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The Batalin-Vilkovisky function is a central component in the modern formulation of the background field method 
and the physical applications derived from it. In the present work we report on novel lattice results for this 
particular quantity, obtained by capitalizing on its equality with the Kugo-Ojima function in the Landau gauge. 
The results of the lattice simulation are in very good agreement with the predictions derived from a continuum 
analysis based on the corresponding Schwinger-Dyson equations. In addition, we show that an important relation 
connecting this function with the ghost propagator is fulfilled rather accurately. With the aid of these results, we 
carry out the first completely lattice-based determination of the process-independent strong running interaction, 
employed in a variety of phenomenological studies.

1. Introduction

The background field method (BFM) is a powerful framework that 
permits the implementation of the gauge-fixing procedure necessary 
for quantizing gauge theories without losing explicit gauge invari-
ance [1–10]. The formulation of non-Abelian gauge theories within this 
quantization scheme affords a plethora of advantages, both from the for-
mal as well as the practical points of view. Thus, in addition to streamlin-
ing a variety of demonstrations related to renormalization, it allows one 
to tackle efficiently longstanding challenges, such as the gauge-invariant 
truncation of the Schwinger-Dyson equations (SDEs) [11–17] or the def-
inition of physically meaningful renormalization-group invariant (RGI) 
quantities, see, e.g., [15].

Intrinsic to the BFM formalism is the duplication of the number of 
gauge fields, which are distinguished into “background” and “quantum” 
types [8,10]; while the former are not integrated over in the path in-
tegral and do not appear in loops, the latter are identified with the 
standard gauge fields known from the conventional formulation, e.g., 
in the linear covariant gauges [18].

The correlation (Green’s) functions built out of background fields 
satisfy linear Slavnov-Taylor identities (STIs) [19,20], which are naive 
generalizations of tree level relations, without deformations originat-
ing from the ghost-sector of the theory. In addition, and more im-
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portantly for our purposes, they are connected to the corresponding 
Green’s functions involving quantum fields by exact relations, known 
as “background-quantum identities” (BQIs) [15,21–23]. These special 
identities are derived with the aid of the Batalin-Vilkovisky (BV) for-
malism [24,25], where the original BFM action is extended through the 
inclusion of suitable anti-fields and sources.

The common ingredient of this infinite tower of identities is a par-
ticular function, denoted by 𝐺(𝑞), which we denominate “BV func-
tion” [23]. The precise field-theoretic definition of this function involves 
a special combination of an anti-field and a source; however, a more 
practical relation expresses 𝐺(𝑞) in terms of the conventional gluon and 
ghost propagators, and the ghost-gluon kernel, known from the STI sat-
isfied by the three-gluon vertex [26–33].

The BV function appears in a variety of non-perturbative applica-
tions, such as the so-called “block-wise” truncations of the SDE se-
ries [34–38], and the definition of an effective interaction which is both 
RGI and process-independent [39,40], constituting a common compo-
nent of every two-to-two on-shell process. In addition, 𝐺(𝑞) is related 
to the inverse of the ghost dressing function through an exact rela-
tion [40–43], which enforces the coincidence of distinct versions of 
effective charges in the deep infrared [40]. In that sense, the BV func-
tion represents an essential component of the gauge sector of Yang-Mills 
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theories, participating non-trivially in the description of the associated 
dynamics.

Particularly pivotal to the present analysis is the Landau-gauge equal-
ity between the BV function and the so-called Kugo-Ojima (KO) func-
tion [41,44], whose field-theoretic definition is especially suitable for 
a lattice simulation [45–48]. Exploiting this key relation, we carry out 
a large-volume simulation of the KO function, and thus, we simultane-
ously obtain the lattice result for the BV function.

The lattice results are contrasted with those obtained from the cor-
responding SDE that governs the evolution of 𝐺(𝑞), finding rather good 
agreement. In addition, the aforementioned relation between 𝐺(𝑞) and 
the ghost dressing function is shown to be fulfilled at a reasonable level 
of accuracy. Furthermore, the lattice results for 𝐺, together with the 
data for the gluon propagator obtained from the same lattice, allow us 
to present the first purely lattice-based construction of the effective in-
teraction introduced in [49,50].

Let us finally emphasize that we do not perform a background-
gauge simulation; the corresponding formulation has been developed 
in [51–53], but has never been realistically implemented. Instead, all 
information pertaining to BFM quantities, such as the gluon propaga-
tor and the attendant running interaction, originates from a standard 
Landau-gauge lattice analysis, appropriately combined with the relevant 
BQI.

