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Introduction 

The geometry of a submanif old of a space form is described by the second 
fundamental form. Therefore it is natural to study isometric immersions whose 
second fundamental form are simple in some sense. ln this paper we will descri-
be some (by now classical) results on parallel immersions, i.e. immersions who-
se second fundamental form is covariantly constant, and some more recent re-
sults on semi-parallel immersions, i.e. immersions whose second fundamental 
form verifies the corresponding integrability condition. 

It is probably worthwhile to observe that the above condition are the analog, 
in submanfolds theory, of what symmetric and semi-symmetric spaces are in in-
trinsic riemannian geometry. 

1 - Notations and basic facts 

Let Q = QN (e) be a complete simply connected N-dimensional riemannian 
manifold of costant curvature e, i.e. a sphere (e> O), an euclidean space (e= O) 
or a hyperbolic space (e < O). Superscripts will, usually, denote dimensions and 
will be dropped when clear from the context. 
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Let M be a riemannian manifold and f: M - Q(c) be an isometric immer-
sion. We will use the following (standard) notations: V and V will denote the Le-
vi-Civita connections of M and Q(c) respectively, v(M) will denote the normal 
bundle of the immersion, a = V - V: TM EB TN - v(M) the second fundamental 
fmm, VJ_ the connection on v(M), and, if ç E v(M), A,: TM - TM will denote the 
shape operator in the ç direction, A,X = V·H- Vxç. A, and a are symmetric 
and related by (A,X, Y) = (a(X, Y), ç). 

The local geometry of the immersion is described by the above data and the 
basic equations 

(1.1) 

(1.2) 

(1.3) 

(R(X, Y)Z, W) = c((X, W)(Y, Z) - (X, Z)(Y, W)) 
(Gauss) 

+(a(Y, W), a(Y, Z))- (a(X, Z), a(Y, W)) 

(Vxa)(Y, Z) = (v'ya)(X, Z) (Codazzi-Mainardi) 

(Ricci) 

where V is extended to act on a bilinear form (3: TM EB TM - v(M) by 
v'xf3(Y, Z) = V°!t((3(Y, Z)) - (3(VxY, Z) - (3(Y, v'xZ) and Rj_ denotes the curvatu-
re of VJ_, i.e. Rj_(X, Y)ç=V-!tV}ç-V}V-!tç-Vtx,YJç. 

The basic equations (1.1), (1.2), (1.3), are the integrability conditions for an 
isometric immersion in the sense of the fundamental theorem of submanifolds 
theory: 

Theorem 1. Given a n-dimensional riemannian manifold M, a p-dimen-
sional riemannian vector bundle v over M with a metric connection vv and a 
symmetric bilinear bundle mapa: TM EB TM - v, such that the above data veri-
fy the basic equations (1.1), (1.2), and (1.3), then there exist a local isometric 
immersion of M in Q"+P(c) such that vis isometric to the normal bundle, vv 
corresponds to the normal connection and a to the second fundamental form. 
Moreover two such isometric immersions (locally) coincide up to an isometry of 
the ambient space and, if M is simply connected, the immersion is globally 
defined. 

It is natural to try to classify isometric immersions whose second fundamen-
tal form is somehow simple. We will start discussing the case in which a is con-
stant in the following sense 

Definition 1. The immersion f: M - QN (c) is said to be parallel if and 
only if v'a = O. 



[3] PARALLEL AND SEMI-PARALLEL IMMERSIONS INTO SPACE FORMS 93 

Parallel immersions are geometrically characterized by the following proper-
ty: Given a point p E M, consider the unique isometry of the ambient space 
which fixes p and whose diff erential fixes the normal space of M at p and reflec-
ts the tangent space. The immersion is parallel if and only if the above isometry 
maps f(M) into itself (see [10], [15]). In particular the geodesic symmetries of M 
are isometries and M is a symmetric space (for the above reason, such immer-
sions are also called extrinsically symmetric). 

Example 1 (Umbilical submanifolds). An isometric immersion is umbili-

cal if A,= Ã,1 for all ç E v(M). ln this case a(X, Y) = (X, Y)H where 

H = ! ( trace a) is the mean curvature vector. It is a standard result that in this 

case 'v½H = O for all tangent vectors X. It follows that those immersions are pa-
rallel. Umbilical submanifolds have constant curvature k =e+ IIHll2 , and, besi-
des the totally geodesics ones, they are sphere if c O or, if c < O, geodesic 
spheres (k > O), equidistant hypersurfaces (k < O) or horospheres (k = O). It is 
important to observe the (also standard) fact that given p E QN (c), E ç TP QN (c), 
and H E E 1-, there exists a unique umbilical submanifold S containing p, with 
TPS = E and mean curvature vector H. An other simple fact, we want to obser-
ve explicitly, is that the composition of a parallel immersion and an umbilical 
one is still parallel, but, in general, composition of parallel immersions is not 
parallel even if the first one is totally geodesic (for example an helix on a circu-
lar cylinder in R 3 ). 

