1 represents the ith element of the vector µ2.1, and EpX2 | X1 “ x1q “ µ2.1. Now,

to compute the elements of the variance-covariance matrix of the conditional random
vector, we first determine EpX2iX2j | X1 “ x1q for all i, j “ 1, . . . , p2, as

EpX2iX2j | X1 “ x1q “

ż

Rp2
x2ix2jfX2|X1px2 | x1qdx2

“
ν

fX1px1q

ż

Rp2
x2ix2j

ż 1

0
uν´1ϕp1

`

x1; µ1, u´1Σ11
˘

ϕp2

`

x2; µ2.1, u´1Σ2.1
˘

du dx2

“
ν

fX1px1q

ż 1

0
uν´1ϕp1

`

x1; µ1, u´1Σ11
˘

ż

Rp2
x2ix2jϕp2

`

x2; µ2.1, u´1Σ2.1
˘

dx2 du

“
ν

fX1px1q

ż 1

0
uν´1ϕp1

`

x1; µ1, u´1Σ11
˘

´

u´1σ
pijq

2.1 ` µ
piq
2.1µ

pjq

2.1

¯

du

“
σ

pijq

2.1 ν

fX1px1q

ż 1

0
uν´2ϕp1

`

x1; µ1, u´1Σ11
˘

du ` µ
piq
2.1µ

pjq

2.1

“
ν

ν ´ 1

ˆ

SLp1px1; µ1, Σ11, ν ´ 1q

SLp1px1; µ1, Σ11, νq

˙

σ
pijq

2.1 ` µ
piq
2.1µ

pjq

2.1, ν ą 1,

where σpijq

2.1 is the pi, jqth element of the matrix Σ2.1. From these results, we have that

CovpX2i, X2j | X1 “ x1q “
ν

ν ´ 1

ˆ

SLp1px1; µ1,Σ11, ν ´ 1q

SLp1px1; µ1,Σ11, νq

˙

σ
pijq

2.1 ,
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ν ą 1. Therefore, the covariance matrix of the random vector X2 | pX1 “ x1q will be given
by

CovpX2 | X1 “ x1q “
ν

ν ´ 1

ˆ

SLp1px1; µ1,Σ11, ν ´ 1q

SLp1px1; µ1,Σ11, νq

˙

Σ2.1.

A.2 CPU time to compute moments from truncated distributions
A complementary study of Simulation study II (Subsection 2.4.2) was conducted

to examine the computational time required for our method in order to estimate the first
two moments and the variance-covariance matrix of a p-variate random vector considering
different distributions in the truncated elliptical family, with p “ 50 and 100. As in
Simulation study II, we consider 10%, 20%, and 40% of doubly truncated variables for
each case.

Table 23 shows the median of the CPU time (in seconds) needed for the
function mvtelliptical to compute the first two moments and the covariance matrix.
We considered a TMVN, a truncated contaminated normal with ν “ 1{2 and ρ “ 1{5, a
truncated Pearson VII with parameters m “ 55 and ν “ 3, a truncated slash with ν “ 2
degrees of freedom, and a truncated power exponential distribution with kurtosis β “ 1{2.
For each case, our method was applied setting n “ 104 and 105 with thinning “ 3. Notice
that the time needed by the algorithm for TMVN, TMVT, and truncated Pearson VII
distributions are similar and depend only on the number of truncated variables and samples
used in the approximation. Our method requires more time to compute moments from the
truncated contaminated normal distribution when compared to the latter results. This is
because the algorithm uses a numerical method to calculate the inverse of the dgf. Besides,
it is interesting to note that there is no time difference between computing the moments for
a truncated slash distribution with five or ten doubly truncated variables. This occurs since
the function used to approximate the integral on the dgf is more time-consuming when
ν ` p{2 ´ 1 is not an integer. Finally, the computation of the moments for the truncated
power exponential distribution required approximately the same time for random vectors
of equal length regardless of the number of doubly truncated variables. For this case, the
method samples values for the whole vector, leading to no time difference.

A.3 The relliptical R package
The relliptical package offers random numbers generation from members

of the truncated multivariate elliptical family of distribution such as the truncated versions
of the normal, Student-t, Pearson VII, slash, logistic, Kotz-type, among others. Particular
distributions can be provided by specifying the density-generating function. It also computes
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Table 23 – Median of the CPU time (in seconds) based on 100 simulations.

Distribution (ν) Sample size p “ 50 p “ 100

10% 20% 40% 10% 20% 40%

Normal 104 0.028 0.083 0.399 0.081 0.400 2.888
105 0.285 0.840 3.999 0.805 4.003 28.892

Contaminated 104 0.071 0.118 0.440 0.120 0.442 2.928
Normal (1/2, 1/5) 105 0.706 1.180 4.405 1.192 4.415 29.286

Pearson VII (55, 3) 104 0.031 0.083 0.403 0.084 0.403 2.891
105 0.309 0.838 4.030 0.839 4.036 28.944

Slash (2) 104 0.202 0.202 0.548 0.200 0.549 3.113
105 2.020 2.026 5.481 1.997 5.489 31.160

Power 104 5.101 5.095 5.096 41.870 41.858 41.864
Exponential (1/2) 105 51.038 51.013 50.999 418.675 418.604 418.651

the first two moments (covariance matrix as well) for some particular distributions. Next,
we will show the functions available.

A.3.1 Random number generator

Its main function for random number generation is called rtelliptical,
which is based on the methods described in Section 2.3, and whose signature is the
following.
rtelliptical(n=1e4, mu=rep(0,length(lower)), Sigma=diag(length(lower)),

lower, upper=rep(Inf,length(lower)), dist="Normal", nu=NULL, expr=NULL,

gFun=NULL, ginvFun=NULL, burn.in=0, thinning=1)

In this function, n ě 1 is the number of observations to be sampled, nu is
the additional parameter or vector of parameters depending on the distribution of X, mu
is the location parameter, Sigma is the positive-definite scale matrix, and lower and
upper are the lower and upper truncation points, respectively. The truncated normal,
Student-t, power exponential, Pearson VII, slash, and contaminated normal distributions
can be specified through the argument dist.

The following examples illustrate the function rtelliptical, for drawing
samples from truncated bivariate distributions with location parameter µ “ p0, 0q

J,
scale matrix elements σ11 “ σ22 “ 1, and σ12 “ σ21 “ 0.70, and truncation region
A “ tx : a ă x ă bu, with a “ p´2,´2q

J and b “ p3, 2q
J. The distributions considered

are the predefined ones in the package.

• Truncated normal
rtelliptical(n=1e4, mu=c(0,0), Sigma=matrix(c(1,0.7,0.7,1),2,2),

lower=c(-2,-2), upper=c(3,2), dist="Normal")
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• Truncated Student-t with ν “ 3 degrees of freedom
rtelliptical(n=1e4, mu=c(0,0), Sigma=matrix(c(1,0.7,0.7,1),2,2),

lower=c(-2,-2), upper=c(3,2), dist="t", nu=3)

• Truncated power exponential with β “ 2
rtelliptical(n=1e4, mu=c(0,0), Sigma=matrix(c(1,0.7,0.7,1),2,2),

lower=c(-2,-2), upper=c(3,2), dist="PE", nu=2)

• Truncated Pearson VII with parameters m “ 5{2 and ν “ 3
rtelliptical(n=1e4, mu=c(0,0), Sigma=matrix(c(1,0.7,0.7,1),2,2),

lower=c(-2,-2), upper=c(3,2), dist="PVII", nu=c(2.50,3))

• Truncated slash with ν “ 1.5 degrees of freedom
rtelliptical(n=1e4, mu=c(0,0), Sigma=matrix(c(1,0.7,0.7,1),2,2),

lower=c(-2,-2), upper=c(3,2), dist="Slash", nu=1.50)

• Truncated contaminated normal with ν “ 0.70 and ρ “ 0.20
rtelliptical(n=1e4, mu=c(0,0), Sigma=matrix(c(1,0.7,0.7,1),2,2),

lower=c(-2,-2), upper=c(3,2), dist="CN", nu=c(0.70,0.20))

Note that no additional arguments are passed for the TMVN distribution. On
the opposite way, for the truncated contaminated normal and Pearson VII distributions,
nu is a vector of length two, and for the remaining distributions, this parameter is a non-
negative scalar. An important remark is that there exist closed-form expressions to compute
κy “ g´1

pyq for the normal, Student-t, power exponential, and Pearson VII distributions;
however, the contaminated normal and slash distributions require numerical methods
for this purpose. This value is calculated as the root of the function gptq ´ y “ 0, t ě 0,
through the Newton-Raphson algorithm for the contaminated normal, and using Brent’s
method (Brent, 2013), for the slash distribution, a mixture of linear interpolation, inverse
quadratic interpolation, and the bisection method.

