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A B S T R A C T

Cocoa shell is a by-product from cocoa industry which contains bioactive compounds of high and attractive value 
for food, pharmaceutical and cosmetics industry. However, cocoa shell can be contaminated by undesirable 
materials that, even in small amounts, would not change the color, aroma, and taste characteristics of the final 
product. Identification and prediction of this impurity are performed using expensive methods that require 
chemicals and produce residues. Thus, this work aims to investigate the performances of benchtop 
(867–2535 nm) and portable (900–1700 nm) near-infrared (NIR) spectrometer for fast prediction of cocoa shell 
powder impurities. Mixtures (n = 432) of cocoa shell powders with leaves, pods, stem fragments and nibs at 
several proportions (0–20 % w/w), were analyzed. Multivariate calibration models were developed using partial 
least-squares regression (PLSR) with raw spectra and various preprocessing approaches applied to the spectra. 
The most informative spectral variables were selected by variable importance in projection (VIP) method. 
Results obtained for the benchtop (R2

P >  0.99 and RMSEP < 0.71) and low-cost portable (R2
P >  0.92 and 

RMSEP < 1.70) devices are promising, and portable spectrometer could be used to certify cocoa shell purity.

1. Introduction

Cocoa shell is the main and most valuable by-product of the cocoa 
industry [1] where approximately 700 thousand tons are generated 
worldwide when considering world cocoa production [2]. Although 
cocoa shell has traditionally limited applications (mainly fuel for boi-
lers and as animal feed or organic soil fertilizer), many studies have 
been conducted on its composition as well as possible industrial ap-
plications with high added value for food, pharmaceutical and cos-
metics industry [3,4]. Cocoa shell is a rich source of dietary fiber and 
protein as well as valuable bioactive compounds (theobromine, caf-
feine, flavonoids, etc.). Due to its composition, it can be used as an 
ingredient in food processing, or in pharmaceuticals, cosmetics, or 
agriculture products, with new applications [4–6]. The recovery of 
cocoa shells has high economic value, as it is a cheap raw material for 
extracting many components and production of biofuel. In addition, 
some studies have indicated the beneficial health effects of cocoa shell 
compounds [7].

Therefore, it is very important to guarantee the purity and safety of 
this by-product [8], as some impurities found in the cocoa shell can 
negatively affect its application in the industry. Since it is a remaining 
part of the cocoa industry, control and inspection of the cocoa shells 
purity is not a priority. Thus, after peeling the cocoa beans, the cocoa 

shells may be accompanied by foreign materials, such as cocoa pods 
and leaves, stem fragments, and often have some nibs misplaced during 
peeling. On the other hand, except for the nibs, these types of impurities 
can be intentionally placed as bulking agents to increase companies’ 
revenue, which can also be a potential threat to the health of con-
sumers, since these foreign materials can be contaminated with pa-
thogen microorganisms, and toxic substances [9–11].

