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RESUMO

Dimensionar tiebacks submarinos para o transporte de petréleo parafinico em ambientes, onde
as condi¢des de temperatura podem ser inferiores a temperatura de aparecimento de cristais
de parafinas (WAT), podem apresentar desafios adicionais, como prever a queda de pressao no
sistema torna-se um desafio devido a mudanca no comportamento reolégico do fluido trans-
portado. O modelo de Herschel-Bulkley pode descrever o comportamento da viscosidade do
petroleo com caracteristicas viscoplasticas. Modelos disponiveis na literatura para o cdlculo
do niimero de Reynolds e do fator de atrito em regime laminar para fluidos Herschel-Bulkley
apresentam ainda algumas divergéncias. O presente estudo buscou avaliar experimentalmente a
capacidade dessas equagdes para prever a queda de pressdo, utilizando uma solu¢@o aquosa de
Carbopol 940 e Trietanolamina que reproduz o comportamento ideal de um fluido com carac-
teristicas viscoplasticas. Os experimentos foram realizados em um aparato experimental com
didmetro interno de 0.0539 m, comprimento de desenvolvimento de fluxo de 20 m e uma se¢ao
de teste de 2.4 m. Nos resultados, as combinagdes de fator de atrito e niimero de Reynolds
recomendadas na literatura mostraram um desvio médio superior a 10 % em rela¢do aos da-
dos experimentais deste trabalho. Dessa forma, uma andlise combinatdria entre os diferentes
modelos de nimero de Reynolds e fator de atrito foi realizada para avaliar se uma possivel com-
binacdo alternativa seria mais eficiente em capturar os resultados de maneira mais consistentes.
Baseado nos dados experimentais deste estudo e validado com dados coletados da literatura em
que utilizaram solucdes de Carbopol 940 e 980, concluiu-se que para fluidos Herschel-Bulkley
a combinacao do fator de atrito para fluidos newtonianos em regime laminar e o nimero de
Reynolds de Slatter preveem a queda de pressdo com uma aproximagéo entre 5.3 % e 12.0 %
em relac@o aos valores medidos. Além disso, a equacdo de queda de pressao para fluidos Power
Law de Metzner e Reed teve uma aproximagao de até 13.8 % em relagdo aos dados experimen-
tais. As conclusdes deste trabalho sdo relevantes, pois reforca a limitada literatura disponivel

sobre o escoamento interno de fluidos Herschel-Bulkley em tubulacgdes.

Palavras—chave: Herschel-Bulkley, Fluido viscoplastico, Fator de atrito de Fanning, Numero

de Reynolds, Carbopol.



ABSTRACT

Designing submarine tiebacks for transporting waxy crude oil in environments where temper-
ature conditions can be below the Wax Appearance Temperature (WAT) may pose additional
challenges. Predicting pressure drop in the system becomes challenging due to the change in
rheological behavior of the transported fluid. The Herschel-Bulkley model can describe the
viscosity behavior of oil with viscoplastic characteristics. Models available in the literature
for calculating Reynolds number and friction factor in laminar flow for Herschel-Bulkley flu-
ids still exhibit some divergences. This study aimed to experimentally evaluate the capability
of these equations to predict pressure drop, using an aqueous solution of Carbopol 940 and
Triethanolamine to simulate the ideal behavior of a fluid with viscoplastic characteristics. Ex-
periments were conducted in an experimental apparatus with an internal diameter of 0.0539 m,
a flow development length of 20 m, and a test section of 2.4 m. In the results, combinations of
friction factor and Reynolds number recommended in the literature showed an average devia-
tion greater than 10 % compared to the experimental data of this study. Thus, a combinatorial
analysis using different models of Reynolds number and friction factor was performed to assess
if an alternative combination could more efficiently capture results consistently. Based on the
experimental data from this study and validated with data collected from the literature using
Carbopol 940 and 980 fluids, it was concluded that for Herschel-Bulkley fluids, the combina-
tion of friction factor for Newtonian fluids in the laminar regime and the Reynolds number of
Slatter predicts pressure drop with an approximation between 5.3 % and 12.0 % relative to the
measured values. Additionally, the pressure drop equation for Power Law fluids by Metzner
and Reed showed an approximation of up to 13.8 % compared to experimental data. The con-
clusions of this study are relevant as they reinforce the limited available literature about the

internal flow of Herschel-Bulkley fluids in pipelines.

Keywords: Herschel-Bulkley, Viscoplastic fluid, Fanning friction factor, Reynolds Numbers,

Carbopol.
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1 INTRODUCTION

The exploration of petroleum basins in deep and ultra-deep waters, situated under
adverse environmental conditions, represents a significant challenge for flow assurance due to
the presence of waxy crude oils (Dalla et al., 2019). This obstacle has become increasingly
prevalent in discoveries in Brazil, where waxy crude oil constitutes a significant portion of
reserves, as in the current scenarios of the Campos and Reconcavo basins (Rocha et al., 2003;
Oliveira et al., 2012).

As an alternative for transporting hot crude oil from these basins to onshore instal-
lations, facilities such as subsea tiebacks have been employed, offering a low-cost solution,
especially effective for deep waters and long distances conditions. However, these conditions
also represent a challenge in terms of o0il production due to the temperature difference between
the water surrounding the pipeline and the transported fluid, inducing heat transfer from the
crude oil to the marine environment, resulting in the deposition of paraffins. This progressive
cooling changes drastically the kinematic viscosity of the crude oil and increases the surface
resistance to flow of the transported fluid, leading to a change in the flow regime from turbulent
to laminar (Rgnningsen, 1992; Swamee, 1993).

Therefore, the challenge is not limited solely to the reduction of the internal diam-
eter of the tieback due to paraffin deposition, but it is also associated with the ability to predict
pressure drops due to the change in fluid behavior. During transport process, in environments
where the temperature can drop to levels considerably lower than the typical Wax Appear-
ance Temperature (WAT), crude oils, which normally exhibits Newtonian behavior, undergo a
transition to non-Newtonian behavior. In this new state, the crude may display rheological char-
acteristics such as shear-thinning fluids and may even exhibit time-dependent properties. This
change is attributed to the formation of wax crystals and the creation of a cross-linked structural
network, similar to polymer gels with yield stress (Dalla et al., 2019).

According to Rgnningsen (1992) and Bao e Zhang (2020), the rheological model
that best describes the flow curve behavior of gelled crude oil is the Herschel-Bulkley (also
known as viscoplatic or yield-pseudoplastic) model. This model states that the fluid behaves as
a rigid solid when the applied external stress is less than the fluid’s yield stress (7) and as a

viscous liquid when the applied stress exceeds this limit.
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The model fluid used to replicate the Herschel-Bulkley behavior of gelled crude
oils is composed by Carbopol® and Triethanolamine. Curran et al. (2002) pointed out that
Carbopol polymer is highly appreciated in the research community because of its behavior
resembling that of an idealized yield stress fluid and because it was employed by different
authors to replicate the waxy crude oil behavior (e.g. Taghavi et al. (2012), Alba et al. (2013),
Sierra et al. (2016), Liu e Bruyn (2018)). Triethanolamine was added to the solution to improve
its viscosity. According to the study by Iceri et al. (2023), acts as a pH neutralizer, viscosifier,

and prevents fungal formation in the solution.

1.1 Motivation

After reviewing the relevant literature on Herschel-Bulkley fluids, covering studies
conducted over the last 70 years, it was noted that there is disagreement over a common model
that can reliably forecast the pressure drop resulting from the transport of viscoplastic fluids in
circular-section pipe systems. This is explained by the fact that models like the Bingham plastic
or Power Law are typically used to describe non-Newtonian fluids.

In spite of various proposals on this field, research has focused mainly on the anal-
ysis of the behavior of these viscoplastic fluids in concentric and eccentric annular spaces,
primarily motivated by the need to understand the fluids used in oil well drilling. Several au-
thors (e. g. Hanks (1979), Fordham et al. (1991), Founargiotakis et al. (2008), Kelessidis et al.
(2011), Qi et al. (2013), among others), have contributed to this area by proposing theories on
flow in concentric geometries, friction factor-independent methodologies to calculate pressure
drop, among others. In relation to research on internal flow of viscoplastic fluids, the proposed
equations are more limited and often derived analytically. Their validation has been limited to
comparisons with numerical results or comparisons between different models, and in several
cases could not be experimentally tested.

Despite theoretical and numerical validations between different models yielding
results with up to a 10% difference, some conclusions were drawn, such as the laminar flow
characterization for non-Newtonian fluids is fully understood (Kelessidis et al., 2011), and the
truth is that these fluids cannot be described by a single model. For example, Chilton e Stainsby
(1998) indicated that these solutions are not really applicable to all non-Newtonian fluids, while
Founargiotakis ef al. (2008) and Qi et al. (2013) added that, without considering numerical

solutions, traditional methodologies for predicting pressure drop in annular laminar flow have
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limited accuracy.

In summary, despite annular flow being the most studied scenario regarding Herschel-
Bulkley fluids, there is still no precise methodology to predict pressure drop. On the other hand,
as far as our specific problem is concerned, although the internal flow for Herschel-Bulkley flu-
ids is geometrically simpler, it is not necessarily a more favorable working scenario due to the

limited literature available, as will be demonstrated in the Literature Review section.

1.2 Objective

The research work aims to investigate the friction factor in single-phase flow of a
viscoplastic fluid in pipes.
The general objective of this project will be achieved by following the specific ob-

jectives:

* Evaluate the behavior of the friction factor of a viscoplastic fluid using experimental

pressure drop data.

* Compare the results of the friction factor correlations and their recommended Reynolds
number models with the experimental friction factor data obtained to assess their accuracy

in calculating the pressure drop.

* Perform a combinatorial analysis to examine alternative combinations of Reynolds num-
ber models and friction factor correlations in order to approximate the analytical results

to the experimental data.

* Validate the best combinations of Reynolds number models and friction factor correla-
tions found in this study using available literature data to demonstrate their applicability

and consistency in predicting the pressure drop.
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2 FUNDAMENTAL CONCEPTS

This chapter presents the fundamental concepts that underpin the theoretical basis
of this research. The classification and rheological models that describe the behavior of dif-
ferent types of fluids when subjected to stresses or strains, primarily focusing on the theory of
viscoplastic fluids are discussed. Additionally, the rheological properties characteristic of each

fluid type are detailed, along with a description of how these properties influence their behavior.

2.1 Newtonian fluids

Newtonian fluids are characterized by a constant viscosity, which remains unchanged
under stress. It follows the Newton’s law of viscosity, which states that the stress experienced
by a fluid is proportional to its rate of deformation or shear rate. Water, air, and the most liquid
metals are classic examples of Newtonian fluids. Their viscosity does not change with the strain
rate or velocity of the fluid, but only with changes in pressure and temperature.

The Newton’s Law of viscosity applies to any gas or liquid in a laminar flow and
a molecular weight less than 5000 g/mol. Figure 2.1 shows a schematic representation to de-
rived the Equation 2.1. This system of parallel plates of surface area A contains fluid between
them and are separated by a distance dy. Over time, the upper plate will move at a constant
velocity dV., generating momentum in the fluid and forming a linear steady-state velocity pro-
file between the plates. To keep the upper plate moving, the application of a constant force F'
is required (Bird et al., 2006). Furthermore, the law assumes that the acceleration in the flow
between plates is zero, the pressure in the flow direction is constant and there is no slip at the

surfaces of both plates (White, 2018). The equation for calculating the Newton’s viscosity is

F dV,
a4

where viscosity is represented by . The relation (—dV, /dy) represents the shear rate, com-

given by Equation 2.1:

monly denoted as *,,. It refers to the measure of the velocity of deformation experienced by
a fluid in response to an applied shear force. In other words, it can be formulated as the ve-
locity gradient perpendicular to the direction of the applied shear stress. The parameter (F'/A)
represents shear stress, this is the force per unit area required to move the fluid and can also be

expressed as 7,,.. Therefore, Equation 2.1 can be rearranged as Equation 2.2. For both 7,,, and



25

4y the initial subscript (y) specifies the direction that is perpendicular to the shearing plane.
Meanwhile, the latter subscript (x) designates the direction in which the force is applied and

the flow occurs (Chhabra; Richardson, 2011).

Tyz = /*L’nyt (2.2)

Figure 2.1 — Fluid flow between parallel plates (Chhabra; Richardson, 2011).
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2.2 Non-Newtonian fluids

A non-Newtonian fluid is characterized by its flow curve (shear stress vs. shear
rate), which is not necessarily linear and, in some cases, may not pass through the origin. This
behavior is attributed to the high molecular weight of the molecules that make up the fluid.
Consequently, the apparent viscosity of the fluid does not remain constant under conditions of
constant pressure and temperature, and it is significantly influenced by the velocity gradient,
flow geometry, etc. This behavior contrasts with what is observed in Newtonian fluids (Bird e?
al., 2006; Chhabra; Richardson, 2011).

Conveniently, the non-Newtonian fluids can be grouped into three general classes:
Time-independent fluids (also known as: inelastic, purely viscous, or generalized Newtonian
fluids, GNF), Time-dependent fluids, and Viscoelastic fluids.

This study will focus on detailing fluids with time-independent properties, as vis-

coplastic fluids fall into this category.

2.2.1 Time-independent fluids

These fluids are known for their rheological properties that do not change over time.
This class of material follows a mathematical model, described by Equation 2.3, which depicts

the relationship between the strain rate and shear stress. This relationship is expressed as:

;sz - f(Tyx) (23)
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or its inverse form,
Tye = [ (Yye)- 24)
This implies that for any value of 7,, at any point it is uniquely determined by a
value of 7, or vice versa.
Depending on the shape of the flow curve formed by these two parameters, as is
shown in Figure 2.2, fluids may be further subdivided into three types, as described in the
following:

Figure 2.2 — Newtonian and non-Newtonian fluid flow curves (Chhabra; Richardson, 2011).