This function also allows generating random numbers from other truncated
elliptical distributions not specified in the dist argument, by supplying the dgf through
arguments either expr or gFun. The easiest way is to provide the dgf expression to
argument expr as a character. The notation used in expr needs to be understood by the
Ryacas0 package (Andersen et al., 2020), and the R environment. For instance, for the
dgf gptq “ e´t, the user must provide expr = "exp(1)^(-t)". For this case, when a
character expression is provided to expr, the algorithm tries to compute a closed-form
expression for the inverse function of gptq; however, this is not always possible (a warning
message is returned). On the other hand, if it is not possible to pass an expression to expr,
due to the complexity of the expression, the user may provide a custom R function to the
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gFun argument. By default, its inverse function is approximated numerically; however, the
user may also provide its inverse to the ginvFun argument to gain some computational
time. When gFun is provided, arguments dist and expr are ignored.

For example, to generate samples from the bivariate truncated logistic distribu-
tion with the same parameters as before, and which has dgf gptq “ e´t

{p1 ` e´t
q

2, t ě 0,
we can run the following code.
rtelliptical(n=1e4, mu=c(0,0), Sigma=matrix(c(1,0.7,0.7,1),2,2),

lower=c(-2,-2), upper=c(3,2), expr="exp(1)^(-t)/(1+exp(1)^(-t))^2")

Another distribution that belongs to the elliptical family is the Kotz-type distri-
bution with parameters r ą 0, s ą 0, and 2N ` p ą 2, whose dgf is gptq “ tN´1e´rts

, t ě 0
(Fang, 2018). For this distribution, gptq is not strictly decreasing for all parameter values,
however, for p2 ´ pq{2 ă N ď 1, it holds. Hence, our proposal works for r ą 0, s ą 0, and
p2 ´pq{2 ă N ď 1. For this type of more complex dgf, it is advisable to pass it through the
gFun argument as an R function (with other parameters as fixed values). In the following
example, we draw samples from a bivariate Kotz-type distribution with settings as before,
and extra parameters r “ 2, s “ 1{4, and N “ 1{2.
rtelliptical(n=1e4, mu=c(0,0), Sigma=matrix(c(1,0.7,0.7,1),2,2),

lower=c(-2,-2), upper=c(3,2), gFun=function(t){t^(-1/2)*exp(-2*t^(1/4))})

Figure 36 shows the scatterplot and marginal histograms for the n “ 104

observations sampled from each of the truncated bivariate distributions referred to above.

Figure 36 – Scatterplot and marginal histograms for the n “ 104 observations sampled for
some bivariate truncated elliptical distributions.

−2

−1

0

1

2

−2 −1 0 1 2 3
X1

X
2

Normal

−2

−1

0

1

2

−2 −1 0 1 2 3
X1

X
2

t(3)

−2

−1

0

1

2

−2 −1 0 1 2 3
X1

X
2

Slash(1.50)

−2

−1

0

1

2

−2 −1 0 1 2 3
X1

X
2

Logistic

−2

−1

0

1

2

−2 −1 0 1 2 3
X1

X
2

C.Normal(0.70,1/5)

−2

−1

0

1

2

−2 −1 0 1 2 3
X1

X
2

Pearson VII(5/2,3)

−2

−1

0

1

2

−2 −1 0 1 2 3
X1

X
2

Power exp.(2)

−2

−1

0

1

2

−2 −1 0 1 2 3
X1

X
2

Kotz(2,1/4,1/2)

As mentioned by Robert & Casella (2010) and Ho et al. (2012), the slice
sampling algorithm with Gibbs steps generates random samples conditioned on previous
values, resulting in a sequence of correlated samples. Thus, it is essential to analyze
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the dependence effect of the proposed algorithm. Figure 37 displays the autocorrelation
plots for each one of the distributions, where we notice that the autocorrelation drops
quickly and becomes negligibly small when lags become large, evidencing well mixing and
quickly converging for these examples. If necessary, initial observations can be discarded
by means of the burn.in argument. Finally, autocorrelation can be decimated by setting
the thinning argument. Thinning consists of picking separated points from the sample
at each kth step. The thinning factor reduces the autocorrelation of the random points
in the Gibbs sampling process. As natural, this value must be an integer greater than or
equal to 1.

Figure 37 – Sample autocorrelation plots of X1 and X2 sampled from the bivariate trun-
cated elliptical distributions in Figure 36.
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A.3.2 Mean and variance-covariance matrix computation

Algorithm 2 for the distributions detailed in Subsection 2.4.1 is available
through the function mvtelliptical, whose signature, together with default values, is
the following.
mvtelliptical(lower, upper=rep(Inf,length(lower)), mu=rep(0,length(lower)),

Sigma=diag(length(lower)), dist="Normal", nu=NULL, n=1e4, burn.in=0,

thinning=3)

The arguments lower and upper are the lower and upper truncation points
of length p, respectively, mu is the location parameter of length p, Sigma is the p ˆ p

positive-definite scale matrix, nu is the additional parameter or vector of parameters
depending on the dgf g. The argument dist indicates the distribution to be used. The
parameters n, burn.in, and thinning are related to the Monte Carlo approximation,
where n is the number of samples to be generated, burn.in is the number of samples
to be discarded as burn-in phase, and thinning is a factor for reducing autocorrelation
between observations.
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B.1 Elements of the observed information matrix
In Subsection 3.3.4, we defined the observed information matrix for the spatial

censored linear (SCL) model based on Louis’ method, which is given by

Iopθq “ E rBcpyc; θq | yos ´ E
“

Scpyc; θqSJ
c pyc; θq | yo

‰

` Sopyo; θqSJ
o pyo; θq, (B.1)

where

Bcpyc; θq “ ´
B2ℓcpθ; ycq

BθBθJ
, Scpyc; θq “

Bℓcpθ; ycq

Bθ
, and Sopyo; θq “ E

“

Scpyc; θq
ˇ

ˇyo

‰

.

The elements of matrix Hpθq “ ErBcpyc; θq|yos are the following:

HββJ “ ´XJΣ´1X,

Hβσ2 “ XJΣ´1RΣ´1
pXβ ´ pyq,

Hβϕ “ σ2XJΣ´1 9RϕΣ´1
pXβ ´ pyq,

Hβτ2 “ XJΣ´1Σ´1
pXβ ´ pyq,

Hpσ2q2 “ ´
1
2

”

tr
`

´Σ´1RΣ´1R
˘

` tr
´

yyyJ :Σ
´1
pσ2q2

¯

´ βJXJ :Σ
´1
pσ2q2 p2py ´ Xβq

ı

,

where :Σ
´1
pσ2q2 “ 2Σ´1RΣ´1RΣ´1,

Hϕσ2 “ ´
1
2

”

tr
´

Σ´1 9Rϕ

`

I ´ σ2Σ´1R
˘

¯

` tr
´

yyyJ :Σ
´1
ϕσ2

¯

´ βJXJ :Σ
´1
ϕσ2 p2py ´ Xβq

ı

,

where :Σ
´1
ϕσ2 “ Σ´1

´

σ2 9RϕΣ´1R ´ 9Rϕ ` σ2RΣ´1 9Rϕ

¯

Σ´1,

Hτ2σ2 “ ´
1
2

”

tr
`

´Σ´1Σ´1R
˘

` tr
´

yyyJ :Σ
´1
τ2σ2

¯

´ βJXJ :Σ
´1
τ2σ2 p2py ´ Xβq

ı

,

where :Σ
´1
τ2σ2 “ Σ´1 `Σ´1R ` RΣ´1˘Σ´1,

Hϕ2 “ ´
1
2

”

tr
´

σ2Σ´1
´

:Rϕ2 ´ σ2 9RϕΣ´1 9Rϕ

¯¯

` tr
´

yyyJ :Σ
´1
ϕ2

¯

´ βJXJ :Σ
´1
ϕ2 p2py ´ Xβq

ı

,

where :Σ
´1
ϕ2 “ σ2Σ´1

´

2σ2 9RϕΣ´1 9Rϕ ´ :Rϕ2

¯

Σ´1,

Hϕτ2 “ ´
1
2

”

tr
´

´σ2Σ´1 9RϕΣ´1
¯

` tr
´

yyyJ :Σ
´1
ϕτ2

¯

´ βJXJ :Σ
´1
ϕτ2 p2py ´ Xβq

ı

,

where :Σ
´1
ϕτ2 “ σ2Σ´1

´

9RϕΣ´1
` Σ´1 9Rϕ

¯

Σ´1,

Hpτ2q2 “ ´
1
2

”

tr
`

´Σ´1Σ´1˘
` tr

´

yyyJ :Σ
´1
pτ2q2

¯

´ βJXJ :Σ
´1
pτ2q2 p2py ´ Xβq

ı

,

where :Σ
´1
pτ2q2 “ 2Σ´1Σ´1Σ´1,
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with Hϕσ2 “ E
„

B2ℓcpθ; ycq

BϕBσ2

ˇ

ˇ

ˇ
yo

ȷ

, for any parameter in θ “ pβJ, σ2, ϕ, τ 2
q

J, 9Rϕ “
BR
Bϕ

, and

:Rϕ2 “
B2R
Bϕ2 .

