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We present a nonperturbative study of the form factor associated with the projection of the full four-gluon vertex 
on its classical tensor, for a set of kinematics with one vanishing and three arbitrary external momenta. The 
treatment is based on the Schwinger-Dyson equation governing this vertex, and a large-volume lattice simulation, 
involving ten thousand gauge field configurations. The key hypothesis employed in both approaches is the “planar 
degeneracy”, which classifies diverse configurations by means of a single variable, thus enabling their meaningful 
“averaging”. The results of both approaches show notable agreement, revealing a considerable suppression of the 
averaged form factor in the infrared. The deviations from the exact planar degeneracy are discussed in detail, and 
a supplementary variable is used to achieve a more accurate description. The effective charge defined through 
this special form factor is computed within both approaches, and the results obtained are in excellent agreement.

1. Introduction

In the last decades our comprehension of Quantum Chromodynamics 
(QCD) [1–4] has improved substantially due to the ongoing exploration 
of basic correlation functions of the theory, such as propagators and 
vertices [5–14]. This systematic survey is advancing thanks to studies 
based on nonperturbative methods formulated in the continuum, such 
as Schwinger-Dyson equations (SDEs) [5–25], the functional renormal-
ization group [26–36], or models that incorporate certain key aspects of 
the theory [37–42]. In addition, large-volume gauge-fixed lattice simu-
lations [43–60] provide invaluable insights into the evolution of correla-
tion functions at intermediate and low values of their physical momenta. 
This combined information is essential for the veracious computation of 
physical observables [9,11,36,61–64], and the scrutiny of the theoreti-
cal underpinnings of non-Abelian gauge theories [65–73].

Whereas the two- and three-point sectors of QCD have been the fo-
cal point of intense investigation, the nonperturbative features of the 
four-gluon vertex, I Γ𝑎𝑏𝑐𝑑

𝜇𝜈𝜌𝜎
(𝑞, 𝑟, 𝑝, 𝑡), remain largely unexplored; for per-

turbative results, see [74–81]. The main obstacle in the continuum is 
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the proliferation of Lorentz and color structures, while on the lattice the 
statistical noise increases considerably as one advances from three to 
four gluon legs. As a result, both SDE studies [24,26,82–84] and lattice 
simulations [85] have been mostly restricted to simple kinematic setups, 
where the logistic complexity is vastly reduced; such are the “collinear”
configurations, where all momenta are parallel.

In the present work we carry out a comprehensive study of the four-
gluon vertex for a considerably wider set of kinematics. In particular, 
we consider the case where one momentum vanishes (𝑡 = 0), while the 
space-like momenta 𝑞, 𝑟, and 𝑝 are arbitrary; we will refer to these con-
figurations as “soft kinematics”.

Our analysis is based on the synergy between two distinct nonper-
turbative approaches: the SDE governing the evolution of this vertex, 
and gauge-fixed simulations performed on large-volume lattices. In both 
cases, the computations are carried out in the Landau gauge.

The central theme of our considerations is the property of “planar 
degeneracy” [86], which has been extensively studied in the context of 
the three-gluon vertex [24,87–89]. In the case of the four gluon vertex, 
this property affirms that the form factor associated with the classical 
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tensor is approximately equal for all configurations lying on the plane 
𝑠̄2 = (𝑞2+ 𝑟2+𝑝2+ 𝑡2)∕2, or, in the soft kinematics, 𝑠2 = (𝑞2+ 𝑟2+𝑝2)∕2. 
Even though not exact, this feature is particularly useful on the lattice, 
because configurations with the same 𝑠2 are treated as equivalent; thus, 
seemingly unrelated measurements are summed up and averaged, lead-
ing to a vast improvement of the signal.

The averaged form factor extracted from the lattice displays a clear 
infrared suppression with respect to its tree-level value (unity), in qual-
itative agreement with previous continuum studies performed in other 
kinematic configurations [24,42,82,84]. Moreover, it is in very good 
agreement with the corresponding result obtained from a detailed SDE 
analysis in the soft kinematics, where the assumption of the planar de-
generacy has been employed in order to simplify the iterative procedure.

The deviation of the result from the exact planar degeneracy is quan-
tified in terms of an additional kinematic parameter, which, in conjunc-
tion with 𝑠2, allows for a more accurate description of the underlying 
dynamics.

Finally, the renormalization-group invariant (RGI) effective charge 
corresponding to this interaction is constructed, using the lattice and 
the SDE results; the two curves so obtained show excellent agreement.

2. General structure and kinematics

The correlation function composed out of four gauge fields at mo-
menta 𝑞, 𝑟, 𝑝, and 𝑡 (with 𝑞 + 𝑟 + 𝑝 + 𝑡 = 0), is defined as

G
𝑎𝑏𝑐𝑑
𝜇𝜈𝜌𝜎(𝑞, 𝑟, 𝑝, 𝑡) = ⟨𝐴𝑎𝜇(𝑞)𝐴𝑏𝜈(𝑟)𝐴𝑐𝜌(𝑝)𝐴𝑑𝜎 (𝑡)⟩ , (1)

where 𝐴𝑎
𝜇
(𝑞) are the SU(3) gauge fields in Fourier space, and the av-

erage ⟨.⟩ indicates functional integration over the gauge space (Monte 
Carlo average in lattice QCD). The function G𝑎𝑏𝑐𝑑𝜇𝜈𝜌𝜎 (𝑞, 𝑟, 𝑝, 𝑡) contains a 

connected part, denoted C̃𝑎𝑏𝑐𝑑𝜇𝜈𝜌𝜎 , and disconnected propagator-like con-
tributions. Additionally, the amputated vertex C𝑎𝑏𝑐𝑑𝜇𝜈𝜌𝜎 can be further 
separated into one-particle irreducible (1PI) and one-particle reducible 
(1PR) parts, denoted respectively I Γ𝑎𝑏𝑐𝑑𝜇𝜈𝜌𝜎 and 𝕍

𝑎𝑏𝑐𝑑
𝜇𝜈𝜌𝜎 , as shown in Fig. 1. 

