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CQNVERGENCE RATES IN THE 
SOBOLEV Hª-NORM OF 
APPROXIMATIONS BY 

. . . 

DISCRETE CONVOLUTIONS 

SÔNIA M. GOMES. 

1 Introduction 

In thi1 paper we shall deal with expansion series of the form 

00 

(1) E C,\,,t(h-•~ - k), 
•=-oo 

in terllll oí the scaled translates 9{ a. buic function t. 
Expansions ( l) have been extensively used in the development of ap­

proximate methods for the solution o( partial differencial equations. These 
method1 consist in searching for the solution in spaces Vh spanned by the 
basic functions t(h-1 x - k). ln finite element approximations based on a 
regular mesh with mesh-width h, the triai spaces Vh are formed by piecewise 
polynomial function8. A typical choice for the basic function ~ is a B-spline. 

The success of such methods depends on the "density" of the spaces V,,, 
i.e., in the accura.cy of the approximations of functions f from V,,. Strang 
and Fix (21) have isolated those conditions 011 the finite element spaces V,. 
which determine the order oí approximation in the H~-norm. For instance, 
.usuming that t ÍH compactly supported and is in H"'(R) they stablishe<l that 

•JMECC - UNICAMP, Caixa P011tal 6065, 13081-970 Campinas, SP, Brasil. The work 
oí tbia author wu par'tially aupported by CNPq-Bruil (Grant 302714/&3·0}. 
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amooth functions can be approxímated from V11 with error O(hm+l-•) in the­
H•~norm, s ::S'.: m, if and only if the polynomials o/ degree ::-; m can be umtten 
as linear combinations o/ ~ and its translates. Equivalently, the Fourier 
tra.nsform i must have zeros of order m + 1 at ali the points { = 21rj,j :/ O 
a.nd i(O) ::/: O. This condition is also known as the m-criterion of conr,ergenet! 
(d. [l]). 

Assume the m-criterion of convergence. Now the question is: Given an 
arbitrary approximation of a funtion / in V,,, does this approxhnation have 
the sarne order of accuracy O(hm+l-•) in the H•-norm ? Of course this is 
not true in general. Additionarhypotheses ~ust be satisfieâ. For example, 
consider the sampling series • • 

00 

(2) • S11f(x) = L J(hk)~(h- 1x - k). 
k=-oo 

Here the coefficients chk are the sampled values J(hk) of f at the node pointa 
hk (see [5] for an historical overview of this matter). If 

(3) 

then (see [20] and (4)) 

Condition ( 3) means that ali the moments .X, = J y1~(y )dy 1 = 1, , .. , m, 
must be equal to zero. 

Consider now the class of expansions 

00 

(4) A11/(x) = Sh(Rhf)(x) = L R11f(hk)~(h-1x - k) 
-oo 

where the coefficients are the sampled values Rh/(hk) obtained from / by 
the "averaging" operation 

(5) 

with µ E L1(R) and J~ µ(y)dy = 1. That is, R,J = J • µ11 is the convo­
lution of / with a kernel of Fejér'a type µh(Y) = h-1µ(h- 1y). Observe that 
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sarnpling series correspond to the limit case when µ is the delta distribution, 
ln finite element theory Rh and Sh are known as reslricilion and prolongation 
opera.tore, respectively. For this class of approximat~on it is required that: 

(6) i(e)µ(é) = 1 + O(em+l ). 

The m-criterion of convergence together with the moment relation ( 6) implies 
that ( cf. [1] and also (8]) 

li/ - A1JIIH• = O(hm+t-•). 

ln the present paper, we shall extend the results mentioned above for 
approximations ( 4) with averaging operations Rh/ given by 

(7) Rh/(x) = (/ * dvh)(x) = 1-: f(x - hy)dv(y), 

where v are functions of bounded variation. We shall also replace the regu­
la.rity hypotheses usually made in finite element theory on the basic functions 
1. Instea.<l of ~ E Hm(R) with compact support, we shall assume that e) 

is m-regula.r in the sense tha.t ~(x) and its derivatives up to order m must 
have fast decay as lxl---+ oo (see Hypothesis 2), not necessarely with compact 
support. 