Moreover, the elements of the vector Spθq “ Sopyo; θq “ ErScpyc; θq|yos are
given by

Sβ “ XJΣ´1
ppy ´ Xβq,

Sσ2 “ ´
1
2

”

tr
`

Σ´1R
˘

´ tr
´

yyyJΣ´1RΣ´1
¯

` βJXJΣ´1RΣ´1
p2py ´ Xβq

ı

,

Sϕ “ ´
σ2

2

”

tr
´

Σ´1 9Rϕ

¯

´ tr
´

yyyJΣ´1 9RϕΣ´1
¯

` βJXJΣ´1 9RϕΣ´1
p2py ´ Xβq

ı

,

Sτ2 “ ´
1
2

”

tr
`

Σ´1˘
´ tr

´

yyyJΣ´1Σ´1
¯

` βJXJΣ´1Σ´1
p2py ´ Xβq

ı

,

where Sϕ “ E
„

Bℓcpθ; ycq

Bϕ

ˇ

ˇ

ˇ
yo

ȷ

and 9Rϕ “
BR
Bϕ

. For more details about the functions

considered to compute the correlation matrix R “ Rpϕq and their derivatives, please see
Valeriano et al. (2021b).

B.2 Extra simulation results
Simulation study I. This simulation aimed to evaluate the impact in the

MCEM estimates of the number of random observations used in the Monte Carlo (MC)
approximation. Thus, Figure 38 shows the mean bias (black point) of the MCEM estimates
˘1 standard deviation for each parameter by censoring proportion and number of random
vectors (L) employed. We observe that the mean bias (for β0, β1, and β2) is close to
zero. However, the standard deviations of β0 seem to be the same independent of L and
the censoring rate, while for β1 and β2, the deviations increase with the censoring level.
Moreover, the mean bias of σ2, ϕ, and τ 2 is lower than zero, in most cases, except for τ 2

estimated with L “ 20.

Simulation study II. Figures 39 and 40 display the boxplot for each parameter,
sample size, and level of censoring estimated under the MCEM and SAEM algorithms,
respectively. Here, the red line denotes the true parameter value. It can be seen that in
most cases, the median is close to the real value, and there are few outliers. It is worth
noting that the interquartile range increases with the censoring proportion and decreases
with the sample size, suggesting the consistency of the estimates for all parameters, except
for β0, which seems to remain constant.
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Figure 38 – Simulation I. Mean bias and ˘1 standard deviation of MCEM estimates based
on 300 MC samples.
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Figure 39 – Simulation II. Boxplot of the MCEM estimates considering different sample
sizes and censoring proportions. Red lines represent the true parameter values.
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Figure 40 – Simulation II. Boxplot of the SAEM estimates considering different sample
sizes and censoring proportions. Red lines represent the true parameter values.
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C.1 Model estimation details
Consider the censored autoregressive regression model of order p with Student-t

innovations defined in Section 4.2, with a complete log-likelihood function given by

ℓcpθ; ycq “
1
2

«

gpνq ´ pn ´ pq ln σ2
´

1
σ2

n
ÿ

t“p`1
utpyt ´ ωtq

2

ff

` cte, (C.1)

where cte represents a constant independent of the vector of parameters θ “ pβJ,ϕJ, σ2, νq
J,

ωt “ xJ
t β ` pypt,pq ´ Xpt,pqβq

Jϕ, gpνq “ pn ´ pqg1pνq ` νg2 with g1pνq “ ν ln pν{2q ´

2 ln Γ pν{2q and g2 “

n
ÿ

t“p`1
pln ut ´ utq.

Hence, to obtain the ML estimates of θ, we now apply the EM algorithm
(Dempster et al., 1977), which at the E-step calculates the conditional expectation of the
complete data log-likelihood function, given by

Qkpθq “ E
”

ℓcpθ; ycq | V,C, pθ
pkq
ı

“
1
2

„

ygpνq
pkq

´ pn ´ pq ln σ2
´

1
σ2

ˆ

yuy2
˚

pkq

´ 2ϕJ
zuyy˚

pkq
` ϕJ

yuy2
˚

pkq

ϕ

˙ȷ

,

where
ygpνq

pkq

“ pn ´ pqg1pνq ` ν
n
ÿ

t“p`1

ˆ

{lnputq
pkq

´ pu
pkq

t

˙

,

yuy2
˚

pkq

“

n
ÿ

t“p`1

ˆ

yuy2
t

pkq

´ 2yuy1
t

pkq

µptq ` pu
pkq

t µ2
ptq

˙

,

zuyy˚

pkq
“

n
ÿ

t“p`1

ˆ

zuyyt
pkq

´ yuy1
t

pkq

µpt,pq ´ µptq
yuy1

t

pkq

` pu
pkq

t µptqµpt,pq

˙

,

yuy2
˚

pkq

“

n
ÿ

t“p`1

ˆ

yuy2
t

pkq

´ yuy1
t

pkq

µJ
pt,pq ´ µpt,pq

yuy1
t

pkqJ

` pu
pkq

t µpt,pqµ
J
pt,pq

˙

,

with µptq “ xJ
t β and µpt,pq “ Xpt,pqβ. The remaining expressions are the following condi-

tional expectations: {lnputq
pkq

“ ErlnpUtq | V,C, pθ
pkq

s, pupkq

t “ ErUt | V,C, pθ
pkq

s, zuyyt
pkq

“

ErUtYtYpt,pq | V,C, pθ
pkq

s, xuyi
t

pkq

“ ErUtY
i

t | V,C, pθ
pkq

s, yuyi
t

pkq

“ ErUtYi
pt,pq | V,C, pθ

pkq

s, for
i P t1, 2u and t P tp ` 1, . . . , nu, such that Y1

pt,pq “ Ypt,pq and Y2
pt,pq “ Ypt,pqYJ

pt,pq.

Note that the E-step reduces to the computation of {lnputq
pkq

, pupkq

t , zuyyt
pkq,

yuy1
t

pkq

, yuy2
t

pkq

, yuy1
t

pkq

, and yuy2
t

pkq

, for t P tp ` 1, . . . , nu. However, it is worth mentioning
that calculating those expectations becomes a challenge when we have successive censored
observations. Therefore, we consider a variation of the EM algorithm called the SAEM
algorithm (Delyon et al., 1999), which at the kth iteration proceeds as follows:
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E-step:

‚ Simulation: ypk,ℓq
m from fpym | V,yo, pu

pk,ℓ´1q, pθ
pkq

q and u
pk,ℓq

t from fput | ypk,ℓq, pθ
pkq

q, for
t P tp` 1, . . . , nu and ℓ P t1, . . . , Lu, which are the truncated multivariate normal (after
conditioning on the observed data V) and gamma distribution, respectively, as will be
demonstrated in the next section. Then, construct the vectors ypk,ℓq

“ pyJ
o ,ypk,ℓqJ

m q
J

and upk,ℓq
“ pu

pk,ℓq

p`1 , . . . , u
pk,ℓq
n q

J.