At tree-level, IΓ𝑎𝑏𝑐𝑑𝜇𝜈𝜌𝜎 → Γ𝑎𝑏𝑐𝑑
0𝜇𝜈𝜌𝜎

, where

Γ𝑎𝑏𝑐𝑑
0𝜇𝜈𝜌𝜎

= 𝑓 𝑎𝑑𝑥𝑓 𝑐𝑏𝑥
(
𝛿𝜇𝜌𝛿𝜈𝜎 − 𝛿𝜇𝜈𝛿𝜌𝜎

)
+ 𝑓 𝑎𝑏𝑥𝑓𝑑𝑐𝑥

(
𝛿𝜇𝜎𝛿𝜈𝜌 − 𝛿𝜇𝜌𝛿𝜈𝜎

)

+ 𝑓 𝑎𝑐𝑥𝑓𝑑𝑏𝑥
(
𝛿𝜇𝜎𝛿𝜈𝜌 − 𝛿𝜇𝜈𝛿𝜌𝜎

)
. (2)

In the Landau gauge that we employ throughout, the gluon propa-
gator, Δ𝑎𝑏

𝜇𝜈
(𝑞) = −𝑖𝛿𝑎𝑏Δ𝜇𝜈(𝑞), is given by

Δ𝜇𝜈(𝑞) = Δ(𝑞2)𝑃𝜇𝜈(𝑞) , 𝑃𝜇𝜈(𝑞) = 𝛿𝜇𝜈 − 𝑞𝜇𝑞𝜈∕𝑞
2 . (3)

Then, the amputation of the external legs proceeds by setting

C̃
𝑎𝑏𝑐𝑑
𝜇𝜈𝜌𝜎(𝑞, 𝑟, 𝑝, 𝑡) = Δ(𝑞)Δ(𝑟)Δ(𝑝)Δ(𝑡)C

𝑎𝑏𝑐𝑑

𝜇𝜈𝜌𝜎(𝑞, 𝑟, 𝑝, 𝑡) , (4)

where

C
𝑎𝑏𝑐𝑑

𝜇𝜈𝜌𝜎(𝑞, 𝑟, 𝑝, 𝑡) ∶= T
𝜇′𝜈′𝜌′𝜎′

𝜇𝜈𝜌𝜎 (𝑞, 𝑟, 𝑝, 𝑡)C𝑎𝑏𝑐𝑑
𝜇′𝜈′𝜌′𝜎′

(𝑞, 𝑟, 𝑝, 𝑡) , (5)

with

T
𝜇′𝜈′𝜌′𝜎′

𝜇𝜈𝜌𝜎 (𝑞, 𝑟, 𝑝, 𝑡) ∶= 𝑃 𝜇′

𝜇 (𝑞)𝑃 𝜈′

𝜈 (𝑟)𝑃 𝜌′

𝜌 (𝑝)𝑃 𝜎′

𝜎 (𝑡) , (6)

or, equivalently,

C
𝑎𝑏𝑐𝑑

𝜇𝜈𝜌𝜎(𝑞, 𝑟, 𝑝, 𝑡) = − 𝑖𝑔2IΓ
𝑎𝑏𝑐𝑑

𝜇𝜈𝜌𝜎(𝑞, 𝑟, 𝑝, 𝑡) + 𝕍
𝑎𝑏𝑐𝑑

𝜇𝜈𝜌𝜎(𝑞, 𝑟, 𝑝, 𝑡) , (7)

with

𝕍
𝑎𝑏𝑐𝑑

𝜇𝜈𝜌𝜎(𝑞, 𝑟, 𝑝, 𝑡) = −𝑖 IΓ
𝑎𝑑𝑒

𝜇𝜎𝜆Δ
𝜆𝛽 IΓ

𝑏𝑐𝑒

𝜈𝜌𝛽 + crossed , (8)

where

IΓ
𝑎𝑏𝑐𝑑

𝜇𝜈𝜌𝜎
(𝑞, 𝑟, 𝑝, 𝑡) = T

𝜇′𝜈′𝜌′𝜎′

𝜇𝜈𝜌𝜎
(𝑞, 𝑟, 𝑝, 𝑡)IΓ𝑎𝑏𝑐𝑑

𝜇′𝜈′𝜌′𝜎′
(𝑞, 𝑟, 𝑝, 𝑡) , (9)

is the transversely projected 1PI four-gluon vertex, while

Fig. 1. Upper panel: Diagrams contributing to the full four-gluon Green’s func-
tion, G𝑎𝑏𝑐𝑑

𝜇𝜈𝜌𝜎
, separated into connected, C̃𝑎𝑏𝑐𝑑

𝜇𝜈𝜌𝜎
, and disconnected parts. Lower 

panel: Schematic decomposition of the amputated four-gluon Green’s function, 
C𝑎𝑏𝑐𝑑
𝜇𝜈𝜌𝜎

, into the 1PI vertex, −𝑖𝑔2I Γ𝑎𝑏𝑐𝑑
𝜇𝜈𝜌𝜎

, and the 1PR terms 𝕍 𝑎𝑏𝑐𝑑
𝜇𝜈𝜌𝜎

.

