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CONVERGENCE RATES IN THE
' SOBOLEV H’-NORM OF
APPROXIMATIONS BY
DISCRETE CONVOLUTIONS

SOoNIA M. GOMEs®

1 Introduction

In this paper we shall deal with expansion series of the form

00

1) Z c;..l,’(hqz - k),

k=-o00

in terms of the scaled translates of a basic function ®.

Expansions ( 1) have been extensively used in the development of ap-
proximate methods for the solution of partial differencial equations. These
methods consist in searching for the solution in spaces V) spanned by the
basic functions ®(h~'z — k). In finite element approximations based on a
regular mesh with mesh-width A, the trial spaces V, are formed by piecewise
polynomial functions. A typical choice for the basic function ® is a B-spline.

The success of such methods depends on the “density” of the spaces Vj,
i.e., in the accuracy of the approximations of functions f from V. Strang
and Fix [21] have isolated those conditions on the finite element spaces V,
which determine the order of approximation in the H*-norm. For instance,
assuming that ¢ is compactly supported and is in H™(R) they stablished that
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of this author was partially supported by CNPq-Brasil (Grant 302714/83-0).




smooth functions can be approzimated from V; with error O(h™*'~*) in the
H*-norm, s < m, if and only if the polynomials of degree < m can be written
as linear combinations of ® and its translates. Equivalently, the Fourier
transform ® must have zeros of order m + 1 at all the points £ = 275,75 # 0
and &(0) # 0. This condition is also known as the m-criterion of convergence
(cf. [1]). .

Assume the m-criterion of convergence. Now the question is: Given an
arbitrary approximation of a funtion f in V}, does this approximation have
the same order of accuracy O(h™*!~*) in the H*-norm ? Of course this is
not true in general. Additional hypotheses must be satlsﬁed For example,
consider the sampling series

(2) Shf(=z Z f(hk)(b(h"‘z — k).

k=-=o00

Here the coefficients cy, are the sampled values f(hk) of f at the node points
hk (see [5] for an historical overview of this matter). If

(3) B(¢) =1+0(¢™)
then (see [20] and [4])
1 = Sufllue = O(A™=),

Condition ( 3) means that all the moments )‘, = [y'®(y)dy | = 1,...,m,
must be equal to zero.
Consider now the class of expansions

(4) Anf(z) = Sa(Rnf)(z) = ZR,,j(hk)(b(h 'z — k)

where the coefficients are the sampled values R;f(hk) obtained from f by
the “averaging” operation

(5) Ruf(@) = [ f(z = )b~ w(hy)dy,

with p € L’(R) and [0 p(y)dy = 1. That is, R\f = f * y, is the convo-
lution of f with a kernel of Fejér's type pa(y) = A~'u(h~'y). Observe that
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sampling series correspond to the limit case when p is the delta distribution.
In finite element theory R, and S, are known as restricition and prolongation
operators, respectively. For this class of approximation it is required that:

(6) B(E)A(E) = 1+ O(¢™).

The m-criterion of convergence together with the moment relation ( 6) implies
that (cf. [1] and also [8])

S = Anfllge = O(K™*").

In the present paper, we shall extend the results mentioned above for
approximations ( 4) with averaging operations Ry f given by

() Ruf(z) = (f+dn)(e) = [~ flz - hy)du(y),

where v are functions of bounded variation. We shall also replace the regu-
larity hypotheses usually made in finite element theory on the basic functions
®. Instead of ® € H™(R) with compact support, we shall assume that ®
is m-regular in the sense that ®(z) and its derivatives up to order m must
have fast decay as |z| — oo (see Hypothesis 2), not necessarely with compact
support.

The moment relation in the present case becomes

8(¢)o(€) = 1+ O(E™),

where 7 is the Fourier-Stieltjes transform of ». We shall prove in Section
3 that the same order of accuracy O(h™*'~*) also holds for approximations
( 4)-( 7) under the above conditions.

