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GLOBAL STRONG SOLUTIONS OF THE EQUATIONS 
FOR THE MOTION OF NONHOMOGENEOUS 

INCOMPRESSIBLE FLUIDS 

by 

José Luiz Boldrini 
and 

Marko Rojas-Medai· 
UNICAMP - IMECC 

C.P. 6065 
13081-970, Campinas, SP 

Brazil 

Abstract 

By using the spectral semi-Galerkin method, we prove a result on global exis-
tence in time of strong solutions of the N avier-Sto\es equations for the motion of 
nonhomogeneous incompressihle fluids. This was obtained without assuming that 
tbe external force field decay with time. We reach in this way basically the sarne 
levei of knowl«!dge as in the case of the classical Navier-Stokes equations. We also 
derive estimates that are useful for obtaining enor hounds for the approximate so-
lutions. Stronger forms of these estimates, including an uniform in time estimate 
for the gradient of the density, are obtained when the externai force field decays 
exponentiaJly. 

Introduction 

ln tbis work we will be concerned with global existence in time of strong solutions 
o! the three dimem-ioual strntified (or nonhomogeneous) Navier-Stokes cquations, tbat is, 
the equations for the motiou of a nonhomogeneous incompressible fluid (obtained as a 
mixture of miscible incornprcssible fluids, for i11sta11rn). Bcing íl C /Rn , R = 2 or 3, a. 
C 1•1-regular bounded open ~t, these equations are 
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(1.1) 

pau + pu.Vu - õ.u - gradp = pf, 
ôt 

div u =O, 

âp 
ât + u V p = O in íl , 

u = O on âíl x (O, oo) , 

uit=o(x) = uo m íl. 
Here íl is the container where the fluid is inside; u(x, t) E JRn denotes the velocity of 
the fluid at a point. x E íl and time t E [O, oo ); p(x, t) E IR and p(x, t) E IR denote 
the density and tho hydrostatic pressure of the fluid respectively; uo(x) and po(x) are 
initial velocity and density, respectively; J(x, t) is the density by unit of mass of the 
externai force acting on the fluid. Here, without loosing generality, we have scaled the 
va.riables in order to the viscosity to be one; the fluid adheres to the wall. âO • of the 

' • , • • 1 ' 

container which is assumed to be at rest. The expressions grad, and div denote the 
gradient, Laplacian and divergence operators, respectively ( we also denote the gradient 

d â-u b ) h ·.ili t • f • " • • operator by V an Dt y U1 ; t e i car es1an component o • u. v u 1s g1ven 
n Ôu.· n Ôp 

by (u.Vu); = L u,-a'; u.V p = L u,-a. The first equation in (1.1) corresponds to 
j=l Xj j=l Xj 

the balance of lint:ar momentum; the third equation to the balance of mass, a.nd the 
second one states tbat the fluid is incompressible. The unknowns in the problem a.re u, p 

a.nd p. 
The classical Navier-Stokes equations correspond to the special case where 

p(x, t) = p0 is a positive constant; in this case the third equation in {l.l) is automatically 
satisfied. This case has bcen much studied (see Ladyszhenskaya [12] and Teman [19) and 
the references therci in). 

Equations (1.1) havc bccu lcss studicd, maybe due to their mixed parabolic-
hyperbolic character. Autouzcv aud Kaihikov (2], Kazhikov (9], Lions [14), Simon (18) 
and Kim (11] have studied local and global existence for weak solutions of (1.1). Stronger 
local and global sol1Jtion were obtained by Ladyszhenkaya and Solonnikov (13) by lineariza-
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tion and fixed point arguments, and also by Okamoto [15] by using evolution operators 
techniques and also fixed point arguments; they assume exponential decay of the externai 
forces. The more constructive spectral semi-Ga.lerkin method was used by Salvi [17] to 
obtain local intime strong solutions and to study conditions for regularity at t = O. That 
technique was a.lso used by Boldrini and Rojas-Medar [3] to obtain global strong solutions 
corresponding to externai forces with a mild form of decay in time. 

We observe that ali these known results on global existence of strong solutions 
require some sort of decay in time of the associated externai force. Ladyszhenk&ya and 
Solonnikov worked in the Lq-space (q > n) and required exponential decay in time of 
the (sma.11) Lq(íl)-norm of the externai force. Okamoto worked in the V-spa.ce and / 
identically zero, and, in order to obtain the sarne result for nonzero force field, at least 
an exponentia.l decay in time of the L2(íl)-norm of f would be required. Boldrini 
and Rojas-Medar worked in the L2-space by requiring the milder form of decay / E 
L2((0, oo ); (L2(íl) t ). 