IΓ
𝑎𝑏𝑐

𝛼𝛽𝛾 (𝑞, 𝑟, 𝑝) = 𝑃
𝛼′

𝛼 (𝑞)𝑃
𝛽′

𝛽
(𝑟)𝑃 𝛾′

𝛾 (𝑝)IΓ𝑎𝑏𝑐
𝛼′𝛽′𝛾′

(𝑞, 𝑟, 𝑝) , (10)

is the transversely-projected three-gluon vertex.

In general kinematics, both IΓ𝑎𝑏𝑐𝑑𝜇𝜈𝜌𝜎 and IΓ
𝑎𝑏𝑐𝑑

𝜇𝜈𝜌𝜎 possess a multitude of 
Lorentz and color structures, leading to a large number of form factors. 
In this work, we focus on the projection of the full four-gluon vertex on 
its tree-level structure, i.e.,

𝐷4g(𝑞, 𝑟, 𝑝, 𝑡) ∶=P(𝑞, 𝑟, 𝑝, 𝑡)⊙ IΓ(𝑞, 𝑟, 𝑝, 𝑡) , (11)

where the symbol “⊙” denotes the full contraction of all Lorentz and 
color indices, and the projector P is defined as

P(𝑞, 𝑟, 𝑝, 𝑡) ∶=
Γ0(𝑞, 𝑟, 𝑝, 𝑡)

Γ0(𝑞, 𝑟, 𝑝, 𝑡)⊙ Γ0(𝑞, 𝑟, 𝑝, 𝑡)
. (12)

Evidently, for IΓ
𝑎𝑏𝑐𝑑

𝜇𝜈𝜌𝜎 = Γ
𝑎𝑏𝑐𝑑

0𝜇𝜈𝜌𝜎 we get 𝐷4g = 1. In addition, it is clear 
from Eqs. (11) and (12) that 𝐷4g(𝑞, 𝑟, 𝑝, 𝑡) is completely Bose symmetric 
under the exchange of any pair of its arguments.

For the rest of this work we specialize to the case of the soft kine-
matics, defined by setting 𝑡 = 0 and keeping the other three momenta 
arbitrary but space-like, 𝑞2, 𝑟2, 𝑝2 < 0. In particular, we will define the 
corresponding Euclidean momenta −𝑞2, −𝑝2, −𝑟2 = 𝑞2

𝐸
, 𝑝2

𝐸
, 𝑟2

𝐸
> 0, and 

drop the subscript “E” throughout. The evaluation of the limit 𝑡 → 0 will 
be carried out “symmetrically” [90], namely

lim
𝑡→0

𝑡𝜎 𝑡𝜎
′

𝑡2
=
𝛿𝜎𝜎

′

𝑑
, lim

𝑡→0
𝑃 𝜎𝜎′ (𝑡) = 𝛿𝜎𝜎

′
(
1 −

1

𝑑

)
, (13)

where 𝑑 is the dimension of space-time.
Note that while the SDE determines directly I Γ𝑎𝑏𝑐𝑑

𝜇𝜈𝜌𝜎
, the lattice com-

putes G𝑎𝑏𝑐𝑑𝜇𝜈𝜌𝜎 . In order to extract I Γ
𝑎𝑏𝑐𝑑
𝜇𝜈𝜌𝜎 on the lattice, the redundant con-

tributions must be either eliminated by means of an appropriate choice 
of kinematics, or explicitly subtracted out. In particular, the discon-
nected contributions can be removed provided that no two momenta add 
up to zero, e.g., 𝑞 + 𝑟 ≠ 0, and similarly for all other pairs of momenta; 
these conditions eliminate propagator-like transitions, due to the non-
conservation of momentum. As for the 1PR term, its contribution may 
be subtracted out by capitalizing on the ample knowledge on the struc-
ture of the gluon propagator and three-gluon vertex [14,46,58,86–89]. 
Specifically, we combine Eqs. (7) and (11) to obtain

𝐷4g(𝑞, 𝑟, 𝑝,0) ∶= lim
𝑡→0

P ⊙ (C − 𝕍 ) , (14)

In order to subtract out 𝕍 we employ an excellent approximation for the 
three-gluon vertices contained in it. Specifically, we set [14,86–89].
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Fig. 2. Diagrammatic representation of the one-loop dressed SDE for the full 
four-gluon vertex, IΓ𝑎𝑏𝑐𝑑

𝜇𝜈𝜌𝜎
, derived from the four-loop 4PI effective action. We 

omit contributions obtained through permutations of the external legs.

IΓ
𝛼𝜇𝜈

(𝑞, 𝑟, 𝑝) = L𝑠𝑔(𝑠
2)Γ

𝛼𝜇𝜈

0 (𝑞, 𝑟, 𝑝) , 𝑠2 =
1

2
(𝑞2 + 𝑟2 + 𝑝2) , (15)

where L𝑠𝑔(𝑠
2) is the form factor associated with the soft-gluon limit 

of the three-gluon vertex (𝑞 = 0, 𝑟 = −𝑝), and has been accurately de-
termined in lattice simulations [53,54,58,60,87,91,92] and continuous 
studies [88,93–95]. Implementing this approximation, we have that

lim
𝑡→0

P ⊙ 𝕍 = 𝑓𝑞𝑟𝑝Δ(𝑝
2)L𝑠𝑔(𝑝

2)L𝑠𝑔(𝑠
2) + crossed , (16)

with

𝑓𝑞𝑟𝑝 =
[5(𝑞2 + 𝑟2) + 𝑝2]

