RT-IMECC
IM/4080

. R.P,
y 1M/64/92

COMPACTNESS OF TOPOLOGICAL
SPACES OF MODELS

Xavier Caicedo

Dezembro RP 84/92

Relatério de Pesquisa

Instituto de Matematica
Estatistica e Ciéncia da Computacgao

UNIVERSIDADE ESTADUAL DE CAMPINAS
Campinas - Sao Paulo - Brasil

e — - SRR N N—



7 7z JUl 1993

(MHM@HW

Periddice

ABSTRACT - We study [k, A]-compactness of topological spaces in general and spaces of structures
associated to abstract logics in particular. A characterization in terms of ultrafilter convergence of
preservation of [k, A]-compactuess by products of general topological spaces is given. The Abstract Com-
pactness Theorem of Makowsky and Shelah beécomes then a simple corollary from a general topological
result. Reciprocally, several results on compactness shown first for logics are seen to hold true in all
topological spaces.

IMECC - UNICAMP

Universidade Estadual de Campinas
CP 6065

13081 Campinas SP

Brasil

O conteiido do presenite Relatério de Pesquisa é de iinica responsabilidade do autor.

Dezembro — 1992

L M.E.C.C.
BIELIOTECA



Compactness of topological spaces of models

Xavier Cascedo
Campinas, November 1802

We discuss various forms of compactness in model theoretical logics, their inter-relations, and
consequences, trying to separate clearly purely topological facts from genuine model
theoretical facts. We discuss in this context results due to Shelah, Makowsky, and Mundici.
Some of them are just special cases of general topological results, others reveal an interesting
topological behaviour of the spaces of structures generated by a logic. In particular, inspired
by the "Abstract Compactness Theorem” of Makowsky and Shelah [M-Sh], we prove a
characterization in terms of ultrafilter convergence of preservation of [x,A]-compactness by
products of general topological spaces. The Abstract Compactness Theorem becomes then a
simple corollary from a general topological result. Reciprocally, several results on compactness
shown first for logics are seen to hold true in all topological spaces.

This work was realized with the support of FAPESP (Fundacao de Amparo & Pequisa do
Estado de Sao Paulo) while a Visiting Professor at the "Universidade Estadual de Campinas”
the second semester of 1992. I received generous logistic support from the "Centro de Logica
Epistemologia e Historia da Ciencia” and the "Instituto de Matematica, Estatistica e Ciencia
da Computacao” of UNICAMP. Special thanks are due to A.M. Sette and C. Cifuentes for
many stimulating ideas and discussions and their active participation in the seminary which
originated this notes.

L TOPOLOGICAL PRELIMINARIES, [x,\-COMPACTNESS

The following generalization of the notion of compactnes of a topological space was
considered first by Alexandroff and Urysohn [AU], and studied later by Smirnov [S], Gaal [G)
and Vaughan [V1], see also Kunen-Vaughan [Ku-V]. The identity between these notions and
those introduced by Makowsky and Shelah [Ma-Sh] in logic was noticed first by Mannila [M].



Definition 1.1. A topological space X is said to be [x,)]-compact, for w € A € & < o0, if
any covering of X by a family of at most x open sets has a covering subfamily of power less
than A. Equivalently, any family of at most x closed subsets of X for which every subfamily
of power less than )\ has non- empty intersection (we will call this the A-intersection properiy)
has itself non-empty intersection.

[oo,w]-compactness is ordinary compactness of topological spaces, [w,w]-compactness is usually
called countable compactness in topology, and 0o, wy]-compactness is the so called Lindelof
properiy.

The reader should be aware that the notation utilized for [x,A]-compectness in mode! theory,
which we adopt here, reverses the more natural notation utilized in the topological literature.

LEMMA 1.2. X is [x,A]-compact if and only if it is [p,p]-compact for any p < x.

Proof. [x,A]-compactness implies trivially [y, u}-compactness for A < 4 < x. Now, if X is not
[x,A]-compact, let {Ca}aq‘ be a family of closed sets giving a counterexample of minimal
cardinality u to [p,A]-compactness. It is in fact a counterexample to [u,u]-compactness
because an intersection nidco,i with 8§ < u is non-empty: for § < A by hypothesis, and for
A<é<p because otherwise we would have a counterexample to [AS]-compactness
contradicting minimality of u. O

Therefore, we may reduce to the study of [x,x]-compactness. This takes a very simple and
useful form if & is regular cardinal. First we introduce a stronger notion of x-compactness.

Definition 1.3. A space X is n-chain compact if and only if any descending chain {C,} o Of

non-empty closed sets of X has non-empty intersection.

LEMMA 1.3. a) x-chain compactness imphes [k,x]-compactnesa.

b) If cof(x) > X and X is [x,A}-compact then it is k-chain compact.

¢) (Alexandroff and Urysohn [AU]) If & is regular, then X is [x,x]-compact if and only X
is x-chain compact.
Proof. a) If {Cy)acx is & counterexample to [x,x]-compactness then the family {D,},<x
where D, = nﬂ_:acﬂ is a counterexample to x-chain compactness.

b) Given a descending chain of closed non-empty closed sets {C,},, then the
intersection of less than A many C_'s contains a Cﬁ which is non-empty by hypothesis; hence,
the hypothesis of [x,\]-compactness applies and the full intersection is non-empty.




¢) From (a) and (L), O

COROLLARY 1.4. If X is [cof(x),cof(s)]-compact then il is [x,x]-compact.