However, in the case of the classical Navier-Stokes equations, this kind of require-
ment is not necessary (see for instance, Heywood and Rannacher [9]), and, therefore, one 
excepts to prove global existence without it in the case of equations (1.1). 

This is indeed true, and we prove it in this paper by assuming / belonging 
L00([0,oo); (L2(íl))n) (with small enough norms, as usual, in the three dimensional case; 
any norm in the two dimensional case) and certain other regularity assumptions that will 
he detailed la.ter on in the paper. 

Thus we reach basically the same levei of knowledge as the one in the case of the 
classical Navier-Stokes equations . 

Also, we present a sequence of estimates for the (strong) solutions of {1.1) and 
their spectral a.pproxima,tions. These estimates are important because they are used in 
a.o essencial way in a forthcoming paper by Bol<lrini anel Rojas-Medar [4) to obtain uni-
form in time errar bouu<ls for lhe spectral approximations of ( 1.1 ). These estimates are 

similar to the ones in Heywood [8J i11 the case of the classical Navier-Stokes, and they are 
derived under a certaín assumption 011 the stability of th~ solution being approximated. 
Also, tbanks to th,! estimates present here, these uniform in time error bounds are oh-
tained without non realistic assumptions like the ones in Salvi [16], which require a global 
compatihility condition on the initial data. 
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2 Global Existence in the Case of Externai Forces 
without Decay 

We start by recalling certain definition and fact that will be used in the rest of 

the paper. 
ln what follows we will assume íl of class C1•1. We will consider the usual 

Sobolev spaces 

m O, 1, 2, ... , 1 s q oo, D = íl or íl x {O, T), O < T +oo, with the usual norm. 
When q = 2, we denote Hm.(D) = wm.•2 (D) and H0 {D) = closure of Ccf(íl) in 
Hm(D). If B is a Bana.ch-space, we denote by Lq([O, T); B) the Banach space of the 
B-valued functions defined in the interval [O, T) that are Lq-integrable in the sense of 
Bochner. 

Let Cõ,11 (U) = { v E Cif{ílt; div v = O in íl}; V = closure of Ccf.Aíl) in 
HJ(ílt, and H = closure of cru(íl) in Li(nt. 

Let P be the orthogonal projection from L2{ílt onto H obtained by the 
usual Helmholtz decomposition. Then the operator A : H ___. H given by A= -PA 
with domain D(A) = H 2(ílt n V is called the Stokes operator. It is well known that 
A is a positive definite self-adjoint operator and is characterized by the relation 

(Aw, v) = (v1w, v1v) for all w E D(A), v E V . 

• From now on, we denote the inner product in H (i.e., the L2-inner pl'Oduct) by ( , ). 
The general LP-norm will be denoted by 11 llo•(n); to easy the notation, in the case p = 2 
we simply denote the L2-norm by 1111-

We observ,: that for the regularity properties of the Stokes operntor, it is usually 
assumed that íl is of class C 3 ; this being in ordeL· to use Cattabriga's results [5]. We us~ 
instea.d the stronger re1mlts of Anirouche and Girault [l] which implies1 in particular, tha.t 
when Au E (L2(íl))" thcu u E H2 (íl) and llull11~ and IIAull are equivalent norms when íl 
is o{ class C1•1. This will be enough for all of the results ín thís papei· except for the last 
one (Proposition 4.3) which wíll rcquire that íl is of class C 2•1 beca.use in that proposition 
we want to work with /J 3-regularity. 
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We will denote respectively by '{)k and >ik (k E N) the eigenfunctions and 
eigenvalues the Stokes operator defined on V n (J/2(fl)t. It is well know that {c.pk}r=l 
form an orthogonal complete system in the spaces H, V and V n (H2(fl)r with their 
usual inner products (u,v), (Vu, Vv) and (Au,Av), respectively. 

We denote by V1r: = span (c.p1, ... , c.p,J 
Still conceming the matter of notation, as it is usual we will denote 

e, c1, ... , C, C1, ... generic constan ts depending only on the fixed data of the problein. 
The following assumptions on the initial data will hold throughout this paper: 

(A.1) the initial value for the density p0 belongs to C1(fl) and satisfies 
0<cr~po(x)~/3<+oo aein n. 

(A.2) the initial value u0, belongs to V n (H2(fl)t. 

