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A B S T R A C T   

We investigate the dynamic and qualitative nature of technological change in 96 countries between 1980 and 
2021 from a structuralist technology upgrading perspective. First, drawing from patent data, we map the dy
namics of technological knowledge by exploring the growth rates and significance of technology clusters. Second, 
we explore whether there is a relationship between specific technology clusters and economic growth. Third, we 
examine whether countries at different levels of development share similar or heterogeneous technology 
upgrading profiles and how patterns of technology upgrading have changed over time. We use a long-term, 
technology-level, cross-country patent dataset, and to address the issues identified we apply two complemen
tary analytical methods: Generalized Method of Moments (GMM) panel data analysis and Fuzzy Set Qualitative 
Comparative Analysis (fs/QCA). We find a significant association between growth dynamics and country-level 
specific technology clusters that is driven by the ongoing ICT-based technological revolution and enabling 
nanotechnology, biotechnology and automation tools. Heterogenous trajectories in technological profiles 
allowed us to distinguish between more productive and less productive technology upgrading profiles at different 
income levels. Our results suggest that innovation policy should go beyond mission oriented policies focused 
solely on newly emerging technologies. Instead, it should develop policy mixes conceived as portfolios of mis
sions focused on technology clusters with disparate objectives, requirements and institutional setups.   

1. Introduction 

‘Add successively as many coaches as you please, you will never get a 
railway thereby’ so said Schumpeter (1934: 64). This is probably one of 
the most famous Schumpeter quotes in the innovation studies literature, 
and epitomizes the significance of technology as the driver of economic 
structural change. Indeed, the relationship between structural change 
and growth has been a central theme in the economy for centuries 
(Syrquin, 1988). However, the structural shift Schumpeter talks about 
refers to qualitative change or the changing nature of technology - 
although in his quotation, proxied by products. The problems related to 
addressing technology directly or indirectly as in Schumpeter’s quote 
via products have persisted. 

As a solution to this issue, a line of research has emerged which proxy 
technology indirectly, via products and industries. On the one hand, in 

formal models, technology tends to be viewed as an aggregate phe
nomenon. In its most aggregate form, technology is represented by ‘total 
factor productivity’ (Solow, 1957), by labour productivity, or using in
dicators such as R&D or patents (Fagerberg, 1987; Romer, 1990). On the 
other hand, technology is perceived as a multi-faceted, multi-level 
phenomenon proxied using various indicators that aggregate different 
facets of technology into a composite indicator (see Archibugi et al., 
2009; Radosevic and Yoruk, 2018). 

While aggregate and multidimensional treatments have improved 
our understanding of the relationship between technology and economic 
growth, they overlook the structural dimension of technological change. 
Patterns of technological change evolve in specific directions, defined by 
technological trajectories and technology paradigms (Dosi, 1982; Perez, 
2010). Hence, in the context of economic growth, technology is not just 
about increased technology intensity or deeper knowledge about 
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existing technologies. It is also about the emergence of new technologies 
and the recombination of the existing knowledge in new directions 
(Arthur, 2009). These emerging novel or combinatorial innovations are 
driven largely by the transformative features of General Purpose Tech
nologies (GPTs) and enabling technologies1 (Bresnahan and Trajten
berg, 1995; Teece, 2018). By measuring technology only through its 
increasing intensity or ‘macro-indicator’ scale – whether TFP or R&D or 
an aggregate composite - we lose sight of the dynamic and qualitative 
nature of technological change. Also, from a policy perspective, in pe
riods of intensive technological change, the direction and structural 
features of a technology are much more important than its intensity. 

In light of these issues, empirical research and conceptual research 
have explored the issue of the structural differences between different 
products, technologies, sectors, regions and countries. The differences in 
the R&D intensity of different sectors and the distinction between high-, 
medium- and low-tech industries, implicitly recognise the importance of 
differences in the technology knowledge base. Research on the 
complexity of products shows, indirectly, that the knowledge bases 
underlying different products matter for economic development (Hi
dalgo et al., 2007; Hidalgo and Hausmann, 2009). Research that ex
plores different diversification patterns – related or unrelated – in 
regions also recognises that the structure of knowledge matters 
(Boschma et al., 2014; Pinheiro et al., 2022). Research on technology 
upgrading suggests that the dynamic and qualitative nature of techno
logical change is dependent not only on knowledge generation but also 
on the inherent structural differences at distinct levels of development 
(Radosevic and Yoruk, 2018). 

Studying the differences in the technological opportunities provided 
by different technological trajectories is essential to understanding their 
differential effects on economic growth. This has been grasped only by a 
few Schumpeterian economists who show that, in specific historical 
periods, specialisation in particular technologies is critical to understand 
differences in growth across economies (Freeman and Perez, 1988; Lee, 
2013; Dosi et al., 2021). For example, Dosi et al. (2021) show that 
sectoral technological opportunities matter for growth. Lee (2013) 
shows that for a group of Asian economies, the catching-up process was 
driven by planned capability accumulation in short cycle technologies. 

We build on and advance this line of research by using direct proxies 
for technological knowledge. As expected, this has pros and cons, but, 
overall, allows us to address directly the relationship between growth 
and the ‘content’ of the knowledge bases underlying different technol
ogies (Fischer et al., 2020). It is hoped that this will overcome the lim
itations related to proxying technology using products (including 
industries as their aggregates) which, increasingly, are technology sys
tems comprising different levels of technical equipment and value- 
added stages. 

Specifically, we address three issues. First, we map current techno
logical knowledge dynamics by exploring the growth rates and signifi
cance of technology clusters. To do this, we develop a technology 
growth-share matrix which leads to our conceptual framework based 
on the crucial transformative role played by GPTs and enabling tech
nologies. Second, we explore the relationship between specific tech
nology clusters and economic growth. Third, we investigate whether 
countries at different levels of development share similar or heteroge
neous technology profiles and how patterns of technology upgrading 

have changed over time. 
These three ‘structuralist’ questions ultimately address the issue of 

whether a country’s technological profile matters and, if so, what are 
their effects across distinct development stages. These are relevant 
questions for innovation policy and, especially, in the current period of 
profound technological transformation driven by the digital and newly 
emerging technologies. There is a huge body of research on the ongoing 
technological transformation at different levels – firm, sector and 
globally. However, none of these works offer more rigorous examination 
of the link between different types of technology (technology clusters) 
and economic growth. In particular, to our best knowledge, there are no 
papers that explore these issues for a large sample of countries and over 
a relatively long time period. We assume this is primarily due to the 
methodological difficulties in trying to capture a variety of technologies 
and distinct technology profiles of individual countries. Our research 
includes some necessary simplifications, but tries to overcome these 
methodological difficulties. 

The empirical setting chosen to address these questions involves data 
on the patenting activity in 96 countries over 40 years (1980–2021). We 
use these data to search for patterns that reveal the types of technologies 
that were instrumental in driving economic growth. In particular, we are 
interested in the relationship between technology profiles and shifts of 
countries from lower to higher income groups. We develop a taxonomy 
of technology classes rather than considering them in aggregate. 

Patent data have been used frequently to track technological activity 
(e.g., Boschma et al., 2014; Granstrand, 1998; Griliches, 1990). The 
novelty offered by our paper is that we develop a simple classification of 
technology groups, based on their individual rates and shares of growth. 
We then investigate whether the orientation towards specific technology 
clusters drives economic growth. We explore individual economies’ 
technology profiles (portfolios) and how they changed in different pe
riods. We apply two complementary methods of analysis: Generalized 
Method of Moments (GMM) panel data analysis and Fuzzy Set Quali
tative Comparative Analysis (fs/QCA). This allows us to investigate the 
relationships between technological profiles and growth in countries 
with different levels of development. 

We find a significant association between growth dynamics, shifts in 
income levels and countries’ involvement in specific technology clus
ters. The heterogenous trajectories of countries’ technological profiles 
allow us to detect more and less productive technology upgrading pro
files for different country groups. We also detect changes in technology 
profiles over time and increasing technology gaps among high-, me
dium- and low-income economies in terms of their capacity to benefit 
from their respective technology profiles. For example, some low- 
income economies appear stuck in technological profiles (portfolios) 
that offer no opportunities for sustained development. Our results sug
gest that innovation policy should try to support those technology pro
files that are the most compatible with the level of economic 
development and provide opportunities for economic growth. In sum
mary, we find that the choice of technology and the policies imple
mented to support this choice matters. 

Section 2 elaborates the ‘structuralist’ perspective on technology 
change and upgrading and presents our conceptual framework. Section 
3 describes the country data and technology cluster measures. Section 4 
addresses our three questions. Section 4.1 presents a technology cluster 
growth-share matrix; Section 4.2 reports results of econometric tests of 
the relationships between specific technology clusters and economic 
growth; Section 4.3 explores the technology profiles of different country 
groups and their changes over time. Section 5 discusses results and 
Section 6 concludes the paper and draws policy implications. 

1 Enabling technologies are defined by Teece (2017) as ‘discoveries arising 
from advanced science and engineering activity that allow the creation or 
improvement of products and services across a wide product scope. They have 
platform-like features and often exhibit strong complementarities with existing 
and/or new technologies’. They are closely related to the concept of GPTs. 
Teece (2018, 1369) likens enabling technologies to junior GPTs, meeting GPT 
criteria for capability of ongoing technical improvements and enabling com
plementary innovations in application sectors but not yet as pervasive or in 
wide use as GPTs. 
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2. ‘Structuralist’ perspective on technology upgrading and 
economic growth 

2.1. Technology upgrading and economic growth 

Technological differences among countries are the prime cause of per 
capita GDP differences (Fagerberg, 1987; Dosi, 1988; Castellacci, 2011). 
These differences pertain to both the different levels of technology and 
the structure of their technology portfolios. Countries with similar levels 
of technology can have different structures in terms of their technology 
portfolios. For example, countries with broadly similar levels of R&D 
intensity or patenting activity may have a technology portfolio with 
different mixes of low-, medium- and high-tech sectors, which result in 
different impacts on their growth. As pointed out in the introduction, 
aggregating technology ignores that technology is also a driver of 
structural economic transformations. A long-term economic growth is 
linked inextricably to the differential opportunities of different sectors to 
engage in ongoing technological transformation. 

These differential opportunities suggest that the type of technologies 
on which the country should focus matter. For example, Lee and Lim 
(2001) and Lee (2013) point to the importance for countries’ catch-up 
process of different technology portfolios. Based on evidence from 
Korea, Taiwan, Brazil, Argentina, India and China, they differentiate 
between short and long cycle sectors and related technology upgrading 
paths with path-following, stage-skipping, and path-creating strategies. 
Based on longitudinal patent and patent citation data they distinguish 
short-cycle ICTs from other technologies, which allow exploitation of 
windows of opportunity.2 Lee (2013) provides robust evidence that 
focusing on short-cycle technologies significantly accelerates the 
catching up and subsequent forging ahead processes. The rapid growth 
of Korea and Taiwan up to 1999 is explained by their specific focus on 
technologies with shorter cycles: semiconductors and electrical/electric 
machinery. Once countries achieve high-income status, innovation 
systems tend to focus on long-cycle technologies with higher entry 
barriers (Lee et al., 2021), indicating a dynamic shift in the technology 
upgrading path. 

Countries that adopt predominantly imitative approaches focus on 
technologies owned and developed by technology leaders whose accu
mulated technological capabilities constitute barriers to entry. Lee 
(2013) shows that technological diversification rather than imitation is a 
significant factor in catch-up to high-income levels. As countries move 
from middle- to high- income levels, imitative technologies are insuffi
cient and ‘smart diversification’ into new areas is required. This applies 
particularly to the case of middle-income economies taking ‘detours’ 
towards short-cycle technologies as ways to transition from a middle- to 
a high-income level. In technology upgrading terms, the next stage - 
transition from catch-up to post-catch-up – involves a shift from tech
nology diversification to frontier technology activities (Radosevic and 
Yoruk, 2016). 