Yield-

pseudoplastic
Bingham
I plastic

w

w

L

-E_n. -
@

[}

z

@ | Shear |

thinning Newtonian
fluid fluid

Shear-thickening fluid

l | | |
Shear rate

2.2.1.1 Shear-thinning or pseudoplastic fluids

Most non-Newtonian fluids (i.e. polymer solutions, colloidal suspensions) can be
classified in this group, also called pseudoplastic fluids. It is characterized by the inverse re-
lationship between the apparent viscosity and shear rate. While shear rate increases, apparent
viscosity decreases.

To model the rheological behavior of shear-thinning fluids, mathematical expres-
sions, either empirical or based on kinetic theory applied to the liquid state, have been proposed

to fit the curve of rheological data that relates the shear rate to shear stress.

1) Power-law model

The empirical Power Law equation is the most classic model used to explain the
rheological characteristics of pseudoplastic fluids (Ostwald; Auerbach, 1926) which relates the
share stress to the share rate with a power called: flow behavior index or Power Law index (n).

Saramito (2016) cited that the model formulated in Equation 2.5 offers a partial

explanation about non-Newtonian fluid behavior. According to his description, when the Power
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Law index is less than 1, the effective viscosity would decrease to nearly zero as the shear rate
becomes very large. However, due to the physics and chemistry at the molecular scale of fluids,
liquids display a minimum and maximum effective viscosity.

The Power Law model is given by the expression:
Ty = k(Yya)"- (2.5)

This equation, plotted in Cartesian coordinate systems, graphs a flow curve that can
have a positive or negative shape depending on the value of the flow behavior index (n), as

shown in Figure 2.3:

Figure 2.3 — Power Law index (Tropea et al., 2007).

Shear stress

Shear rate

The dimensionless Power Law index (n) describes the degree of non-Newtonian
behavior of the fluid and characterizes the degree of shear-thinning or shear-thickening behav-
ior. A value of n < 1 indicates that the fluid has shear-thinning behavior, meaning that its
apparent viscosity (77) decreases as the shear rate increases. A value of n > 1 indicates that the
fluid has shear-thickening behavior, meaning that its apparent viscosity increases as the shear
rate increases. When n = 1, Equation 2.5 reduces to Equation 2.2, keeping the apparent vis-
cosity constant and equal to the Newtonian viscosity (n = u). Apparent viscosity is calculated
following Equation 2.6. The consistency index & represents the resistance of the fluid to flow.
A higher consistency index means the fluid is more resistant to flow and requires a greater force
to initiate flow (Chhabra; Richardson, 2011).

Tye  K(Vya)" Cme
Yy Vyx
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2.2.1.2  Viscoplastic fluids

Saramito (2016) describes viscoplastic fluids as materials capable of maintaining
their original shape like a solid under the effects of gravity, yet able to flow like a liquid when
it is subjected to sufficient stress to cause deformation. The minimum stress required to induce
deformation is known as the yield stress (79). According to Chhabra e Richardson (2011), the
fluid deforms elastically as a solid body and behaves as a three-dimensional framework with
sufficient stability to flow while keeping its shape when the externally applied stress is lower
than the yields stress (7, < 7). But, once the yield stress is exceeded (7, > 79), the structure
breaks down, and the substance exhibits characteristics of viscous fluid. If the flow curve of this
fluid is plotted, it will exhibit a linear or nonlinear shape and, in any case, will not intersect the
origin owing to the presence of 7, as shown in Figure 2.4, with the meat extract and Carbopol

solution as the flowing examples:

Figure 2.4 — Shear stress—shear rate data illustrating the viscoplastic behavior of an Car-
bopol polymer solution (yield-pseudoplastic) and meat extract (Bingham plastic)
(Chhabra; Richardson, 2011).
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Two commonly used models for viscoplastic fluids are briefly described:

1) The Bingham plastic model

This model described by Equation 2.7 is characterized by a linear relationship be-
tween shear stress and shear rate once the minimum stress required for the liquid to start flowing,

known as Bingham yield stress and denoted as 72, is exceeded:

e =+ i) [Tl 2 [ o

Yyz =0 |Tya| < |TOB}
If Bingham yield stress is null, then the Bingham viscosity is constant (k = ), and
its equation reduces to Equation 2.2, the Newtonian fluid. The graphical representation of this

behavior is shown in Figure 2.5:

Figure 2.5 — Bingham plastic fluid behavior (Chhabra; Richardson, 2011).
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Apparent viscosity for Bingham fluids changes with the variation of shear stress and

shear rate, as shown in Figure 2.6, and it is calculated following the relation of Equation 2.8

p= w2 = Tum (2.8)
Vyxzo — Vyaxy
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Figure 2.6 — Variation of apparent viscosity, 7, for different shear stresses and shear rates for
Bingham fluid (Created by the author).
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ii) The Herschel-Buckley fluid model

It is a generalization of the Bingham plastic model to improve the non-linear flow

curve for shear stresses greater than the yield stress (|7,.| > |7£]), as shown in Figure 2.7:

Figure 2.7 — Herschel-Buckley fluid behavior for n < 1 (Chhabra; Richardson, 2011).
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The behavior of the flow curve of this model is described by Equation 2.9,

Tye = To' + k()" . |Tye| = ‘7—({{‘

fo

(2.9)
Yyz =0 |Tya| < |7—({I}

where, 707 is the Herschel-Buckley yield stress. The model assumes that the fluid behaves like

a rigid solid below the 7¢7 and like a viscous liquid above it. The consistency index, denoted as
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k, quantifies the resistance of a fluid to flow. The index n refers to the flow curve behavior or
Power Law index, which indicates the shear-thinning characteristic of the fluid. This index can
be determined experimentally by subjecting the fluid to different shear rates using a rheometer,
an instrument used to measure rheological properties.

Note that if the Herschel-Buckley yield stress is reduced to 0 (747 = 0), the fluid
recovers the Power Law behavior, given by Equation 2.5. Additionally, if £ = p and n = 1, this

model reduces to the Newtonian model given by Equation 2.2.

2.2.1.3 Shear-thickening or dilatant fluid behavior

Shear thickening is the tendency of some materials to have a higher viscosity when
flowing at high shear rates. This behavior is exhibited by highly concentrated suspensions of
small particles.

As long as the liquid lubricates the movement of each particle, there are low shear
stresses at low shear rates. However, as the material expands at high shear rates, less liquid
fills the void space and does not prevent solid-solid contact between particles, leading to greater

friction and shear stresses. As shown in Figure 2.8 (Chhabra; Richardson, 2011):

Figure 2.8 — Schematic representation of shear-thickening behavior (Chhabra; Richardson,
2011).
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Figure 2.9 shows that the flow behavior of a dilatant fluid can describe by Power

Law model (Equation 2.5) when n is greater than 1. Also, if n is higher than 1, the apparent

viscosity 7 increases as the shear rate 7, increases and the relationship can be calculated with
Equation 2.10,

1= 2 = k(! = REEE

(2.10)
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The parameter 81/ D can be correlated to the true shear rate by the Rabinowitsch-
Mooney relation, with V' representing fluid velocity and D denoting pipe diameter. In the
context of non-Newtonian laminar flow 8V/D is commonly known as the pseudo shear rate,

bulk shear rate, or flow characteristic (Slatter, 1995).

Figure 2.9 — Variation of apparent viscosity for a shear-thickening fluid (Created by the author).
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2.3 Laminar single-phase flow of Herschel-Bulkley fluids in circular pipes

This study is focused on the laminar flow of fluids through a circular cross-sectional
pipe, particularly applied to fluids exhibiting time-independent or inelastic behavior, also re-
ferred to as purely viscous fluids. This model of fluid is characterized by the formation of a
solid plug-like core with a radius Iz, flowing through the center of the pipe, when the shear
stress is below the yield stress. Furthermore, compared to Newtonian fluids, non-Newtonian
fluids usually have high viscosities, making laminar flow more prevalent in engineering prac-
tice (Xu; Liao, 2009; Chhabra; Richardson, 2011).

The following equations, proposed by Chhabra e Richardson (2011) and based on
the relationship between pressure drop and shear stress, are fully developed with the author’s

annotations in Appendices A and B.

2.3.1 Shear Stress distribution through force balance analysis

Based on polar coordinates, a cylinder with a radius 12 and its center on the z-axis is
presented in Figure 2.10. Through it, an incompressible fluid with time-independent properties
flows along the z-axis with an angular velocity of zero under laminar and fully developed flow.

Under these conditions, by performing a force balance, it is possible to relate the pressure drop
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gradient (—AP/L) to the shear stress (7,.,) for any position of radius 7 in relation to the origin

of coordinates, as depicted by Equation 2.11.

Figure 2.10 — Flow through a horizontal pipe (Chhabra; Richardson, 2011).
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This relationship developed by Chhabra e Richardson (2011) exhibits a linear dis-
tribution profile of the shear stress across the cross section (with variation of r) of the pipe as
depicted in Figure 2.11. Thus, the shear stress is zero at the axis of the cylinder (7, = 0 for
r = 0) and reaches its maximum value at = 2. Additionally, it is applicable for both laminar
and turbulent flow, since it is a simple force balance that does not consider any characteristic

property of the flow or the fluid.

2.3.2  Velocity distribution for a Herschel-Bulkley Fluid

A fluid that exhibits a viscoplastic characteristics will only flow if the applied stress,
T.»» €xceeds the yield stress value, 747. In this type of fluid, a solid plug-like core of radius R, is
formed, which flows through the axis of the pipe, where the shear stress is lower than the yield
stress. The size of the portion of fluid that behaves like a solid depends on the magnitude of the
yield stress and the shear stress on the wall, 7,,, and can be expressed as the relation in Equation
2.12:
n _ My

e ¢. (2.12)

Figure 2.11 illustrates the velocity profile for laminar flow of Bingham plastic or
Herschel-Bulkley fluids. The velocity in the plug flow region (V.,) is uniform and is given by
Equation 2.13. It is crucial to note that the shear stress is lower than the yield stress within the

plug (r < R,), and these two stresses are equal (7,, = 7¢) at the radius of the plug (r = R,):

[ nR Tw\ /™ (n+1)/n
V., = (n+1) (%) [(1—¢) ] (2.13)
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Figure 2.11 — Shear stress and velocity distribution for a Herschel-Bulkley or Bingham plastic
fluid in a circular cross-section pipe (Chhabra; Richardson, 2011).
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In the annular section, i.e., the space between the radius of the plug and the radius
of the pipe (R, < r < R), the velocity decreases from the constant velocity at the plug to zero
at the pipe wall, where 7, is greater than 7/!. Therefore, the velocity distribution (V) in the

annular space is represented by Equation 2.14:
nR T l/n r (TL-‘rl)/TL
V. = (—“’) 1 — ¢) O/ _ (- - ) | 2.14
(n n 1) p [( ?) 50 (2.14)

2.3.3 Volumetric flow rate for a fluid with yield stress

The determination of the volumetric flow rate of a fluid with yield stress, as exposed
by Chhabra e Richardson (2011), can be obtained from the equation of the average velocity V/
(Equation 2.15), writing it in terms of flow rate () (Equation 2.16), and integrating the equation
for each flow region. The volumetric flow rate of a fluid with a solid plug-like core is defined
as the amount of fluid that passes through a cross section in a given time and is expressed by
the Equation 2.17. The detailed derivation of this equation is presented in Appendix B and is

represented by Equation B.19:

- Q
== 2.1
V== 2.15)
_ R Ry R
Q=AxV= / 2rrV,dr = / 2mrVpdr +/ 2rrV,dr (2.16)
0 0 R,
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(2.17)

n—+1 B B

o as (TN S
Q =mnR <k> [(1 ?) ]X 2n (3n+1) 2n+1

or in terms of average velocity, and considering that 7,, = 7' /¢, Equation 2.17 can be rewritten

2n (1 (1—¢)? ¢<1—¢)>

as:

(2.18)

2n <1 (1—¢) ¢<1—¢>>

n+1\2n (3n+1) 2n+1
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3 LITERATURE REVIEW

This chapter details five Reynolds number models, three friction factor correlations,
and three equations for calculating pressure drop. These models, equations, and correlations
were developed specifically for the internal flow of Herschel-Bulkley fluids in circular cross-
section pipes. Additionally, models initially derived for other types of fluids are also presented,

as they have been applied to Herschel-Bulkley fluids.

3.1 Reynolds numbers applied to Herschel-Bulkley fluids

3.1.1 Generalized Reynolds number of Metzner and Reed

Metzner e Reed (1955) developed the generalized Reynolds number based on the
shear rate model proposed by Rabinowitsch (1929) and Mooney (1931). This model is based on
the geometry of the pipe system and not on equations related to fluid regime. The generalized
form of the Reynolds number is expressed by Equation 3.1, and it is applicable to Newtonian,
Bingham plastic, and Power Law fluids:

Dnv?—np

Ks G-

N Re, Metzner —

where Nge Metner 15 the generalized Reynolds number, D is the pipe diameter, V' is
the fluid velocity, p is the fluid density, n represents the flow behavior index, also called Power
Law index, and K is the consistency index derivative whose form varies depending on the fluid.

For a Power Law fluid, Metzner e Reed (1955) deduced Equation 3.2 to calculate

K’:k<3n+1) , 3.2)
4n

and for a fluid with yield stress, Metzner (1957) found K’ considering the rheological model of

K':

a Bingham plastic fluid, obtaining the form of Equation 3.3:

n (o ot

where 7,, is the wall shear stress and ¢ is the ratio of the yield stress and wall shear stress,

K =1, [ i )] : (3.3)

established by Equation 2.12.
Finally, in the simplest case, if K’ equals i and n is 1, Equation 3.1 reduces to the

Reynolds number for Newtonian fluids.
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The Generalized Reynolds number of Metzner and Reed was experimentally vali-
dated by the author using carboxymethyl cellulose (CMC), clay, and lime in water.

This work incorporated the generalized Reynolds number combined with K’ for
Power Law fluids in the analysis because authors like Hanks (1978) and Swamee e Aggarwal
(2011) used it to derive their friction factor equations for viscoplastic fluids. It also included
the generalized Reynolds number using K’ for Bingham fluids because, although K’ was not

specifically developed for viscoplastic fluid models, it incorporates the variable ¢.