Example 2 (Extrinsic products of umbilical submanifolds). Let M be a 
riemannian manifold which decomposes as riemannian product M1 x ... xMm of 
riemannian manifolds and f:M-QN(c) an isometric immersion. Thenfis said to 
be an extrinsic product if for all X tangent to Mi and Y tangent to Mj, i;: j, 
a(X, Y) = O. If c = O, by a result of Moore, there exist an orthogonal decomposi-
tion QN(O)=RN=RN1(f) ... (f)RN"' and isometric immersions fi:Mi-RN,, 
i=l, ... ,m, such that f=f1 x ... xfm• A similar result for c>0 is a rather obvious 
consequence of the above result and for c < O a bit more involved (see [18]). 

If f is an extrinsic product and JI M, is totally umbilical, we will say that f is 
an extrinsic product of umbilical submanifolds. It is clear that an extrinsic pro-
duct of umbilical submanifolds is a parallel immersion. 

Observation. As in Example 1 we can ask if, given a subspace E of 
TPQN(c), an orthogonal decomposition E= (f)Ei, i = 1, ... , m and distinct vec-
tors H1 , ... , Hm in E 1-, there exists an extrinsic product of umbilical submanifol-
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ds f: M = M 1 x ... x Mm - QN (e), such that the tangent space at M; in a given 
fixed point is Ei and the mean curvature vector offlM, is H;. There is an obvious 
necessary condition: Given X tangent to Mi and Y tangent to Mi, i 7= j, 
IIXII = li YII = 1, we have 

O= k(X, Y) =e+ (a(X, X), a(Y, Y)) - lla(X, Y)ll2 . 

Therefore (a(X, X), a(Y, Y)) = - e and, taking traces, (H;, Hj) = - e. It is ra-
ther clear that the condition is also sufficient if e = O, and by a standard exten-
sion, if e > O. It turns out that the condition is sufficient also if e < O (see [3]). 
An interesting observation is the following: Let k; be the (constant) sectional 
curvature of M; • and suppose k1 k2 ... km. Then 

Therefore k; > O if i > 1. ln particular we can embed in a hyperbolic space, as 
extrinsic product of umbilical submanifolds, a product of an hyperbolic space 
anda sphere, but we can not embed a product of an hyperbolic space and an Eu-
clidean space. 

As in Example 1, we observe explicitly that the composition of a parallel 
immersion with an extrinsic product of umbilical immersions is parallel. 

Example 3 (Standard embeddings of some symmetric R-spaces). Let K 
denote either the reals, the complex or the quaternions and M(p, q; K) the spa-
ce of p X q matrices with coefficients in K. If A E M(p, q; K), we will denote by 
A* the transpose conjugate. Consider the projective n-space over K, KPn, as 
quotient of the unit sphere in K" + 1 (i.e. the set { x E M(n + 1, 1; K): x* x = 1} ), 
by the equivalence relation x-y if and only if x = ),y, À E K. Define 
f: KPn-M(n + 1, n + 1; K) by f(x) = xx*. Then f is a parallel immersion, 
whose image lies in the affine subspace 

{A E M(n + 1, n + 1; K) IA =A* and trace A = 1}. 

Those embeddings, up to a congruence, are the so called Veronese embeddings 
of the projective spaces and are parallel. More in general, if we consider the 
Grasmann manifold of the n-dimensional subspaces of KN, Gn (KN ), we have a 
natural embedding into M(N, N; K), given by sending an n-space rr into the ma-
trix that represents the projection onto rr. Those embeddings are also parallel. 
Also compact matrix groups are naturally parallel embedded in the correspon-
ding matrix spaces. All those embeddings are particular cases of a general con-
struction that we will discuss in the next section. 
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The importance of the above examples is that they are the basic blocks 
which allow to construct all parallel immersions. 

2 - Jordan tripie systems and the classification of parallel immersions 

The starting point of the classification of parallel immersions is the following 
uniqueness theorem due to Reckziegel (see [14]) 

Theorem 2. If two parallel immersions coincide at some point with the 
tangent space and second fundamental form, then they (locally) coincide. 

The problem is then reduced to study which second fundamental form are 
induced by parallel immersions. We will treat this problem in terms of triple 
systems. 

