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Abstract

A test of lepton flavor universality in B — K* prp~ and B — Kfete~ decays, as well as a

measurement of differential and integrated branching fractions of a nonresonant

BT — Kiuﬂf decay are presented. The analysis is made possible by a dedicated data set of

proton-proton collisions at /s = 13 TeV recorded in 2018, by the CMS experiment at the LHC,

using a special high-rate data stream designed for collecting about 10 billion unbiased b hadron

decays. The ratio of the branching fractions B(B* — K= p* ) to B(B* — K¥ete ) is
determined from the measured double ratio R(K) of these decays to the respective branching
fractions of the B¥ — J / WK* with J /U — pTp~ and eTe™ decays, which allow for significant
cancellation of systematic uncertainties. The ratio R(K) is measured in the range

1.1<¢*<6.0 GeV?, where q is the invariant mass of the lepton pair, and is found to be

R(K) = O.78f8:g, in agreement with the standard model expectation R(K) ~ 1. This
measurement is limited by the statistical precision of the electron channel. The integrated

branching fraction in the same ¢? range, B(B* — K*putp~) =

(12.42£0.68) x 1078, is

consistent with the present world-average value and has a comparable precision.

Keywords: CMS, B physics, lepton flavor universality, B meson, b to sll transitions

1. Introduction

In the standard model (SM) of particle physics [1-3], the
charged leptons (electrons P, muons x, and 7 leptons) have
identical couplings to the gauge bosons and thus exhibit a sim-
ilar behavior, up to the kinematic differences related to their
different masses. This is commonly known as lepton flavor

Original Content from this work may be used under the

BY terms of the Creative Commons Attribution 4.0 licence. Any
further distribution of this work must maintain attribution to the author(s) and
the title of the work, journal citation and DOI.

universality (LFU). Several tests of LFU have been performed
in W and Z boson decays, which are generally found to be
in excellent agreement with the SM predictions [4]. The only
hint of possible LFU violation (LFUV), at 2.7 standard devi-
ations (o) in the decay of W bosons to 7 vs. light leptons from
the CERN LEP era [5], was ruled out by the ATLAS [6] and
CMS [7] experiments at the CERN LHC.

Rare b hadron decays provide an excellent and comple-
mentary environment to test LFU. In particular, the BT —
K* ¢t ¢~ process where a bottom antiquark (b) decays into a
strange antiquark (5) and a lepton (¢ = p or P) pair is forbidden
at tree level and only proceeds via loop diagrams, e.g., the one
shown in figure 1(left). Therefore, the SM branching fractions

© 2024 CERN, for the benefit of the CMS Collaboration
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Figure 1. Representative Feynman diagrams for the decay of a B meson into a K™ meson and a lepton pair in the SM (left) and in a BSM
scenario that introduces a leptoquark (LQ) with flavor-dependent couplings (right).

(B) for these decays are very small (~1077) [4]. This process
is referred to as a b — S/ ¢~ transition (in what follows, the
charge-conjugated states are implied unless explicitly stated
otherwise).

Since both the electron and muon masses are negligible
with respect to the B meson mass, the available phase space for
the two decays (BT — KTyt p~ and Bt — KTete™) is the
same to an excellent approximation, which makes the ratio of
these branching fractions very close to unity in the SM. On the
other hand, beyond-the-SM (BSM) physics processes could
modify the corresponding branching fractions differently for
different lepton species, as illustrated in figure 1(right) for the
case of a leptoquark with flavor-dependent couplings, thus res-
ulting in LFUV in b — s¢*/~ transitions. A recent review of
various BSM models describing LFUV in B meson decays can
be found in [8] and references therein, as well as in an extens-
ive list of references in [9].

A number of tests of LFUV have been performed at
the B and charm factories [10-18], as well as at the LHC.
Over the past decade, the LHCb experiment has reported
mounting evidence for LFUV in BT - KTete— 19, 19,
20], B® — K*(892)°¢*¢~ [21], B® = K%/*¢~, and BT —
K*(892)T¢+¢~ [22] decays with the significance reaching
3.10 in the first channel [9]. In these analyses the muon
decays are measured to be suppressed compared to the elec-
tron ones. In addition, multiple measurements of branching
fractions of several b — sy~ decays by LHCb indicate
their suppression with respect to the available SM predic-
tions [23-26]. These state-of-the-art predictions reflect a sig-
nificant recent theoretical progress in understanding of the
b — 8¢+ ¢~ transitions. Nevertheless, full control of nonper-
turbative QCD effects may be hard to achieve [27-29]. While
the claim of possible LFUV in B meson decays has largely dis-
appeared in the latest LHCb publications [30, 31], the interest
inb — s/* ¢~ decays in general and in potential LFUV in these
processes remains strong [32].

