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a b s t r a c t 

Sugarcane and its by-products make a relevant contribution to the world economy. In particular, the 

sugar-energy industry is affected by the timing of sugarcane cultivation and harvesting from which su- 

crose and bio-energy are produced. We address this issue by proposing a mixed-integer non-linear pro- 

gramming model to schedule planting and harvesting operations for different varieties of sugarcane. The 

decisions to be made include the choice of sugarcane varieties to be grown on a given set of plots, the 

periods for their cultivation, the subsequent harvesting periods, and the type of harvesting equipment. 

These decisions are subject to various constraints related to matching cultivation periods with harvesting 

periods according to the maturity cycles of the selected sugarcane varieties, the availability of harvesting 

machinery, the demand for sucrose and fiber, and further technical requirements. The tactical cultivation 

and harvesting plans to be determined account for three conflicting objectives, namely maximization of 

the total sucrose and fiber production, minimization of the total time devoted to harvesting, and mini- 

mization of the total cost of transporting the harvesting equipment. We develop a tailored exact method 

based on the augmented Chebyshev scalarization technique extended with a mechanism for identify- 

ing an initial feasible integer solution that greatly helps reduce the computational effort for obtaining 

Pareto-optimal solutions. Our computational study with instances that reflect the current cultivation and 

harvesting practices in Brazil demonstrate the effectiveness of the proposed methodology. In addition, 

a comparative analysis reveals the trade-offs achieved by alternative planting and harvesting schedules, 

thereby facilitating the decision-making process. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

World sugarcane production is led by Brazil, which produced 

54.8 million tonnes in the 2020/2021 crop season ( CONAB, 2021 ), 

ccounting for approximately 40 percent of the world total. Raw 

ugar and ethyl alcohol (ethanol) are the main products obtained 

rom sugarcane in specialized processing units. Brazil is also the 

orld’s largest producer of sugar and the second largest producer 

f ethanol (after the USA), with a share of 21 percent and 27 per-

ent, respectively ( Fava Neves & Kalaki, 2020 ). Unsurprisingly, the 

ugarcane industry is a significant economic driver for Brazil, rep- 

esenting about 2 percent of the country’s gross domestic product 

 UNICA, 2017 ). In addition, a number of by-products obtained from 

ugarcane (e.g., bagasse, straw, molasses, vinasse, filter cake, and 

easts) also contribute to an economically and environmentally 
∗ Corresponding author. 
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ignificant utilization of these residues ( Santos, Eichler, Machado, 

e Mattia, & De Sousa, 2020 ). 

Driven by recent technological advances, the sugarcane industry 

s in the midst of a transformation process that makes it possible 

o manufacture a number of value-added products from sugarcane 

nd its residues. These include a wide selection of bio-fuels, bio- 

aterials, bio-chemicals, and bio-energy that are obtained through 

io-refining ( Katakojwala, Naresh Kumar, Chakraborty, & Venkata 

ohan, 2019; Santos et al., 2020 ). The potential of this emerging 

echnology has been recognized for its contribution to the sustain- 

ble production of new products. For the Brazilian industry, this 

rend has proven to be economically relevant and has led to the 

evelopment of new varieties of sugarcane over the years, with 

mproved sucrose yield or increased biomass productivity ( Cursi 

t al., 2022 ). In this paper, we address this trend by proposing 

 multi-objective mathematical model that supports planning the 

ultivation and harvesting of different sugarcane varieties to meet 

 growing demand for sugar and fiber, with the latter intended for 

nergy production. Specifically, key decisions include determining 

https://doi.org/10.1016/j.ejor.2022.12.029
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2022.12.029&domain=pdf
mailto:teresa.melo@htwsaar.de
https://doi.org/10.1016/j.ejor.2022.12.029
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he time periods and varieties of sugarcane that should be planted 

n a given set of plots, the subsequent time periods for harvest- 

ng the sugarcane, and the deployment of harvesting equipment. 

hese decisions are affected by several factors, such as the ex- 

ected demand for sucrose and fiber, the different crop cycles that 

epend on the selected sugarcane varieties and the period when 

hey reach their peak maturity, the availability of different types of 

arvesting machinery, and additional technical limitations. The aim 

s to identify a schedule that maximizes the total amount of su- 

rose and fiber produced, minimizes the total time devoted to har- 

esting, and minimizes the total cost of transporting the harvest- 

ng equipment. As will be shown, these objectives are conflicting, 

hich means that any sugarcane cultivation and harvesting sched- 

le will have to consider trade-offs to achieve them. 

The sugarcane production chain has attracted the attention 

f scholars, researchers, and practitioners from a wide range of 

isciplines. The recent literature review by Teixeira, Rangel, Flo- 

entino, & Araújo (2021) provides evidence of the interest and 

elevance of this subject within the Operations Research com- 

unity. Various mathematical models and solution methods have 

een developed for planning problems arising at different stages 

f the production chain, including sugarcane cultivation, harvest- 

ng, transportation, and processing. As noted by Teixeira et al. 

2021) , harvest scheduling problems are the most studied, since 

hese are at the core of the production chain as for any other 

gricultural product ( Ahumada & Villalobos, 2009 ). Such prob- 

ems involve determining a plan for carrying out harvesting op- 

rations, taking into account the availability of machinery and 

abor as well as a number of technical requirements regard- 

ng the execution of these operations. The latter depend on the 

ractices in force in the country under consideration. For ex- 

mple, at the tactical planning level, the mathematical mod- 

ls proposed by Jarumaneeroj, Dusadeerungsikul, Chotivanich, & 

kkermang (2021) and Thuankaewsing, Khamjan, Piewthongngam, 

 Pathumnakul (2015) address the particular conditions under 

hich harvesting operations take place in Thailand, while Kong, 

uriyan, Shah, & Guo (2019) and Stray, van Vuuren, & Bezuiden- 

out (2012) focus on identifying optimal harvesting plans at the 

perational level in South Africa. 

Harvesting planning for the Brazilian sugarcane industry has 

lso received extensive attention ( Teixeira et al., 2021 ). Next, we 

eview some relevant references related to this industry. At the op- 

rational planning level, Lamsal, Jones, & Thomas (2017) develop 

 model for scheduling harvesting operations over the course of 

ne day. The resulting schedule is then used to determine the fleet 

ize for transporting sugarcane to a processing facility. Sugarcane 

arvesting and transportation are also considered by Aliano Filho, 

elo, & Pato (2021) by means of a comprehensive bi-objective 

athematical model involving the deployment and scheduling of 

ifferent types of equipment for deliveries to multiple facilities 

ver a multi-period planning horizon. The model developed by 

unqueira & Morabito (2019) simultaneously addresses tactical and 

perational harvesting decisions, while Jena & Poggi (2013) adopt a 

ierarchical approach that determines a weekly harvesting sched- 

le in the first phase and details daily operations in the second 

hase. The goal programming model proposed by Florentino et al. 

2018) identifies harvesting plans that reflect the trade-off between 

utting the sugarcane at the time closest to peak maturity and the 

ffort put into harvesting so as to reduce machinery maintenance 

nd repair costs. Recently, Morales-Chávez, Sarache, Costa, & Soto 

2020) addressed the harvest scheduling problem from the eco- 

omic, environmental, and social perspectives, and applied their 

odel to a real case in Peru. 

The planning of harvesting operations is greatly affected by the 

hoice of sugarcane varieties and the timing of their cultivation. 

owever, the integration of planting and harvesting decisions into 
331 
 single model has not received much attention in the literature as 

eported by Teixeira et al. (2021) . Our work contributes to filling 

his gap by proposing a novel multi-objective mixed-integer non- 

inear programming (MINLP) model that captures the current prac- 

ices in Brazil for planting different varieties of sugarcane to pro- 

uce sucrose and fiber, and their intertwining with the harvest- 

ng operations. Selecting the right variety of sugarcane to plant 

n each plot and choosing the appropriate period for its cultiva- 

ion are decisions that depend on agricultural, environmental, and 

conomic factors as well as the production capacity of the pro- 

essing facilities ( Colin, 2009; Florentino & Pato, 2014 ). Florentino 

t al. (2020) address this issue in their integrated model by con- 

idering these decisions along with determining a harvest sched- 

le so as to maximize the total production of sugarcane. Our work 

s more comprehensive, since we also decide on the assignment of 

he harvesting machines to the different plots and schedule their 

perating times. Moreover, we consider multiple objectives instead 

f a single objective. Carvajal, Sarache, & Costa (2019) present a 

wo-stage stochastic model that integrates decisions on sowing and 

rowing sugarcane, and scheduling harvesting operations over a 

0-year planning horizon. Uncertainties in crop yield, sowing and 

arvesting equipment capacity, and demand for sugarcane are cap- 

ured by a finite set of scenarios. The model is solved by the 

ample average approximation method. Unlike our model, a sin- 

le variety of sugarcane is considered as well as a single objec- 

ive, namely the maximization of the net present value of the to- 

al expected profit. Our work shares some features with the re- 

ent mixed-integer linear programming (MILP) model proposed by 

oltroniere, Aliano Filho, Balbo, & Florentino (2021) , as we also 

onsider different types of sugarcane varieties for sucrose and fiber 

roduction like these authors. However, in contrast to our work, 

oltroniere et al. (2021) do not take into account the importance of 

electing distinct sugarcane varieties in adjacent plots to avoid crop 

amage caused by pests and diseases. Moreover, we also include in 

ur model decisions about the choice of harvesting equipment to 

e deployed. While Poltroniere et al. (2021) aim at determining a 

lanting and harvesting schedule that maximizes the total amount 

f sucrose and fiber produced, we consider this goal along with 

wo other objectives concerning the minimization of the harvest- 

ng effort over the planning horizon and the minimization of the 

otal cost of moving the harvesting machinery. These features re- 

ult in a more comprehensive model that is therefore better suited 

o support farm managers, but at the same time is computationally 

ore challenging to solve. 

The main contributions of the present study are summarized 

s follows: (1) We develop a multi-objective MINLP formulation 

or integrated planning of cultivation and harvesting decisions over 

 multi-period planning horizon. Compared to the literature, our 

odel better depicts current practices in the Brazilian sugarcane 

roduction chain at the tactical level. (2) We use linearization 

echniques to obtain a computationally tractable formulation for 

eal-life applications. (3) We develop a tailored exact method to 

ccelerate the generation of Pareto-optimal solutions. As will be 

iscussed in Section 3 , no exact method to solve this problem 

as been presented so far. (4) We assess the validity of the new 

odel and the proposed solution technique by reporting and an- 

lyzing the results of a computational study using semi-randomly 

nstances of realistic size. To facilitate the decision-making process, 

e also provide managerial insights that reveal the trade-offs that 

re achieved by alternative schedules for planting and harvesting 

ifferent varieties of sugarcane. 

