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Abstract

By using the spectral semi-Galerkin method, we prove a result on global exis-
tence in time of strong solutions of the Navier-Stokes equations for the motion of
nonhomogeneous incompressible fluids. This was obtained without assuming that
the external force field decay with time. We reach in this way basically the same
level of knowledge as in the case of the classical Navier-Stokes equations. We also
derive estimates that are useful for obtaining error hounds for the approximate so-
lutions. Stronger forms of these estimates, including an uniform in time estimate
for the gradient of the density, are obtained when the external force field decays
exponentially.

1 Introduction

In this work we will be concerned with global existence in time of strong solutions
of the three dimeneional stratified (or nonhomogeneous) Navier-Stokes equations, that is,
the equations for the motion of a nonhomogeneous incompressible fluid (obtained as a
mixture of miscible incompressible fluids, for instance). Being Q CIR" , a=2 or 3,a

C"!-regular bounded open set, these equations are



(

i " 4 pu.Vu — Au — gradp = pf ,
divu=0,
ap
n o,
(1.1) 8t+UVp 0 in

u=0 on 89 x (0,00),

pli=o(z) =po in Q,

| tfi=o(z) =uo in .

Here ) is the container where the fluid is inside; u(z,t) € R" denotes the velocity of
the fluid at a point z € Q and time t € [0,00); p(z,t) € R and p(z,t) € IR denote
the density and the hydrostatic pressure of the fluid respectively; uo(z) and po(z) are
initial velocity and density, respectively; f(z,t) is the density by unit of mass of the
external force acting on the fluid. Here, without loosing genera.lity, we have scaled the
variables in order to the viscosity to be one; the fluid adheres to the wall. aﬂ of the
container which is assumed to be at rest. The expressions grad, A ‘and div denote the

gradient, Laplacian and divergence operators, respectively (we also denote the gradient

operator by V and —a—;‘- by u.); the ith  cartesian component of u.Vu is given

by (u.Vu) Z u’@ s u.Vp= Zu,a The first equation in (1.1) corresponds to

=1 J=1
the balance of linear momentum the thud equation to the balance of mass, and the

second one states that the fluid is incompressible. The unknowns in the problem are u,p
and p.

The classical Navier-Stokes equations correspond to the special case where
p(z,t) = po is a positive constant; in this case the third equation in (1.1) is automatically
satisfied. This case has been much studied (see Ladyszhenskaya (12] and Teman (19] and
the references there in).

Equations (1.1) have been less studied, maybe due to their‘mixed parabolic-
hyperbolic character. Antonzev and Kazhikov (2], Kazhikov (9], Lions [14], Simon [18]
and Kim [11] have studied local and global existence for weak solutions of (1.1). Stronger
local and global solution were obtained by Ladyszhenkaya and Solonnikov [13] by lineariza-




tion and fixed point arguments, and also by Okamoto [15] by using evolution operators
techniques and also fixed point arguments; they assume exponential decay of the external
forces. The more constructive spectral semi-Galerkin method was used by Salvi [17] to
obtain local in time strong solutions and to study conditions for regularity at ¢ = 0. That
technique was also used by Boldrini and Rojas-Medar [3] to obtain global strong solutions
corresponding to external forces with a mild form of decay in time.

We observe that all these known results on global existence of strong solutions
require some sort of decay in time of the associated external force. Ladyszhenkaya and
Solonnikov worked in the L%-space (¢ > n) and required exponential decay in time of
the (small) L?(€2)-norm of the external force. Okamoto worked in the L2?-space and f
identically zero, and, in order to obtain the same result for nonzero force field, at least
an exponential decay in time of the L?*(Q)-norm of f would be required. Boldrini
and Rojas-Medar worked in the L?*-space by requiring the milder form of decay f €
L3([0, o0); (LA(D)").

However, in the case of the classical Navier-Stokes equations, this kind of require-
ment is not necessary (see for instance, Heywood and Rannacher [9]), and, therefore, one
excepts to prove global existence without it in the case of equations (1.1).

This is indeed true, and we prove it in this paper by assuming f belonging
L*([0,00); (L*())") (with small enough norms, as usual, in the three dimensional case;
any norm in the two dimensional case) and certain other regularity assumptions that will
he detailed later on in the paper.

Thus we reach basically the same level of knowledge as the one in the case of the
classical Navier-Stokes equations.

Also, we present a sequence of estimates for the (strong) solutions of (1.1) and
their spectral approximations. These estimates are important because they are used in
an essencial way in a forthcoming paper by Boldrini and Rojas-Medar [4] to obtain uni-
form in time error bounds for the spectral approximations of (1.1). These estimates are
similar to the ones in Heywood (8] in the case of the classical Navier-Stokes, and they are
derived under a certain assumption on the stability of the solution being ;pproximated.
Also, thanks to the estimates present here, these uniform in time error bounds are ob-

tained without non realistic assumptions like the ones in Salvi [16], which require a global
compatibility condition on the initial data.