‚ Stochastic Approximation: given the sequence pypk,ℓq,upk,ℓq
q, the conditional expecta-

tions in Qkpθq are replaced by the following stochastic approximations:

pu
pkq

t “ pu
pk´1q

t ` δk

˜

1
L

L
ÿ

l“1
u

pk,ℓq

t ´ pu
pk´1q

t

¸

,

{lnputq
pkq

“ {lnputq
pk´1q

` δk

˜

1
L

L
ÿ

l“1
ln upk,ℓq

t ´ {lnputq
pk´1q

¸

,

zuyyt
pkq

“ zuyyt
pk´1q

` δk

˜

1
L

L
ÿ

l“1
u

pk,lq
t y

pk,ℓq

t ypk,ℓq

pt,pq
´ zuyyt

pk´1q

¸

,

xuyi
t

pkq

“ xuyi
t

pk´1q

` δk

˜

1
L

L
ÿ

l“1
u

pk,ℓq

t y
ipk,ℓq

t ´ xuyi
t

pk´1q

¸

,

yuyi
t

pkq

“ yuyi
t

pk´1q

` δk

˜

1
L

L
ÿ

l“1
u

pk,ℓq

t yipk,ℓq

pt,pq
´ yuyi

t

pk´1q

¸

,

for i P t1, 2u, such that y1pk,ℓq

pt,pq
“ ypk,ℓq

pt,pq
“ py

pk,ℓq

t´1 , . . . , y
pk,lq
t´p q

J and y2pk,ℓq

pt,pq
“ ypk,ℓq

pt,pq
ypk,ℓqJ

pt,pq
.

M-step:

‚ Maximization: update pθ
pkq

by maximizing pQkpθq over θ to obtain a new estimate pθ
pk`1q

,
which leads to the expressions:

pϕ
pk`1q

“

ˆ

yuy2
˚

pkq
˙´1

zuyy˚

pkq
,

pσ2pk`1q
“

1
n ´ p

ˆ

yuy2
˚

pkq

´ 2pϕ
pk`1qJ

zuyy˚

pkq
` pϕ

pk`1qJ
yuy2

˚

pkq
pϕ

pk`1q
˙

,

pβ
pk`1q

“

˜

n
ÿ

t“p`1
pu

pkq

t pαpk`1q

t pαpk`1qJ

t

¸´1 n
ÿ

t“p`1

´

xuyt
pkq

´ pϕ
pk`1qJ

yuyt
pkq
¯

pαpk`1q

t ,

pνpk`1q
“ argmax

ν

ygpνq
pkq

,

with pαpk`1q

t “ xt ´ XJ
pt,pq

pϕ
pk`1q

, for t P tp ` 1, . . . , nu.

C.2 Full conditional distributions
Here we derive the full conditional distributions needed to perform the E-step

of the SAEM algorithm, i.e., fpu | y,θq and fpym | u,yo,θq, where u “ pup`1, . . . , unq
J
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are the mixture weights, and yo and ym are the observed and the censored/missing part
of y, respectively. We first compute the conditional probability density function (pdf) of
the mixture weights u, which is given by

fpu | y,θq “
fpu,yo,ym | θq

fpyo,ym | θq
9fpu,yo,ym | θq

9

n
ź

t“p`1
u

pν´1q{2
t exp

#

´
ut

2

˜

ν `
pyt ´ xJ

t β ´ yJ
pt,pqϕ ` βJXJ

pt,pqϕq2

σ2

¸+

,

which implies that tutu are independent from each other with fput | y,θq9uat´1
t expt´btutu,

for at “ pν`1q{2 and bt “ pν`ϱ2
t {σ2

q{2, where ϱt “ yt ´xJ
t β ´pypt,pq ´Xpt,pqβq

Jϕ. Notice
that fput | y,θq corresponds to the pdf of a gamma distribution with shape parameter
pν ` 1q{2 and rate parameter pν ` ϱ2

t {σ2
q{2, i.e.,

ut
ind
„ Gamma

ˆ

ν ` 1
2 ,

ν ` ϱ2
t {σ2

2

˙

, t P tp ` 1, . . . , nu.

We now focus on computing the conditional distribution of the censored part
ym. We start by expressing the model defined in Section 4.2 by (4.1)–(4.2) as a function
of the first p observations ypp`1,pq “ pyp, yp´1, . . . , y1q

J. To obtain this, we use the VAR(1)
model representation, as Zhou et al. (2020) suggested, as follows

wt “ Φwt´1 ` αt,

where αt “ pηt, 0, . . . , 0q
J is a vector of dimension p, Φ “ rϕ AJ

s
J is a pˆp matrix in which

ϕ is the vector of autoregressive coefficients and A is a pp´ 1q ˆ p matrix with the identity
matrix in its first p ´ 1 columns and 0s in the last one, and wt “ pỹt, ỹt´1, . . . , ỹt´p`1q

J is
a vector of dimension p with ỹt “ yt ´ xJ

t β, for t P tp, p ` 1, . . . , nu. Through a recursive
process based on VAR(1) form, we have

t “ p ` 1 ñ wp`1 “ Φwp ` αp`1.

t “ p ` 2 ñ wp`2 “ Φwp`1 ` αp`2 “ ΦpΦwp ` αp`1q ` αp`2

“ Φ2wp ` Φαp`1 ` αp`2.

t “ p ` 3 ñ wp`3 “ Φwp`2 ` αp`3 “ ΦpΦ2wp ` Φαp`1 ` αp`2q ` αp`3

“ Φ3wp ` Φ2αp`1 ` Φαp`2 ` αp`3.
...

t “ p ` k ñ wp`k “ Φwp`k´1 ` αp`k “ Φkwp `

k´1
ÿ

j“0
Φjαp`k´j.

Note that our autoregressive model can be recovered through the first element
of the preceding vectors as follows

yp`k “ xJ
p`kβ `

`

Φk
˘J

1.
pypp`1,pq ´ Xpp`1,pqβq `

k´1
ÿ

j“0

`

Φj
˘

11 ηp`k´j, (C.2)
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where Φk represents the matrix Φ multiplied by itself k times,
`

Φk
˘

1.
is a p ˆ 1 vector

whose elements correspond to the first row of Φk, and
`

Φk
˘

11 is the element (1,1) of Φk.

From (C.2), it is possible to deduce that the conditional distribution of yp`k

given the first p observations ypp`1,pq and the mixture weights u is normal, for all k P

t1, . . . , n ´ pu. Hence, our interest is to compute the parameters that characterize the
normal distribution, i.e., the mean and the variance-covariance matrix. The conditional
expectation is given by

µ̃pkq “ ErYp`k | u,ypp`1,pq,θs “ xJ
p`kβ `

`

Φk
˘J

1.
pypp`1,pq ´ Xpp`1,pqβq. (C.3)

On the other hand, the conditional variance-covariance can be computed by

σ̃pklq “ CovpYp`k, Yp`l | u,ypp`1,pq,θq “

r´1
ÿ

j“0

σ2

up`r´j

`

Φj
˘

11

´

Φ|k´l|`j
¯

11

“

r
ÿ

j“1

σ2

up`j

`

Φk´j
˘

11

`

Φl´j
˘

11, for r “ minpk, lq. (C.4)

Assuming that the first p observations of the response vector y are completely
observed, i.e., they are not censored or missing. Let y be partitioned into two vectors, y1:p “

py1, . . . , ypq
J

P Rp containing the first p observed values and y´1:p “ pyp`1, . . . , ynq
J

P Rn´p

containing the remaining observations, such that y “ pyJ
1:p,yJ

´1:pq
J. Let yo P Rno and

ym P Rnm be the observed and the censored/missing part of y´1:p, respectively. Then,
using the fact that yp`k | u,ypp`1,pq,θ is normally distributed for all k “ 1, . . . , n ´ p,
we have that y´1:p | u,y1:p,θ

d
“ yo,ym | u,y1:p,θ

d
“ yo,ym | u,ypp`1,pq,θ „ Nn´ppµ̃, Σ̃q,

where the ith element of µ̃ is µ̃piq and the element pi, jq of Σ̃ is equal to σ̃pijq, which can
be computed from (C.3) and (C.4), respectively, for all i, j “ 1, . . . , n ´ p. The expression
d
“ means “has the same distribution as”.

Finally, to compute the conditional distribution of ym | u,yo,ypp`1,pq,θ, we
rearrange the elements of y´1:p, µ̃, and Σ̃ as follows

y´1:p “

˜

yo

ym

¸

, µ̃ “

˜

µ̃o

µ̃m

¸

, and Σ̃ “

˜

Σ̃oo Σ̃om

Σ̃mo Σ̃mm

¸

.