The remainder of this paper is organized as follows. In 

ection 2 , we formally describe our problem and present a multi- 

bjective MINLP formulation. Linearization techniques are also in- 

roduced that yield an equivalent model. In Section 3 , the solu- 

ion methodology is described. Computational results are reported 
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Fig. 1. Example showing 9 plots across 3 farms, the mill, and the depot for the harvesters. Using the notation introduced in Section 2.1 and assuming that different 

varieties of sucrose-cane are planted on farms 1 and 2, while energy-cane is planted on farm 3, we have F S = { 1 , 2 } , F E = { 3 } , k S = 7 , k E = 2 , J S = { 1 , 2 , 3 , 4 , 5 , 6 , 7 } , J E = { 8 , 9 } , ˜ J 1 = { 1 , 2 , 3 } , ̃  J 2 = { 4 , 5 , 6 , 7 } , and ̃  J 3 = { 8 , 9 } . 
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n Section 4 . Finally, Section 5 presents a summary of our findings 

nd gives directions for future research. 

. Problem description and mathematical formulation 

Our problem concerns the integrated cultivation and harvest 

lanning of several farms over a time horizon divided into a fi- 

ite number of periods, usually of equal length. Typically, a period 

epresents one month. Each farm is divided into multiple growing 

reas, called plots (see illustrative example in Fig. 1 ), each of which 

ust be harvested in a single period. Two types of sugarcane are 

onsidered, namely sucrose-cane, which is intended for the pro- 

uction of sugar and ethanol, and energy-cane, which provides 

ber (dry mass) used in thermal energy generation. Each farm is 

edicated to producing an individual product, either sucrose-cane 

r energy-cane. 

A relevant but non-trivial decision for the farm managers is to 

etermine the time period and sugarcane variety to be planted 

s well as the harvest period on each plot. The selection of sug- 

rcane varieties depends on many factors, including resistance to 

ests and diseases, adaptability to climate and soil, productivity 

s well as planting and harvesting periods. Using the same sug- 

rcane variety over a large area may damage the crop if, e.g., a 

ew disease breaks out. The more distinct varieties grown on the 

ame farm, the less likely they are to be damaged by adverse con- 

itions. This strategy contributes to crop diversification, an agri- 

ultural approach that has proven beneficial as it increases crop 

esilience to diseases, insect pests, and weeds, in addition to im- 

roving soil quality and enhancing productivity ( Shah et al., 2021 ). 

or example, dos Santos, Michelon, Arenales, & Santos (2011) and 

os Santos, Munari, Costa, & Santos (2015) explicitly include con- 

traints related to this issue in their optimization models for grow- 

ng horticultural produce. In our case, to achieve high yields of 

ucrose-cane and energy-cane it is necessary to carefully select the 

arieties to be grown on each farm, to determine the plot and the 

deal time period for planting each variety, and to identify the best 

eriod for harvesting each individual plot. 

There are multiple varieties of sucrose-cane that reach their 

eak maturity at different periods. Ideally, the sugarcane should be 

arvested in the period in which it attains peak sucrose content. 

e consider various varieties of sucrose-cane, some with a 12- 

eriod cycle and others with an 18-period cycle. Harvesting before 

r after the peak maturity period negatively affects the yield of 

ucrose-cane. According to Ramos, Isler, Florentino, Jones, & Nervis 
332 
2016) , the productivity s id of the i th sucrose-cane variety that is 

arvested with a deviation d from its peak maturity period is de- 

ermined by 

 id = 

(
−0 . 0243 d 2 + 1 

)
s 0 i . (1) 

bserve that the highest production level s 0 
i 

is reached for d = 0 . 

Regarding energy-cane, all varieties considered reach maturity 

t 12 periods. Matsuoka & Rubio (2019) model the productivity m id 

f the i th variety of energy-cane with harvesting deviation d as a 

inear growth function as follows: 

 id = (0 . 0041 d + 1) m 

0 
i , (2) 

ith m 

0 
i 

denoting the fiber production level at the end of the 12- 

eriod cycle. In this case, delaying the harvest results in a higher 

ield level. We also note that the deviation parameter d in (1) and 

2) can be positive (postponing the harvest d periods), zero (har- 

esting at maturity), or negative (bringing the harvest forward d

eriods). Figure 6 in the supplementary material associated with 

his article displays the deviations d in a Pareto-optimal solution 

o an illustrative problem. 

After harvesting, the different sugarcane varieties are processed 

n a mill. The sucrose produced is a commodity with a much 

igher market value than the fiber extracted from the energy-cane. 

ence, the sucrose can be stored for later use or sale, while the 

ber is burned to generate energy for the mill, and is therefore 

ot stored. 

Fluctuations in sucrose and fiber demands at the mill as well 

s different planting times do not always make it possible to har- 

est the plots during the ideal maturation period for each variety. 

hese issues reflect negatively on the quality of the harvested cane 

nd cause variations in sucrose and fiber yields. In addition, the 

aturation of sugarcane in each plot does not occur in the same 

eriod. Thus, determining the periods for planting and harvesting 

hat maximize total sucrose and fiber production levels are deci- 

ions with a relevant economic impact. These decisions also inter- 

ct with the choice of harvesting equipment to be deployed. Not 

nly is it necessary to decide on the number and type of harvest- 

ng machines to assign to each plot, but also the time required 

o operate each machine, as the latter is affected by the avail- 

ble labor force. The machinery is stored in a depot (see Fig. 1 ),

hich location is adjacent to the mill or at a convenient site in the 

illing area. Harvesting machines are transported by special vehi- 

les to the farms and return at the end of the harvest to the depot

or cleaning, inspection, and maintenance, before being assigned 
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o the next farms. Reducing the number of harvesting fronts, that 

s, concentrating the harvesting effort on a minimum number of 

arms in each time period, is a way to make better use of the 

vailable equipment and labor resources as well as to complete the 

arvest sooner. However, these decisions also depend on the sug- 

rcane varieties chosen and the time at which they were planted 

n the farms. 

The mathematical formulation to be presented in the next sec- 

ion models the aforementioned decisions under a given set of 

onstraints. These rule the scheduling of planting and harvesting 

perations on each plot over the planning horizon, the matching of 

ultivation periods with the different cycles for harvesting the se- 

ected sugarcane varieties, the use of harvesting equipment and la- 

or resources according to their availability, the satisfaction of the 

emand for sucrose and fiber at the mill, and the compliance with 

ther technical requirements prevailing in the Brazilian sugarcane 

ndustry. The aim is to determine an integrated schedule for culti- 

ation and harvesting operations that achieves a trade-off between 

eaching high production levels of sucrose and fiber, completing 

he harvest as quickly as possible, and moving the machinery be- 

ween the depot and the farms at reduced cost. This last issue 

as practical relevance because transport and maintenance of har- 

esters is very expensive, and a lower rate of machine utilization 

esults in lower expenses. Three objective functions are defined to 

odel these goals, and their conflicting nature will be discussed in 

he next section. 

Finally, we point out that the scope of our model lies at the 

actical planning level and comprises a number of aspects that are 

sually overlooked in the planning of farm and mill operations. In 

articular, the relationship between crop cultivation and crop har- 

esting is often disregarded, despite its practical and economic rel- 

vance ( Teixeira et al., 2021 ). 

.1. Notation 

In this section, we introduce the notation that will be used 

ereafter. 

ets, indices, and other parameters : 

F S set of farms dedicated to cultivation of sucrose-cane (index f ); 

F E set of farms dedicated to cultivation of energy-cane (index f ); 

F set of all farms, F = F S ∪ F E ; 
n f total number of plots on farm f ( f ∈ F ); 

k S total number of plots dedicated to sucrose-cane cultivation, 

k S = 

∑ 

f∈ F S n f ; 
k E total number of plots dedicated to energy-cane cultivation, 

k E = 

∑ 

f∈ F E n f ; 
J S set of all plots dedicated to sucrose-cane cultivation, J S = { 1 , . . . , k S } ; 
J E set of all plots dedicated to energy-cane cultivation, 

J E = { k S + 1 , . . . , k S + k E } ; 
J set of all plots, J = J S ∪ J E ; ˜ J f set of plots (index j) on farm f ( f ∈ F ); the plots are numbered 

consecutively, starting with the plots of farms where sucrose-cane 

can be cultivated and ending with the plots of farms where 

energy-cane can be grown (see example in Figure 1 ); ̃  J 1 = { 1 , . . . , n 1 } 
represents the set of plots on farm 1, ̃  J 2 = { n 1 + 1 , . . . , n 1 + n 2 } is the 

set of plots on farm 2, and so forth; for farm f , we have ˜ J f = 

{
1 + 

∑ f−1 
� =1 

n � , . . . , 
∑ f 

� =1 
n � 

}
; 

N( j) neighborhood of plot j, i.e. set of plots (index j ′ ) adjacent to j ( j ∈ ̃  J f , 

f ∈ F ); plot j is adjacent to itself; 

V 1 S set of sucrose-cane varieties with a 12-period cycle (index i ); 

V 2 S set of sucrose-cane varieties with an 18-period cycle (index i ); 

V S set of all sucrose-cane varieties, V S = V 1 S ∪ V 2 S ; 

V E set of energy-cane varieties with a 12-period cycle (index i ); 

V set of all sugarcane varieties, V = V S ∪ V E ; 
D S set of (negative and positive) time deviations from the peak maturity 

period for sucrose-cane (index d); 

D E set of (negative and positive) time deviations from the peak maturity 

period for energy-cane (index d); 

( continued on next page ) 
333 
D set of all deviations from the peak maturity periods, D = D S ∪ D E ; 
d smallest deviation from the peak maturity period for sugarcane 

varieties with a 12-period cycle (i.e., i ∈ V 1 S ∪ V E ), d = min { d : d ∈ D } ; 
d̄ largest deviation from the ideal harvesting period for sugarcane 

varieties with an 18-period cycle (i.e., i ∈ V 2 S ), d̄ = max { d : d ∈ D } ; 
T P set of time periods for sugarcane planting (index t); 

t first time period allowed for sugarcane to be harvested; 

t̄ last time period allowed for sugarcane to be harvested; 