2 ~ Global Existence in the Case of External Forces
without Decay

We start by recalling certain definition and fact that will be used in the rest of
the paper.

In what follows we will assume § of class C. We will consider the usual

Sobolev spaces

Wma(D) = {f € LYD); 116 fllzscoy < +00, (lal Sm)} ,

m=0,1,2,...,1<¢<o00, D=0 or 2x(0,T), 0<T < +o0, with the usual norm.
When ¢ = 2, we denote H™(D) = W™2(D) and HZ(D) = closure of Cg°(?) in
H™(D). If B is a Banach-space, we denote by L%([0,T); B) the Banach space of the
B-valued functions defined in the interval [0,T) that are L%integrable in the sense of
Bochner.

Let C&(R) = {v e C&(Q)"; dive =0 in Q}; V = closure of Cg5,(2) in
H)(Q)", and H = closure of Cgo,(Q) in L3(Q)".

Let P be the orthogonal projection from L*(Q)" onto H obtained by the
“usual Helmholtz decomposition. Then the operator A: H — H given by A = —PA
with domain D(A) = H*(Q)" NV is called the Stokes operator. It is well known that

A is a positive definite self-adjoint operator and is characterized by the relation
(Aw,v) = (Vw,Vv) forall we D(A), veV.

From now on, we denote the inner product in H (i.e., the L*-inner product) by ( , ).
The general LP-norm will be denoted by || ||z»(n); to easy the notation, in the case p =2
we simply denote the L%-norm by || ||.

We observe that for the regularity properties of the Stokes operator, it is usually
assumed that § is of class C%; this being in order to use Cattabriga’s results [5]. We use
iinstead the stronger results of Amrouche and Girault 1] which implies, in particular, that
when Au € (L*(2))" then u € H?*(2) and ||u||y2 and ||Au|| are equivalent norms when Q
is of class C''. This will be enough for all of the results in this paper except for the last

one (Proposition 4.3) which will require that Q is of class C*! because in that proposition
we want to work with H3-regularity.



We will denote respectively by ¢, and M, (kK € N) the eigenfunctions and
eigenvalues the Stokes operator defined on V N (H?(2))". It is well know that {p*}§2,
form an orthogonal complete system in the spaces H, V and V N (H?*())" with their
usual inner products (u,v), (Vu,Vv) and (Au,Av), respectively.

We denote by Vi = span [¢y,..., ).

Still concerning the matter of notation, as it is usual we will denote
¢, ¢c,y...,C,C,. .. generic constants depending only on the fixed data of the problem.

The following assumptions on the initial data will hold throughout this paper:

(A.1) the initial value for the density p, belongs to C'(f2) and satisfies
0<a<pz) B <+oo aein Q.

(A.2) the initial value uo belongs to V N (H*(Q))".

Now, we rewrite problem (1.1) as follows: find p € C'(Q x (0,T)) and u €
C([0,T); D(A)) , u¢ € L=((0,T); H)N L*((0,T); V) (0 < T < +00) such that

(purv) + (96.V,0) + (Au,0) = (of,0) , Vo€ H ,
(2.1) pe+uVp=0, ae (2,t) e N2 x(0,T),
ul=o =t , Pli=o=po, ae TEN.

The espectral semi-Galerkin approximations for (u,p) are defined for each k € N
as the solution (u*,p*) € C*((0,T);Vi)NC'( x [0,T)) of

(pFub,v) + (a5 Vb, 0) + (Auk,0) = (5*f,0) , Vo € Vi,
(2.2) pE+ub Vpk =0, for V(z,t) € 2 x(0,T),
u(z,0) = ub(x) p(0,z) = po(z) , V2 €Q.
&

Here, ug are the projections of uy on V.

By using these approximations, Salvi [17] proved a local in time existence theorem
for (2.1) under assumptions (A.1) and (A.2). His result is the following. (Theorem 1 and
2, in Salvi [17))



Proposition 2.1 Suppose that (A.l1) and (A.2) are true and that f €
L*((0,7); (HY(Q))™, fi e L*(0,T); (L*(N))"); 0 < T < +oo. Then thereis0 < T' < T
such that the solution (u,p) of (2.1) satisfies

u € L2((0, T V N (HX(Q))") n L*((0, T'); (H¥(@)" V), p€CHAX(0,T))

a < p(z,t) < B, for almost all (z,t) in Q x (0,7”). This solution is unique.