2. The ubiquitous Batalin-Vilkovisky function

Within the BFM approach, the gauge field 𝐴 appearing in the clas-
sical action is decomposed as 𝐴 = 𝐵 + 𝑄, where 𝐵 and 𝑄 are the 
background and quantum (fluctuating) fields, respectively. Background 
fields participate in Feynman diagrams only as external legs, while loops 
are comprised exclusively by quantum fields [8,10]. The key property 
of the BFM is that the gauge-fixing may be implemented without com-
promising explicit gauge invariance. Specifically, instead of the gauge-
fixing term

gf =
1

2𝜉
(𝜕𝜇𝑄

𝑎𝜇)2 , (1)

of the conventional covariant (𝑅𝜉 ) gauges [18], one uses

̂gf =
1

2𝜉𝑄
(𝐷̂

𝑎𝑏

𝜇 𝑄𝑏𝜇)2 , 𝐷̂
𝑎𝑏

𝜇 = 𝜕𝜇𝛿
𝑎𝑏 + 𝑔𝑓 𝑎𝑚𝑏𝐵𝑚

𝜇 , (2)

where 𝑓 𝑎𝑏𝑐 are the structure constants of SU(3). The key feature that 
converts the BFM into a powerful quantization scheme is that the gauge-
fixing choice of Eq. (2) gives rise to a gauge-fixed action which is 
invariant under gauge transformations of the background field, 𝛿𝐵𝑎

𝜇 =

−𝑔−1𝜕𝜇𝜃
𝑎 + 𝑓 𝑎𝑏𝑐𝜃𝑏𝐵𝑐

𝜇 , where 𝑔 denotes the gauge coupling.
A profound consequence of this invariance is the form of the resulting 

STIs. Specifically, when Green’s functions are contracted by the momen-
tum carried by one of their background gluons, they satisfy ghost-free
STIs, akin to the Takahashi identities [54,55] known from Abelian the-
ories, such as QED. These special STIs have far-reaching consequences 
for renormalization, because they impose QED-like constraints among 
the various renormalization constants. In particular, the wave-function 
renormalization constant of the 𝐵 field, 𝑍𝐵 , and the gauge coupling 
renormalization constant, 𝑍𝑔 , defined as

𝐵 𝑎𝜇
R

=𝑍
−1∕2

𝐵
𝐵 𝑎𝜇 , 𝑔R =𝑍−1

𝑔 𝑔 , (3)

satisfy the key relation (see, e.g., [8,10])

𝑍𝑔 =𝑍
−1∕2

𝐵
, (4)

in close analogy to the textbook relation 𝑍𝑒 = 𝑍
−1∕2

𝐴
, obeyed by the 

renormalization constants of the electric charge and the photon [56].
In what follows we will identify the quantum gauge-fixing parame-

ter 𝜉𝑄 of the BFM [see Eq. (2)] with the corresponding parameter 𝜉 of 

Fig. 1. Diagrammatic definitions of the ghost-gluon scattering kernel, 
𝐻𝜈𝜇(𝑟, 𝑝, 𝑞), and the two-point function Λ𝜇𝜈(𝑞), given in Eq. (8).

the covariant gauges [see Eq. (1)], i.e., 𝜉𝑄 = 𝜉; in particular, in the Lan-
dau gauge that we adopt throughout this work, 𝜉𝑄 = 𝜉 = 0. With this 
identification, the propagator Δ𝑎𝑏

𝜇𝜈 (𝑞) = −𝑖𝛿𝑎𝑏Δ𝜇𝜈(𝑞) that connects two 
quantum gluons coincides with the standard gluon propagator of the 𝑅𝜉

gauges; in the Landau gauge, Δ𝜇𝜈 (𝑞) is completely transverse, i.e.,

Δ𝜇𝜈(𝑞) = Δ(𝑞)𝑃𝜇𝜈(𝑞) , 𝑃𝜇𝜈(𝑞) ∶= 𝑔𝜇𝜈 − 𝑞𝜇𝑞𝜈∕𝑞
2 . (5)

In addition to Δ𝑎𝑏
𝜇𝜈(𝑞), in the BFM we have two more gluon propaga-

tors, one connecting the fields 𝑄𝑎
𝜇(𝑞) with a 𝐵

𝑏
𝜈 (−𝑞), and one connecting 

𝐵𝑎
𝜇(𝑞) with a 𝐵

𝑏
𝜈 (−𝑞); the latter is essential for the ensuing analysis, and 

will be denoted by

Δ̂𝑎𝑏
𝜇𝜈(𝑞) = −𝑖𝛿𝑎𝑏Δ̂(𝑞)𝑃𝜇𝜈(𝑞). (6)

It turns out that the gluon propagators Δ(𝑞) and Δ̂(𝑞) are related by 
the simplest of all BQIs, namely [21,23,42,57]

Δ(𝑞) = [1 +𝐺(𝑞)]2 Δ̂(𝑞) . (7)

𝐺(𝑞) is the 𝑔𝜇𝜈 component of a certain two-point function, Λ𝜇𝜈(𝑞), given 
by (Minkowski space)

Λ𝜇𝜈(𝑞) ∶= 𝑖𝑔2𝐶A ∫
𝑘

Δ𝜌
𝜇(𝑘)𝐷(𝑘+ 𝑞)𝐻𝜈𝜌(−𝑞, 𝑘+ 𝑞,−𝑘)

= 𝐺(𝑞)
⏟⏟⏟

BVfunction

𝑔𝜇𝜈 + 𝐿(𝑞)
𝑞𝜇𝑞𝜈

𝑞2
, (8)

where 𝐶A is the Casimir eigenvalue of the adjoint representation [𝑁
for SU(𝑁)], 𝐷𝑎𝑏(𝑞) = 𝑖𝛿𝑎𝑏𝐷(𝑞) is the ghost propagator, and 𝐻𝜈𝜇(𝑟, 𝑝, 𝑞)
denotes the ghost-gluon kernel, see upper panel of Fig. 1. Note that, 
formally, Λ𝜇𝜈(𝑞) is a two-point function of a background source, Ω