3.1.2  Reynolds number of Slatter

The approach of Slatter (1995) is based on the fundamental definition of the Reynolds
number and it is substituted by the equations proposed by Massey (1980) for the inertial and
viscous forces. This dimensionless quantity depicted by Equation 3.4 is also based on the rheo-
logical model for yield pseudoplastic flow (Equation 2.9) and the pseudo shear rate, also known
as flow characteristic or the bulk shear rate (8V// D), a parameter that was also used by Metzner
e Reed (1955) in its formulation:

8pV2
i + k(8V/D)"

(3.4)

NRe, Slatter —

It is important to note that Equation 3.4 can be mathematically reduced to the clas-
sical Reynolds number by the proportionality constant 8 in the numerator when assuming the
parameters for Newtonian fluids (k¢ = g and n = 1). This reduction was experimentally vali-
dated by Haldenwang et al. (2012), who used both a Newtonian fluid (water) and ten Herschel-

Bulkley fluids (sludge from waste treatment plants).

3.1.3 Reynolds number of Giizel

The Reynolds number of Giizel er al. (2009b) was proposed to predict the transition
from laminar to turbulent flow in circular-section pipes carrying viscoplastic fluids. To achieve
this goal, Giizel e al. (2009b) developed their Reynolds number with a different approach,
integrating the flow velocity and effective viscosity that vary radially during fluid flow. They
considered that the flow velocity at the wall tends to zero, while the effective viscosity at the
cylinder axis tends to infinity due to the presence of a portion of the fluid behaving as a solid-
like located at the pipe center. These considerations indicate that the Reynolds number tends to

zero in both axis and at the pipe wall.
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Therefore, Reynolds number of Giizel can be understood as a number that varies
radially, reaching its minimum values at the wall and at the cylinder axis, and reaching its
maximum value at some point along the cylinder radius. This Reynolds number considers three
rheological parameters in its structure, where the yield stress is implicit in the value of ¢ (see
Equation 2.12), which represents the relationship between the yield stress and the wall shear
stress, and it is calculated by Equation 2.14 using iterative procedures. The Reynolds number
of Giizel, presented in Equation 3.5, was validated through experiments focused on identifying
the onset of the transitional regime. For this purpose, they used a Newtonian (glycerin), a Power
Law (Xanthan gum), and four yield stress fluids (Carbopol®). Additionally, it provided pressure
drop predictions with a deviation of up to 16% compared to the measured data in the laminar
regime. This equation is given by:
2pV2 " R "
k(L 41)”

(1-9)° 20(1-0) ¢

1 _ 1+n 35
(1-9) 14+3 142 I+1 (3:5)

N Re, Giizel —

3.1.4 Reynolds number of Madlener

To characterize the flow regime of gelled fuels, Madlener et al. (2009) introduced
an extended version of the Reynolds number. This dimensionless relationship, illustrated by
Equation 3.6, incorporates the wall shear rate expression developed by Rabinowitsch (1929)
and Mooney (1931), alongside the extended Herschel-Bulkley equation proposed by Madlener
e Ciezki (2005a), Madlener e Ciezki (2005b) that includes the term 7)., as the constant viscosity
in high shear rate range. Due to its versatility, this extended version of the Generalized Reynolds
number is also applicable to Newtonian, Power Law, and Bingham plastic fluids.

The Reynolds number of Madlener or HBE-Generalized Reynolds number was
tested with Newtonian fluids (paraffin and kerosene) and non-Newtonian gelled fluids (paraffin-
thixatrol, paraffin-aerosil, and kerosene-thixatrol-gel) and subsequently compared with the re-
sults of the Reynolds number for Newtonian fluids and the Generalized Reynolds number for
Power Law fluids of Metzner e Reed (1955). Although Madlener did not provide detailed statis-
tical data about his results, his model showed good graphical agreement with the experimental
data for Newtonian fluids and with the results obtained using the Reynolds number for Newto-
nian fluids.

For non-Newtonian gelled fluids, Madlener’s model presented graphically better

results than the Newtonian fluid model and Metzner and Reed model for Reynolds number
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values below 200. However, for Reynolds numbers greater than 200, the model tended to
overestimate the friction factors compared to the experimental values, an observation for which
Madlener acknowledged he did not have an explanation.

The Reynolds number according to Madlener is expressed as follows:

pv2—nDn

NRe, Madlener — - n n_1’ (36)
T (R)" k(32" o, (L) (2)"
(D) +7700(D)
= . 3.7
" ) e () o

3.2 Equations and correlations for internal flow of Herschel-Bulkley fluids in laminar

regime

Friction is vital in fluid dynamics since it denotes the resistance between the fluid
and the surfaces in contact, opposing sliding and impacting the pressure drop. It is determined
by calculating the Fanning friction factor (f) or Darcy friction factor (fp), which is four times
the Fanning friction factor (4f = fp).

In laminar regimes and Newtonian fluids, the Fanning friction factor is a function
of the Reynolds number and is governed by Equations 3.8:

16 16u
Nre VDp’

f= (3.8)

and, as detailed by Bourgoyne et al. (1986), for any fluid the Fanning friction factor is related

to pressure drop (A P) through the Fanning equation as indicated by Equation 3.9:

APD

/= 2LpV2

(3.9)

For Herschel-Bulkley fluids, multiple equations for pressure drop and friction fac-
tor have been proposed over the last 70 years, with no consensus on which model accurately
captures the friction and the pressure drop phenomenon, as Abou-Kassem et al. (2023) also
recently observed. The following sections will present and discuss various models from the

literature used in this study.

3.2.1 Friction-factor correlation of Hanks

Hanks (1978) formulated the first theoretical correlation (Equation 3.10) for the fric-

tion factor of Herschel-Bulkley fluids in a laminar flow regime, using the Generalized Reynolds
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number for Power Law fluids of Metzner and Reed (Equations 3.1 and 3.2) and the Fanning

friction factor as basis:
16

¢N Re, Metzner (PL)

/ (3.10)

where:

_ n 4 [(1=0)? 200—¢) ¢* 1"
¥={1+3n)"(1-9¢) {3n+1 * 2n+1 +n+1} '

Although Hanks did not experimentally validate his formulation, this correlation
has proven to have good approximations for smooth pipes, as indicated by Heywood e Cheng
(1984). They conducted one of the earliest comparative studies about available equations ap-
plied to Herschel-Bulkley fluids to predict the friction factor in both laminar and turbulent
regimes, and the Hanks (1978) correlation was presented as the only available model for the
laminar regime up to 1984. Heywood e Cheng (1984) also emphasized in their study the com-
plexity associated with determining rheological properties of non-Newtonian fluids, highlight-
ing its high sensitivity to the exact composition and homogeneity of the fluid. Additionally,
they suggested employing various friction factor prediction methods for Herschel-Bulkley flu-
ids to establish a range of maximum and minimum values of friction. Subsequently, through
engineering judgment, the most suitable value or range of values could be selected to predict
pressure drop.

Subsequently, Garcia e Steffe (1986) added that Hanks’ analysis represented the
most comprehensive study related to Herschel-Bulkley fluids and then validated the correlation
experimentally with Power Law, Bingham plastic, and Newtonian fluids. Additionally, Garcia
e Steffe (1986) concluded that predicting the friction factor in fluids that display yield stress
using models based on fluids without yield stress carries a considerable risk of error. These
projections may be overestimated or underestimated, depending on the values of the parameters

n, Nge, and He.

3.2.2  Friction-factor correlation of Giizel, Frigaard and Martinez

Based on experiments with Carbopol® 940, Giizel et al. (2009b) proposed a friction
factor correlation for fluids with yield stress flowing in laminar regime. This proposal (Equa-
tion 3.11) considers the ratio of the solid-like plug velocity at the cylinder axis (u.) to the mean

velocity of the fluid (Uy). The Giizel et al. (2009b) correlation expressed in Fanning friction

1 16 ue\ 2
= - X — ], (3.11)
f 4 NRe,Gﬁzel < Ub )

factor terms, is given by:
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where:
u (z+2) (z+3)

G a2 ot (242 (1)

3.2.3 Friction-factor correlation of Swamee and Aggarwal

Subsequently, Swamee e Aggarwal (2011) proposed the Equation 3.12, a theoretical
expression for the friction factor based on the Generalized Reynolds number for Power Law
fluids of Metzner e Reed (1955) (Equations 3.1 and 3.2), specially developed for Herschel-
Bulkley fluids in the laminar regime. This correlation was not experimentally validated by the
author, however, it was presented as an explicit version of the theoretical Hanks (1978) equation,
to avoid the necessity of iterative procedures in its resolution and to optimize computational time

in simulations. The correlation is defined as:

0.958n/(2—n)

1 1 H
f 6 . 6 ¢ . (3.12)
N, N, 2 2.467105
Re, Metzner(PL) Re, Metzner(PL) {36 i ( gi ) ) }

Re, Metzner(PL)

where the Hedstrom number is given by:

(2-n)/n
o D (1 .
k k

3.2.4 Pressure drop equation of Metzner and Reed

Applying the principles detailed in Section 3.1.1 to develop the Generalized Reynolds
number, and relating it with AP from Equation 3.9, Metzner e Reed (1955) proposed Equa-
tion 3.13 to calculate the pressure drop of Newtonian, Bingham plastic, and Power Law fluids

in laminar regime:
_ 32K'8YT

AP Dn+1

(3.13)

3.2.5 Pressure drop equation of Chilton and Stainsby

Chilton e Stainsby (1998) developed a novel approach to calculate pressure drop in
both Newtonian and non-Newtonian fluids, without considering the friction factor and address-
ing flow conditions in the laminar and turbulent regimes. They adopted the Herschel-Bulkley
model to describe fluid rheology, considering it as the most comprehensive approach, since it
can be reduced to other rheological relationships: the Bingham plastic (if 7o > 1 and n = 1),
Power Law (if 7 = 0 and n < 1), and Newtonian (if 70 = 0 and n = 1) models, as also

demonstrated by Slatter (1995).
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Chilton e Stainsby (1998) concluded that their approach (Equation 3.14) provided
consistent solutions of pressure drop within a 15% error margin for both laminar and turbulent
flows for non-Newtonian fluids. This equation was validated by comparison with experimental
data from two other research works, which used viscoplastic fluids such as kaolin slurry and

sewage sludge. Their equation is given by,

AP 4k (8V\" [(3n+1\" 1 1 "
7:5(3) ( 4n ) (1—¢> (1—a¢—b¢2—c¢3> B

1 2n o2n?

il T (i Dn+ 1) et DEn+1)

where:

3.2.6 Pressure drop equation of Chhabra and Richardson

Assuming that the flow of an incompressible fluid through a circular pipe is induced
by a pressure difference, Chhabra e Richardson (2011) proposed a relationship between the
pressure gradient and the shear stress, obtained through a force balance. This relationship,
as defined by Equation 3.15, is valid for both laminar and turbulent regimes and for various
types of fluids, as the development of the equation does not consider mean flow velocity, V/, or

rheological parameters such as n and k, as demonstrated in Appendix A
AP\ D
w=|—-—]— 3.15
n=(-%) 3 a.15

For the specific case of the Herschel-Bulkley model, the value of the force that the
fluid exerts tangentially on the surface of the pipe (i.e., the wall shear stress) is influenced by
the yield stress, 77, and the ratio between the solid plug-like core radius and the pipe radius,
¢ = R, /R, as stated by Equation 3.16:

H H R
¢ Ry

Therefore, substituting Equation 3.16 into Equation 3.15 and solving for AP, it

(3.16)

is obtained Equation 3.17, which provides similar pressure drop predictions to those obtained
by the Chilton e Stainsby (1998) equation. However, Equation 3.17 was derived in a simpler

manner than Equation 3.14:
AP Arf
L  ¢D

The pressure drop predictive capability of all these models, equations, and corre-

(3.17)

lations will be experimentally evaluated in Chapter 5. If the analytical results do not closely
match the experimental data (with a difference of less than +10%), the analysis proposed in

Chapter 4 will be applied to improve their performance.
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4 MATERIALS AND METHODS

This chapter presents the methodology and procedures used during the experimen-
tal tests to investigate the pressure drop during the single-phase flow of viscoplastic fluids inside
pipeline. The subsequent section details the concentration of the fluid components, the prepa-
ration of working fluid, the rheology measurements, the experimental apparatus, the procedure

for the experiments, and the instrumentation used for data collection.

4.1 Working fluid

The fluid model used to replicate the Herschel-Bulkley behavior during experiments
was composed by tap water, Carbopol® 940, and a solution of Triethanolamine.

The water-soluble synthetic polymer Carbopol was developed and trademarked by
Lubrizol Corporation in Wickliffe, OH, USA. It is highly appreciated in the research commu-
nity due to its behavior, which resembles an idealized yield stress fluid. This fluid characteristic
makes it particularly useful for predicting yield stress and viscosity magnitudes. Additionally,
its transparency facilitates flow visualization studies. Beyond its research applications, Car-
bopol rheology modifier is widely used in various industries as a thickening agent, suspension
stabilizer and emulsifier (Curran et al., 2002; Varges et al., 2019).

Carbopol is a crosslinked high molecular weight polyacrylic acid polymers and can
be classified as homopolymers, copolymers and interpolymers (Lubrizol, 2023). Carbopol 940
is presented in the form of a dry white powder with an average particle size of 0.2 micrometers
(Lubrizol, 2007b; Lubrizol, 2022). These particles, composed of coiled acidic molecules, un-
dergo a process of hydration and partial uncoiling upon contact with water. Carbopol solution
has a pH range of 2.5 to 3 (Lubrizol, 2009).