Remarks.

i) The result stated by Salvi requires only f € (L*(€2 x (0,T)))" and f; €
(L*(Q % (0,T)))". In fact, his proof is done with f =0, and, in order for it to be true
for f #0, it is necessary to assume what we stated above.

ii) During the proof of Proposition 2.1, it is easily seen that the semi-Galerkin
approximations exist globally in time. (See also Kim [9])

We observe that the result stated in Proposition 2.1 can be improved.

Proposition 2.2. Under the conditions Propisition 2.1, we have
u € C([0,T'], D(A))

Proof. We will prove the continuity at ¢t = 0; for other points ¢, > 0 the argument is

quite similar.

We observe that u € C([0,T"], V) as it was proved by Simon (18] (Theorem 14,
p. 1110-1111); so it is enough to prove the continuity in the H2-norm.

For this we observe that it is enough to show that 'lin}_“PAu(- y Ol £ ||PAu|,
since we already know u(- , t) — ug in H'. To this end, sc;-t:ging v = PAuf in (2.2), we
obtain
14

k\1/2¢7, k(|2
) T ub I+ 5

|PAW|)?
= (pFut VUt = pff, PAUY) - /n uskauf

d .
= a(p"u"Vu" - o, PAu*) - (pfu"Vu" + p"ufvu" 3

6

»



+obuk Vb — ok f — ot f,, PAUY) — /nusp"Auf .

By integrating this expression with respect to time, and by using the estimates
(4.3), p. 6, (4.17), p. 10 and (4.24), p. 12 in Salvi [17], we have

IPAGD)IP < IPAGEIE +2{(p*u* Vb — gt , PAuY)
—(pougVug — pof(0), PAug)} + Nt
uniformly in k. From this, we conclude
IPAW()|1* < ||PAuo|[* + 2{(puVu — pf, PAu)
—(pouoVuo — pof(0), PAug)} + Nt .
Since puVu — poupVug in L*(2) and PAu — PAug weakly in L? as t — 0%, we

obtain the desired result. n)

Now, we state our first result.

Theorem 2.3. Suppose that n = 3, that (A.1) and (A.2) are true and that f €
L([0,00); (H'(R))"), fu € L=(10,00); (L(Q)"). I Iluollincay and [1fllzeooopcesanmy
are sufficiently small, then the solution (p,u) of problem (2.1) exists globally in time
and satisfies u € C([0,00); (H*(Q))"NV), p € C}Q x [0,T]) for any finite T > 0.

Moreover, for any v > 0 there exists some finite positive constants M and C such
that

sup ||Vu(t)|| = M
120

sup ||u,|| < C

>0

sup || Au(t)|| < C
20

¢
sup e“"/ e”||Vu(s)|)*ds < C
120 0

‘ D
sup c”"/ e”||u(s)||iyaeds < C
) 0

t
-t L7} V 2 d <C
S'lzllge /oe [[Vu(s)llc@)ds <

7



Also, the same kind of estimates hold uniformly in k for the semi-Galerkin ap-
proximations.

Remark. We have notationally distinguished the constant in the first of the above esti-

mates because it will play a special role in many points in the arguments that follow.
Proof. We start by proving the boundness in time of ||Vu(t)||.

From Kim [11], p. 94, we have the following differential inequality
d
(23) SVl + el Aull < [Tl + e

where ¢, ¢; and c3 = c sup||f(t)|| are positive constants. Now, we observe that there exist
: 20
¢z > 0 such that

cal|Vul[* < ]| Au|]?,

8o, in the above inequality we obtain
d
(2.4) ;EIIVqu < allVull” = el |[Vull* + 5.

Let () = ||Vu(t)||?; then we have the following differential inequality

d
d—if < Cl¢5 —cth+ec;

¥(0) =|Vuo|*.

We consider the corresponding differential equation

%. =c1¢5 —Cz¢+03 =F(Ca,¢)

¢(0) = %(0).

Results from the differential inequalities implies 1(t) < ¢(t) for all ¢ in the interval
of existence. Now, we observe that, when c; = 0, F(0,¢) = ¢;¢° — c39.

Consequently, F(0, ¢) has are simple root given by (0) = (c3/¢;)"*; this root is

unstable, and so, for c; small, F(c3, $) also has one unstable simple root r(c3) close to

8
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r(0). Thus, if 0 < $(0) = ¢(0) < r(c3), we have 0 < (t) < ¢(t) < r(c3) < +oo for all ¢
in the interval of existence. Thus, there is a constant M > 0 such that

(2.5) sup ||Vu|| = M < +o0.
120

Now, we proceed to prove the other stated estimates. They should be proved first
for the approximations (p*,u*) and then carried to (p,u) in the limit. Since that is a
standard procedure and the computations are exactly the same, to easy the notation, we
will work directly with (p,u) in the rest of the paper.