𝑎
𝜇 , and 

a gluon anti-field, 𝐴𝑏⋆
𝜈 , usually denoted in the literature by I ΓΩ𝑎

𝜇𝐴
𝑏⋆
𝜈
(𝑞); 

the version given in Eq. (8) [see lower panel of Fig. 1] relies on the 
fact that Ω𝑎

𝜇 and 𝐴
𝑏⋆
𝜈 may be replaced by the Becchi-Rouet-Stora-Tyutin 

(BRST) [58,59] composite operator to which they are coupled.
We stress that the BQI of Eq. (7) is instrumental to our analysis, 

because it allows for the reconstruction of the BFM gluon propagator 
from Δ(𝑞) and the 𝐺(𝑞), which are obtained from the typical covariant-
gauge (𝑅𝜉 ) lattice simulation carried out here.

Next, consider three-point functions (vertices) of the general type 
�𝐵𝑋𝑌 and �𝐴𝑋𝑌 where 𝑋 and 𝑌 represent general fields (e.g., 𝑋 = 𝑌 =

𝐴 in the case of a three-gluon vertex, or 𝑋 = 𝜓 , 𝑌 = 𝜓̄ for the quark-
gluon vertex). The vertex BQI has the general form

�𝐵𝑋𝑌 = [1 +𝐺(𝑞)]�𝐴𝑋𝑌 +⋯ , (9)

where the ellipsis denotes terms that involve additional auxiliary func-
tions, and vanish “on shell”.

Higher correlation functions are related by similar, albeit increas-
ingly more complicated BQIs, with the BV function playing always a 
prominent role [36].
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We next turn to a special identity that relates the two form factors 
𝐺(𝑞) and 𝐿(𝑞) of Λ𝜇𝜈(𝑞) with the ghost dressing function, 𝐹 (𝑞), defined 
as

𝐹 (𝑞) = 𝑞2𝐷(𝑞) . (10)

Specifically, in the Landau gauge, we have the exact relation [40,49,
57]

𝐹−1(𝑞) = 1 +𝐺(𝑞) +𝐿(𝑞) . (11)

Due to the fact that the function 𝐿(𝑞) vanishes at the origin, 𝐿(0) =
0 [40], from Eq. (11) we obtain the important result

𝐹−1(0) = 1 +𝐺(0) . (12)

Note that this last relation enforces the coincidence between the Taylor 
[12,60–70] and “pinch-technique” [15,39,71] effective charges in the 
deep infrared [72,73].

3. Schwinger-Dyson equations for 𝑮(𝒒) and 𝑳(𝒒)

Within the standard framework of the SDEs, the dynamical equations 
that govern the momentum evolution of 𝐺(𝑞) and 𝐿(𝑞) may be deduced 
directly from Eq. (8) by projecting out the 𝑔𝜇𝜈 and 𝑞𝜇𝑞𝜈∕𝑞

2 components, 
respectively [40]; the tensorial decomposition [32]

𝐻𝜈𝜇(𝑟, 𝑝, 𝑞) = 𝑔𝜈𝜇𝐴1 + 𝑟𝜇𝑟𝜈𝐴2 + 𝑞𝜇𝑞𝜈𝐴3 + 𝑟𝜇𝑞𝜈𝐴4 + 𝑟𝜈𝑞𝜇𝐴5 , (13)

with 𝐴𝑖 ∶=𝐴𝑖(𝑟, 𝑝, 𝑞), is also employed.
Setting 𝑓 ∶= 1 −(𝑞 ⋅𝑘)2∕(𝑞2𝑘2) and 𝐴𝑖 ∶=𝐴𝑖(−𝑞, 𝑘 +𝑞, −𝑘), we obtain

1 +𝐺(𝑞) =𝑍𝑐 +
𝑖𝑔2𝐶A

3 ∫
𝑘

Δ(𝑘)𝐷(𝑘+ 𝑞)𝐾𝐺 ,

𝐿(𝑞) =
𝑖𝑔2𝐶A

3 ∫
𝑘

Δ(𝑘)𝐷(𝑘+ 𝑞)𝐾𝐿 , (14)

where

𝐾𝐺 =(3 − 𝑓 )𝐴1 − (𝑘 ⋅ 𝑞)𝑓 𝐴4 ,

𝐾𝐿 =(3 − 4𝑓 )𝐴1 − 𝑓
[
3𝑞2𝐴2 + 4(𝑞 ⋅ 𝑘)𝐴4

]
, (15)

and

∫
𝑘

∶=
1

(2𝜋)4

+∞

∫
−∞

d4𝑘 (16)

is the properly regularized measure.
Note that, due to the validity of Eq. (11), the 𝐺(𝑞) in Eq. (14) is renor-

malized through the 𝑍𝑐 , namely the ghost renormalization constant. 
For its determination, one must consider the corresponding SDE for the 
ghost dressing function 𝐹 (𝑞), see, e.g., [38]. This dynamical equation in-
volves the ghost-gluon vertex as one of its ingredients; this latter vertex 
is finite in the Landau gauge, and its attendant renormalization constant, 
𝑍1, is independent of the cutoff. Within the Taylor scheme [65,74,75]
that we will employ, we have 𝑍1 = 1, and the SDE for 𝐹 (𝑞) assumes the 
form

𝐹−1(𝑞) =𝑍𝑐 + 𝑖𝑔2𝐶A ∫
𝑘

𝑓Δ(𝑘)𝐷(𝑘+ 𝑞)𝐵1 , (17)

where 𝐵1 ∶=𝐵1(−𝑞, 𝑘 + 𝑞, −𝑘), with 𝐵1 denoting the classical form fac-
tor of the ghost-gluon vertex. Then, the expression for 𝑍𝑐 to be used in 
Eq. (14) is obtained from Eq. (17) by imposing the renormalization con-
dition 𝐹 (𝜇) = 1, where 𝜇 is the renormalization point; throughout this 
work we use 𝜇 = 4.3 GeV.