Proof, If X is not [x,x]-compact, then it is not x-chein compact. Let {Calack be &
descending chain providing a counterexample to s-chain compactness, then any cofinal
descending subchain of length cof(x) provides a counterexample to cof(x)-chain-compactnesa,

and 80 to [cof{x),cof(x)]-compactness by Lemma 1.3(¢c), since cof(x) is regular. O

mROLLARY 1.5. a) (Alexandroff and Urysohn [AU]). X is [k,w]-compact if and only if it
is [, p)-compact for any infinite regulor cardinal p < x.

b) (Vaughan [V2]). Jf cof(x) >, then X is [r,\]-compact if and an!y if it is [pA)-
compcct for any tnfinite regular cardinal T

Proof. a) One direction is trivial. For the other notice that by hypothesis, X is [cof(u),cof( u)}-

compact and so [, ul-compact by Corollary 1.4, for any u < k. Now apply Lemma 1.2.
; b) One direction is trivial. For the other notice that [cof(x),cof(x)]-compactness holds by
hyi;i:thuis; hence, [x,x]-compactness holds by Corollary 1.4. Now, let A<y < x, then
Tﬁ*’ik]-compulnm holds by hypothesis and so [p,u}-compactness holds, then apply Lemma
1.20

Remark. It follows from the above corollary, part (a), that a space X is compact if and only if
it is [x,u}-compact for any regular i < Weigth(X).

Definition 1.8. Given a subset S of a topological space X, a point x € X wil be called a x-
sccumulation point of S in X if and only if for any open neighborhood V of x we have |vn S|
> K.

THEOREM 1.7. (Alexandroff and Urysohn, [AU]). Let x be o regular cardinal. A space X is
[x,x)-compact if and only if any subset 8 C X of power z.n has a x-accumulation point.

Eroofl. Assume X is [x,x]-compact. Given x,, € S, Xey Xg for a < B < &, let C, = CI{ xg:
B 2 a}; then the C, form & descending chain of nonempty closed sets. By Corollary 1.3(c)
there is a point x in the intersection of the e and 8o in t.he adherence of each { Xg : B za}
for any a < k. Any neigborhood V of x contains then & sequence {xﬁ a<x} with ﬁa > a.
By regularity of & again the aequt'.nce {Ba: a<k} mdaothefamﬂy{xﬂ .a<n}hl
Wﬂ K.

Conversely, assume that [xx]-compactness fails, then by Coroll;ry 1 3(c), there is a
descending chain of nnn-empt.y cioqed sets {Cu}a-:n 'mth ampty mtermtinn We may pick
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X, € C, all distinct, otherwise the sequence would be finally constant and the intersection
would not be empty. Let x be a x-accumulation point of the family 8 = {x,),<x , then any
neigborhood V of x intersects a subsequence of S of power x which evidently must be cofinal,
Therefore, V intersects a cofinal sequence of the C, and so all the C,, 's, which shows x is in
the adherence of all C, and so in their intersection because they are closed. This is &
contardicton. O

In some respects [x,A]-compacteness has the same good behaviour of full compactness. The
following is obvious.

LEMMA 18. a) Iff: X — Y is continuous and X is [,)]-compact, then {(X) is [x,A}-compect,
b) A closed subspace of a [x,A]-compact space is [k,A]-compact.

In others, it behaves badly. Thichonof’s theorem fails. Product of [x,)]-compact spaces le
rarely [x,A]-compact. For example, a product of countably compact spaces is not necessarily
countably compact, neither a product of Lindelof spaces nedds to be Lindelof. See Vaughan
[V1] for a discussion of this matter.

Io. COMPACTN OF SPACES OF STRUCTURES

For the definition of a logic for first order structures see Lindstrom [L] or Ebbinghauss [E}.
We will always assume that logics are regular, that is they contain first order logic, L, and
are closed at least under negations, finite conjunctions, substitutions, and relativizations. For
a logic L, the domain of L, Dom(L), will be the class of vocabularies o where L(o) Is defined,
L{o) will be always assumed to be a set, that is we consider only smell logics.

A logic L induces a topology in the class E, of structures of type o, having for basia of open
clases the L-elementary classes, for each ¢ € Dom(L). The closed classes have the form
Mod(T) for some theory T C L(c). We call E (L) to the corresponding large topological
space. This space is a proper class and the same happens to the open and closed classes of the
topology, but the basis is parametrized by the set L(c) and so the topology is also
(parsmetrized by) a set; hence we may apply the ordinary concepts and result of topology
without missgivings. This spaces are uniform with the following canonical uniformity: for
each finite theory F C L(0) a basic of the uniformity is given by



Up={(AB) C By: Al=¢ ifandonlyif B |= ¢ forany ¢ € F }

See [C1] where the interrelation between compactness and normality of apaces of structures is
studied, or [C2] where we discuss the uniform continuity of operations between spaces of

structures, and its model theoretical meaning .

Dcﬁniﬂon.ﬂ.l. A logic L is said to be [s\-compact if the space E (L) is [x,A]-compact for
sny r in the domain of L . In terms of theories this is expressed: L is [k, A]-compact if

whenever {T,},«x is 8 family of theories such that Uﬁ<5T is satisfactible for any § < &,

*p

then U, T, is saatisfactible.

Of course, all the results about compactness of the previous sections apply to spaces of
models,

Notice that the definition of [x,)]-compactness does not put cardinality condition in the
theories T,. On the contrary, the following equivalent characterization makes reference to the
cardinality of theories. We do not know if some form of it makes sense and holds for
topological spaces in general. The proof of the equivalence seems to use essential model
tﬁeoretic facts (although is a very simple fashion), see [M] or [Ma] for & proof.

LEMMA 2.2. L s [k, Al-compact if whenever T, T' are ifleon’u in L such that IT*] = & and
TUS is salisfaclible for a subset S of T’ of power less than A, then the theory TUT is

uliefaclibk {(moreover, we need this to hold for first order T only?).