Also, we would like to mention that the technique of using exponentials as weight-
ning functions in time was inspired on Heywood and Rannacher [9).

Again from an inequality in Kim [11], we have

d
19l + ellAull? + cllpull” < e[| Vull® +ca,

Multiplying the above inequality by ¢,y > 0, and integrating in time from 0 to t, we
have

t t
e IVull* +c [ ellAu(s)lds + e [ elpH udlPds
g 10 y ‘
<o [ PlIVullds +es [ *ds+ [ €| Vulfds.
0 0 0
Multiplying by e~ and recalling that ||Vu(t)|| is uniformly bounded, we get that

] t
e""‘/0 e”||Au(s)|)* and e""/o e™||p" *uy||*ds

are also uniformly bounded. Now, by differentiating (2.1) (actually (2.2)) with respect to

t and setting v = uy, (actually v = uf), after of some computations we have

d

(2:6) ol + 20
= 2(pef,u) + 2(pfi,wi) — 4(puVuy, uy)
=2(puVu,uy) = 2(puVu,u).

By using the Sobolev type inequality (See Duff [6], p. 464)
(2.7) llpllze < llel*1 V0l .

9




We have

4(pu e u)l < 4llpl s lulle IVl [l
< dllolle1Vull 1l el ]| Pl 4}

< cellpllZe [Vull® [l + €l Vuel
thanks to the embedding H! — L* and Young’s inequality. Anagously we can prove that
2(pus Ve, )| < cellpllze [[Vull* [lud® + el Vudl* .
Also, we have
|(pfes )l < cellplizeIfell* + €l Ve | .

Using the relation p; = —div(pu), we have

2|(pefrue)l < 2|(puVif,u)| + 2|(puVuy, f)|

< eellpllze VUV AP + eellellzo [ Vull® || £117e + 2] Va2

and

—2/np,uVu U = 2/{;div(pu)uVu Uy

d
—22/ oo (puk) u,ax u; uj,

1,0,k

= -2 Z/ Pk — u. u, Uj

67,k

a 0
—ZZ/pu‘u.a D Ui

!JI

9
_2Z/puku. = "’ax. it

1.k

10



< cflpilzee | [ellze ||Vl [o] [Vl [l e
+ellplloe ||l Zel| Aull el e
ellpllzolullze || Vullze [[Vudl

< cllplZe 19wl | Aul|? + €|Vl |* -

thanks to the Holder inequality, the Sobolev embedding H* — L® and Young's inequality.
By choosing € = 1/8, from (2.5) and (2.6) we obtain

Sl 4 19
< BV ull|Aul + e8IVl |V 1P
+e VUl + eI
+o 1Tl + e8Pl
< B (M + M+ M)+ 1Al + AP + 1917 + 11£1)

< (3, M)l Pl Awll® + LA + VA1) -

Now, we multiply the above inequality by €™ , v > 0, and integrate in time from
0 to ¢, we have

, t
(28) Ml + [ e lITugs)|fPds
t
< 1w O + 4 [ €10 3u(s)ds

+¢(B, M) /0‘ ™ (llue(s)II* + | Au(s)[[* + £l 1* + 1V £1I%)ds

11



< BlluO)IF + B [ €*llus)lds

+e(8, M) [ *(lu()P + [ Au)I + )ds

where we have used the hypothesis on f.

By multiplying the above inequality by e~ we get

t
192wl + e [ ™| Vus)|Pds
(1]
; 2
< B luO)IP + Bre [ e lfu(s)IFds
t
+e(B, M)e™ [ e™(llud(s)I + lAu(s)I? + c)ds

< Be™|[u(0)I1* + K (B, M, )

thanks to the previous estimates. So, it is enough to find estimates for ||u,(0)]? (actually

I#)ID. |
For this, recall that u (uf) € V ﬂ_Hz(Q); consequently, by setting v = u, in (2.1)
(actually v = uf in (2.2)), we get

”pl/2u1”2 = (pf’ut) - (Auaul) - (Puvu, ut)

So, since ||p"/?u||?> > a||u||?, the above implies

1
e (0)II* < ={llollz==11£(0)]] + [| Auoll + cllpoll l|Auo|| ||Vuqll} < c.
a

Thus, we conclude that

(2.9) sup [[u(t)]] < e
120

t
(2.10) sup e"’"/ e”||Vu(s)||*ds < ¢
120 0
Setting v == Au in (2.1) (actually v = Au* in (2.2)), we get
“Au”2 = (pf’ Au) - (puh Au) - (puvus A‘U) ’

12



which implies

lAull < Hlpllze A1+ lpllze lluell + llollze | fullze [Vullze
< BIAN + Blludl + cBIIFull |Vl /4] Au| P/

1
< BIAN+ Blludl + BV + 51l Aul

thanks to (2.6) applied to Vu, the fact that |[u||m2 < c|[Au]| by Amrouche and Girault’s
result [1] and Young’s inequality.