However, certifying the purity of agricultural and food products is 
not always easy, since the techniques for identifying and quantifying 
the composition of these products are often arduous, expensive, and 
require chemical reagents, such as HPLC-ESI-QqQ-MS/MS, as reported 
in recent studies [11]. Therefore, there is a need for alternatives toward 
more sustainable practices. In this context, near-infrared spectroscopy 
(NIRS) is a non-destructive technique already well-established for 
analytical purposes, widely used in qualitative and quantitative ana-
lyses of agricultural and food products [12–14]. In the cocoa industry, 
many studies have shown the potential of NIRS to predict moisture, 
polysaccharides, fat, and protein content [15,16] as well as the phenol- 
related compounds, such as theobromine, catechin and organic acids in 
cocoa beans and products [17,18]. In addition, NIR spectroscopy has 
also been used to identify adulteration of cocoa powder [19], dis-
criminate cocoa beans according to geographic origin [20], and de-
termine the degree of fermentation [21].
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The NIRS systems are found in different configurations and sensi-
tivity levels, and recent advances have allowed these optical compo-
nents to be miniaturized without excessive loss in performance [22,23]. 
It can be found portable devices based on Raman, mid-infrared (MIR) 
and near-infrared (NIR), and recently, on hyperspectral imaging (HSI) 
and nuclear magnetic resonance (NMR) technology [24]. While por-
table devices have a lower precision compared to benchtop equipment, 
some advantages, such as analytical capacity (online or in situ), small 
size, low cost, robustness, analysis simplicity, and portability, com-
pensate for this deficiency [22]. The demand for portable devices to 
evaluate the quality, composition, and authentication of agricultural 
products has increased considerably in recent years [25], and many 
studies have been reported their use on cocoa beans [26,27]. There are 
works using NIR spectroscopy combined with multivariate analysis to 
authenticate cocoa shell [28], as well as to determine its bioactive 
compounds and antioxidant activity [29]. However, studies using por-
table NIR devices to detect impurities in cocoa shell have not been 
reported. In this sense, developing an accessible multivariate approach 
using portable NIR devices to identify potential impurities in cocoa 
shell will bring great scientific-technological contribution and, conse-
quently, will encourage new research towards cocoa shell processing 
options. Therefore, the main objective of this study is to propose a 
methodology for predicting and screening some impurities in cocoa 
shells, based on NIR spectroscopy associated with multivariate ana-
lyses, to be implemented for the best use of this by-product in the in-
dustry. The specific objectives include (a) use Principal Component 
Analysis (PCA) to have a clear idea of the relation between samples and 
variables; (b) use PLSR to predict the level of impurity; (c) select some 
important wavelengths to develop a more effective PLSR models for 
impurity prediction; (d) develop a quantitative function using PLSR 
based on the best subset of variables for online prediction; (e) compare 
the predictive performance between a benchtop and portable device.

2. Materials and methods

2.1. Sample collection and preparation

Cocoa shells and the impurities (cocoa leaves, cocoa pods, cocoa 
stem fragments and cocoa nibs) were obtained from four suppliers from 
different regions in Brazil (Bahia, Espirito Santo and Para). To ensure 
that the distinction between the cocoa shells and impurities was due 
exclusively to the difference in their compositions, all samples were 
standardized in terms of particle size and moisture content. Initially, the 
samples were placed in a dryer at 74 °C for 2 h to obtain uniform sample 
moisture levels. After drying, the cocoa shells and impurities were in-
dividually ground using an IKA A11 Basic Analytical Mill 
(Königswinter, Germany). Then, a 200 mesh sieve (74 µm aperture) was 
used to standardize the particle size of the samples.

The binary mixtures were prepared in concentrations from 0 % to 20 
% (w/w) by blending cocoa shell powders with the four different im-
purities at different mass proportions (0 %, 1 %, 2 %, 3 %, 4 %, 5 %, 7 
%, 10 %, 12 %, 15 %, 17 % and 20 %). For each concentration, three 
replicate samples of 10 g (w/w) for each of the four suppliers were 
prepared (4 suppliers x 3 replicate x 12 concentrations=144 samples 
for each impurity). Samples of all the 432 possible cocoa shell powder- 
impurity combinations were classified in two different levels of con-
centration: low concentration (0–5 %) and high concentration (7–20 
%). The upper limit of 20 % was set by considering that above this 
concentration the presence of any impurity would become evident 
based on visual inspection due to changes in color. The samples were 
manually mixed and then transferred to a snap-cap vial. Further mixing 
was accomplished by placing the filled vials onto a high-speed shaker 
(VWR® Fixed Speed Vortex Mixers, Canada) to minimize possible dis-
persion effects. All mixtures were placed in hermetic plastic containers 
and stored at 20  ±  2 °C in a dry dark atmosphere before to analyze.

2.2. NIR data acquisition

Two different NIR spectrometers were used for data acquisition: a 
benchtop NIR device (Bruker Tango FT-NIR (Bruker Optik, Germany)) 
and a portable NIR device (NIRscan™ Nano Digital Light Processing 
(DLPR) - Texas Instrument, USA). For benchtop device, one spectra for 
each sample was collected using rotating cups and each spectrum was 
the average of 64 scans recorded from 867 to 2535 nm with a resolution 
of 2 nm. For portable device, samples were scanned in the surface. 
Three spectra were collected for each sample to account for shorter scan 
times and smaller sampling surfaces, and each spectrum was also the 
average of 64 scans. The spectral acquisition with the portable device 
was made in the wavelength range of 900–1700 nm with intervals of 
4 nm, using a 10 W halogen bulb as a light source and an InGaAs de-
tector. The spectra were obtained in reflectance mode, corrected using 
white/dark references and transformed into absorbance units by loga-
rithmic transformation for direct comparison between the equipment. 
The external white and black references are automatic in the benchtop 
equipment and manual for the portable device.