Let f: M - Q(c) be an isometric immersion. For x EM we have an associa-
ted triple system for TxM, L: TxM E9 TxM E9 TxM - TxM 

(2.1) L(X, Y)(Z) = c(X, Y)Z + Aa<x, Ylz + R(X, Y)Z. 

The symmetric part S(X, Y) = c (X, Y) I + Aa<x, YJ describes the extrinsic geome-
try, while the anti symmetric part R(X, Y) depends only on the intrinsic geome-
try of M. When convenient, we will consider a triple system as the induced bili-
near map L: TxM E9 TxM - End (TxM). 

We want to abstract the situation and study it algebraically. Let V be an in-
ner product real vector space, c E R, E a subspace of V and a: E x E - E 1. a 
symmetric bilinear map. The triple system of (V, c) with initial data (E, a) is 
the triple system L = S + R: E E9 E - End (E) whose symmetric part S and an-
ti symmetric part R are given by 

(2.2) 
(S(X, Y) V, W) = c(X, Y)(V, W) + (a(X, Y), a(V, W)) 
(R(X, Y) V, W) = (S(Y, V) X, W) - (S(X, V) Y, W). 

Direct calculations show 

(R(X, Y) V, W) = c((X, W)(Y, V) - (X, V)(Y, W)) 
(2.3) 

+(a(X, W), a(Y, V)) - (a(X, V), a(Y, W)) 

(algebraic Gauss equation), 

(2.4) L(X, Y) = L* (Y, X) 
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(adjoint with respect to the fixed inner product in V), 

(2.5) L(X, Y)Z = L(Z, Y)X. 

The triple system L is called a Jordan triple system, JTS for short, if, in ad-
dition, it verifies the following condition: 

(2.6) [L(X, Y), L(V, W)] = L(L(X, Y) V, W) - L(V, L(Y, X) W) 

where [ , ] denote, as usual, the commutator of endomorphisms. 

For ç E E 1-, we define A,: E - E by (A,X, Y) = (a.(X, Y), f) and the normal 
curvature R 1- (X, Y): E 1- - E 1- by 

Let E{ be the span of the image of a. and El it's orthogonal complement in E 1-. 

Then El = { ç E E 1- IA, = O} and R 1- (X, Y) acts trivially in El . The triple system 
is said to be full, if El = {O}. Taking inner product of R 1- with Y) e E 1-, we get 
(R 1- (X, Y) ç, Y)) = [A,, Ar,] X, Y) and therefore R 1- (X, Y) = O \:/X, Y e E, if and 
only if all the A/s commutes, i.e. if and only if they are all simultaneously 
diagonalizable. 

Theorem 3. The triple system L is a JTS if and only if 

(2.7) R 1- (X, Y)[a.(Z, W)] = a.(R(X, Y) Z, W) + a.(Z, R(X, Y) W). 

Proof. The fact that (2.7) implies that L is a JTS is given in [10]. For the 
converse we could trace back the above mentioned proof or simply wait for the 
theorem, which guarantees that any JTS is the triple system of a parallel im-
mersion (and (2.7) is just the integrability condition of Va. = O). 

Corollary 1. The triple system associated to a parallel immersion is a 
JTS 

A basic algebraic result is the following (see [2] for a proof) 

Theorem 4. For a JTS L as above, \:/X, Y e E we have 

i) 

ii) 

trace S(S(X, Y) X, Y) O 

trace S(R(X, Y) X, Y) :::: O 
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and equality holds in i), if and only if S(X, Y) = O and in ii), if and only if 
R(X, Y) = O. 

We want to classify JTS for (V, e) with initial data (E, 1X), which are minimal 

in the sense that H = ! trace IX = O. For e ::::: O Theorem 4 gives an easy answer. 
ln fact if n = dimE = 1, then clearly IX= O. Suppose n?:: 2. Given independent 
vectors X and Y and computing traces we get 

traceL(X, Y) = traceS(X, Y) = nc(X, Y) (by minimality). 

Therefore 

(2.8) traceS(S(X, Y)X, Y) = nc(c(X, Y)2 + ll1X(X, Y)ll2 ). 

If e = O, Theorem 4 and (2.8) imply S(X, Y) = O and therefore IX = O, i.e. the JTS 
is totally geodesic. 