T H set of time periods for sugarcane harvesting (index t), 

T H = { t + d , . . . , ̄t + d̄ } , | T P | < t < ̄t ; 

H set of different types of harvesting machines (index h ). 

arameters concerning resources and machine transportation costs : 

a j area of plot j (in ha), j ∈ J; 
p S 

i jd 
amount of sucrose (in tonnes) produced from the i th variety of 

sucrose-cane harvested on plot j with deviation d from the peak 

maturity period, with p S 
i jd 

= a j s id and s id given by (1) (i ∈ V S , j ∈ J S , 
d ∈ D S ) ; 

p E 
i jd 

amount of fiber (in tonnes) produced from the i th variety of 

energy-cane harvested on plot j with deviation d from the peak 

maturity period, with p E 
i jd 

= a j m id and m id given by (2) (i ∈ V E , j ∈ J E , 
d ∈ D E ) ; 

d S t demand for sucrose in time period t at the mill (in tonnes), t ∈ T H ; 
d E t demand for fiber in time period t at the mill (in tonnes), t ∈ T H ; 
c cost of transporting a harvesting machine between the depot and a 

farm (in R$ per km ); 

d 0 
f 

travel distance between the depot and farm f (in km), f ∈ F ; 
r f total cost of moving a harvesting machine between the depot and 

farm f (in R$), r f = c d 0 
f 
, f ∈ F ; 

capM t milling capacity (in tonnes) available at time period t ( t ∈ T H ); 

z̄ ht total number of harvesters of type h available at time period t (h ∈ H, 

t ∈ T H ) ; 
capH h harvesting capacity (in tonnes/hour) of a machine of type h ( h ∈ H); 

w total number of working hours of a harvesting machine available in a 

given time period; 

ηi proportion of the i th sugarcane variety that is allowed to be planted 

( 0 < ηi < 1 , i ∈ V ); 

θS factor for converting sucrose production into sucrose-cane to be 

processed at the mill; 

θE factor for converting fiber production into energy-cane to be 

processed at the mill. 

.2. Multi-objective mixed-integer non-linear formulation 

We present in this section a formulation of the problem that in- 

ludes non-linearities in one of the objective functions and in some 

onstraints. These allow us to model certain technical requirements 

n place in the Brazilian sugarcane industry in a clear way. Later, in 

ection 2.3 , a transformation into an equivalent MILP formulation 

ill be described. 

The proposed multi-objective MINLP formulation uses binary 

ecision variables for the assignment of different sugarcane vari- 

ties to plots over the planting time horizon and the determination 

f the periods for their harvest. In addition, continuous variables 

re defined to represent the inventory level of sucrose-cane at the 

ill and to measure the time devoted to harvesting the plots. Fi- 

ally, integer variables are associated with the number and type of 

arvesting machines deployed. 

Decision variables : 

x i jt = 

{
1 , if sugarcane variety i is planted on plot j in time period t 

0 , otherwise 

(i ∈ V, j ∈ J, t ∈ T P ) ;

 i jtd = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

1 , if sugarcane variety i planted on plot j is harvested 

in time period t with deviation d from its peak 

maturity period 

0 , otherwise 

(i ∈ V, j ∈ J, t ∈ T H , d ∈ D ) ;

u f t = 

{
1 , if any plot on farm f is harvested in time period t 

0 , otherwise 
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( f ∈ F , t ∈ T H ) ;
e t : inventory level of sucrose-cane in the mill at the end of 

time period t ( t ∈ T H ); 
w jt : number of working hours spent on harvesting plot j in 

time period t ( j ∈ J, t ∈ T H ); 
z h jt : number of harvesting machines of type h working on 

plot j in time period t ( h ∈ H, j ∈ J, t ∈ T H ). 
The multi-objective MINLP formulation is as follows: 

aximize v 1 = 

∑ 

i ∈ V S 

∑ 

j∈ J S 

∑ 

t∈ T H 

∑ 

d∈ D S 
p S i jd y i jtd + 

∑ 

i ∈ V E 

∑ 

j∈ J E 

∑ 

t∈ T H 

∑ 

d∈ D E 
p E i jd y i jtd (3) 

inimize v 2 = 

∑ 

f∈ F 

∑ 

t∈ T H 
u f t (4) 

inimize v 3 = 

∑ 

j∈ J 

∑ 

h ∈ H 
r f 

(
z h j( t + d ) + z 

h j( ̄t + ̄d ) 
)
+ 

∑ 

f∈ F 

∑ 

t∈ T H \{ ̄t + ̄d } 
r f 

∣∣∣∣∣∣
∑ 

j∈ ̃  J f 

∑ 

h ∈ H 

(
z h j(t+1) − z h jt 

)∣∣∣∣∣∣ (5) 

ubject to ∑ 

i ∈ V 

∑ 

t∈ T P 
x i jt = 1 j ∈ J (6) 

∑ 

j∈ J S 

∑ 

t∈ T P 
x i jt ≤ ηi k S i ∈ V S (7) 

∑ 

j∈ J E 

∑ 

t∈ T P 
x i jt ≤ ηi k E i ∈ V E (8) 

∑ 

j ′ ∈ N( j) 

∑ 

t∈ T P 
x i j ′ t ≤ 1 i ∈ V, j ∈ J (9) 

∑ 

i ∈ V 

∑ 

t∈ T H 

∑ 

d∈ D 
y i jtd = 1 j ∈ J (10) 

∑ 

i ∈ V 

∑ 

t∈ T P 
i x i jt = 

∑ 

i ∈ V 

∑ 

t ′ ∈ T H 

∑ 

d∈ D 
i y i jt ′ d j ∈ J (11) 

∑ 

i ∈ V 1 
S 

∑ 

t∈ T P 
(t + 12) x i jt = 

∑ 

i ∈ V 1 
S 

∑ 

t ′ ∈ T H 

∑ 

d∈ D S 
(t ′ − d) y i jt ′ d j ∈ J S (12) 

∑ 

i ∈ V 2 
S 

∑ 

t∈ T P 
(t + 18) x i jt = 

∑ 

i ∈ V 2 
S 

∑ 

t ′ ∈ T H 

∑ 

d∈ D S 
(t ′ − d) y i jt ′ d j ∈ J S (13) 

∑ 

i ∈ V E 

∑ 

t∈ T P 
(t + 12) x i jt = 

∑ 

i ∈ V E 

∑ 

t ′ ∈ T H 

∑ 

d∈ D E 
(t ′ − d) y i jt ′ d j ∈ J E (14) 

∑ 

i ∈ V S 

∑ 

j∈ J S 

∑ 

d∈ D S 
p S i jd y i jtd + e t−1 = d S t + e t t ∈ T H (15) 

∑ 

i ∈ V E 

∑ 

j∈ J E 

∑ 

d∈ D E 
p E i jd y i jtd ≥ d E t t ∈ T H (16) 

S 

∑ 

i ∈ V S 

∑ 

j∈ J S 

∑ 

d∈ D S 
p S i jd y i jtd + 
334 
θE 

∑ 

i ∈ V E 

∑ 

j∈ J E 

∑ 

d∈ D E 
p E i jd y i jtd ≤ capM t t ∈ T H (17) 

∑ 

i ∈ V 

∑ 

j∈ ̃  J f 

∑ 

d∈ D 
y i jtd ≤ n f u f t f ∈ F , t ∈ T H (18) 

 f t ≤
∑ 

i ∈ V 

∑ 

j∈ ̃  J f 

∑ 

d∈ D 
y i jtd f ∈ F , t ∈ T H (19) 

 + 

∑ 

t∈ T H \{ ̄t + ̄d } 
u f t u f (t+1) = 

∑ 

t∈ T H 
u f t f ∈ F (20) 

∑ 

j∈ J 
z h jt ≤ z̄ ht h ∈ H, t ∈ T H (21) 

∑ 

h ∈ H 
z h jt ≤

∑ 

h ∈ H 
z̄ ht 

∑ 

i ∈ V 

∑ 

d∈ D 
y i jtd j ∈ J, t ∈ T H (22) 

 jt ≤ w 

∑ 

i ∈ V 

∑ 

d∈ D 
y i jtd j ∈ J, t ∈ T H (23) 

∑ 

h ∈ H 

∑ 

t∈ T H 
capH h w jt z h jt = 

∑ 

i ∈ V S 

∑ 

t∈ T H 

∑ 

d∈ D S 
p S i jd y i jtd j ∈ J S (24) 

∑ 

h ∈ H 

∑ 

t∈ T H 
capH h w jt z h jt = 

∑ 

i ∈ V E 

∑ 

t∈ T H 

∑ 

d∈ D E 
p E i jd y i jtd j ∈ J E (25) 

 i jt ∈ { 0 , 1 } i ∈ V, j ∈ J, t ∈ T P (26) 

 i jtd ∈ { 0 , 1 } i ∈ V, j ∈ J, t ∈ T H , d ∈ D (27) 

 f t ∈ { 0 , 1 } f ∈ F , t ∈ T H (28) 

 t ≥ 0 t ∈ T H (29) 

 jt ≥ 0 j ∈ J, t ∈ T H (30) 

 h jt ≥ 0 and integer h ∈ H, j ∈ J, t ∈ T H . (31) 

he first objective function (3) maximizes the total amount of su- 

rose and fiber produced. The objective function (4) minimizes the 

otal number of harvesting fronts over the planning horizon. The 

urpose is to avoid unnecessary machinery movements during har- 

esting, forcing the harvest on each farm to last a minimum num- 

er of periods. The non-linear objective function (5) minimizes the 

otal cost of transporting the harvesting machines between the de- 

ot and the farms. The first component of (5) gives the total cost 

ssociated with the first and last harvesting periods, while the sec- 

nd component measures the total cost associated with the inter- 

ediate periods. Machinery movements from one plot to another 

lot on the same farm are not accounted for as they incur a negli- 

ible cost. For illustration purposes, suppose there is a single farm 

ith three plots, where the first (last) harvesting period can oc- 

ur in period t = 13 ( ̄t = 17 ). Moreover, let us assume that a single

achine is deployed, which remains on each plot for exactly one 

eriod, starting on plot 1 in period 14 and ending on plot 3 in pe-

iod 16 (i.e., z 1 , 1 , 14 = z 1 , 2 , 15 = z 1 , 3 , 16 = 1 ). According to (5) , the total

umber of movements of this machine from periods 13 through 17 
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s given by | 1 | + | − 1 + 1 | + | − 1 + 1 | + | − 1 | = 2 . This means that

wo movements are accounted for, namely the transport of the har- 

ester from the depot to plot 1 in period 13, and its return to the

epot at the end of period 16, after it has completed harvesting on 

lot 3. 