2.3. Data analysis

Four data sets for each equipment were used in this study. The data 
sets from the benchtop device consisted of 144 spectra and 949 vari-
ables (wavelengths, nm) for each impurity. On the other hand, the data 
sets from the portable device consisted of 144 spectra and 228 variables 
(wavelengths, nm) for each impurity, where an average of 3 spectra for 
each sample was used. The data set from each impurity was manually 
divided into training (84 samples) and test (60 samples) sets for ex-
ternal validation. The training and test sets comprised 0 %, 1 %, 3 %, 5 
%, 10 %, 15 % and 20 % (w/w) and 2 %, 4 %, 7 %, 12 % and 17 % (w/ 
w), respectively. All spectral data were preprocessed and analyzed 
using PLS_Toolbox (Eigenvector Research, Inc. WA, USA) under 
MATLAB R2022a (The Mathworks, MA, USA).

The raw spectra were preprocessed by the following methods: first 
and second derivatives (FD and SD, respectively), multiplicative scat-
tering correction (MSC) and combined techniques, such as multi-
plicative scattering correction + first derivative (MSC + FD). Savitzky- 
Golay smoothing (window: 15 points; polynomial filtering: 2nd order) 
is recommended before applying the first (FD) and second (SD) deri-
vatives. The application of MSC aims to remove non-uniform scattering 
and particle size effects from the spectrum. FD, on the other hand, 
eliminates baseline variations, while SD separates overlapping peaks 
and highlights spectral characteristics [30].

PCA was used to reduce the dimensionality of the data sets, also to 
identify the interrelationships between the samples and the possible 
clusters, to select the appropriate experimental data for the construc-
tion of the model, and finally to identify and eliminate outliers through 
Hotelling's T2 statistics and F-residual values [31]. The number of 
principal components (PCs) was chosen based on the cumulative var-
iance, in which the first PCs were chosen explaining together more than 
70 % of the total variability.

PLS regression [32] was used to predict the amount of impurity in the 
cocoa shell powders. The performances of the PLSR models were esti-
mated using random cross-validation (leave-one-out) and external vali-
dation set. For the PLSR models construction, the use of all wavelengths 
was considered as well as the most important ones. In this study, the 
variable importance in projection (VIP) method, also known as VIR scores, 
was used as a strategy to select the most important wavelengths for pre-
dicting impurity content in cocoa shell powders [33,34].

PLS regression models’ accuracy was evaluated by the required 
number of latent variables (LVs), the coefficient of determination of 
calibration (R2

C), the root mean squared error of calibration (RMSEC), 
the ratio of prediction deviation of calibration (RPDC), the range error 
ratio of calibration (RERC), the coefficient of determination of predic-
tion (R2

P), the root mean square error of prediction (RMSEP), the ratio of 
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prediction deviation of prediction (RPDP), and the range error ratio of 
prediction (RERP).

3. Results and discussion

3.1. Spectral features

The spectral information in the range of 867–1100 nm of the 
benchtop device were not considered in the study, as this region pre-
sented some noise. The mean raw spectra of cocoa shell, cocoa pods, 
cocoa leaves, cocoa stem fragments and cocoa nibs from both equip-
ment are shown in Fig. 1. The difference in the absorption bands are in 
the second overtone of C–H stretching (1100–1200 nm), the first 
overtone of the hydroxyl and amino groups (1425 nm), the first over-
tone of O–H and N–H stretching, which is associated with a CONH2 

structure (1470 nm) and first overtone of C–H (1644 nm) and the 
combination of C–C and C–H stretching (2146 nm) [35,36]. Further-
more, Ribeiro, Ferreira and Salva [37] showed that the band at 
1730 nm could be assigned to the first overtone of C–H, while 2310 and 
2350 nm are mostly related to stretching and rocking vibrations of CH2. 
These absorption bands are mainly characterized as one of the various 
functional groups of polysaccharides, protein, fat and water [15,36]. 
Absorption bands around 1200, 1730 and 2350 nm are mainly asso-
ciated with fat, and display higher values for the spectra of cocoa nibs 
due to their higher fat content in relation to cocoa shell and other 
impurities [19]. Absorption band in 1200 nm can also correspond to 
polysaccharides [38], while the three regions 1349–1386, 1661–1718 
and 2161–2258 nm are related to total phenols [39]. Epicatechin 