The numerical treatment of the SDE system formed by Eqs. (14)
and (17) proceeds along the lines described in [40,76], using up-to-date 

ingredients as external inputs. Specifically, we employ general kinemat-
ics results for 𝐵1 and 𝐴𝑖, determined from their own SDEs in [32]; 
instead, in [40,76] these form factors were set at their tree-level val-
ues. Moreover, we employ directly a fit to the lattice gluon propagator 
Δ(𝑞) (lower panel of Fig. 4), obtained from the same lattice setups used 
for the determination of 1 +𝐺(𝑞) and 𝐹 (𝑞). The resulting SDE solutions 
for 𝐺(𝑞) and 𝐿(𝑞) will be discussed in Sec. 5.

4. Lattice simulation: theory and setup

Both the formal definition of 𝐺(𝑞) in terms of BV fields and the 
alternative presented in Eq. (8) are unsuitable for performing lattice 
simulations. Instead, we will take advantage of the known equality be-
tween 𝐺(𝑞) and the KO function,1 to be denoted by 𝑢(𝑞); specifically, in 
the Landau gauge, we have [41–43,76].

𝐺(𝑞) = 𝑢(𝑞) . (18)

The field-theoretic definition of 𝑢(𝑞) that has been implemented on the 
lattice involves two composite operators,

𝑎
𝜇(𝑥) ∶=𝐷𝑎𝑒

𝜇 (𝑥) 𝑐𝑒(𝑥) , 𝑎
𝜈(𝑥) ∶= 𝑓 𝑏𝑐𝑑𝐴𝑑

𝜈 (𝑥) 𝑐
𝑐 (𝑥) , (19)

where 𝐷𝑎𝑏
𝜇 (𝑥) = 𝜕𝜇𝛿

𝑎𝑐 + 𝑔𝑓 𝑎𝑚𝑏𝐴𝑚
𝜇 (𝑥) is the covariant derivative in the 

adjoint representation, and the two-point function  𝑎𝑏
𝜇𝜈 (𝑞), defined as 

(Euclidean space)

 𝑎𝑏
𝜇𝜈 (𝑞) = ∫ 𝑑4𝑥𝑒𝑖𝑞(𝑥−𝑦) ⟨0|𝑇

(𝑎
𝜇(𝑥)𝑏

𝜈(𝑦)
)
|0⟩ , (20)

where 𝑇 denotes the standard time-ordering operation. The KO function 
is the scalar co-factor of  𝑎𝑏

𝜇𝜈 (𝑞),

 𝑎𝑏
𝜇𝜈 (𝑞) = 𝛿𝑎𝑏

(
𝛿𝜇𝜈 −

𝑞𝜇𝑞𝜈

𝑞

)
𝑢(𝑞) . (21)

An explicit lattice definition for  𝑎𝑏
𝜇𝜈 (𝑞) is given by

 𝑎𝑏
𝜇𝜈 (𝑞) =

1

𝑉

⟨
∑

𝑥,𝑦,𝑧

∑

𝑐,𝑑,𝑒

𝑒−𝑖𝑞⋅(𝑥−𝑦)
(
𝐷𝜇

)𝑎𝑒
(𝑥;𝑧)

(
𝑀−1

)𝑒𝑐
(𝑧;𝑦)𝑓 𝑏𝑐𝑑𝐴𝑑

𝜈 (𝑦)

⟩

𝑈

(22)

where ⟨…⟩𝑈 denotes the Monte-Carlo sample average over the gauge 
field configurations 𝑈 , and 𝑀 is a suitably discretized version of the 
Faddeev-Popov operator, 𝜕𝜇𝐷

𝑎𝑏
𝜇 ; note that the inverse of 𝑀 is related 

to the ghost propagator by

𝐷𝑎𝑏(𝑞) = ∫ 𝑑4𝑥𝑒𝑖𝑞(𝑥−𝑦) ⟨0|𝑇
(
𝑀−1

)𝑎𝑏
(𝑥;𝑦)|0⟩ . (23)

With the aid of Eq. (21), the scalar function 𝑢(𝑞) is given by

𝑢(𝑞) =
1

24

∑

𝜇,𝑎

 𝑎𝑎
𝜇𝜇(𝑞) . (24)

In order to study the KO function on the lattice, we rely on Eq. (22). 
However, for practical reasons, it is convenient to compute  𝑎𝑏

𝜇𝜈 (𝑞) using 
a point source 𝑦0 in the inversion of the lattice Faddeev-Popov operator, 
𝑀 ,