In this paper we describe a search for LFUV in BT —
KT /¢~ decays using data collected by the CMS experiment
at the LHC in 2018. A special trigger and storage strategy
was used to collect a large unbiased sample of ~10 bil-
lion b hadron decays. We also report a measurement of the
branching fraction of the Bt — Kyt 1~ decay, both differ-
entially over the dimuon mass squared ¢> and integrated over
two different ¢> ranges. The numeric values corresponding to

figures and tables in this paper can be found in the HEPDATA
database [33].

This paper is organized as follows. After discussing the
measurement strategy in section 2, followed by the detector
description in section 3, we introduce the data and simulated
samples in section 4, and event reconstruction in section 5.
We discuss the maximum likelihood fit to the K™ ¢+ ¢~ invari-
ant mass distributions in section 6, followed by the descrip-
tion of the systematic uncertainties in section 7. The results
are presented in section 8, followed by the summary of the
paper in section 9. Additional plots and details of the R(K)
measurement formalism can be found in appendix.

2. Measurement strategy

To maximize the sensitivity to LFUV in b — §¢*¢~ decays, it
is advantageous to use an observable that minimizes the the-
oretical uncertainty in its prediction. Given that the absolute
b — S¢T ¢~ rates are poorly understood because of the poten-
tially large long-range corrections [27], a more robust variable
is the ratio of muon to electron decays within a certain range
of the dilepton mass squared, g%, < ¢° < @y

B (B+ - K+ru+u_) [qﬁliqumax]
B (BJr — K+e+e*) [q,zm'nyqrznax] .
(1)

R (K)lheory [qilin’qﬁlax] =

This ratio is very close to unity in the SM [34-37] and known
to a precision of about 1%. Furthermore, the experimental
systematic uncertainties related to signal reconstruction and
selection can be reduced by measuring R(K) as a double
ratio normalized to the corresponding BT — J/(K™ decay
channels:

|:B(B+ —>K+u+u)[q,2nm-,qﬁm]}

BB+ =1/ (ptp=)KT)
R(K) (qZ) [qzmimqrznax] = |: (2)

B<B+HK+e+e>[q;m,qam]} '
BBt —=J/Pp(ete)KT)
This definition of R(K) benefits from the fact that the
branching fractions B(J/{ — utu~) and B(J/p —ete™)
are measured to be the same within a precision of about
0.7% [4], which ensures that this extra normalization does
not change the value of R(K) with respect to the definition in
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equation (1). Additionally, since the leptons from the nonres-
onant BT — K¢/~ and the resonant BT — J/{(¢/T¢~)K*
decays occupy a similar phase space, with a similar acceptance
and efficiency after the final selection, most of the systematic
uncertainties related to the lepton momentum scale and iden-
tification cancel in equation (2), making it an excellent exper-
imental observable directly related to R(K)neory-

The R(K) ratio in equation (2) is measured in the ¢* region
from 1.1 to 6.0 GeV?, referred to as the ‘low-¢*’ region, which
is free of dilepton resonances. This choice is optimized to
exclude the contributions of the ¢(1020) and lighter reson-
ances at the lower end of the ¢> spectrum, and the tail of the
J/1p resonance at the higher end. In addition, the chosen lower
boundary reduces the kinematic difference between the muon
and electron decay channels due to the differences in their
masses.

For the differential branching fraction measurement in the
B* — K" T~ channel, the ¢* range is extended downward
by adding a ¢> < 0.98GeV? bin, below the ¢(1020) reson-
ance, and upward by introducing nine bins up to the kinematic
limit of ¢* = 22.9GeV?, excluding the J /1 and (2S) reson-
ance ¢° ranges. Furthermore, the low-g® region is split into
five finer bins. The definition of the 15 ¢ bins used for the
differential measurement is given in section 8 (table 10). The
chosen binning ensures a sufficient number of events per bin to
reliably extract the branching fraction of the B — Kt it~
decay and is similar to that used in the LHCb analysis [24],
which presently dominates the precision of these differential
branching fraction measurements [4].