72𝑞2𝑟2

[
(𝑞2 − 𝑟2 + 𝑝2)2 − 4𝑞2𝑝2

]
. (17)

3. SDE analysis

We next determine the form factor 𝐷4g(𝑞, 𝑟, 𝑝, 𝑡) defined in Eq. (11)
through appropriate projections of the SDE governing I Γ𝑎𝑏𝑐𝑑𝜇𝜈𝜌𝜎 . In partic-
ular, we employ the formalism of the 4PI effective action [94,96–99]
at the four-loop level [100,101]; the diagrammatic representation of the 
resulting SDE is given in Fig. 2. Note that the dotted lines carrying an 
arrow in diagram (𝑑1) denote the ghost propagator, 𝐷(𝑞2) = 𝑖𝐹 (𝑞2)∕𝑞2, 
where 𝐹 (𝑞2) is the ghost dressing function, while the dark-blue circles 
stand for the fully-dressed ghost-gluon vertices.

Then, contracting both sides of the SDE by the projector T 𝜇′𝜈′𝜌′𝜎′

𝜇𝜈𝜌𝜎

given in Eq. (6), we get [suppressing the arguments (𝑞, 𝑟, 𝑝, 𝑡)]

IΓ
𝑎𝑏𝑐𝑑

𝜇𝜈𝜌𝜎 = Γ
𝑎𝑏𝑐𝑑

0𝜇𝜈𝜌𝜎 +

4∑
𝑖=1

(
𝑑𝑠𝑖
)𝑎𝑏𝑐𝑑
𝜇𝜈𝜌𝜎

, (18)

with

(𝑑𝑠
𝑖
)𝑎𝑏𝑐𝑑
𝜇𝜈𝜌𝜎

∶= T
𝜇′𝜈′𝜌′𝜎′

𝜇𝜈𝜌𝜎
(𝑑𝑖)

𝑎𝑏𝑐𝑑
𝜇′𝜈′𝜌′𝜎′

+⋯ , (19)

where the ellipsis denotes the permutations corresponding to each graph 
(not shown in Fig. 2).

The renormalization of this SDE is implemented multiplicatively, 
following standard procedures. Due to the fact that all vertices in the 
diagrams of Fig. 2 are fully-dressed, the only renormalization con-
stant that survives is that of the four-gluon vertex, defined through 
I Γ𝑎𝑏𝑐𝑑
𝑅𝜇𝜈𝜌𝜎 =𝑍4I Γ

𝑎𝑏𝑐𝑑
𝜇𝜈𝜌𝜎 [84]. In particular,

IΓ
𝑎𝑏𝑐𝑑

𝑅𝜇𝜈𝜌𝜎
=𝑍4Γ

𝑎𝑏𝑐𝑑

0𝜇𝜈𝜌𝜎
+

4∑
𝑖=1

(
𝑑𝑠
𝑖𝑅

)𝑎𝑏𝑐𝑑
𝜇𝜈𝜌𝜎

, (20)

where the index “𝑅” in (𝑑𝑠
𝑖𝑅
) indicates that all ingredients comprising 

this set of diagrams have been replaced by their renormalized counter-
parts.

Note that in order to derive the expression for 𝐷4g(𝑞, 𝑟, 𝑝, 𝑡) in the soft 
kinematics defined in the introduction, one has to act on Eq. (20) with 
the projector given in Eq. (12), and in the sequence take the limit 𝑡→ 0, 
with the help of Eq. (13). After doing these steps, we find that

𝐷4g(𝑞, 𝑟, 𝑝,0) =𝑍4 + lim
𝑡→0

4∑
𝑖=1

P ⊙
(
𝑑𝑠𝑖
)
(𝑞, 𝑟, 𝑝, 𝑡) , (21)

where we suppress the index “𝑅” to avoid notational clutter.
In general kinematics, the principal variable for exploring the degree 

of planar degeneracy displayed by the four gluon vertex is

𝑠̄2 =
1

2
(𝑞2 + 𝑟2 + 𝑝2 + 𝑡2) , (22)

while the corresponding variable for the three-gluon vertex is the 𝑠2 of 
Eq. (15). Evidently, in the soft configuration (𝑡 = 0) the 𝑠̄2 of Eq. (22)
reduces to the 𝑠2 of Eq. (15).

In this limit, in addition to the 𝑠2, it is convenient to introduce two 
supplementary kinematic variables, 𝑥 and 𝑦, defined by [86–88]1

𝑥 ∶=

√
3(𝑟2 − 𝑞2)

2𝑠2
, 𝑦 ∶=

𝑞2 + 𝑟2 − 2𝑝2

2𝑠2
, (23)

where, due to momentum conservation, 𝑥 and 𝑦 are constrained to the 
unit disk 𝑥2 + 𝑦2 ≤ 1. Additionally, it is convenient to employ polar co-
ordinates (𝑅, 𝜙) defined by

𝑅 = (𝑥2 + 𝑦2)1∕2 , 𝜙 = arctan(𝑦∕𝑥) . (24)

Hence, with this change of variables we have 𝐷4g(𝑞, 𝑟, 𝑝, 0) →
𝐷4g(𝑠

2, 𝑅, 𝜙).
By appealing to the Bose-symmetry of the four-gluon vertex and the 

analysis of [89], one may show that only one sixth of this disk is relevant; 
the remaining five regions can be obtained by applying to 𝐷4g(𝑠

2, 𝑅, 𝜙)
simple transformations derived from Eq. (23). In the numerical analysis, 
we isolate one such region by restricting 𝜙 to satisfy the constraint2

𝜋∕6 ≤ 𝜙 ≤ 𝜋∕2. In particular, we have defined a grid of configurations 
over this region as shown in Fig. 3. The grid is defined by taking the line 
with 𝜙 = 𝜋∕3, and taking points over this and parallel lines so that the 
result is uniformly distributed.