The moment relation in the present case becomes 

i(e)v(e) = 1 + O(!m+i ), 

where ií is the Fourier-Stie!tjes transform of v. We shall prove in Section 
3 that the sarne order of accuracy O(hm+l-•) also holds for approximations 
( 4)-( 7) under the a.bove conditions. 

This class includes expansions of type ( 4)-( 5) corresponding to dv(y) ::: 
µ(y)dy, as well as the sampling series ( 2) with dv(y) = 8(y - O)dy. Other 
approximations of interest in the class ( 4)-( 7) are obtained with coefficientes 
given by discrete convolutious 

(8) 

where T = (r,), / E Z are sequences in l 1 with E, T1 = 1. For these example11, 
the function v satisfies dv(y) = E, T1ô(y - l)dy. They can also be expressed 
as sampling series in terms of another hnsic function ct>• obtained trom ~ as 

~•(x) = E r14'(x + /). 

' 
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Our motiviation for studying ~his subject comes from the recent interest­
in the approximations called multiresolution analysis of L2(R) ( cf. (17) and 
[18]). ln this context expansions of type ( 4)-( 5) appear naturally. ln a 
multiresolution analysis of L2(R) a function J E L2(R) can be decomposed 
a.s follows: 

(9) f(x) = L < f, ~;,. > ~;,.(x) + Í: L < J, '111.1: > '111.1,,(x). 
keZ 1"21 keZ 

The function ~(x) appearing in the first term in the right hand side of the 
above expression is called a scaling function and for j E Z the sets 

form orthonormal bases of embedded closed subspaces V; e L2(R) and 

(10) IT,J(x) = }: < J, ~ik > ~;.1:(x) 
kEZ 

is the orthogonal projection of f onto V;. Similarly, the functions \J, lk( x) in 
the second term of ( 9) are defined as 

W1.1:(x) = 2112 1J!(21x - k) 

in terms of the function W ( x), which is usually called a basic wavelet, and the 
set {w,,.(x), 1, k E R} constitutes an orthonormal basis for L2 (R). Moreover, 
for every j, the closed subspace W; spanned by {IJ/jk(x), k E Z} is the orthog­
ona.l complement of V; in V,+1 . Consequently, in this kind of decomposition 
the higher resolution approximation Il;+iÍ is obtained by just adding to Il;J 
a high frequency component 

D;J = L < J, '1!;.1: > IJ!,,.(x) 
kEZ 

corresponding to the orthogonal projection of f onto W;. A multiresolution 
expansion ( 9) is a diRcrete version of the wavelet transform 
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This technique provides an adequate framework to analise those phenomena. 
that are well localised in time or frequency domains. lt has received consid .. 
erable attention in the last years and had been succesfully applied in severa! 
fields· of Mathematics, Physics and Signal Analysis ( cf. [7], [16] and [l 91) • 

Observe that the approximation Il;J E '1j has the form ( 1 ), where the 
coeflicients are the L2-scalar products < f,t;1c > 2il2. It can also be rep­
resented in the convolution form ( 4)-( 5) with h = 2-i and µ(y) = t(-y). 
According to Meyer {18], r-regular scaling functions corresponding to mul­
tiresolution analysis of L2(R) satisfy the m-criterion of convergence with m 
at least equal to r. The moment relation is also verifyied by the operators 
Il;. lndeed, orthonormality implies that 

Í: li({+ 2brW1 = 1 ,. 

for all e E R. Consequently, since µ(x) = ~(-x), 

i(e)µ(e) = li(e)fl = 1 - E li(e + 2k1r)l2 = 1 + O(le12m+2). 
k~O 

Note in this case that the moment relation and the m-criterion of convergence 
have distiqct orders, namely, 2m + 1 and m, respectively. Our results oí Sec­
tion 3 implies that, for smooth /, rn-regular muliresolution approximatio11s 
Il;/ have accuracy 

(11) 

ln fact a sharper resu)t holds in this case ( cf. (18]). Let fj = 2;., li D; f llL1 , 

where D; is the orthogonal projection onto W,. Then the H~-norm is equiv­
alent to the sum oí the L2-norm of Il0/ plus lhe f2-nonn of the sequence 
t;,i ~ o. 