In addition to the low-g? region, part of which is defined as
the signal region (SR) as described in section 5, two control
regions (CRs) are defined based on the dilepton ¢?, as follows.

e J/1 CR: the 8.41 < ¢ < 10.24GeV? range is used for the
BT — J/(¢+¢7)K™ decay, which is the main normaliza-
tion channel used in the R(K) measurement.

e (2S) CR: the 12.6 < ¢* < 14.44GeV? range is used for
the Bt — (2S)(¢+¢~)K™ decay, which is the secondary
normalization channel, used as an additional cross-check,
with the Ry, (2s) ratio defined as:

B(B* = (28) (uu™ )KT)
BBt =1/ (utp=)KT)
} : ®)

Rw(zs) = B(B+—1(2S)(ete)KT)
B(BFT—J/b(ete)KT)

This ratio is very close to unity in the SM and has been meas-
ured to a precision of about 8%, with the uncertainty dom-
inated by the current precision of the measurement of the
P(2S) — ptp~ branching fraction [4].

The analysis is conducted using the ‘data blinding’
concept [38]. In the muon channel, a random scale factor
(SF) is initially applied to the nonresonant signal yields in
each ¢* bin. In the electron channel, the KTete™ invariant
mass spectrum in the vicinity of the BT peak in the low-¢>

region is initially kept blind. The entire analysis is optimized
using simulated samples and resonant CRs, and the unblind-
ing of the data in both channels is done only as the final
step.

3. The CMS detector

The central feature of the CMS apparatus is a superconducting
solenoid of 6 m internal diameter, providing a magnetic field
of 3.8 T. Within the solenoid volume are a silicon pixel and
strip tracker, a lead tungstate crystal electromagnetic calor-
imeter (ECAL), and a brass and scintillator hadron calori-
meter, each composed of a barrel and two endcap sections.
Forward calorimeters extend the pseudorapidity (1) coverage
provided by the barrel and endcap detectors. The ECAL con-
sists of 75 848 lead tungstate crystals, which provide coverage
in a barrel region, || < 1.48, and two endcap regions, 1.48 <
|n] < 3.0. Muons are measured in gas-ionization detectors
embedded in the steel flux-return yoke outside the solen-
oid. The procedure followed for aligning the detector is
described in [39].

The silicon tracker measures charged particles within the
range |n| < 3.0. During the 2018 LHC running period, when
the data used in this paper were recorded, the silicon tracker
consisted of 1856 silicon pixel [40] and 15 148 silicon strip
detector modules. For nonisolated particles with transverse
momentum in the 1 < pr < 10GeV range, the track resolu-
tions are typically 1.5% in pr and 20-75 pm in the trans-
verse impact parameter [41]. Muons are measured in the || <
2.4 range, with detection planes made using three technolo-
gies: drift tubes, cathode strip chambers, and resistive-plate
chambers. Matching muons to tracks measured in the silicon
tracker results in a relative transverse momentum resolution,
for muons with pr up to 100 GeV, of 1% in the barrel and 3%
in the endcaps [42]. The efficiency to reconstruct and identify
muons is greater than 96%. The electron momentum is estim-
ated by combining the energy measurement in the ECAL with
the momentum measurement in the tracker. The momentum
resolution is typically better than 5% for electrons in the range
1 < pr < 10GeV. Itis generally better in the barrel region than
in the endcaps, and also depends on the bremsstrahlung energy
emitted by the electron as it traverses the material in front of
the ECAL [43-46].

Events of interest are selected using a two-tiered trigger
system. The first level (L1), composed of custom hardware
processors, uses information from the calorimeters and muon
detectors to select events at a rate of around 100 kHz within a
fixed latency of 4 us [47]. The second level, known as the high-
level trigger (HLT), consists of a farm of processors running a
version of the full event reconstruction software optimized for
fast processing, and further reduces the event rate before data
storage [48].

A more detailed description of the CMS detector, together
with a definition of the coordinate system used and the relevant
kinematic variables, can be found in [49].
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Table 1. Summary of the loosest muon trigger requirements imposed by the L1 and HLT algorithms for each instantaneous luminosity
scenario: the L1 and HLT muon transverse momentum thresholds pf, and the HLT muon impact parameter significance IPgj,. Also shown
are the trigger purity, peak HLT rate, and [ £dr. The second trigger was the highest threshold one during early data taking, corresponding to

f L£dr=6.9fb~", and then the second-highest for the rest of the data taking, accumulating f L£dr=26.7fb~" out of 34.7fb~" collected by

the highest threshold trigger.