The approximation we employ for the IΓ
𝑎𝑏𝑐𝑑

𝜇𝜈𝜌𝜎
present on the rhs of 

Eq. (21) is analogous to the planar degeneracy relation shown in Eq. (15)
for the three-gluon vertex. Namely, we take

IΓ
𝑎𝑏𝑐𝑑

𝜇𝜈𝜌𝜎(𝑞, 𝑟, 𝑝, 𝑡) ≈𝐷
∗
4g(𝑠̄

2)Γ
𝑎𝑏𝑐𝑑

0𝜇𝜈𝜌𝜎(𝑞, 𝑟, 𝑝, 𝑡) , (25)

where the form of 𝐷∗
4g
(𝑠̄2) will be determined through an iterative pro-

cess.
By substituting Eqs. (25) and (22) in the SDE (20), 𝐷4g(𝑠

2, 𝑅, 𝜙) reads

𝐷4g(𝑠
2,𝑅,𝜙) =𝑍4 +

⎡⎢⎢⎣∫𝑘
𝐾1 + ∫

𝑘

𝐷∗
4g𝐾2 + ∫

𝑘

𝐷∗2
4g𝐾3

⎤⎥⎥⎦
, (26)

for kernels 𝐾𝑖, whose form will not be specified here.
In order to determine the renormalization constant 𝑍4 , we employ 

a variant of the momentum subtraction (MOM) scheme [102,103], de-
fined through the condition

𝐷4g(𝑠
2,𝑅0, 𝜙0)|𝑠2=𝜇2 = 1 , (27)

where 𝜇 is the renormalization point, and the set (𝑅0, 𝜙0) defines a par-
ticular kinematic configuration on the disk of Fig. 3. Applying Eq. (27)
on Eq. (26), we find

𝑍4 = 1 −

⎡⎢⎢⎣∫𝑘
𝐾1 + ∫

𝑘

𝐷∗
4g𝐾2 + ∫

𝑘

𝐷∗2
4g𝐾3

⎤⎥⎥⎦ 𝑠2→𝜇2

𝑅,𝜙→𝑅0 ,𝜙0

. (28)

1 The 𝑥 and 𝑦 are related to the 𝑎 and 𝑏 of [87] by 𝑎 = −𝑦 and 𝑏 = 𝑥.
2 This constraint is equivalent to taking values of 𝑥 and 𝑦 satisfying the con-
dition 0 ≤√

3∕3𝑥 ≤ 𝑦.
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Fig. 3. Representation of the 491 kinematic configurations computed on the 
(𝑥, 𝑦) plane. The black points 𝐴 and 𝐶 denote the collinear configurations 
(𝑝, −𝑝, 0, 0) and (𝑝, 𝑝, −2𝑝, 0), respectively, while 𝐵 is the symmetric configu-
ration defined by 𝑝2

1
= 𝑝2

2
= 𝑝2

3
. We also highlight in polar coordinates (𝑅, 𝜙)

the configuration (𝑅0, 𝜙0) = (0.71, 𝜋∕3) used for renormalizing the SDE. For the 
sake of comparison, the inset shows the distribution of the lattice configurations 
within the same domain.

In what follows we choose (𝑅0, 𝜙0) = (0.71, 𝜋∕3), highlighted with a 
black circle in the central part of Fig. 3; this point lies on the aforemen-
tioned grid, and is near the center of the region. This choice is arbitrary, 
and we have confirmed that using different configurations for renormal-
ization procedure only change our results by a multiplicative factor. In 
addition, we choose 𝜇 = 4.3 GeV.

For the numerical evaluation of the SDE we employ the following 
inputs. For the gluon propagator, Δ(𝑟2), and ghost dressing function, 
𝐹 (𝑟2), we use the fits to the lattice results of [46,58] given by Eqs. (C11) 
and (C6) of [25], respectively. For the transversely projected ghost-
gluon vertex we use the SDE results of [14,69], while for the three-gluon 
vertices we employ Eq. (15), with L𝑠𝑔(𝑟

2), given by a fit to the lattice 
data of [60] expressed by Eq. (C12) in [25]. Both vertices have been con-
sistently renormalized by employing Eqs. (B6) and (B7) of [84]. Finally, 
we use 𝛼𝑠(𝜇

2) = 𝑔2∕4𝜋 = 0.27, as obtained in Sec. 6.
The iterative process for determining 𝐷4g(𝑠

2, 𝑅, 𝜙) may be summa-
rized as follows:
(i) The initial input for the 𝐷∗

4g
on the rhs of Eq. (26) is simply its 

tree-level value, i.e., 𝐷∗
4g

→ 1.