Finally, we conclude that
| Au|| < cBIIfIl + eBllud| + cBlIVull® < c,
and so, from this, (2.8) and the hypothesis on f, we get

(2.11) sup ||Au(t)]] < ¢

>0

Now, from the equivalent form of (2.1)
Au= P(p(ug+uVu— f)=F

(actually, the equivalent form of (2.2): Auf = Pi(p*(uf + u*Vu* — f)) = F*, which holds
because we are using a spectral basis), and the fact that

t
e—w/ e”||F(s)l|zeds < ¢
0
from our previous estimates (2.10), (2.11) (the same holds for F*), we conclude that
t
e"‘/ e ||u(s)||freds < ¢,
0

from Armrouche and Girault’s results.

Thus, the usual Sobolev embeddings imply that

t
e /o e[| Vu(s)|[Bayds < c -

Now, we observe that the previous estimates hold true for ¥ > 0 if we are considering

finite time intervals (0,7, 0 < T < +oo (with the suprema obviously depending on T').
This comes from the way that the proofs were done.

13



Thus, in a finite interval [0, T], we can take the last estimate with ¥ = 0. This
estimate together with the ones by Ladyzhenskaya and Solonikov ([13], p. 705) for Vp
and Vp, imply that p € C*(Q2 x [0,T)) for any finite T > 0. =

Remark. As in the end of the previous proof, we observe that all the estimates (except
the one on the derivatives of the density) hold true for 4 > 0 on the time interval (0, 00)
if we also include in the hypothesis f € L2([0, 00); HX(2))") , fi € L*([0, 00); (L*(R))™).

In what follows we prove that for nonhomogeneous fluids it is possible to recover
the classical result for the usual Navier-Stokes equations that in the two dimensional case

it is not necessary to assume the smallness of the initial data and external force. We have
the following result

Theorem 2.4. Suppose n = 2, that (A.1) and (A.2) are true,
f € L=([0,00); (HY(Q)"), fi € L®([0,00); (L*(Q))")

and satisfies u € C([0,00); (H?*(R))" N V) ,.p € C'(Q x [0,T)) for any finite T > 0.
Moreover, the estirnates given in Theorem 2.1 are true for any + > 0.

Proof. The same remarks made at the beginning of the proof of Theorem 2.1 hold here.
Working as in Lions [14], p. 65, we have

d
=16 2]l + 193l = (o)

Consequently, by multiplying the above equation by €7 and recalling that ||u||? <
Cal|Vul|? for u € (H}())", we conclude

d - 1 = 1 _
E(C"'Hpmulla) + §¢3"'||V“||2 < 5035267'“}‘“'

The above inequality implies,

- ]
(2.12) 20l + e [ &) Tu(s)|ds

14



- ~ ‘ -~
< 2 |oi woll* + F2Che ™ [ €IS (s)]"ds

C? 2
o) 1.

< 2B|fuoll* + =%
v

Also, working as in Simon [18], p. 1115, we have
d 2 4 2
7!1Vull” < el Vul[* + | f]]

where c is a positive constant that depends only on 8 and I' (the boundary of 2). Setting
¥(t) = ||Vu(t)||? in the last inequality, we have

(213) Sy < e +ellfIl

1/2
Now, we observe that cy? + ¢; < 2¢y? for ¢ > (%) , where ¢; = ¢ sup ||f(2)||. If we
' te[0,T)

call £* = max{ (c—l)ln, 1, ||Vu0||2}, then either we have 0 <3(t) < ¢ forallt>0or
there exists some icnterval (t1,22) , t2 > t; for which ||Vu(t;)||* = ¢* and for t € (1, t3)
it is true that [|Vu(?)||* > €. Then, due to our choice of ¢*, in this interval [t1, 1)
there holds E"b < c? or, equivalently, A

d
-d—tfmb <cyp.

Multiplying the above inequality by €7 we have

%6‘7‘€11¢ < e + Feliny .