 𝑎𝑏
𝜇𝜈 (𝑞 =

⟨
∑

𝑥,𝑧

∑

𝑐,𝑑,𝑒

𝑒−𝑖𝑞⋅(𝑥−𝑦0)
(
𝐷𝜇

)𝑎𝑒
(𝑥;𝑧)

(
𝑀−1

)𝑒𝑐
(𝑧;𝑦0)𝑓

𝑏𝑐𝑑𝐴𝑑
𝜈 (𝑦0)

⟩

𝑈

(25)

1 This function is associated with a standard confinement criterion [41,44]; 
for a review, see [12]. It is well-known that the 𝑢 simulated on the lattice does 
not comply with this criterion [45,46], nor do the “decoupling” propagators, 
see, e.g., [77–80] and [37,81,82].
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where the lattice definitions for 𝐷, 𝑀 , and 𝐴 can be found in [46,83,
84].

The most important points of the lattice simulation may be summa-
rized as follows:

(i) The gauge field, 𝐴𝑎
𝜇 , covariant derivative, 𝐷

𝑎𝑏
𝜇 , and Faddeev-

Popov operator, 𝑀𝑎𝑏
𝑥𝑦 , are suitably discretized according to [46,47,80,

85].
(ii) The Landau gauge is fixed by identifying the configurations be-

longing to the Gribov region; this is achieved through the maximiza-
tion of a certain functional, whose discretized form is given in [46,47]. 
Numerically, the required maximization is performed with the Fourier 
Accelerated Steepest Descent method [86].

(iii) Since 𝑀𝑎𝑏
𝑥𝑦 is a singular operator, it can only be inverted in the 

subspace orthogonal to its zero modes. Nevertheless, this is sufficient 
for computing 𝑢(𝑞) for 𝑞 ≠ 0 [84]. In this case, the inversion problem in 
the orthogonal subspace can be transformed into a sparse linear system 
of equations, as explained in detail in [46,47,84]. Then, since 𝑀𝑎𝑏

𝑥𝑦 is 
real and symmetric, the resulting system can be solved efficiently with 
the conjugate gradient method [87].

(iv) We consider quenched lattice ensembles generated with the 
Wilson gauge action [88], with 𝛽 = 6.0. In this case, the Sommer pa-
rameter method [89] yields a lattice spacing of 𝑎 = 0.0962 fm (𝑎−1 =
2.05 GeV) [90]. We employ two setups, with lattice volumes 𝑉 = 644, 
and 𝑉 = 804, in lattice units; the corresponding physical volumes ex-
tend from (6 fm)4 to (8 fm)4. Further details on sampling, gauge fixing, 
and definitions can be found in [91].

(v) The number of gauge field configurations considered for the 
present study was 700 for 𝑉 = 644, and 500 for 𝑉 = 804.

(vi) The computer simulations were performed with the help of the 
Chroma library [92], using PFFT [93] for the necessary Fourier trans-
forms.

5. Results

Even though the lattice simulation uses the expression in Eq. (21)
as its starting point, in what follows we present the results in terms of 
𝐺(𝑞), which is the focal point of this study, rather than 𝑢(𝑞). Evidently, 
by virtue of Eq. (18), the results may be recast trivially in terms of 𝑢(𝑞), 
by setting 𝐺→𝑢 throughout.

Let us denote the bare 𝐺(𝑞) obtained on the lattice by 𝐺B(𝑞, 𝑎), mak-
ing manifest the dependence on the lattice spacing 𝑎. The results for
𝐺B(𝑞, 𝑎) from our simulations are shown in Fig. 2, for both lattice vol-
umes. We note that the volume dependence is rather weak; indeed, the 
data from both volumes agree within errors.

Ideally, in order to obtain a reliable comparison with the SDE results, 
the 𝐺B(𝑞, 𝑎) should be extrapolated to the continuum limit, 𝑎 → 0, as was 
done in [80,90,94,95], and be renormalized using the Taylor scheme. 
This task would require an extensive study of various 𝛽s and volumes, 
which is beyond our powers at present. Instead, in what follows we 
adopt a slightly modified version of the procedure developed in [46], 
whereby 𝐺B(𝑞, 𝑎) is renormalized by imposing Eq. (11).

To begin with, the continuum limit 𝐺B(𝑞) ∶=𝐺B(𝑞,0) is related to 
the lattice 𝐺B(𝑞, 𝑎) by

𝐺B(𝑞, 𝑎) =𝐺B(𝑞) + 𝑠(𝑞) , (26)

where 𝑠(𝑞) accounts for lattice artifacts, and, in principle, depends on the 
momentum 𝑞. Since the form of this dependence is currently unknown, 
we will proceed by considering two limiting cases: (i) assume that the 
dependence of 𝑠(𝑞) on the momentum is fairly mild [80], and treat it as 
a constant, i.e., 𝑠(𝑞) → 𝑠, and (ii) determine the non-constant 𝑠(𝑞) that 
would yield an 𝐿(𝑞) that coincides with the SDE result. The treatment 
in (i) will furnish our main result for 𝐿(𝑞), whilst (ii) is meant to be 
indicative of the 𝑠(𝑞) that the lattice may actually have.