This class includes expansions of type ( 4)-( 5) corresponding to dv(y) =
p(y)dy, as well as the sampling series ( 2) with dv(y) = 6(y — 0)dy. Other
approximations of interest in the class ( 4)-( 7) are obtained with coefficientes
given by discrete convolutions

(8) Chk = ZT[_;@](UI),
!

where 7 = (1), | € Z are sequences in €' with ¥, 7y = 1. For these examples,
the function v satisfies dv(y) = ¥, 16(y — I)dy. They can also be expressed
as sampling series in terms of another basic function ®* obtained from ® as

®°(z) = z‘:nlb(:c +1).



Our motiv.iation for studying this subject comes from the recent interest.
in the approximations called multiresolution analysis of L*(R) (cf. [17] and
[18]). In this context expansions of type ( 4)-( 5) appear naturally. In a

multiresolution analysis of L?(R) a function f € L?(R) can be decomposed
as follows:

(9) f(x) = Z < f, %> Q(z) + z: E < fi U > Uu(x).
keZ I>5 keZ

The function ®(z) appearing in the first term in the right hand side of the
above expression is called a scaling function and for j € Z the sets

{®x(x) = 2%®(2z — k), k € 2}
form orthonormal bases of embedded closed subspaces V; C L*(R) and

(10) I;f(z) = Y < f,®5 > G;u(z)

keZ

is the orthogonal projection of f ‘onto V;. Similarly, the functions ¥i(z) in
the second term of ( 9) are defined as

i(z) = 2779 (2'z — k)

in terms of the function ¥(z), which is usually called a basic wavelet, and the
set {U;.(z),l, k € R} constitutes an orthonormal basis for L?(R.). Moreover,
for every j, the closed subspace W; spanned by {V¥;i(z), k € Z} is the orthog-
onal complement of V; in V;4,;. Consequently, in this kind of decomposition
the higher resolution approximation Il;41f is obtained by just adding to I1; f
a high frequency component

Dif =Y < f, ¥k > V()
keZ

corresponding to the orthogonal projection of f onto Wj. A multiresolution
expansion ( 9) is a discrete version of the wavelet transform

Wit = [ v (2) do



This technique provides an adequate framework to analise those phenome.nar
that are well localised in time or frequency domains. It has received consid-
erable attention in the last years and had been succesfully applied in several
fields:of Mathematics, Physics and Signal Analysis (cf. [7], [16] and [19]).
Observe that the approximation II;f € V; has the form ( 1), where the
coefficients are the L?-scalar products < f,®;, > 2//2. It can also be rep-
resented in the convolution form ( 4)-( 5) with A = 277 and pu(y) = ®(-y)-
According to Meyer [18], r-regular scaling functions corresponding to mul-
tiresolution analysis of L?(R) satisfy the m-criterion of convergence with m

at least equal to . The moment relation is also verifyied by the operators
II;. Indeed, orthonormality implies that

Y186 + 2kx))* =1
k
for all { € R. Consequently, since p(z) = &(—=z),

B(6)a(€) = 1B()P =1 - Y |8(¢ + 2kn)? = L + O(|E[*™+?).

k#£0

Note in this case that the moment relation and the m-criterion of convergence
have distinct orders, namely, 2m + 1 and m, respectively. Our results of Sec-

tion 3 implies that, for smooth f, m-regular muliresolution approximations
I1; f have accuracy

(11) I f =T |lge= O(273(m+1=2)),

In fact a sharper result holds in this case (cf. [18]). Let ¢; = 2/ || D, f Il L2,
where Dj is the orthogonal projection onto W;. Then the H*-norm is equiv-
alent to the sum of the L?-norm of Tlof plus the ¢>-norm of the sequence
‘j’j 2 0.