We note that the three objectives are conflicting. The smaller 

he deviation of the harvest period on each plot from the ideal pe- 

iod, the higher the level of sucrose and fiber production (cf. (3) ). 

educing the number of harvesting fronts according to objec- 

ive (4) implies harvesting the farms in less time, resulting in an 

ncrease in the total number of harvesting machines to be used 

nd, consequently, in higher transportation costs. Clearly, this strat- 

gy conflicts with objective (5) . In turn, less machine movement 

eans harvesting many of the plots outside their ideal periods, 

hus reducing production yields and as a result worsening objec- 

ive (3) . 

Constraints (6) ensure that each plot is planted only once 

nd with a single variety of sugarcane during the planting time 

orizon. Constraints (7) enforce the number of plots dedicated 

o the cultivation of a specific sucrose-cane variety does not 

xceed the pre-specified threshold. Similar conditions are imposed 

y constraints (8) for the various varieties of energy-cane. Con- 

traints (9) make sure that different sugarcane varieties are grown 

n adjacent plots of a farm. In other words, it is not allowed to 

ow the same variety of sugarcane on neighboring plots of a farm, 

s this is intended to mitigate the risk of the crop being damaged 

y a pest affecting a specific variety. To illustrate this requirement, 

et us consider plot 4 belonging to farm 2 in the example shown in

ig. 1 . Accordingly, N(4) = { 4 , 5 , 6 } is the set of neighbors of plot 4.

ver the planting horizon T P , variety i = 1 cannot be grown on all

he plots of N(4) , a condition that is imposed by the inequality 
 

t∈ T P (x 14 t + x 15 t + x 16 t ) ≤ 1 . Constraints (10) state that each plot is

arvested only once over the time horizon. Constraints (11) guar- 

ntee that the sugarcane variety planted on a plot is also the 

ariety that is later harvested. Constraints (12) –(14) relate the cul- 

ivation period of a specific sugarcane variety to its harvest period, 

aking into account the deviation from the peak maturity period. 

or example, if variety i of energy-cane is planted in period t = 1

n a given plot j (i.e., x i j1 = 1 ), then it achieves peak maturity 

welve periods later, i.e. in period 13. As a result, the left-hand 

ide of (14) is (1 + 12) x i j1 = 13 . Furthermore, suppose the harvest

n plot j can be postponed up to two periods and brought forward 

t most one period, i.e. D = {−1 , 0 , 1 , 2 } . Accordingly, plot j can be

arvested in period t ′ = 12 ( d = −1 ), in period t ′ = 13 ( d = 0 ), in

eriod t ′ = 14 ( d = 1 ), or in period t ′ = 15 ( d = 2 ). These four op-

ions are stated on the right-hand side of constraints (14) as 

ollows: 
∑ 

t ′ ∈ T H 
∑ 2 

d= −1 

(
t ′ − d 

)
y i jt ′ d = (12 − (−1)) y i j12(−1) + 

13 − 0) y i j13(0) + (14 − 1) y i j14(1) + (15 − 2) y i j15(2) . Due to con-

traints (10) , only one of these four variables y can be equal 

o 1. Constraints (15) are inventory balance and demand satis- 

action conditions for sucrose at the mill. Demand for fiber is 

atisfied according to constraints (16) . Constraints (17) impose 

 capacity limit on the total amount of sugarcane processed 

y the mill at each period. Inequalities (18) and (19) link the 

ariables y i jtd and u f t . Clearly, if no harvest takes place on farm 

f at period t ( u f t = 0 ) then no plot will be harvested ( y i jtd = 0 ),

f. (18) . Moreover, harvesting will take place on at least one 

lot of farm f when it is decided to harvest on this farm at a

iven period (cf. (19) ). For practical reasons, the non-linear con- 

traints (20) require that harvesting be carried out in consecutive 

eriods on each farm. In other words, once harvesting is started 

n a farm it cannot be discontinued until all the plots have 

een harvested. For example, suppose that harvesting on farm 

f = 1 requires three periods, which translates into the right-hand 

ide of (20) being equal to 3. If these three periods were non- 

onsecutive, e.g. u 11 = u 12 = u 14 = 1 and u 1 t = 0 for all t / ∈ { 1 , 2 , 4 } ,
335 
hen constraint (20) would be violated as its left-hand side would 

e equal to 2 (1 + u 11 · u 12 + u 12 · u 13 + u 13 · u 14 + u 14 · u 15 + 0 =
 + 1 · 1 + 1 · 0 + 0 · 1 + 1 · 0 + 0 = 2) . The only way to satisfy

20) is to have, for instance, u 11 = u 12 = u 13 = 1 and u 1 t = 0 for

 ≥ 4 . In other words, farm 1 has its plots harvested in periods 1,

, and 3. 

At each time period, the total number of deployed machines 

f a given type is limited by inequalities (21) . According to con- 

traints (22) and (23) , if at a given period a plot is not harvested

 y i jtd = 0 ) then no equipment can be assigned to it ( w jt = z h jt = 0 ).

he non-linear constraints (24) and (25) impose the amount of 

ugarcane grown on each plot be fully harvested. In addition, the 

ilinear term w jt z ht j on the left-hand side of (24) and (25) allows 

he harvesting effort to be modeled in terms of the number of 

ours worked and the number of machines used on each plot and 

n each period. For example, having w jt = 2 and z ht j = 4 for some

lot j, period t , and machine type h results in a total of 8 hours of

ork. If w jt = 4 and z ht j = 2 , also 8 hours of labor are spent, but at

 lower cost because fewer machines need to be moved (recall ob- 

ective function (5) ). Finally, constraints (26) –(31) state the integer 

nd non-negativity conditions for the different sets of variables. 

Our formulation differs from the model recently developed by 

oltroniere et al. (2021) in that it (i) considers multiple objectives; 

ii) takes into account neighborhood conditions for planting; and 

iii) schedules harvesting operations, including working hours of 

achines. Clearly, these features make our model more difficult 

o solve. In particular, the various non-linear components in the 

odel make it challenging to develop an efficient and effective 

ethodology to obtain Pareto-optimal solutions. For this reason, 

e develop in the next section an equivalent formulation obtained 

hrough linearization techniques. This approach has proven useful 

n solving other problems related to the tactical planning of oper- 

tions in the sugarcane industry, e.g., Aliano Filho et al. (2021) . 

.3. A linear and equivalent mathematical formulation 

Recall that the objective function (5) and constraints (20), 

24) and (25) have non-linear terms. First, we transform the ab- 

olute value function in (5) into a linear function by introducing 

he non-negative continuous variables ρ+ 
f t 

and ρ−
f t 

as follows: 

+ 
f t 

− ρ−
f t 

= 

∑ 

h ∈ H 

∑ 

j∈ ̃  J f 

z h j(t+1) − z h jt f ∈ F , t ∈ T H \ { ̄t + d̄ } . (32) 

s a result, the linear objective function (41) is obtained. 

Next, we replace each product of binary variables in (20) by the 

ew binary variable γ f t , and add the following linear constraints: 

f t ≤ u f t f ∈ F , t ∈ T H \ { ̄t + d̄ } (33) 

f t ≤ u f (t+1) f ∈ F , t ∈ T H \ { ̄t + d̄ } (34) 

 f t + u f (t+1) ≤ 1 + γ f t f ∈ F , t ∈ T H \ { ̄t + d̄ } . (35) 

hese inequalities impose γ f t = 0 when u f t = 0 or u f (t+1) = 0 , oth-

rwise γ f t = 1 . Hence, constraints (20) are replaced by (42) . 

The left-hand sides of constraints (24) and (25) involve bilin- 

ar terms of non-negative continuous and integer variables. We 

ewrite these terms using a new set of continuous variables δh jt 

 h ∈ H, j ∈ J, t ∈ T H ). Furthermore, we model the binary expansion

f the integer variables z h jt by defining new binary variables αh jtr 

s follows: 

 h jt = 

∑ 

r∈ R ht 

2 

r−1 αh jtr h ∈ H, j ∈ J, t ∈ T H , (36) 
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(  
ith R ht = { 1 , . . . , � log 2 ( z ht ) 	 + 1 } . Therefore, each term w jt z h jt in 

24) –(25) can be rewritten as 

h jt = w jt 

∑ 

r∈ R ht 

2 r−1 αh jtr = 

∑ 

r∈ R ht 

2 r−1 w jt αh jtr h ∈ H, j ∈ J, t ∈ T H . 

e now introduce a new set of non-negative continuous variables 

h jtr = w jt αh jtr ( h ∈ H, j ∈ J, t ∈ T H , r ∈ R ht ), and state the following

elationships: 

h jt = 

∑ 

r∈ R ht 

2 

r−1 βh jtr h ∈ H, j ∈ J, t ∈ T H . (37) 

ince the continuous variables w jt are bounded by w , the lineariza- 

ion of the term w jt αh jtr in (24) –(25) is obtained by introducing 

he following three sets of constraints: 

h jtr ≤ w αh jtr h ∈ H, j ∈ J, t ∈ T H , r ∈ R ht (38) 

h jtr ≤ w jt h ∈ H, j ∈ J, t ∈ T H , r ∈ R ht (39) 

h jtr ≥ w jt − w (1 − αh jtr ) h ∈ H, j ∈ J, t ∈ T H , r ∈ R ht . (40) 

he technique used to develop constraints (36) –(40) along with the 

alues that the variables δh jt , αh jtr , and βh jtr can take, provides 

n exact linearization of the original bilinear terms as proven by 

upte, Ahmed, Cheon, & Dey (2013) . 