(i) The renormalized lattice 1 + 𝐺(𝑞) in the Taylor scheme is given 
by

Fig. 2. Bare lattice results for the BV function, 𝐺B(𝑞, 𝑎).

1 +𝐺(𝑞) =𝑍𝑐[1 +𝐺B(𝑞, 𝑎) − 𝑠] , (27)

where the parameter 𝑠 acts as an effective subtractive renormalization 
constant. We emphasize that subtractive terms in the renormalization 
have been shown to improve the agreement with the continuum theory 
in studies of the quark propagator and the quark-gluon vertex [96,97].

The value of 𝑍𝑐 can be determined formally by imposing a renor-
malization condition, i.e., a value for the renormalized 1 +𝐺(𝜇), at 
some scale 𝜇. However, since in the Taylor scheme 𝐹 (𝜇) = 1, and 
𝐿(𝜇) generally does not vanish, Eq. (11) implies that we cannot impose 
1 +𝐺(𝜇) = 1.

Instead, we determine the value of 1 +𝐺(𝜇) by first computing 1 +
𝐺(𝑞) at one loop,

1 +𝐺(1)(𝑞) = 1 +
𝛼𝑠𝐶A

16𝜋

[
3 ln(𝑞2∕𝜇2) − 2

]
, (28)

with 𝛼𝑠 = 𝑔2∕4𝜋. Then, using the value of 𝛼𝑠 = 0.216 for the Taylor 
coupling at 𝜇 = 4.3 GeV [65] we obtain

1 +𝐺(1)(𝜇) = 0.974 . (29)

Interestingly, the SDE result yields 1 + 𝐺(𝜇) = 0.973, indicating that 
the perturbative regime of 1 + 𝐺(𝑞) has been safely reached for 
𝑞 = 𝜇 = 4.3 GeV. Hence, we can fix the scale of the lattice 1 + 𝐺(𝑞) by 
imposing 1 +𝐺(𝜇) = 1 +𝐺(1)(𝜇), such that

𝑍𝑐 =
1 +𝐺(1)(𝜇)

1 +𝐺B(𝜇, 𝑎) − 𝑠
=

0.974
0.922 − 𝑠

, (30)

where used 𝐺B(𝜇, 𝑎) = −0.078, obtained from the bare data of Fig. 2.
At this point, 𝑍𝑐 still depends on the unknown constant 𝑠. To fix its 

value, we impose the validity of Eq. (11), i.e.,

𝑍𝑐

[
1 +𝐺B(𝑞, 𝑎) − 𝑠

]
+𝐿(𝑞) = 𝐹−1

lat
(𝑞) , (31)

where 𝐹lat (𝑞) is the renormalized lattice ghost dressing function, ob-
tained self-consistently from the same lattice setups used to compute 
𝐺B(𝑞, 𝑎).

Now, the function 𝐿(𝑞) is not directly computed on the lattice. Nev-
ertheless, for small 𝑞 we can assume for 𝐿(𝑞) a Taylor expansion,

𝐿(𝑞) = 𝑎1𝑞
2 + 𝑎2𝑞

4 +(𝑞6) , (32)

whose 0-th order term vanishes on account of 𝐿(0) = 0.
Then, we can determine the parameters 𝑠, 𝑎1, and 𝑎2, by rephrasing 

Eq. (31) as a 𝜒2 minimization problem. Specifically, we minimize the 
𝜒2 defined by

𝜒2 ∶=
∑

𝑖

{
𝑍𝑐

[
1 +𝐺B(𝑞𝑖, 𝑎) − 𝑠

]
+ 𝑎1𝑞

2
𝑖 + 𝑎2𝑞

4
𝑖 − 𝐹−1

lat
(𝑞𝑖)

}2
, (33)



Physics Letters B 858 (2024) 139054

5

A.C. Aguilar, N. Brito, M.N. Ferreira et al.

Fig. 3. Top: Results for 1 +𝐺(𝑞) obtained from the lattice (points) and the SDE 
prediction (red curve). Bottom: Comparison of [1 +𝐺(𝑞)]−1 (circles/squares) and 
𝐹 (𝑞) (stars/triangles).

where 𝑞𝑖 are the lattice points, and 𝑍𝑐 is given by Eq. (30).
Since Eq. (33) is the result of a Taylor expansion, it is supposed to 

be used only for small 𝑞; specifically, we choose the points 𝑞𝑖 < 0.5 GeV. 
Consequently, there are too few points to reliably determine the parame-
ters 𝑠, 𝑎1 and 𝑎2 for the two lattice setups individually. Instead, we apply 
the above procedure to the combined data points of both volumes, for 
which there are 18 points in the fitting window. We have verified that 
for the combined data, the value of 𝑠 is stable against varying the order 
of the Taylor expansion in Eq. (32), as well as the fitting window. Specif-
ically, we obtain 𝑠 = 0.121, 𝑎1 = 0.458 GeV−2, and 𝑎2 = −0.905 GeV−4, 
for which 𝜒2 = 2 × 10−3.

Using the above value of 𝑠 in Eqs. (27) and (30), we obtain the renor-
malized lattice 1 +𝐺(𝑞), shown as points on the top panel of Fig. 3. On 
the same panel we show also the SDE prediction (red continuous), find-
ing an excellent agreement. On the bottom panel of Fig. 3, we compare 
𝐹 (𝑞) to [1 +𝐺(𝑞)]−1; evidently, Eq. (12) is satisfied within errors, as a 
consequence of the renormalization procedure employed.