L L1 p HLT p# HLT 1 Py Purity Peak HLT [Ldt
(10** cm™2 s71) thr. (GeV) thr. (GeV) thr, (%) rate [kHz] [fb~']

1.7 12 12 6 92 1.5 34.7

1.5 10 9 6 87 2.8 6.9 +26.7
1.3 9 9 5 86 3.0 20.9

1.1 8 8 5 83 3.7 8.3

0.9 7 7 4 59 5.4 6.9

4. Data and simulated samples

4.1. B parking data sample

For the purpose of this analysis, we deployed a novel trigger
and data processing strategy in CMS during the 2018 data-
taking period at the proton-proton (pp) center-of-mass energy
of 13 TeV, referred to as ‘B parking’. This strategy enabled the
collection of order 10'° unbiased b hadron decays [44, 45] by
exploiting the fact that b hadrons are predominately produced
in pairs, and therefore one can trigger on one b hadron of the
pair using a specific decay mode (‘tag-side’ b hadron), while
the other b hadron (‘probe-side’ b hadron) decay is unbiased
by the trigger.

The trigger strategy relies on tag-side final states that
include a muon with a relatively high pr and a significant dis-
placement from the pp collision point. This strategy is motiv-
ated by the significant fraction (nearly 40%) of bb events that
include at least one muon from a b hadron (or subsequent
charm hadron) decay, combined with the relatively low rate
of L1 single-muon triggers. In addition, the B parking strategy
takes advantage of the gradual decrease of the L1 trigger rate
and online computing resources use by the nominal CMS
physics program as the instantaneous luminosity £ decreases
during each LHC fill. To exploit the available L1 (HLT) band-
width of up to 30 (5.4) kHz, the B parking trigger requirements
were gradually relaxed during each LHC fill. This strategy
does not affect the main, high-pr physics program of CMS,
while offering a significant increase in the CMS potential in
flavor physics, including the present R(K) measurement.

Table 1 summarizes the B parking muon trigger require-
ments imposed by the L1 and HLT algorithms. The L1 trigger
logic requires the presence of a muon with |n| < 1.5 and with
a variable minimum pr threshold. These requirements help to
control the L1 rate by removing events with muons at low pr
and large ||, which are dominated by those produced in pileup
interactions (additional minimum bias interactions within the
same or adjacent bunch crossings). In addition, a single-muon
L1 trigger with pr > 22GeV in the full pseudorapidity range
|n| < 2.4 is used. Since the muon displacement information is
not available at L1, only pr and |7 thresholds are used to con-
trol the rate. At the HLT, the pr threshold is sharpened, given
the more precise momentum reconstruction compared to that

at L1, and a minimum requirement is imposed on the two-
dimensional (2D) muon track impact parameter significance
IPg;,, defined as the distance of closest approach of the track
to the beam line (the measured line of the proton beams inside
the CMS detector [50]), divided by its uncertainty. These trig-
gers are ‘nested’, i.e. the most restrictive trigger is exposed to
the largest integrated luminosity ( [ £dr), while the looser ones
have progressively higher efficiency but lower [£dr.

The purity of the B parking sample is defined as the frac-
tion of triggered events containing a b hadron decay and
is evaluated by counting the number of B’ — D** WU, —
Dowsﬁftu*ﬁu — K*7r+7r:gﬂ,ufﬁﬂ events, using the known B’
meson production fraction f4 and the relevant branching frac-
tions [4]. For the 7rs+oﬁ, the pr threshold is set at 0.5 GeV. The
purity is measured both in data and in simulation (described in
section 4.2), with good agreement between the two estimates.
The purity ranges between 59% and 92%, depending on the
trigger thresholds, with an average of ~80% in the collected
data set.

The B parking data set corresponds to [Ldr=41.6+
1.0fb~—! [51], about 30% less than the fﬁdt of 59.8 fb~!
collected with the main physics triggers operating during the
entire 2018 data taking. It took about a year to fully reconstruct
these data during the LHC Long Shutdown 2; hence the name:
B parking.

4.2. Event simulation

Monte Carlo (MC) simulated samples are used to optim-
ize the analysis and model various background sources.
Signal and background processes are generated with PYTHIA
8.230 [52], including parton showering, fragmentation, and
hadronization. The PYTHIA output is interfaced with EVT-
GEN 1.3.0 [53], which simulates various b hadron decays.
The underlying event is also modeled with PYTHIA, using
the CP5 tune [54]. The parton distribution functions (PDFs)
are taken from the NNPDF3.1 set [55]. Final-state photon
radiation is modeled with pHOTOS 3.61 [56]. The BT —
K*/¢+¢~ signal is generated with the BTOSLLBALL, set-
ting 6, model of the EVTGEN decay library, based on
form-factors from [57]. While more precise form-factor
determinations are now available both from light-cone sum
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rules [58, 59] and lattice QCD [60], we do not expect
them to have a significant impact on the decay kinematics.
Additionally, the following processes are simulated: the B™ —
J/WKT and B* — (2S)K™ resonant decays, and B —
J/K*(892)°, B® — (2S)K*(892)°, B® — K*(892)°¢+¢—,
BT — J/K*(892)F, BT — W (2S)K*(892)*, and BT —
K*(892)"¢*¢~ backgrounds, as well as inclusive b had-
ron samples, and Cabibbo-suppressed BT — J/{ 7+, BT —
P(28)7t, and BT — 7 ¢* ¢~ decays, with and without emu-
lation of the trigger requirements. The CMS detector response
is simulated using GEANT4 [61]. All MC samples are recon-
structed with the same software packages as used for collision
data and include effects of pileup by overlaying simulated min-
imum bias events on the hard-scattering event, with the multi-
plicity distribution matching that in data.