N ow, we rewri te problem ( 1. 1) as follows: find p E C1 ( fl x ( O, T)) and u E 
C((O, T); D(A)) , u., E L

00
((0, T); H) n L2((0, T); V) (O< T +oo) such that 

(pu,, v) + (pu.Vu, v) + (Au, v) = (pf, v) , Vv E H , 

(2.1) Pt + u.\lp =O, ae (x,t) E n x (O,T), 

ult;;:;0 = tlo , Plt;;:;0 = Po , ae X E n • 
The espectral semi-Galerkin approximations for ( u, p) are defined for each k E N 

as the solution (uk,pk) E C2([0,T]; Vi) n C1(fl x [O,T)) of 

{ 
(lu7,v) + (pkuk.Vuk,v) + (Auk,v) = (lf,v), Vv E Vi, 

{2.2) P7 + uk.Vpk = o ' for V(x,t) E n X (O,T)' 
u(.i,O)=u~(x) p(O,x)=p0(x), VxEfl. 

Here, u~ are the projectious of u0 on Y,;. 
By using thci;e apprnximations, Sal vi (17] prove<l a local in time ~xistence theorem 

for (2.1) under assumptious (A .l) and (A.2). His result is the following. (Theorem 1 and 
2, in Salvi [17)) 
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Proposition 2.1 Suppose that (A.l) and (A.2) are true and that / . E 
L:i((O, T); (H1(íl)t, .ft E L2((0, T); (L2(íl)t); O < T < +oo. Then there is O< T' T 
such that the solution (u, p) of (2.1) sa.tisfies 

a~ p(x, t) /3, for almost all (x, t) in íl x (O, T'). This solution is unique. 

Remarks. 
i) The result sta.ted by Salvi requires only J E (L2(íl x (O, T)))" and J, E 

(L:i(n X (O, T)))". ln fàct, his proof is do~e with f = O, and, in order for it to be true 
for f O, it is necessary to assume what we stated above. 

ii) During the proof of Proposition 2.1, it is easily seen that the semi-Galerkin 
approximations exist globally in time. (See a.lso Kim (9)) 

We observe that the result stated in Proposition 2.1 can be improved. 

Proposition 2.2. Under the conditions Propisition 2.1, we have 

u E C([O, T'), D(A)) 

Proof. We will prove the continuity at t = O; for other points t0 > O the argument is 
quite similar. 

We observe that u E C((O, T'), V) as it was proved by Simon [18) (Theorem 14, 
p. 1110-1111); so it is enough to prove the continuity in the 112-norm. 

For this we observe that it is enough to show that ,~~\ IIPó.u( • , t)II IIPó.u0 II, 
since we already know u( • , t) -+ uo in H 1• To this end, setting v = Pó.u~ in (2.2), we 
obta.in 
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.. +lukVu~- p:J-lJc,Pó.tl)- lo u~V/ó.u~ . 

By integrating this expression with respect to time, and by using the estimates 
(4.3), p. 6, (4.17), p. 10 and (4.24), p. 12 in Salvi [17], we have 

IIPó.1/(t)ll2 $ IIPó.u~ll2 + 2{(/ukv'uk - / f, Pó.t.t1') 

-(pott~Vu~ - Pof(O), Pó.u~)} + Nt 

uniformly in k. From this, . we conclude 

IIPó.1l(t)ll2 $ · IIPó.uoll2 + 2{(puv'u - pf, Pó.u) 

-(potto v'uo - Pof(O), Pó.tto)} + Nt . 

Since puVu - p0u0v'u0 in L2(fl) and Pó.u--+ Pó.u0 weakly in L2 as t--+ o+, we 
obtain the desired result. D 

Now, we state our first result. 

Theorem 2.3. Suppose that n = 3, that (A.l) and (A.2) are trne and that f E 
L00 ([0,oo);(H1(fl))n), /, E L00 ([0,oo);(L2(fl)t). If lluollH1(0) and II/IIL00([0,00);(L2(0))") 
are sufficiently small, then the solution (p, u) of problem (2.1) exists globally in time 
and satisfies u E C([O,oo);(H2(fl))" n V), p E C1(íl x [O,T]) for any finite T > O. 
Moreover, for any , > O there exists some finite positive constants M and C such 
that 

sup llv'u(t)II = M 
t~O 

sup llu,11 $ e 
t~O 

sup IIAu(t)II $ e 
t~O 

sup e--,I /' e"l'llv'u,(.s)ll2ds $ C 
1~0 lo 
sup e_..,, /' e"l'llu(.'J)lltvi,ad.'J $ e 
1~0 lo 
sup e_..,, /' e"l'llv'u{s)llt(n)ds $ e 
,~o lo 
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Also, the sarne kind of estimates hold uniformly in k for the semi-Galerkin a.p-
proximations. 