absorption bands were reported at 1388, 1492, 1658, 1916, 2260 and 
2324 nm, and 1764, 2092 and 2228 nm are associated with theo-
bromine [17]. In the benchtop’s spectra (Fig. 1), it can be seen that the 
absorption peaks in the bands 1716–1768 nm and 2280–2360 nm were 
more pronounced in the spectra of cocoa shell, which could be related 
to the migration of phenols and theobromine from the cotyledon to the 
cocoa shell during the fermentation process [3]. Important spectral 
information to differentiate cocoa shells from impurities can be ex-
tracted by comparing their NIR spectra. To a certain extent, structural 
and chemical information can be obtained from the NIR spectra with 
limitations through overlapping absorption peaks. In general, in the 
NIR spectra of cocoa shells there are different absorption bands in-
tensity compared to the spectra of all impurities.

3.2. PCA analysis

The PCA was performed with the raw spectra of the four different 
cocoa shell suppliers to identify possible sample groupings and outliers. 
In the data obtained with benchtop device (Fig. 2a), the first two PCs 
explained 99.75 % of the total variance for the different cocoa shell 
suppliers, 92.86 % for PC1 and 6.69 % for PC2. In the data obtained for 
the portable device (Fig. 2c), PC1 explained 87.57 % and PC2 11.01 %, 
totaling 98.58 % of the data variance. The high explanation of the data 
demonstrates the quality of the analysis in transforming the original set 
of data and the absorbances associated with the vibrational modes of 
NIR spectra in principal components for both equipment.

Fig. 2a and c show the dispersion of the four different cocoa shell 
suppliers using the benchtop and portable device spectra, respectively. 

Fig. 1. Mean raw spectra of cocoa shell powder, cocoa leaf, cocoa pod, cocoa stem fragments, cocoa nibs from the (a) benchtop (1100–2535 nm) and (b) portable 
(900 – 1700 nm) spectrometer.
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PC1 was the component that best explained the data distribution, in 
other words, the element responsible for separating the samples con-
sidering the cocoa shell supplier. It is possible to verify that the PCA 
scores formed groups related to the cocoa shell suppliers for both 
benchtop and portable device. PC1 from both devices were the main 
contributors to the separation of cocoa shell samples based on their 
suppliers. The loadings (Fig. 2b and d) allow defining what spectral 
regions are involved in each relevant PC. PC1, was mainly character-
ized by fatty acid bands as 1730–1763 nm (1st C–H str) and 2312 nm 
(1st C–H str + 1st C–H def CH2) and 2353 nm (1st C–H str + 1st C–H 
def). In addition, PC1 also captured some regions related to proteins 
such as 1438 nm, 1530 nm (1st N–H str of RNH2), 1582 nm (1st N–H str 
of CONH), 1897 nm (2nd C]O of COOH) and 1926–1934 nm (2nd C] 

O of CONH) [37]. PC2, instead, exhibited three maxima at 2000 nm 
(2nd O–H def + 1st C–O def of polysaccharides), 2100 nm (2nd O–H 
def + 2nd C–O str of polysaccharides) and 2272 nm (1st O–H str + 1st 
C–C str, associated with polysaccharides) [35,36]. This indicates that 
both PCs mostly represents the polysaccharides content of the samples. 
Both loadings show similar features, which include an absorption peak 
at 1200 nm related to polysaccharides and fat content. The loadings 
also consist of a peak comprising two very weak bands related to fat at 
1392 and 1414 nm, and a remarkable peak that is related to the water 
content of the samples (peak at 1140 nm). For the portable's loadings, a 
second water peak could also be observed at 970 nm.

3.3. Calibration models

3.3.1. Full spectral range
PLSR models were calculated using the full spectral range from 

benchtop (Table 1) and portable (Table 2) device. The best PLSR 
models based on the full spectral range for the portable device were 
constructed using the FD as a preprocessing, except the nibs' model that 
fits better with SD preprocessing. On the other hand, the best PLSR 
models for benchtop device were those built using FD as preprocessing 
for all impurities. As shown in Tables 1 and 2, the preprocessing applied 
to the raw data were effective in minimizing the influence of undesir-
able information, improving the prediction capability of the models. 