There also exist generalizations of expansions ( 9) in the form 

{12) /(z) = L < f, cf);,. > ~;1r(x) + L Í: < f, \Jlik > '1111c(x) 
lrEZ l~j+l kEZ 

differing in that the set { cf) jk, \li,,.} of the synlhesizing JunctiOfi.s is not or­
thogonal and the a11alysíng fuuctions { e};);,., 111;1r} are not necessarily the sarne 
as the synthesizing f~nctions. This k~nd of decompositions includes the phi­
trans/orm [14) and b1orthogonal mult1resolution expansions ([6] and {24]), all 
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of them been appropiate for local time-frequency analysis. Note that the 
approximations 

L < f, <I>jk > <I>;k(x), 
keZ 

obtained by truncation of expansions ( 12), are also in the class defined by 
( 4)-( 5) '. · 

Section 4 is dedicated to the study of some usual approximations ha.ving 
the coefficients in the discrete convolution form ( 8). We shall identify in 
ea.ch case the required condition in order to obtain a moment relation. Even 
though in the examples presented the emphasis is placed on the context 
of orthogonal multiresolution analysis, the results are also valid in other 
contexts. 

We shall discuss first the case of sampling series and how to get vanishing 
moments. For instance, despite the fact that the scaling functions do not 
always satisfy a moment relation for sampling series, we shall see that it is 
possible to construct other sampling series aproximations Q;J in V; in terms 
of different basic functions <I>• E V0 with moment relation 

Such operators, namely, sampling series with many vanishing moments and 
based on modified versions of the triai functions, are known in the finite ele­
ment literature as quasi-interpolant operators. Galerkin methods for PDE's 
based on such schemes of approximation give rise to the so called supercon­
vergence at the node points ( cf. [23)) . 

Whe shall call 1,/ the interpolant operator which coincides with J at 
the nade points k2-,. This operator ca11 be well defined and will have the 
coefficients in the discrete convolution form ( 8), provided that the discrete 
Fourier transform <I>(e) never vanishes. Under this condition, the m-criterion 
of comvergence implies a moment relation of sarne order. 

We shall also study the expansion DIT;J in a multiresolution analysis V:· 
with coefficients ' 

êhk = Lf(l2-i)<I>(l- k). 
1 

They correspond to approximations of the Ll-scalar products < J, 4) .k > 2u2 
using the_simple numerical integration by rectangles based on the me~h points 
x = k2-,. We shall prove that both DIT, satisfies a moment relation with 
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q = m. This means tha.t the "discrete orthogonal projection" Dfl;J has the 
sarne accuracy as TI 3f. 

Before proving our main result in Section 3, let us state some preliminary 
results. • 

2 Notations, definitions and preliminary JJe­

sults ·· 

The Fourier transform of a function g is defined by 

and the discrete Fourier transform 

r(ç) = L r,e-il( 

l 

is associated to sequences r = ( r,) in l 1 as well as in (J. 

Let us also introduce the Sobolev spaces H"(R) endowed with the more 
convenient norm 

The following relation 

{13) L9({ + 2k1r) = -1 í::§(k)él;( 
k 2,r Ir 

is known as the Poisson summation formula. Jt holds almost everywhere 
(a.e.) if g E L1 (R) and the sequence g(k) is in l 1 . By Riesz-Fischer theorem, 
this is also true if !/ E L2(R) is such that its periodized versio11 L1,:9(!+2k1r) 
is in L2([-1r, 1r]). 

Through this paper we shall use frequently the following version of ( 13) 

{14) 1i- 1 L 'tô(h- 1({ + 2k1r)) = Ew(hk)e-ikt. 
k Ir 

ln the proof of Theorem 3.1 we shall need the results of the following 
lemma. 
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Lemma 2.1 Let w E H"(R), 8 > 1/2. Then the Poisson summatíon for- . 
mula { 14) holds. Furthermore, for r ~ O 

1-: 1e12rlw11(e)l2de $ e { h2r-l 1-:/hh 1e12rlw(e)l2d! 