A weaker notion of compaciness has been very much utilized in abstract model theory, L is

(k,A)-compact if whenever any subset of less than ) sentences of a set of x sentences has a

model then the full set has & model. This ammounts to state compactness for families of basjc
closed classes only. (0o, A)-compactness of a logic L is equivalent to [oo ,A}-compactness,

because the M-intersection property for a ﬁsmily {F;} of closed classes implies the A

intersection property for the associated family of closed basics generating the Fi' However, for

& < 0o, (k,A)-compactness does not impy [x,Al-compactness, since whenever |L(r)| > x there

may be closed classes which are the intersection of more than x basics, In particular, what is |
called countable compactness in logie, t.hm 8 (w, 'w]-nompactnm. does not correponds h-
topological countable compactness. For example, the logic L, (Q,) is (w, w)-compact but

not [w, w}-compact. OF course, both notions coincide for |L(7)] = « .




Notice a curious connection between both notions: L is [x,A]-compact if and only if any closed
subclass of E,(L) is (x,))-compact with respect 1o the topology inherited form E.(L,.). Thie

is just a reformulation of Lemma 2.1 above.

The following is a very useful characterization of [x,x]-compactness for regular logics, noticed
first by Viaunknen [V] and lmplicit in Lindstrom [L] for the countable case (see Th. 1.2.2 in

[Ma)).

THEOREM 2.3. The following are equivalent for a regular logic L and a regular cardinal x:
i) L is [xx]-compact.

i) Any structure b = (M, <, ...) where < s a linear order of M of cofinality x, has an
elementary extension M'= (M’, <’ ...) such that M is not cofinal in (M’, <),

Proof. (i) = (ii). Assume L is [x,x]-compact. Given b = (A, <,...) a8 in (ii), let (85)q <
be a strictly increasing cofinal sequence in (A, < ) and

T= Thy (A <. oo 80 Sy e 4, < -

If ¢ is a new constant, then each theory T; = TU{c>a,|a < 8}, § < «, has a model
(interpret c by a;). The family {Mod(T,)},, forms a descending chain of closed classes; by
regularity of x and Lemma 1.3(c), the intersection of the family is non-empty, yielding a
model of TU {¢ > 8 | 8 < x} that is the desired extension.

(i) = (i) if L is not [x,x]-compact, it is not chain-compact. Let {T, | & < x} be a family
of theories in L(r) such that each Uacy Ta has a model Ayfor y<x, but Uy o T,
does not. Choose an ordering < 4 of each A, with first element a, and let

A
*=(UT<I*T’ <’ UT<‘R 7‘041’ s)(aer)
where < s the ordered union of the <. and

Evidently (a,), < is cofinal in (M, <) . Moreover, if x > a, then M [{y:8(yx)}Ir »
A,r. with ¥° > v and so:

Ak Vx(x 2 8y P{Y : S(y,x)} ) (1)



forany ¢ € T,. If A > M, M’ must satisly these sentences. Hence, it can not contain
b such that b > a, forall 7 < &, because then we would have by (1):

A ol 180iB))

and so '] {y : S(y,b)} [r would be a model of all p € U, < Ty We conclude that
(84)y < x» Bndso M, is cofinal in (M', <"). 0

COROLLARY 24. The following are equivalent for & regular logic L:

i) L is compact.

ii) Ang infinite structure M = (M, <,..) where < is a linear order of M has an
elementary extension A’ = (M’, < ',...) such that M is not cofinal in (M’, <).

COROLLARY 2.5 L is [w,w] compact if and only if (w, <) s not RPCy characterizable in L.
Proof. "=>" obvious. »<=" If L is not [w,w]-compact then there is M = (M, < ,...) of cofinality
w with (M, <) cofinal in all its L-elementary extensions. Take a strictly increasing cofinal
sequence (a,), ¢ of (M, <). The theory:

Thy((M, <, o & o)y g an e U VX I(PO) A x<9)) U (=3 (P Ax<eg) }
U { Plep) A=3x (P(X)A e <x<eprq)s n€w}

gives 8 RPC; characterization of (w, <), since the interpretation of P in any model must
consist of the a, alone. O

It follows from the previous corollary that the failure of [w,w|-compactness for L implies that
(w,<) is RPC; characterizable in L. In fact any structure (of power below the first measurable
cardinal if there is any) is RPC Fchamt.eriznble in L under failure of countable compactness,
as we will se next. This may be shown via Thorem 2.3, proving first that any ordinal below
the first measurable is RPCy, but the following reformulation of the Rabin-Keisler theorem
allows a more direct and elegant proof.

Definition 2.6. A structure A will be said to be L-full (also complete) if any relation R C A™ is
the interpretation of a predicate in the vocabulary of A.
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Given an full structure and an extension A <y A*, we will denote by R* the canonical
extension in A" of any relation R in A (that is, if R is the interpretation of PR in A, then R*
is the interpretation of Py in A*) . Notice that if a€ A™ and R = {x € A™ A |= é(x, a) }
with ¢ € L, then R* = {x € (A")™ A" |= ¢(x, a) }, because the sentence Vx(Pp(x) +~ ¢(x,
a)) holds in A if and only it holds in A*. Hence, any relation holding between the R's,
expressible in L holding in A, holds for the corresponding R*’s in A*. The following is a
reformulation of the Rabin-Keister theorem [BS], [Ch-K].

LEMMA 2.7. Let A be a L-full structure, A <LWA'. PCA, and b€ P* ~P. Define Uy =

{SCP:b €8*).

i) Uy, is a non principal wltrafiller over P.

i) If|P| < first measurable cardinal then any infinite Q CA has Q* — Q no empty.