The reformulation of the MINLP model defined by (3) –(31) into 

n equivalent MILP model is given as follows: 

aximize v 1 = 

∑ 

i ∈ V S 

∑ 

j∈ J S 

∑ 

t∈ T H 

∑ 

d∈ D S 
p S i jd y i jtd + 

∑ 

i ∈ V E 

∑ 

j∈ J E 

∑ 

t∈ T H 

∑ 

d∈ D E 
p E i jd y i jtd (3) 

inimize v 2 = 

∑ 

f∈ F 

∑ 

t∈ T H 
u f t (4) 

inimize v 3 = 

∑ 

f∈ F 

∑ 

j∈ ̃  J f 

∑ 

h ∈ H 
r f 

(
z h j( t + d ) + z 

h j( ̄t + ̄d ) 
)
+ 

∑ 

f∈ F 

∑ 

t∈ T H \{ ̄t + ̄d } 
r f 

(
ρ+ 

f t 
+ ρ−

f t 

)
(41) 

ubject to 

6)-(19) , (21)-(23) , (26)-(40) 

 + 

∑ 

h ∈ T H \{ ̄t + ̄d } 
γ f t = 

∑ 

t∈ T H 
u f t f ∈ F (42) 

∑ 

h ∈ H 

∑ 

t∈ T H 
capH h δh jt = 

∑ 

i ∈ V S 

∑ 

t∈ T H 

∑ 

d∈ D S 
p S i jd y i jtd j ∈ J S (43) 

∑ 

h ∈ H 

∑ 

t∈ T H 
capH h δh jt = 

∑ 

i ∈ V E 

∑ 

t∈ T H 

∑ 

d∈ D E 
p E i jd y i jtd j ∈ J E (44) 

+ 
f t 
, ρ−

f t 
≥ 0 f ∈ F , t ∈ T H \ { ̄t + d̄ } (45) 

f t ∈ { 0 , 1 } f ∈ F , t ∈ T H \ { ̄t + d̄ } (46) 

h jt ≥ 0 h ∈ H, j ∈ J, t ∈ T H (47) 

h jtr ∈ { 0 , 1 } h ∈ H, j ∈ J, t ∈ T H , r ∈ R ht (48) 
b

336 
h jtr ≥ 0 h ∈ H, j ∈ J, t ∈ T H , r ∈ R ht (49) 

Naturally, the linearization of the original formulation results in 

 larger model, especially with respect to the total number of con- 

traints, which grow significantly. This aspect will be illustrated in 

ection 4 (cf. Table 2 ) for the instances considered in our compu- 

ational study. 

. Solution methodology 

Several solution approaches have been proposed for optimiza- 

ion problems that include sugarcane crop and harvest planning 

ecisions. Florentino et al. (2020) develop a genetic algorithm 

GA) and a hybrid metaheuristic, combining variable neighborhood 

earch and GA, while Poltroniere et al. (2021) design a heuristic 

rocedure that uses relax-and-fix and fix-and-optimize strategies. 

riven by the tactical nature of our problem, we chose to develop 

n exact method rather than a heuristic algorithm. In practice, 

ince planning is carried out well in advance (usually many weeks 

efore the planting season), it is not paramount to obtain Pareto- 

ptimal solutions in a short computing time. This fact allows us 

o invest in a method for which computational performance does 

ot have to be stringent. Moreover, the availability of optimal (or 

ear-optimal) solutions is extremely important for being able to 

valuate the quality of the feasible solutions returned by a (meta-) 

euristic that may eventually be developed. 

The tailored exact method that we present in this section is 

ased on the augmented Chebyshev scalarization technique. Sev- 

ral reasons motivated our choice. On the one hand, our approach 

as theoretical advantages over the classical ε-constraint method 

 Ehrgott, 2005 ) and the Progressive Bounded Constraint proce- 

ure ( Aliano Filho et al., 2021; Gonçalves et al., 2019 ). In addi-

ion, it requires a single optimization step to obtain an efficient 

olution (other than a lexicographic solution), which is also ad- 

antageous. Furthermore, preliminary tests with the ε-constraint 

ethod revealed that it is very challenging to obtain feasible in- 

eger solutions within reasonable computing time. By contrast, the 

ethod that we propose uses an initial feasible integer solution 

hat greatly helps reduce the computational effort required to de- 

ermine the optimal solutions to the various subproblems through- 

ut the optimization process. Moreover, our solution approach is 

lso easy to implement. Finally, a further advantage is that this 

s a general procedure that can be used to solve linear program- 

ing problems with three objectives, either with integer variables 

r not. 

The method that we describe in this section consists of three 

hases. Phase 1 is designed to obtain a feasible solution to the 

roblem defined by the objective functions (3), (4) , and (41) , sub- 

ect to constraints (6) –(19), (21) –(23), (26) –(40) , and (42) - (49) . In

hase 2, lexicographic ordering is applied, and the ideal and anti- 

deal (nadir) vectors are determined. Finally, in the third phase, a 

inear version of the min-max augmented Chebyshev scalarization 

ethod ( Ehrgott, 2005; Miettinen, 1999 ) is employed to identify 

urther Pareto-optimal solutions to our problem. In particular, this 

hase enables non-supported efficient solutions to be found. The 

nitial feasible solution (Phase 1) is used in the subsequent phases 

n an attempt to reduce the computational effort. Our scheme re- 

uires solving multiple single objective subproblems to optimality. 

s will be shown in Section 4 , this is achieved by using general-

urpose optimization software. Figure 2 illustrates the three phases 

f the developed method, along with their interconnection. 

Let νk denote the k th objective function ( k ∈ { 1 , 2 , 3 } ) and

et s be a feasible solution to the (linearized) problem, i.e., s = 

x , y , u , e , w , z , ρ+ , ρ−, γ , δ, α, β) . The feasible space S is defined

y the constraints given above. For convenience, we set ν = −v 
1 1 
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Fig. 2. Flowchart of the proposed methodology. s , s 0 , s ∗
k, 1 

, s ∗
k̄ ,k, 2 

, and s ∗
ˆ k , ̄k ,k, 3 

indicate different solutions that are obtained in the course of the algorithm. 
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o that maximizing the objective (3) is equivalent to minimizing 

1 . Moreover, ν2 = v 2 (cf. (4) ) and ν3 = v 3 , with v 3 given by the 

inear objective function (41) . 

Phase 1: Determining a feasible integer solution 

An initial feasible solution is identified by decomposing the 

problem into two subproblems and ignoring the three ob- 

jective functions. Solving the first subproblem (Step 1) re- 

sults in a schedule for planting and harvesting sugarcane on 

farms that satisfies the capacity and demand constraints as 

well as other technical requirements. The deployment of the 

harvesting equipment, represented by variables z h jt and w jt , 

is deferred to the second subproblem (Step 2). 

Step 1 Cultivation and harvesting schedule 

minimize ν4 = q 

subject to (6 ) − (19 ) , (26 ) − (29 ) , (33 ) − (35 ) , (42 ) , (46 ) 

q = 1 (50) 

Let us denote the optimal solution to problem (50) by s̄ = 

( ̄x , ̄y , ̄u , ̄e , γ̄ ) . Using this incomplete, yet feasible, solution 

s̄ to the original problem, we now select the harvesting 

equipment to be deployed and determine the associated 

working time by solving the following reduced problem. 

Step 2 Deployment of harvesting machines 

minimize ν4 = q 

subject to (21 ) − (23 ) , (36 ) − (40 ) , (43 ) − (44 ) , (47 ) − (49 ) 

q = 1 (51) 

Since the three objective functions are not explicitly consid- 

ered, Steps 1 and 2 return a feasible solution s 0 to the orig- 

inal problem with relatively low computational effort. 
337 
hase 2 is designed to identify the lexicographic solutions. This 

nvolves solving 15 single objective subproblems by ranking the 

hree objective functions according to their importance. This task 

s performed in three steps. Furthermore, in the last step, the ideal 

ector and the anti-ideal vector are obtained. 

Phase 2: Determining lexicographic solutions 

Lexicographic ordering starts by minimizing each objective 

individually over the feasible space. 

Step 1 Highest priority level 

ν∗
k, 1 = min { νk (s ) : s ∈ S } , k ∈ { 1 , 2 , 3 } . (52) 

Each subproblem is solved from the initial feasible solu- 

tion, s 0 , which results in a significant decrease in com- 

putational effort. For each k , let s ∗
k, 1 

be the optimal solu- 

tion to subproblem (52) and let ν∗
k, 1 

be its optimal value 

( k ∈ { 1 , 2 , 3 } ). In addition, the objective functions ν� (s ∗
k, 1 

)

are also evaluated ( � ∈ { 1 , 2 , 3 } , � 
 = k ) and their values re-

tained as they will be required in Step 4. 

Step 2 Second highest priority level 

In this step, the second most important objective is opti- 

mized by adding a new constraint that guarantees that 

the first objective function preserves its optimal value. 

Therefore, six subproblems are solved. 

ν∗
k̄ ,k, 2 

= min 

{
ν

k̄ 
(s ) : νk (s ) ≤ ν∗

k, 1 , s ∈ S 
}
, 

k̄ , k ∈ { 1 , 2 , 3 } , k̄ 
 = k. (53) 

For each k̄ , the optimal solution s ∗
k̄ ,k, 2 

to subprob- 

lem (53) is determined starting from the optimal solution 

s ∗
k, 1 

to the subproblem it originated from at the previous 

level, i.e., in which the objective function νk was given 

the highest preference ( k 
 = k̄ ). This strategy helps expe- 

dite the process of solving each subproblem. Moreover, for 
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each s ∗
k̄ ,k, 2 

, the associated value of the objective function 

ν� is also determined for � ∈ { 1 , 2 , 3 } , � 
 = k̄ , and � 
 = k . 

Step 3 Third highest priority level 

Finally, the least important objective is optimized in the 

feasible space, with the latter extended with two con- 

straints that ensure the optimal values of the two most 

important objectives are preserved. In total, six single ob- 

jective subproblems are solved. 

ν∗
ˆ k , ̄k ,k, 3 

= min 

{ 

νˆ k 
(s ) : νk (s ) ≤ ν∗

k, 1 , νk̄ 
(s ) ≤ ν∗

k̄ ,k, 2 
, s ∈ S 

} 

, 

ˆ k , ̄k , k ∈ { 1 , 2 , 3 } , ˆ k 
 = k̄ 
 = k. (54) 

Again, we use the optimal solutions s ∗
k̄ ,k, 2 

obtained in 

Step 2 to solve subproblems (54) to optimality as a way to 

reduce the computational effort. Let s ∗
ˆ k , ̄k ,k, 3 

be the optimal 

solutions to subproblems (54) and ν∗
ˆ k , ̄k ,k, 3 

their optimal 

values. Note that s ∗
ˆ k , ̄k ,k, 3 

are the lexicographic solutions 

to the original problem ( ̂ k , ̄k , k ∈ { 1 , 2 , 3 } , ˆ k 
 = k̄ 
 = k ). Even

though they reflect ‘extreme’ cases due to the predomi- 

nance of one objective over the other two, their images 

in the objective space provide critical reference points for 

the decision-maker (i.e., lower bounds on the different 

criteria). 