(ii) 𝐷4g(𝑠
2, 𝑅, 𝜙) is then determined through the numerical integra-

tion of Eqs. (26) and (28). For 𝑠2 we employ a grid distributed log-
arithmically over the interval [10−4, 104] GeV2, whereas 𝑅 and 𝜙 are 
evaluated on the 𝑁 = 491 points of the grid sketched in Fig. 3.
(iii) Then, we compute the simple average of these 𝑁 configurations 

by

𝐷(𝑠2) =
1

𝑁

𝑁∑
𝑖=1

𝐷4g(𝑠
2,𝑅𝑖, 𝜙𝑖) , (29)

which will be used as the “seed” for the next iteration. Specifically, we 
replace 𝐷∗

4g
→ 𝐷 into Eqs. (26) and (28) and re-compute 𝐷4g(𝑠

2, 𝑅, 𝜙)
for the same values of the external grid.
(iv) The iterative procedure outlined above is repeated, and at each 

step, the average, 𝐷(𝑠2), defined in Eq. (29), is calculated. Our conver-
gence criterion is defined when the relative error between two consec-

Fig. 4. The form factor 𝐷4g(𝑠2, 𝑅𝑖, 𝜙𝑖) for all configurations studied, and the 
corresponding average 𝐷(𝑠2) (black curve). Note that the color code used cor-
responds to that of the associated configuration in the kinematic disk in Fig. 3.

utive averages is smaller than 10−6. We observe that this error reduces 
monotonically, being approximately halved after each iteration, indicat-
ing a numerically stable equation.
(v) When this is achieved, we use the last 𝐷(𝑠2) as input to obtain 

the final results for 𝐷4g(𝑠
2, 𝑅𝑖, 𝜙𝑖).

The results for both 𝐷4g(𝑠
2, 𝑅𝑖, 𝜙𝑖) and 𝐷(𝑠2) are shown in Fig. 4. 

Each configuration corresponds to a choice of (𝑅𝑖, 𝜙𝑖) and is color coded 
according to its position in the kinematic disk of Fig. 3, while the average 
is shown in black.

Notice that there is a clear pattern between the position of a con-
figuration on the disk and its overall behavior with respect to 𝐷(𝑠2): 
configurations closer to the center are above the average, while those 
closer to the edge are below it. We emphasize that the majority of the 
491 curves are located very close to the total average, see Sec. 5 for 
details. This observation indicates the extent to which the form factor 
satisfies planar degeneracy, i.e.,

𝐷4g(𝑠
2,𝑅,𝜙) ≈𝐷(𝑠2) . (30)

A detailed analysis of this relation is given in Sec. 5.

4. Vertex form factors from lattice QCD

In order to obtain lattice results for the four-gluon vertex in the soft 
kinematics, we have exploited 10.000 quenched lattice gauge field con-
figurations in the Landau gauge, whose set-up parameters are (the num-
ber of configurations within parenthesis): 𝛽 = 5.6 (2.000), 5.7 (1.000), 
5.8 (2.000), 6.0 (2.000), 6.2 (2.000), and 6.4 (1.000) for 𝐿∕𝑎 = 32. The 
lattice spacings have been obtained using the absolute calibration [104]
at 𝛽 = 5.8, and a relative calibration based on the gluon propagator 
scaling [57] for the rest of the 𝛽 ’s. For each set of momenta, we have 
exploited the full discrete lattice symmetry to average over all equiva-
lent momenta with respect to permutations of Lorentz indices or signs 
among components. Moreover, as the lattice artifacts that break rota-
tional symmetry (termed H4-errors) are typically far smaller than the 
statistical errors associated with three- or four-point correlation func-
tions, we will average together all the sets of momenta that differ by 
higher-order H4 invariants [89,105,106]. A detailed presentation of the 
lattice data and their scaling for different values of 𝛽 will be presented 
in a future communication. Here it should suffice to mention that the 
scaling is excellent for momenta up to ∼ 4.5 GeV, indicating that these 
lattice artifacts can be reliably neglected, while discrepancies among 
different 𝛽s increase with the momentum.
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Fig. 5. Comparison between the averaged form factor obtained from the lattice, 
𝐷L(𝑠

2), and the normalized average from the SDE, 𝐷N(𝑠2). The band around 
𝐷N(𝑠

2) denotes the propagation of the statistical error associated with the three-
gluon vertex.

Following the analysis of Sec. 2, we use Eqs. (14) and (16) to re-
move from 𝐷4g(𝑞, 𝑟, 𝑝, 0) the 1PR contributions. The required subtraction 
is carried out individually for each kinematic configuration, using the 
available lattice data for the functions Δ(𝑟2) and L𝑠𝑔(𝑟

2). Subsequently, 
the unrenormalized data sharing the same value of the Bose invariant 
𝑠2 are averaged, defining the quantity 𝐷L(𝑠

2).
The renormalization procedure employed on the lattice is different 

from that used in the SDE analysis, i.e., the MOM condition Eq. (27); 
however, the two schemes coincide in the limit of exact planar de-
generacy. Specifically, on the lattice the multiplicative renormalization 
constant, 𝑍4 [defined right before Eq. (20)] is fixed by imposing on the 
averaged data the condition

𝐷
𝑅

L (𝑠
2) =𝑍4𝐷L(𝑠

2) , 𝐷
𝑅

L (𝜇
2) = 1 , (31)

with the renormalization point 𝜇 = 4.3 GeV. As was done with the SDE 
results, in what follows we suppress the suffix “𝑅”.

Note that all lattice errors are statistical, computed through the ap-
plication of the “Jack-knife method”. Moreover, the systematic errors 
stemming from the assumption of perfect planar degeneracy are sub-
leading compared to the statistical; this is consistent with the small 
errors and dispersion exhibited by the data for 𝐷L, displayed in terms of 
𝑠2 in Fig. 5. The same is true for the errors associated with the contin-
uum limit; therefore, the dependence on the lattice spacing 𝑎 has been 
suppressed in Eq. (31).