Remark. We have notationa.lly distinguished the constant in the first of the above esti-
mates because it will play a specia.l role in many points in the arguments that follow. 

Proof. We start by proving the boundness intime of IIVu(t)II-

(2.3) 

From Kim [11], p. 94, we have the following differential inequality 

d 
dt 11Vull2 + cl1Aull2 :5 ci11Vull1° + C3 

where c,c1 and c3 = e supllf(t)II are positive constants. Now, we observe that there exist 
t>O 

c2 > O such that -

so, in the above inequality we obtairi 

(2.4} 
d 
dt IIV1tll2 :5 c1IIVull1º - c2IIVull2 + c3 • 

Let t/J(t) = 11Vu(t)ll2; then we have the following differential inequality 

d,p s dt $ CtfP - C2tp + C3 

We consid(:r the corresponding differential equation 

<b(O) = ·it,(O) . 

Resulte from the differential inequalities implies ip( t) :5 </>( t) for all t in the interval 
of existence. Now, we observe that, when c3 = O , F(O, </>) = c1<,h5 - c2 </,. 

Consequently, F(O, </>) has are simple root given by 1'(0) = (c2/ci)1l4; this root is 
unstable, and so, for c3 small, F(c3 , </>) also has one unstable simple root r(c3 ) dose to 
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r(O). Thus, if O < ,J,(O) = </>(O) < r(c3), we have O $ ,p(t) $ </>(t) $ r(c3) < +oo for ali t 
in the interval of existence. Thus, there is a constant M > O such that 

(2.5) sup IIVull = M < +oo. 
'~º 

Now, we proceed to prove the other stated estimates. They should be proved firat 
for the approximations (p'<,uk) and then carried to (p,u) in the limit. Since that is a 
standard procedurn an<l the computations are exactly the sarne, to ea.sy the notation, we 
~ill work directly with (p, u) in the rest of the paper. 

Alsa'; we would like to mention that the technique of using exponentials as weight• 
ning íunctions in time wa.s inspired on Heywood and R.anoacher (9) . 

Again from an inequality in Kim [11), we have 

Multiplying the above inequality by e-rt, 1 > O, and integrating in time from O to t, we 

have 

$ e fo 1 e-Y'IIVull1°ds + c3 fo' e"f'ds + 1 1' e-Y'IIVulf'ds. 

Multiplying by e_..,, and recalling that IIVu(t)II is uniformly bounded, we get that 

e--rt fo' e..,'IIAu(s)lll and e--r 1' e,.'ll/l1u,ll1ds 

are also uniformly bounded. Now, by differentiating (2.1) (actually (2.2)) with respect to 
t and setting v = u1, (actually v = u~), after of some computations we have 

(2.6) 

(2.7) 

d 
dt IIP11lu,lll + 211vu,W 

= 2(pif, u1) + 2(p/11 u1) - 4(puVu 11 u,) 

-2(pu1 Vu, u,) - 2(p1uVu, u1) . 

By using the Sobolev type inequality (See Duff (6] , p. 464) 
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We have 

th~nks to the embedding H 1 <-+ L 4 and Young's inequality. Anagously we can prove that 

Also, we ha.ve 

Using the relation Pt = -div(pu), we have 

2l(Pd, u,)I $ 2l(puV J, Ut)I + 2l(puVut, J)I 

and 

-2 k Pt«Vu ttc = 2 k div(pu)uVu u 1 

n a a = -2 L f puk-, Uj-Uj Uj,C 
· . ,.Jo 8xk ÔX1 l,J, 

n {) {) 
-2 L f PUkUi-Uj- Uj,t 

• ' LJo âxi. axj •,J,1' 
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thanks to the Holder inequality, the Sobolev embedding H1 <--+ L 6 and Young's inequality. 
By choosing e= 1/8, from (2.5) and (2.6) we obtain 

!IIP11:iutll2 + 11Vutll2 

Now, we multiply the above inequality by e-Y1 , 1 > O, and integrate intime from 
O to t, we have 
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+c(,B, M) fo1 e-Y•(llu,(s)ll2 + IIAu(s}ll1 + c)ds , 

where we have used the hypothesis on /. 
By multiplying the above inequality by e--rt, we get 

ll/12u1W + e--rt l' e-Y'IIVu,(s)1!2ds 

thanks to the previous estimates. So, it is enough to find estimates for llu,(0)111 (a.ctually 
llut(o)II). 