Step 4 Determining the ideal and anti-ideal vectors 

Let ν I = 

(
ν I 

1 , ν
I 
2 , ν

I 
3 

)T 
be the ideal vector. Its components 

are available from Step 1, i.e., ν I = 

(
ν∗

1 , 1 
, ν∗

2 , 1 
, ν∗

3 , 1 

)T 
. In ad- 

dition, let νA = 

(
νA 

1 
, νA 

2 
, νA 

3 

)T 
be the anti-ideal vector. The 

components of νA are given by the worst objective values 

that were obtained in the course of determining the set 

of lexicographic solutions. In this way, upper bounds on 

all three objectives are available, which are also relevant 

for the decision-maker. 

n the last phase of the method, additional Pareto-optimal so- 

utions are identified with a linear version of the augmented 

hebyshev scalarization method. Our approach enables the gener- 

tion of compromise solutions that represent non-supported non- 

ominated solutions. 

Phase 3: Determining compromise Pareto-optimal solutions 

The two vectors ν I and νA obtained in Phase 2 (Step 4) are 

required to define the constraints of subproblem (55) . To re- 

duce the computational effort, the latter is solved from the 

initial solution s 0 obtained in Phase 1. 

minimize ν5 (s ) = μ + ε ( ν1 (s ) + ν2 (s ) + ν3 (s ) ) 

subject to λk 

νk (s ) − ν I 
k 

νA 
k 

− ν I 
k 

≤ μ, k ∈ { 1 , 2 , 3 } , 
μ ≥ 0 , s ∈ S, (55) 

where μ is an auxiliary variable, the parameter λk > 0 is 

pre-specified for k ∈ { 1 , 2 , 3 } such that λ1 + λ2 + λ3 = 1 , and

ε is a suitable small positive constant that prevents weakly 

efficient solutions from being generated. Observe that sub- 

problem (55) is a linear version of the non-linear min-max 

Chebyshev distance model, i.e., 

min 

{
max 
1 ≤k ≤3 

{
λk 

νk (s ) − ν I 
k 

νA 
k 

− ν I 
k 

}
: s ∈ S 

}
. 

We emphasize that by varying the values of parameters 

λk , k ∈ { 1 , 2 , 3 } , distinct non-dominated solutions are ob-

tained to the original problem that achieve different trade- 
offs among the three objectives. e
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. Computational study 

In this section, we present and discuss the results of an exten- 

ive computational study. In Section 4.1 , we describe how the data 

ere generated. Numerical results are reported in Section 4.2 and 

elevant insights into the characteristics of the Pareto-optimal so- 

utions identified are discussed in Section 4.3 . 

.1. Test instances 

The basis of our study consists of four semi-randomly test in- 

tances of realistic size that represent the current cultivation and 

arvesting practices in the center-south region of Brazil, which is 

he heart of the Brazilian sugarcane industry. The instances differ 

n the number of farms, plots, and cultivation areas as shown in 

able 1 . The smallest instance has 30 plots across 5 farms, while 

he largest instance has 240 plots across 37 farms. A simple pro- 

edure is used to define the neighborhoods of the plots, namely 

or each plot j ∈ J we set N( j) = { j, p 1 , p 2 , p 3 } , with p i = j + i if

j + i ≤ | J| and p i = j − i otherwise, for i ∈ { 1 , 2 , 3 } . 
As in the study by Poltroniere et al. (2021) , we consider 25 dif- 

erent sugarcane varieties, of which 20 are for sucrose-cane and 

he remaining five for energy-cane. Their productivity levels ( s id , 

 id ) are specified according to Poltroniere et al. (2021) . Each sug- 

rcane variety can be planted on 30 percent of the plots ( ηi = 

 . 3 , i ∈ V ). For example, for the largest instance, this means that

 . 3 k S = 48 plots and 0 . 3 k E = 24 plots are grown with a specific

ariety of sucrose-cane and energy-cane, respectively. The area of 

ach plot is randomly selected from a normal distribution N (μ, σ ) 

ith mean μ = 25 ha and standard deviation σ = 15 ha, which are 

ealistic parameters. Taking into account the productivity of each 

ndividual sugarcane variety, the areas of the plots ( a j ), and the 

umber of plots dedicated to sucrose-cane ( k S ) and energy-cane 

 k E ) in each instance, we have estimated the mean demand and 

he standard deviation per product and period. These estimates are 

sed to randomly draw the demand for each type of sugarcane per 

eriod from a normal distribution, see d S t and d E t in Table 1 . The

ast column of the table also gives the mill capacity ( capM t ) in each

nstance, which is 5 percent greater than the total amount of sug- 

rcane that the plots could produce if they were all harvested at 

he peak maturity period. 

The sucrose content of traditional sucrose-cane varieties ranges 

rom 10 percent to 15 percent ( Florentino et al., 2020; Mat- 

uoka, Bressiani, Maccheroni, & Fouto, 2012 ). Recent studies have 

ndicated that the more fibrous energy-cane varieties exceed 

5 percent of dry mass (fiber and Brix, the latter being a mea- 

ure of sugar content) ( Matsuoka, dos Santos, & Tomazela, 2017; 

antchurn, Ramdoyal, Badaloo, & Labuschagne, 2012 ). Based on 

hese values, we have assumed an average of 12.5 percent sucrose 

or sucrose-cane varieties and 37.5 percent fiber for energy-cane 

arieties. As a result, we have set θS = 

100 
12 . 5 = 8 and θE = 

100 
37 . 5 = 

 . 67 as conversion factors in constraints (17) . 

The overall planning horizon spans 23 periods, with each pe- 

iod representing one month. Sucrose-cane varieties with an 18- 

onth cycle can be planted in the first four months (i.e., from 

anuary to April), and therefore T P = { 1 , 2 , 3 , 4 } for every i ∈ V 2 S .

hus, depending on the month of cultivation, the highest sucrose 

ontent is reached in month 19, 20, 21, or 22. Sucrose-cane va- 

ieties with a 12-month cycle can be planted in September and 

ctober, i.e., T P = { 9 , 10 } for every i ∈ V 1 
S 

. In this case, maturity

s attained either in month 21 or month 22. The planting season 

or energy-cane varieties is T P = { 1 , 2 , 3 , 4 , 9 , 10 } ( i ∈ V E ). For any

iven sugarcane variety, harvesting can occur up to three months 

efore or after the peak maturity month, i.e., d = −3 , d̄ = 3 , and

 S = D E = {−3 , −2 , . . . , 2 , 3 } . This implies that for 18-month vari-

ties, the harvest time horizon starts in month 16 (April) and ends 
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Table 1 

Parameters related to farms, plots, demands for sucrose-cane and energy-cane, and mill capacity. 

| F | | F S | | F E | | J| k S k E ηi a j (ha) d S t (ton.) d E t (ton.) capM t (ton.) 

5 3 2 30 20 10 

0.3 N (25 , 15) 

N (90 0 0 , 10 0) N (70 0 0 , 10 0) N (10 0 0 0 0 , 10 0) 

10 6 4 60 40 20 N (180 0 0 , 10 0) N (140 0 0 , 10 0) N (20 0 0 0 0 , 10 0) 

22 14 8 120 80 40 N (40 0 0 0 , 10 0) N (30 0 0 0 , 10 0) N (40 0 0 0 0 , 10 0) 

37 24 13 240 160 80 N (80 0 0 0 , 10 0) N (60 0 0 0 , 10 0) N (80 0 0 0 0 , 10 0) 
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n month 23 (November). Note that due to the total length of the 

lanning horizon, the maximum deviation from peak maturity is 

educed to d̄ = 2 and d̄ = 1 when sugarcane is cultivated in March 

 t = 3 ) and April ( t = 4 ), respectively. For varieties with a 12-month

ycle, the largest deviation is d̄ = 2 ( ̄d = 1 ) for cane planted in

eptember (October) of the preceding year (i.e., t = 9 or t = 10 ).

n short, T H = { 16 , . . . , 23 } . 
Furthermore, two types of harvesters ( | H| = 2 ) that can cut up

o capH 1 = 20 and capH 2 = 25 tonnes of sugarcane per hour, re-

pectively, are considered. Each harvesting machine can be oper- 

ted up to 16 hours per day, corresponding to two 8-hour work 

hifts, on 25 days per month, leading to a monthly availability 

f w̄ = 400 hours. In the small instances with 5 and 10 farms, 

he total number of harvesters of type h available in month t is 

iven by z̄ ht = �N (15 , 1) � , while for the larger instances we set

¯ ht = �N (25 , 1) � ( h ∈ H, t ∈ T H ). The total cost of moving a har-

ester between the depot and farm f is r f = c d 0 
f 
, with unit cost

 = 10 R $ per km and travel distance d 0 
f 

randomly generated from 

 normal distribution with mean μ = 50 km and standard devia- 

ion σ = 20 km. 

.2. Numerical results 

The multi-objective MILP formulation developed in 

ection 2.3 was implemented with the JuMP modeling language 

version v0.20, Dunning, Huchette, & Lubin, 2017 ) and embedded 

n the Julia programming language (version 1.5.0, Bezanson, Edel- 

an, Karpinski, & Shah, 2017 ). All experiments were performed on 

 laptop computer with a 2.5 GHz Intel Core i7-2450M processor, 

 GB RAM, and running a 64-bit operating system. Subprob- 

ems (50) –(55) were solved with IBM ILOG CPLEX 12.8. A limit of 

,600 seconds of CPU time and an optimality gap of 0.01% were 

et for each solver run. 