Now, we observe that there exists a positive constant k such that ny < k + kv,

consequently, using this and integrating the last inequality from t, to ¢ € [t1, 23], we get

e tni(ty) — " ny(ty)
t _ v
<(c+ ﬁk)/‘ e Y(r)dr +Jk [ e7dr
) ]

80,
Iny(tz) — €7~V en(ty)

15



L= = [t
< (c+7k)e"'/ e’ y(r)dr + 7ke"'/ e dr
6 4t

cip*

2l

< (e + k)28 |uol|* + 1f113e] + k(1 = e77]

= 2 sz)ﬂz 2 =M
< (e +7k)[28]|uol|* + —;Ilflle] tk=M.

P(t)
P(t)

Consequently, since —e™1-9¢ny(t,) > —fny)(t;), we have ¢n
for all t € [t,,1,]

< M, which implies,

IVu(t)|? < [|Vu(ty)]Pe™ = e .

Since this is independent of ¢, and t;, we conclude that for all ¢ > 0 we have
IVu(t)||> < max{€", &M} = e-eM .

The rest of analysis is now done exactly as in the tridimensional case. 0

3 Global Existence in the Case of Exponentially De-
caying External Forces

In this Section we assume that the external force field decays exponentially in
time. We will show that the solutions of (2.1) have better regularity than in the previous

case, and we will be even able to prove an uniform in time estimate for the L*-norm of
the gradient of the density.

In fact, we have the following result

Theorem 3.1. Suppose n = 3, that (A.1) and (A.2) are true and that for some constant
>0, e"f e L*([0,00); (H(Q)"), ef, € L*([0,00); (L*(22))"). Then, if |luol| 1 (n)
and ||€" f|| Lo ((0.000:(22 () Sufficiently small, the solution (pyu) of problem (2.1) exists
globally in time. Moreover, there is a positive constant 4* < 5 such that for any
0 <0 < 77, there hold the following estimates

sup e” || Vu(t)||? < 400
€20
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sup ()1 + [ Au(0)IP) < +oo

sup [ IV + () fae + 11V mds < +o0
-jtzlg(llvp(t)llm + [lpe(t)]|Le) < o0

sup o(t)([[Vu(0)|) < +oo

sup p [ o) el + 14u(s)|)ds < +o0

In the last two estimates o(t) = min{l,t}e®. The same kind of estimates hold for the
semi-Galerkin approximations.

Proof. There hold the same remarks as the ones made in the proof of Theorem 2.3
(just after (2.5)) concerning the fact that the estimates should first be derived for the
approximations and then carried out to the limit. Multiplying the differential inequality

(2.4) by ™, with 0 < <7, we have for certain positive constants ¢, ¢z, ¢3

jt(ew”VUIIQ) < €| Vull'® = c2e™|| V| + ye™ ||Vl + ca.
Here ¢, and c; are independent of v and ¢; = csupe™||f(t)|]| < csupe™||f(2)]| < +oo.
>0 0

Now, let v* = mm{'y, and ¥(t) = || Vu|[?; then

ﬂC}

d
(—1211’ <oy’ -5+

¥(0) = ||Vuol[?
with ¢; = -021 by our choice of 4*.

Now, analogously as in Theorem (2.1), we prove that
(3.1) sup " !|Vul||* = sup y(t) < c < +o0
120

for all t > 0 if ||Vug|| and ||€™ f(2)]]L((0.00);(L2())») are small enough.

Now, we multiply the differential inequality (2.3) by ¢, with 0 < 8 < v, to
obtain

d A
T € IIVull?) + ce”llAull” + ce™||p"  ul|?
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< cre®||Vu||'® + 0™ || Vull® + ce” | fOII
By integrating the above inequality, we get for all £ > 0,

t i :
|| Vu(®)|® + C/O e%||Au(s)||*ds + c/o e®||p*u,||?ds
‘ L
< ||Vuol| + c1(sup(||Vu||)®(sup e"‘[lvu“’)/ =134
t20 >0 0 v
" t .
+0(sup || Vu||?) / e(0=1")2 4
t>0 0

. t .
+e(sup LF (I (sup ™I [ e ds
>0 >0 (]

Since § — 4" < 0 and (3.1) and the hypothesis of this Theorem.
Since § < 77, (A.1) and the hypothesis of the theorem of f together with estimate

(3.1) imply the following results

(3.2) sup e||Vu@®)|)* < C < +o0 -
- t

(33) sup [ " (|| Au(s)|['ds < € < +oo
- t

(34) sup [ " llu(s)|ds < € < +oo

To obtain the other estimates, we consider the inequality (2.8) with ¥ = 8, to-
gether with (3.2)-(3.4):

o Pull + [ e IITus)]ds
0
t
< 1P PO +0 [ e llp u(s)]ds
) 2 2 ‘ .
+e [ (lludI* +11Au@)ds +¢ [ LI + 1V f(s)]P)ds

< BlluO)|* + ¢ + /o' E(|1£(3)? + IV £()|]})e=F-Dgs

18



We can estimate ||u,(0)|| as we did previously and observe that

L WA + 19 ) Pe0"ds

< (sup(ILA)ll + 17 £(s) D) sup(™(1f)ll + 1V £ (o)D) [ s

since f < ¥, and we have exponential decaying of f.