For this, recall that uo (u~) E VnH2(íl); consequently, by setting v = u, in (2.1) 
{actually v = uf in (2.2)), we get 

llp1l2utll2 = (pf, u1) - (Au, u1) - (puVu, u,) 

So, since llp11lutll2 2:: allu1112, the above implies 

llu1(0)ll2 5 .!.{IIPollu"'llf(O)II + IIAuoll + cllPoll llAuoll llVuoll} 5 e. a 

Thus, we conclude that 

(2.9) 

(2.10} 

sup llu,(t)II 5 e 
t~O 

Setting v = Au in (2.1) (actually v = Atl in (2.2)), we get 

IIAull1 = (pf, Au) - (pu,, Au) - (puVu, Au) , 
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which implies 

1 
< ,BIIJII + ,Bllu,II + c,BIIVull5 + 2IIAull 

thanks to (2.6) _applied to Vu, the fact that llullH:z $ cl!Aull by Amrouche and Girault's 
~esult [1] and Young's inequality. 

Finally, we conclude that 

IIAull c,Bllfll + c,Bllutll + c,BIIVuW $e' 

and so, from this, (2.8) and the hypothesis on J, we get 

(2.11) sup IIAu(t)II $ e 
t~O 

Now, from the equivalent form of (2.1) 

Au = P(p(ut + uVu - f) = F 

(actually, the equivalent form of (2.2): Atl = Pk(l(u} + tlVuk - !)) = Fie, which holds 
because we are using a spectral basis), and the fact that 

e--.,t fo' e-YªIIF(s)llf6ds $ e 

from our previous estimates (2.10), (2.11) (the sarne holds for Fk), we conclude that 

e--.,t fo' e-Yªllu(s)ll~1,6ds $e, 

from Arnrouche and Girault's results. 
Thus, the usual Sobolev embeddings imply that 

e_,.,, fo' e-YªIIVu{s)ll&(n)ds ~e. 

Now, we observe that the previous estimates hold true for 1 O if we are considering 
finite time intervala (O, T), O < T < +oo (with the suprema obviously depending on T). 
This comes from the way that the proofs were done. 

13 



' j 

Thus, in a finite interval [O, T], we can take the last estimate with "Y = O. This 
estimate together with the ones by Ladyzhenskaya and Solonikov ([13], p. 705) for V P 
and V Pc imply that p E C1(0 x [O, T)) for any finite T > O. O 

Remark. As in the end of the previous proof, we observe that all the estimates ( except 
the one on the derivatives of the density) hold true for, O on the time interval (O, oo) 
if we also include in the hypothesis J E L2([0, oo); H 1(0)t), fc E L2([0, oo); (L2(n))n). 

ln what follows we prove that for nonhomogeneous fluids it is possible to recover 
the classical result for the usual Navier-Stokes equations that in the two dimensional case 
it is not necessary to assume the smallness of the initial data and externai force. We have 
the following result. 

Theorem 2.4. Suppose n = 2, that (A.l) and (A.2) are true, 

f E L00 ([0, oo ); (H1(0)t), Ít E L00 ([0, oo ); (L2(0)t) 

and satisfies u E C([0,oo); (H2 (O))n n V) , p E C1 (n x (0,T]) for any finite T > O. 
Moreover, the estirnates given in Theorem 2.1 .are true for any , O. 

Proof. The sarne remarks made at the beginning of the proof of Theorem 2.1 hold here. 
Working as in Lions (14], p. 65, we have 

Consequently, by multiplying the above equation by e:;c and recalling that llulll S 
CnllVuW for u E (HJ(O))n, we conclude 

:t (e.,'IIP112ull2 ) + ~e.,'ll'v'ull2 $ iC~.B2e.,1IIJlr~ 
1 

for O < 7y $ 4/JCn • 
The above inequality implies, 
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Also, working as in Simon [18), p. 1115, we have 

where e is a positive constant that depends only on /3 and r (the boundary of O). Setting 
t/J(t) = 11Vu(t)ll2 in the last inequa.lity, we have 

(2.13) d 
dt 1P s; c'I/J2 + cj lf 112 . 

Now, we observe that cip2 + c1 s; 2c'I/J2 for 1/J 2:: (c1) 11
\ where c1 = e sup IIJ(t)II. lf we 

• • C tE[O,T) 

call t• = max{ (~) 112
, 1, llv7u0 !12 }, then either we have Os; 1/J(t) 5 for all t 2:: O or 

there exists some interval [ti, t2] , t2 > t1 for which 11Vu(ti)ll2 = l* and for t E [ti, t2) 

it is true that 11Vu(t)1!2 2:: e-. Then, dueto our choice of e•, in this interval [t 1,t2} 

there holds ! tp ::; c'I/J2 or, equivalently, 

Multiplying the above inequality by e'::it we have 

d -, -, -dte.., ln'I/J s; ce.., 1/J + 1e..,tln'I/J. 