Then, using the results for the conditional distribution of a normal distribution, we obtain

ym | u,yo,ypp`1,pq,θ „ Nnmpm,Sq,

with m “ µ̃m ` Σ̃moΣ̃
´1
oo pyo ´ µ̃oq and S “ Σ̃mm ´ Σ̃moΣ̃

´1
oo Σ̃om.

C.3 Gradient and hessian matrix of the complete-data log-likelihood
function

Here, we derive the calculations required to obtain the observed Fisher infor-
mation matrix by the stochastic approximation procedure described in Section 1.2. Let
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ℓcpθ; ycq be the complete log-likelihood function defined by (C.1). Then, the elements of
the gradient vector are

Bℓcpθ; ycq

Bν
“
n ´ p

2

´

ln
´ν

2

¯

` 1 ´ ψ
´ν

2

¯¯

`
1
2

n
ÿ

t“p`1
pln ut ´ utq ,

Bℓcpθ; ycq

Bσ2 “ ´
n ´ p

2σ2 `
1

2σ4

n
ÿ

t“p`1
ut pyt ´ ωtq

2 ,

Bℓcpθ; ycq

Bϕ
“

1
σ2

n
ÿ

t“p`1
ut

“

zpt,pqpyt ´ xJ
t βq ´ zpt,pqzJ

pt,pqϕ
‰

,

Bℓcpθ; ycq

Bβ
“

1
σ2

n
ÿ

t“p`1
ut

“

αtpyt ´ yJ
pt,pqϕq ´ αtα

J
t β

‰

,

with zpt,pq “ ypt,pq ´ Xpt,pqβ, αt “ xt ´ XJ
pt,pqϕ , and ψpxq “

d
dx ln Γpxq “

Γ1pxq

Γpxq
.

Besides, the elements of the Hessian matrix are given by:

B2ℓcpθ; ycq

Bν2 “
n ´ p

2

ˆ

1
ν

´
1
2ψ1

´ν

2

¯

˙

,

B2ℓcpθ; ycq

Bσ2Bν
“ 0, B2ℓcpθ; ycq

BϕBν
“ 0,

B2ℓcpθ; ycq

BβBν
“ 0,

B2ℓcpθ; ycq

Bpσ2q2 “
n ´ p

2σ4 ´
1
σ6

n
ÿ

t“p`1
ut pyt ´ ωtq

2 ,

B2ℓcpθ; ycq

BϕBσ2 “ ´
1
σ4

n
ÿ

t“p`1
ut

“

zpt,pq

`

yt ´ xJ
t β

˘

´ zpt,pqzJ
pt,pqϕ

‰

,

B2ℓcpθ; ycq

BβBσ2 “ ´
1
σ4

n
ÿ

t“p`1
ut

“

αt

`

yt ´ yJ
pt,pqϕ

˘

´ αtα
J
t β

‰

,

B2ℓcpθ; ycq

BϕBϕJ
“ ´

1
σ2

n
ÿ

t“p`1
ut zpt,pqzJ

pt,pq,

B2ℓcpθ; ycq

BβBϕJ
“

1
σ2

n
ÿ

t“p`1
ut

“`

zJ
pt,pqϕ ` xJ

t β ´ yt

˘

XJ
pt,pq ´ αtzJ

pt,pq

‰

,

B2ℓcpθ; ycq

BβBβJ
“ ´

1
σ2

n
ÿ

t“p`1
ut αtα

J
t ,

with ψ1pxq “
d2

dx2 ln Γpxq.

C.4 Additional numerical results
This section displays additional results for the simulation study I, the Ammonia-

nitrogen application in Section 4.4, and a new application related to total phosphorus
concentration analysis.
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C.4.1 Simulation study I: Asymptotic properties for the degrees of freedom

This simulation study aimed to provide empirical evidence about the consistency
of the ML estimates for the degrees of freedom ν under different scenarios. Boxplots for
the degrees of freedom ν estimates under different settings of sample sizes and detection
limits are shown in Figure 41. The red line denotes the true parameter value. Here, it is
possible to observe that the median of the estimates is close to the true value (ν “ 4),
independent of the sample size and detection limit. Furthermore, interquartile ranges
decrease as sample sizes increase, suggesting the consistency of the estimates.

Figure 41 – Simulation I. Boxplot of the estimates of ν in the CARtp2q model by sample
size and detection limits.
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C.4.2 Application: Ammonia-nitrogen concentration

For the sake of comparison, we fit a censored normal regression model given by

yt “ β0 ` βDODOt ` βpHpHt ` βTTt ` ξt,

where yt denotes the square root of the ammonia-nitrogen levels (in µg/L) with 42.34%
of the observations censored/missing, and ξt represents the independent and normally
distributed error term. Figure 42 displays the quantile-quantile plot and the partial
autocorrelation coefficients of the standardized residuals computed for the fitted model
with the censored and missing observations imputed by the conditional mean. Notice that
the assumption of independent errors is invalid; hence, a model with autocorrelated errors
should be considered.

C.4.3 Application: Total phosphorus concentration

In this analysis, we are interested in tracking the phosphorus concentration
levels over time as an indicator of the river water quality since, for instance, excessive
phosphorus in surface water may result in eutrophication. This dataset is available in the
R package ARCensReg, and it was previously described in Subsection 1.3.3.
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Figure 42 – Quantile residuals for a model with normally distributed independent errors
fitted to the ammonia-nitrogen concentration dataset.
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As mentioned in Wang & Chan (2018), P levels are generally correlated with the
water discharge (Q), measured in cubic feet per second; then, our objective is to explore
the relationship between P and Q when the response contains censored and missing
observations. The dataset was train-test split to evaluate the prediction accuracy. The
training dataset consists of 169 observations, where 20.71% are left-censored or missing,
while the testing dataset contains 12 fully observed values. Following Wang & Chan
(2018), the logarithmic transformation of P and Q must be considered to make the P -Q
relationship linear. Then, we fitted the following model:

lnpPtq “

4
ÿ

j“1
rβ0jSjt ` β1jSjt lnpQtqs ` ξt, t “ p ` 1, . . . , n, (C.5)

where ξt follows an autoregressive model and Sj is a dummy seasonal variable for quarters
j “ 1, 2, 3, and 4. The first quarter corresponds from January to March, the second from
April to June, and so on. In this model, β0j and β1j are respectively the intercept and
slope for quarter j, for j “ 1, 2, 3, and 4.

This dataset was previously analyzed by Schumacher et al. (2017). The authors
concluded that a censored autoregressive model of order 1 was the best to fit this data
based on information criteria and mean squared prediction error (MSPE). The authors
also pointed out that the data has some influential observations, so it seems reasonable
to consider a model with innovations following a heavy-tailed distribution. However, it is
worth noting that considering Student-t innovations for the model defined in (C.5) implies
that the conditional distribution of the phosphorus concentration itself is log-Student t (or
log-t for short). The log-t distribution has applications in, for instance, finance (Barroso
et al., 2020) and hydrology (Viglione, 2010), and it is extremely heavy-tailed with an
infinite mean. Additionally, following Marchenko & Genton (2010), the log-t model may
be preferable to the normal model, especially for estimating extreme events, due to its
robustness.

For comparison purposes, the model in (C.5) was fitted considering an AR(1)
model for the regression error with innovations ηt being independent and identically
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distributed as Np0, σ2
q and tp0, σ2, νq (denoted by CAR(1) and CARt(1), respectively).

Parameter estimates and their corresponding standard errors (SEs) are displayed in
Table 24. The MSPE and the mean absolute prediction error (MAPE) were also computed
considering one-step-ahead predictions for the testing dataset. These criteria indicate that
the heavy-tailed Student-t (pν “ 5.394) model provides better predictions than the normal
model for the phosphorus concentration data. We can also note that the estimates for
β0j, j “ 1, 2, 3, 4 under the CARt(1) model are negative and greater than the estimates
obtained from the CAR(1) model. On the other hand, estimates for slopes β1j are all
positive real numbers and, except for the second quarter, they are significantly different
from zero, evidencing the correlation between the water discharge and the phosphorus
concentration. Regarding the autoregressive coefficient ϕ1, both models estimated similar
values.
Table 24 – Phosphorus concentration. Parameter estimates and their standard errors (SE)

for the CARt(1) and CAR(1) models.