If e< O, Theorem 4 and (2.8) give c(X, Y)2 + IIIX(X, Y)ll2
::::: O and therefore 

ll1X(X, Y)ll2 ::::: - c(X, Y)2 • Hence 1X(X, Y) = O for all X, Y orthogonal. ln particular 
1X(X, X) = 1X(Y, Y) for all unit vectors X and Y and, since trace IX = O, again the 
JTS is totally geodesic. Therefore we have 

Theorem 5. A minimal JTS with e ::::: O is totally geodesic (and therefore 
is the triple system associated to a parallel immersion into Q(c)). 

If e > O the classification is strictly related to the theory of symmetric R-spa-
ces. We will give a short outline following [10] closely. 

We start with a JTS for (W, e) with initial data (E, 1X), which is minimal and 
full, and define a new JTS for (V, O) where V= WEB R, with initial data (E, éi) 
where éi(X, Y) = 1X(X, Y) + CYJ where YJ = (O, 1) E WEB R. Geometrically this 
means that, instead of looking for the second jet of an immersion in a N-sphere 
of curvature e, we look at the composition with thestandard embedding of this 
sphere in RN + 1 . 

Let A= span {L(X, Y) IX, Y E E} and consider the vector space 
@ = E EB 11 EB E, and in @, define a Lie product 

- - - - - - - 1 - - ~1 t -[(X, F, Y), (X, F, Y)] -(FX - FX, [F, F] - 2 (L(X, Y) - L(X, Y), F Y - F Y). 

With the above product @ is a semisimple Lie algebra with a Cartan involution 
(X, F, Y) - (Y, - F 1, X) and a Cartan decomposition @ = m EB p where 

m = span (X, R( U, V), X), p = span (X, A"w, V>, - X) . 
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Moreover the element ri = (O, A-,/c, O) = (O, - Id, O) is such that (ad r;)3 = ad rj 
and the eigenspaces of ad ri relative to the eigenvalues - 1, O, and 1 are 
E EB {O} EB {O}, {O} EB 11 EB {O} and {O} EB {O} EB E respectively. 

Conversely, let G be a (semisimple non compact) Lie group with Lie algebra 
@, with Cartan decomposition @ = 111 EB lJ, and K a maximal compact subgroup, 
associated to the Cartan decomposition. Let ri be an element in lJ and let 
K0 = { k E K I Ad (k) rj = ri} be the isotropy subgroup of the adjoint representa-
tion. Then the map f: M = K/K0 - j), f([k]) = Ad (k) rj is an embedding of 
M = K/K0 into lJ (which is an euclidean space with respect to the scalar product 
given by the Killing form). If (ad rj)3 = ad rj, the induced metric is riemannian 
symmetric, and M is a symmetric R-space, and f is called the standard embed-
ding of the symmetric R-space M. Those standard embedding are parallel and 
minimal in the sphere of radius li rj JJ. 

Remark 1. Symmetric R-space are symmetric spaces of the type 
M = K/K0 , obtained starting from a semisimple Lie group of non compact type 
G, with Lie algebra@ with a Cartan decomposition as above anda non zero ele-
ment rj E lJ such that (ad rj)3 = ad rj. This is equivalent to the fact that M is the 
quotient of G by a parabolic subgroup. Symmetric R-spaces are classified. The 
classification includes all classical symmetric spaces of compact type and some of 
the exceptional ones. By the above, a symmetric R-space admits a parallel im-
mersion into some euclidean space, whose image lies in some sphere where it is 
minimal. 

We observe, finally, that the manifold of Example 2 are particular cases of 
this general construction. 

The above construction gives a bijection between isomorphism classes of mi-
nimal JTS for e > O, and symmetric R-spaces. ln conclusion, we get 

Theorem 6. A minimal JTS for e > O is the triple system associated to 
the standard embedding of a symmetric R-space (and conversely the triple 
system associated to a standard embedding of a symmetric R-spaces is a mini-
mal JTS in a sphere). 

We want to decompose a JTS into irreducible factors, and show that each ir-
reducible factor is the composition of a minimal JTS and an umbilical one. So 
first we define composition (this will be the algebraic analog of composition of 
isometric immersions): Let L1 be a JTS for (E, e) with initial data (E, ã) and L2 a 
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JTS for (V, c) with initial data (E, ã). The composition of L1 and L2 is the JTS for 
(V, c) with initial data (E, a) where a = ã + ex. 

Let L be a JTS for (V, c) with initial data (E, a). The trace operator 
A: E -E, (AX, Y) = traceS(X, Y), is a symmetric operator and determines an 
orthogonal decomposition in eigenspaces, E = (BE; . W e set n = dim E and 

n; = dim E;. Let H = ! traceo: be the mean curvature vector, so that E; is 
also an eigenspace of AH. 

Lemma 1. L(X, Y)(E;) çE; (in particular L induces a JTSfor (V, c) with 
initial data (E;, o:;E; ). 