The main objective of the spectral preprocessing is to remove the 
scattering effects associated with the shape/structure of the samples, 
thereby improving subsequent multivariate regression, classification 
models and exploratory analysis. Preprocessing has a significant effect 
on spectral modeling, as a good selection of preprocessing can increase 
the accuracy of models, while incorrect selection can lead to incon-
sistencies in prediction [40]. This is mostly due to the preprocessing 
procedure, which can mitigate the unwanted effects on the original 
variables therefore, reducing the experimental error in the final models.

PLSR models based on the full spectral range achieved better results 
with benchtop device (R2

P > 0.96, RMSEP < 1.25, RPD > 3.77 and 
RER > 12.02) compared with portable device (R2

P > 0.92, 
RMSEP < 1.86, RPD > 3.41 and RER > 8.04). The PLSR models had 
good prediction ability, as highlighted by the high values of R2 as well 
as the small difference between RMSEC and RMSEP (Tables 1 and 2). 
The proximity of the values of R2

C and R2
P along with RMSEC and RMSEP 

ensure that PLSR models are representative and can be applied accu-
rately to the unknown data. Although PLSR models generated by the 
portable device required a greater number of LVs than the benchtop 
device for a better fit (except for cocoa nibs), its models presented sa-
tisfactory R2

P, RMSEP, RPD and RER values. According to previous 
studies, R2 values greater than 0.9, RPD greater than 3, and an RER 
greater than 10, would result in successful calibration models, in-
dicating a greater predictability of the models to accurately predict 
impurities in new samples. Thus, the achieved RPD and RER index for 
the models for each impurity from both equipment were categorized as 
a good performance based on the literature [41]. Moreover, the pre-
diction performances of the PLSR models from the two equipment de-
veloped using the full spectral range were appropriate and consistent 
with those presented in previous studies when predicting adulterants in 
cocoa products using NIR spectroscopy [19,42].

3.4. 2 Selection of informative spectral bands using VIP scores

NIR spectroscopy data can be redundant, noisy, and irrelevant, or 
interfering. Thus, using the full spectral range could imply the risk of 
overfitting, noise, and nonlinearities, which in turn can lead to 

Fig. 2. PCA scores and loadings plots of mean raw spectra for the benchtop (a,b) and portable (c,d) NIR spectrometer. 
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inaccuracy models. On the other hand, the chemical information ob-
tained from selected wavelengths might be more efficient than the full 
spectra [43]. Therefore, it can be interesting selecting the more pro-
minent variables and excluding the non-informative ones.

The spectral responses of cocoa shells and impurities are closely 
related to their chemical compositions since their main components are 
polysaccharides, including fibers such as cellulose and lignin, and fats 
in small proportions (except in cocoa nibs) [44]. These considerations 
on the chemical composition lay the foundations for correctly inter-
preting the regression models implemented with the NIRS data. How-
ever, Brown and Green observed that the spectral interpretation of 
PLSR models should not only rely on the regression vectors, since they 
are dependent on the samples in the calibration/training set, the im-
plicit covariance of the components, and the signal to noise ratio of the 
data [45]. Thus, an important tool for the spectral interpretation of 
PLSR models is the variable selection approach that is a critical step in 
multivariate analysis to improve the model’s predictive performance 

and enhance the model’s interpretability with parsimonious re-
presentation [33].

In this study, VIP scores was used to select the most informative wa-
velengths from the best PLSR models based on the full spectral range. The 
selected important wavelengths in each impurity model for both equip-
ment are listed in Table 3. Even though cocoa shell and impurities have 
different compositions, there is not a considerable variation in the selected 
variables, as shown in the visual comparison plot in Figs. 3 and 4. For all 
models, the dominant spectral regions for the benchtop and portable de-
vice were 1420–2460 nm and 1160–1680 nm, respectively. All models 
have selected at least 6 wavelengths in these ranges, excluding cocoa nibs’ 
models. Although these different NIR regions contain bands related to 
combination modes, only in the spectral range of the benchtop device it is 
possible to highlight the characteristic bands of organic acids due to O–H 
stretching combined with the C–O stretching around 1890, 2285 and 
2456 nm. Figs. 3 and 4 show that two chemically meaningful spectral 
windows were selected in all models using the benchtop (1420–1890 nm 

Table 1 
Performance of the PLSR models at full NIR spectral range using the portable device. 