Parameters CARt(1) CAR(1)
Estimate SE 95% CI Estimate SE 95% CI

β01 -4.345 0.623 (-5.565 , -3.124) -4.691 0.544 (-5.758 , -3.624)
β02 -2.748 0.767 (-4.252 , -1.244) -3.029 0.772 (-4.542 , -1.516)
β03 -4.142 0.422 (-4.970 , -3.315) -4.177 0.457 (-5.072 , -3.283)
β04 -4.657 0.543 (-5.722 , -3.593) -5.020 0.573 (-6.143 , -3.896)
β11 0.296 0.109 (0.083 , 0.509) 0.376 0.091 (0.197 , 0.555)
β12 0.142 0.108 (-0.069 , 0.353) 0.186 0.108 (-0.026 , 0.398)
β13 0.363 0.070 (0.226 , 0.500) 0.365 0.077 (0.214 , 0.515)
β14 0.352 0.097 (0.162 , 0.543) 0.413 0.103 (0.212 , 0.614)
ϕ1 -0.086 0.088 -0.075 0.090
σ2 0.181 0.040 0.268 0.033
ν 5.394 2.661 - -
MSPE 0.102 0.126
MAPE 0.241 0.254

Figure 43 presents from left to right: a Q-Q plot, a residual vs. time plot, a
histogram, and the sample autocorrelation plot for residual analysis for both models. The
Q-Q plot for the CAR(1) model (top) presents some points outside the confidence bands
on the upper tail, and we also see a few larger residual values from the scatterplot and
histogram. For the CARt(1) model (bottom), we see in the Q-Q plot that all points form a
roughly straight line and lie within the confidence bands; further, the histogram seems to
correspond to a normally distributed variable, and the dispersion plot seems to be related
to independent residuals. Therefore, the CARt(1) model fits the phosphorus concentration
data better than the CAR(1) model.

Figure 44 shows the observed values (solid black line) and the imputed values
for the censored and missing observations from October 1998 to October 2012 (training
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Figure 43 – Phosphorus concentration. Plots of residuals for the CAR(1) and CARt(1)
models.
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dataset). The vertical dashed black lines denote the period with missing values. The
predicted values for the testing data are displayed in the yellow box, where the light blue
line represents the values predicted through the CAR(1) model and the pink line predicted
from the CARt(1) model. We see slight differences between the predicted values obtained
under both fitted models. Besides, the general behavior of the imputed values for the
missing period seems to capture the seasonal behavior of the time series well and is similar
for both models.

Figure 44 – Phosphorus concentration. Observed (black solid line) and predicted values
considering Student-t (pink line) and normal (light blue line) innovations.
Black dashed lines represent the period with missing observations.
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In addition, for assessing the convergence of SAEM parameter estimates, con-
vergence plots for our proposal are displayed in Figure 45.

Figure 45 – Phosphorus concentration. Convergence of the SAEM parameter estimates
for the CARt(1) model.
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D.1 Proof of Propositions
Proof of Proposition 6. Consider the partition Y “ pYJ

1 ,YJ

2 q
J and the

corresponding partitions of µ, Σ and φ. We based our proof on the factorization of
fYpyq “ fY1,Y2py1,y2q as fY1,Y2py1,y2q “ fY1py1qfY2|Y1“y1py2q. First, for the symmetric
part, we have that

tppy; µ,Σ, νq “ tp1py1; µ1,Σ11, νqtp2py2; µ2.1, Σ̃22.1, ν ` p1q, (D.1)

with µ2.1 “ µ2 ` Σ21Σ´1
11 py1 ´ µ1q, Σ22.1 “ Σ22 ´ Σ21Σ´1

11 Σ12, Σ̃22.1 “ Σ22.1{ν2
py1q, and

ν2
py1q “ pν ` p1q{pν ` δpy1qq.

Let now c12 “ p1 ` φJ
2 Σ22.1φ2q

´1{2, φ̃1 “ φ1 ` Σ´1
11 Σ12φ2, τ2.1 “ νpy1qpτ `

φ̃J
1 py1 ´ µ1qq, and ν2.1 “ ν ` p1. By noting after some straightforward algebra that

λJΣ´1{2
py ´ µq “ φJ

py ´ µq “ φ̃J

1 py1 ´ µ1q ` φJ

2 py2 ´ µ2.1q and λJλ “ φJΣφ “

φ̃J

1 Σ11φ̃1 ` φJ

2 Σ22.1φ2, we obtain

T
´

pτ1 ` λ̃
J

1 Σ´1{2
11 py1 ´ µ1qqνpy1q; ν ` p1

¯

“ T

ˆ

τ2.1

p1 ` λJ
2.1λ2.1q1{2

; ν2.1

˙

, (D.2)

and

T

ˆ

τ

p1 ` λJλq1{2
; ν
˙

“ T

˜

τ1

p1 ` λ̃
J

1 λ̃1q1{2
; ν
¸

, (D.3)

where λ̃1 “ c12Σ1{2
11 φ̃1, τ1 “ c12τ and λ2.1 “ Σ1{2

22.1φ2. Additionally, it is easy to see that

ν2
pyq “

ν ` p

ν ` δpyq
“

ν ` p1

ν ` δpy1q

ˆ

ν2.1 ` p2

ν2.1 ` δpy2; µ2.1, Σ̃22.1q

˙

“ ν2
py1qν2

Y2.1py2q.

From this last equation, it holds that

T
`

pA ` τqνpyq; ν ` p
˘

“ T
`

pτ2.1 ` λJ
2.1Σ̃

´1{2
22.1 py2 ´ µ2.1qqνY2.1py2q; ν2.1 ` p2

˘

, (D.4)

with A “ λJΣ´1{2
pY´µq, Hence, using (D.1), (D.2) and (D.3), we can rewrite the density

of Y “ pYJ
1 ,YJ

2 q
J as

fYpyq “ tppy; µ,Σ, νq
T ppτ ` λJΣ´1{2

py ´ µqqνpyq; ν ` pq

T pτ{p1 ` λJλq1{2; νq

“ tppy; µ,Σ, νq
T
`

pτ2.1 ` λJ
2.1Σ̃

´1{2
22.1 py2 ´ µ2.1qqνY2.1py2q; ν2.1 ` p2

˘

T
´

τ1{p1 ` λ̃
J

1 λ̃1q1{2; ν
¯
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fYpyq “ tp1py1; µ1,Σ11, νq
T
`

pτ1 ` λ̃
J

1 Σ´1{2
11 py1 ´ µ1qqνpy1q; ν ` p1

˘

T
´

τ1{p1 ` λ̃
J

1 λ̃1q1{2; ν
¯

ˆ tp2py2; µ2.1, Σ̃22.1, ν2.1q
T
`

pτ2.1 ` λJ
2.1Σ̃

´1{2
22.1 py2 ´ µ2.1qqνY2.1py2q; ν2.1 ` p2

˘

T
`

τ2.1{p1 ` λJ
2.1λ2.1q1{2; ν2.1

˘

“ ESTp1py1; µ1,Σ11, λ̃1, τ1, νq ˆ ESTp2py2; µ2.1, Σ̃22.1,λ2.1, τ2.1, ν ` p1q.

Proof of Proposition 7. First note that Y | pα ď Y ď βq „ TSTppµ,Σ,λ,
ν; pα,βqq. By direct integration of the simplified expressions (5.15) and (5.16), it is readily
that

E rϕpθ, Yq gpYq | α ď Y ď βs “
2Γp ν`1

2 q{Γp ν
2 q

b

πνp1 ` λJλq

ż β

α

tppy; µ, ν
ν`1 Γ, ν ` 1q

STppy; µ, Σ, λ, νq

STppy; µ, Σ, λ, νq

Pppα, β; µ, Σ, λ, νq
gpyqdy

“
2Γp ν`1

2 q{Γp ν
2 q

b

πνp1 ` λJλq

1
Pppα, β; µ, Σ, λ, νq

ż β

α

gpyqtppy; µ, ν
ν`1 Γ, ν ` 1qdy

“
2

b

πνp1 ` λJλq

Γp ν `1
2 q

Γp ν
2 q

Pppα, β; µ, ν
ν`1 Γ, ν ` 1q

Pppα, β; µ, Σ, λ, νq
ErgpW1qs

and

EUT YrU gpYq | α ď Y ď βs “

ż β

α

STppy; µ, ν
ν`2 Σ, λ, ν ` 2q

STppy; µ, Σ, λ, νq

STppy; µ, Σ, λ, νq

Pppα, β; µ, Σ, λ, νq
gpyqdy

“
1

Pppα, β; µ, Σ, λ, νq

ż β

α

gpyqSTppy; µ, ν
ν`2 Σ, λ, ν ` 2qdy

“
Pppα, β; µ, ν

ν `2 Σ, λ, ν ` 2q

Pppα, β; µ, Σ, λ, νq
ErgpW2qs,

W1 „ Ttppµ, ν
ν`1Γ, ν ` 1; pα,βqq and W2 „ TSTppµ, ν

ν`2Σ,λ, ν ` 2; pα,βqq.