Proof. i) To show that it is an ultrafilter, utilize that the extension is full and the previous

remarks; for example, S, Te U, = b€ $*, T* = beS*nT* = {xe A™: Pg(x) APp(x) } =

{x€ A% Pg (x) }* = (SNT)*, where the last equation holds beacuse the sentence

Vx((Pg(x) A Prp(x) # Pgp(x) ) holds in A ands so in A*. Now, if the ultrafillter where

principal, ssy Uy = ({a}) with a € A, then we would have b€ {2}* = {a} andsob=a€P.
i) It is enough to show that any countably infinite subset Q of A is extended. Suposse

Q is not extended. Given a countable family of elements of Uy , utilize Q as subindex set:

{Sq: q€Q}. Let S = NgSq and F(q,x) be the binary relation x E_Sq in A. The following

sentences hold trivially in A where we use the names of the sets as predicates:

Vx [ Sg(x) — Flq, x)] foreach q€Q;
¥x [ ¥q (Qlq) — Flq, x) ) — S(x) ]

hence, it holds for b in *A that:

‘Sq(b] — *F(q,b) foreachqeQ
vq ("Q(g) — *F(q, b) ) — *S(b)

Since 'Sq(b) holds by hypothesis for q € Q* then *F(q,b) holds in *A forall q€ Q. AsQ =
Q* also by hypothesis then the antecedent of the last implication holds and so S*(b) holds,
showing 8 € Uy. We conclude that Uy is an w-complete ultrafilter, But it is well known that

as set carrying an w-complete no principal ultrafilter must have power at least the first
measurable cardinal [BS]. O



COROLLARY 28. If L is not [ww]-compact then any structure of power less than the first
measurable is RPCS-charac!n'uabk in L.

Proof, Let T(Q,R) be a theory such that B |= T & BlQBHR} s (w,<), and fix a model B of
T. Let C be the full expansion of [B, A] where A has power smaller than the first measurable,
and call P be the universe of A in C. We may asume the vocabularies of T and A are
disjoint. Any L-extension of C contains an L-extension of B which must be a model of T
(thanks to relativizations), and so (QB,<) = (w,<) can not be extended in C by hypothesis.
By the previous lemma P can not be extended either. This means that any model of
Thy ((Cie), € lC|] relativized to P is isomorphic to A, yielding a RPCj characterization of A
inL.O

The expresive power of theories in a non-countably compact logic is therefore quite strong.

COROLLARY 2.9. (Makowsky and Shelah, [Ma-Sh]). If x is a regular cardinal smaller than
the first measurable cardinal (or arbitrary if there sre not such cardinals), then [x,x]-
compaciness of a logic implies [w,w]-compaciness.

Proof. If L is not |ww]-compact, x I8 RPCgcharacterizable which contradicts (%%}

compactness. 0

Remark. If we had the stronger hypothesis in Corollary 2.8 that (w,<) is PC; characterizable,
then any structure (of power < first measurable) would be PC; characterizable, by the L-
theory of its full expansion (since in the infinite case it would contain a copy of a structure
capturing w). This is the case for example of L, (Q,). If (w,<) has a characterization with
models of power less than the first meuurabla,' then any structure above certain cardinality is
also PCy. Could it happen that any theory RPC& characterizing (w,<) in L only has models
of cardinality above the first measurable? In that case there would not be counterexample to

[wyw]-compactness in the form: if each finite subfamily of theories has models of power less
than the first measurable, then it has models.



II. COMPACTNESS AND ROBINSON'S LEMMA

It is well known that in the presence of compactness interpolation implies Robinson’s lemma
for first order logic, this being true for any logic. Mundici and Makowsky discovered
independently the remarkable result that in any logic with small dependence number,
Robinson’s theorem implies compactness, yielding the equations Robinson = Compactness
+ Interpolation.

Definition 3.1. A logic L satisfies the Robinson property if given any pair of vocabularies and
structures o;, A, , i=12 with p=0o;Noy such that Allp =y A:lp , there is a a third

Of course, we may strength =, to <; above. In terms of theories the property may be
expressed: if we have satisfiable theories T; C L(¢}), Ty, T9 2 T with T complete in
L(ryNry) then T,UT, is satisfiable. The following is an equivalent characterization of
Robinson’s property which follows also by definition.

LEMMA 3.2. L satfisfies the Robinson property if and only if any pair of PCy classes Ky, Ko

of L Aaving siructures A €K such that Ay =1 Ay, must have non-empty interacction.

THEOREM 3.3 (see Mundici, [Mu]). For logics with finite dependence, Robinson’s property
implies compaciness, In general, for ameoll logics with dependence number ot most x,
Robinson’s property implies [co, x}-compactness.

Proof, Suppose L is not [u,u] compact for some regular y > x and let b = (A, <...) a
expansion of a linear order of cofinality u, having all its elementary extensions cofinal. Let

(8a)a < u be & well ordered cofinal sequence in (A, <), introduce predicates P, = {x € A
|x < a,) and let:

u‘l - (A! < L amin .ﬂ' Pﬂ')ﬂ(ﬂ
Moy = (AU{c), ¢ Polacu

whete ¢ ¢ A. Let r) = 7(M)), Tg=r(Mg)and r=r; N 79 ={P,], thenforé <«
Spand rg= {P,:a<é ] wehave

u‘l rf,:(h. Pﬂ')a(‘ ] (A v {Clgpa)a<‘-."rf‘.
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As any sentence of L depends in less than & symbols, then Moy [r =, My |7 by the
isomorphism axiom of logics. By Robinson’s theorem there is

IR LAY % Vs 85800 P ala e u
of type 7 Uy such that A’ [ry = My M [rg = by But

A Vx [ Py(x) = x > 8], foralla < g
Aﬂl= "‘Pa(c)l

hence M’ |= ¢’ >a', for all @< p, and so M'[r(h) gives & non cofinal elementary
extension of b, a contradiction. 0

The finite dependence hypothesis of the first part of the above theorem may be weakened,
thanks to a strong result due to Shelah [M-Sh] that we will not prove. It says that a [w,w}-
compact logic has finite dependence for each sentence (notice that this is easy if the logic is
fully compact, but it is & deep theorem if we have only [w,w]-compactness).