A common procedure to increase the viscosity of the Carbopol solution involves
transforming it into a salt (Lubrizol, 2009). This process is carried out through neutralization
of pH with a common base, such as sodium hydroxide (NaOH), aminomethyl propanol, or
Triethanolamine (TEA) (Iceri ef al., 2023). In this work, the Triethanolamine, which belongs to
the ethanolamine family, was employed. Pure ethanolamines are colorless liquids that dissolve
readily in most polar solvents like water and alcohol, with Triethanolamine being the most polar

among them due to its three hydroxyl radical groups in its structure (Knaak et al., 1997).
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The concentration of Triethanolamine and Carbopol influence the molecular struc-
ture of a fluid in different ways. An increase in the concentration of Triethanolamine while
keeping the concentration of Carbopol constant, results in an increase in bonds between the
carbomer molecules. On the other hand, increasing Carbopol for the same Triethanolamine
concentration increases the number of carbomer molecules per unit of mass, which, in both

cases, leads to an increase in the yield stress (Iceri et al., 2022; Iceri et al., 2023).

4.1.1 Concentrations

The best concentrations of Carbopol and Triethanolamine to prevent the formation
of fungi and achieve a stable and homogeneous solution with gel-like behavior were determined
in the laboratory-scale study (Iceri et al., 2023). The optimal procedure for preparing the so-
lution was also defined in small-scale tests. Subsequently, this small sample was scaled up to
increase the solution volume for testing in a closed flow loop. The detailed concentration of

sample is provided in Table 4.1.

Table 4.1 — Summary of Carbopol and Triethanolamine concentrations.

Components Sample 1
Tap water 800 L
Carbopol 0.15 % (1202 gr)

Triethanolamine 750 ppm (600 gr)

4.1.2 Preparation of the polymer solution

The procedure used to prepare the working fluid was based on the method proposed

by Iceri et al. (2023). The steps are illustrated in Figure 4.1:

Figure 4.1 — Flowchart of the working fluid preparation procedure.

1. Triethanolamine Preparation

|

2. Measurement and Preheating of Water Volume

|

3. Polymer Weighting and Addition in Water

|

’ 4. Triethanolamine Addition ‘

|

’ 5. Bubble Removal ‘
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Triethanolamine preparation:

1.

2.

3.

It was employed a drying and sterilization oven, subjecting its interior to a 2-hour heating

process until a stable temperature of 50°C is attained.
The solid Triethanolamine was positioned within the oven for 24 hours until it liquefies.

Subsequently, the dilution process was performed by blending the liquid Triethanolamine
with ionized water to achieve a mass concentration of 85% Triethanolamine and 15%

water.

Measurement and preheating of water volume:

4.

5.

To prepare the experimental fluid, according to the dimension of the flow loop, it was

determined that a minimum volume of 800 liters of tap water was required.

That specified tap water volume was preheated to 45°C within a reactor to improve con-

ditions for polymer dispersion.

Polymer weighting and addition in water:

6.

10.

The polymer quantity indicated in Table 4.1 was weighted using an analytical balance to

achieve the targeted concentration.

. Then, the Carbopol was added in 100-gram increments into the water in the reactor while

stirring at 15 rpm to prevent lump formation.

. For each batch of 400 grams of Carbopol added to the water volume, stirring was in-

creased to 40 rpm and held for 3 minutes to enhance the dissolution of the component.

. Upon the complete incorporation of the total mass of Carbopol, a consistent stirring rate of

20 rpm for 12 hours was applied, to guarantee complete homogenization of the solution.

In this step is essential to highlight that, despite the hydrophilic nature of Carbopol and
the quick wetting of their particles when individually dispersed, improper incorporation
into the water can lead to the formation of powder aggregates. In this scenario, solvation
occurs on the surface of the powder aggregate, which can form a heterogeneous solution.
This process yields a dispersion with a granular texture, low viscosity and insoluble parti-
cles (Lubrizol, 2007a). Hence, varying the stirring speed during preparation is necessary

to ensure proper homogenization of the solution.
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Triethanolamine addition:

11. The solution of Triethanolamine was carefully added in 50 ml increments, followed by

agitation of the fluid at 20 rpm for 3 minutes after each increment.

12. Upon total inclusion of the Triethanolamine, a stirring speed of 40 rpm was maintained

for 24 hours to guarantee complete solution uniformity and chain stability.

Bubble removal:

13. Finally, a vacuum process of 240 mBar within the reactor was applied for 1 hour.

14. After that, the reactor was kept in vacuum with a stirring of 20 rpm for 12 hours. The aim
was to eliminate the microbubbles that may have been trapped in the solution during the
stirring process in the preparation phase, due to the viscoplastic nature of the fluid. This
procedure is essential to ensure a single-phase flow, as the microbubbles cannot escape
solely due to buoyancy effects because of the fluid’s yield stress. Once the process is
completed, a fluid sample was collected to perform rheological characterization to verify

if the desired parameters were achieved.

4.1.3 Rheological measurements

Multiple samples were collected from the reactor after the preparation procedure
and from the flow line before changing the flow rate during the experimental test. The rheolog-
ical parameters were evaluated at 25°C using a Thermo Scientific Haake Mars III rheometer,
employing serrated parallel plates (Figure 4.2) to prevent slippage when measuring the flow
curve tests.

The parallel plates have a diameter of 35 mm, and a gap of 1 mm was used in the
rheological tests.

The rheological parameters were determined using the flow curve method, working
with a shear stress range of 0.1Pa < 7 < 100Pa. Data were measured after 15 seconds to

achieve steady-state at each shear stress point, and 100 points were obtained during the test.
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Figure 4.2 — Serrated parallel plates of Thermo Scientific Haake Mars III rheometer (Created
by the author).

4.2 Experimental apparatus

The experiments were conducted at the experimental apparatus of the Petroleum Ex-
perimental Laboratory (LabPetro) at the Center for Energy and Petroleum Studies (CEPETRO)
at the Universidade Estadual de Campinas (UNICAMP).

A schematic diagram of the flow loop facility used in the experiments is illustrated
in Figure 4.3, while Figures 4.4 and 4.5 provide photographs of the flow loop circuit, and Fig-
ure 4.6 shows the visualization section. Detailed technical specifications of the flow loop com-
ponents and measurement instruments can be found in Sections 4.2.1 and 4.2.2, respectively.

In the flow loop circuit configuration, the progressive cavity pump 1 carries the
Carbopol solution from the reactor to Tank 1. Progressive cavity pump 2, situated at the bottom
of Tank 1, provides the necessary energy to displace the fluid through the flow loop. Right
away, the flow passes through the shell and tube heat exchanger to adjust the fluid temperature
according to the parameters set for the water temperature in the control system (chiller and
thermoregulator) to maintain the fluid at the test section at 25 °C. Subsequently, a Coriolis-
type flow meter sensor installed in the flow line measures the mass flow rate (r;) data. After
a flow development length of 20 m, the test section is positioned and over it, the pressure
drop (AP) sensor is allocated with a 2.4 m distance. Additionally, absolute pressure (P) and
temperature (7) data at the inlet (1) and outlet (2) of the test section have been acquired. Upon
completing its passage through the test section, the fluid returns to a set of three valves that can

direct the flow to different tanks: a) to reservoir Tank 1 to maintain a closed flow loop, b) to the
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reactor in case to eliminate microbubbles trapped in the fluid and, alternatively, c) the fluid can

be directed to Tank 2 to discard the volume if fluid degradation is detected.

Figure 4.3 — Schematic diagram of the flow loop facility used in the experiments (Created by

the author).
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Figure 4.4 — Photograph of the experimental apparatus with emphasis on equipments in the con-
tainment basin (Created by the author).
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Figure 4.5 — Photograph of the experimental apparatus with emphasis on flow line (Created by
the author).
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In the visualization section of the test section, a high-speed camera was positioned
to assess the presence of bubbles in the fluid. If bubbles are detected, the procedure for elimi-

nating bubbles from the fluid through heating, vacuum, and agitation was initiated.

Figure 4.6 — Photograph of visualization section placed in the test section (Created by the au-
thor).




4.2.1

Flow loop components

A detailed description of experimental equipments can be found in Table 4.2:

Table 4.2 — Description of the experimental apparatus equipment.
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TMR-M-18-380/C

Component Manufacturer/Model | Quantity Characteristics
Steel Pive i i Standard galvanized, internal diameter
p = 0.05386 m, roughness = 0.00006 m
Reactor Metalquim 1 Maximum capacity of 1000 L
oy Polypropylene material, maximum
Tank Vortice Tech 2 capacity of 3000 L
Busch Mink MM
Vacuum Pump 1950 AV 1 vaccum pressure range 210-240 mBar
. . Displacement pump, maximum flow
Progressive Cavity Netzsch 2 rate 5.2 (m?/h), pressure 10 bar, power
Pump 1 & 3 NMO053BY02S 14V ' b P
4.2 cv.

. . Displacement pump, flow rate range
Progressive Cavity Netzsch 1 0.35 - 9 (m3/h), pressure 10 bar, power
Pump 2 NMO063BY02S 14V ' P P

7.2 cv.
SEW Eurodrive FF57 Power supply 220 - 440 V, f = 60 Hz,
Pump motor 1 & 3 DRN112MP4 2 rotation speed 215 - 1764 rpm.
Pump motor 2 SEW Eurodrive FF77 1 Power supply 220 - 440 V, f = 60 Hz,
p DRN132MP4 rotation speed 190 - 1771 rpm.
Frequency inverter Variable Speed Drive, power range
au Puzl v WEG CEW500 1 0.25 - 175 cv, output current 1.0 - 211
P A, 200 t0 240 V.
Relief Security .
Valve - 1 Opening pressure 4 bar
Pneumatic Globe Fisher Design GX 1
Valve
Heat Exchanger Fyterm 1 Shell tube, heat exchange area 1.4 m?
Chiller Mecalor 1 Power supply 380V, f=60Hz, Work
MSA-30-RI-380 Temperature 5 - 25°C
Thermoregulator Mecalor | Power supply 380V, f=60Hz, Work

Temperature 10 - 90°C

4.2.2 Measurement Instruments

As detailed in Table 4.3, four variables are measured during the experiments: liquid

mass flow rate, temperature, absolute and differential pressure.
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Table 4.3 — Description of the measurement Instruments.

Manufacturer /

Variable | Equipment Model Uncertainties Characteristics
. Emerson Coriolis Type, Temperature
Ty Iggdel\g?:: MicroMotion | O17% silazsomte -100 to 150 °C, Out 4-20mA,
R200S4 4 0-87100 ke/h
Differential Emerson 0.1% of span . .
AP Pressure Rosemount (equivalent to 60 Differential pressure gauge,
Sensor 3051CD Pa) Out 4-20 mA, 0-62000 Pa
Temperature Thermoresistive sensor, PT100
T p Sensym TR106 +0.1°Cat25°C type, Resistance tolerance of

Sensor 1/10 DIN, 0-100 °C

A Coriolis-type sensor installed in the flow line measures the mass flow rate (7;)
data. Equation 4.1 allows the calculation of the average flow velocity (V) for a single-phase
flow based on these mass flow data. The Carbopol solution density was assumed to be equal to
that of water (998 kg/m?) since the quantities of the components only represent 0.22 % of the
total mass.

m
V= m. 4.1

The cross-sectional area (A) of the pipe was determined by the internal diameter of
the pipe using a Vernier caliper. The internal diameter (D) is equal to 0.05386 + 0.19 x 10~3 m.
Due to the uncertainty associated with the diameter, the velocity has a propagated uncertainty
of 4+ 0.71% relative to the measured value.

During the experiment, the data collected by the sensors are displayed in real time
through the graphical user interface (Figure 4.7) of a monitoring program developed in LabVIEW®
2016. The program is integrated with an instrumentation panel composed of two input modules
and two output modules connected to a National Instruments NI cDAQ-9189 chassis.

The Coriolis and pressure sensors information are sent to the current input module
NI-9203, while the data from the PT100 temperature sensors is received through the input
module NI-9217. Furthermore, the program enables remote control of the equipment through
the output modules. The rotation of the pump motor is linked to both current actuator control

module NI-9266 and a frequency inverter WEG CFW500. Further details of each module are
available in Table 4.4.



Figure 4.7 — LabVIEW® graphical user interface.
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Table 4.4 — Description of the instrumentation panel components.
Device Manufacturer / Model Characteristics

Chassis for signal
acquisition modules

National Instruments NI
cDAQ-9189

8-Slot, Ethernet chassis, Data transfer
between I/0 modules

Current Input module

National Instruments
NI-9203

8-Channel, Receives signal from Coriolis
(ry) and pressure sensors (AP), Input
range 4-20 mA

Temperature Input
module

National Instruments
NI-9217

4-Channel, Resistance Temperature
Detector (RTD), Signal range 100 Ohm

Voltage Output module

National Instruments
NI-9263

4-Channel, Output voltage signal controls
the frequency inverter of the pump,
Voltage Output range + 10 V

Current Output module

National Instruments
NI-9266

4-Channel, Output current signal for
control of the pneumatic globe valve,

Current Output range 4-20 mA.

4.3 Methods

To analyze the results, the following 12-step workflow depicted in Figure 4.8 has

been developed to examine the data collection, evaluate the Reynolds number models, friction

factor correlations and determine if there is any suitable combination to more accurately predict

pressure drop.



Figure 4.8 — Data analysis workflow (Created by the author).
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4.3.1 Data analysis workflow

Blue steps
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1. During the experimental tests, pressure drop (APe,) and flow mean velocity (V) are

measured. Subsequently, following the procedure from Section 4.1.3, the flow curve of

the working fluid is measured in the laboratory. Through curve fitting, the values of

the rheological parameters Power Law index (n), consistency index (k), and constant

viscosity for a high range of shear rates (7,) were obtained.

2. Calculate the experimental friction factor ( fex) using the data from step 1 and Fanning’s

equation (Equation 3.9) to perform a comparative analysis with the analytical friction

factors to be calculated in step 6.

Red steps

3. Plot trend curves for each Reynolds number (/Ng.) model as a function of mean flow

velocity (V') using the data from step 1 and Equations 3.1, 3.4, 3.5 and 3.6. Then, select

the friction factor correlations according to the flow regime identified by each Reynolds

number.
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Calculate the predicted pressure drop (A P,) using Equation 3.9 and taking into account
the different correlations for the friction factor ( f.), together with their respective recom-

mended Reynolds number models.