Now, we observe that there exists a positive constant k such that ln.p 5 k + k,p, 

consequently, using this and integrating the last inequality from t1 to t E [ti, t2), we get 

é 1lnt/J(t2) - e'::i11 ln:ip(ti) 

~(e+ :Yk) j 1 e:;Tt/J(r)dr + -;;;k j' e:;T dr, 
11 11 

so, 
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$ (e+ 1Á~)[2,Blluoll2 + Cfi_!2 ll/ll1oo) + k[l - e-912 ) 
'Y 

c2 rP -
$(e+ 1k)[2,Blluoll2 + ~11/11100 ) + k = M • 

"Y 

• · 1/J(t) M h' h • 1' Consequently, smce -e-y(t1 -t>tnt/J(t1) -f.nt/J(t1), we have ln 1/J(ti) $ , w te 1mp 1es, 

for ali t E (ti, t2] 

Since this is independent of t1 and t2 , we conclude that for all t > O we have 

The rest of analysis is now clone exactly as in the tridimensional case. o 

3 Global Existence in the Case of Exponentially De-
caying J~xternal Forces 

ln this Section we assume tha.t the externai force field decays exponentially in 
time. We will show tha.t the solutions of (2.1) have better regularity than in the previous 
case, and we will be even a.ble to prove an uniform in time estima.te for the L00-norm of 
the gra.dient of the density. 

ln fact, we have the following result 

Theorem 3.1. Suppose n = 3, that (A .1) and (A.2) are true and that for some constant 
1 >O, e5'J E L00 ([0,oo); (l/ 1(íl))"), e9tf1 E L00 ([0,oo);(L2 (íl))"). Then, if lluollH1(0) 
and lle9'Jlltoo((o,oo);(L"(O))"l sufficiently small, the solution (p,u) of problem (2.1) exists 
globally in time. Moreovcr, there is a positive constant -y• :S ·;:;r such that for any 
O () < -y•, there hold the following estimates 

sup e-yºt11Vu(t)ll2 < +oo 
t::o 
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• 

sup e8t (llu1(t)ll2 + 11Au(t)112) < +oo 
1:!0 

sup /' e85 (11v'u,(s)ll2 + llu(s)ll?vM + llv'u(s)llioods < +oo 
':!º lo 
sup(llv' p(t)llu,0 + IIP1(t)IIL00 ) < +oo 
1:!0 

sup o-(t)(llv'ut(t)ll2) < +oo 
1:!0 

fo' o-(s)(lluu(s)ll2 + 11Au,(s)ll2)ds < +oo . 

ln the last two estimates o-(t) = rnin{l, t}e8t . The sarne kind of estimates hold for the 
semi-Galerkin approximations. 

Proof. There hold the sarne rernarks as the ones rnade in the proof of Theorem 2.3 
(just after (2.5)) concerning the fact that the estimates should first be derived for the 
approximations and then carr.ied out to the limit. Multiplying the differential inequality 
_(2.4) by e-rt, with O :5 1 :5 -y, we have for certain positive constants c1, c1 , c3 

d 
d/e,,rllv'u!12) :5 c1e-Y'llv'ull1º - c2e-Y'llv'ull2 + -ye-Y'llv'ull2 + c3 • 

Here c1 and are independent of I and C3 = csupe-ytllf(t)II :5 csupe~'IIJ(t)II < +oo. 
t>O t>O 

Now, let ,• = min{ 1, /3~o} and 1/;(t) = e-Y• 1llv'ull2~ then -

d s 
dt 1P :5 C1VJ - C2VJ + C3 

with = by our choice of ,· . 
Now, analogously as in Theorem (2.1), we prove that 

(3.1) supe-,•'llv'uW = sup-,p(t) :5 e< +oo 
t~O t~O 

for all t O if llv'uoll and lle"i1/(t)IIL'"'' ((o,oo);(L1(n))") are small enough. 
Now, we multiply thc <liffercntial inequality (2.3) by e91 , with O $ 8 < 1 •, to 

obtain 
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By integrating the above inequality, we get for ali t O, 

e111 IIVu(t)ll2 + e fo1 e11ª11Au(s)Wds + e 1' e11ª11/11u1Wds 

Since O - -y• < O aud ( 3.1) and the hypothesis of this Theorem. 
Since O < "!-, (A.l) and the hypothesis of the theorem of / together with estimate 