A lack of structural upgrading results in stagnation in technology 
upgrading, which hinders catch-up capacity (in the case of followers) 
and the capacity to remain competitive (in the case of advanced econ
omies) (Agénor, 2017). This is critical for low- and middle-income 
countries whose opportunities for growth are limited by their exploita
tion of low-cost resources and imitation (Perez-Sebastian, 2007; Van
denbussche et al., 2006). Radosevic and Yoruk (2018) identify the 
structural shift required to effectively promote technology upgrading 
and show that high-income countries demonstrate much stronger 
impact of structural upgrading. Zhou et al. (2021) report similar 
findings. 

The present article takes a somewhat narrow, but focused approach 

to exploring the role of structural shifts in technology generation as the 
determinants of growth. We examine technological diversification as 
reflected solely in changes in the structure of patenting as proxy of 
knowledge generation activities (Radosevic and Yoruk, 2018: 60). 

2.2. Technologies facilitating technology upgrading and economic growth 

Technologies follow particular advancement trajectories which are 
shaped by their knowledge bases or a scientific research programme 
(Dosi, 1982). Some technologies that were dominant in the past lose 
prominence and are overtaken by new technologies that can generate 
superior solutions to existing problems. Mature technologies experience 
continuous and incremental changes along their respective trajectories 
while new technologies emerge as the result of discontinuities or spin- 
offs from a combination of dominant technology fields. At any point 
in time, an economy’s technology profile (portfolio) is a composite of 
technologies with different growth dynamics. However, these technol
ogy combinations are not random collections; rather, they are portfolios 
of technology clusters which, cumulatively, reflect the dominant and 
newly emerging technology paradigms. 

A technology paradigm is “an outlook, set of procedures, a definition 
of the relevant problems and of the specific knowledge related to their 
solution” that can be developed and improved according to a set of 
heuristics or principles (Dosi, 1988:150). Since paradigms embody 
strong prescriptions on the directions of technical change (Dosi, 1982) 
they result in (path-dependent) technological trajectories. Technology 
paradigms and technology trajectories are central to diffusion of tech
nologies as they operate as ‘focusing devices’ to continuous technolog
ical improvements and complementary innovations (Freeman and 
Perez, 1988). They take the form of General Purpose Technologies 
(GPTs) (Bresnahan and Trajtenberg, 1995) or enabling technologies 
(Teece, 2018). GPTs are more revolutionary than enabling technologies; 
they tend to dominate for longer and belong to a small group of tech
nologies. Enabling technologies (of which there are many hundreds) 
may be more difficult to identify, but, potentially, can be mission-critical 
and can generate combinatorial innovations (Teece, 2018). Both GPTs 
and enabling technologies have potential to allow improved perfor
mance across a wide range of products and thus are linked closely to 
economic growth (Freeman and Perez, 1988; Helpman and Trajtenberg, 
1994; Bresnahan and Trajtenberg, 1995; Carlaw and Lipsey, 2006, 2011; 
Gambardella et al., 2021).3 Steam engines, electricity, computers and 
ICTs are all GPTs. Youtie et al. (2008) studied new technologies and, in 
particular, nanotechnology and whether it can be considered a GPT. 
They draw parallels between nanotechnology and computers in terms of 
their respective pervasive effects. Archibugi (2017) acknowledges the 
role of ICTs as GPTs, but is more doubtful about whether biotechnology 
should be considered a GPT. In 2009, the European Union identified 
nanotechnology, industrial biotechnology, advanced materials, pho
tonics and advanced manufacturing as enabling technologies (Com
mission of European Communities, 2009 cited in Teece, 2018) while the 
UK Government’s list of enabling technologies includes similar tech
nologies such as the Internet of Things (IoT), electronics, sensors and 
photonics, robotics and autonomous systems, cybersecurity and big data 
(Innovate UK, 2022). Teece (2018) contends that the enabling tech
nology of Artificial Intelligence (AI) has the potential to become a GPT 
and Perez discusses whether blockchain can be considered a GPT (Perez, 
2020). Efforts are ongoing, also, to foresee emerging technologies that 
will drive economic growth, including works that define emerging 
technology based on specific characteristics (Cozzens et al., 2010; 

2 These cycles are measured by backward patent citations (time between 
application/grant years of citing and cited patents) with shorter times indi
cating faster catch up by the country. 

3 The notion of technological paradigm is inextricably linked to the notion of 
techno-economic paradigm which denotes the whole range of economic and 
institutional transformations associated with a particular technological change 
(Perez, 2010). For methodological and analytical simplicity we have confined 
our analysis to knowledge generation and related policy issues. 
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Rotolo et al., 2015). 
The moment when GPTs become revolutionary is when their impact 

extends beyond the boundaries of the new industries they trigger (Perez, 
2010). Their transformative impact spreads throughout the whole 
economy, raise productivity levels in all sectors, rejuvenate mature in
dustries and lead to new innovation trajectories in technologies whose 
application has modernisation effects on all other industries and activ
ities (Perez, 2010). The diffusion of these massive changes and their 
economic and social effects constitute a ‘great surge of development’ 
(Perez, 2010). For instance, Petralia (2020) found a positive association 
between sectoral GPT adoption rates, based on United States Patent and 
Trademark Office (USPTO) GPT patents and sectoral growth. GPTs as 
clusters of related technologies get embedded into mature technologies, 
synergize complementary technologies and thus rejuvenate the whole 
industrial fabric. A similar effect is observed in the case of enabling 
technologies that generate novel or combinatorial (but less trans
formative) technology forms (à la Arthur, 2009). Teece (2018) offers the 
example of lasers, developed in the field of photonics but used also in 
supermarket checkouts, on military bases and by cargo containers. They 
help to reduce the transportation costs of products with large economic 
and societal impacts and are making cargo shipping containers more 
high-tech and efficient through integration with Internet of Things 
technologies. 

This process is characterised by its range of application areas and 
sequential generation of new knowledge with spread of enabling tech
nologies and GPTs throughout the economy. Fig. 1 is a stylised repre
sentation of the technological transformation of different technologies 
across three sectors. Appendix A provides the empirical evidence behind 
Fig. 1, that is, the patent growth-share matrix. 

Technological transformation originates from the technology sector, 
which is driving the pace and scope of its transformation. In the context 
of the ICT paradigm, technology sector includes diffusion of ICT net
works and hardware ICT installations in phase one of Digital Wave (i.e. 
computer and electronic product manufacturing (334), telecommuni
cations (517), data processing, hosting, and related services (518), other 
information services (519), and computer systems design and related 
services (5415)) (Srnicek, 2017) as well as artificial intelligence, big 
data and other digital transformations in the second phase of Digital 
Wave (WIPO, 2022a). However, this technology sector also provides 
technologies and knowledge which are deployed in other sectors of 
economy. These advances take place in hard sciences such as nano
technology, biotechnology, medical technologies, new materials, envi
ronmental technologies, agri-food and transport with breakthrough 
innovations in Deep Science Wave (WIPO, 2022a). GPTs and enabling 
technologies that originate from technology sector are used in carrier 
branches predominantly as digital and automation solutions. 

Carrier branches (sectors) produce the highest number of digital 
solutions and are the most intensive users of automation. For example, 
around 80 % of the installed industrial robots in the world are in the 
automotive, computers and electronic equipment, and electrical appli
ances sectors (Van Roy et al., 2019); they increase labour productivity 
(Fu et al., 2021; Ballestar et al., 2021) and radical innovation (Rammer 
et al., 2022). Also, high-tech sectors, such as medicine, aeronautics and 
vehicles are primary users of AI patents. Carrier branches are the most 
visible and active users of these inputs and represent paradigmatic 
products spreading the word about the new opportunities offered by 
computers, software and mobile phones for instance. 

The third sector is ‘induced branches’, which refers to traditional 
(old) industries and services, not central to the current technological 
transformation, but which are - or will be - affected to various degrees by 
digitalisation and AI. For example, in traditionally less technology- 
intensive fields, such as agriculture, textiles and paper, the number of 
AI patents shows rapid growth (Van Roy et al., 2019). Also, there are 
some new products and services for which demand is created by changes 
in production, commercial practices and lifestyles. These are often a 
direct result of the technology revolution or policies that encourage 

specific types of innovation and, currently, are related to provision of 
health services and organic food. These products and services might be 
related to lower levels of productivity, but are effective for creating jobs 
(Perez and Leach, 2018). 

The number of different technologies and clusters that emerge, their 
direction, and their technology field and persistence are history and 
context contingent. However, in our view: a) emerging technologies will 
show higher rates of growth than old technologies; b) technologies will 
be developed in carrier sectors which are intensive users of GPTs and 
enabling technologies; and c) as the technological distance between old 
and new technologies reduces through a process of ‘combinatorial 
evolution’, enabling technologies and GPTs will be deployed by induced 
sectors at slower rates (Arthur, 2009). 

From the perspective of economic growth, what matters is the rela
tive scale of different technologies i.e. their relative share in overall 
technology activities. Large scale and high growth technology clusters in 
either core technology or carrier sectors represent greater opportunities 
for technology based growth. These are the ‘excelling’ technologies in 
Fig. 1. Other technologies may show high rates of growth, but related to 
small scale activities and are described as ‘opportunity-driven’ tech
nology cluster. Opportunity-driven technologies have yet to establish a 
full presence in the market, but given their high rates of growth should 
be able to do so. Technology clusters with low share and low growth 
rates are described as ‘lagging’ technologies. These clusters have yet to 
exploit the opportunities offered by enabling technologies and/or GPTs, 
and reduce use of technologies related to the old paradigm. However, 
this quadrant can also include inventions made by induced sectors 
associated with the new technological paradigm which explains the 
label ‘lagging’ rather than ‘declining’. Some technologies (lower right 
quadrant) show low rates of growth, but have high shares in total 
technology activities. We describe these clusters as ‘established’, since 
the technologies are deployed in induced sectors in large-scale tech
nology activities, involving high employment and value-added, but 
lower than average growth rates. 

In the growth-share matrix, emerging technologies are the drivers of 
the technological transformation. Despite their small shares, they show 
exceptionally high growth rates, especially in the early stages of 
‘emergingness’ (Fig. 1). Identification of emerging technologies is not a 
trivial issue. Corrocher et al. (2003), Srinivasan (2008), Cozzens et al. 
(2010), Rotolo et al. (2015), Small et al. (2014) and Lee et al. (2018) 
proposed some features characterising an emerging technology field. All 
of these studies particularly emphasise ‘fast growth rate’ and ‘novelty/ 
newness’.4 Daim et al. (2006) and Kim and Bae (2017) used forecasting 
techniques, such as trend extrapolation, based on patent growth rates 
and growth curves. Some level of discontinuity in emerging technology 
is inherent in these approaches. Cozzens et al. (2010) highlight the 
‘transition to something new’, while Rotolo et al. (2015) emphasise 
radical novelty, uncertainty and ambiguity. Similar to Dosi (1982), 
Srinivasan (2008) proposes a broader definition of emerging technology 
which takes account of both continuity and discontinuity. His definition 
includes revolutionary technologies emerging from new technologies, 
and incremental technologies which arise from the convergence among 
existing technologies (Srinivasan, 2008: 634), that is, technologies 
‘constructed, put together, assembled from previously existing tech
nologies’ (Arthur, 2009: 2). 

Fig. 1 depicts our analytical framework and the hypotheses we test in 
this paper. It would be difficult to collect and define data on a specific 
technology paradigm and, thus, the range of GPTs and enabling tech
nologies associated solely to that paradigm. Empirically, our growth- 
share matrix is populated by technologies from both the new and old 

4 The reader can refer to these contributions for a list of the other charac
teristics attributed to emerging technologies. For the purposes of our research, 
we focus on the characteristics of high growth rate and novelty, which are 
common to all of the contributions referred to. 
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technology paradigms. We would expect their location in the growth- 
share matrix quadrants to predict the economy’s growth dynamics. 
Also, an economy’s technology profile is composed of various technol
ogy clusters, represented by the different shares of each of the five 
technology clusters depicted in Fig. 1. Hence, we expect specific tech
nology profiles to be associated with particular growth patterns and 
levels of development. For example, we expect technology profiles with 
predominantly excelling and opportunity-driven technologies to be 
valid predictors of future economic growth whereas economies with 
high shares of lagging and to some extent established technologies are 
likely to show lower future economic growth. However, we also predict 
‘inadequate’ technology profiles (portfolios), resulting from policy 
choices not reflective of global technological trends or mismatches in 
national innovation systems, which result in low economic growth. 