(15) + h'Ja-l 1-: 1e12•1w{e)l 2de}, 

where C = C(r,s) and üi11(e) = Lkw(hk)e-i~. 

Proof. First observe that 

1 L w(h- 1(e + 2br))l2 $ 2 {1ww1e)I' + 1 I: iii(~-•ce + 2kir))I'}. 
k k~ • 

By Cauchy-Schwartz inequality, 

1 I: w{h-1{e + 2br))l 2 $ L ,e+ 2b·1-2• L ,e+ 2brl'J"lw(h- 1{e + 2k,r))l2 

1'#0 k~O k~O 

(16) 5 e I: 1e + 2k1rl2"liÉ(h-1.(e + 2k1r))12. ,. 
Consequently 

1-: 1e12r1 ~úi(h- 1(e + 2k1r))l2de 5 

< e {L 1e12·1ww'ell'de + ~ L 1e1"1e + 2hÍ''IW(h-'(e + 2kirlJl'ae} 

{ 
/h lli±.fu } 

.~ . e h2r+l 1-:/h lul2rlw(u)l2du + ,r2rh2•+1 ~ hc"-;,~l• lul2"lúi(u)l2du 

- e {h2~+111r/h lul2rlúi(u)l2du + ,r2r h2•+1100 lul2"lúi(u)l2du}. 
-1r/h -oo 

This inequality for r = o impliy that the function Lk w( h-1 ( e + 2Anr)) is 
square integrable in the interval (-1r, 1r) and then the Poisson summation 
formula ( 14) hold!!. Therefore, • 

·' . . 1-: 1e12rlw11{e)l2de = h-'J 1-: 1e12r1 ~ w(h- 1(e + 2k1r))l2d{ 
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.... 

< e {h2r-111('" lul,rltô(u)l2du + 7r2rh2•-1 joo lul2ª1w(u)l,du} t 

-1r/h -oo 

from which the result immediately follows. 
As a.n immediate consequence of equation ( 15)t the discrete i1-norm 

llwlli = h L lw(hk)l2 = .!!_ 1,r 1w,.(e)l2de 
,. 211" -11" 

is finite for w e H•(R), s > 1/2. 
Let BV = BV(R) be the set of all functions v of bounded variation with 

flvllBv = f ldv(y)j. for II E BV the Fourier-Stieltjes transform 

ii(t) = i: e-ih d11(y) 

defines a bounded linear transformation from BV into C(R) and 

(17) lv(e)I $ ll11IIBv. 

As an examplet let µ E L1(R). The function II defined by v(x) = J~00 µ(x)dx 
is in BVt llvllBv = llµIIL1 and v coincides with µ. Other examples are given 
by functions v such that dv(y) = E, T1c5(y - l)dy, where T(l) are sequences 
in l 1 . ln these cases ri({)= f(e) . 

H f E L2(R) and II E BVt the convolution / * dv as defined by 

(f * d11)(x) = 1-: /(x - y)dv(y) 

exists (a.e.) as an abso)utely convergent integralt / * d11 E L2(R) and 

Furthermore, 
J;j11(e) = f(t)ií{e)t (a.e.). 

Consequently, for f E L2(R)t the transformation R,J defined in ( 7) satisfies 

(18) 

Moreover, if / E H•(R) then also R11.f E Hª(R) and, for s > 1/2 

(19) íf;/(!) = I: R,J(hlc)e-ik< = h- 1 ~ íf;f(h- 1(e + 2k1r)). 
k • 
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The functions defined in ( 4) have Fourier transform 

(20) 

Therefore, 

(21) X,:-J(ü = l<e)v(he)i(he) + ~ íf:J(h~ 1(he + 2k1r))i(he). 
k:,EO 

3 Convergence in H 8 (R) 

ln this section we will study the convergence in the H• -norm of expan1ion1 
( 4)-( 7). We shall assume the following hyphoteses: 

Hypothesis 1. v E BV and J dv(y) = 1. 