. Do the predicted pressure drop (AP,) values from step 4 match the experimental mea-

sured pressure drop values (APF,,)? If the values are close or coincide, the analysis is

concluded; otherwise, proceed to the next step.

In order to verify if it is possible to improve the results, it is proposed to calculate new
values for the friction factor ( f.) using all possible combinations between friction factor
correlations and Reynolds number models that were not recommended by the own studies.

This will be done by combinatorial analysis.

Plot in a single figure the experimental friction factor ( fey,) calculated in step 2 and the
new predicted friction factor (f.) values calculated in step 6, to observe whether any new
combination of friction factor and Reynolds number is closer to the experimental values

than the friction factor values obtained in step 4.

. Do the new results from step 6 and 7 show an improvement in the friction factor predic-

tion?

. If the answer is negative, it can be interpreted that, for the laminar regime, the value of

the predicted friction factor will not vary significantly regardless of the chosen Reynolds
number model. Therefore, the difference between the friction factors calculated with two

different Reynolds number models will be insignificant.

Green steps

10.

1.

12.

If the answer to the question in step 8 is yes and there is an improvement in the results,
the new predicted pressure drop (A P,) will be calculated using the best combination of

friction factor correlation and Reynolds number model.

Plot in a single figure the measured pressure drop (A P.y,) and the new predicted pressure

drop (AP,), calculated in step 10, as a function of mean flow velocity (V).

Finally, to obtain the statistical analysis, the measured pressure drop (AF.y,) is plotted

versus the new predicted pressure drop (A P,) from step 10.
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4.4 Performance metrics

The accuracy of the calculated data relative to the experimental data was assessed
using the Mean Absolute Error (MAE). This widely recognized metric offers a simple and
efficient measure of the average magnitude of error. As the MAE decreases, it reflects a greater
accuracy of the employed method (Ostertagova; Ostertag, 2012). The formula to calculate MAE

is expressed as:
1 m
MAFE = — i — Ui 4.2
p- ;:1 lyi — il (4.2)

where y; is the measured or true data, ¢; is the predicted data and m is the number of fitted
points.

To represent the average absolute percentage deviation of the forecasts in relation
to the observed values, the Mean Absolute Percentage Error (MAPE) was calculated, which is
based on the relative error. A low MAPE indicates that the predicted values are close to the ref-
erence values, demonstrating greater accuracy in the predictions made (Ostertagova; Ostertag,

2012). The formula for calculating the MAPE is expressed as:

m

MAPE = - Z

m <
=1

Yi — Ui

Yi

x 100%. (4.3)
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S RESULTS AND DISCUSSIONS

The results will be presented in this chapter and are structured in the following
subsections: (a) experimental data measured in single-phase flow and laminar regime within a
circular cross-sectional flow loop using a Herschel-Bulkley fluid. (b) The combinatorial anal-
ysis, described in Section 4.3.1, developed using the different friction factor correlations and
Reynolds number models. This analysis evaluated how the various friction factor-Reynolds
number combinations behave about the experimental data to identify the best options for pre-
dicting the pressure drop. Finally, (c) contrasting the best friction factor-Reynolds number
combinations from prior analysis with data from literature provided additional validation of the
accuracy and applicability of the chosen models.

The analysis of the results are discussed following the flowchart presented in Fig-

ure 4.8 and described in Section 4.3.

5.1 Experimental data

The validation of the differential pressure sensor was conducted with single-phase
tests using water before starting the experimental test with the non-Newtonian fluid. Further
details are provided in Appendix C.

In the experimental test with the Herschel-Bulkley fluid, various fluid samples were
collected to analyze mechanical degradation. The first sample was taken at the beginning from
the reactor to be used as a reference. Subsequently, a sample was collected for each rotation,
corresponding to each experimental point.

The rheological data of the fluid samples were determined using a rheometer via
the flow curve test (Figure 5.1). This methodology provides a shear stress (7,,) versus shear
rate (7,,) curve. By applying curve fitting, the yield stress (7{7) and consistency index (k) were
calculated, with the Power Law index (n) being 0.5, as indicated in the study by Caggioni et al.
(2020).

The measured rheological parameters of the collected samples indicated minimal
variation in the fluid’s properties throughout the experimental test. Table 5.1 presents the mean

value and standard deviation for the rheological parameters:
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Table 5.1 — Rheological parameters of the working fluid.

T({{ (Pa) n (=) k (Pa.s™) Moo (Pa.s) p (kg/m?)
7.67+1.6 0.5 1.83 £0.21 0.001 998

Figure 5.1 — Flow curve for 0.15 wt% Carbopol and 800 ppm of Triethanolamine.
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As the experiment progressed, the rheological properties were monitored for each
pump rotation, and when the rheological parameters of the fluid dropped below the initial ref-
erence sample minus its standard deviation, the test was concluded. Due to the rheological
degradation of the working fluid, a reduced number of experimental points were collected dur-
ing the test to maintain the quality of results.

The single-phase flow test was conducted by controlling the pump rotation, result-
ing in measurements of mass flow rate (72;), pressure drop (AP, ), and fluid temperature (73,
and 75,,) measured at the inlet and outlet of the test section. Furthermore, the temperature was
kept stabilized at ~ 25 °C in the course of testing to minimize its influence on the rheological
properties, ensuring they remain stable within the standard deviation and unaffected.

The collected data is detailed in Table 5.2. Additionally, the mean flow velocity V),
calculated from the mass flow rate using Equation 4.1 is also provided. The relationship between
pressure drop and mean flow velocity from Table 5.2 is plotted in Figure 5.2. As expected, the
measured pressure drop increased proportionally with the square of the mean flow velocity
(AP o V?), as expressed by Equation 3.9. And, in the special case of a Herschel-Bulkley fluid,

it was also anticipated that the slope of the pressure drop curve might be different and would
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decrease as the velocity increased, due to the shear-thinning nature of this type of fluid.

Thus, considering the theoretical foundations, the most remarkable aspect of Fig-
ure 5.2 is that the measured data show an apparent linear trend (blue dotted line) between the
pressure drop and the velocity. The apparent linear trend could be justified because the measured
experimental data fell within a low-velocity range, which does not clearly allow to distinguish

this phenomenon of decreasing slope of the pressure drop curve.

Table 5.2 — Experimental measurements.

APexp (Pa) 1y (Kg/h) V (m/s) Tin (°C) Tout (°C)
2353 530.5 0.0648 24.9 25.1
2387 671.4 0.0820 24.8 24.9
2535 1026.6 0.1254 24.4 24.6
2669 1382.5 0.1689 25.3 25.3
2770 1747.8 0.2135 25.5 25.4
2947 2097.2 0.2562 25.1 25.2

Figure 5.2 — Experimental pressure drop versus mean velocity. Error bars indicate the accuracy
of the sensor (60 Pa).
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5.1.1 Experimental friction factor

The experimental friction factor (fexp) Was calculated using the data measured dur-

ing the test (A P.yp, p, and V) and the dimensions of the test section (D and L) by the Fanning



59

equation (Equation 3.9). This experimental values served as a reference for comparison with
the analytical friction factors values calculated with different correlations, which will be pre-
sented in the subsequent steps. The results were plotted as a function of the Reynolds number

of Metzner and Reed for Power Law fluids, as illustrated in Figure 5.3 and detailed in Table 5.3.

Figure 5.3 — Variation of experimental friction factor respect the Reynolds number for Power
Law fluids of Metzner e Reed (1955).
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Table 5.3 — Experimental Fanning friction factor calculation.

APep (Pa) | p (Kg/m?) V (m/s) D (m) L (m) Jexp ()
2353 998 0.0648 0.0539 24 6.2984
2387 998 0.0820 0.0539 24 3.9893
2535 998 0.1254 0.0539 24 1.8121
2669 998 0.1689 0.0539 24 1.0521
2770 998 0.2135 0.0539 24 0.6833
2947 998 0.2562 0.0539 24 0.5049

As previously mentioned, the pressure drop in a flow system is proportional to the
flow velocity, but inversely proportional to the friction factor. In the laminar flow of a non-
Newtonian fluid, the friction factor also varies inversely with the Reynolds number, which de-
pends on velocity. Given that velocity is the primary factor affecting the friction factor and the
pressure drop, the observed decreasing in friction factor with flow velocity during the experi-
ment aligns well with theoretical predictions. This confirms that the experimental friction factor

behaved as expected.
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5.1.2 Calculation of the Reynolds number models

The behavior of the Reynolds numbers, calculated for the experimental conditions
studied using the models described in Section 3.1, resulted in different values for the same mean

flow velocity (V), as demonstrated in Table 5.4.

Table 5.4 — Reynolds number for each mean flow velocity using different models developed for
Herschel-Bulkley and Power Law fluids.

V (s | VR etmertety | SReMmer®) | Ny e )| Vet )| Vi Madtener
0.0648 5.3 1.2 2.5 0.9 2.2
0.0820 7.5 1.8 3.8 1.4 3.3
0.1254 14.2 34 8.1 3.1 6.9
0.1689 22.2 5.3 13.5 54 11.7
0.2135 31.6 7.5 20.3 8.3 17.5
0.2562 41.5 9.8 27.6 11.6 239

The values presented in Table 5.4 are plotted in Figure 5.4, and it is observed that
the outcomes obtained with the Giizel et al. (2009b) model (NgeGizel) are significantly lower
compared to those obtained using the Reynolds number for Power Law fluids of Metzner e
Reed (1955) (IVge, Metzner (pL)), but very similar to those calculated with the Reynolds number
for Bingham fluids of Metzner (1957) (/Vre, Metner 8))- The relationship of inertial and viscous
forces proposed by Slatter (1995) (Nge siater) and Madlener et al. (2009) (NgeMadiener) Yielded
intermediate values.

Figure 5.4 — Reynolds numbers for the working fluid with p = 998 kg/m?3, 71 = 7.67 Pa,
n = 0.5and k = 1.83 Pa.s".
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The differences between the trend curves of the various Reynolds number models
presented in Figure 5.4 may be attributed to the consideration of yield stress in their calcula-
tions. The Reynolds numbers introduced by Metzner (1957), Slatter (1995), Madlener et al.
(2009), and Giizel et al. (2009b) incorporate yield stress either implicitly or explicitly, whereas
the Reynolds number for Power Law (PL) fluids of Metzner e Reed (1955) does not. This
distinction likely accounts for the observed variations among the models.

To plot the influence of yield stress on the Reynolds number, two hypothetical cases
were considered as depicted in Figure 5.5. From these two cases, it can be concluded that a
higher yield stress value is associated with a lower Reynolds number when applied the Metzner
(B), Slatter, Madlener and Giizel model, due to the yield stress variable is in the denominator. It
is important to reiterate that this conclusion does not apply to the Reynolds number of Metzner
and Reed (PL), as it remained unchanged in both hypothetical cases because this model does

not consider yield stress in its calculation, a defining characteristic of viscoplastic fluids.

Figure 5.5 — Influence of yield stress (7') on the Reynolds number.
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As a final analysis of this section, it is important to highlight the significance of
observing the trend curves of the different Reynolds number models, as the choice of friction
factor correlation to use depends on the Reynolds number value, and it could be critical in
cases where the flow velocity range approaches the transition region. In such cases, one model
might identify the flow regime as completely laminar, while another might define it as turbulent.
Matoba er al. (2023) quantified the significant influence of the Reynolds number in estimating

the friction factor, which has an impact of 25.52 %.
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5.1.3 Prediction of pressure drop using recommended friction factor-Reynolds number com-

binations from literature

In this step, the analytical pressure drops were initially computed using the friction
factor correlations of Hanks (1978), Giizel et al. (2009b), and Swamee e Aggarwal (2011) with
the Reynolds numbers recommended by each author (see description of each correlation in
Section 3.2) in order to assess their predictive capability. Results are plotted in Figure 5.6:
Figure 5.6 — Comparison of analytical pressure drop calculated using Hanks, Swamee, and

Giizel correlations with their recommended Reynolds numbers. Error bars indi-
cate the accuracy of the sensor (60 Pa).
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The models did not accurately reflect the experimental data in terms of velocity.
However, the behavior of the models and the data is consistent. The trend of increasing pressure
drop with increasing velocity, while decreasing slope of the pressure drop curve, is observed in

all correlations and is consistent with the shear-thinning behavior of Herschel-Bulkley fluids.

5.1.4 Performance metrics of analytical pressure drop

The three correlations and their respective Reynolds numbers collectively overes-
timated the predicted pressure drop by ~ 27.4% compared to the experimental values, as pre-
sented in Table 5.5. Therefore, in the next steps, a combinatorial analysis of friction factor
correlations and Reynolds number models was carried out in an attempt to approximate the

analytical results to the experimental pressure drops.
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Table 5.5 — Evaluation of Mean Absolute Error (MAE) and Mean Absolute Percentage Error
(MAPE) for Friction factor and its recommended Reynolds number models com-
pared to experimental data.

Combination used to calculate AP, MAE MAPE

Friction factor of Hanks + Reynolds number of Metzner and Reed (PL) 729 Pa 27.49%

Friction factor of Swamee + Reynolds number of Metzner and Reed (PL) 722 Pa 27.20%

Friction factor of Giizel + Reynolds number of Giizel 729 Pa 27.49%

5.2 Combinatorial analysis and comparative evaluation of predicted results with exper-

imental data

Considering that the five models for the Reynolds number gave different results (as
observed in Figure 5.4 and discussed in Section 5.1.2), their effects on the friction factor calcu-
lation were evaluated, even if they are not recommended by the authors. Hence, friction factor
correlations were computed for each Reynolds number model to determine the best possible
friction factor-Reynolds number combination. In addition, the Fanning friction factor for New-
tonian fluids (Equation 3.8) was considered as another relevant parameter in the combinations.