COROLLARY 3.4. For small logics with dependence number smaller than the first
measurable cardinal, we have: Robinsons’s _I‘cmma. = compaciness. -

Proof. Let u be the dependence number of L and let & be regular such that p < & < ﬂm.
measutable. By Theorem 3.3, L is [, sl-compact. By Corollary 2.7 it must be [wu}
compact. By the finite dependence theorem of Shelah (Th. 2.2.1. in [Ma]), L has finite
dependence. Hence, by Theorem 3.3 again we have full compaciness. D

For the next theorem we need a topological ob_aervation first. Define in a uniform spacex =y
if (x.y) € U for any element U of the uniformity.

LEMMA 35 . Let M and N be digjoint compact sefs in a uniform space mseparable by finite
wnions of basic open sels (from any given basis), then there exists x €N, y €M such that x
=y. :

Proof, Let E = { (x,y) € XxX : x = y }, then ENNxM is the intersection of the closed sets
Cpn = {(x3) €NxM : p(xy) < 1/n } of MxN, where p runs through the system of
peendometrics defining the uniformity. Now, for mh pesudometric p and number n € w, the
_ coverings {Vpugn(x) x€N } and wp.l,&n(y} y€M }, must have some x € N, yell
with Vp l{ﬁn(x) al Vp 1[2:;"') non empty. Othum N and M would be l!plllul by

i &




opens, which could be reduced to finite unions of basics by compactness. Therefore p(x,y) £
2(1/2n) = 1/n. Since the pseudoemtrics are directed by < (see [ ]), this shows that ENNxM

has the f.i.p. By compactness of the product topology we have that E is non empty.
Remark. The above lemma holds for regular spaces.

COROLLARY 3.8 . The following are equivalent if L ia amall and has dependence number
less than the first measurable cardinal:
i) Robmson’s property,
1) Intg (interpolation of disjoint PCy classes),
1ii) Interpolation + Compaciness,
Proof. (i) = (ii, iii). Assume Robinson’s property, then we have compactness by Theorem 3.3.
Let K, K, be disjoint PC; classes in EP(L) and assume they are not separable by a seatence.
Since the K; are compact, the Lemma above implies the existence of A; € K; with A, = [ A,.
Then Robinson's lemma provides a structure in the intersection of this two classes by Lemma
3.1

(ii) => (i). Robinson’s property is just a case of interpolation of PCy. If K, are PC; classes
of L as in Lemma 3.1, i = 1,2, they must intersect, otherwise by Int‘s they would be
separable by a sentence ¢ contradicting that Ay = 1A,

(iii) = (ii). Trivial, because disjoint PC; classes are reduced by compactness to disjoint
PC classes. 0

Finally we relate Robinson's property to characterization of structures.

LEMMA 37. Let L satiafy Robinson’s properly, if A and B are structures PCys
characterizable in L then A =B implies A ~B.

Eroof. Assume T; C L(y;) is the theory characterizing A;, o C s, and let (A, R;) be model
of T,,i=1,2 Assume A; =, Ay, then by Robinson,’s property there is a model (A.B.l".
R.)') with (A, R’:‘) =y (A, R;); hence, AmA;mA,.0

If the logic satisfies the pair preservation property, PPP (cf. [Ma]), then the Robinson's
property implies the following stronger property (see [C2]):

Definition 3.8. A logic L satisfies the relativized Robinson property if given any pair of

vocabularies o, P; € o; , and structures A, , i = 1, 2, with g = o, N, such that AllPlﬁllp
A A :

’LM‘PQ zlp.thenussthudmucturaﬂmhthahll ELBIF‘MAS ’LBI'r
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Therefore, under PPP, Lemma 3.7 holde for stenctures RPCFchamctexizab!es in L. There is
some confusion in the literature on relation to Robinson’s property. What is usually called
Robinson’s property in the context of many sorted logics is in fact equivalent to the above
stronger property.

COROLLARY 3.9. (compare with Mundici [Mu]). If L satisfies PPP and Robinson’s theorem 5
but is not [w,w)-compact then for structures of power less than the first non measurable

cardinal, A = | B implies A ~ B.

Proof. If the logic is not [w,w]-compact, then any structure of power less than the first

measurable is RPCj in L by Corollary 2.10. Apply the previous lemma and observations. O

13
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IV. [x,A}COMPACTNESS AND ULTRAFILTER CONVERGENCE

It is well known full compactness of a topological space is equivalent to the convergence of
any ultrafilter of subsets of the space (cf. [W]). This in turn may be expressed in terms of
convergence of I-families of elements of the space with repect to ultrafilters over L It ia
natural to ask if we have characterizations via ultrafilters of [x,A]-compactness. In certain
sense this is true as we show in this section. In fact, we get more than we sougth: a
characterization by ultrafilter convergence of families of [x,A]-compact spaces closed under
products, and of spaces with [x,A]-compact powers.

Definition 4.1. Let U be an ultrafilter over a set I. We will say that a family {a,: i€l }ina
topological space X, U-converges to x (or that x is an U-limit of the family), if {i€1:a €V}
€ U for any open neigborhood V of x .

Evidently, {a; : i€l } U-converges to x if and only if x is an adherence point in X of the
uitrafilter a(U) = {SCX:{i€l:a, €5} €U } in the ordinary sense of topology (ef. [W]).
Therefore, X is compact if and only if any I-family U-converges in X for any set I and
ultrafilter U over 1. We show next that [x,A]-compactness corresponds to U-convergency with
respect to certain ultrafilters.

Definition 4.2. Let U be an ultrafilter over a set I, a space X will be called U-compaet if and
only if if any I-family of X U-converges.