Hypothesis 2. 1 is r-regular, r ~ 1, i.e., for all indices ,8 such that O < ,B < r 

(22) 

for ali integer n > O. 

Hypothesis 3. (The m-crit~rion of convergence) i(e) has zeros of order 
m + 1 at e = 2k1r, k -::f O and 1(0) = 1. 

Hypothesis 4. v and I are related by 

(23) 

Theorem 3.1 Assume that v and I satisfy Hypot/leses 1-4 and let p = 
min{m,q}. // f E flP+l(R) then the approximation A,J defined by ( 4)-( 1) 
satisfy the error estimate 

(24) 

where O < s ~ min {p + l, r} and the constant C is independent o/ J. 
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Proof. The proof can be ca.rried out in an analogous way as in [21), Theorem 
1. ln order to estimate 

11 1 - A,.J ui.= L: c1 + 1e11)"1i<e) - ,4AJ({)l'd{ 

we have to show that tbe integrais 

11 = 1 (1 + 1e11Y1i<e) - Ã0'U)l1d{, }~,~,,,,. 

and 

11 = 1 (1 + 1e11)·1l(e) - M({)l2d{ 
l1e1?:1r '" 

are all bounded hy Ch2(p+l-•) li f llh,.+i. For 11 it is a. consequence of 
Hypothesis 4 and Poisson sumation formula. For the estimation of 11. it is 
necessary to show that for O < s < r 

(25) L li(e + 2jr)P'le + 2j'Kl:i. = O(l{l)2m+l 

j#) 

as t -+ O. For compactly supported ~ E Hr(R) satisfying Hypothesis 3 
the proof is based on the Paley-Wiener theorem and the theory of entire 
(unctions ( cf. [21 ]). Tbe result in ( 25) also holds for r-regular functions ~ 
satisfying Hypothesis 3 and correspond to Proposition 1 in [12). 

Repla.cing expression ( 21) in 11 we have 

+ 1 (1 + 1er•t1 E íf;/(e + 2~;h-1 )121i(he)11.de} 
lttl!:,,I" ;~ 

= 2{(a) + (b)} . 

Hyphotesis 4 implies that 

(a) ~ e f (1 + 1er1)·lhtl 2<9+•>11(e)l2d{ 
lttlS•/" 

~ e 1 (1 + ltf3)•11at11<,+1-•>1i(ül1~ 
l~tS•I" 

~ ch3<.+1-•> L (1 + 1e11>"1 ll(e)l1de. 

11 



To evahiate (b ), consider the esti~a.te ( 16) together with formulas ( 17)-
and( 18) to obtain • · . . . . 

(b) < ch-2. 1 I)he + 2-iri)2(9+1>1l(e + 21rih-1)l2de 
lel~1r/h j 

~ . . . 
- Ch2(q-a+l) ~ J'Jj-:),r 1e12(q+l)lf(e)l2d{ 

. , .. lt . . 

- Ch2(q+l-a) 1-: IeI2<9+1>1f<e)l2de. 

12 is also splitted in two térms 

12 < 2 { · 1 - (1 + IeI2Yli(e)l2de + 1 • - (1 + 1erzt1~1<e)rzde}. -
. l1er?.1r Ih . _ l1e1'?.1r 11a 

= 2{(i) + (ii)}. 

For 1e1 > 1r / h we notice that lh{I > 1r and, therefore 

(i) < e Àe1?.1r/h lh{l2(p+I-•)(l+l{l2Yli(e)l2d~ ~ Ch2(p+l-s) 1_: (1+Ie12) 2(p+I)lf(e)l2de. 

Replacing ( 20) in (ii) we get 

(ii) - h2 [ (1 + l{l2)8IRhf(h{)l2 li(~{)l2d{ . 
l1e1?.1r 11a • _ 

('Jj-l ),r . . . 

< ch2 '"' r . " 1e1 2•11I,J(he)l2li(he)l 2de 
~ 1,,,"iº" 
#0 . .. 