2.3. Technology upgrading meets mission-oriented innovation policy 

Our framework is focused, primarily, on knowledge generating ac
tivities. However, most developing economies grow based not on tech
nology generation, but use of technologies created elsewhere. Most 
developing countries are imitators rather than technology frontier in
novators and are upgrading based on adoption and assimilation of 
existing technologies. However, successful catching up economies pur
sue stage-skipping or stage-defying paths (Lee, 2013). High performing 
economies, engaged in frontier technology generation, follow path- 
creating routes of technology upgrading. However, they can also fall 
into lock-and-lose industrial leadership (Arthur, 1989; Lee and Ki, 
2017).5 

A diversity of technology upgrading paths shows that technology 
profiles, i.e. directions and the qualitative content of technological 
change matter (Mazzucato, 2018; Saviotti and Pyka, 2004).6 A shifting 
of the innovation system towards technologies that trigger effective 

economic growth thus becomes issue of high policy relevance (Mazzu
cato and Perez, 2015). This requires an emphasis on the shaping and 
creating of markets for new technologies and on desirable technology 
transformation (Mazzucato, 2016; Daimer et al., 2012). The capacity to 
steer structural rationalisation to achieve upgrading in a specific direc
tion becomes essential (Zhou et al., 2020). However, such mission- 
oriented intervention may comprise policy mixes based on portfolios 
of missions focused on technologies with disparate objectives rather 
than cherry-picking of one single overarching technological mission. 
Our focus is on the relationship between technology profiles (portfolios) 
and economic growth which leads to consideration of increasingly 
fashionable mission-oriented policies. However, in the context of 
development innovation policy should also recognise other sectors that 
drive economic growth including employment. Here we highlight only 
those issues which seems directly linked to our focus on technology 
upgrading: infrastructure, absorptive capacity, Global Value Chains 
(GVCs) and the overall institutional context. 

Important in this context is the provision of effective knowledge 
infrastructure to support technology upgrading. This is important for all 
countries at all income levels, but matters especially for low- and 
middle-income economies which often do not have the foundations 
required to promote knowledge generation, absorption and diffusion 
(Abramovitz, 1986; Dahlman et al., 1987; Lall, 1992; Verspagen, 1991; 
Esterhuizen et al., 2012). 

Technology infrastructure is inseparable from the level of the 
absorptive capacity (AC). AC, through R&D activities, is the key in 
driving technological diffusion and sustained growth not only in high- 
income but also in low- and middle-income countries (Khan, 2022; 
Minniti and Venturini, 2017; Fagerberg and Verspagen, 2002). On the 
other hand, absorptive capacity may not be sufficient condition for 
effective technology upgrading. Instead, the dynamics of National Sys
tems of Innovation (NIS) is driven by the co-evolution between inno
vative capabilities and absorptive capacity, allowing countries to go 
beyond only adoption of foreign technologies and knowledge (Cas
tellacci and Natera, 2016, 2013; Eum and Lee, 2022). 

How countries couple local technology efforts with knowledge that 
potentially can be assimilated via GVCs has been and continues to be 
relevant to technology upgrading. Integration in GVCs have demon
strated significant impacts in terms of innovation-led economic growth 
(Eum and Lee, 2022; Radosevic and Yoruk, 2018; Castellacci and Natera, 

Fig. 1. Technological transformation and its dynamics across sectors. (We are grateful to Carlota Perez for discussion and comments on our development of 
this framework.) 

5 See, e.g., Lee and Ki (2017) for leadership takeover by Japan from the USA 
and South Korea from Japan, in the science-based steel industry segment.  

6 The qualitative content of innovation activity refers to the composition of 
products, services and activities that represent economic systems (Saviotti and 
Pyka, 2004). Thus, qualitative shifts can be related to sectoral profiles and intra- 
sectoral changes in terms of technological orientation. 
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2013). On the other hand, the relationship between GVC and local 
technology upgrading is not linear. Instead, catching-up countries have 
demonstrated that periods of reduced participation in international 
trade can be beneficial for technological accumulation, followed by 
reinsertion in GVCs with higher value-added products and services (Lee 
et al., 2018). 

Finally, quality and appropriateness of institutions conducive to a 
specific technological trajectory is inextricably linked to processes of 
technology upgrading (Fagerberg and Verspagen, 2002). Rodrik (2000) 
considered that in less developed economies institutions can be ‘shaky’. 
From a technology policy perspective, this can result in ambiguities and 
can hamper implementation of long term initiatives and plans (Roca 
et al., 2021; Yu et al., 2020; Choung and Hwang, 2019) that require 
accumulation of dynamic technology capabilities. Institutional insta
bility may result in suboptimal investment in obsolete technology or 
may fail to achieve effective technology upgrading due to weak organ
isational capabilities of enterprises and other organisations in local 
innovation system. 

In nutshell, not only technology choices and technology profiles 
(portfolios) matter, but also they are inseparable from other factors in 
national innovation systems. Their interdependence is manifested in the 
existence of ‘technology clubs’ that are associated with countries’ levels 
of development (Castellacci and Archibugi, 2008). They underscore the 
pivotal role of industrial policy in ‘steering’ not only mission oriented 
technologies but the overall NIS in the direction of acquiring and 
developing capabilities that are conducive to growth (Cimoli et al., 
2019). Section 3 describes the data and analytical methods used to test 
the relevance of our conceptual framework and apply it to our three 
research questions. 

3. Methods 

3.1. Sample 

Our sample includes data on 96 countries from 1980 to 2021. The 
High-Income (HI), Middle-Income (MI) and Low-Income (LI) sub
samples in our unbalanced panel dataset are based on the World Bank’s 
historical income-level country classifications. 

Table 1 shows countries’ positions in the broader income leagues 
during 1980–82 and 2019–21 and the shifts to higher income levels. 
Armenia, Azerbaijan, Moldova and China (Category I) jumped from 
Low-Income (LI) in 1980 to the Upper Middle-Income (UMI) in 2021. 
Bahamas, Greece, France, Italy, Israel, New Zealand, Saudi Arabia, 
Slovenia and Spain (Category IV) remained Lower High-Income (LHI) 

countries over the whole period while Australia, Hong Kong, the 
Netherlands, and Singapore moved from Lower High-Income (LHI) to 
the Upper High-Income (UHI). The High-Income (HI) group includes 
countries that persisted as HI countries. In the same period, several 
countries, such as Austria, Belgium, Canada, Finland, Germany, Iceland, 
Ireland, Japan, Kuwait, UAE and the UK moved between LHI and UHI. 

Table 2 categorises the income group shifts in Table 1 into three 
types: ‘Stable’ indicating economies whose income category did not 
change; ‘Improvers’ which moved up a category; and ‘Catching-up’ 
economies which jumped two income categories in the period 
1980–2021. As expected, over the period analysed, the smallest number 
of shifts (6) is in the catching up economies, compared to 43 that moved 
to a higher income group and 47 that either remained in the same group 
or fluctuated between two adjacent groups. We observe that a) a shift to 
a higher income category is most frequent for the lower-income econ
omies, b) catching up is less frequent for the shift from UMI to UHI or 
LMI to LHI, which is in line with the literature on the middle-income 
trap, and c) moving up a category or catching up above a low high- 
income level are less frequent. From a Schumpeterian perspective, this 
would seem plausible. Economic growth at higher income levels is 
driven by technological capabilities that require accumulated capabil
ities in diverse industries and technologies of higher technological 
opportunities. 

3.2. Data and measures 

Our indicators for technology clusters are based on patent data. The 
limitations of patent data for measuring innovation dynamics are well 
known. These include country-level heterogeneity in terms of patenting 
propensity driven largely by differences in industrial structure (OECD, 
2004; Pavitt, 1985). Particularly in lower income economies this may 
lead to misrepresentation of economic sectors that do not rely on patents 
as a critical strategy. Patents, on their own, do not readily capture the 
technological capabilities in a country, since other activities such as 

Table 1 
Income category shifts for 96 countries between 1980 and 2021.   

1980–82 2019–21 Country  

LI LMI India, Kenya, Kyrgyzstan2, Nigeria, Pakistan, Sri Lanka, Tajikistan2, Uzbekistan2, Viet Nam5, Zambia, Zimbabwe.  
LI UMI Armenia2, Azerbaijan2, China, Moldova2. 

II LMI LMI Bolivia, Egypt, Indonesia, Morocco, Philippines, Ukraine5. 
LMI UMI Albania1, Belarus2, Botswana, Colombia, Costa Rica, Georgia2, Kazakhstan2, Lebanon, Mauritius, Peru, Romania2, Thailand, Turkey. 
LMI LHI Chile, Poland2.  
Moving between LMI 
and UMI 

Algeria, Iran, Jordan, Tunisia 

III UMI UMI Argentina, Brazil, Bulgaria, Cuba, Ecuador, Malaysia, Mexico, Panama, South Africa, Venezuela. 
UMI LHI Barbados, Croatia3, Cyprus, Czech Republic2, Estonia4, Hungary2, Latvia4, Lithuania3, Malta, Oman, Portugal, South Korea, Slovakia3, Trinidad & 

Tobago, Uruguay. 
Moving between UMI 
and LHI 

Russia5 

IV LHI LHI Bahamas, France, Greece, Italy, Israel, New Zealand, Saudi Arabia, Slovenia3, Spain. 
LHI UHI Australia, Hong Kong, Netherlands, Singapore. 
UHI UHI Denmark, Luxembourg, Norway, Sweden, Switzerland, USA. 
Moving between 
LHI and UHI 

Austria, Belgium, Canada, Finland, Germany, Iceland, Ireland, Japan, Kuwait, UAE, UK. 

LI: low-income, LMI: lower middle-income, UMI: upper middle-income, LHI: lower high-income, UHI: upper high-income. 
Starting period is not 1980–82 but 1. 1986–88, 2. 1992–94, 3. 1995–97, 4. 1998–00, 5. 1989–91. 
Source: World Bank historical classification of income levels. 

Table 2 
Summary of the shifts in income groups (1980–2021).  

Income group Stable Improvers Catching-up 

I  0  11  4 
II  10  13  2 
III  11  15  0 
IV  26  4  0 

Source: Table 1. 
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R&D, design and shop-floor engineering are important in accumulation 
of technological capabilities (Archibugi, 1992). However, patent data 
provide standardized and reliably quantifiable statistical picture of 
knowledge generation capabilities allowing international comparison 
over time (Jiang et al., 2019; Boschma et al., 2014; Frietsch et al., 2014; 
Trappey et al., 2012; Mancusi, 2012; Granstrand, 1998; Griliches, 1990; 
Pavitt, 1985). 

Patent data are available by technology classes. The World Intel
lectual Property Office (WIPO) uses the IPC scheme to collate technol
ogies according to eight sections and around 24 sub-sections, 120 
classes, 640 sub-classes and 70,000 groups. WIPO’s PATENTSCOPE 
search system uses this classification to identify individual patents. A 
reclassification of the IPC-based technology classification for 35 tech
nology classes, was created for WIPO to allow country-level comparison 
(Schmoch, 2008). WIPO uses the IPC-technology concordance table to 
assign the 35 technological codes/classes. Since a single patent can be 
linked to several IPC codes, it can belong to more than one technological 
fields. In this case, WIPO uses fractional counting, i.e. they assign equal 
portion of different technology for the same patent.7 

WIPO reports granted patents by technology classes, at country level, 
starting in 1980, using Schmoch’s (2008) classification. Data include all 
granted patents, in the 35 technology classes, registered by a specific 
country’s residents in all patent offices worldwide. Thus, the data cap
ture national capability to generate new technological knowledge. Since 
we investigate shifts in technology generation, we use total number of 
patent grants by technology counted by applicant’s country of origin. 
For instance, a French inventor who applied to Algerian Patent Office, if 
granted the patent, will be included in granted patents of France. If they 
are not yet granted a patent and it is just in application phase, they will 
not be counted in this dataset.8 Griliches (1990) considers total patents 
to be a better measure than domestic patents of a technology frontier 
shift. Also, WIPO data allow reliable cross-country comparison because 
they eliminate geographical bias emerging from the tendency to patent 
in neighbouring countries. 