(3.1) imply the following results 

(3.2) 

(3.3) 

(3.4) 

sup e°1IIVu(t)ll2 :5 e< +oo . 
t~O 

sup f' e11ª(11Au(s)Wds :5 C < +oo 
t~o lo 

sup /' e°ªllu1{s)ll2ds :5 e< +oo 
i~o lo 

To obtain the other estimates, we consider the inequality (2.8) with 1 = IJ, to-
gether with (3.2)-(:3.4): 

e111 llp1flu 1W + fo1 e°ªIIVu1(s)ll2ds 

+e fo' e11'(llui(s)ll2 + 11Au(s)ll2)ds + e fo' e11ª(11/,(s)ll1 + IIV /(s)ll1)ds 

:5 Pllu,(0)111 +e+ lo' e'1'(ll/,(s)ll1 + IIV /(s)1r1)e-<1- 111'ds. 

18 



We can estimate llúi(O)II as we did previously and observe that 

la' e::Y•(ll/1(s)ll2 + 11Vf(s)1!2)e-(::Y-B)•ds 

:5 (~~f(ll/,(s)II + IIV f(s)ll))(~~f(e::Yª(ll/1(s)II + IIV f(s)II)) fo1 e-(::Y-l)•ds 

c2 
<-- <+oo - -:Y-0 

since O < -::;, and we have exponential decaying of /. 

(3.5) 

(3.6) 

(3.7) 

Thus, we have 

supe'tllui(t)ll2 <e< +oo, 
t~O 

. sup ri e'"IIVui(s)ll2ds <e< +oo . 
t~o Ío 

Now, analogously as in Theorem 2.3, we can prove 

sup e8"(11Au(t)ll2 e < +oo . 
t~O 

To obtain estimates for the density, we observe that (2.1) is equivalent to Au = 
P(p(-u, - uVu + !). Thus, A(e81 u(t)) = P(e8tp(-u1 - uVu + /)), with O < 8 < 1•, 

which implies, by Amrouch Girault's results [1), estimates (3.1)-(3.7) and our hypothesia 
on /, that ef'u E L2((0, oo); W2•6(íl)). 

Consequently, ?Y Sobolev embedding 

(3.8) 

Thus, the formula of Ladyzhenskaya and Solonnikov [13}, p. 705, 

furnishes that 
(3.9) sup IIVp(t)IILoo :5 e< +oo' 

t~O 
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. since estimate (3.8:) implies that for all t O 

$ e< +oo. 

Now, the continuity equation (the equation for the density) and the above esti-
mates imply 
(3.10) sup IIP1(t)lli00 ::; e< +oo • 

t~O 

To obtain higher arder estimates, we proceed as follows: 
We differentiate the equation (2.1) with respect to t and set v = u11 , 

(3.11) 

(ptf, Htt) + (PÍt, uu) - (p1u'\7u, uu) . 

Now, we observe that for all ô > O 

20 
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Consequently1 by usi11g these estimatcs with 6 :::: in (3 .. 11) we are left witb 

Multiplying the above inequality by cr(t) = eº' min{l, t} and integrating in time from 
e > O to t, we get 

(3.12) o J,' cr(s)llttu(s)1!2ds + cr(t)l!Vu,(t)lll 

• Now we ·observe that cr( t) e11', and, therefore, 

in virtue o( our hypotl1e1:1is a11d estimates. 
So, by ta.king ê 11 -+ O, c1lo11g a convenient 1:1equenct, in (3. l2) 

~e+ lim a(ê,,)IIVu,(ê,.)11";::: e < +oo . ,,.-o 
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Here, the subsequence was chosen according to the following easily proved lemma: 

Lemma. If h(t) O , g(t) O and 

where g(t) is finite. Then there exist are subsequence ên -. a+ such tha.t 

.. . The lemma was applied with h(t) = o-(t)llv7u,(t)II\ which satisfies the conditiom 
in it dueto (3.6) and the fact that O $ o-(t) e9'. 