_ ch2 i= l"'h 1e - h-121rjl 2ªIR1af(he - 21ri)l2 li(he .-- 21ri)l2de 
#O -1r/h . . 

_ ch2 j"th IRhf(he)12 i= 1i(he + 21riW'le + h-121ri1 2·de 
-1r/h #0 

< ch1- 2• j1r IR1aJ(e)12 E Ii<e + 2j1r)l2 Ie + 2j1rl 2ªde. 
-,r j/0 

From ( 25) and Lemma 2.1 

(ii) < Ch1- 2• J:.1.n;;-1(e)r'l{l2PHJ{ 

< Chl-2•+'.J(p+l-1/l) li R1af 11t .. +1 

< Ch2(p+l-•) li/ 11ip+I . 
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. .. 

... 

The above estimates for (a), (b), (i) a.nd (ii) led to the result in ( 24) . 

3.1 Convergence at the node points 

We shall see in this section that the order of convergence O( hP+l) also holds 
in the discrete i 2- norrn. 

Theorem 3.2 Let A1J be defined by ( 4)-( 7). Under the sarne hypotheses 
o/ Theorem 3.1 with r ~ 1 

{26) 

Proof. It is a consequence of Lernma. 2.1 and Theorern 3.1. Using equation 
( 15) with w = f - Ah/, r = O and s = 1 we have 

Ili - Ahf llth - h ~ li( kh) - A,a/( kh W' 
Ir 

< c{_t: li(e)-'-X.-/({)l'd! + h'' f.., l!l2•1fm-Ã.f(ül'd(}. 

The first intergral on the right ha.nd side of the ahove expression can be 
estima.ted as / 1 from the proof of Theorem 3.1. Consequently, 

Ili - A,Jllth 5 e { h2<p+i>11111i,,+• + h2II/ - A,a!llh,} 
< e h2<11+i>11111h,,+•. 

4 Examples 

ln the examples discussed helow the empha.sis is placed on expansions in 
terms of a scaling function ~ associated to a multiresolution analysis of 
L2(R). So, let us first present some examples of scaling functions. 

4.1 Examples of scaling functions 

Example 4.1 The Shannon scaling function. One of the most simple 
examples of a multiresolution aualysis of L2(R) is given by the spaces V; of ali 
íunctions whose Fourier transforms have support in the intervals [-2i1r, 2i1r]. 
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The correspondig scaling function is the function ci, whose Fourier transform 
is the indicator function 

ir-~ < 1e1 s,. • 
otherwise 

This scaling function ha.s compact support in the Fourier domain but has slow 
deca.y in the spatial domain: it does not satisfy any regularity condition. 

Example 4.2 Meyer (18] showed tha.t one ca.n huilt a. scaling function which 
is r-regular, for ali r, and compacl supported in the Fourier domain. This 
mea.ns that it sa.tisfies the m-criterion of convergence for ali m. But for many 
numerical applications, the decay O(:r-") for any n > O is too slow. 

Example 4.3 Splines. Let V0 be lhe subspace of L1(R) constituted by all 
C"-1-functions which coincide on each intérval [k, k + l] with a polynomial 
of degree less or equal r. Then, the family of embedded subspaces V, defined 
by the relation f(x) E V; # J(2x) E V;.:. 1 forma multiresolution analysis of 
L2(R). Defining cl>{x) = 'Pr(x) for odd r and ~(x) = <pr(x + 1/2) otherwise, 
where <p,. is the B-spline of degree r, then the translates ~(x - k), k E Z, con­
stitute an unconditional basis for the subspace \.'o. 'Pr is defined recursively 
as <p,. = <po * 'Pr-l, where· <p0(x) = x(x) is the éharactéristic function of the 
.interval [-1/2, 1/2). 'Pr is an even function in cr-1 (R) which coincidE:S with 
·a polynomial of degree r in its support [-4l, ~). Note that the Fourier 