Proof. We have 

([A, L(X, Y)] V, W) = (AL(X, Y) V, W) - (AV, L(Y, X) W) 

= trace (L(L(X, Y) V, W) - L(V, L(Y, X) W) = trace ([L(X, Y), L(V, W)]) = O. 

Since A commutes with L(X, Y), the latter leaves the eigenspaces of A 
invariant. 

Set now 

and 

If X E E;, Y E Ei, i ;: j, the above lemma and (2.5) imply 

(2.9) 
(o:(X, X), a(Y, Y)) = - c IIXll2 li Yll2 , (o:(X, Y), Hi) = - c IIXll2 , 

o:(X, Y)=O, (H;,Hj)= -c, (H;,H)=Ã;=(AHX,X). 

ln particular the H;'s are distinct, the E;'s are orthogonal and the H;'s are 
orthogonal to CBE;. 

Resuming, each E; is an inner product vector space and 

ã; (X, Y) = o:(X, Y) - (X, Y) H; , 

determines a minimal JTS for (E;, e;) with initial data (E;, ã; ). Moreover we ha-
ve an umbilical JTS for (V, e) with initial data (E;, ex;), ex;(X, Y) = (X, Y)H;, and 
the triple system for· (V, e) with initial data (E;, a I E) is the composition of the 
two. 

We have now all the algebra ready for the classification theorem 
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Theorem 7. Let f: M - Q(c) be a parallel immersion, of a connected 
manifold. Then there exist an extrinsic product of umbilical manifolds 
g: Qi(c1) x ... X Qick)-Q(c), a riemannian decomposition of M =M1 X ... xMk 
and minimal parallel immersions f;: Mi-Q;(ci) such that f = g º (!1 X ... xfk). 

Proof. Let x EM, p = f(x) e Q(c), E = (df)x (TxM) ç TP Q(c) = V, and a the 
second fundamental form of f at x. The triple system of the immersion is a JTS 
for (V, c) with initial data (E, a). Keeping the notation of the above discussion, E 
decomposes orthogonally, E = ffi Ei, i = 1, ... , k. Suppose to have ordered the 
subspaces such that c1 c2 ... ck. Since the H;'s are distinct we have 
O < IIH1 - H; 112 = c1 + C; 2ci and therefore ci > O if i > 1. Moreover the E;'s 
are orthogonal and the H;'s are orthogonal to E9 Ei. By (2.9) and the 
Observation in Example 2, there exist an extrinsic product of umbilical immer-
sions g: Q

1 

(c
1

) x Q
2 

(c
2

) x ... x Qk (ck) - Q(c) with tangent space at some point 
(x1 , ... , xk) being ffi E i, and mean curvature vector of g I Q, <e, l at xi being H; . 
Now we have a JTS for (E;, c;) with initial data (E;, éi;), which is minimal 
and therefore we have a parallel immersion li: M; - Q; (c;) with that triple 
system (by (2.8) and Remark 1). The immersion J = g º (f1 x ... x Jk ): 
M1 x ... x Mk - Q(c) is parallel and has the sarne JTS of f, and therefore, by 
Theorem 2, coincides with f. 

Corollary 2. lf M is irreducible, then either f is umbilical (c O) or a 
standard embedding of a symmetric R-space. 

3 - Semi-parallel immersions 

ln section 3 we described a scheme of classification of parallel immersions 
based on the following two facts 

1. The triple system associated to a parallel immersion is a Jordan triple 
system. 

2. Two parallel immersions with the same triple system at some point, 
coincide. 

While condition 1 is punctual, condition 2 is local. This fact leads naturally 
to the following concept: 

Definition 2. An isometric immersion is semi-parallel if the triple 
system at each point is a JTS 
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Remark 2. The condition of semi-parallelism is equivalent to 

for all tangent vectors X, Y (this follows from the basic equations (1.1), (1.2) 
and (1.3) and from Theorem 3). The above, and again the basic equations, 
imply 

i.e. the metric is semi-symmetric. Semi-symmetric manifolds are classified, at 
least generically, in [16] and [17]. ln analogy with the intrinsic case, where the 
condition R(X, Y) R = O is the integrability condition of V R = O, the condition 
R(X, Y) a = O is the integrability condition of Va = O. 

Semi-parallel immersions may be thought as 2nd order envelopes of parallel 
immersions in the sense that, at each point, there exists a parallel submanifold 
with the sarne fundamental triple system. An easy but good example to keep in 
mind is a right cylinder over a plane curve. At each point of this surface the ri-
ght cylinder over the circle osculating the curve is a parallel submanifold with 
the sarne triple system. 