Proof of Proposition 8. It follows from the conditional distribution of an ST
distribution that Y2 | pY1,α2 ď Y2 ď β2q „ TESTp2pµ2.1, Σ̃22.1,λ2.1, τ2.1, ν2.1; pα2,β2qq,
with conditional parameters as in Proposition 6. It is straightforward that

E
“

ϕpθ,Yq gpYq | Y1, α2 ď Y2 ď β2
‰

“
2

b

πν p1 ` λJλq

Γp ν`1
2 q

Γp ν
2 q

ż β2

α2

tppy; µ, ν
ν`1 Γ, ν ` 1q

STppy; µ, Σ, λ, νq

ESTp2 py2; µ2.1, Σ̃22.1, λ2.1, τ2.1, ν2.1q

Pp2 pα2, β2; µ2.1, Σ̃22.1, λ2.1, τ2.1, ν2.1q
g2py2qdy2

“
2

b

πν p1 ` λJλq

Γp ν`1
2 q

Γp ν
2 q

tp1 py1; µ1, ν
ν`1 Γ11, ν ` 1q

STp1 py1; µ1, Σ11, λ̃1, νq
g1pY1q

ˆ

ż β2

α2

tp2 py2; µ2.1, ν2.1
ν2.1`1 Γ̃22.1, ν2.1 ` 1q

ESTp2 py2; µ2.1, Σ̃22.1, λ2.1, τ2.1, ν2.1q

ESTp2 py2; µ2.1, Σ̃22.1, λ2.1, τ2.1, ν2.1q

Pp2 pα2, β2; µ2.1, Σ̃22.1, λ2.1, τ2.1, ν2.1q
gpyqdy2

“
2

b

πν p1 ` λJλq

Γp ν `1
2 q

Γp ν
2 q

tp1 py1; µ1, ν
ν`1 Γ11, ν ` 1q

STp1 py1; µ1, Σ11, λ̃1, νq

Pp2 pα2, β2; µ2.1, ν2.1
ν2.1`1 Γ̃22.1, ν2.1 ` 1q

Pp2 pα2, β2; µ2.1, Σ̃22.1, λ2.1, τ2.1, ν2.1q

ˆ g1pY1qErg2pW˚
1 qs
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and

EUT YrU gpYq | α ď Y ď βs

“

ż β2

α2

STppy; µ, ν
ν`2 Σ, λ, ν ` 2q

STppy; µ, Σ, λ, νq

ESTp2 py2; µ2.1, Σ̃22.1, λ2.1, τ2.1, ν2.1q

Pp2 pα2, β2; µ2.1, Σ̃22.1, λ2.1, τ2.1, ν2.1q
gpyqdy2

“
STp1 py1; µ1, ν

ν`2 Σ11, λ̃1, ν ` 2q

STp1 py1; µ1, Σ11, λ̃1, νq
g1pY1q

ˆ

ż β2

α2

ESTp2 py2; µ2.1, ν2.1
ν2.1`2 Σ̃22.1, λ2.1,

b

ν2.1`2
ν2.1

τ2.1, ν2.1 ` 2q

Pp2 pα2, β2; µ2.1, Σ̃22.1, λ2.1, τ2.1, ν2.1q
g2py2qdy2

“
STp1 py1; µ1, ν

ν`2 Σ11, λ̃1, ν ` 2q

STp1 py1; µ1, Σ11, λ̃1, νq

Pp2 pα2, β2; µ2.1, ν2.1
ν2.1`2 Σ̃22.1, λ2.1,

b

ν2.1`2
ν2.1

τ2.1, ν2.1 ` 2q

Pp2 pα2, β2; µ2.1, Σ̃22.1, λ2.1, τ2.1, ν2.1q

ˆ g1pY1qErg2pW˚
2 qs,

where gpYq “ g1pY1qg2pY2q, W˚
1 „ Ttp2pµ2.1,

ν2.1
ν2.1`1Γ̃22.1, ν2.1 ` 1; pα2,β2qq, and W˚

2 „

TESTp2pµ2.1,
ν2.1

ν2.1`2Σ̃22.1,λ2.1,
a

pν2.1 ` 2q{ν2.1 τ2.1, ν2.1 ` 2; pα2,β2qq

D.2 Additional results from Section 5.4

D.2.1 Simulation Study I

This simulation study aimed to provide evidence about the consistency of
the ML estimates obtained through the proposed ST-CR model considering left and
right-censored datasets. It was also considered no-censored data for comparison. Figure 46
displays the boxplot of the estimates by sample size and type of censoring. The red line
denotes the true parameter value. In general, the median of the estimates is close to the true
value for all scenarios. However, for right-censored datasets, the median underestimates
σ11 and σ22, and overestimates σ12. Furthermore, the interquartile range decreases as the
sample size increases, suggesting the consistency of the estimates.

D.2.2 Simulation Study II

To assess the effect of the skewness parameter λ in the estimation process for
left-censored datasets, we simulated 500 MC samples of size n “ 300 from the bivariate
ST-CR model with the same parameter values described in Section 4, and the following
four scenarios for λ and the detection limit vc

2i:

i) λ “ p2,´3q
J, vc

2 “ p´1.426,´0.110q
J;

ii) λ “ p2, 3q
J, vc

2 “ p´1.553,´0.160q
J;

iii) λ “ p´2, 3q
J, vc

2 “ p´1.223, 0.037q
J; and

iv) λ “ p´2,´3q
J, vc

2 “ p´1.455,´0.300q
J.
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The values of vc
2 assure almost 70% of the desirable censoring proportion for

the first component of the response vector and 30% for the second component. We fitted
the ST-CR model for each case. The summary statistics are shown in Table 25, where
MC-AV denotes the mean of the 500 MC estimates, and IM-SE represents the average of
the 500 standard errors approximated from the empirical information matrix. This table
shows that the mean (MC-AV) of the estimates for the regression coefficients are close to
the true parameter value independent of the skewness parameter. In general, the results
are similar to those obtained in simulation II.

Table 25 – Simulation II. Summary statistics based on 500 MC samples of size 300
generated from the bivariate skew-t distribution with skewness parameter
λ “ pλ1, λ2q

J and average 15% of left-censored observations. MC-AV denotes
the mean of the estimates, and IM-SE refers to the average number of standard
errors.

Par. λ1 “ 2, λ2 “ ´3 λ1 “ 2, λ2 “ 3 λ1 “ ´2, λ2 “ 3 λ1 “ ´2, λ2 “ ´3

MC-AV IM-SE MC-AV IM-SE MC-AV IM-SE MC-AV IM-SE
β10 1.110 0.154 1.253 0.198 1.063 0.138 1.127 0.159
β11 -1.981 0.122 -1.952 0.116 -1.988 0.131 -2.014 0.133
β20 2.070 0.074 2.045 0.107 1.985 0.073 1.986 0.084
β21 -1.006 0.059 -0.978 0.062 -1.011 0.061 -1.008 0.063
σ11 4.387 0.776 3.549 0.609 3.780 0.585 3.620 0.481
σ12 -0.296 0.199 -0.466 0.175 -0.340 0.246 -0.927 0.277
σ22 1.024 0.158 1.060 0.171 1.586 0.247 1.664 0.298
λ1 1.993 0.567 3.140 0.915 -1.644 0.545 -0.741 0.499
λ2 -1.514 0.459 3.195 0.874 3.094 0.811 -2.497 0.647
ν 3.987 2.630 4.697 4.602
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Figure 46 – Simulation I. Boxplot of the estimates obtained under the ST-CR model
considering different sample sizes and types of censoring based on 500 Monte
Carlo samples. The red line denotes the true parameter value.
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E.1 Marginal distribution for the LME-ST model
Following Arellano-Valle & Genton (2010b), Proposition 5, if Y „ STppµ,Ω,λ, νq,

then AY ` b „ STrpµA,ΩA,λA, νq for any r ˆ p matrix A of rank r ď p and r ˆ 1
vector b, where µA “ Aµ ` b, ΩA “ AΩAJ, and λA “ γ´1

A Ω´1{2
A AΩ1{2λ, with

γA “ 1 ` λJλ ´ λJΩ1{2AJΩ´1
A AΩ1{2λ.