The following are obvious properties of U-convergence and U-compactness:

LEMMA 4.3.1) If: X — Y is continuous and {a;: | €I} U-converges in X to a, then {f(a;) :
i€1} U-converges in'Y to f(a).
ii) { (‘i,a)ﬂ :1€1} U-converges in [, Xy to (ay)q if and only if {‘i.a :iel} U-
converges in X, to a,, for each o,
iii) If each X, ia U-compact, then [], X, is U-compact.
Proof. i) Given a neigborhood V of f{s), then {i€1: f(a;) €V} 2{i€l:n,€r}(V) )} €U.
it) One direction follows from (i) by continuity of the projections. For the other, use that
each basic neigborhood W of (ay), is & finite intersection of sets 7,"}(V,) with V, a
neigborhood of a, in X,. For each such set {i€l : a‘,,era"(%) } € U; hence, {i€l :
(a,‘a),,ew }={iel: 8 o € nl“;l(vc]} = N{iel 3-11,"&:“'1(\’-“) }Jev.
iif) Immediate from (ii). O
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Definition 4.4. An ultrafilter U over a set I is (s,A)-regular if and only if there is a family

{Io} 4w such that I, € U and ﬂ.1<AIai = 0 for any family {opi< A} Cx.Uis
wniform i |S| > & for any § € U, see [Ch-K] or [Ma].

PROPOSITION 4.5. If X is U-compact for a (k,))-regular ultrafilter U, then X is [x,A}-
compact,

Proof. Let {1,)acx be a family of elements of U such that the intersection of any A of 15’
is empty. We may assume 1 = I,. Given & family {F,},, of closed sets in X with the )
intersection property, define Fy = N, o IQFG for each t €1 . This set is non-empty, because
t belongs to less than A sets 1, by hypothesis, and by hypothesis the intersection of less than
A sets F, ls non-empty. Choose a, € Fy, then J, = { t€l :a, €F, } €U because t€l,
implies &, € F, CF,, by construction, and so J, D 1,. By hypothesis, {8;}; - | U-converges
to some x of X; and given an open neigborhood V of x, then J = {tel:a, €V } €l.
Therefore, { t: a, € VNF, } =INJ, €U for any a, and so this set is non-empty, showing
that x belongs to adherence of any F, , that is to any F,. O

Definition 4.8. Let P(x,A) = Py(r) = {8 Cr:lsl <A }.

PROPOSITION 4.7. i) If X is [s,\]-compact, then every I-family in X, with I = P(x,A), U-
converges for some (x,A)-regular ultrafilier U over I (which may depend on the family).

ii) Moreover, if x > X then U may be chosen x-uniform, and if x = ) then U may be
chosen cof{s}-uniform.
Proof, Given { & :t€l}, let Ay = {ag:t Ca}. The family of closed sets {cl(A¢) : L€,
{t|<w } has the <\-intersection interseclion property, because

and t =U;_ 4 €1 if & <A and the ¢, are finite, so that Ay is pon-empty. By [sA}
compactness there is an element a € N, € Ljtj<w cl(A;) . Hence, VNA; #80 for any
neighorhood V of a and any t €1, |t|<w, This implies that the family F = { VNA : V
open, a€V, t€l, |t| <w } has the finite intersection property. Then the family F' =

(&M W) : WeF ) ={{s€l:a,€W}: WEF ) has also the finite intersection property.

Extend F’ to an ultrafilter U over 1. By construction, given an open neigborhood V of a, then

{sel:a €V }D{sel; Q,EVFI_A{'“).] = n‘l(Vl“IA{a}) € F' C U. Therefore { a; :

t€1} U-converges to a. Moreover, I, = {s€l:a€s }2{s€l: a'eVnA{a) }, and 80
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lg € U. But the intersection of A\-many of these Ia's Is empty because no s € I may contain )
many ordinals. This shows that U is (x,A) regular.

It remains to show that U may be chosen to be x-uniform (repectively cof{x)-uniform). Fix
Yo € P(wyx). For each finite t e with LDty the set {82t :8,€V } = w/(VAA) oo U
and 8o we may pick &, € a/(VNA); hence 8, D t. This gives & function £ B = {t € P(w,x):
t 2t} — I with the property that for any r €1, I{'l(r)l =|{teB:s =1} <|{teB:
t Cr}l < A because |r| < X and so r has less than A finite subsets. Since |B|] = x, the number
of non-empty distinct and so digjoint '(r) must be at least cof(x) in case x = A, and x in
case & > ). Picking one s, from each non-empty 'l(r) gives x (respectively cof(x)) elements
of a”l(vn At,)- Therefore, F* may be extended to & x-uniform (respectively cof()-uniform)
ultrafilter. O

COROLLARY 4.8. i) If X is [x,)\]-compact and x > X then any P(x,A)-family of X has ¢ »-
sccumulation point.

il) If X is [x,x)-compact then any P(x,x)-family of X has a cof(x)-accumulation point,

Proposition 4.7 does not guarantse a converse to Proposition 4.6, since the ultrafilter depends

on the family. In fact, a converse is impossible because U-compactness corresponds to a strong
form of [k,A}-compactness, as we will see next.

THEOREM 4.9. The following are equivalent for any class T of topological spaces:

) Any product of spaces in T is [%,A)- compact.

H) There exists a (x,))-regular witrafilter U (which may be taken over | = P(x,A)) such that
oll the spaces in T are U-compact.