A classification of semi-parallel irnmersions is not known yet (depending up 
to what we want to classify!). ln this section we will discuss some of the known 
results on the problem. 

We will start with the case of hypersuefaces. Letf: Mn - Qn + 1 (e) be aniso-
metric immersion which is semi-parallel, /; a unit normal vector and { e1 , ... , en } 
an orthonormal basis for the tangent space of M, which diagonilizes the Weigar-
ten operator A". Let Ài = (A, ei, ei) be the principal curvatures in the /; direction. 
ln this situation the condition of being semi-parallel is equivalent to 

(3.1) 

It follows from the above that there are at most two distinct principal curva-
tures, say À and p.. If À ;i= ,u. then À,u. = - e and the two eigenspaces T;, and T_,, de-
termine two distributions. It is a standard consequence of the equations of Co-
dazzi-Mainardi that those distributions are involutive and, if the multiplicity of 
one of the principal curvatures, say À, is at least two, then À is constant along 
the leaves of T;, and those leaves are totally umbilical. From those observations 
we get that if e ;i= O and at one point there are two distinct principal curvatures, 
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both of multiplicity bigger than one, then the hypersurface is isoparametric (i.e. 
has constant principal curvatures). An isoparametric, connected hypersurface 
with only two distinct principal curvatures is a tube around a totally geodesic 
submanifold, if it is connected. If one of the principal curvatures is simple, then 
M is a 1-parameter envelope of umbilical submanifolds and those may be descri-
bed quite explicitly (see [4]). If e = O, besides such tubes we can have cylindrical 
immersions (i.e. rank A, 1), cones over spheres and products of such cones 
with Euclidean spaces (see [8]). 

Strictly related to the case of semi-parallel hypersurfaces is the case of semi-
parallel immersions with jlat normal connection. If the normal curvature vani-
shes at a point x E M, then there exists an orthonormal basis { e1 , ... , en} of 
TxM such that a(ei, ej) = O if i ;;é j. ln this case semi-parallelism is equiva-
lent to 

(3.2) 

where k(ei, ej) is the sectional curvature of the plane spanned by ei and ej. If 
e O, the sectional curvature is non negative by the Gauss equation, and, at lea-
st if M is complete, the topology is well understood: Its universal covering space 
is the riemannian product of manifolds homeomorphic to spheres and a manifold 
diffeomorphic to an Euclidean space (see [9]). An interesting geometric result, 
which we will use later in a weaker form, is the following 

Theorem 8. Let f: M - Q(c) be a semi-parallel immersion with jlat nor-
mal connection. lf e O, M is connected and the Ricci curvature is positive at 
some point, then f is parallel. 

Proof. We will consider the case e= O. The case e > O is an obvious conse-
quence. W e will start proving 

Proposition 1. The immersion f has parallel mean curvature and con-
stant scalar curvature. 

Proof. Let p EM be a point where the Ricci curvature is positive and 
{ e1, ... , en} be a basis of TPM such that a(ei, ej) = O if i ;;é j. We will write ªkt for 
a(ek, e1 ). From (3.2) and the positivity of the Ricci curvature at p, we get 

a) a:ii = ajj or k(ei, e) = (aii, ªji) = O 
b) a:ii ;;é O for all i and there exists j ;;é i such that l'.Xii = ajj • 
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Since the condition Ricc4, > O is open, the above conditions hold in a neigh-
borhood of p and it is not difficult to see that we can choose a smooth orthonor-
mal frame { e1 , ... , e,, } in a possibly smaller o pen set, such that the two condi-
tions above hold true in this open set. From the Codazzi-Mainardi equations we 
get, if i ;;é j 

Therefore 

2. If i ,é j and a;;= ªii• then Vtajj = O. 

3. For all i, 'i/ t ªii = O. (Take j ;;é i with ªii = a;;). 

4. If i ,é j and a;; ,é ªii then 'i/ {, ªii = O. ln fact (a;;, ªii) = O by a) and there-
fore O = ei (a;;, ªii) = - ('i/ e, e;, ei) li ªii 112 • Since ªii ;;é O the conclusion follows 
from 1. 

From the above we conclude that the a.;;'s are parallel on the open set we are 
working in and therefore the mean curvature vector is parallel and the scalar 
curvature is constant on that open set. A simple connectness argument gives 
the desired conclusion. 