For the ith subject in the LME-ST model, the joint distribution of pbi, ξiq
J is

given by
˜

bi

ξi

¸

„ STq`ni

˜˜

κ∆
0

¸

,

˜

D 0
0 Ωi

¸

,

˜

λ

0

¸

, ν

¸

, i P t1, . . . , nu.

Therefore, to compute the marginal distribution of Yi “ Xiβ ` Zibi ` ξi, we set the
ni ˆ 1 vector b “ Xiβ, and the ni ˆ pq ` niq matrix A “ rZi Ini

s, with Ini
denoting the

diagonal matrix of dimensions ni ˆ ni. Then Yi „ STni
pµA,ΩA,λA, νq, with

µA “ Xiβ `

´

Zi Ini

¯

˜

κ∆
0

¸

“ Xiβ ` κZi∆,

ΩA “

´

Zi Ini

¯

˜

D 0
0 Ωi

¸˜

ZJ
i

Ini

¸

“ ZiDZJ
i ` Ωi,

λA “ γ´1
A Ω´1{2

A

´

Zi Ini

¯

˜

D1{2 0
0 Ω1{2

i

¸˜

λ

0

¸

“ γ´1
A Ω´1{2

A ZiD1{2λ, with

γA “ 1 ` λJλ ´ λJD1{2ZJ
i Ω´1

A ZiD1{2λ

“ 1 ` λJD´1{2 `D ´ DZJ
i pΩi ` ZiDZJ

i q
´1ZiD

˘

D´1{2λ

“ 1 ` λJD´1{2
pD´1

` ZJ
i Ω´1

i Ziq
´1D´1{2λ.

E.2 Details for the expectations needed in the EM algorithm of the
LMEC-ST model

This section derives the conditional expectations required to perform the E-step
in the linear mixed-effects censored skew-t (LMEC-ST) model.

Note that:

bi | yi, ti, ui,θ „ Nppsiti ` ri, u
´1
i Biq

ti|yi, ui,θ „ TNpκ ` µi, u
´1
i M2

i ; pκ,8qq

Yi | θ „ STni
pXiβ ` κZi∆,Σi, λ̄i, νq,
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where si “ pIq ´ BiZJ
i Ω´1

i Ziq∆, ri “ BiZJ
i Ω´1

i pyi ´ Xiβq, Bi “ pΓ´1
` ZJ

i Ω´1
i Ziq

´1,
µi “ M2

i ∆JZJ
i Ψ´1

i pyi ´ Xiβ ´ κZi∆q, and Mi “ p1 ` ∆JZJ
i Ψ´1

i Zi∆q
´1{2, with Ψi “

Ωi ` ZiΓZJ
i .

To compute the expected values needed in the E-step, first note that for any mul-
tiplicative separable measurable function of Ui, Ti, bi, and Yi, such that gpUi, Ti,bi,Yiq “

g1pYiqg2pUiqg3pTiqg4pbiq, we have that

ErgpUi, Ti,bi,Yiq|Vi,Cis “ Erg1pYiqErg2pUiqg3pTiqg4pbiq | Yis | Vi,Cis

“ Erg1pYiqErg2pUiqErg3pTiqErg4pbiq | Ui, Ti,Yis | Ui,Yis | Yis | Vi,Cis.

Hence,

pu
pkq

i “ ErUi|Vi,Ci, pθ
pkq

s “ ErErUi|Yis | Vi,Ci, pθ
pkq

s,

yuyr
i

pkq
“ ErUiYr

i |Vi,Ci, pθ
pkq

s “ ErYr
i ErUi|Yis | Vi,Ci, pθ

pkq

s,

xuti
pkq

“ ErUiTi|Vi,Ci, pθ
pkq

s “ pκpkq
pu

pkq

i ` xM
2pkq

i
p∆

pkqJ

ZJ
i
pΨ

´1pkq

i

´

yuyi
pkq

´ pu
pkq

i pµ
pkq

i

¯

` xM
pkq

i
yϕy0

i

pkq

,

xut2i
pkq

“ ErUiT
2
i |Vi,Ci, pθ

pkq

s “ pκ2pkq
pu

pkq

i ` 2pκpkq
xM

2pkq

i ∆̂
pkqJ

ZJ
i
pΨ

´1pkq

i pyuyi
pkq

´ pu
pkq

i pµ
pkq

i q

` xMi

2pkq

` xM
3pkq

i ∆̂
pkqJ

ZJ
i
pΨ

´1pkq

i

”

yϕy1
i

pkq

´ pµ
pkq

i
yϕy0

i

pkq

` xM
pkq

i
pF

pkq

1i
pΨ

´1pkq

i Zi
p∆

pkq
ı

` 2pκpkq
xM

pkq

i
yϕy0

i

pkq

,

zutyi

pkq
“ ErUiTiYi|Vi,Ci, pθ

pkq

s “ pκpkq
yuyi

pkq
` xM

2pkq

i pyuy2
i

pkq

´ yuyi
pkq
pµ

pkqJ

i qpΨ
´1pkq

i Zi
p∆

pkq

` xM
pkq

i
yϕy1

i

pkq

,

zutbi “ ErUiTibi|Vi,Ci, pθ
pkq

s “ xut2i
pkq

pspkq

i ` pB
pkq

i ZJ
i
pΩ

´1pkq

i pzutyi

pkq
´ xuti

pkqXi
pβ

pkq

q,

yubi “ ErUibi|Vi,Ci, pθ
pkq

s “ xuti
pkq
pspkq

i ` pB
pkq

i ZJ
i
pΩ

´1pkq

i

´

yuyi
pkq

´ pu
pkq

i Xi
pβ

pkq
¯

,

yub2
i “ ErUib2

i |Vi,Ci, pθ
pkq

s “ xut2i
pkq

pspkq

i pspkqJ

i `pspkq

i pzutyi

pkq
´ xuti

pkqXi
pβ

pkq

q
J
pΩ

´1pkq

i Zi
pB

pkq

i

` pB
pkq

i ` pB
pkq

i ZJ
i
pΩ

´1pkq

i pzutyi

pkq
´ xuti

pkqXi
pβ

pkq

qpspkqJ

i ` pB
pkq

i ZJ
i
pΩ

´1pkq

i
pF

pkq

2i
pΩ

´1pkq

i Zi
pB

pkq

i ,

{ubyJ
i “ ErUibiYJ

i |Vi,Ci, pθ
pkq

s “ pspkq

i
zutyi

pkqJ
` pB

pkq

i ZJ
i
pΩ

´1pkq

i pyuy2
i

pkq

´ Xi
pβ

pkq
yuyi

pkqJ
q,

such that µi “ Xiβ ` cZi∆, pF
pkq

1i “ yuy2
i

pkq

´ yuyi
pkq
pµ

Jpkq

i ´ pµ
pkq

i yuyi
Jpkq

` pui
pkq
pµ

pkq

i pµ
Jpkq

i ,
pF

pkq

2i “ yuy2
i

pkq

´ yuyi
pkq
pβ

pkqJ

XJ
i ´ Xi

pβ
pkq
yuyi

pkqJ
` pu

pkq

i Xi
pβ

pkq
pβ

pkqJ

XJ
i , and

yϕyr
i “ ErYr

iϕpθ,Yiq|Vi,Ci, pθ
pkq

s

“ E

»

–Yr
iU

1{2
i

ϕ1

´

U
1{2
i λ̄

J

i Σ´1{2
i pYi ´ Xiβ ´ cZi∆q

¯

Φ1

´

U
1{2
i λ̄

J

i Σ´1{2
i pYi ´ Xiβ ´ cZi∆q

¯

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Vi,Ci, pθ
pkq

fi

fl

for r P t0, 1, 2u. Subsequently, we have the implementable expressions to the conditional
expectations under the following three possible scenarios:
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1. If the ith subject has only non-censored components, ErYr
i |Vi,Ci, pθ

pkq

s “ yr
i ; then

pu
pkq

i “
STni

pyi; pµ
pkq

i , pνpkq

pνpkq`2
pΣ

pkq
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