There also exist generalizations of expansions ( 9) in the form

(12) f(z) = Z <[,95 > Qu(z)+ ) Z < [i¥ > Up(z)

keZ 125+1 k€2

differing in that the set {®jx, ¥ i} of the synthesizing functions is not or-

thogonal and t.hfa analysir‘:g functi.ons.{ D3, W3k} are not necessarily the same
as the synthesizing functions. This kind of decompositions includes the phi-

transform (14] and biorthogonal multiresolution expansions ([6] and [24]), all
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of them been appropiate for local time-frequency analysis. Note that the
approximations
E < f, 9} > ®;i(z),
keZ
obtained by truncation of expansions ( 12), are also in the class defined by
(4)-( ). o
Section 4 is dedicated to the study of some usual approximations having
the coefficients in the discrete convolution form ( 8). We shall identify in
each case the required condition in order to obtain a moment relation. Even
though in the examples presented the emphasis is placed on the context
of orthogonal multiresolution analysis, the results are also valid in other -
contexts.
We shall discuss first the case of sampling series and how to get vanishing
moments. For instance, despite the fact that the scaling functions do not
always satisfy a moment relation for sampling series, we shall see that it is

possible to construct other sampling series aproximations Q; f in V; in terms
of different basic functions ®* € V, with moment relation

(€)= 1+0(¢™"?)

Such operators, namely, sampling series with many vanishing moments and
based on modified versions of the trial functions, are known in the finite ele-
ment literature as quasi-interpolant operators. Galerkin methods for PDE’s
based on such schemes of approximation give rise to the so called supercon-
vergence at the node points (cf. [23]).

Whe shall call I;f the interpolant operator which coincides with f at
the node points k277. This operator can be well defined and will have the
coefficients in the discrete convolution form ( 8), provided that the discrete
Fourier transform ®(¢) never vanishes. Under this condition, the m-
of comvergence implies a moment relation of same order.

We shall also study the expansion DII; f in a multiresolution analysis V;
with coefficients ’

criterion

o = f(1270)®(1 - k).
]
They correspond to approximations of the L?-scalar products < fi® > 2/

using the simple numerical integration by rectangles based on the mesh points
z = k277, We shall prove that both DII; satisfies a moment relation with
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¢ = m. This means that the “discrete orthogonal projection” DII;f has the
same accuracy as II; f.

Before proving our main result in Section 3, let us state some preliminary
results.

2 Notations, definitions and preliminary re-
sults

The Fourier transform of a function g is defined by
3O = [ gy
and the discrete Fourier transform

7(€) = ) _me™™
1

is associated to sequences T = (7;) in ¢! as well as in £2.
Let us also introduce the Sobolev spaces H*(R) endowed with the more
convenient norm

Wi = ([0 + lePyiFerae) .

The following relation
1 ~arpni
(13) Do 9( + 2km) = = 3o g(k)e™
k ™%

i8 known as the Poisson summation formula. It holds almost everywhere
(a.e.) if g € L'(R) and the sequence g(k) is in £'. By Riesz-Fischer theorem,
this is also true if ¢ € L?(R) is such that its periodized version ¥ g(& + 2kx)
is in L*([—m, 7)).

Through this paper we shall use frequently the following version of ( 13)
(14) h=' ST @(h(€ + 2km)) = Y w(hk)e ™,

k k

In the proof of Theorem 3.1 we shall need the results of the following

lemma.



Lemma 2.1 Let w € H°(R), s > 1/2. Then the Poisson summation for-.
mula ( 14) holds. Furthermore, for r > 0

[emanoras < ¢t [ eriaera

) + et 7 IEI"ItT:(f)I’dE} ,
where C = C(r,s) and @y(¢) = T w(hk)e™

Proof. First observe that

Izw(h £+2k7r))l’<2{lw(h E)PH;;O | £+2k7r))I’}

By Cauchy-Schwartz inequality,
| }: D(h71(€ + 2km))> < Y |€+ 2kn|72 ) |€ + 2kx|*|B(AT (€ + 2kx)))?

k#0 k#0
(16) < C Y 1€+ 2knf|@(h7 (€ + 2km)) [
: k

Consequently
[ eI a0 €+ 2kmpPe <

= ¢ {/ e 1a(h ) dg + 3 [ I le+ 2knla(h7 (e + 2k1r))|2d€}
S. C{h2r+1/ |u|2r|w(u)|2du+1r2rh2.+l Z/ME" lulhlw(u)Pdu}

= C{h2r+l/ / |u|2rltf)(u)|2du+7r2’h2‘+l/ Iulz"lfﬁ(u)Pdu}.
—n/h -0

This inequality for » = 0 impliy that the function Y, @(h~"(¢ + 2kx)) is
square integrable in the interval [—m, 7] and then the Poisson summation
formula ( 14) holds. Therefore,

[ terrmnerde = 5 [ 167150007 + 2k)ag



-

" x/h > 0
< C{h2 1 v/—r/h |u > |®(u)|*du + r"h""/ Iulz'ltﬁ(u)lzdu} ,

from which the result immediately follows.