Since the patenting system involves a three-year time lag, on average 
(Tijssen, 2001), we use patent data up to and including 2021. Tech
nology clusters, as defined in our classificatory framework (Fig. 1), are 
our independent variables. They are measured as the share of patents in 
each technology cluster in the country’s total patents in a given year. We 
generated pooled cross-section and time-series data for 96 countries. 
Each observation corresponds to a three-year average, which smooths 
the values for granted patents. The dependent variable in the panel re
gressions is growth rate of per capita Gross National Income (GNI). We 
match each country’s per capita GNI for each three-year interval with 
income level, using the World Bank guide to income levels which pro
vides LI, LMI, UMI and HI threshold levels (Table 3). 

To avoid omitted variables bias, in the regression models we include 
several indicators used in growth models as baseline control measures. 
We add R&D expenditure, Gross Fixed Investment (GFI), trade openness 
and tertiary school enrolment to capture the usual determinants of 
knowledge driven growth. Data on R&D expenditure as a percentage of 
GDP, GFI formation in GDP, trade openness by total exports and imports 
as a percentage of GDP and tertiary school enrolment are taken from the 
World Bank database (Table 3).9 These variables control for the inter
play between National Systems of Innovation dynamics and growth 
trajectories, thus providing a good coverage of conditioning factors 
related to innovation capabilities and absorptive capacity at the macro 
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7 See https://www.wipo.int/ipstats/en/ for further information on WIPO 
data and indicators.  

8 We gathered data from WIPO IP Statistics Data Center (https://www3.wipo. 
int/ipstats/index.htm?tab=patent) for patents, i.e. Indicator: 5 – Patent grants 
by technology and Report type: Total count by applicant’s origin.  

9 Appendix B provides the descriptive statistics and correlation matrix for the 
indicators used in the regressions. 
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level (Eum and Lee, 2022; Radosevic and Yoruk, 2018; Castellacci and 
Natera, 2013, 2016). 

3.3. Model specifications 

The role of technology-related structural shifts have been examined 
using a range of analytical lenses to analyse their effects on economic 
growth and development. We employ panel data analysis and fs/QCA, 
which are complementary and were chosen deliberately for their spe
cific strengths in relation to our research questions. They allow us to 
investigate how the connections among technological profiles (portfo
lios) unfold over time in countries in different stages of development. 

3.3.1. Regression model specification 
Panel data analysis is used to address our first research question: 

whether economic growth is associated with specific technologies. The 
panel regressions use income level subsamples. We apply Generalised 
Method of Moments (GMM) estimations to our panel data. Since our 

panel time dimension (T) is comparatively short, fixed-effects estimation 
is not appropriate (Baltagi, 2005). We conducted a Breusch-Godfrey 
autocorrelation test for time series data to check whether our dynamic 
panel data analysis could be implemented including lagged dependent 
variables in the model. For all subsamples, we cannot rule out serial 
correlation, so we chose not to include lagged dependent variables in the 
panel data model.10 

The model is specified as: 

GNIpcit = β0 + β1X′
i,t + β2 Z′

i,t + μi + εi,t  

where Xi,t is a vector of the technology clusters, that is, newly emerging, 
excelling, opportunity-driven, established and lagging technologies, and 
Zi,t is a vector of the baseline controls for R&D expenditure, GFI, trade 
openness and tertiary school enrolment. 

We expect GNIpc to be influenced by technology generation and 
technology upgrading, but it is possible that GNIpc might also contribute 
to technology generation and upgrading. We conducted GMM estima
tion to check for this endogeneity problem (Arellano and Bond, 1991; 
Arellano and Bover, 1995; Blundell and Bond, 1998). We used STATA’s 
xtabond2 command to run a series of regressions. GMM estimation is 
suitable for our panel data for several reasons. First, it controls for 
endogeneity by accounting for simultaneity in the strictly not exogenous 
independent indicators, through the internal Instrumental Variables (IV) 
process. We use the IV function for both level and difference equations 
by including in the model the lagged values of all the dependent and 
independent indicators as IVs. We consider all IVs to be endogenous or 
potentially endogenous. We restrict lags to 1, since if T is fairly large 
(>7–8), which applies to our panels, Baum (2013) notes that an unre
stricted set of lags will introduce a large number of instruments and loss 
of efficiency. Second, our panels include slightly more countries than the 
number of time periods, that is, ‘large N small T’ panels (Roodman, 

2009b). 
GMM estimations can take two forms: difference GMM and system 

GMM. Difference GMM estimations transform all the regressors by dif
ferencing and adding the lagged values of the indicators as IVs in the 
difference equation (Hansen, 1982; Holtz-Eakin et al., 1988; Arellano 
and Bond, 1991). System GMM augments the difference GMM by 
building a system of two equations, the original and the transformed 
equation, and allows for the inclusion of more IVs (Arellano and Bover, 
1995; Blundell and Bond, 1998). We report the system GMM results. 
Since the number of countries is not a great deal higher than the number 
of years in our panels we ran the one-step GMM estimation. In the case of 
small samples, the standard errors of the two-step GMM estimation co
efficients are likely to be biased downwards (Bond et al., 2001; Wind
meijer, 2005). Finally, we ran the Arellano-Bond test to check for serial 
correlation and the Sargan test for overidentifying restrictions regarding 
the validity of the IVs. We report the results in Section 4.2. 

3.3.2. Configurational model specification and calibration procedure 

We use fs/QCA to examine technology profiles (or, in QCA termi
nology, configurations) associated with economic growth. QCA allows 
investigation of whether the configurations of several technology 
upgrading profiles are driving economic growth. We conduct fs/QCA at 
two points (1992–9411 and 2019–21) to observe shifts in technology 
profiles in countries with different income levels (see Section 4.3). As a 
case-oriented approach, fs/QCA overcomes cross-national diversity in 
countries’ technology upgrading profiles and accounts for heteroge
neous effects across country groups (Ragin, 2000). This allows us to 
explore whether growth is dependent on several causal profiles and to 
identify the countries that conform to these profiles (Fiss, 2007; Ragin, 
2008a). 

We specify the configurational model as follows:  

Fs/QCA requires calibration of conditions (variables). Table 3 pre
sents the measures and calibration thresholds. To implement fsQCA, we 
developed a three-value fuzzy set for all the indicators in the HI, MI and 
LI groups –full membership, full non-membership, and the crossover 
point or the point of maximum ambiguity for neither ‘fully in’ nor ‘fully 
out’ cases. As the outcome variable, we used per capita GNI and World 
Bank historical income thresholds for the next income level. The cali
bration process in QCA (see Table 3) allows us to benchmark each 
condition against specific values and to identify strong and weak con
ditions associated with the outcome. We set the upper calibration 
threshold for ‘fully in’ value as the historical threshold above which the 
country shifts to the next income level. The crossover point is the 
midpoint between ‘fully in’ and ‘fully out’ values. 

In terms of causes, that is, technology clusters, we calculated the 
average value (share of technology) for each technology cluster, for all 
the countries in the subsamples. We set these values as the crossover 
points. Then, the average values for each technology cluster for coun
tries above the crossover point are taken as the upper threshold points of 
‘fully in’. 

Emerging tech*Excelling tech*Opportunity − driven tech*Established tech*Lagging tech➔GNIper capita   

10 Roodman (2009a) warns that per capita GDP is a highly persistent series, 
which makes lagged per capita GDP a weak instrument for subsequent changes 
in GMM estimation. When using a small sample, our model also showed evi
dence of adverse effects. Including the lagged dependent variable resulted in 
not significant results; therefore, we specified the model excluding the lagged 
dependent variable, but were able to run the GMM estimation using the xta
bond2 command in Stata which offers this flexibility (Drukker, 2008). 

11 Patent data were not available for most of the ex-USSR and Soviet bloc 
countries pre-1990. 
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4. Results 

4.1. Mapping technology clusters in a growth-share matrix 

In our framework, patent data organised in technology clusters 
reflect current and past technology paradigms (see Fig. 2 for the patent 
growth-share matrix). The 40-year history of the ICT paradigm allow 
differentiation among the different stages of the present technology 
transformation, which develops as an evolutionary process from the 
emergence of the technology to its deployment. 

The upper left quadrant in Fig. 2 represents emerging technologies 
cluster, which include classes of Microstructural and Nanotechnology and 
Information Technology (IT) methods for management. IT management 
methods are the fastest growing area of the ICT paradigm and reflect 
recent advances in AI. This technology cluster includes special purpose 
software for data processing, for example, adapted for administrative, 
commercial, financial, managerial, supervisory or forecasting purposes 
(Schmoch, 2008: 8). Web platforms enable online ordering, organising 
project management teams, childcare facility platforms, an AI-based 
model for predicting energy use, or management of data for health. 
These are all examples of patents obtained in IT methods for management 
technologies. Microstructure and Nanotechnology, spin-off technologies 
from chemistry and physics, might appear to belong to some other cate
gory. However, according to the US National Nanotechnology Initiative, 
their effects span from memory and logic chips to cars and computers, 

based on diminishing the size of the artefacts and increasing their oper
ative speed using super high-density microprocessors (NRC, 2006).12 

Rafols and Meyer (2007) identified nanotechnology patenting activity in 
21 other technology classes in the period 1980 to 2004. 

The excelling technologies cluster in the upper right quadrant in Fig. 2 
includes computer technologies, digital communication technologies 
and semiconductors, as GPT or enabling technologies in the ICT para
digm. This category also includes medical technologies, pharmaceuti
cals, audio-visual technologies, optics, transport, measurement and 
electrical machinery from the carrier sector. In Fig. 2, computer tech
nologies, digital communication and semiconductor patents are distin
guished from other excelling technologies by their very high growth 
rates and the high share. One of the fastest-growing technology clusters 
in 1980–2021 was digital communication technologies, which are 
characterised by the speed, quality and ability to transfer large volumes 
of information over long distances. This information includes transfer of 
images by telegraph, radio, television, mobile phone or the Internet. 
Petralia (2020) observes a similar pattern and identifies computer and 
communication technologies as potential GPTs enabling other technol
ogies. The high share of computer technology reflects its relative age 
compared to digital communication technologies. The high rates of 

Fig. 2. Technology clusters by growth in granted patents and share in total patents (1980–2021).  

12 The effects of nanotechnology on computers and communication technol
ogies are less obvious, since they are largely confined to the laboratory. 
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Table 4 
Growth in number and share of granted patents by technology field and time period, 1980–2021.   