The size of the Pareto-optimal set returned by the method de- 

cribed in Section 3 greatly depends on the number of different 

ombinations chosen for parameters λk in Phase 3. In our com- 

utational study, we have opted to focus our analysis on a sub- 

et of non-dominated solutions that are not only good represen- 

atives of the conflicting nature of the objectives (3), (4) , and (41) ,

ut also provide relevant information about the trade-offs achieved 

y each alternative. Through this subset, a decision-maker will 

ecome aware of the practical implications of different cultiva- 

ion and harvesting schedules. To this end, the results that will 

e presented in this section and the next section refer to a sub- 

et with four Pareto-optimal solutions, three of which are lexi- 

ographic solutions and the fourth is the outcome of solving the 

inearized Chebyshev min-max subproblem (55) taking ε = 10 −6 

nd λk = 1 / 3 for k ∈ { 1 , 2 , 3 } . This choice represents a balanced

ompromise between the three objectives and is supported by the 

tudies of Florentino et al. (2018) and Aliano Filho, Florentino, Pato, 

oltroniere, & Costa (2022) for other multi-objective optimization 

roblems in the Brazilian sugarcane production chain. In practice, 

ther values for λk could be fixed following a discussion with the 

ecision-maker. As will be shown, our choice provides an accept- 

ble trade-off between computational effort and number of effi- 

ient solutions generated by the proposed method while avoid- 

ng an overly extensive comparative analysis. Among the lexico- 
339 
raphic solutions returned by Phase 2, we will analyze the solu- 

ions for [ k, ̄k , ̂  k ] = [1 , 2 , 3] (Pareto-optimal solution 1), [ k, ̄k , ̂  k ] =
2 , 1 , 3] (Pareto-optimal solution 2), and [ k, ̄k , ̂  k ] = [3 , 1 , 2] (Pareto-

ptimal solution 3). We note that the characteristics of the re- 

aining lexicographic solutions do not significantly differ from the 

nes we have selected. For example, the efficient solution associ- 

ted with [ k, ̄k , ̂  k ] = [1 , 3 , 2] shares many of the features of solu-

ion 1. Similar observations hold for [ k, ̄k , ̂  k ] = [2 , 3 , 1] compared to

olution 2 and for [ k, ̄k , ̂  k ] = [3 , 2 , 1] compared to solution 3. Since

2 subproblems need to be solved to obtain the set of selected ef- 

cient solutions for an individual instance, in total 48 subproblems 

re solved. 

For each number of farms and plots considered in a test in- 

tance, Table 2 presents the total number of variables and con- 

traints in the non-linear formulation (3) –(31) (columns 3–4) and 

he equivalent linear formulation (3) –(4), (6) –(19), (21) –(23), (26) –

49) (columns 5–6). Furthermore, the average optimality gap (col- 

mn 7) and the average CPU time (column 8) returned by CPLEX 

re also reported for each solution. For simplicity, we will con- 

inue to use the term Pareto optimality even when the optimality 

f a particular solution is not guaranteed because the pre-specified 

ime limit was reached. 

Unsurprisingly, the linearization techniques greatly affect the 

ize of the equivalent formulation. In particular, the total num- 

er of constraints increases, on average, by a factor of 13.4, while 

5 percent more variables are included in the linear model. Despite 

he large size of the linear formulation, our method identifies high- 

uality solutions, as demonstrated by the optimality gaps of less 

han one percent in nine of the 16 solutions. The remaining seven 

olutions have larger, but still satisfactory, optimality gaps taking 

nto account the short time limit. Compared to the other lexico- 

raphic solutions, this feature suggests that it is computationally 

ore expensive to assign the highest preference to minimizing the 

otal number of harvesting fronts (4) , followed by minimizing the 

otal transportation cost of the harvesters (41) , and finally maxi- 

izing the total amount of sucrose and fiber produced (3) . 

Table 3 gives the objective values of the different efficient solu- 

ions (columns 3–5). To facilitate the comparative analysis, we also 

resent for each solution and objective function, the percent de- 

iation of its objective value from the best value among the four 

olutions available (see columns 6–8). The smallest deviation (0%) 

s highlighted in bold type. The conflicting nature of the three ob- 

ectives is clearly reflected in the results obtained, particularly in 

olutions 1–3. Most notably, to achieve a higher level of produc- 

ivity (solutions 1) it is necessary to harvest the sugarcane at or 

ery close to its peak maturity, especially for the sucrose-cane va- 

ieties that are the majority of the varieties considered. This in- 

olves concentrating the harvesting effort on certain months. As 

 result, more equipment is needed in some months on different 

arms, thus significantly increasing the number of fronts ( v 2 ) and 

achine transportation costs ( v 3 ). As expected, placing preference 

n minimizing the number of farms that are harvested simultane- 

usly (solutions 2) requires the deployment of a larger number of 

arvesting machines, thereby negatively affecting their transporta- 

ion costs ( v 3 ). At the same time, it is not possible to harvest all

he plots at their ideal time, which reduces total productivity, es- 

ecially for sucrose-cane varieties. Accordingly, the worst perfor- 
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Table 2 

Size of test instances and CPLEX performance. 

| F | / | J| Sol. MINLP formulation MILP formulation CPLEX performance 

# var. # const. # var. # const. Gap (%) CPU time (sec.) 

5/30 

1 

38,268 1,540 43,653 18,485 

< 0 . 01 1,830 

2 1.25 3,600 

3 < 0 . 01 1,445 

4 < 0 . 01 1,224 

10/60 

1 

76,528 3,015 87,298 36,905 

0.00 2,341 

2 2.23 3,600 

3 < 0 . 01 2,876 

4 0.14 3,600 

22/120 

1 

153,064 5,983 178,486 87,261 

< 0 . 01 3,376 

2 4.21 3,600 

3 1.65 3,600 

4 0.86 3,600 

37/240 

1 

306,064 11,838 356,761 174,191 

< 0 . 01 3,552 

2 5.25 3,600 

3 2.33 3,600 

4 3.35 3,600 

Table 3 

Performance of the solutions identified. 

| F | / | J| Sol. Objective values Dev. to best obj. value (%) 

Production # harv. fronts Transp. cost v 1 v 2 v 3 
v 1 (ton.) v 2 v 3 (R$) 

5/30 

1 160,589.33 23 16,500.00 0.0 43.8 223.5 

2 156,486.27 16 16,300.00 -2.6 0.0 219.6 

3 160,395.19 27 5,100.00 -0.1 68.8 0.0 

4 158,849.76 21 9,700.00 -1.1 31.3 90.2 

10/60 

1 317,829.63 45 21,400.00 0.0 125.0 100.0 

2 295,728.16 20 36,500.00 -7.0 0.0 241.1 

3 307,080.79 53 10,700.00 -3.4 165.0 0.0 

4 304,502.30 40 25,700.00 -4.2 100.0 140.22 

22/120 

1 633,893.06 82 94,600.00 0.0 173.3 192.9 

2 595,503.08 30 132,600,00 -6.1 0.0 310.5 

3 591,552.99 94 32,300.00 -6.7 213.3 0.0 

4 601,496.50 38 107,300.00 -5.1 26.7 232.2 

37/240 

1 1,065,431.72 130 217,980.00 0.0 60.5 53.8 

2 996,694.33 81 287,440.00 -6.5 0.0 102.8 

3 1,002,142.47 139 141,720.00 -5.9 71.6 0.0 

4 1,026,490.76 99 224,660.00 -3.7 22.2 58.5 
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ance with respect to objectives v 1 and v 3 is achieved with solu- 

ions 2 for almost all test instances. In contrast to this alternative, 

inimizing the total transportation cost (solutions 3) clearly ex- 

lains the greatest deterioration of objective v 2 through scheduling 

he largest number of harvesting fronts. Moreover, as the size of 

he instances increases, the level of sucrose and fiber productivity 

rops markedly. As for solutions 4, the compromise between the 

hree objectives is noticeable in Table 3 . The number of harvesting 

ronts always takes second place in the ranking of the identified 

olutions, while productivity and total transportation cost appear 

ither in the second or third position. In conclusion, the informa- 

ion provided by Table 3 is very useful from a practical viewpoint, 

s it enables the decision-maker to understand the trade-offs be- 

ween the three criteria, and thus supports his/her choice of the 

chedule that could be implemented. A more detailed analysis of 

he different characteristics of each solution is presented in the 

upplementary material associated with this article (see Figures 5 

nd 6) for the instance with 5 farms and 30 plots. Accordingly, 

he harvesting schedules are specified for the individual sugarcane 

ypes grown, and compared using several key performance mea- 

ures. In addition, a solution created manually using simple rules 

ommonly found in practice is also shown in Table 7 in the sup- 

lementary material for this instance. This solution is evaluated 
t

340 
gainst the available Pareto-optimal solutions, and its inferior qual- 

ty is discussed. Finally, a brief analysis is also carried out on the 

otal number of different sugarcane varieties planted on a farm in 

ll instances generated, see Table 8 in the supplementary material. 

.3. Managerial insights 

Further insights into the features of the Pareto-optimal solu- 

ions identified for each instance are provided in this section. The 

erformance measures to be analyzed include: (i) the choice of 

quipment and its use with respect to time worked; (ii) harvest 

fficiency; (iii) machine transportation spending; and (iv) harvest- 

ng deviations from the peak maturity month. At the end of the 

ection, we give a summary of the main findings of our analysis, 

hus providing a decision-maker with a broad view of the main 

rade-offs in the alternative planting and harvesting schedules. 

Table 4 reports the average number of harvesters of each type 

llocated to a plot (columns 3 and 4) as well as the total number of

achines deployed per plot. Columns 6–8 give the average number 

f hours worked on each plot, farm, and per harvester, respectively. 

he last column presents the average number of months devoted 

o harvesting on a farm. For each instance, the best values among 

he four Pareto-optimal solutions are highlighted in bold type. In 
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Table 4 

Number of harvesters and hours worked. 

| F | / | J| Sol. # harvesters per plot (avg.) Hours worked (avg.) # of months to 

h = 1 h = 2 Total Per plot Per farm Per machine finish the harvest 

on a farm (avg.) 