As an immediate consequence of equation ( 15), the discrete £*-norm

holit = b X hohb) = - [ In(©)Pde

is finite for w € H*(R),s > 1/2.

Let BV = BV(R) be the set of all functions v of bounded variation with
\vllev = [ |dv(y)|. For v € BV the Fourier-Stieltjes transform

) = [ e an(y)

defines a bounded linear transformation from BV into C(R) and

(17) 1#(I < llvllsv.
As an example, let 4 € L'(R). The function v defined by v(z) = [Z_ p(z)dz
is in BV, ||v||sv = ||p|l» and 7 coincides with ji. Other examples are given

by functions v such that dv(y) = ¥;é(y — I)dy, where 7(l) are sequences
in £'. In these cases #(§) = 7(£) .

If f € L*(R) and v € BV, the convolution f * dv as defined by
(f xdo)@) = [ fla=)dv(y)
exists (a.e.) as an absolutely convergent integral, f +dv € L*(R) and

If * dvlles < flleallvllsy

Furthermore, . ~
frav(é) = f(E)(6), (ae)
Consequently, for f € L*(R), the transformation R, f defined in ( 7) satisfies

(18) Rif(€) = J(€)o(he).
Moreover, if f € H*(R) then also R, f € H*(R) and, for s > 1/2

(19)  Raf(6) =3 Raf(hk)e™™ = b~ z:, Ruf(h™(€ + 2kx)).
k

9



The functions defined in ( 4) have Fourier transform

(20) Arf(€) = hRLF(hE)B(he).

Therefore,

(21)  Anf() = FOH(REYB(hE) + 3 Ruf (™' (hE + 2km))B(RE).

k#0

3 Convergence in H°(R)

In this section we will study the convergence in the H*-norm of expansions
( 4)-( 7). We shall assume the following hyphoteses:

Hypothesis 1. » € BV and [dv(y) = 1.

Hypothesis 2. ®is r-reguldr, r > 1,i.e., for all indices Ssuchthat 0 < g < r
(22) 16°8/02°) < Ca(1 + |z))™ |

for all integer n > 0.

Hypothesis 3. (The m-criterion of convergence) ®(¢) has zeros of order
m+1 at ¢ =2kn, k #0and ®(0) = 1.

Hypothesis 4. v and @ are related by |
(23) 8(6)w(6) = 1+ O(l¢1™)
Theorem 8.1 Assume that v and ® satisfy Hypotheses 1-{ and let p =

min{m,q}. If f € H?*'(R) then the approzimation A\ f defined by ( )-( 7)

satisfy the error estimate

(24) Nf = Anfllae < CRPF*| | fllppnn,

where 0 < s < min{p + 1,7} and the constant C is independent of f,
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Proof. The proof can be carried out in an analogous way as in [21], Theorem
I. In order to estimate

17~ Anf W= [ (1 +1EPYIF©) - Arr(Pde
we have to show that the integrals

h=[  (Q+EPYIF© - Ar©rd,

and

h= [ (Q+IEPITE - ATErd

are all bounded by Ch?+'-2 || f ||3,,,. For I, it is a consequence of
Hypothesis 4 and Poisson sumation formula. For the estimation of I, it is
necessary to show that for 0 <s<r

(25) 318 + 257)PI€ + 257> = O(J¢N)*™+?
i#0

as £ — 0. For compactly supported & € H"(R) satisfying Hypothesis 3
the proof is based on the Paley-Wiener theorem and the theory of entire
functions (cf. [21]). The result in ( 25) also holds for r-regular functions @
satisfying Hypothesis 3 and correspond to Proposition 1 in [12].