Broof. Assume that any product of space In T is [x,A]-compact and there is no (m,A)-regular
ultrafilter U over 1 = P(x,\) such that all the elements of T are U-compact. Let £ be the
farally of such ultrafilters and choose for each U €L a amily {'U.i :1€1} in some space
Xy € T which does not U-converge. For each i, let o; = (ay Jy €0y ¢ p Xy = X*. As this
space is [x,A]-compact, then by Proposition 4.8, there is an ultrafilter W € E such that {o; :
1 €1} W-converges to some ¢ = (sy)y €X*. By continuity of the W-projection, then {
sw i l€1) Weconverges to sy in Xy | & contradiction.
C-v-dy.ifuchx,hu-eompmumﬂ,x,hvmput by Lemma 4.3, and by (x,A)-
Mdustmmmmumnrx, is [x,A]-compact. O




THEOREM 4.10. The following are equivalent for any lopological space X:

i) x# i [x,A]-compact for any cardinal S,
ii) X ds U-compact for some (x,A)-regular ultrafilter U (which may be taken over 1 = P(x,\)).
Proof. Take T = { X } in Theorem 1. O

Definition 4.11. Call a space X strongly [x,)]-compact (in short, s-[x,A]-compact) if xP is
[x,A]-compact for any cardinal £.
P(x,A)]
COROLLARY 4.12. X is s-[k,\]-compact if and only if X? is [x,A]- compact.
Rl%[‘ In the proof of (i) = (ii) in Theorem 4.9 we utilized [x,Al-compactness of X7 for =
only, O

COROLLARY 4.13. If X is s-[x,A]-compact, then X xY is [k,A]-compact for any compact
space Y.
Proof. A compact space i U-compact for any U. Apply Theorem 4.10 and Lemma 4.3. O

Example. Under the continuum hypothesis, plus wy = 2“1, it X2 is countably compact, then
XﬁxY will be countably compact for any B, and any compact space Y.

COROLLARY 4.14. Let & be smaller than the firsl measurable cardinal (or arbitrary lf Re
such cardinal ezists). If X is s-[x,x}-compact, then X 15 [ww]-compact.

Proof, Let U be the ultrafilter given by Theorem 4.10, such that X is U-compact. By (x,x)
regularity, U is non principal. If U is not (.w.w)-tegula.r, then it is w-complete. But it is well
known that the smallest w-complete no principal ultrafilter is measurable (see [BS}). O

Notice that the above fails strongly for plain compactness, X = w with the discrete topology

is [x,x] compact for any x > wy and however it is not {w,w]-compact,

For [k,x]-compactness with « regular, theorems 4.9 and 4.10 take a more beautiful form. The
condition on (k,A)-regularity of the ultrafilter U may be changed to x-uniformity. We state
the case of one single space.

THEOREM 4.15. Let x be a regular cardingl then X ia #-[k,k}-compact if an only if X is U-
compact for some x-uniform ultrafilter \J.

Proof. A w-uniform ultrafilter in (:e,:c}-regulu. On the other hand, Propomlou 4.8 allows ta

choose the ultrafilter U being cof(x)-uniform. But for & regular, cof(x) =
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Of course, the ultrafilter U may be chosen over P (x). Could it be chosen over &7

COROLLARY 4.18. Jf X is s-[x™, x¥)-compact, then X iz s-[x,k]-compact.
Proof. A T -uniform ultrafilter is (x,x)-regular by results of Kanamori [K] and Kunen-Pikzy
[K-P). D

COROLLARY 4.17. Let x be a regular cordinal or oo, then X is s[x,A]-compact if and only
if X s sp,p]-compact for any regular cardinal p, A< p < k.
Proof. Let p, A < js < &, be singular, then A < 4 < x. Apply then the previous corollary. O

The previoua resuits do not hold for plain [#,)]-compactness, X = R, discrete is [oo, R, ¥}
compact but not [N, R |-compact.

V. THE ABSTRACT COMPACTNESS THEOREM REVISITED

Let us apply the results of the previous section to spaces of structures. We start with the
following simple observation which follows from the sero-dimensionality of spaces of
structures.

FACT 5.1 {A; : i €1} U-converges fo A* in B (L) if and only if for any sentence ¢ € L(o)
wehave: A|=¢ & {1 €P:A|=¢)} € U,

If we use "=»" instead of "<&", the last equivalence, this is just the definition of U-
convergence expressed in terms of a basis, because the basics neigborhoods are the classes
Mod{¢). The arrow becomes a double arrow since by applying it to the negation of ¢ and so:
A'|# ¢ = (ieP:Al= ~9) e U {i€P:A|=¢) ¢ U

Let us recall the following definition form [Ma-Sh].

Definition 5.2. An ﬁltrnﬁlm U over a set I is related to a logic L if and only if for any
structure A of type o there is an extension A" of the ultrapower Al/u satisfying for any
formula ¢(x, ...) € L(¢) and functions f, ... € AL




Of course, the ultrafilter U may be chosen over P (x). Could it be chosen over x7

COROLLARY 4.16. Jf X is s-[x?, x¥]-compact, then X is a-[x,x]-compact.
Broof, A »t-uniform ultrafilter is (#,x)-regular by results of Kanamori [K] and Kunen-Pikey
[K-P). O

COROLLARY 4.17. Let & be a regular cardinal or oo, then X s s-[x,A]-compact if and only
f X is s-[p,u)-compact for any regular cardinal p, AS p< 5.
Proof. Let s, A < pu < x, be singuler, then A < pF < x. Apply then the previous corollary. O

The previous results do not hold for plain [s,A}-compactness, X = B, discrete is [oo, llw"']—
compact but not [R_, R _]-compact.

V. THE ABSTRACT COMPACTNESS THEOREM REVISITED

Let us apply the results of the previous section to spaces of structures. We start with the
following simple observation which follows from the zero-dimensionality of spaces of
structures,

FACT 5.1. {A; : i €1} U-converges to A* in E (L) if and only if for any sentence ¢ € L{o)
wehave: A*|=¢ © {1 €EP:A|=¢) € U.

If we use "=" instead of "¢>”, the last equivalence, this is just the definition of U-
convergence expressed in terms of a busis, because the basics neigborhoods are the classes
Mod(¢). The arrow becomes a double arrow since by applying it to the negation of ¢ and so:
A*|# ¢ = {ieP:A|= -9} e U= {i€P:A|=¢} & U.