Then, the pressure drops estimated with the friction factor-Reynolds number com-
binations were compared with the results of the friction factor-independent pressure drop equa-
tions, formulated by Metzner e Reed (1955) (Equation 3.13) and Chhabra e Richardson (2011)
(Equation 3.17), following the chart indicated in Figure 5.7.

The outcomes of the new friction factor-Reynolds number combinations suggested
in Figure 5.7 are shown in Figure 5.8. The mean percentage deviations (MAPE) between the

calculated results using the combinations and the experimental data is provided in Table 5.5.
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Figure 5.7 — Schematic of pressure drop calculation combining the friction factor correlations
with each possible Reynolds number model.

Friction factor Reynolds number Pressure drop
Correlations Models Calculation
Metzner and Reed (1955) —— AP 1
Metzner (1957) e AP 2
[ Hanks (1978) Slatter (1995) —— AP 3
Giizel et al. (2009) —— AP 4
Madlener et al. (2009) e AP 5
Metzner and Reed (19553) S AP_6
Metzner (1957) — AP 7
[ Gtizel et al. (2009) Slatter (1995) — AP 8
Giizel et al. (2009) E— AP 9
Madlener et al. (2009) —— AP_10
Metzner and Reed (1955) E— AP 11
Metzner (1957) E— AP 12
[ Swamee et al. (2011) Slatter (1995) —  AP_13
Giizel et al. (2009) — AP_I4
Madlener et al. (2009) - AP 15
Metzner and Reed (1955) - AP_16
Metzner (1957) - AP 17
[ Fanning friction factor Slatter (1995) - AP_I8
Giizel et al. (2009) — AP_19
Madlener et al. (2009) —— AP 20

Pressure drop calculation with friction factor independent equations

Metzner and Reed (1955) —  AP2I
Chhabra and Richardson (2011) —— AP 22
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Figure 5.8 — Comparison of friction factor values computed with different correlations for a
consistent Reynolds Number.
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5.2.1 Analysis of friction factor and Reynolds numbers combinations

Results in Table 5.6 made it evident that, neither Hanks and Giizel model nor
the Swamee model demonstrated any improvements in their results by employing different
Reynolds number. However, the correlation of the friction factor for the laminar flow regime of
Newtonian fluids along with the Reynolds number of Slatter yields more approximate results

compared to the experimental data, with a MAPE of 9.71%.

Table 5.6 — Evaluation of Mean Absolute Percentage Error (MAPE) for Friction factor-
Reynolds number combinations compared to experimental data.

Reynolds number model Friction factor correlation

Hanks Swamee Guzel | Newtonian
Metzner and Reed (PL) 27.49 % 27.20 % | 70.77 % 36.27 %
Metzner (B) 28.60 % 169.86 %
Slatter 122.67 % | 145.05 % @ 49.99 % 9.71 %
Guzel 27.49 % 180.50 %
Madlener 15872 % | 19248 % @ 41.92 % 27.43 %

In the case of the Hanks and Swamee correlations, one could hypothesize that their
best performance with the Metzner and Reed (PL) Reynolds number, which has the most exten-
sive range of values as seen in Figure 5.4, suggests that using another Reynolds number with a
more restricted range of values would result in overestimated friction factors. This is due to the
inverse relationship between the Reynolds number and the friction factor. Moreover, findings
showed that the friction factor correlations of Hanks and Swamee are quite comparable to each
other, as long as the same Reynolds number model is used in both correlations. This is because
the Swamee correlation is essentially an explicit approximation of the Hanks correlation, with
the only difference being that the Swamee correlation is not affected by the ¢ value (determined
by iterative methods applying Equation 2.18), unlike the Hanks correlation.

For the Giizel correlation, an opposite effect to that of the Hanks and Swamee cor-
relations is observed. Its best performance is achieved with Reynolds numbers that provide a
more limited range of values, such as the Reynolds number for Bingham (B) fluids of Metzner
or Giizel’s own Reynolds number.

According to Table 5.6, the combinations with the lowest percentage deviation with

respect to the experimental friction factor were:

* Friction factor for laminar flow regime of Newtonian fluids + Reynolds number of Slatter

(MAPE = 9.71%).
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* Friction factor of Swamee + Reynolds number of Metzner and Reed (PL) (MAPE = 27.20%).

* Friction factor for laminar flow of Newtonian fluids + Reynolds number of Madlener

(MAPE = 27.43%).
* Friction factor of Hanks + Reynolds number of Metzner and Reed (PL) (MAPE = 27.49%).
* Friction factor of Giizel + Reynolds number of Giizel (MAPE = 27.49%).

* Friction factor of Giizel + Reynolds number of Metzner (B) (MAPE = 28.60%).

5.2.2 Calculation of pressure drop using the best combinations of friction factor and Reynolds

number

Figure 5.9 presents the predicted pressure drop results calculated using the Fanning
equation (Equation 3.9) with the best friction factor-Reynolds numbers combinations observed
in Figure 5.8, and detailed in Table 5.6. The results were compared with the calculated pressure
drops using equations that do not depend on the friction factor, as given by Equation 3.13 from
Metzner e Reed (1955) and Equation 3.17 from Chhabra e Richardson (2011), as well as with

the experimental pressure drop.

Figure 5.9 — Comparison of pressure drop trends calculated with the best friction factor and
Reynolds number combinations from the results shown in Figure 5.8.
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The pressure drop trends using the best friction factor-Reynolds number combina-

tions show visual coherence with the friction factor behavior observed in Figure 5.8.
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For pressure drops calculated by combining the Giizel correlation with the Giizel
Reynolds number, as well as the pressure drop calculated by combining the correlations of
Hanks and Swamee, with the Reynolds number of Metzner and Reed (PL), yielded consistent
results with the Chhabra and Richardson pressure drop equation.

On the other hand, although Table 5.6 showed that the combination of the Giizel
correlation with the Reynolds number of Metzner (B) had a similar MAPE to the combination
of the Giizel correlation with the Reynolds number of Giizel, the pressure drops calculated
with Giizel-Metzner (B) combination showed a marked tendency to overestimate the values

compared to the pressure drops calculated with Giizel-Giizel combination.

5.2.3 Statistical analysis of the pressure drop results from combinatorial analysis

The pressure drop calculations using the Fanning equation with the friction fac-
tor correlation for Newtonian fluids and the Reynolds number of Slatter exhibited lower errors
compared to experimental pressure drops, yielding an average error magnitude of 264 Pa, as
indicated in Table 5.7. This combination gave even better results than those obtained using the
friction factor correlations (Hanks, Swamee, and Giizel) or pressure drop equations (Chhabra
and Richardson) explicitly developed for viscoplastic fluids and satisfactorily captured the vari-

ation of the pressure drop curve, as illustrated in Figure 5.9.

Table 5.7 — Evaluation of Mean Absolute Error in predicted pressure drop.

Pressure Drop Equations
from Fanning equation [Pa]
Reynolds Numbers Models | Metzner and Reed (PL) [Pa] | Chhabra [Pa] Hanks | Swamee | Giizel | Newtonian
- 926 729 - - - -
Metzner and Reed (PL) - - 729 722 1835 926
Metzner (B) - - 11536 15602 786 4520
Slatter - - 3167 3733 1295 264
Giizel - - 12197 16860 729 4706
Madlener - - 4101 4957 1083 727

It is also worth mentioning that the similarity in the results obtained when calculat-
ing the pressure drop using the correlation for laminar flow of Newtonian fluids (Equation 3.8)
along with the Reynolds number of Metzner and Reed for Power Law fluids (Equation 3.1 and
3.2), and those calculated with the pressure drop equation of Metzner and Reed (PL) (Equa-
tions 3.13 and 3.2) may not be entirely unexpected. It is crucial to remember that Metzner e
Reed (1955) incorporated the correlation for laminar flow of Newtonian fluids in developing
the Generalized Reynolds number (Equation 3.1), from which they derived their pressure drop

equation for laminar regime.
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Analyzing the mean absolute errors in percentage terms, as stated in Table 5.8,

reveals that the predicted pressure drop values using the friction factor correlation for Newtonian

fluids with the Reynolds number of Slatter exhibit a 9.71 % deviation from the measured data.

Table 5.8 — Evaluation of Mean Absolute Percentage Error in predicted pressure drop.

Pressure Drop Equations
from Fanning equation [Pa]
Reynolds Numbers Models | Metzner and Reed [Pa] | Chhabra [Pa] Hanks Swamee | Giizel | Newtonian
- 36.27 % 27.49 % - - - -

Metzner and Reed (PL) - - 2749 % | 2720% | 70.77 % | 36.27 %
Metzner (B) - - 440.43 % | 597.21 % | 28.60 % | 169.86 %

Slatter - - 122.67 % | 145.05 % | 49.99 % 9.71 %
Giizel - - 47318 % | 657.28 % | 27.49 % | 180.50 %

Madlener - - 15872 % | 192.48 % | 41.92 % | 27.43 %

Moreover, 50 % of the predicted values fall within a +10 % tolerance of the ex-

perimental data (Figure 5.10a). However, when considering a +30 % tolerance, 100 % of the

predicted data falls within the range (Figure 5.10b). On the other hand, when the same corre-

lation for Newtonian fluids is combined with the Reynolds number of Madlener, it presents a

mean deviation of 27.43 % in relation to the experimental pressure drop.

Figure 5.10 — Pressure drop comparison: Measured values vs Predicted values.
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About the pressure drop equation developed for viscoplastic fluids by Chhabra and

Richardson, no predicted values were observed to agree with a tolerance of +10 %, yet 100 %

of the results fall inside the +30 % tolerance.

The results obtained with the Metzner and Reed (PL) equation also did not show

predicted values within the tolerance range of +10 %. However, 30 % of the values fall within
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the £30 % tolerance threshold.

Lastly, when using the Fanning equation with the correlations of Hanks and Swamee,
as well as the correlation for laminar flow of Newtonian fluids combined with the Reynolds
number of Giizel, the predictions for pressure drops are less accurate.

In summary, after observing the trend curves of pressure drops, MAE and MAPE,

the best pressure drop forecasts were obtained with the following combinations:

* Friction factor for laminar flow regime of Newtonian fluids + Reynolds number of Slatter

(MAPE =9.71%).
* Friction factor of Swamee + Reynolds number of Metzner and Reed (PL) (MAPE = 27.20%).

* Friction factor for laminar flow of Newtonian fluids + Reynolds number of Madlener

(MAPE = 27.43%).

Friction factor of Hanks + Reynolds number of Metzner and Reed (PL) (MAPE = 27.49%).

Friction factor of Giizel + Reynolds number of Giizel (MAPE = 27.49%).

Pressure drop equation of Chhabra and Richardson (MAPE = 27.49%).

Pressure drop equation of Metzner and Reed (PL) (MAPE = 36.27%).

The pressure drop calculated using the combination of the Giizel correlation and the
Reynolds number of Metzner (B), despite presenting a MAPE of 28.60%, was not considered
a good approximation because of the calculated pressure drop curve has a steeper slope than
the experimental one, as observed in Figure 5.9. In other words, the trend of the model curve
and the experimental data do not exhibit the same behavior. This discrepancy demonstrated a
tendency to further overestimate the pressure drop values at velocities higher than those used in

the experiment of this study.

5.3 Comparison of combinatorial analyzes with literature data

Comparison was carried out using experimental data collected by other researchers
in similar studies. The objective was to evaluate the combinations of friction factor correlations
and Reynolds number models that provided the closest predictions respect the experimental

pressure drops of this study, as summarized in Section 5.2.3.
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According to the information provided in Tables 5.7 and 5.8, it was observed that

the following combinations showed remarkably similar results among themselves:

* Friction factor of Swamee + Reynolds number of Metzner and Reed (PL).

Friction factor for laminar flow of Newtonian fluids + Reynolds number of Madlener.

Friction factor of Hanks + Reynolds number of Metzner and Reed (PL).

Friction factor of Giizel + Reynolds number of Giizel.

Pressure drop equation of Chhabra and Richardson.

Therefore, among these options, the Giizel combination, developed based on Carbopol experi-
ments, was selected for comparison with literature data.

Additionally, the combinations with the best results, i.e., the friction factor for lam-
inar flow of Newtonian fluids along with Reynolds number of Slatter, and the pressure drop
equation for Power Law fluids of Metzner and Reed, both developed analytically, were in-

cluded.

5.3.1 Fluids reported in the literature

Eight Herschel-Bulkley fluids composed of Carbopol 940 and 980 were selected for

this comparison.

* Fluids 1 to 4 were sourced from the work of Giizel et al. (2009a). The experiments were
conducted in a flow loop with an internal diameter of 0.0508 m and a test section of 10 m.
The rheological characterization was performed at the same temperature as the samples

taken during the experimental tests, ranging from 29 to 35 °C.

* Fluid 5 comes from the research of Magnon e Cayeux (2021). The experimental setup
consisted of a glass tube with an internal diameter of 0.0155 m and a test section of

4.83 m. The experimental tests were conducted at an average temperature of 27.9 °C.

* Fluids 6 to 8 were taken from the Abou-Kassem et al. (2023) study. The pressure drop
was measured in a borosilicate glass flow line with an internal diameter of 0.095 m, a

length of 3.08 m, and a stabilized flow loop temperature of 30 °C.

The rheological properties for fluids 1 to 8 measured by the authors of each study

are listed in Table 5.9:
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5.3.2 Experimental data of Giizel, Frigaard and Martinez - Fluids 1 to 4

Using the experimental data of Giizel, and contrasting it with the analysis of the
information generated for this study (Section 5.2), the friction factor correlation of Giizel along
with the Reynolds number proposed by the same author (hereinafter referred to as: Combi-
nation 1) provided the closest pressure drop predictions to the measured pressure drops for
fluids 1 to 4 (Figure 5.11). A 10% error bar was added to the experimental points in the figures

to facilitate visual comparison between the analytical and experimental data sets.