Now, the E:stimate for fo 1a(s)IIAu,ll2ds follows easily from the previous óne by 
using v = Au, in equation (2.1). C 

ln the two dimensional case we have a stronge1· result 

Theorem 3.2. Suppose n = 2, that (A.1) and (A.2) are true and tha.t for some constant 
;:; >O, e:Y'J E Lºº([O,oo);(H1(íl)t), e::;'ft E L00 ([0,oo);(L2 (íl))n). Then, the solution 
(p, u) of problem (2.1) exists globally in time. Moreover, the estimates in Theorem 3.1 
hold true for any O~ O<,· with ''( = 1· 

Proof. Again working as in Simon [18), op. • 1115, we have 

with C a. positive constant. Multiplying this inequality by e'i' we can rewdte it as 

:, (e'i'llv7ull2) < ce'i'llv7ull.a + ::Ye::;'llv'ull2 + cé'llf112 

$ c,e2"i111v7uW + C2 + ce"i'll/11 2 • 

Calling 1/J(t) = e"i''llv7ull'1,c3 = + supe'i'll/112, lhe above inequality becomes 
t~O 
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~hich can be analysed exactly as in Theorem 2.3, furnishing that sup e::Y'IIVu(t)ll2 = 
'~º 

sup 1/J(t) < +oo. 
t~O 

Thus, we can take ,• = 71 and the rest of the analysis is completely analogoua to 
the one in the previous theorem. O 

·Remark. We observe that the given estimate for uu in the previous two theorems hold 
true in the case of the local existence if we take the supremum in the interval of time , 
[O, T], where O < T < +oo is less than the time for which the solution is known to exiat. 
This estimate implies that the solution of the local existence theorem actually satisfies 
u, E C((O, T], H) and, therefore, u E C1((0, T), H). 

4 Results on the Pressure and Further Higher Or-
der Estimates 

ln a standard way we can obtain information on the pressure. ln fact, we have: 

Proposition 4.1. Under the hypothesis of.Theorem 2.2 or 2.3, if (u,p) is a solution of 
. (2.1), there exista Jl E L00 ([0,oo};H1(S1)/JR) such (u,p,p) is solution of (1.1). 

Proof. We observti that (2.1) is equivalent to Au = P(g) where g = p(J-uVu-u,). Now, 
our estimates for p and u imply that g E L00 ([0, oo ), V(S1)), and, therefore, Amrouch and 
Girault's results [1] imply that there is a unique p E L00 ([0,oo);H1 (S1)/JR) such that 

This and the equation for p imply that (u,p,p) satisfies (1.1) . a 

ln the case in which the externa} force field decay exponentially in time, we have 
better regularity for the pressure p. 

Proposition 4.2. Under the hypothesis of Theorem 3.1 or 3.2, if (u,p) is a solution oí 
(2.1), there exists p such that (u,p,p) is solution of (1.1). Moreover, for any e> O. 

p E L00 ((0, oo); H 1(S1)/ JR) n C((e, oo); H1 (íl)/ IR), 

23 



Pt E L00 ([e,oo);H1(íl)/JR). 

Proof. Differentiating Au = P(g) with respect to t, which is possible by the regularity 
results of Theorern 3.1 on 3.2, we have Au, = P(g1). Now these sarne regularity result, 
imply g, E L00 ([e,oo),L2(íl)) for any ê > O. 
Now, Amrouche and Girault's results irnply that the corresponding pressure p satisfi~ 
Pc E L00 ([e,oo);H1(íl)/JR) for any e> O. Therefore, p E C([e,oo);H1(íl)/JR). C 

By using the above estirnates on the pressure we can derive heigher order eati-
mates in the case of exponentially decaying force fields. 

Proposition 4.3. Under the conditions of Theorem 3.1, if íl is of class C 2•1, there bolei. 

sup o-(t)(llulli3 + IIVullloo) < +oo 
t~O 

Proof. By the previous propositions we have regularity on the pressure, and we can 
work directy with equations (1.1 ). Also, since n is of cla.ss C2•1, Amrouch and Girault'1 
[1] imply that the eigenfunctions of the Stokes operator have n=tregularity. Thus, the 

:spectral approximations also have this H3-regularity in the space variable and we canto 
try to estimate thdr H3-norm in an unifonn way with respect to the approximationns. 
This will imply in a standard way that the sarne estimate will hold for the solution. 

Therefore, exactly as we did in all our previous results, since the computation1 

are the sarne, to easy the notation we will work directly with the solution. 
By differentiating the equation (1.1) with respect to xi and by taking the inner 

product in (V(íl))n with -A::., we get 
1 

au, au 
+ IIPlli00 (11 ax i li+ 11 ax; Ili• IIVulli• 

au 8/ + llulli 00 llaxjll + llaxill) 
smce 
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Consequently1 

thanks to the previous estimates. 
So, we conclude that 

for ali t O. Now, we utilize standard Sobolev embedding results to obtain 

for ali t O. 
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