Impurity Preprocessing #Bands #LVs Calibration Prediction

RMSEC RPDC R2
C RERC RMSEP RPDP R2

P RERP

Cocoa leaf Raw 228 10 1.14 6.09 0.97 17.56 1.70 3.56 0.93 8.80
FD 228 7 1.19 5.54 0.97 16.80 1.72 3.66 0.94 8.71
SD 228 8 1.00 6.87 0.98 20.05 1.77 3.65 0.94 8.49
MSC 228 9 1.19 5.84 0.97 16.83 1.77 3.47 0.92 8.46
Raw 228 10 1.21 5.79 0.97 16.47 1.60 3.56 0.92 9.37

Cocoa pod FD 228 8 1.03 6.79 0.98 19.33 1.79 3.52 0.93 8.40
SD 228 9 0.80 8.59 0.99 24.94 1.86 3.41 0.96 8.04
MSC 228 9 1.10 6.40 0.98 18.10 1.64 3.75 0.94 9.14
Raw 228 6 1.16 6.12 0.97 17.31 1.45 4.16 0.96 10.31

Cocoa stem fragments FD 228 5 1.04 6.82 0.98 19.17 1.29 4.73 0.97 11.62
SD 228 5 0.91 7.61 0.98 21.94 1.34 4.49 0.97 11.23
MSC 228 5 1.24 5.70 0.97 16.11 1.37 4.49 0.96 10.98
Raw 228 5 0.70 10.07 0.99 28.63 0.92 5.94 0.98 16.33

Cocoa nibs FD 228 4 0.60 11.77 0.99 33.46 0.85 6.26 0.98 17.61
SD 228 4 0.49 14.06 0.99 41.11 0.82 6.36 0.98 18.40
MSC 228 6 0.60 11.71 0.99 33.11 0.95 6.02 0.97 15.86

VIP, Variable importance in projection; FD, first derivative; SD, second derivative; MSC, multiplicative scatter correction; Bands, wavelengths used for model 
development; LVs, latent variables; RMSEC, root mean square error of calibration; RPDC, ratio of prediction deviation of calibration; R2C, coefficient of determi-
nation of calibration; RERC, range error ratio of calibration; RMSEP, root mean square error of prediction; RPDP, ratio of prediction deviation of prediction; R2P, 
coefficient of determination of prediction; RERP, range error ratio of prediction. The overall best models are highlighted in bold.

Table 2 
Performance of the PLSR models at full NIR spectral range using the benchtop device. 

Impurity Preprocessing ##Bands ##LVs Calibration Prediction

RMSEC RPDC R2
C RERC RMSEP RPDP R2

P RERP

Raw 610 5 0.63 10.86 0.99 31.68 0.37 15.13 1.00 40.66
Cocoa leaf FD 610 5 0.30 22.95 1.00 66.57 0.69 7.36 0.99 21.70

SD 610 5 0.35 20.54 1.00 57.78 0.65 7.88 0.99 23.09
MSC 610 5 0.31 22.80 1.00 64.53 1.04 4.96 0.99 14.49
Raw 610 5 0.32 22.18 1.00 62.21 1.14 4.90 0.97 13.18

Cocoa pod FD 610 6 0.22 31.48 1.00 91.92 0.71 7.99 0.99 21.15
SD 610 4 0.35 20.07 1.00 56.76 1.21 4.58 0.96 12.43
MSC 610 4 0.24 29.05 1.00 82.21 0.95 5.58 0.97 15.76
Raw 610 4 0.35 19.81 1.00 57.03 1.25 3.77 0.99 12.02

Cocoa stem fragments FD 610 4 0.21 33.02 1.00 96.26 0.47 12.08 1.00 31.98
SD 610 4 0.29 23.79 1.00 68.55 0.93 6.48 1.00 16.20
MSC 610 4 0.19 36.70 1.00 106.07 1.10 4.54 1.00 13.58
Raw 610 5 0.23 30.30 1.00 86.89 0.36 15.79 1.00 41.40

Cocoa nibs FD 610 5 0.15 43.84 1.00 134.74 0.24 23.61 1.00 63.06
SD 610 4 0.18 37.89 1.00 108.58 0.44 13.09 1.00 34.16
MSC 610 5 0.15 45.70 1.00 135.11 0.25 21.84 1.00 60.15