We go back now to the proof of the theorem. We start observing that H ;;é O. 
W e can choose, therefore, a local orthonormal frame in the normal bundle, 
{.;1, ... , çN-n} such that .;1 = H/IIHII- Set Ãf = (A,,ke;, e;). The Laplacian of lla.112 

is given by 

(see [6], p. 133). Since li a 112 is constant and the sectional curvatures are non 
negative, it follows that a is parallel. 

It follows easily from the classification of parallel immersions, that the only 
ones with flat normal connections are the extrinsic products of umbilical immer-
sions. Therefore 

Cor o II ary 3. I n the above hypothesis, f is an extrinsic product of umbili-
cal immersions. 

Remark 3. A scheme of classification of semi-parallel immersions into RN 
with flat normal connection may be found in [13], where a version of the above 
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result is attributed to Riives (whose paper however we were not able to find). 
The interest in semi-parallel immersions with flat normal connection comes from 
the fact that, at least if e :S O, all semi-parallel immersions in codimension 2 ha-
ve flat normal connection. ln fact, it follows easily by (2.7) that the mean curva-
ture vector is in the kernel of R .1 (X, Y) for all tangent vectors X, Y. If H ;= O the 
antisymmetry of R .1 (X, Y) (and the condition on the codimension) implies the 
vanishing of R .1. If H = O, (2.8) implies that the point is totally geodesic (e :S O) 
and therefore, again, R .1 = O. 

4 - Semi-parallel surfaces 

ln this section we will study semi-parallel immersions of a 2-dimensional ma-
nifold M 2 into an N-dimensional space form Q = QN (e). 

Let { 81 , 82 } be a local orthonormal tangent frame and we will set, as before, 
ªii = a(8;, 8j ). Also k will denote the Gaussian curvature and R .1 = R(81, 82) the 
normal curvature operator. With these notations the semi-parallelism condition 
becomes 

(4.1) R.1 a11 = R.1 a22 = 2ka12 R .1 a12 = k(a11 - ª22). 

An immediate consequence of (4.1) is that if R .1 = O, then either f is umbilical 
or M2 is flat. Moreover an immersion of a flat surface is semi-parallel if and only 
if R.1 = O. 

The above observation is of some interest also because it allows us to classify 
semi-parallel immersions into Q4 (e). ln fact, in this case, if e :s O then R .1 = O 
(see (2.8)) and, if e > O, either R .1 = O or J(M 2 ) is a piece of a Veronese surface 
(see Proposition 2 below). 

Let ç be a unit normal field. The Ricci equation and (4.1) give 

(4.2) 
(a;;, a12)Ca11 - ª22) + ((a;;, ª22 - a11)- (-l)i2k)a12 = O 

Cllad2 - k)(a11 - ª22) + (a12, a22 - a11)a12 = O. 

i = 1, 2 

If R .1 ;= O, a12 and a11 - a22 are linearly independent and in this case ( 4.2) and 
the Gauss equation give 

(4.3) lla12ll2 = k 
IIHll2 = 3k - e 

lia;; 112 = 4k - e 
lla11 - ª22 ll2 = 4k 

(a;;, a12) = O 
(a11, ª22) = 2k - e. 

From the above we deduce the following result of Deprez ([7]): 
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Theorem 9. Let f: M 2 - QN (e) be a semi-parallel immersion. Then there 
exists an open and dense set U ç M 2 such that the connected components of U 
are of the following types 

i) Open parts of umbilical Q2 (k) in QN (e), k e 

ii) Flat su1faces with R .L = O 

iii) Isotropic immersions with R .L O and JJHIJ2 = 3k - e. 

For further use we will give a look at the case e = 1. By composition with the 
inclusion QN (1) = SN 4 RN + 1 , we get a semi-parallel immersion into a eucli-
dean space. We will denote by ã, fI the second fundamental form and the mean 
curvature vector of the new immersion. Since IIJ(x) li = 1, differentiating twice 

we get (ã;;, f(x)) = -1 and hence (fI, f(x)) = -1. If R .L O, by (4.3) k = ½ 1lfil12 

and, since J[fII! 1, k ½. 
Proposition 2. f: M 2 - SN be a semi-parallel immersion of a connected 

suiface with R .L O somewhere. Then the following are equivalent: 

i) k = 1._ 
3 

ii) f is minimal 
iii) f(M 2 ) is a piece of a Veronese surface 
iv) f(M 2 ) is contained in a totally geodesic S4 in SN. 

Proof. Since (fI, f(x)) = -1 and k = ½llfIIJ2 ½ we have that k = ½ if 
and only if fI is parallel to J(x) and therefore if and only if f is minimal in SN. 