Granted 
patents 
1980–84 avg 

Granted 
patents 
2017–21 avg 

Granted patents growth 
from 1980–84 to 
1996–2000 (%) 

Granted patents growth 
from 2001–2005 to 
2017–21 (%) 

Granted patents 
growth from 1980–84 
to 2017–21 (%) 

Granted patents share in 
total patents 1980–2021 
(%) 

Emerging technologies       
22 - Micro-structural and 
nano-technology  

1.4  3341  10,386  588  238,557  0.1 

7 - IT methods for 
management  

116  20,371  688  853  17,431  0.7 

Excelling technologies       
4 - Digital communication  1447  90,485  410  535  6152  3.5 
6 - Computer technology  7635  132,704  209  318  1638  6.3 
8 - Semiconductors  4190  50,913  356  97  1115  3.5 
13 - Medical technology  8257  72,377  122  209  777  4.0 
16 - Pharmaceuticals  7974  40,983  73  97  414  3.0 
2 - Audio-visual 
technology  

9786  50,287  157  81  414  3.9 

32 - Transport  14,532  71,610  54  151  393  4.5 
9 - Optics  9477  41,991  125  70  343  3.4 
1 - Electrical machinery, 
apparatus, energy  

25,469  108,053  11  204  324  6.5 

10 - Measurement  21,893  85,759  -2  232  292  5.1 
Opportunity-driven 

technologies       
15 - Biotechnology  3339  30,713  171  181  820  1.8 
3 - Telecommunications  5792  35,994  171  68  521  2.8 
11 - Analysis of biological 
materials  

1545  9194  90  153  495  0.6 

33 - Furniture, games  6611  35,085  83  164  431  2.3 
12 - Control  6595  32,274  31  223  389  1.8 
24 - Environmental 
technology  

5899  23,101  22  158  292  1.5 

Established technologies       
35 - Civil engineering  20,993  57,948  4  142  176  4.1 
31 - Mechanical elements  16,221  41,522  2  114  156  3.2 
29 - Other special 
machines  

19,922  50,884  0  129  155  3.8 

25 - Handling  16,558  41,732  5  128  152  3.2 
26 - Machine tools  21,047  43,447  − 23  154  106  3.3 
14 - Organic fine 
chemistry  

21,322  34,826  − 15  64  63  3.3 

Lagging technologies       
34 - Other consumer 
goods  

7326  26,013  50  116  255  1.9 

18 - Food chemistry  4508  15,410  31  91  242  1.3 
27 - Engines, pumps, 
turbines  

12,047  39,962  18  128  232  2.8 

21 - Surface technology, 
coating  

7623  24,859  22  137  226  1.8 

30 - Thermal processes 
and apparatus  

9934  25,322  − 6  146  155  1.8 

23 - Chemical 
engineering  

16,442  37,990  − 14  143  131  2.8 

17 - Macromolecular 
chemistry, polymers  

10,903  25,111  8  94  130  2.1 

19 - Basic materials 
chemistry  

15,360  35,023  − 6  118  128  2.8 

20 - Materials, metallurgy  17,144  36,670  − 23  158  114  2.8 
28 - Textile and paper 
machines  

12,789  22,426  22  38  75  2.3 

5 - Basic communication 
processes  

6772  10,875  10  20  61  1.2 

Source: Authors’ elaborations of WIPO data based on classificatory framework (see Fig. 1). 
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growth of semiconductor technologies reflect their capital goods nature 
and thus narrower scope of patenting. Semiconductor chips are major 
enabling technologies driving, especially, the electronics industry 
(Langlois and Steinmueller, 1999; Huggins et al., 2022). Overall, the 
technology classes included in the excelling cluster are enabled by the 
Internet, computers and semiconductors. However, most patents related 
to the excelling technologies cluster were granted to carrier sectors, that 
is, those sectors that are intensive users of enabling ICT and bio
technologies, such as medicine, pharmaceuticals and optics which carry 
the potential to drive the Deep Science Wave. The electrical machinery 
class is an intensive user of ICT GPTs and has the highest share of all 
technology classes (6.5 %; see Table 4). 

Five of the technologies in the emerging/excelling technologies quad
rant reflect three overlapping generations in the ICT paradigm cumu
lative (computers, digital and AI), that is, they build on one another. The 
diffusion of computers was a precondition for their connection via the 
Internet. Digitalisation is an essential technical and organisational 
precondition for the spread of AI (McKinsey, 2019).13 Also, three gen
erations of technologies show markedly different diffusion patterns.14 

The cumulative nature of these changes suggests that they are comple
mentary and form the base of the emerging technological system.15 

The upper/middle left quadrant exhibits a similar pattern of co- 
existing enabling technologies and shows the high growth in patenting 
rates for opportunity-driven technologies which include biotechnology, 
telecommunications, analysis of biological materials, furniture and 
games, control and environmental technologies. However, their share in 
total patents is below average. This quadrant also contains ICT-related 
patents (telecommunications) and patents derived from the carrier 
sector. In these sectors, opportunities for digitalisation and ‘greening’ 
(environmental technologies) are in their early stages. This quadrant 
also contains patents that are unrelated to current dominant ICT GPTs, 
but are related to enabling technologies such as biotechnology and 
biological materials. 

In the two lower quadrants in Fig. 2 are those technology clusters 
exhibiting growth rates lower than the world average for all technolo
gies which is characteristic of mature technologies. The established 
technologies cluster has a higher than average share of total patents. This 
cluster includes many technologies in the areas of civil engineering, 
organic chemistry, machine tools, mechanical elements and handling 
with very high numbers of patents. From negative growth rates between 
1980 and 2000, rates increased substantially between 1980 and 2021 
though significantly less compared to opportunity-driven and excelling 
technologies (Table 4). 

Finally, the lagging technologies cluster shows below world average 
growth rates for patenting and share in total patents lower than the 
average value for all technologies. This cluster includes mainly basic 
science and mature engineering technologies, related to basic materials 
chemistry, engines, pumps, turbines, chemical engineering, macromo
lecular chemistry, thermal processes and apparatus, other specialist 
machines, basic communication processes, materials and metallurgy, 
surface technologies and coating, other consumer goods, food chemistry 
and textile and paper machines. These technologies are important for 

many middle- and low-income economies. Albuquerque (2000) con
siders that in developing countries, technological activities in mature 
sectors are important locally, but are not at the international level. These 
activities include imitation, local learning and adaptations of foreign 
innovations, which might be patentable at the national level. However, 
cutting-edge inventions related to mature technologies have shifted to 
newly emerging technologies. An example of this is 3D printing tech
nology, which moved from the specialised machines technology to the 
nanotechnology and digital communication technology classes. 

Finally, the global nature of our data allow us to check whether 
clusters that originated from the technology and carrier sectors offer 
better technology opportunities. Lee’s (2013) concept of short cycle 
technologies can be used to proxy for technological opportunities. Cy
cles are measured by backward patent citations, that is, the time dif
ference between application/grant year of citing and cited patents. 
Table 5 uses data from Lee (2013) and shows approximate cycle times 
for our technology clusters based on matching Lee’s technology classes 
with the 35 technology classes in our data. We find that emerging and 
excelling ICTs, such as information storage, computers and semi
conductors, have short cycle times, ranging from 5.91 to 6.48 years in 
the 1980–95 period.16 Excelling technologies such as optics, electrical, 
transportation and drugs, and opportunity-driven technologies, such as 
biotechnology, telecommunications, furniture, environmental technol
ogies, have medium-cycle times ranging between 8 and 9 years. We 
found that established technologies, such as machine tools and handling, 
chemistry and lagging technologies, have long cycle times of over 9 
years. Thus, our technologies classification broadly supports Lee’s short 
versus long cycle technologies classification. 

4.2. Are specific technology clusters correlated to economic growth and do 
they differ across income levels? 

We next investigate whether the technology clusters are associated 
with economic growth and how these effects unfold at different income 
levels. We conducted GMM estimation using panel data to assess within 
country temporal variations; this revealed significant relationships be
tween a change in country patenting activity and its citizens’ per capita 
income. 

Tables 6, 7 and 8 present the results for HI, MI and LI countries, using 
several models. We find that the technologies in the excelling technol
ogy cluster are correlated to economic growth at all levels of develop
ment, but the significance of the other clusters differs across income 
levels. 

Emerging, excelling and partly opportunity-driven technologies at 
the HI level are significant predictors of per capita income. Lagging 
technologies do not seem to contribute to growth, while the contribution 
of established technologies changes depending on the controls. If we 
control for R&D and tertiary education, established technologies do not 
contribute to growth. This is intuitive since it would be unlikely that 

Table 5 
Technology cluster cycle times.  

Technology cluster Cycle time (years) 

Emerging technologies (Information storage only)  5.91 
Excelling technologies  7.73 

Of which ICTs  6.48 
Of which optics/electricals/drugs/transport  8 

Opportunity-driven technologies  9 
Established technologies  9.71 
Lagging technologies  9.61 

Source: Authors’ calculations using data in Tables 3.5 and 3.6 in Lee (2013, 70- 
71). 

13 McKinsey’s (2019) survey of large EU firms found that only 23 % consider 
AI diffusion to be independent of both previous digital technologies and the 
capabilities required to use those technologies. This confirms the cumulative 
nature of the emerging techno-economic paradigm and suggests, also, that we 
can expect further divergences in productivity gains across firms and regions.  
14 E.g., all firms in EU countries and regions can access the Internet, but not all 

can access high-speed Internet and only a small percentage uses cloud 
computing and big data. The EU is lagging behind the US and China for share of 
‘digital ICTs’ in GDP and the AI gap with these countries is increasing the EU’s 
already significant digital gap with them (McKinsey, 2019).  
15 E.g., McKinsey (2019) shows that AI diffusion relies on the technical and 

organisational capabilities accumulated from previous adoption of digital 
technology (exhibit 10, p. 19). 

16 To benchmark cycle times with Keun Lee’s data, we calculated cycle times 
using our data for the 1980–1995 period. 
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mere participation in these sectors would contribute to growth without 
some investment in R&D and skills. Established technologies are core 
engineering technologies with long cycles, that require skilled human 
capital and substantial R&D investment. Overall, HI economies are 
characterised by knowledge generation. 

We find for the MI category, emerging, excelling and partly 
opportunity-driven technologies have positive and statistically signifi
cant effects on income per capita. Established and lagging technologies 
do not contribute to growth. MI economies have weaker skills and 
research investment compared to HI economies, hence, the weaker ef
fect of established technologies on their economic growth. However, 
their knowledge generation is driven by ICT diffusion. If we control for 

R&D, fixed investments, trade openness or tertiary education, the 
contribution of some of the technology clusters becomes not significant 
or even demonstrate negative effects. This suggests a mixed picture; 
economic growth seems not to be driven by the generation of new 
knowledge and patenting, but rather by acquisition of knowledge via 
skills, trading or R&D through absorptive function. 

As expected, the coefficients of emerging, excelling and opportunity- 
driven technologies for MI economies are significantly smaller and less 
significant in all the specifications. This indicates a significantly lower 
contribution of knowledge generation to MI economic growth than in HI 
economies. Nevertheless, despite the smaller coefficients related to MI 
economies, we find a statistically significant impact of emerging 

Table 6 
Panel data estimations (System GMM), high-income countries.  

Dependent variable: GNIpc 

Model I II III IV V 

B Sig. B Sig. B Sig. B Sig. B Sig. 

Emerging 140,491  0.000 146,747  0.000 164,518  0.000 126,200  0.000 119,189  0.000 
Excelling 47,697  0.000 37,610  0.000 52,029  0.000 47,829  0.000 38,877  0.000 
Opportunity-driven 15,536  0.001 − 1296  0.823 5690  0.315 10,549  0.052 ¡32,726  0.000 
Established 1224  0.699 ¡11,313  0.001 2291  0.568 − 2203  0.572 − 4957  0.114 
Lagging 2809  0.400 ¡6350  0.085 4141  0.331 3291  0.428 − 1286  0.708 
R&D expenditures   5629  0.000       
Gross Fixed Investment     ¡323  0.000     
Trade openness       24  0.000   
Tertiary school         213  0.000 
Constant 7029  0.016 10,045  0.001 13,219  0.001 7155  0.053 8148  0.004  

N 534  475  509  519  450  
Number of groups 49  47  48  48  49  
Number of instruments 475  436  457  466  414  
Wald chi2 (sig) 20,232.2 (0.000)  21,040.4 (0.000)  20,242.5 (0.000)  20,970.1 (0.000)  19,603.0 (0.000)  
AR(2) 0.717  0.796  0.155  0.806  0.607  
Sargan 0.000  0.000  0.000  0.000  0.000  

Technology (% in country’s total patents). 
Number of instruments are high but not higher than number of observations. In all of the models tested, Stata reports that Sargan test is not robust but not weakened by 
many instruments. 
Significant coefficients in bold (at 10%, 5% and 1%). 

Table 7 
Panel data estimations (System GMM), middle-income countries.  

Dependent variable: GNIpc 

Model I II III IV V 

B Sig. B Sig. B Sig. B Sig. B Sig. 