FD, first derivative; SD, second derivative; MSC, multiplicative scatter correction; Bands, wavelengths used for model development; LVs, latent variables; RMSEC, 
root mean square error of calibration; RPDC, ratio of prediction deviation of calibration; R2C, coefficient of determination of calibration; RERC, range error ratio of 
calibration; RMSEP, root mean square error of prediction; RPDP, ratio of prediction deviation of prediction; R2P, coefficient of determination of prediction; RERP, 
range error ratio of prediction. The overall best models are highlighted in bold.
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and 2280–2460 nm) and portable (1160–1240 nm and 1370–1490 nm) 
device. In these spectral regions, the major absorption usually occurs at 
1210, 1424, 1715, 2285 and 2456 nm corresponding to the combination 
of O–H, C–H and CH2 bonds related to water, polysaccharides and fat [19]. 
These five wavelengths (or very adjacent) were selected in all models, 
excluding the cocoa leaf’s models, and were also prominent in the original 
raw spectra.

In general, all PLSR models obtained for both equipment from the 
variable selection method showed similar performances to those ob-
tained with the full spectral range (Table 4). Fig. 1S and 2S 
(supplementary material) show the correlation of predicted and actual 
values for calibration and prediction to the best PLSR models of the 
benchtop and portable device, respectively. Regarding portable NIR 
data (Table 4) it is interesting to underline that, in terms of prediction, 
the accuracy of the model for cocoa nibs (R2

P =0.99 and RMSEP=0.74) 
and cocoa stem fragments (R2

P =0.97 and RMSEP=1.35) was higher 
compared to the model for cocoa pods (R2

P =0.89 and RMSEP=2.04) 
and cocoa leaves (R2

P =0.94 and RMSEP=1.53). As per PLS regression 
using benchtop device (Table 4), the R2

P and RMSEP were similar and 
therefore, acceptable for calibration in all PLSR models. On the other 
hand, for prediction, the accuracy of the model for cocoa nibs (R2

P 

=1.00 and RMSEP=0.21) and the cocoa leaves (R2
P =1.00 and 

RMSEP=0.43) were higher compared to the model for cocoa pods (R2
P 

=1.00 and RMSEP=0.43) and cocoa stem fragments (R2
P =1.00 and 

RMSEP=0.39). Therefore, the results showed that the VIP scores wa-
velength selection method was efficient and improved the calibration 
performance of the PLSR models. Generally, when variable selection 
was used it led to a more robust model [33]. Most of the selected wa-
velengths have been previously described in literature in the prediction 
of several compounds, such as fat, polysaccharides, moisture, poly-
phenols in cocoa beans and derived products [15,18,46].

Overall, after wavelengths selection, the benchtop device data were 
reduced from 949 to 12 variables (1424, 1701, 1715, 1739, 1776, 1891, 
1962, 2042, 2137, 2285, 2336 and 2456 nm), combining the four sets 
of variables selected from the impurity models, with a total data size 
reduction close to 99 %. On the other hand, using the portable device, 
the data were reduced from 228 to 17 variables (953, 1143, 1166, 
1184, 1210, 1233, 1243, 1371, 1375, 1402, 1433, 1436, 1449, 1490, 
1640, 1662 and 1671 nm) also by combination the four sets of variables 
selected from the impurity models (93 % reduction). This reduction of 
the data sets in smaller subsets is interesting from an operational point 
of view. The subsets of 12 and 17 wavelengths for the benchtop and 
portable device, respectively, can provide the basis to design a low-cost, 
fast, and accurate spectral system for predicting real-time impurities in 
cocoa shell. These wavelengths can be used as bandpass filters instead 
of a spectrometer. A spectral system with a few wavelengths will reduce 
the cost of the device and increase the speed in the production line, 
which might fulfill the requirement of the food industry.

Table 3 
Selected wavelengths using VIP scores algorithm for both devices. 