tra.nsform 'Pr(~) = (2•in~e/2)r+l has zeros of order r + 1 at all the points 
e = 2k1r, k =, O. Consequently cI> is r-regular and satisfies the r-criterion· of 
convergence. However, for each j, the basis { cI> ;,k}, k E Z is not orthogonal, 
unless r = O. Through the orthonormalization process defined by 

the resulting new basis { </>;,k, k E Z} is orthonormal and inheritates from cp,. 
a.li the regularity properties. However, the compact support is lo1t . But <f, 
has exponential decay, which make it good for numerical applications. The 
construction of such bases is dueto Battle [2) and Lemarie [15]. 
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Example 4.4 Daubechiea• scaling (unctions. The scaling functions of 
Daubechies t =N t, N = 2, 31 •• • are supported on the intervals [O, 2N - 1) 
and their diadic scaled translates t;1c form orthonormal basis for multireso­
lution analysis of L2(R) (cf. (91). They satisfy the m-criterion of convergence 
with m = N - 1. Consequently the corresponding projection operators D; 
satisfy 

li/ - Il;/IIH• ~ c2-j(N-•)11111u .... 

for O ~ · s ~ · p(N) where p = p(_N) is the Sobolev index such that Nél> E 
H'(R). However, p(N) << N - 1 ( cf. [10)). 

4.2 Discrete convolutions 

ln the next examples V; are subspaces oí an r-regular multiresolution anal­
ysis of L1(R). Recall that lhe corresponding sampling series é1> satisfy the 
m-criterion of convergence with m 2: r. Excepting Example 4.8, a.li the ex­
pansions considered here are in the form ( 4)•( 7) with R,J given in the 
discrete convolution form 

(27) R,J(z) = (/ • dv)(z) = L Ti/(z - Ih), 

' 
where r E l1. It corresponds to dv(y)' = E, r,S(y - l)dy. ln this case 
Hypothesis 4 becomes 

Example 4.5 Sampling series As discussed in the previous section, the 
accuracy of approximations by sampling series depends on the number o{ 
vanishing moments >., = f y14>(y)dy, l > O. Note that for r-regula.r func­
tions é1> satisfying the m-criterion of convergence, and for / :5 m, ,\1 can be 
expressed as 

.\, = Ek'él>(l). 
Ir 

This is also a consequence of Poisson summation formula ( cf. [13}). 
Se&ling functions do not always satisfy a moment relation for sampling 

series. For insta.nce, calcu]ations with Daubechies' scaling functions for 
N = 2, 3, ... , 11 show that their first moments ,\1 are not equal to zero. How• 
ever, in an r-regular multiresolution analysis, higher vanishing moments can 
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be obtained with modified hasic functions t• constructed from the integer. 
translates of the sca.ling fonction 4>. Following (18), let ª• be the Fourier 
coeflicients of e-i"(e), where 11(e) is a C00 a.nd 21r-periodic extension of the 
argument of i(e). · Defining 

t•(x) = Ea~t(~ + k), 

-then t• is a.lso r-regular a.nd the resulting families t;1r(x) form orthQnormal 
bases for the sarne spa.ces V;. However, witb this procedure, the compact 
support property of 4> is lost. Note tha.t 

~(x) = Lº•eilr(i(e) . 

• 
- e-i"<e>i(e) = li({)I 

- 1 f ({2m+:1), 

As a consequence, the expansions • 

Q;J(x) = I:J(k2-;)t•(2;x - k) 
Ir: • 

a.re in V;, and for smooth J 
llf - Q;JIIH• = 0(2-j(m+l-•)), 

where O< s ~ r. 
Due to their symmetry property, À1 = O for a.11 B-splines /()r• However, 

since l()r(x) > O in the interior of their support, Àl -:/: O. ln this case, with 
no orthonormality requirement, it is possible to find a spline cp;(z) with 
vanishing moments Àt, 1 ~ À ~ 2r + 1, using only finitely many coeflicients 
º• (see (23]). Therefore, <p;(x) also has compact support. 