Replacing expression ( 21) in I; we have

nsa{ [ 0+ kPYIFON - HHOBROI
[l<=/A

)| Y Ruf(€ +2x5h7)PIB(hE)|Md
+ a8 IEPVI 3 RF(€ 4 26580 IB(RO) 5}

= 2{(a) + (B))-
Hyphotesis 4 implies that

(@) < Cf  (1+IEP)IhePIf()rde
KIS=/h ) :
< Cf (KPR IO
Kls=/h
< ORI [7 (4 )™ () Pde.
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To evaluate (b), consider the estimate ( 16) together with formulas ( 17)
and( 18) to obtain

(®) < on /I£I<«/h Z(hf + 2m5)2@| f(€ + 2mjh")Pde

= (Ch2e-s+1) e 2( +1);‘ 2
= > faine €717 de
J A

= CRA=9 [™ |plorn) Fe) e,

I, is also splitted in two terms

nse{f, QPTG [ o errimTer).
= 2((i) + (i)

For |£| > 7 /h we notice that |hé| > 7 and, therefore
()<C /IM " |REPPEH=)(1+1¢1°) | f(€)Pdg < CR*+=) / 1+I£l’)"”“’lf(€)l’d£-
Replacing ( 20) in (ii) we get :

@) = w[ (1 + [€12)’ | RAF(hE)PIB(hE) Pdg

i S Ch2 -! w
; (2| l)ﬂ'
= CrY / 1€ — A2 || RaJ (hE — 25)*|B(hé — 2mj)[*de
Jj#0
= CW / R (R T 1B (hE + 2m)PIE + A2 de
"/" J#0

< Ch*~» IR;.] )1 S 19(€ + 25m)1*1€ + 2im|>dé.
J#0

|£|"|ﬁ?f(hf)|2|6(hol’df

From ( 25) and Lemma 2.1 :

() < W [ IRFE)FIErr+de
< CRPHEHTN Ry f ([
< CREHV| S [ -

IN
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The above estimates for (a), (b), (i) and (ii) led to the result in ( 24).

3.1 Convergence at the node points

We shall see in this section that the order of convergence O(h?*!) also holds
in the discrete £*-norm.

Theorem 3.2 Let A,f be defined by ( 4)-( 7). Under the same hypotheses
of Theorem 8.1 with r > 1

(26) ' NF = Anfllzn < CRPH||f|lgpar.

Proof. It is a consequence of Lemma 2.1 and Theorem 3.1. Using equation
(15) with w = f — Apf, r =0 and s = 1 we have

f —Anfllzn = th:lf(kh) — Anf(kh)[*

(>

< o{ 7,170~ Brora+ i |

- -—

The first intergral on ‘the right hand side of the above expression can be
estimated as I; from the proof of Theorem 3.1. Consequently,

f = Afl3a S C{WINIf|hpn + 21 = AnfliEn}
< CRO||f|hmn.

4 Examples

In the examples discussed below the emphasis is placed on expansions in
terms of a scaling function ® associated to a multiresolution analysis of
L?*(R). So, let us first present some examples of scaling functions.

4.1 Examples of scaling functions

Example 4.1 The Shannon scaling function. One of the most simple
examples of a multiresolution analysis of L?(R) is given by the spaces V; of all
functions whose Fourier transforms have support in the intervals [—27x, 2/x],

13
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The correspondig scaling function is the function ® whose Fourier transform
is the indicator function

6(5):{‘ if —x S| <7

0 otherwise

This scaling function has compact support in the Fourier domain but has slow
decay in the spatial domain: it does not satisfy any regularity condition.

Example 4.2 Meyer (18] showed that one can built a scaling function which
is r-regular, for all r, and compact supported in the Fourier domain. This
means that it satisfies the m-criterion of convergence for all m. But for many
numerical applications, the decay O(z~") for any n > 0 is too slow.