Thus, we have
(3.5) sup e ||u,(t)||* < C < +o0 ,
>0
t
(3.6) sup/ % ||Vuy(s)||?ds < C < +oo .
‘ >0 Jo
Now, analogously as in Theorem 2.3, we can prove
(3.7) sup e (||Au(?)|* £ C < 400 .
120

To obtain estimates for the density, we observe that (2.1) is equivalent to Au =
P(p(=u; — uVu + f). Thus, A(e®u(t)) = P(e"p(—u, — uVu + f)), with 0 < 8 < 4°,
which implies, by Amrouch Girault’s results [1], estimates (3.1)-(3.7) and our hypothesis
on f, that ef'u € L?((0, 00); W28(12)).

Consequently, l?y Sobolev embedding

(3.8) ettu € L2([0,00); W'(Q)) .
Thus, the formula of Ladyzhenskaya and Solonnikov [13], p. 705,

IVp(t)]]ze < C|IV po|| oo eJo Vu(Mllzocds

furnishes that

(3.9) 3up ||Vp(t)llw < C < +oo,

19



since estimate (3.8) implies that for all ¢t > 0

Il

¢ (o o]
f IVu(s)||L~ds / e!||Vu(t)||p»e 3" dt
0 0

=) 1/2 ) 1/2
ot 2 '“dt)
([ e tivuteiade) ([

< C<+4oo.

IN

Now, the continuity equation (the equation for the density) and the above esti-
mates imply
(3.10) sup ||p(t)l|z= < G < oo .

To obtain higher order estimates, we proceed as follows:

We differentiate the equation (2.1) with respect to ¢t and set v = uy,

14

(3-11) ”Plﬁutt“2 + 2 dt

||Vu,||2
(Ptf’ Use) + (pfe, tu) — (pguVu,u“)

—(puVu, uy) + (puVug, uy) — (pouy, Uy) -
Now, we observe that for all § > 0

|(pefywe)| < CollpelIzo | FII* + 6]l | 5

|(pfer wee)| < CollplILoo 1 £el|* + 6] [wael* 5

(peuVe, u)| < Collpel [foe 1l |70 |0 + 8]t |? 5
|(pueVu, wie)| < Collpllzeo lluel Fl [ Vullfe + 6llwe P 5 -

(puVue, )l < Cllpl B |1l 2o || Vue]|* + 6]Jue]|? ;
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[(peuete)| < Cs|lpel oo lluel > + 8] Jueeel* -

Consequently, by using these estimates with § = % in (3..11) we are left with
allul? + 119w
dt

S CUISIP + LA + 1Vl + Ve * + Nuel?)

Multiplying the above inequality by o(t) = ¢” min{1,t} and integrating in time from
€ > 0 to t, we get

(312) @ [ o(s)lluals)lds + oDl Tu (DI

< @IVl +C [ aOUIF + AP+ IVul? + [Vl + [l s

Now, we observe that o(t) < e¥, and, therefore,

t
J @I + AR+ 190 + Tl + lud)ds
‘ A
S [ AP + 1A + IVl + 1V + el )
t
< ([ eommds) (sup (IR + AP + 19wl

¢ , ¢
+/0 eo’||Vu‘||2ds+/o " ||u|*ds £ C < +o0

in virtue of our hypothesis and estimates.

So, by taking €,, — 0, along a convenient sequence in (3.12)

: ,[,‘ a($)llua(s)l*ds + o ()| Vu()]I*

< C+ lim ole)l[Vuea)ll = € < +oo.
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Here, the subsequence was chosen according to the following easily proved lemma:
Lemma. If () 20, g(t) > 0 and
t
[ h(s)ds = g(t)
where g(t) is finite. Then there exist are subsequence €, — a* such that

enh(en) 20 as n—o00.

The lemma was applied with h(t) = o(t)||Vu.(t)||?, which satisfies the conditions
in it due to (3.6) and the fact that 0 < o(t) < €.

t
Now, the estimate for / o(3)||Au||*ds follows easily from the previous one by
using v = Ay, in equation (2.1). o

In the two dimensional case we have a stronger result

Theorem 3.2. Suppose n = 2, that (A.1) and (A.2) are true and that for some constant
¥>0, 'f € L([0,00); (H'(Q)"), €"fi € L=([0,00); (L*(R))"). Then, the solution
(pyu) of problem (2.1) exists globally in time. Moreover, the estimates in Theorem 3.1
hold true for any 0 <8 <" with v~ =7.