The comparison between lattice and SDE results may be taken a step 
further, by considering the full momentum dependence of the form fac-
tor 𝐿(𝑞). In particular, a lattice-derived result for 𝐿(𝑞) may be obtained 
from Eq. (11), by substituting in it the lattice data for 𝐹 (𝑞) and 1 +𝐺(𝑞). 
The outcome of this procedure is shown in Fig. 4; the comparison with 
the SDE prediction (red continuous curve) reveals a reasonable agree-
ment. The blue curve represents a fit to the lattice 𝐿(𝑞), given by the 
simple functional form

𝐿(𝑞) =
𝑞2∕𝑐2

1
+ (𝑞2∕𝑐2

2
)2

1 + 𝑞2∕𝑡2
1
+ (𝑞2∕𝑡2

2
)2 ln𝑑L (1 + 𝑞2∕Λ2

T
)
, (34)

Fig. 4. Upper panel: 𝐿(𝑞) obtained from the lattice 1 +𝐺(𝑞) and 𝐹 (𝑞) of Fig. 3
(points) compared to the SDE prediction (red continuous). Also shown is a fit 
given by Eq. (34) (blue dashed). The inset shows the momentum-dependent 𝑠(𝑞)
of Eq. (35) (green continuous) that makes 𝐿(𝑞) identical to the SDE curve, as 
discussed in item (ii), and the constant 𝑠 = 0.121 (orange dotted) determined in 
item (i). Lower panel: The gluon propagator simulated on the same lattices as 
the BV function [99].

where ΛT = 425MeV is the value of ΛQCD in the Taylor scheme [65], and 
𝑑L = 35∕44 is the anomalous dimension of 𝐿(𝑞) [98]. The fitting param-
eters are given by 𝑐2

1
= 2.18 GeV2, 𝑐2

2
= 0.575 GeV2, 𝑡2

1
= 0.0981 GeV2, 

and 𝑡2
2
= 0.188 GeV2. Note that Eq. (34) satisfies 𝐿(0) = 0 by construc-

tion.
(ii) The 𝐿(𝑞) obtained from the lattice can be made to be identical to 

the SDE result, by choosing a particular form for 𝑠(𝑞). To this end, we 
assume that 𝑠(𝑞) is given by

𝑠(𝑞) =
𝑠0 + 𝑠1𝑞

2

1 + 𝑠2𝑞
2 + 𝑠3𝑞

4
, (35)

which decreases at large 𝑞. Then, fitting the lattice data over the whole 
range of momenta yields for 𝑠(𝑞) the green continuous curve in the 
inset of Fig. 4, corresponding to 𝑠0 = 0.101, 𝑠1 = 0.832 GeV−2, 𝑠2 =

5.83 GeV−2 and 𝑠3 = 5.60 GeV−4.
Notably, for 𝑞 < 0.5 GeV, 𝑠(𝑞) turns out to differ by less than 17%

from the 0.121 obtained when assuming that 𝑠 is constant. In particular, 
𝑠(𝑞) saturates at 0.101 at the origin and reaches a maximum of 0.113 at 
0.4 GeV. The proximity between the results of the two approaches indi-
cates that method (i) correctly captures the effect of the lattice artifacts 
in the infrared, and that the results obtained through it are reliable.
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Fig. 5. Diagrammatic representation of the BQI-induced rearrangement in the 
case of a generic 𝑋1𝑋2 →𝑋3𝑋4 scattering, corresponding to the S-matrix ele-
ment 𝑋1𝑋2→𝑋3𝑋4

of Eq. (39).

6. RGI running interaction strength

As has been explained in a series of articles [15,40,49], the funda-
mental relation of Eq. (4) allows for the definition of a propagator-like 
RGI quantity, exactly as happens in QED when the photon vacuum po-
larization is multiplied by 𝑒2. In particular, since Δ̂(𝑞) renormalizes 
through the 𝑍𝐵 introduced in Eq. (4), i.e.,

Δ̂R(𝑞) =𝑍−1
𝐵 Δ̂(𝑞) , (36)

the combination

𝑑(𝑞) ∶= 𝛼𝑠Δ̂(𝑞) , (37)

is RGI by virtue of Eq. (4). Indeed, 𝑑(𝑞) retains exactly the same form 
before and after renormalization, and, consequently, does not depend 
on the renormalization point 𝜇, nor on the renormalization scheme em-
ployed.

The BV function enters into the definition of 𝑑(𝑞) when the central 
relation in Eq. (7) is invoked,

𝑑(𝑞) ∶=
𝛼𝑠Δ(𝑞)

[1 +𝐺(𝑞)]2
; (38)

in this form, 𝑑(𝑞) is known in the literature as the “RGI running inter-
action strength” [49].