Example 4.3 Splines. Let V; be the subspace of L?(R) constituted by all
Cr'-functions which coincide on each interval [k, k + 1] with a polynomial
of degree less or equal r. Then, the family of embedded subspaces V; defined
by the relation f(z) € V; & f(2z) € V;-, form a multiresolution analysis of
L*(R). Defining ®(z) = ¢,(z) for odd r and &(z) = ¢,(z + 1/2) otherwise,
where ¢, is the B-spline of degree r, then the translates &(z — k), k € Z, con-
stitute an unconditional basis for the subspace V4. ¢, is defined recursively
‘a8 ¢, = o * p,_1, where @o(z) = x(z) is the characteristic function of the
interval [—1/2,1/2]. ¢, is an even function in C™'(R) which coincides with
a polynomial of degree r in its support [—7£1, 1], Note that the Fourier

transform 3, (£) = (Zﬂzz(ﬁﬁl)'“ has zeros of order r + 1 at all the points
¢ = 2kn,k # 0. Consequently ® is r-regular and satisfies the r-criterion of
convergence. However, for each j, the basis {®;4},k € Z is not orthogonal,
unless r = 0. Through the orthonormalization process defined by

-1/2
$(§) = 2(¢) (Z 19(§ + 2kpi)|’) ,
_ =y
the resulting new basis {¢;,k € Z} is orthonormal and inheritates from ¢,
all the regularity properties. However, the compact support is lost . But ¢

has exponential decay, which make it good for numerical applications. The
construction of such bases is due to Battle [2] and Lemarie [15].

14
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Example 4.4 Daubechies’ scaling functions. The scaling functions of
Daubechies & =y &, N = 2,3,... are supported on the intervals [0,2NV — 1]
and their diadic scaled translates ®;, form orthonormal basis for multireso-
lution analysis of L?(R) (cf. [9]). They satisfy the m-criterion of convergence
with m = N — 1. Consequently the corresponding projection operators II;
satisfy

If = W fll < C2FPF=]|f|lm

for 0 < s < p(N) where p = p(N) is the Sobolev index such that y® €
HP?(R). However, p(N) << N =1 ( cf. [10]).

4.2 Discrete convolutions

In the next examples V; are subspaces of an r-regular multiresolution anal-
ysis of L>(R). Recall that the corresponding sampling series ® satisfy the
m-criterion of convergence with m > r. Excepting Example 4.8, all the ex-
pansions considered here are in the form ( 4)-( 7) with R,f given in the
discrete convolution form

(27) Rpf(z) = (f +dv)(z) = ;nf (z - 1h),

where 7 € £!. It corresponds to dv(y) = Y, mé(y — l)dy. In this case
Hypothesis 4 becomes

B(E)7(€) = 1+ O(6*+).

Example 4.5 Sampling series As discussed in the previous section, the
accuracy of approximations by sampling series depends on the number of
vanishing moments A, = [y'®(y)dy,! > 0. Note that for r-regular func-
tions ® satisfying the m-criterion of convergence, and for | < m, A; can be

expressed as
M= Zk‘@(l).
%

This is also a consequence of Poisson summation formula (cf. [13}).

Scaling functions do not always satisfy a moment relation for sampling
series. For instance, calculations with Daubechies’ scaling functions for
N =2,3,...,11 show that their first moments A, are not equal to zero. How-
ever, in an r-regular multiresolution analysis, higher vanishing moments can

15



be obtained with modified basic functions ®* constructed from the integer.
translates of the scaling function ®. Following [18], let a) be the Fourier

coefficients of =€), where 5(£) is a C* and 2r- penodlc extension of the
argument of (¢). Deﬁmng

®*(z) = z;.: o ®(z + k),

then &* is also r-regular and the resulting families ®3,(z) form orthonormal
bases for the same spaces V;. However, with this procedure, the compact
support property of ® is lost. Note that

& (z) = Y ane™P(¢)
k

= & MOF(e) = |3(¢)|
1+ (€.

As a consequence, the expansions
Qif(z) =Y f(k279)®"(2'z — k)
k
are in V;, and for smooth f

1S = Q;fllwe = O(2-Hm41=2),

where 0 < s <r.

Due to their symmetry property, A = 0 for all B-splines ¢,. However,
since ¢,(z) > 0 in the interior of their support, A3 # 0. In this case, with
no orthonormality requirement, it is possible to find a spline ¢;(z) with
vanishing moments );, 1 < A < 2r + 1, using only finitely many coefficients
ay (see [23]). Therefore, ¢} (z) also has compact support.