In order to perform a meaningful comparison with the SDE-derived 
average of Fig. 4, the form factor 𝐷(𝑠2) is rescaled in order to match the 
lattice renormalization scheme of Eq. (31). This is accomplished through 
the operation 𝐷(𝑠2)→𝐷N(𝑠

2) ∶=𝐷(𝑠2)∕𝐷(𝜇2), where 𝐷N(𝑠
2) denotes 

the normalized average, satisfying 𝐷N(𝜇
2) = 1.

In addition, we introduce a band surrounding the SDE-derived re-
sults indicating uncertainties associated with the tree-gluon form factor 
L𝑠𝑔(𝑟

2). This is implemented by repeating the iterative procedure out-
lined in the previous section, and solving Eq. (26) numerically using as 
input for L𝑠𝑔(𝑟

2) the band defined by Eq. (C13) in [25].

In Fig. 5, the lattice results for 𝐷L(𝑠
2) are shown for all values of 𝛽, 

and are compared to 𝐷N(𝑠
2); we have a total of 𝑁lat = 250 points. We 

observe that the averaged form factors computed with both methods are 
quantitatively rather similar. The discrepancy between both results may 
be measured by the mean absolute percentage error, 𝜎, i.e.,

𝜎 =
1

𝑛

𝑛∑
𝑖=1

||||||
𝐷N(𝑠

2
𝑖
) −𝐷L(𝑠

2
𝑖
)

𝐷L(𝑠
2
𝑖
)

||||||
× 100% , (32)

Fig. 6. 𝐷4g(𝑠
2, 𝑅, 𝜙) plotted as a function of 𝑥 and 𝑦 for selected values of 𝑠. 

The dependence on 𝑥 and 𝑦 is manifested by a deviation from perfect flatness, 
indicating a violation of planar degeneracy.

with 𝑠𝑖, 𝑖 = 1, … , 𝑛, denoting the momenta 𝑠 of the 𝑛 lattice data points 
within a certain interval in Fig. 5. Considering the complete data set, 
with 𝑛 = 𝑁lat , we find 𝜎 = 7%. As is evident from Fig. 5, the largest 
deviations between 𝐷N(𝑠

2
𝑖
) and 𝐷L(𝑠

2
𝑖
) occur for 𝑠 < 1 GeV, for which 

we find (with 𝑛 = 29) 𝜎 = 19%, and 𝑠 > 4.5 GeV (with 𝑛 = 20), which 
yields 𝜎 = 8%.

Both results display an infrared suppression with respect to the tree-
level value (unity), remaining positive for the entire range of momen-
tum. Note that, at the origin, the SDE result reaches a finite value; in 
fact, one may check the finiteness by directly setting 𝑠 = 0 in Eq. (26), 
and taking the limit when all momenta vanish. Instead, the lattice ap-
pears inconclusive on this matter, because the data in that region come 
with large errors, and do not reach below 𝑠 ≤ 0.5 GeV. In addition, one 
can also see that the expected error in L𝑠𝑔(𝑟

2) has only a mild effect on 

𝐷N(𝑠
2) in the region 𝑠 ∈ [0.4, 3] GeV.
Finally, we note that SDE and lattice select their kinematic configu-

rations differently: in contrast to the random sampling obtained in the 
Monte Carlo method, Fig. 3 is composed of uniformly spaced points. 
However, given the relatively high number of configurations probed, 
together with the smoothness of 𝐷4g(𝑠

2, 𝑅, 𝜙) observed in Fig. 4, the dis-
crepancy introduced by this difference is minimal.

5. Deviations from planar degeneracy

In this section we investigate the accuracy of the planar degeneracy, 
as expressed through Eq. (30), and propose an adjustment that provides 
a more accurate approximation for this form factor.

To accomplish this, we compute the relative percentage deviation of 
𝐷4g(𝑠

2, 𝑅𝑖, 𝜙𝑖) from the total average, 𝐷(𝑠2), through the relative devia-
tion

𝛿𝑖(𝑠2) =

||||||
𝐷4g(𝑠

2,𝑅𝑖, 𝜙𝑖) −𝐷(𝑠2)

𝐷4g(𝑠
2,𝑅𝑖, 𝜙𝑖)

||||||
× 100%, 𝑖 = 1,⋯ ,491 . (33)

For 𝑠 ≤ 1 GeV, we find that the maximum error 𝛿𝑖(𝑠2) ≤ 12%. It is 
clear from Fig. 4 that as 𝑠 grows, the separation between curves in-
creases; this tendency is captured by the 𝛿𝑖(𝑠2), which also increases 
within the range 1 < 𝑠 ≤ 6 GeV, reaching a maximum value of 22%. 
Note, however, that for the vast majority of configurations, 𝛿𝑖(𝑠2) is con-
siderably smaller: out of the 491 configurations analyzed, 439 deviate 
from the average by less than 10%, while 285 by less than 5%.

The property of planar degeneracy can also be appreciated directly 
by plotting 𝐷4g(𝑠

2, 𝑅, 𝜙) as a function of 𝑥 and 𝑦, and analyzing the 
“flatness” of these surfaces for a fixed value of 𝑠2. The result is shown 
in Fig. 6. There, one clearly sees that for 𝑠 = 0.5 GeV and 𝑠 = 1 GeV, the 
𝐷4g(𝑠

2, 𝑅, 𝜙) is almost perfectly constant, i.e., nearly independent of the 
variables 𝑥 and 𝑦.
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For 𝑠 = 2 GeV, one sees a bending more pronounced at the edges of 
the disk represented in Fig. 3, and the appearance of a plateau in the 
internal region of the disk i.e., 𝑅 ⪅ 0.5.