Emerging 24,041  0.000 34,543  0.000 23,403  0.000 22,761  0.000 18,948  0.000 
Excelling 860  0.001 1233  0.001 1265  0.000 1304  0.000 ¡1756  0.000 
Opportunity-driven 401  0.233 1767  0.000 799  0.026 881  0.013 − 362  0.357 
Established ¡1325  0.000 408  0.208 ¡735  0.006 ¡763  0.003 ¡1585  0.000 
Lagging − 334  0.187 324  0.383 − 18  0.947 − 80  0.760 ¡2380  0.000 
R&D expenditures   2425  0.000       
Gross Fixed Investment     ¡19  0.002     
Trade openness       18  0.000   
Tertiary school         83  0.000 
Constant 3805  0.000 1428  0.000 3870  0.000 2769  0.000 2825  0.000  

N 634  531  603  605  536  
Number of groups 67  61  66  66  66  
Number of instruments 515  459  512  513  450  
Wald chi2 (sig) 11,325.9 (0.000)  8954.1 (0.000)  10,790.3 (0.000)  10,975.6 (0.000)  11,788 (0.000)  
AR(2) 0.002  0.063  0.022  0.006  0.058  
Sargan 0.000  0.000  0.000  0.000  0.000  

Technology (% in country’s total patents). 
Number of instruments are high but not higher than number of observations. In all of the models tested, Stata reports that Sargan test is not robust but not weakened by 
many instruments. 
Significant coefficients in bold (at 10%, 5% and 1%). 
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technologies in MI economies. This result is consistent with the notion 
that MI countries can benefit from focusing on short-cycle technologies 
that provide economic systems with a competitive edge. Also, this may 
suggest that many MI economies have prioritised investments in ‘IT 
methods for management’ even though they are not yet widely used in 
downstream sectors (Carriers and Induced). Among the HI and MI 
economies, we observe a degree of convergence in the results for 
emerging and excelling technologies, but not opportunity-driven tech
nologies. This is as expected given the trend towards global diffusion of 
ICT-based GPTs and enabling technologies. 

The regressions for LI economies also identify emerging and excel
ling technologies as drivers of growth. This result suggests that LI 
category is able to capitalise on short-cycle technologies and diffusion of 
ICTs via the technology sector. This effect is largest for emerging tech
nologies, but much smaller for excelling technologies with marginal 
economic impact due to smaller coefficients compared to MI and LI 
categories. Opportunity-driven, established and lagging technologies 
are significant contributors in LI category indicating that a diversified 
model of technology generation drives growth in this category. All of the 
control variables are also significant predictors of growth suggesting the 
importance of infrastructure in upgrading and reinforcing growth in 
tandem with technology generation. As expected, LI economies have 
poor knowledge generation capacity, but some level of technology 
implementation capacity related to use of technologies generated else
where (Lee et al., 2021). However, we can state that the effect of the 
technology sector on the carrier and induced sectors is observable even 
for LI economies, although compared to the MI and HI categories, this 
effect is marginal. 

Our results confirm the relevance of our conceptual framework for 
understanding technology generation as a driver of economic growth, 
especially for MI and HI economies. We show that our classification of 
technology classes is broadly in line with Lee’s (2013) findings about the 
short versus long cycles and their effects on growth, with emerging and 
excelling technology clusters having the highest coefficients. The asso
ciation between technology cluster and per capita income is robust to 
the inclusion of economic and socioeconomic control variables. This 
supports the hypothesis that technology clusters are significant pre
dictors of per capita income, even controlling for aggregate economic 

and socioeconomic variables such as R&D expenditure, trade openness, 
fixed investment and education level. 

4.3. Diversity of technology upgrading profiles 

In Section 4.2, we showed that certain technology clusters are 
associated with economic growth at a particular development level. 
Here, we predict that, equally important for economic growth, is smart 
combination or portfolio of technology clusters. We investigate whether 
countries at different levels of development show distinctive technology 
upgrading profiles and how these change over time. Specifically, we are 
interested in whether countries with similar or different income levels 
share similar or different technology profiles. Our aim is to show 
whether there are productive and less productive technology upgrading 
profiles, within and across income levels or, in other words, whether 
there are particular profiles or portfolios of technology which facilitate a 
shift from a lower to a higher income level. 

fs/QCA is used to identify combinations of technology clusters which 
lead to a shift to a higher income level.17 The highest level of per capita 
GNI is the ‘fully-in’ at threshold level which allows a shift to the next 
income level. We use fsQCA software 3.0 (Ragin and Davey, 2016) and 
set the frequency threshold to 1 and the consistency cut-off value to 
above 0.75, as suggested by Ragin (2008b).18 Tables 9 and 10 report the 
findings related to the causes of “present” outcomes. 

In statistical terms, for the HI group, solutions I and II, for 1992–94 
and 2019–21, respectively, show acceptable overall solution consistency 

Table 8 
Panel data estimations (System GMM), low-income countries.  

Dependent variable: GNIpc 

Model I II III IV V 

B Sig. B Sig. B Sig. B Sig. B Sig. 

Emerging 31,315  0.006 29,118  0.013 29,858  0.009 29,417  0.013 25,672  0.060 
Excelling 120  0.024 209  0.009 158  0.007 104  0.057 30  0.674 
Opportunity-driven 21  0.723 − 56  0.615 47  0.470 22  0.722 384  0.002 
Established 189  0.000 64  0.298 242  0.000 191  0.000 103  0.123 
Lagging 190  0.000 190  0.000 237  0.000 197  0.000 173  0.004 
R&D expenditures   23  0.647       
Gross Fixed Investment     2.3  0.095     
Trade openness       0.5  0.406   
Tertiary school         2.4  0.065 
Constant 320  0.000 332  0.000 231  0.000 306  0.000 299  0.000  

N 106  78  95  100  82  
Number of groups 18  15  17  18  18  
Number of instruments 101  76  91  97  75  
Wald chi2 (sig) 2206.9 (0.000)  1637.4 (0.000)  2064.6 (0.000)  2033.5 (0.000)  1340.4 (0.000)  
AR(2) 0.885  0.916  0.949  0.906  0.293  
Sargan 0.000  0.000  0.000  0.000  0.000  

Technology (% in country’s total patents). 
Number of instruments are high but not higher than number of observations. In all of the models tested, Stata reports that Sargan test is not robust but not weakened by 
many instruments. 
Significant coefficients in bold (at 10%, 5% and 1%). 

17 fsQCA analysis differs from cluster analysis in the sense that the conditions 
related to a configuration can be associated with an outcome indicator. For 
instance, the outcome informs about the growth rates of countries arranged 
according to the threshold income level that leads to a shift to a higher income 
level, while the conditions inform about the technology clusters that collec
tively form technology upgrading profiles.  
18 Frequency refers to the number of cases in the sample that are explained by 

a configuration. A lower frequency threshold increases sample coverage, 
although each combination refers to a smaller number of sample cases. The 
consistency threshold distinguishes between configurations that are or are not 
subsets of the outcome. 
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values of ≥0.75.19 In all the configurations, raw consistency values are 
above the acceptable threshold value of 0.75. Overall, solution coverage 
informs that the configurations related to solutions I and II jointly 
explain 70 % and 72 % of memberships in the present outcomes. Unique 
coverage statistics suggest that configurations 1 and 4a have the highest 
significance in solution I, that is, 0.06, and configuration 1a has the 
highest significance in solution II, that is, 0.08, in terms of frequency of 
occurrence of the outcome. According to the raw coverage statistics, 
conditions explain the configurations in solutions I and II between 16 
and 45 %.20 

Table 9 (HI group) shows, first, that in the period 1992–94, three 
major technological upgrading profiles are associated with similar in
come levels. The first, second and third profiles centre on the excelling 
technologies supported by either opportunity-driven or established 
technologies; the fourth on the established; the fifth and sixth profiles on 
the opportunity-driven technologies clusters, and the seventh profiles on 
emerging technologies. In the 2019–21 period, three technology 
upgrading profiles are centred around excelling or established technol
ogies clusters, and two are centred around the opportunity-driven 
technologies cluster combined with either the emerging or lagging 

technologies clusters. These results show the diversity of technology 
upgrading patterns in HI economies, which is in line with our econo
metric results (Table 6). The highest number of configurations, with 
excelling, opportunity-driven and established technologies clusters, are 
associated with HI status. They are also significant drivers or predictors 
of income growth in GMM models, although fs/QCA shows that the 
emerging technologies cluster is an above-average contributor to tech
nology upgrading in only a few configurations (Tables 9, paths 7a & 7b 
in 1992–94 period and 4 in 2019–21). Also, lagging technologies which 
are either not significant or are negative contributors to income growth 
(Table 6), have above average shares in two significant profiles in the HI 
group (Table 9). 

Second, there is a shift from diversified to less diversified patterns of 
technological activity between the two periods. In the second period, 
most countries’ technology profiles focus on excelling or established 
technologies and both the emerging and lagging technologies clusters 
lose their relatively stronger presence. While this might be expected for 
the lagging technologies clusters, the case of the emerging technologies 
clusters is somewhat puzzling. This shift towards excelling and estab
lished technologies may indicate progression of technology paradigm, i. 
e. a shift towards technologies whose economic relevance has increased. 

There are several reasons for the reduced presence of emerging 
technologies cluster in the technology upgrading profiles in the second 
period, including the fact that they are supported by the nanotechnology 
field. Munari and Toschi (2014) highlight legitimisation and institu
tionalisation issues related to nanotechnology patenting, including the 
practice of ‘patent thicketing’. Patent thicketing refers to the issuing 
multiple patents for a single invention, which can hinder further 
development or cause temporary stagnation. Youtie et al. (2021) argue 
that the development of nanotechnology towards commercialisation 
means that patenting is not the firm’s main strategy any more. Schmoch 
(2007), Rothaermel and Thursby (2007) and Shapira et al. (2011) 

Table 9 
Technology upgrading profiles/configurations enabling shift to the next income level (all HI samples for 1992–94; selected HI samplesa for 2019–2021, average patent 
outputs).  

Solution I II  

1992–1994 2019–2021 

Configurations 1 2a 2b 3 4a 4b 5 6 7a 7b 1a 1b 2 3 4 

Emerging technologies   Ѳ  Ѳ Ѳ Ѳ Ѳ ● ●  Ѳ Ѳ Ѳ ● 
Excelling technologies ● ● ● ●   Ѳ   Ѳ ● ● Ѳ Ѳ  
Opportunity-driven technologies Ѳ ● ● Ѳ Ѳ  ● ● ● ●  Ѳ  ● ● 
Established technologies Ѳ Ѳ  ● ● ●  ● Ѳ  Ѳ Ѳ ●  Ѳ 
Lagging technologies      Ѳ ● Ѳ   Ѳ   ● Ѳ  

Raw coverage 0.30 0.24 0.27 0.26 0.40 0.36 0.31 0.28 0.18 0.16 0.45 0.32 0.40 0.35 0.27 
Unique coverage 0.06 0.00 0.00 0.01 0.06 0.00 0.03 0.00 0.00 0.00 0.08 0.03 0.05 0.01 0.00 
Raw consistency 0.96 0.96 0.90 0.97 0.97 0.93 1 1 1 1 0.97 0.94 0.79 0.86 0.95 
Overall solution coverage 0.70 0.72 
Overall solution consistency 0.93 0.84 
Cases with >0.5 membership in configuration CYP 
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SGP 
SVN 
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CHE 
DEU 
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ITA 
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NZL 
PRT 
SGP 
SVN 

AUS 
ISL 
ESP 
GRC 
NOR 
NZL 
PRT 
SGP 
SVN 

AUT 
FIN 

AUS 
DEN 
ESP 
GRC 

CAN 
ISR 

CAN 
DEN 

CAN 
EST 
GBR 
HKG 
IRL 
ISL 
ISR 
KOR 
NZL 
SGP 
SWE 
USA 

FIN 
FRA 
ISL 
ISR 
JAP 
NLD 
URY 

AUS 
AUT 
BEL 
CHL 
CZE 
DEU 
ESP 
GRC 
HUN 
ITA 
LVA 
NOR 
POL 
PRT 
SVK 
SVN 

BEL 
CHL 
DEN 
ESP 
HRV 
LVA 

CAN 
EST 
HGK 
LTU 

● Core causal condition (present); Ѳ core causal condition (absent). Blank spaces denote ‘don’t care’. 
Truth table frequency cut-off = 1, consistency cut-off = 0.86. Combination of intermediate and parsimonious solutions are presented. 

a Oil-rich and small island countries are excluded from the sample. 

19 Consistency measures the degree to which configurations and the solution 
as a whole (overall solution consistency) are subsets of the outcome (Ragin, 
2008b, p. 85). Overall solution consistency denotes the extent to which cases 
correspond to the set-theoretic relationship expressed in a solution (Fiss, 2011, 
p. 402).  
20 Coverage measures how much of the outcome is explained by each 

configuration (represented by raw coverage and unique coverage) and by the 
solution as a whole (overall solution coverage) (Ragin, 2008b, p. 85). Raw 
coverage measures the proportion of memberships for each condition in the 
outcome, while unique coverage measures the proportion of cases that follow 
the specific configuration leading to the outcome (Ragin, 2008b, p. 86). 
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Table 10 
Technology upgrading profiles/configurations enabling shift to the next income level (all MI samples in 1992–94 and 2019–2021, average patent outputs.)   