Example 4.6 Interpolation One might wish to take an approximation Lif
from V; that coincides with f on the mesh points z = k2-3 k € Z, This leads
us to consxder the possibility of defining an interpolation operator in terms
of the translates and dilates of ®. Let yx = f(k277). The problem is to find
coeficients c;; such that the function

Lif(z) = Z‘:cj,0(2j:c =)
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- coincides with y, at z = k27, Consequently, the sequence ¢ = (c;;) must-
satisfy

(28) doci®(k—1) =y
!

for all ¥ € Z. The above convolution transformation ¢ — Tc = y is a
bounded linear transformation from £* into itself, 1 < s < co. Furthermore,
assuming that

(29) &(¢) = S @(k)e™ #0
k
for all 0 < ¢ < 2, then ( 28) has an inverse in ¢° which is explicitly given by
(30) cik = 3 Br-tw,
1

where [, are the Fourier coefficients of 3(_1-}_)" The proofs of the above

statements are in [22]. From the relation ( 30) we deduce that the in-
terpolation operator I f has the discrete convolution form ( 4)-( 27) with

dv(y) = Lk Bxé(y — k)dy. Consequently, #(§) = B(¢) = 3—2{—). Recalling

that @ is r-regular an satisfy the m-criterion of convergence and applying the
Poisson summation formula we get

$(¢) = > B(E+2%n)
*
(31) = 8(¢)+0(¢™).
If in adition ® satisfies condition ( 29), then

8(¢) _

3

$(6) = () _ i
5o o)

As a consequence of Theorem 3.1, the interpolation operator satisfies

Wi f = fllue < C27H ™= £)| s
for fe H"*'(R)and 0 < s < r.

S(E)o(6) -1 = 1

17



Now the question is: Do all scaling functions satisfy the interpolation
condition ( 29)? The answer is afirmative for the B-splines (cf. (cf. [22])).
As can be deduced from the graphs of |®| for ® =y &, N = 2,3,...,11 shown
in [12], it is also true for these Daubechies’ scaling functions. However, the
conjecture for all scaling functions should be analysed carefully. Consider for

example the case N = 5. Even though condition ( 29) is satisfied by 5®, it
is just barely so.

Example 4.7 Discrete orthogonal projections Let {V;} be an r-regular
multiresolution analysis of L’(R) and consider DII;f € V; be the expansion
( 1) with coeficients

& = 3 f(1279)0(1 - k).
l

They correspond to approximations of the L?-scalar products < f,®;; >
29/% ysing the simple numerical integration by rectangles based on the mesh
points z = [277. Here the discrete convolution operator ( 27) corresponds to
7, = ®(—1). Consequently, 7(§) = <I>( —£). Using ( 31), the moment relation
becomes

8(6)3(~¢) = 8(6) (8(-¢) +0(e™*))
= [8(e)1 + 0™
1+ 0(€™+) + 0(¢™+)

1 o O(£m+l)'

Therefore, DII; satisfies the hypotheses of Theorem 3.1 with ¢ = m. This
means that DI, f has the same accuracy as II; f.

Il

Example 4.8 Sampling series based on different node points We have
gseen that if the first moment \; of the basic function ® does not vanish then
the sampling series Sy f, defined in terms of ® and based an the node points
kh, does not have good accuracy. In such cases another alternative procedure
is to consider sampling series based on different node points as

Af(z) = S (h(k+ DRz k),

This expansion series has the form ( 4)-( 7) with dv(y) = 5(y + ¢)dy. Then
the desired moment relation is

e4d(¢) = 1+ 0(™).
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Since ckfa(f) = @(€) where ¢(z) = ®(z + ¢), the the possible choice is
¢ = \; which gives a moment relation with ¢ = 1. Consequently, under the
m-criterion of convergence, this procedure results in approximations with
accuracy of order O(h?~*) in the H*-norm, 0 < s < 1. The application of
these approtimations to the numerical solution of elliptic problems appeared
in [25)].
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