Moreover a minimal surface in SN with constant curvature ½ is a piece of a Ve-

ronese surface, by a theorem of Bryant (see [5]). So the frrst three conditions 
are equivalent and clearly implies the fourth. Suppose now N = 4. Differentia-
ting Jlf(x) li = 1 we get (ã12 , J(x)) =O= (ã11 - ã22 , J(x)) and therefore fI is paral-
lel to J(x) since e1 , e2 , ã12 , ã11 - ã22 and fI are orthogonal (by (4.3)). Therefore f 
is minimal is S 4 • 

We will discuss now two of the main results known for this problem. The 
frrst one is due to Lumiste and Asperti-Mercuri (see [12] and [1]): 

Theorem 10. Let f: M 2 -Q 5 (c) be a semi-parallel immersion, M 2 con-
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nected. Suppose R .L ;é O sornewhere. Then k is constant and H is parallel in the 
norrnal connection. 

Remark 4. The proof of Theorem 10 is based in the moving frame method 
and involves horrible calculations. Our aspectation is that the theorem holds 
true for all codimensions, but we where not able to handle the extra terms 
which appears in codimension bigger than three. Just for fun, and to have an 
idea of the calculations, the above results, for e < O, is obtained by showing that 
the function if:, = 3k - e, is solution of the polynomial equation 

42336q:,3 + 13361712q:,2 + 41446782if:, + 67855359 = O (!) 

ln the hypothesis of Theorem 10 the normal curvature is everywhere non 
zero, if M 2 is connected. By theorems of Chen and Yau (see [6], p. 106) the 
parallelism of H implies that f is a minimal immersion in a totally umbilical 
hypersurface Q4(c) of Q5(c). Since the immersion is minimal c~k>O. ln 
conclusion 

Corollary 4. ln the hypothesis of Theorern 10 f is an irnrnersion of M 2 

as a piece of a Veronese surface in sorne 4-sphere totally urnbilical in Q5(c). 

We want to discuss, briefly, the case of semi-parallel immersion of cornpact 
surfaces into RN. Since k O, such a surface is either flat or diffeomorphic to a 
2-sphere or a projective plane. An important concept in the study of such im-
mersion is the total absolute curvature. 

We recall that the total absolute curvature is defined by 

(4.4) -r(f) = (cN-1)-1 f( J Jdet(A<)ldaN-3)dM 
M 11,11= 1 

where dun is the volume density of the n-sphere, Cn = J da", and dM is the volu-
S" me density of M. 

We want to estimate the total absolute curvature of a semi-parallel surface. 
If the mean curvature vector at x, H(x), is zero, then x is a totally geodesic 
point and so A<= O for all ç's normal to M 2 at x. Suppose H(x) ;é O and choose 
an adapted frame for RN, {e1, ... , eN} with e3 = HIIHll-1 and, if R.L ;é O, 
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e4 = (au - ª22 )li ª11 - ª22 ll- 1 and e5 = ª12 li ad- 1 • Set A;, = Ae, . N ow ( 4.3) im-
plies 

1. IfR1-=0, A3=(V: ~) A;,=(~ ~) if ), 4 . 

A3=(~ ~) A4 = (V: -~) 
A5=(~ V:) 

o 
A;.= (O ~) if ), 6. 

Let ç be a unit normal vector at x. Write ç = .'2: ç;_ e;, . Then I det (A.,) 1 is given 
}, ;e 3 by ky;(ç3, ... , çN ), where 

We observe now that ç; is the integrand that appears in the expression of the to-
tal absolute curvature of the immersion of the unit 2-sphere in RN as totally um-
bilical surface, in the first case, and as a Veronese surface in the second. There-

fore the integral of t:p on the unit (N - 3)-sphere is cN - 1 in the first case and 
3 2,-

CN - l in the second case. From the above and the Gauss-Bonnet theorem we 2,-
get: 

x(M) = (cN-l) f kdM f (ç3)2daN-3 -r(j) 
M sN-3 

(cN - l )f k dM f 13(ç3 )2 - (ç4 )2 - (ç5 )2 1 daN - 3 = 3x(M) 
M sN-3 

where x(M) is the Euler characteristic of M. 

Theorem 11. ln the above hypothesis, if M 2 is not flat and non orien-
table, then f is a Veronese surface in some 4-sphere in RN. 

Proof. The hypothesis imply that M 2 is a projective plane and so 
x(M2) = 1. By the Morse theory interpretation of -r, -r 3 and therefore 
-r = 3, by the above discussion. By a result of Kuiper and Pohl (see [11]) such 
immersion is projectively equivalent to a Veronese surface and therefore 
contained in a 5-dimensional affine subspace. The conclusion then follows from 
Corollary 4. 
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