Equipment Impurity #Bands Selected wavelengths (nm)

DLPR NIRscan™ Nano Cocoa leaf 8 1166, 1184, 1233, 1375, 1402, 1433, 1449, 1671
Cocoa pod 9 953, 1166, 1184, 1233, 1375, 1402, 1433, 1640, 1671
Cocoa stem 7 1143, 1184, 1233, 1371, 1402, 1490, 1662
Cocoa nibs 4 1210, 1243, 1436, 1662

Tango FT-NIR Cocoa leaf 6 1424, 1715, 1891, 2285, 2336, 2456
Cocoa pod 6 1424, 1701, 2042, 2137, 2285, 2456
Cocoa stem 6 1715, 1739, 1962, 2137, 2285, 2456
Cocoa nibs 5 1715, 1739, 1776, 2285, 2456

Bands, wavelengths used for PLSR models development.

Fig. 3. Variable importance in projection (VIP) scores of the PLSR models constructed from benchtop NIR spectrometer (bands were selected from PLSR VIP created 
using FD data).
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The multivariate calibration proposed in this study using a benchtop 
and a portable spectrometer demonstrated that the portable is a robust 
device for industrial applications, despite its reduced wavelength range. 
The results showed that the portable device is as competitive as the 
costly benchtop from a prediction performance perspective. One of the 
advantages lies upon that the former presents a smaller size, thus of-
fering solution on the go as opposed to the latter [47]. The combination 
of simple devices with PLSR modeling may offer a very interesting and 
reliable tool for predicting impurities in cocoa shell directly in the 
processing industry. In addition, if this approach is applied throughout 
the cocoa supply chain, could improve, in a sustainable way, the quality 
of the products that reach consumers' tables in everyday life such as 
chocolate and chocolate powder.

However, there are also some limitations in using portable NIR 
devices, such as when acquiring spectra data, the samples need to be 
rotated manually according to the operator's interference. Moreover, 
during measurements, typical noises occur regularly on a specific wa-
velength range, particularly in the beginning and the end of spectra. 
This is due to instability and overheating electronic components inside 
the portable NIRS instrument [48]. Therefore, studying the predictive 
capacity of different NIR devices is extremely important for choosing 
the right device to match the market needs, mainly from the opera-
tional aspect of the industries.

4. Conclusions

NIR spectroscopy in tandem with the PLSR statistical method provided 
models with appropriate predictive and generalization capacity to predict 
impurities content in cocoa shell powders. The applied VIP scores variable 
selection method and spectral preprocessing further improved the perfor-
mance of the developed models. The best PLSR calibration models built 
using the benchtop (RPD > 8.34) and portable (RPD > 2.85) device 
showed good prediction performances. The results indicate that NIR spec-
troscopy is an adequate tool for identifying and quantifying impurities in 
cocoa shells, which might help the quality control in the cocoa industry, as 
well as granting its authenticity for further industrial applications.
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Fig. 4. Variable importance in projection (VIP) scores of the PLSR models constructed from portable NIR spectrometer (bands were selected from PLSR VIP created 
using FD data, excluding Nibs). For Nibs, SD data were used from good model using full bands PLSR model.

Table 4 
Effect VIP variable selection algorithm on PLSR models. 

Equipment Impurity L#LVs Calibration Prediction

RMSEC RPDC R2
C RERC RMSEP RPDP R2

P RERP

DLPR NIRscan™ Nano Cocoa leaf 7 1.50 4.41 0.95 13.37 1.53 3.94 0.94 9.78
Cocoa pod 8 1.95 3.60 0.92 10.25 2.04 2.85 0.89 7.34
Cocoa stem fragments 5 1.28 5.56 0.97 15.62 1.35 4.65 0.97 11.13
Cocoa nibs 4 0.49 14.01 0.99 40.97 0.74 7.16 0.99 20.37

Tango FT-NIR Cocoa leaf 5 0.64 10.74 0.99 31.14 0.43 12.44 1.00 35.13
Cocoa pod 6 0.30 22.98 1.00 67.09 0.70 8.34 1.00 21.49
Cocoa stem fragments 3 0.28 24.99 1.00 71.45 0.39 14.61 1.00 38.90
Cocoa nibs 5 0.20 32.75 1.00 100.66 0.21 26.07 1.00 69.94

LVs, latent variables; RMSEC, root mean square error of calibration; RPDC, ratio of prediction deviation of calibration; R2C, coefficient of determination of cali-
bration; RERC, range error ratio of calibration; RMSEP, root mean square error of prediction; RPDP, ratio of prediction deviation of prediction; R2P, coefficient of 
determination of prediction; RERP, range error ratio of prediction.
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