An interesting feature regarding Fig. 6 is that the deviation from 
planar degeneracy, manifested in the curvature of the surfaces, depends 
almost exclusively on the radius 𝑅, showing minimal dependence on the 
angle 𝜙.

This property suggests that instead of simply using 𝐷(𝑠2), a more 
precise approximation to 𝐷4g(𝑠

2, 𝑅, 𝜙)may be achieved by taking in con-
sideration both the dependence on 𝑠2 and the radius 𝑅.3

We explore this possibility by performing an average over the angle 
𝜙. In particular, we interpolate the data points so that 𝜙 varies contin-
uously in the interval [𝜋∕6, 𝜋∕2], and sample 𝑁𝜙 = 10 equally spaced 
angles 𝜙𝑖, 𝑖 = 1,… ,𝑁𝜙. Thus, in analogy to Eq. (29), we define

𝐷(𝑠2,𝑅) =
1

𝑁𝜙

𝑁𝜙∑
𝑖

𝐷4g(𝑠
2,𝑅,𝜙𝑖) . (34)

Then, the improvement achieved when using Eq. (34) can be appreci-
ated by defining the relative deviation

𝛿
𝑖
(𝑠2) =

||||||
𝐷4g(𝑠

2,𝑅𝑖, 𝜙𝑖) −𝐷(𝑠2,𝑅𝑖)

𝐷4g(𝑠
2,𝑅𝑖, 𝜙𝑖)

||||||
× 100%, 𝑖 = 1,⋯ ,491. (35)

In contrast to 𝛿𝑖(𝑠2), the relative error 𝛿
𝑖
(𝑠2) has a maximum deviation 

of only 7% over the entire range 0 < 𝑠 ≤ 6 GeV. Indeed, when compared 
to 𝐷4g, with its complete momentum dependence taken into account, 

𝐷(𝑠2, 𝑅) offers a significant increase in accuracy over 𝐷(𝑠2).

6. Effective charge

In this section we use the SDE and lattice results of Fig. 5 to construct 
an RGI effective charge, denoted by 𝛼4𝑔(𝑠

2). Specifically, following a 
standard definition [24,26,84,108], we have

𝛼4𝑔(𝑠
2) = 𝛼𝑠(𝜇

2)𝐷(𝑠2)Z2(𝑠2) , (36)

where 𝐷(𝑠2) stands for the averaged form factors shown in Fig. 5, and 
Z(𝑝2) = 𝑝2Δ(𝑝2) is the gluon dressing function.

Capitalizing on the RG invariance of 𝛼4𝑔(𝑠
2), the SDE approach em-

ploys the average of Fig. 4 without the normalization factor introduced 
in the previous section. The value 𝛼𝑠(𝜇

2) = 0.27 quoted in Sec. 3 is ob-
tained by minimizing the discrepancy of the SDE-lattice comparison in 
the vicinity of the renormalization point 𝜇 = 4.3 GeV; specifically this 
value produces the best match in the interval 𝑠 ∈ [4, 4.5] GeV.

The lattice determination of 𝛼4𝑔 (𝑠
2) follows the same procedure de-

scribed in [89], except that in Eq. (36) the implicit continuum limit 
𝑎 → 0 has again been dropped because any non-singular, remaining de-
pendence on the lattice spacing is hidden in the statistical noise.

Both determinations of 𝛼4𝑔(𝑠
2) are shown in Fig. 7, displaying an ex-

cellent agreement over the entire range of momenta: the mean absolute 
percentage error, defined in analogy to Eq. (32), is of 9% for the entire 
interval. Let us finally stress the qualitative similarities with the result 
of [84], where the four-gluon form factor in Eq. (36) is evaluated in a 
collinear kinematic configuration.

7. Conclusions

In this work we have explored the nonperturbative four-gluon vertex 
in soft kinematics, by combining an SDE analysis and a lattice simula-
tion, in the Landau gauge. The quantity considered is the projection of 
the four-gluon vertex on its tree-level tensor, averaged over a large se-
lection of kinematic configurations sharing the same 𝑠2 .

3 The relevance of 𝑅 can be traced back to [107], being related to the phase 
space doublet of the 𝑆4 permutation group.

Fig. 7. Lattice and SDE determinations of the 𝛼4𝑔(𝑠2) defined by Eq. (36), with 
error bands associated to the statistical error of the three-gluon vertex.

The key hypothesis employed by both methods is the property of 
planar degeneracy: its use simplifies the SDE analysis, and allows for the 
emergence of a clear lattice signal. The results of both approaches are in 
very good agreement, affirming the overall robustness of the underlying 
picture.

Importantly, a further analysis of the SDE results establishes that 
planar degeneracy is only approximate, as already argued in [84]. Here, 
we have indicated how deviations of this property can be accurately 
taken into account, suggesting an improved description for this vertex 
in future applications.

We emphasize that, while the quantity 𝐷4g(𝑞, 𝑟, 𝑝, 𝑡) considered in 
this work is expected to be dominated by the classical form factor, in 
a future analysis this assumption may be explicitly tested, by formally 
eliminating unwanted admixtures through suitable projections, in the 
spirit of [84].

We finally point out that, in the limit of exact planar degeneracy, the 
effective charge 𝛼4𝑔(𝑠

2) would measure, in a configuration-independent 
way, the strength of the four-gluon interaction. Even though the ob-
served deviations from the planar degeneracy invalidate this possibility, 
their reduced size makes 𝛼4𝑔(𝑠

2) a rather useful instrument for describ-
ing the underlying dynamics.
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