Low-income Middle-income 

Solutions I II III  

1992–1994 1992–1994 2019–2021 

Configurations 1 2 3 1a 1b 2a 2b 3 4a 4b 1a 1b 1c 1d 2a 2b 3a 3b 4 

Emerging technologies Ѳ Ѳ Ѳ Ѳ Ѳ Ѳ Ѳ Ѳ Ѳ Ѳ Ѳ  Ѳ Ѳ    ● ● 
Excelling technologies ●   ● ●  Ѳ    Ѳ Ѳ    ● Ѳ  ● 
Opportunity-driven technologies   Ѳ  Ѳ   ● Ѳ Ѳ Ѳ Ѳ  Ѳ ● ●  Ѳ  
Established technologies  ●   Ѳ ● ● ●  Ѳ   Ѳ ● Ѳ  ● ● Ѳ 
Lagging technologies Ѳ Ѳ ● Ѳ  Ѳ  Ѳ ● ●  ● ● Ѳ Ѳ Ѳ ● ● Ѳ  

Raw coverage 0.46 0.48 0.63 0.49 0.17 0.42 0.41 0.25 0.48 0.22 0.31 0.30 0.31 0.18 0.27 0.30 0.30 0.19 0.24 
Unique coverage 0.03 0.06 0.32 0.07 0.01 0.02 0.01 0.02 0.06 0.00 0.03 0.01 0.06 0.01 0.02 0.02 0.01 0.00 0.04 
Raw consistency 0.94 0.89 0.93 0.90 0.90 0.88 0.92 0.99 0.90 0.85 0.85 0.97 0.97 0.81 0.93 0.97 0.99 1 0.94 
Overall solution coverage 0.84 0.83 0.70 
Overall solution consistency 0.89 0.86 0.87 
Cases with >0.5 membership in configuration ARM 
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● Core causal condition (present); Ѳ core causal condition (absent). Blank spaces denote ‘don’t care’. 
Truth table frequency cut-off = 1, consistency cut-off = 0.86 (for MI subsample), 0.88 for LI subsample. Combination of intermediate and parsimonious solutions is presented. 
Note: Vietnam has no patent activity in 1992–94 period. Nigeria patented only in opportunity-driven technologies. 
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suggest that the major nanotechnology actors have become large in
cumbents, more interested in capturing the benefits of application and 
commercialisation than in patenting. 

Patenting of IT management methods increased sharply from 2010 
and shows the second highest growth of all fields (see Table 4). IT 
management technologies allow access to services such as accounting, 
inventory management, programming, project management, etc. pro
vided by distant rather than proximate suppliers (Harris, 1998). This is 
leading to business changes based on conversion of information from 
analogue to digital information which is embedded in new business 
models (Kraus et al., 2021). The effects of IT-driven strategies are 
increasing for both large and small businesses. The increased use of 
these technologies by small firms will likely have a major impact on 
business operations. 

In the first period, many countries focused on established technolo
gies with below-average shares of excelling and emerging technologies. 
These trajectories are led by countries, such as Germany and Italy, with 
long experience in capital-intensive engineering and chemical technol
ogies, that is, industry-based science with rapid transfer of research re
sults to production (Grupp et al., 2003). Eastern European countries that 
rely on Germany’s industrial strategy and have strong links to German 
companies, shifted from the MI level in the 1990s to a HI level in 2021. 
The emphasis of southern European countries, such as Spain, Portugal 
and Greece, on established technologies allowed them to shift income 
levels from MI to HI. Their upgrading profile also shows a significant 
share of opportunity-driven technologies (see configuration 3) in 
2019–21 period. 

Countries categorised as MI during the 1990s, were able to make the 
shift to HI in the 2010s, based on use of established technologies. 
However, use of established technologies was not sufficient for LHI 
countries to shift to UHI levels. Italy seems stuck in the LHI group, while 
Germany and Belgium moved between LHI and UHI. In their study of 
German engineering sectors, Fromhold-Eisebith et al. (2021) suggest 
that an industry-specific historical trajectory may lead to lock-in and, 
combined with weak specialisation in advanced ICTs, can hamper 
technological upgrading in traditional sectors such as textiles. 

Third, we observe that technology upgrading based on excelling 
technologies is the most prominent in the group of large and techno
logically leading economies (USA, Japan, Sweden, Canada, France). 
Some small countries shifted towards a more diversified technology 
upgrading profile in the period 2019–21. This suggests that the major 
‘improvers’ in terms of shifting to the next income level or remaining in 
the HI group, have focused on ICT-driven, short-cycle technologies. This 
likely allowed development of the carrier and even the induced sectors 
to the next stage of digitalisation and automation. 

In statistical terms, the LI and MI groups, solutions I, II, III, show 
acceptable overall solution consistency values of ≥0.75. For all the 
configurations, raw consistency values are well above the acceptable 
threshold value of 0.75. Overall solution coverage shows that the con
figurations included in solutions I, II and III explain 84 %, 83 % and 70 % 
of current positions. Unique coverage statistics suggest that configura
tion 3 in solution I, configuration 1a in solution II and configuration 1c 
in solution III have the highest outcome occurrence significance. The 
raw coverage statistics suggest that conditions explain between 18 % 
and 63 % of the configurations in solutions I, II and III. 

Table 10 shows that the technology profiles of the LI and MI groups 
do not differ substantially from the profiles of the HI economies, with the 
exception of lagging and emerging technologies whereby the latter do 
not contribute to LI and MI groups’ technology profiles. This is expected, 
since the technology efforts in these economies put more emphasis on 
technology use than on knowledge generation and lagging technologies 
play a more important role in this group. Also, it should be noted that a 
similar technology profile, especially in technology clusters in LI econ
omies, does not imply more than a marginal contribution to economic 
growth. 

During the 1992–94 period, MI economies show four distinctive 

technology upgrading profiles, each focused on a specific technology 
cluster and including profiles with a lagging technologies cluster 
(Table 10). Emerging technologies did not contribute to countries’ 
technology profiles in that period. In the period 2019–21, the emerging 
technologies cluster appears as present condition in MI group. The GMM 
regressions show that, for the MI group, emerging technology cluster has 
a statistically significant impact on economic growth. The results of both 
our analyses suggest that, despite their very low shares in the MI group 
technology portfolios, emerging technologies influence carrier sectors 
which, for MI economies, are macroeconomically or economically 
relevant. 

Summarising shifts in technology upgrading profiles of MI shows the 
following: First, between 1992 and 2021, there was a shift from less 
diversified to diversified patterns of technology upgrading. This leads to 
a no-distinctive technology profile in some countries, similar to profile 
1a solution III (Table 10). This contrasts with HI economies which are 
less diversified in the second period. These findings are in line with Lee 
and Li (2014), who show that MI economies diversify their knowledge 
bases. Second, greater diversification means a focus on more technology 
clusters whether excelling, opportunity-driven, established or lagging 
technologies. Third, in the 2019–21 period, a few countries (China, 
India, Malaysia, Pakistan, Tunisia), active in excelling technologies, and 
emerging technologies (China, India, Moldova, Pakistan) moved to a 
higher income level and show more diversified patterns of technology 
upgrading. “Improver” countries, focused on excelling technologies in 
the entire period 1992 to 2021, shifted to the next income level. The 
positive and statistically significant effects of excelling technologies are 
reported in regressions for the MI group. We add to this our fs/QCA 
analysis which shows the transformative effects of the ICT paradigm on 
some LI and MI economies. 

Although in the 1990s, many MI countries made efforts in excelling 
technologies, in most cases these efforts had been abandoned by 2019 – 
China is an illustrative exception. However, most profiles show evidence 
of technology upgrading linked to clusters in established and lagging 
technologies. This could be the result, in part, of integration of these 
countries (Turkey, Vietnam, Romania, India) via GVCs and involvement 
in low value-adding activities. For some economies, especially some of 
the largest emerging markets (Argentina, Brazil, Mexico, Indonesia, 
South Africa), result was a lock-in in non-dynamic clusters. 

5. Discussion 

This paper addresses the association between countries’ technolog
ical profiles and their respective economic growth dynamics. Specif
ically, we: (a) explored the changing dynamics of current technology 
clusters based on a growth-share matrix which shows the strong effect of 
GPTs and enabling technologies; (b) conducted econometric testing of 
the associations between specific technological clusters and economic 
growth; and (c) explored the range of technology upgrading profiles of 
different income groups, and how these profiles shifted between 1992 
and 2021. 

Based on our interpretative framework of technology, carrier and 
induced sectors, we identified five technological clusters: emerging, 
excelling, opportunity-driven, established and lagging. Our results show 
that the country’s technological profile plays a significant role in pre
dicting its growth prospects and possible shift to a higher income level. 

First, we have shown that, during the 1980–2021 period, if the 
country was focused on technology generation, particularly in newly 
emerging short-cycle technology fields, driven by the ICT paradigm and 
enabling technologies, and displayed fast growth in patenting in those 
areas, its chances of moving to the next income league increased 
substantially. 

Second, we found heterogeneous technological profile trajectories 
co-existing within and across income levels, suggesting that competing 
strategies for macro-level productive technology profiles may have 
equivalent outcomes. However, this does not mean that technology 
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upgrading profiles do not matter. In the MI and HI groups, lagging 
technologies contributed nothing to growth despite their substantial 
shares in some economies. Emerging, opportunity-driven and excelling 
technologies, had positive and statistically significant effects on income 
per capita in both the MI and HI groups; however, the role of established 
technologies varied. 

Third, in the period 1992 to 2021, strong technology upgrading 
resulted in less diversification in the HI group and more diversification 
of the technology clusters in MI economies. Our results suggest that 
countries which focused on technology clusters that have a weak effect 
on economic growth, might be stuck in technological paths that offer 
few opportunities for a move to a higher income level. These structurally 
‘stable’ countries were observed at all income levels. ‘Lock-in’ to an 
unproductive technology ugrading path can prevent catch-up and close 
routes to a path-creating or stage-skipping paths (Lee, 2013). 

Our results show that, although some technological clusters are 
associated strongly with economic growth, their combined effect is 
decisive for technology transformation. It seems that what matters is not 
just the individual technology cluster, but the combination of comple
mentary clusters. Technology transformation is a continuous dynamic 
process driven not only by newly emerging technology clusters but more 
by complementarities among different clusters. Some clusters are gen
erators of radical new knowledge while others are economically more 
important as adaptors and users of new or established technologies. This 
calls for policy mixes, combining different instruments for a ‘mix’ of 
objectives, applicable to a range of different domains but which consider 
the structural idiosyncrasies of economic and innovation systems (Ker
groach, 2019; Rogge and Reichardt, 2016; Flanagan et al., 2011). Policy 
mixes conducive to technology transformation need to go beyond 
emerging technologies’ mission oriented policies. Goal setting and 
establishment of priorities based on expectations about which technolo
gies can accelerate economic growth is essential (Mazzucato, 2018, 
2016). However, mission oriented policy (MOP) need to be combined 
with the coordination of complementary technology clusters and dimensions 
of the innovation system (Mazzucato, 2016; Kattel and Mazzucato, 2018). 
MOP are in line with Lee (2013), who suggests that path-creation or 
stage-skipping routes are crucial for catching up and forging ahead. Our 
analysis suggests that this is necessary but not sufficient. Promoting 
technology transformation requires policy focus on all technology sectors 
and clusters. For some economies that could mean focus on new and 
unrelated technologies. Pinheiro et al. (2022) demonstrate that more 
developed NIS facilitate the shift towards involvement of unrelated 
technologies and policies with different priorities. On the other hand, 
Zabala-Iturriagagoitia et al. (2020) argue that related and unrelated 
diversification can co-exist with traditional industries having capabil
ities concentrated in mature technologies. In these cases, policy should 
support diversification in other industries and technologies. 