5/30 

1 1.91 2.10 4.01 169.56 1,400.64 42.29 4.60 

2 1.92 2.22 4.15 138.39 1,386.48 33.38 3.20 

3 1.08 1.06 2.14 228.68 1,420.67 106.92 5.40 

4 1.07 1.05 2.12 208.29 1,392.41 98.18 4.20 

10/60 

1 1.27 1.53 2.80 196.79 1,422.14 70.38 4.50 

2 1.07 1.21 2.28 201.56 1,309.85 88.51 2.00 

3 1.05 1.08 2.12 213.80 1,338.41 100.64 5.30 

4 1.44 1.51 2.95 173.64 1,353.88 58.77 4.00 

22/120 

1 2.00 1.75 3.75 170.37 1,243.82 45.43 3.73 

2 2.05 1.45 3.49 183.31 1,179.35 52.48 1.36 

3 1.00 1.00 2.00 195.58 1,081.73 97.79 4.27 

4 1.71 1.46 3.17 180.83 1,190.65 57.04 1.73 

37/240 

1 1.43 1.47 2.89 183.80 1,445.15 63.52 3.51 

2 1.43 1.47 2.90 166.26 1,349.94 57.37 2.19 

3 1.34 1.19 2.53 180.96 1,312.49 71.62 3.76 

4 1.29 1.39 2.68 179.09 1,372.10 66.88 2.68 

Fig. 3. Average amount of sugarcane harvested per hour. 
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lmost all solutions, there is a preference for operating more har- 

esting machines of type 2 than of type 1, as the former have 

arger capacity, which allows for increased production in a shorter 

eriod of time. As expected, on average, fewer harvesters are used 

er plot in those solutions that give more relevance to minimiz- 

ng the total cost of transporting the machines between the depot 

nd the farms (solutions 3). However, each machine is operated 

onger and thus subject to more wear. In turn, the maintenance ef- 

ort and even the risk of machine failure increase. These aspects 

re comparatively less marked in the other solutions. When mini- 

izing the number of harvesting fronts is the most important cri- 

erion (solutions 2), harvesting is performed faster on each farm, as 

ndicated in columns 7 and 9. This feature is especially striking in 

he instance with 22 farms and 120 plots. We note that the small 

uctuations in the average number of hours worked on each farm 

column 7) are due to differences in the production levels from one 

olution to another and the types of machines used. 

Harvesting efficiency is related to the quantity of sugarcane that 

s cut per hour. Figure 3 illustrates this performance measure for 

he different Pareto-optimal solutions. It can be seen that the har- 

esting schedules generated by solutions 3 offer greater efficiency, 

hich can be attributed in part to a more intensive use of the ma- 

hines with higher harvesting capacity over the planning horizon. 

Figure 4 displays the relative cost of machine transports per 

00 tonnes of sucrose and fiber produced. The costs rise as the 

umber of fronts, and therefore also the number of farms, where 
341 
arvesting is carried out in the same month, increase because 

ore harvesting machines need to be deployed. Hence, confirming 

ur previous analysis, solutions 2 are the most expensive, whereas 

olutions 3 have the lowest cost. Compromise solutions 4 are likely 

o have a slightly higher cost than solutions 1, since the former use 

 larger number of harvesters on average (recall Table 4 ). 

The month in which a cane variety is harvested affects not only 

he level of sucrose and fiber yields, but also the deployment of 

achinery. Recall from (1) that anticipating or delaying the har- 

est of any sucrose-cane variety is detrimental. On the contrary, 

elaying the harvest of energy-cane varieties (in our case, up to 

 months so that the harvest takes place within the planning hori- 

on) results in higher fiber production, see (2) . Table 5 addresses 

his issue by reporting in columns 3 and 5 the percent of plots that 

re harvested at the ideal month. Columns 4 and 6 give the mean 

f all absolute deviations. For the larger instances, solutions 1 that 

avor maximizing sucrose and fiber yields provide the best results 

or both types of sugarcane. Surprisingly, this effect is not observed 

n the smaller instances. Regardless of the Pareto-optimal solution, 

he proportion of plots with energy-cane harvested at its peak ma- 

urity is always higher than the proportion of sucrose-cane plots. 

owever, more variability occurs in the harvest months for the 

nergy-cane varieties, thus explaining why the averages are higher 

or this type of sugarcane. 

Based on the previous analysis and to facilitate the decision- 

aking process, we summarize in Table 6 the main advantages 
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Fig. 4. Transportation cost per 100 tonnes of sugarcane harvested. 

Table 5 

Deviations from the ideal month for harvesting sugarcane. 

| F | / | J| /k S /k E Sol. Sucrose-cane varieties Energy-cane varieties 

% of deviations Absolute avg. % of deviations Absolute avg. 

equal to 0 dev. (months) equal to 3 dev. (months) 

5/30/20/10 

1 25.0 1.4 30.0 1.6 

2 25.0 1.5 50.0 1.8 

3 35.0 1.3 40.0 2.1 

4 25.0 1.5 30.0 1.8 

10/60/40/20 

1 17.5 1.4 25.0 1.4 

2 25.0 1.6 30.0 1.8 

3 7.5 1.7 40.0 1.8 

4 15.0 1.6 25.0 1.4 

22/120/80/40 

1 28.8 1.3 50.0 2.0 

2 16.3 1.7 32.5 1.9 

3 22.5 1.7 22.5 1.8 

4 15.0 1.6 32.5 2.0 

37/240/160/80 

1 16.9 1.8 23.8 1.8 

2 10.0 2.0 12.5 1.6 

3 10.6 2.0 15.0 1.7 

4 11.3 2.0 13.8 1.6 

Table 6 

Summary of advantages and disadvantages of lexicographic solutions. 

Feature Solution 1 Solution 2 Solution 3 

Adv. Disadv. Adv. Disadv. Adv. Disadv. 

Total production (sucrose and fiber) ( v 1 ) � � 

Deviations regarding maturation � � 

Number of varieties planted � � 

Number of harvesting fronts ( v 2 ) � � 

Effort of harvesters � � 

Harvest duration on a plot � � 

Harvest duration on a farm � � 

Harvest efficiency � � 

Machine transportation costs ( v 3 ) � � 

Number of harvesters � � 
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columns 2, 4, and 6) and drawbacks (columns 3, 5 and 7) of 

he three lexicographic solutions for a number of relevant features 

column 1). Although these solutions reflect ‘extreme’ situations, 

hey frame the ranges of the efficient alternative schedules, and 

re therefore useful for gaining insight into the complex trade-offs 

hat occur. Our evaluation disregards Pareto-solution 4 because its 

haracteristics are not pronounced due to the balance between the 

hree objectives achieved by the values assigned to λk in (55) . The 

eatures listed in the table are organized into three categories, each 

elated to an individual objective, to provide a better understand- 

ng of the influence of different preference information. For ex- 

mple, a decision-maker favoring a short harvest becomes aware 
342 
hat this perspective has a lower productivity level, incurs higher 

achine transportation costs, requires greater equipment mainte- 

ance effort, and has decreased harvesting efficiency. 

. Conclusions 

We studied a problem in the Brazilian sugarcane production 

hain that integrates decisions on sugarcane planting, sugarcane 

arvesting, and the deployment of different types of harvesting 

achines over a multi-period planning horizon. The aim is to max- 

mize the level of sucrose and fiber production, to complete har- 

esting on all farms as early as possible, and to minimize the 
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xpenditure on transporting harvesting equipment. Due to the 

onflicting nature of these goals, we proposed a multi-objective 

ixed-integer program that includes non-linear constraints and 

on-linear terms in one of the objective functions. Using lineariza- 

ion techniques we transformed the original formulation into a 

omputationally tractable and equivalent mixed-integer linear pro- 

ram. By integrating key decisions into a single model that are 

ypically made separately, our approach improves coordination be- 

ween cultivation and harvesting operations, and consequently in- 

reases overall performance at the tactical planning level. 

To solve the problem at hand, we developed an exact method 

ased on augmented Chebyshev scalarization. Finding a feasible so- 

ution early in the procedure has proven to be very useful in accel- 

rating the identification of Pareto-optimal solutions. Besides being 

 general method that can be applied to any problem with three 

bjectives, it also has the advantage of being able to identify effi- 

ient solutions in the non-convex region of the Pareto front. 

To validate the mathematical formulation and methodology de- 

eloped, we conducted a computational study on a set of semi- 

andom instances that reflect current sugarcane cultivation and 

arvesting practices in Brazil. Through our comparative analysis of 

 representative subset of Pareto-optimal solutions, we have exam- 

ned in depth the trade-offs between the three competing objec- 

ives, which is a crucial step to support the decision-maker and 

hus bring transparency to the decision process. Our study re- 

ealed that, on average, the productivity level of sucrose and fiber 

aries 6 percent among the solutions analyzed, there is a 53.2 per- 

ent variation regarding the number of harvesting fronts, and a 

6.5 percent variation for the total transportation cost of the har- 

esters. These figures give evidence of the relevance of using a 

ulti-objective approach to this problem. Maximizing sucrose and 

ber production yields leads to an increase in sucrose stocks, a de- 

rease in the number of different sugarcane varieties grown (which 

akes the risk of crop damage higher), greater harvest effort, and 

herefore also higher machine transportation costs. In a scenario 

here the number of harvesting fronts is minimal, there is a re- 

uction in machine effort and harvesting time. However, these pos- 

tive features are offset by a reduction in total production, an in- 

reased total transportation cost, and a slight loss in harvesting ef- 

ciency. The advantages of giving more emphasis to low machine 

ransportation costs include deploying fewer harvesters, building 

ess sucrose stock, and improving harvest efficiency. But at the 

ame time more deviations between the harvesting periods and 

aximum sugarcane maturity occur (being more noticeable for the 

ucrose-cane varieties), the total harvesting time and the num- 

er of harvesting fronts increase, and each machine is operated 

or a longer time. As a result, harvesting equipment is subject to 

ore wear, and therefore more prone to breakdowns and greater 

aintenance effort. Furthermore, our method can also return solu- 

ions that provide some balance between the three objectives, thus 

uantifying the gains and losses in each as a result of the param- 

ters chosen in the scalarization function. These valuable insights 

upport value-added decision-making and set the framework for 

etailing the planting and harvesting schedules at the operational 

evel. 

The problem we have studied is challenging because it involves 

 very large number of variables and constraints, especially the 

inear formulation. Therefore, a future line of research could be 

o design a tailored heuristic method in order to find approxi- 

ate Pareto-optimal solutions for very large-sized instances within 

 reasonable time limit. For example, the heuristic algorithm de- 

eloped by Poltroniere et al. (2021) for a particular case of our 

roblem, involving a single farm, a single objective function (max- 

mization of total production), and fewer technical requirements, 

ould be an interesting starting point to be extended to our more 

omplex multi-objective problem. Another future research venue 
343 
ould be the development of a stochastic model to explicitly cap- 

ure the uncertainty associated with some parameters, for exam- 

le, the weather conditions during the cane growing periods and 

he demand for sucrose and fiber at the mill. 
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