Let us recall the following definition form [Ma-Sh}.
Definition 5.2. An ultrafilter U over & set I is related to a logic L if and only if for any

structure A of type o there is an extension A* of the ultrapower Al/y; satisfying for any
formula ¢(x, ...) € L(r) and functions f, ... € AL
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A* |= ¢(f/yy o) MY {1 €P: A= @(f(i), ... ) } € U. (1)

This definition says that A* behaves as the ultrapower would if Loz theorem where true for
L. However, A* can not be chosen to be the ultrapower itself unless L = L, .. The following
fact reduces the relation (1) to pure topology.

Given a structure A, of type ¢ consider the expande vocabulary o ALS v+{cfc fe A!}.
¥

where each c; is a constant symbol, and define for each fixed j € I the following expansion of

A of type o)

A%y = (A5G )

where cg is interpreted by f(j).

LEMMA 5.3. A® is an cziension of AI/U satisfying (1) if and only if A* may be ezpanded
o an U-limit of { A‘j :jel}.

Proof. (1) implies that (A*, f/y «)pg gl 180 U limit of the family by Fact 5.1.
Conversely, *an U-limit (A®, a5 ... ) of this family will have interpretations a¢ for the
constants ¢, f € Al Moreover, for any formula ¢(x, ...) of type o: Atle |= #lag, ...) if
and only if A* |= ¢(c;, ...) if end only if { € L: A"j |= ¢(cp . ) } €U ifand only if { i€ L:
A |= #(f(i), ..)} € U. Applying this to the atomic formulae, we get an isomorphism a¢ —
f/y) between the substructure of A*|o induced by { ag f€ AI} and the ultrapower AIIU. Via

this identification, (1) holds. O

PROPOSITION b5.4. The following are equivalent for any logic L closed wunder
relativizations, end any ultrafilter U:

i) U s related to L .

ii) The spaces E (L) are U-compact for any o € Dom(L).

Proof. Assume U is related to L. Given a family {Ai:! € I} CE, code it in a single
structure A = (U;A;, UlQA‘. wn §y R) where Q runs through the vocabulary o, and R =
U{i} x A, so that A, = Al{x: R(x)}. if AT/, C A* where A* is given by Def. 5.2, let
go(i) = i be the identity function and P*= {x € A*: A*|= R(go/yy» x) }- Utilizing that the
logic has relativizations and property (1), we obtain for any sentence ¢ € L(a):

W (iel: A|=glx BOX], ¢y
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iM{iel: Al{xt R(ix)} [=¢ } = {lel: A/ |=¢]} €.

Hence, {A; :i €1} U-converges to A*|P*.

Counversely, assume any I-family U-converges in the spaces of structures, Given a structure A,
there is an U-limit (A", Bp 4 oo ) of the associated family {A"‘j} which will satisfy (1) by
Lemma 5.3 showing that U is related to L. O

Remark. Notice that in the first part of the above proof, the existence of A(u)* satisfying (1)
for the complete extension A(p) of power g > |I|, will guarantee the U-convergence of all I-
families of structures of power at most u, because they may all be accomodated in A, via
appropriate codings and renamings. Therefore, the U-convergence of a single I-family of
structures of power y in each cardinal u > [I| yields U-compactness.

To apply our topological results, we need a further observation on the spaces of structures.
Given vocabularies o, i €1, let @ ;0; be the disjoint union of the vocabularies o;+{P;} where
P; is a monadic symbol not in ;. Then the cartesian product “iEai may be identified with
the class of structures of type & {0; of the fotm

Wher =(UierlAly &y )igrr  Aj€Eq,

where the universe is the disjoint union of the universes of the A;, and the disjoint renaming
of o;+{P;} is interpreted by the disjoint copy A; of A, , with P; interpreting the universe (cf.
[C1]).

LEMMA 5.4. If L is closed under relativizations then for any product space I]iE‘,i(L) there
s ¢ uniformly continuous onto operation F: C — lIiE,i(L) where C is a closed subclass of
Eg i'i"L)'

Proof, Let C be the class of models of the sentences

Vx—(Pi(x)APj(x)), i #5 Vxl...qu(R(xl,..,:n)mPi(xl)A...APi(xn)), Reo;
The operation A = A|UP" = [AIPY] from C to ILE,, is evidently onto. The bagie
clopens of the product topology in II. {Eo {L) are given by ﬁnite conjunctions 8 = A, ¢, by
where ¢, € L(0; ); hence, A |= 0 > ;.|(u Py, A) |= 0 for any A. As (AJU;PA M(UPy A=

Al U,Pl'*). we have A|U Pi |=0 ¢ A |==9 showing uniform continutity (cf. [C2]). l.'-'l
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COROLLARY 5.5. If L s closed under relativizations end [x,A]-compact then any product
space ILE; (L) is [x,A]-compact.

i
Proof. Lemma 1.8, Sect 1, and the previous Lemma. O

It follows that a logic is [x,A\]-compact if and only if all the spaces E (L) are strongly [x,A}-
compact. Hence all the results of Section Il apply. For example Corollary 2.7 becomes a case
of Corollary 4.14. Similarly, the theorem of Makowsky and Shela [Ma-Sh] that [u+,n+]-
copmactness of a logic implies [x,x]-compactness is a case of Corollary 4.16. Motreovoer,

utilizing Theorem 4.9 and Proposition 5.4 we have:

THEOREM 5.6 (ABSTRACT COMPACTNESS THEOREM, [M-Sh]). L is [x,A]-compact if
and only if there is a (5,A)-regular ultrafilter U related to L (which may be taken over P (x)).
Proof. L is [x,Al-compact if and only if the spaces HiEa.i(L) are all [x,A]l-compact by the
previous Corollary. By Theorem 4.9., Sect. IV applied to the class T = { E(L) :
o € dom(L)} this is equivalent to the existence of a single (x,A)-regular ultrafilter U such that
all E, (L) are U-compact, which means is U is related to L by Proposition 5.4. O
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