Our analysis suggests that MOP should be conceived as portfolio of 
missions with different objectives for different technology clusters. 
Established and lagging technology clusters may be crucial from eco
nomic and employment perspectives. Newly emerging, excelling and 
opportunity-driven clusters may be essential as sources of knowledge to 
be used by carrier and induced sectors. 

Portfolios of missions require a mix of instruments but also adequate 
governance and coordination structures (Hekkert et al., 2020). Given 
the variety of missions with different objectives, state-led, highly 
centralized initiatives are likely to be ineffective (Poel, 2003). Instead, 
mission-oriented strategies should aim to coordinate the actors involved 
in technological upgrading, to achieve decentralization of government 
decision-making and the formulation of enabling complementary pol
icies (Mazzucato, 2018; Soete and Arundel, 1993). 

It takes time for the effects of policy initiatives that involve structural 
shifts in technology upgrading profiles to emerge. This requires insti
tutional stability (Roca et al., 2021). However, there is a lack of 
consensus about what constitutes effective institutions and how it can be 
achieved. Choung and Hwang (2019) argue that in the context of 

technological discontinuity, existing institutional frameworks can stifle 
innovation by encouraging lock-in effects. Although institutional sta
bility is desirable, institutions also need to co-evolve with the focal 
technology upgrading process, provide agents with appropriate in
centives, remove regulatory uncertainty (Yu et al., 2020; Choung and 
Hwang, 2019) and facilitate links to Global Value Chains (Brandt and 
Thun, 2016). From a micro perspective, Bernat and Karabag (2019) 
point out that technology upgrading is an iterative process, in which 
monitoring, strategizing, aligning and learning are critical. It is likely 
that these elements are also important at the macro-level policy making. 

In a nutshell, technology transformation requires policy mixes 
conceived as portfolios of missions with disparate objectives, re
quirements and institutional setups. In that respect, they go well beyond 
often simplified pictures of the entrepreneurial state focused solely on 
newly emerging technologies. 

Knowing which technology combinations trigger economic growth 
does not equate with certainty about which technological domains will 
be as effective in the future. The position of technologies in individual 
clusters can change both in terms of growth and shares. This makes 
mission oriented policies prone to uncertainty and heightened risks 
though forecasting exercises can somewhat reduce these risks. However, 
this further reinforces the need for thorough examinations on the me
chanics of impact of particular technologies on economic development. 

6. Concluding remarks 

This paper investigated the role of technological profiles in economic 
growth and shifts in income levels. We conducted analyses of patenting 
activities of 96 countries over 40 years (1980 to 2021). We tried to 
identify why some countries moved from LI to MI, and to HI levels and 
others did not. Our analysis shows that specific technological domains – 
depending on their relative weight and growth dynamics – are associ
ated with different patterns of economic growth. More importantly, we 
identified distinct technological upgrading paths and explored shifts in 
their profiles at different levels of income. 

Our findings show that economic growth is a process of constant 
transformation and shifting of technology portfolios rather than 
adjustment to a long-run fixed technology target (Fagerberg and Ver
spagen, 2002: 1302). This process is guided by market forces but it also 
requires government intervention. This latter is indispensable as mar
kets can be poor allocators of investments in early stages of new tech
nologies (cf. renewables). Decision-makers need to be aware of shifts in 
the global technological landscape and their potential effects on tech
nology transformation and the prospects for growth. This requires 
foresight to understand which technologies will provide the greatest 
opportunities in coming decades. 

Our conceptual framework and our results suggest that technological 
domains are not substitutable in terms of their capacity to generate 
economic growth and development. Each technology cluster plays 
different technological and economic roles and has different socio- 
economic impacts. In that respect, strategic choice of technologies 
does matter (Lee, 2013). This shows, also, that the structure of tech
nology clusters is pivotal in this debate (Mazzucato, 2018; Saviotti and 
Pyka, 2004). Policy should aim to shift innovation system towards 
technologies able to trigger strong economic growth (Mazzucato and 
Perez, 2015). However, our analyses suggest that focusing only on 
emerging sectors and disregarding the role of other technology clusters 
would have limited impact on long-term growth. The capacity to steer 
structural rationalisation for technological progress and upgrading is 
vital for effective innovation policy (Zhou et al., 2020; Cimoli et al., 
2019). 

Emerging technologies have been associated with the strongest im
pacts in terms of generating income growth. On the other hand, these 
technologies are seldom part of the configurations of low- and middle- 
income countries, thus representing the challenges for these econo
mies to engage in frontier technologies that require ‘path-defying’ 
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strategies. In this respect, excelling technologies appear to be a more 
reasonable driver of growth, demonstrating significant effects across all 
income levels, as well as being a key part of several configurations 
conducive to growth. A more in-depth scrutiny of which specific tech
nologies have more potential to spur growth – and what are its under
lying mechanisms – is warranted as a critical avenue for future research. 
Our research has shown that although excelling technologies are pre
dominantly driven by ICT-related technologies, hard science such as 
nanotechnology, biotechnology, medical sciences, environmental tech
nologies, new materials and transport are also part of emerging and, 
excelling technologies representing the Deep Science Wave in the 
coming (WIPO, 2022a). In particular, policy focus on portfolio of mis
sions, on different functions of each technology cluster and how they 
complement each other should be a priority. 

In sum, our GMM analysis indicates that HI countries can achieve 
economic growth mainly based on developing capabilities in Emerging 
and Excelling technologies, i.e., by engaging with innovation at the 
technological frontier. In turn, MI countries present growth patterns 
strongly associated with Emerging technologies whereas for the case of 
LI economies, Lagging technologies can provide relevant sources of 
growth as they can form part of the initial stages of technological 
upgrading compatible with their industrial structure. Interestingly, 
Established technologies appear to be consistently associated with 
negative growth rates in HI and MI countries. This is in accordance with 
the notion of middle-income traps for countries that strongly engage in 
developing these technologies. As Lee (2013) laid out, especially MI 
economies cannot achieve sustained growth when focusing on such 
long-cycle technologies. In HI economies a focus on these technologies 
may result in a lock-in. Escaping the middle-income trap seems highly 
unlikely in the absence of orientations of the National Systems of 
Innovation towards the frontier, short-cycle technologies. 

However, our configurational approach using fs/QCA reveal that 
these patterns should not be taken as ‘universal truths’ for industrial 
policy and that alternative combinations of technological portfolios can 
lead to growth. In the next decades, the rejuvenating effect of digital
isation and AI might generate a very different role for established, 
opportunity-driven and even lagging technologies. 

In this respect, the novelty of our research concerns the multiplicity 
of technology paths required for income shifts and how these conditions 
change across different levels of economic development. In this respect, 
there are serious limits for innovation policies focused solely on 
emerging technologies. Instead, our assessment outlines the relevance of 
technological portfolios, and comprehending the differential impacts 
and roles of these technologies in triggering growth. 

Having a thorough comprehension of how technology clusters and 
their combinations can foster growth is key in establishing priorities for 
innovation policy. Illustratively, our empirical exercise identified the 
limits of established and lagging technologies in driving growth, except 
in the case of low-income countries. This represents specific challenges 
for countries in middle-income traps. This might require policy shifts 
that go beyond related diversification. Initiatives targeted at promoting 
capability ‘leaps’ towards new technological domains might be needed – 
an issue that requires also institutional and socioeconomic 
transformations. 

Our study is not without limitations. First, the limitations of the 
patent statistics to cover the full variety of technological activities in 
economy. Technologies with low propensity to formal protection could 
not be accounted in our assessment. Due to the complex nature of our 
investigation we could not include indicators such as R&D expenditures 

and industrial design in our analyses. So, patent bias limits the gener
alizability of our findings. Second, our aggregate study builds on clusters 
based on patterns of growth dynamics and shares of technological 
clusters. This does not allow us to address the heterogeneous impacts of 
specific patents in promoting market competitiveness and economic 
growth. Also, different approaches to combining technologies, which 
rely on other clustering parameters (e.g., technological proximity), 
might provide a different picture of the association between techno
logical diversification and economic activity. 

Future research in this area could extend this research in several 
ways. First, it can examine the technological dynamics of specific fields 
more closely and investigate their relation to economic growth in 
countries at different stages of development. This would allow a better 
assessment of GPTs (ICT, nanotechnology, AI and biotechnology for 
instance). We would suggest both deductive and inductive research to 
delve deeper into the specificities of these phenomena and their inter
play with broader economic and institutional aspects. For instance, 
assessing how policies targeting these technological clusters affect 
technological ugrading could inform further theoretical advances. Sec
ond, industrial design data can be used to complement the patent data. 
Recently, some middle-income economies (i.e. China, Turkey, Brazil, 
Morocco, India, Thailand) have shown particular strengths in industrial 
design as compared to high-income economies albeit mostly in medium- 
and low-tech sectors (WIPO, 2022b: 99–100). Third, our growth-share 
matrix as a dynamic framework captured not only ICT Wave but also 
Deep Science Wave technologies (i.e. nanotechnology, biotechnology, 
health technologies, environmental technologies, transport and new 
materials) that show the potential to drive economic growth specifically 
enhanced with advances in AI technology. Further research can run 
forecasting analysis to identify specific technologies for their effect on 
growth. We hope that this article will be useful to motivate research in 
these topics. 
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Appendix A. Operationalisation of patent growth-share matrix 

Our conceptual framework (see Fig. 1) is based on the operational framework depicted below for mapping technologies based on their growth rate 
and share in total patents. Fast versus slow growth rates and novelty versus maturity (associated with a small number of patents in an emerging 
technology field or many patents in a mature technology field) guided our formulation. Similar clustering was operationalised, in the context of 
emerging technologies, by Breitzman and Thomas (2015) who use patent citation rates and shares. The technology clusters in our research are mapped 
according to the direction and rate of change measured by patent growth rates in the period 1980 to 2021, and average share of patents in technology 
clusters in total patents during 1980–2021. The coordinates of the intersection point ρ (xi, yi) in Fig. 2 are important for interpreting the framework. Xi 
is the mean value of the share of each technology cluster in total world patents during 1980–2021. Xi is 2.85 %. We are interested in which technology 
clusters show shares above and below this value. Yi is the growth rate of granted patents in all technologies from 1980 to 2021. We calculated this 
value, 282.1 %, by smoothing the patent statistics using 1980–84 and 2017–21 averages as two points in time. In this average value, we do not include 
the five outlier technologies of micro-structural and nano-technology, IT methods for management, digital communication, computer technology and 
semiconductors (see Fig. 2). Table 4 presents the results including figures on the growth rates of technology clusters during the 1980–1997 and 
1998–2021 periods.

X = Average share in total patents (1980-2021)

Y = Patent growth rate (1980-2021)

O (0, 0)

ρ (xi, yi)

Opportunity-driven technologies

Newly emerging technologies

Excelling technologies

Lagging technologies Established technologies

Appendix A. Operational framework for technology clusters by patent growth rate vs. average share of patents in worldwide patenting (1980–2021).   

Appendix B 
Overview and descriptive statistics for indicators used in the analyses (full sample).  

Indicator No of 
obs 

Min Max Mean SD Emerging Excelling Opportunity- 
driven 

Established Lagging R&D 
expenditures 

Trade 
Openness 

GFI Tertiary 
school 

GNIpc  1276  153.3  101,226.7  13,260.7  16,251.8          
Emerging  1276  0  0.19  0.005  0.013  1         
Excelling  1276  0  1  0.306  0.170  0.170  1        
Opportunity- 

driven  
1276  0  1  0.117  0.106  − 0.019  − 0.034  1       

Established  1276  0  1  0.270  0.166  − 0.111  − 0.356  − 0.248  1      
Lagging  1276  0  1  0.274  0.160  − 0.089  − 0.355  − 0.189  − 0.187  1     
R&D 

expenditures  
1087  0  5.29  0.97  0.93  0.052  0.338  0.010  − 0.084  − 0.178  1    

Trade openness  1228  6.38  209.67  42.0  29.4  0.115  0.157  − 0.018  − 0.037  − 0.104  0.050  1   
GFI  1211  3.11  87.67  23.2  6.2  0.028  − 0.064  − 0.019  − 0.011  − 0.031  0.050  0.085  1  
Tertiary school  1072  0.016  149.70  38.5  25.8  0.199  0.351  0.082  − 0.092  − 0.158  0.532  0.106  − 0.111 1  
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