What is particularly interesting about 𝑑(𝑞) is that it does not repre-
sent a mere field-theoretic construct, but admits a clear physical inter-
pretation. Specifically, 𝑑(𝑞) constitutes a common component of any 
two-to-two physical processes, 𝑋1(𝑘1)𝑋2(𝑘2)→𝑋3(𝑘3)𝑋4(𝑘4), where 
an off-shell gluon, carrying momentum 𝑞 = 𝑘1 − 𝑘2 = 𝑘3 − 𝑘4, is ex-
changed, see Fig. 5. In particular, with the aid of the BQIs in Eqs. (7)
and (9), the S-matrix element 𝑋1𝑋2→𝑋3𝑋4

may be cast in the form

𝑋1𝑋2→𝑋3𝑋4
=

{
𝑔�𝐴𝑋1𝑋2

}
Δ(𝑞)

{
𝑔�𝐴𝑋3𝑋4

}

=
{
𝑔 [1 +𝐺(𝑞)]−1�𝐵𝑋1𝑋2

}
Δ(𝑞)

{
𝑔 [1 +𝐺(𝑞)]−1�𝐵𝑋3𝑋4

}

= �𝐵𝑋1𝑋2

{
𝑔2[1 +𝐺(𝑞)]−2Δ(𝑞)

}

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
4𝜋 𝑑(𝑞)

�𝐵𝑋3𝑋4
. (39)

Due to the general validity of the BQIs, the steps leading to the last 
line of Eq. (39) may be followed regardless of the detailed nature of 
the initial and final states. In that sense, 𝑑(𝑞) captures the process-
independent contribution, common to all such processes, whilst the 
process-dependence, i.e., the part that carries the information about the 
specific nature of the initial and final states, is encoded in the vertices 
�𝐵𝑋1𝑋2

and �𝐵𝑋3𝑋4
.

The quantity 𝑑(𝑞) has mass dimension of −2; from it one may define 
the dimensionless RGI interaction (𝑞) [49]
(𝑞) ∶= 𝑞2𝑑(𝑞) . (40)

Fig. 6. Lattice results for 𝑑(𝑞) (top) and (𝑞) (bottom), represented by points. 
On both panels, the present SDE result (red continuous curve) and that of [49]
(green dotted) are shown for comparison. The fit to the lattice data, given by 
Eq. (41) is shown in blue dashed.

As explained in [49], this quantity provides the strength required in 
order to describe ground-state hadron observables using SDEs in the 
matter sector of the theory. As was argued there, the physics encoded 
in (𝑞2) reconciles nonperturbative continuum QCD with ab initio pre-
dictions of basic hadron properties.

In Fig. 6, the red continuous curves correspond to the 𝑑(𝑞) (top) and 
(𝑞) (bottom), obtained by combining the 1 +𝐺(𝑞) from Fig. 3 with the 
gluon propagator, self-consistently simulated on the same lattice setups 
(see lower panel of Fig. 4). For the Taylor coupling at 𝜇 = 4.3 GeV, we 
use 𝛼𝑠 = 0.216 [65]; note that, due to the RGI nature of 𝑑(𝑞), any other 
set {𝜇, 𝛼𝑠(𝜇)} yields precisely the same answer. In addition, the 𝑑(𝑞) and (𝑞) obtained from the SDE analysis of [49] are displayed as green dot-
ted curves. Note that the present treatment leads to closer agreement 
between lattice and SDE results; we have confirmed that this is mainly 
due to the non-perturbative dressing of the form factors 𝐵1 and 𝐴𝑖, dis-
cussed in the last paragraph of Sec. 3.

Moreover, in Fig. 6 we show as a blue dashed curve a fit to the lattice 
𝑑(𝑞), given by the functional form

𝑑(𝑞) =
𝑑(0)

[
1 + 𝑎1𝑞

2 + 𝑎2𝑞
4
]

1 + 𝑏1𝑞
2 + 𝑏2𝑞

4 + 𝛽0𝑑(0)𝑎2𝑞
6 ln(1 + 𝑞2∕Λ2

T
)
, (41)

where 𝛽0 = 11∕(4𝜋) is the first coefficient of the QCD beta function, ΛT =

425 MeV [65], and the fitting parameters are 𝑑(0) = 17.1 GeV−2, 𝑎1 =
0.0585 GeV−2, 𝑎2 = 0.0274 GeV−4, 𝑏1 = 3.51 GeV−2, 𝑏2 = 9.33 GeV−4. 
Note that Eq. (41) enforces the one loop-running of the QCD coupling 
in the ultraviolet, i.e., (𝑞) → [𝛽0 ln(𝑞

2∕Λ2
T
)]−1 at large 𝑞.
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7. Conclusions

The quantitative agreement between the BV function simulated on 
the lattice and the corresponding SDE results exposes once again the 
underlying consistency of a large number of concepts and techniques, 
developed over a period of several years, see, e.g., [100]. Especially in-
teresting in that regard is the interplay between the ghost and gauge 
sectors of the theory, which are nontrivially intertwined by the SDEs. 
Note, in particular, that the lattice gluon propagator in Fig. 4 is used as 
input in the SDEs of Eqs. (14) and (17), which produce the prediction 
for 𝐺(𝑞) that is subsequently compared with the corresponding lattice 
result in Fig. 3. Let us finally emphasize that the effective interactions 
𝑑(𝑞) and (𝑞) shown in Fig. 6 correspond to the pure Yang-Mills case; for 
phenomenological applications they must be modified to include effects 
from dynamical quarks, in the spirit of [50,98,101]. In fact, the results 
of the present work bolster up our confidence in the SDE derivations 
that lead to the “unquenching” of these RGI quantities.
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