Example 4.6 Interpolation One might wish to take a.n approximation I;J 
from V; that coincides with f on the mesh points x = k2-;, k E Z. This leads 
UI to consider the possibility of defining an interpolation operator in terms 
of the transla.tes a.nd dilates of ~- Let Y• = /(k2-i). The problem is to find 
coeficiente e;, such that the function 

I;/(x) = I:c;,~(2;x -1) 
I 
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coincides with Yk a.t x = k2-;. Consequently, the sequence e = (e;,) must­
satisfy 

(28) Ec;1<P(k - l) = Y• 
1 

for all k E Z. The above convolution transforma.tion e -+ Te = y is a 
hounded linear transforma.tion from t• into itself, l ~ s ~ oo. Furthermore, 
assuming that 
(29) i(e) = L <P(k)e-ik{ -/: O 

• 
for ali O~ { ~ 21r, then ( 28) has aq inverse in lª which is explicitly g1ven by 

(30) 

where /Jn are the Fourier coefficients of --1-(). The proofs of the above . -( 
statements a.re in {22). From the rela.tion ( 30) we deduce that the in-
terpolation operator I;J has the discrete convolution form ( 4)-( 27) with 

dv(y) = E1r /J1rh(y - k)dy . Consequently, ii({) = Í3(0 = ;~0 . Recalling 

that ~ is r-regular an satisfy the m-criterion of convergence and applying the 
Poisson summation formula we get 

i(e) - E i(é + 2k1r) 
Ir 

(31) - i(e) + O(em+l ). 

If in adition éP satisfies condition ( 29), then 

As a consequence of Theorem 3.1, the interpolation operator satisfies 

for / E Hm+l (R) and O ~ s ~ , •. 
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Now the question is: Do ali scaling functions satisfy the int.erpolation 
condition ( 29)? The answer is afirmative for the B-splines ( cf. ( cf. [22)) ). 
As ca.n be deduced from the graphs of lil for t =N t, N = 2, 3, ... , 11 shown 
in [12], it is also true for these Daubechies' scaling functions. However, the 
conjecture for all scaling functions should be analysed carefully. Consider for . 
exa.mple the case N = 5. Even though condition ( 29) is satisfied by 51, it 
is just barely so. 

Example 4. 7 Discrete orthogonal projections Let {V;} be an r-regular 
multiresolution analysis of L2(R) and consider DIT;f E V; be the expansion 
( 1) with coefficients • 

chie= L,f(l2-i)<P(l - k). 
I 

They correspond to approximations of the L1-scalar products < /, 'P;1c > 
2j/'J using the simple numerical integration by rectangles based on the Qiesh 
points x .:._ 12-i . Here the discrete convolution operator ( 27) corresponds to 
r1 • 'P(-1). Consequently, -r(e) = ~(-e) . Using ( 31 ), the moment relation 
becomes 

· i(e)i(-e) - i(e) (i(-e) + O(em+i)) 

- li(e)l1 + O(em+I) 
- 1 + O(e2m+2) + O(em+i) 

- 1 + o(em+l). 

Therefore, DII; satisfies the hypotheses of Theorem 3.1 with q = m. This 
means that DII;f has the sarne accuracy as Il;/, 

Example 4.8 Sampling series based on different node points We ha.ve 
seen that if the first moment .À1 of the basic function <P does not vanish then 
the sampling series Shf, defined in terms of <P and based on the node points 
kh, does not have good accuracy. ln such cases another alternative procedure 
is to consider sampling series based on different node points as 

Ahf(x) = "i:,J(h(k + c))<P(h- 1x - k}. 
Ir 

This expansion series has the form ( 4)-( 7) with dv(y) = 6(y + c)dy. Then 
the desired moment relation is 

eic(i(e) = 1 + 0({9+1 ). 
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Since ei~i(e) = cp(e) where ip(x) = ~(x + e), the the possible choice is 
e = À1 which gives a moment relation with q = 1. Consequently, under the 
m-criterion of convergence, this procedure results in approximations with 
accuracy of order O(h2-•) in the H'-norm, O 5 s 5 1. The application of 
these approtimations to the numerical solution of elliptic problems appeared 
in [25]. 
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