Figure 5.11 — Pressure drop predictions for fluids 1 to 4 from Giizel et al. (2009a) experimental

data set.
80000 T T T T 25000 7 7 T
Experimental (with £10% error bar) Experimental (with £10% error bar)
700004 T Giizel-Giizel ---- Giizel-Giizel
—-— Laminar-Slatter —-— Laminar-Slatter
—— Metzner PL 20000 1 —— Metzner PL T
60000 -
E 50000 E
y I o 15000
) Pt o
= - =
S 40000 =T 1 ©
g e =
z L1 5
] Al == w 10000
S 30000 S =4
- T o
/’ ./'
e
20000 I, s
/ 5000
10000
0 0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0
Velocity [m/s] Velocity [m/s]
(a) Fluid 1 (b) Fluid 2
40000 T T T T 12000 T T T
Experimental (with +10% error bar) Experimental (with +10% error bar)
350004 """ Gijz(fl-Giizcl ] --—-- Gilz(?l—Giizcl
—-— Laminar-Slatter 100004 —— Laminar-Slatter
—— Metzner PL —— Metzner PL
30000
= = 8000
£~ 25000 [
o = ]
o) o)
= —
S 20000 S 6000 T
[5) 5}
: : [
g g ==
E 15000 Z o | ===
Le Tz
/‘/
10000
2000
5000
0 0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0

Velocity [m/s] '

(c) Fluid 3

Velocity [m/s]

(d) Fluid 4

The good performance of Combination 1 was expected since Giizel developed his
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equations based on the same four experimental data. The best approximation achieved by Com-
bination 1 was observed for fluid 1, with an average percentage deviation of 2.87%.

Regarding the combination of the friction factor correlation for Newtonian fluids
in laminar regime with the Reynolds number of Slatter (from now on referred to as: Com-
bination 2) and the pressure drop equation of Metzner and Reed (PL), although they did not
demonstrate predictive capability as close as Combination 1, both combinations showed a per-
centage deviation of less than 25.73% for fluids 1 to 4. This value is quite close to the percentage
deviation of ~ 27.4% obtained by the Metzner and Reed (PL) equation and the combinations
evaluated in Section 5.2.3, relative to the experimental data of this study.

According to Giizel et al. (2009a), discrepancies between experimental and pre-
dicted pressure drop or friction factor values could be attributed to variations in the parameters
n and ¢ during the experimental test. These parameters, he noted, are sensitive to viscous
heating and fluid deterioration. Therefore, he argued that it would not be possible to fit experi-
mental data to a theoretical curve for the friction factor of non-Newtonian fluids, including his
own friction factor correlation.

The variations in rheological properties for fluids 1 to 4 during the Giizel’s ex-
periments are detailed in Appendix D. The average percentage deviations (MAPE) for each

combination are detailed in Table 5.10.

Table 5.10 — Evaluation of Mean Absolute Percentage Error (MAPE) for fluids 1, 2, 3, and 4
from Giizel et al. (2009a).

MAPE
Combination Fluid1 | Fluid2 | Fluid 3 | Fluid 4
Giizel-Giizel 2.87% | 1271 % | 1438 % | 16.61 %

Laminar-Slatter 11.98 % | 22.84 % | 24.74 % | 24.77 %
Metzner and Reed | 17.59 % | 25.73 % | 24.92 % | 22.67 %

5.3.3 Experimental data of Magnon and Cayeux - Fluid 5

Figure 5.12 presents the predicted pressure drop curves calculated by Combina-
tion 1 (Giizel-Giizel), Combination 2 (Laminar-Slatter), and the pressure drop equation of Met-
zner and Reed (PL), and in Table 5.11, the MAPE results for each combination are shown.

The trend curves of all combination fell within the 10 % error bars. Nonetheless,
it was observed that the closest matching results, computed by the Metzner and Reed (PL)

equation, had a deviation of 11.24 %.
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Figure 5.12 — Pressure drop prediction for fluid 5 from Magnon e Cayeux (2021) experimental

data set.
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Table 5.11 — Evaluation of Mean Absolute Percentage Error (MAPE) for fluid 5 from Magnon

e Cayeux (2021).
Combination MAPE
Giizel-Giizel 12.11 %
Laminar-Slatter 11.74 %
Metzner and Reed (PL) 11.24 %

The MAPE performance metric could be affected by the high dispersion of points

(pressure drops) recorded at velocities lower than 0.2 m/s. If these outlier points are disregarded,

the percentage deviation for Combination 1 (Giizel-Giizel), Combination 2 (Laminar-Slatter),

and the Metzner and Reed (PL) equation improves significantly, as indicated in Table 5.12:

Table 5.12 — Evaluation of Mean Absolute Percentage Error (MAPE) for fluid 5 from Magnon
e Cayeux (2021) disregarding outlier points.

Combination MAPE
Giizel-Giizel 4.14%
Laminar-Slatter 5.33%
Metzner and Reed (PL) 3.77%

Although Combination 2 was not the closest to the experimental data, it shows a

deviation percentage as low as that of Combination 1 and the Metzner and Reed (PL) equation.

This low MAPE value could be attributed to the high density of points measured by Magnon
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and Cayeux during the experimental test, which reduces the impact of outlier points on the

performance metrics calculation and improve the representativeness of the collected points in

relation to the behavior of the system, achieving better agreement between the experimental and

analytical data.

5.3.4 Experimental data of Abou-Kassem, Bizhani and Kuru - Fluids 6 to 8

Figure 5.13 and 5.14 shows the experimental data for fluids 6 and 7 from Abou-

Kassem’s work, compared with the pressure drop predictions calculated using the three combi-

nations. The percentage deviations are presented in Tables 5.13 and 5.14.

Figure 5.13 — Pressure drop predictions for fluid 6 from Abou-Kassem et al. (2023) experimen-

tal data set.
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Table 5.13 — Evaluation of Mean Absolute Percentage Error (MAPE) for fluid 6 from Abou-

Kassem et al. (2023).

Combination

MAPE

Giizel-Giizel

13.95%

Laminar-Slatter

10.86 %

Metzner and Reed (PL)

34.82 %

According to Abou-Kassem, the Hanks correlation provided the best analytical re-

sults in the laminar regime compared to his experimental data. In this study, Combination 1 can

be used as a reference since it gives similar outcomes to the Hanks correlation, as demonstrated

in Section 5.2.3.
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Figure 5.14 — Pressure drop predictions for fluid 7 from Abou-Kassem et al. (2023) experimen-

tal data set.
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Table 5.14 — Evaluation of Mean Absolute Percentage Error (MAPE) for fluid 7 from Abou-
Kassem et al. (2023).

Combination MAPE
Giizel-Giizel 10.60 %
Laminar-Slatter 7.90 %
Metzner and Reed (PL) 13.81%

For these fluids 6 and 7, although Combination 2 did not achieve as low a MAPE
as it did for fluid 35, it outperformed Combination 1 and Metzner and Reed (PL) equation as
the best approximation for fluid 6, with a deviation of 10.86 %, and fluid 7, with 7.90 %. These
values are relatively close to the MAPE of 9.71 % identified with the experimental data from
this study. Although its predictive capacity is not fixed percentage-wise and the MAPEs varied
among fluids 5, 6, and 7, the differences are not large, and the values are close to each other
within a reasonable error range. This could indicate that Combination 2 is reliable for different

rheological characteristics.

Lastly, Figure 5.15 shows the pressure drop curves for fluid 8, and Table 5.15 details
the percentage deviation from the experimental data.

In this particular case, the Metzner and Reed (PL) pressure drop equation provided
the best approximation compared to Combination 1 and Combination 2, whose results were

exceptionally high in relation to the first seven fluids evaluated, with deviations exceeding 40 %.
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Figure 5.15 — Pressure drop prediction for fluid 8 characterized by Abou-Kassem et al. (2023)
experimental data set.
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Table 5.15 — Evaluation of Mean Absolute Percentage Error (MAPE) for fluid 8 from Abou-
Kassem et al. (2023).

Combination MAPE
Giizel-Giizel 58.68 %
Laminar-Slatter 40.16 %
Metzner and Reed (PL) 6.70 %

This could be influenced by the rheological characteristic of the fluid, particularly its low yield
stress of (.15 Pa, which suggests that the fluid’s behavior resembles that of a Power Law fluid.
This characteristic may have facilitated the Metzner and Reed (PL) equation to be significantly
more advantageous and accurate for this fluid, given that the Metzner and Reed (PL) equation
is based on the Power Law rheological model.

Based on the experimental data from this research and the information collected
from similar studies conducted by three different authors, as detailed in Table 5.9, it can be con-
cluded that Combination 2 (Laminar-Slatter) consistently demonstrated the ability to accurately
predict experimental pressure drops for a wide range of rheological parameter values within the
laminar regime. These parameters include: yield stress (0.15 Pa < 7¢7 < 6 Pa), consistency
index (0.04 Pa.s™ < k < 4.79 Pa.s™), Power Law index (0.36 < n < 0.73), and flow line
diameters (0.0155 m < D < 0.095 m), as can be seen in Figure 5.16, which shows an overview

of the predicted data for the eight fluids used for the validation of the analysis of this study.
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Figure 5.16 — Overview of the pressure drops predicted by the Laminar-Slatter and Giizel-Giizel
combinations and the Metzner and Reed (PL) equation for the eight fluids used to
validate the results of this study.
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Furthermore, it is important to note that although only Giizel referred to the mechan-
ical degradation of the fluid during the experimental test (mentioned in Section 5.3.2), none of
the three referenced works mention the tolerances applied to the rheological parameters during

their tests to ensure the representativeness of their measurements as was done in this study.
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6 CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

This study conducted an experimental test under laminar and single-phase flow con-
ditions, using a viscoplastic solution composed of Carbopol and Triethanolamine. The objective
was to evaluate the capability to predict pressure drop for friction factor correlations, combined
with their respective recommended Reynolds number models. The three friction factor and their
Reynolds number models recommended by their authors overestimated the pressure drop val-
ues, with a mean absolute percentage error (MAPE) of ~ 27.4 % compared to the experimental
data obtained in this work.

In an attempt to bring the predicted results closer to the experimental data, a com-
binatorial analysis was conducted. Four friction factor correlations and five Reynolds number
models, developed for viscoplastic, Power Law, and Newtonian fluids, were employed to find a
possible better combination of friction factor and Reynolds number to predict the pressure drop,
even though the authors had not previously recommended them in the literature. The results of
the analysis showed that the friction factor correlation for Newtonian fluids in laminar flow,
combined with the Reynolds number of Slatter, provides the best predictions, with a deviation
of 9.27 % from the experimental data of this study.

To validate the predictive capability of the combination of the friction factor for
Newtonian fluids in laminar flow with the Reynolds number of Slatter (Combination 2), experi-
mental data from eight viscoplastic fluids from the literature were collected. These fluids have a
wide yield stress (7¢?) range between 0.15 and 6 Pa, consistency index (k) covering 0.04 to 4.79
Pa.s”, and Power Law index (n) varying from 0.36 to 0.73. Additionally, two other combina-
tions that predicted the pressure drop within a tolerance of 30 % compared to the experimental
data were considered: the friction factor and Reynolds number of Giizel (Combination 1) and
the pressure drop equation of Metzner and Reed (PL).

Combination 1 provided predictions with deviations between 10.6 % and 58.68 %
for 6 out of the 8 fluids. Its good performance with a MAPE of 4.14 % for fluid 5 was attributed
to the large number of experimental points collected, which reduced the impact of outliers on
the performance metric computation.

Combination 2 showed greater consistency in 4 of the 8 fluids, with a MAPE be-
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tween 5.33 % and 11.98 %, values relatively close to the MAPE of 9.27 % obtained from this
study’s experimental data. Additionally, its application is simpler than Combination 1 as it does
not require iterative processes for resolution, and unlike the Metzner and Reed (PL) equation, it
considers the effect of yield stress.

The Metzner and Reed (PL) equation had a MAPE between 13.81 % and 34.84 %
in 6 from 8 cases. Its best results were with fluid 5, with a deviation of 3.77 %, and fluid 8,
with a deviation of 6.7 %. The good performance with fluid 5 is justified similarly to that of
Combination 1. For fluid 8, its low yield stress of only 0.15 Pa suggests it behaves like a Power
Law fluid, explaining the higher accuracy of the Metzner and Reed (PL) equation with a MAPE
of 6.7 %.

No specific range of rheological parameter values was identified where each com-

bination was more effective.

6.2 Recommendations for future work

Based on the above conclusions, some recommendations for future work are sug-

gested:

1. Conduct numerical simulations to replicate the analytical results obtained in this study,
using a fluid with the rheological properties of both the working fluid from this research

and those extracted from the literature.

2. In this work, the generalized Reynolds number of Metzner and Reed was used to de-
termine the flow regime of a Herschel-Bulkley fluid. However, it is emphasized that
the parameter K’ for Herschel-Bulkley fluids must be mathematically deduced. In the
meantime, since the time available for this study was limited, the applicability of the K’
parameter for Power Law and Bingham plastic fluids was used. This approached is not

entirely appropriate for characterizing the flow regime of Herschel-Bulkley fluids.

3. Perform a sensitivity analysis to quantify the influence of yield stress (7), consistency
index (k), and Power Law index (n) on the Reynolds number models developed for

Herschel-Bulkley fluids.