Proof. Again working as in Simon [18], op. 1115, we have
d
SNVl < ClIvall + clife,
with C a positive constant. Multiplying this inequality by €™ we can rewrite it as

d - = = <
ZENVull®) < ce™|[Vull* +7™||Vul? + ce™|| 7|2

< ae®™|Vull* + ¢ + ce¥||f||? .
Calling ¥(1) = 7||Vul[?, cs = c; + ﬁ\;ge’“njll’, the above inequality becomes

dy
EZ <ay + C3
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which can be analysed exactly as in Theorem 2.3, furnishing that sup e™||Vu(t)|]* =
120

sup ¥(t) < +oo.

10

Thus, we can take v* = 7, and the rest of the analysis is completely analogous to
the one in the previous theorem. o

‘Remark. We observe that the given estimate for uy in the previous two theorems hold
true in the case of the local existence if we take the supremum in the interval of time
[0,T], where 0 < T < +co is less than the time for which the solution is known to exist.
This estimate implies that the solution of the local existence theorem actually satisfies
u; € C((0,T), H) and, therefore, u € C*((0,T), H).

4 Results on the Pressure and Further Higher Or-
der Estimates

- In a standard way we can obtain information on the pressure. In fact, we have:

Proposition 4.1. Under the hypothesis of .Theorem 2.2 or 2.3, if (u,p) is a solution of
(2.1), there exists p € L*°([0, 00); H'(R2)/IR) such (u, p,p) is solution of (1.1).

Proof. We observe that (2.1) is equivalent to Au = P(g) where g = p(f—uVu—u,). Now,
our estimates for p and u imply that g € L*([0,00), L*(?)), and, therefore, Amrouch and
Girault’s results [1] imply that there is a unique p € L*([0,00); H'(€2)/IR) such that

—Au+Vp=g.

This and the equation for p imply that (u, p, p) satisfies (1.1). o

In the case in which the external force field decay exponentially in time, we have
better regularity for the pressure p.

Proposition 4.2. Under the hypothesis of Theorem 3.1 or 3.2, if (u,p) is a solution of
(2.1), there exists p such that (u,p,p) is solution of (1.1). Moreover, for any € > 0.
p € L2([0,00); H'(Q)/R) N C([e, 00); H'(Q)/ R),
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€ L=([e,00); H'()/IR).

Proof. Differentiating Au = P(g) with respect to ¢, which is possible by the regularity
results of Theorem 3.1 on 3.2, we have Auy = P(g;). Now these same regularity results
imply g, € L>([e, 00), L*()) for any & > 0.

Now, Amrouche and Girault’s results imply that the corresponding pressure p satisfies
pi € L([e, 00); H'(Q)/R) for any € > 0. Therefore, p € C([¢,00); H'(R)/R). o

By using the above estimates on the pressure we can derive heigher order esti-
mates in the case of exponentially decaying force fields.

Proposition 4.3. Under the conditions of Theorem 3.1, if Q is of class C?!, there holds
sup o(t)(llullfs +|Vul[f=) < +oo
>0

Proof. By the previous propositions we have regularity on the pressure, and we can
work directy with equations (1.1). Also, since Q2 is of class C*!, Amrouch and Girault's
(1) imply that the eigenfunctions of the Stokes operator have H %.regularity. Thus, the
-spectral approximations also have this H>-regularity in the space variable and we can to
try to estimate their H3-norm in an uniform way with respect to the approximationns.
This will imply in a standard way that the same estimate will hold for the solution.

Therefore, exactly as we did in all our previous results, since the computations
are the same, to easy the notation we will work directly with the solution.

By differentiating the equatlon (1.1) with respect to z; and by taking the inner

product in (L?(2))" with —A-—, we get

a
,,Agfu < ||5£||Lm(llu:||+IlullnwlIVulI+l|fll)

IIPIILw(II II+I| IIulIVUIIu

||“||L°°“_” + II ll)

since

(V;)_i' A-g—:;) - (I’V% Ag;i) =0,
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Consequently,

du

ot)lAz—II" < colt){lfull’ + M|l Aull* + II£IP11}

+ co(){[|Vud® + || Aull* + M?|| Au])®

+ |IVfIP} < C < 400

thanks to the previous estimates.

So, we conclude that
2 Ou 1,
a@llullts < () YollAZ=I < +oo
for all t > 0. Now, we utilize standard Sobolev embedding results to obtain

o(t)||Vul|)}e € C < 400

forallt > 0. (=]
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