4. Extend the test matrix with various conditions of rheological properties and flow regimes

to investigate the flow transition and turbulent flow regime, aiming for a comprehensive



understanding of the studied phenomenon.
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APPENDIX A - PRESSURE DROP GRADIENT VS. SHEAR STRESS
RELATIONSHIP

To establish the relationship between the pressure drop gradient (AP/L) and the
shear stress (7,.,) for a fluid flowing by pressure variation through a circular pipe, Chhabra
e Richardson (2011) developed their analysis assuming the presence of a cylindrical volume

portion of fluid with radius r located at the center of the pipe, as described in Figure A.1:

Figure A.1 — Cylindrical volume portion of fluid flowing through a tube (Chhabra; Richardson,

2011).
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The balance of forces (F} and F5) acting on the bases of the cylinder (A; and A,),

as shown in Figure A.1, is expressed by the Equation A.1:
F, — F,=AF (A.1)

By expressing the forces of Equation A.1 in terms of pressure (P) and area (A), and
considering that the tangential force (A F") applied by the fluid on the surface of the pipe (Acyiinder)
is the shear stress (7;.,), as detailed in Equation 2.1 of Chapter 2 where 7, = F/A, Equation

A.1 can be reformulated as Equation A.2. This reformulation is graphically represented in

Figure A.2:
Figure A.2 — Cylindrical element of radius r (Chhabra; Richardson, 2011).
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Rewriting area (A) as 7r:

Pi(77r?) — (P, — AP)7r? = 1,277 L) (A.3)

(mr)r(Pp — P+ AP) =71,.,2(nr)L (A4)
AP\ r

Trz = <T) 5 (A.5)

The relationship demonstrates, as depicted in Figure A.3, a linear shear stress dis-
tribution profile across the cross section (variation of r) of the pipe. Therefore, in the axis of

the pipe (r = 0), the shear stress is 0.

Figure A.3 — Distribution of 7,., in relation to r (Chhabra; Richardson, 2011).
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APPENDIX B - EQUATIONS FOR LAMINAR FLOW IN CIRCULAR
SECTION PIPES APPLIED TO HERSCHEL-BULKLEY FLUIDS

In this appendix, the equations for the velocity distribution in laminar flow are pre-
sented, taking into account the presence of a solid plug-like core flowing through the center of
a circular pipe, as well as the development of the equation for the volumetric flow rate applied
to a Herschel-Bulkley fluid.

The Herschel-Bulkley fluid model in circular pipes is described by Equation 2.9,

which, when expressed in polar coordinates, is given by:

d n
Tre=To +k (— VZ) (B.1)

dr

The relationship between pressure drop gradient and shear stress for an element of

radius 7 relative to the coordinate origin (center of the pipe) developed by (Chhabra; Richardson,

2011) is given by:
AP\ r
(== )L B.2
Tra ( L)2 (B.2)
therefore,
AP\ r " dV,\"

—_ == k| — . B.
()5 () ®

To find the equation that describes the velocity distribution within the pipe, it is

necessary to integrate the Equation B.3 with respect to 7:

B AP\ r 7l "

Before solving Equation B.4, a change of variables is made to facilitate the calcula-

tions:
AP\ 1 i
hence:

u=ar—>b
d d

@udu = 5(&7’ — b)dr
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du = adr
d
b =dr
a

and therefore, rearranging Equation B.4:

/dVZ:—/uvlrldu
a

V.=— /im0 = ———— +C
a(lT”)u a(l+n)
Lu 7 (n+1)/n
n|(—3) 5 -4
Ve=— AP\ 1 +C
(=) (1 +n)
L n AP\ ¢ gH)HOM

= (- 2k =) - . B.5
v (AP) n+1( L)2k; k} e ®.5)

To ensure the physical relevance of Equation B.5, the no-slip condition at the wall,

ie. V., = 0 when r = R, must be satisfied. Substituting the values for V, and r in the last

(L n AP\ R e
C—(_AP> S K_ L )ﬁ_T] ®.6)

. ) (n+1)/n]

Conveniently, the mathematical artifice (R/R) is added to both terms of Equation

H\ (ntl)/n
(LB (AP T
AP R L 2k k

H\ (ntl)/n
(LN B (AP E
AP R L 2k k

to introduce the definition of the wall shear stress described by Equation B.9 and thereby sim-

equation yields:

(B.7)

B.7,

(B.8)

plify the expression from Equation B.8:

Tw = (—E) g (B.9)



92

n k Tw T T({I (nt+1)/n k T, TOH (n+1)/n
V, = _ w0 _ w0
<n+1) TwR(kR k:) +TwR(k k)

voo (MY |2 (Tw>(n+1)/n T ("+1)/n+<m)<n+l>/n A N
= \n+1 Tow k R T L ™ .

By factoring out the common factors from the terms within the parentheses and

substituting them into the last expression:

-1 (n+1)/n _ _1/n
Tw - Ty = Ty

Eo k—(n—&—l)/n _ k—l/n

= (- 0)" b e (- cb)("“)/”}]
G () e

V- (nnf1> <%)1/" (1— ¢)(n+1)/n _ (L _ ¢> (nH)/n] (B.11)

R
Finally, Equation B.11 describes the velocity distribution within the pipe, neverthe-

less, it is only valid when |7,,| exceeds |73’

, means, the region 7, < r < R. See the graphical
representation of the regions in Figure 2.11 in Chapter 2. In order to determine the velocity

distribution within the plug flow region (0 < r < R,,), the substitution of = R, is necessary,

[ nR Tw 1/n  \(+D)/n &_ (1)
o= () G) " | mae - (o)

and simplifying the expression considering the relationship describe in Equation B.10, the ve-

resulting in:

locity distribucidn inside the plug flow region is given by:

_ [ nR O\ (Tw)\Mm (n+1)/n
V., = <n+1) (%) [(1—¢) ] (B.12)

Upon deriving the equations for the velocity distribution, the subsequent step in-

volves the determination of the equation for the volumetric flow rate of the liquid:

V=

=[O
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R Ry R
Q=AxV = / 2nrV, dr = / 2mrVpdr + / 2mrV, dr. (B.13)
0 0

Ry

Substituting the velocity distribution equations, V, and V., inside the Equation

B.13:

B Ry nR /1,\1/7" (n+1)/n
o o 2 ) -

A (B.14)
nRk Tw 1/n (n+1)/n r (n+1)/n
e ()" o - (o) e
The definite integral B.14 is resolved by terms resulting in:
for the first term:
Ry nR /71,\1/n
Tw (n+1)/n
= [ 25 (5 [a- e
nR T 1/n P
- w 1 — &) m+D/n /
Qi =(m == () [< ) rar
nR rro\Un | r2 |
_ Tw (n+1)/n | T
@a=en5 () |0-9 21,
nR o\ Un | | ,R?
_ Tw (n+1)/n 2°Y
Q=m—= () [a-a"" | Ry
TR [T, \ /"
= - 1— )t g2, B.1
Q=" (%) [( @) o (B.15)
and, for the second term:
R nR Tw 1/n (n+1)/n r (n+1)/n
Q2= /R ern 7 () =0 = (5 -0) dr
R
nR /71,\Y/"
_ Tw _ @t D/n
Q.= [ o) 15 () Ao ar .
R ) nR /T ,\Un 7 (n+1>/nd (B.16)
‘/Rp””nH(z) (z-¢) @

Now, by solving the first term of Equation B.16, which subsequently becomes the

third term of Equation B.14:

R nRk Tw 1/n (n+1)/n
a= [ o) 15 () g ar

B nR [T, \ V" (n+1)/n/R
N e

nR -, \Ym (nt+1)/n pr_ nR /7, \Ym (nt1)/n (b2 p2
(k> (1=9) 2 _(”)nﬂ(k) (1-9) (B - R

0
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= M ()"0 (1- )

n+1\k R?
%=1 (%) [ﬂ - o) (1= 9% (B.17)

and, finally, the last term of Equation B.16, now the fourth term of Equation B.14:

o [l em ()" (o)

Qs () (e e

Some substitutions and variable changes can be applied to facilitate the resolution

of Q4:
nR /71,\1/"
= 2 _—
Y =(n) n+1 < k )
_ 1 d b=2¢
a=- an =
and, deriving variable changes:
u=ar—>b
d d
@udu = a(ar — b)dr
du = adr
d_u =dr.
a

Reorganizing (), and taking into account the ratio (R,/R) = ¢ from Equation B.10,

R R R
Qi=v | RR(u—¢)ul"/"du = yR? / w /gy 4o R? / um D/ gy
Ry Rp R,
nuBnt)/n R nunt)/n R
— R [ =Y/ 2
Qu=v < 3n+1 >RP+¢¢R ( 2n+1 )Rp
r o\ Grt)/m B o @ntl/m B
Qs =VR? n (g~ 9) o R? n(f—9¢)
3n+1 . on + 1
1— ¢)(3n+1)/n n (1 . ¢>(2n+1)/n
= R2 n ( R2
Qua=v 3n+1 T 2n+1
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Q=TI ()" oo« () e

And finally, by combining equations B.15, B.17, and B.18, which were derived from
the integration of Equation B.14, can be rearranged to obtain the final expression to calculate the
volumetric flow rate of the liquid in circular section pipes under laminar regime flow conditions,

considering the impact of Herschel-Bulkley fluids:

Q=01+ Q3— Q4

2n(1-¢)° 2n¢(1-9¢)
(3n+1) 2n +1

2n (1 (1—¢)? ¢<1—¢>)

n+l\2n -

¢ +1-¢" -

o2 )" oo

Q= anR> (%)1/71 [(1 _ ¢)(n+1)/n] % (B.19)

on (3n+1)  2n+1
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APPARATUS
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Two experiments were conducted to analyze the pressure drop of water, a well-

known Newtonian fluid, in single-phase flow. As detailed in Tables C.1 and C.2, both tests

covered different velocity ranges, Reynolds numbers, and pressure drops to validate the sensors

installed in the experimental apparatus under various flow operating conditions. Test 1 evalu-

ated the performance of the sensors in flow regimes with slower transitions, characterized by

lower Reynolds numbers and pressure drops. In contrast, Test 2 focused on highly turbulent
flows with higher Reynolds numbers and greater pressure drops. The experimental results from
both tests were compared with theoretical predictions obtained through the Colebrook-White

correlation (Equation C.1) and the Fanning equation (Equation C.2), allowing for verification

of the measurement accuracy:

1

Vi

4l 5/D+ 2.51
I\ 37 " Nev/AT
2fLpV?
AP = ZLZPY
D

(C.1)

(C.2)

Table C.1 — Test 1 - Water single-phase flow test for validation of the experimental apparatus.

V(m/s) | Nge() | fexp(-) | AFexp(Pa) (ero(le)- APc(Pa) | Tin °C) | Tout (°C)
brook
0.0294 1556 0.0091 1 0.0103 1 28.5 28.7
0.0509 2694 0.0332 8 0.0118 3 27.1 27.2
0.0686 3631 0.0201 9 0.0109 5 26.6 26.7
0.0871 4611 0.0164 11 0.0103 7 26.2 26.2
0.1783 9433 0.0111 32 0.0088 25 25.9 26.0
0.4072 21 540 0.0081 122 0.0077 116 30.3 30.5
0.5875 31076 0.0074 232 0.0075 230 30.8 30.9
0.7652 40 473 0.0071 375 0.0072 381 31.2 31.3
0.9444 49 956 0.0068 551 0.0071 570 31.7 31.9
1.0887 57 055 0.0067 705 0.0070 736 32.1 322
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Table C.2 — Test 2 - Water single-phase flow test for validation of the experimental apparatus.

V (m/fs) | Nge(-) fexp () | APexp(Pa) éco(le)- APc(Pa) | Tin °C) | Tout (°C)
brook

0.8159 43 157 0.0088 531 0.0072 427 25.6 25.7

1.0000 52 841 0.0079 713 0.0070 631 25.7 25.8

1.2712 67 240 0.0072 1 055 0.0069 1016 25.8 259

1.5352 81 309 0.0069 1 465 0.0068 1461 25.8 25.9

Figures C.1 and C.2 show the measured pressure drop (A Fe,) and the theoretical

pressure drop curve (A F.) calculated with the Colebrook-White correlation. The experimental

results are consistent, as they follow the Colebrook-White trend, and the calculated values are

within or very close to the vertical bar representing the sensor’s precision, equivalent to 60 Pa.

The performance indicators for Test 1 show a mean absolute error (MAE) of 8.33 Pa and a mean

absolute percentage error (MAPE) of 19.70 %. For Test 2, the MAE is 57.85 Pa, and the MAPE

is 8.81 %:

Figure C.1 — Comparison of experimental pressure drop vs. theoretical curve calculated by
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Figure C.2 — Pressure drop comparison for single-phase flow test.
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These measurements not only validate the experimental apparatus but also ensure
data consistency, thereby enhancing confidence in the quality of the experimental results ob-

tained using the Herschel-Bulkley fluid.



APPENDIX D - EXPERIMENTAL DATA FROM GUZEL

Table D.1 — Experimental measurements of Giizel et al. (2009a) study for fluid 1.

V(mis) | APep/pgL | 7€ (Pa) | k(Pas™ | n() | R,(mm)| T (°C)
0.1278 0.19557 6.0 479 0.37 6.29 31
1.068 0.3490 5.7 3.66 0.42 3.33 32
1.304 0.36577 5.7 3.28 0.44 3.11 32

25573 0.43450 5.6 2.87 0.46 2.40 35

Table D.2 — Experimental measurements of Giizel et al. (2009a) study for fluid 2.

V' (m/s) APexp/pgL i (Pa) | k (Pas™) n (-) R, (mm) | T (°C)
0.3039 0.08942 1.80 1.11 0.50 4.11 34
1.0233 0.12817 1.58 0.71 0.53 2.90 34
1.5457 0.14526 0.95 0.60 0.54 1.67 34.5

Table D.3 — Experimental measurements of Giizel er al. (2009a) study for fluid 3.

V (m/s) APexp/pgL i (Pa) | k (Pas™) n (-) R, (mm) | T (°C)
0.11202 0.08399 2.0 2.05 0.36 5.55 29
0.4622 0.13224 1.5 2.01 0.40 2.57 29
1.2076 0.17804 1.4 1.59 0.43 1.84 29
2.0461 0.22166 1.3 1.20 0.48 1.40 31
2.3218 0.23598 1.2 0.92 0.53 1.20 325

Table D.4 — Experimental measurements of Giizel et al. (2009a) study for fluid 4.

H

V (m/s) APexp/pgL 5 k (Pa.s™) n (<) R, (mm) T (°C)
0.3902 0.04421 0.38 0.37 0.58 1.89 30
0.7227 0.05769 0.30 0.29 0.60 1.29 30
1.0754 0.06961 0.28 0.26 0.61 1.01 30
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