5. Event reconstruction and selection

The particle-flow (PF) algorithm [62] aims to reconstruct and
identify each individual particle (muon, electron, photon, and
charged and neutral hadrons) in an event, with an optimized
combination of information from the various elements of the
CMS detector.

Muons are identified as tracks in the silicon tracker con-
sistent with either a track or several hits in the muon sys-
tem, and associated with calorimeter deposits compatible with
the muon hypothesis [42]. A muon that triggered the event
readout is required to pass the ‘medium’ muon identification
criteria of [42]. As multiple pp collision vertices are recon-
structed from each beam crossing, we select a single primary
vertex (PV) as the one whose z position is closest to that of
the point of closest approach of this muon to the beam line.
In addition, for the electron channel, only electron candid-
ates consistent with originating from this PV are considered.
This procedure significantly reduces the contamination from
pileup interactions. To simplify the trigger efficiency calcu-
lations, the muon channel analysis uses only one HLT path,
which requires a muon with pr >9GeV and IP;, > 6. This
trigger was the highest threshold one during early B parking
data taking, corresponding to [Ldr = 6.9fb~', and then the
second-highest for the rest of the data taking, accumulating
an additional [£dr=26.7 fb~!. Therefore, the J Ldt used for
the muon channel is 33.6 fb71, as shown in the second row of
table 1.

The PF algorithm used for electron reconstruction imposes
an implicit minimum electron pr requirement of 2GeV. To
recover the efficiency loss for low-py (LP) electrons, an
additional algorithm (‘LP electron reconstruction’) was spe-
cifically developed. As is the case for the PF algorithm, in
the LP algorithm, the determination of the charged-particle
track parameters for electron candidates, in the presence of
bremsstrahlung energy loss, relies on the use of a Gaussian
sum filter [43]. The LP electron candidate reconstruction is
started with a combination of two boosted decision trees
(BDTs), which are trained on samples of low-pr electrons and
result in looser reconstruction requirements than for the PF
electrons. The LP electrons in this analysis are reconstructed

down to 1 GeV, which ensures that they reach the ECAL. In
case of duplicates, we preferentially select PF electrons over
LP ones. To optimize the performance of the electron identific-
ation, several electron candidate characteristics are combined
using a BDT into a single discriminating variable, referred to
as ID, analogously to what was done in [43]. The ID BDTs
are trained separately for PF and LP electrons. The PF elec-
tron ID BDTs were retrained specifically for this analysis to
improve the performance at low pr. The training was done
separately for two ranges, 2 < pr < 5GeV and pr > 5GeV,
while a single training is used for the LP electron ID in the
entire pr range. The input variables for the ID BDTs include
both track-related quantities and calorimetric shower shapes,
as well as variables related to the matching of the extrapolated
track to the calorimeter cluster and the difference between the
track momentum at the innermost and outermost tracker lay-
ers. The electron ID BDTs were trained with the XGBoosT
algorithm [63] on a simulated sample of BT — J/i(ete ™ )K™
events. The electron pr and n distributions of the training
sample have been reweighted to reproduce those for the back-
ground, to avoid biases. The ‘tag-and-probe’ method [64]
using J/p — e*e™ decays in data is used to check the accur-
acy of the simulation for the ID BDT input variables, as well
as for the output distribution. We find these variables for both
the PF and LP electrons in data to be consistent with those in
simulation, within statistical uncertainties.

To measure R(K), we select events for which either a
B* — K" T~ candidate (used in the numerator of the R(K)
ratio) is found on the tag side, i.e. a muon from the BT —
K* T~ candidate must satisfy the trigger conditions, or a
BT — K*ete~ candidate (used in the denominator of the
R(K) ratio) is found on the probe side. While using the tag
side for the muon channel and probe side for the electron chan-
nel complicates the analysis, as the trigger efficiency does not
cancel in the R(K) ratio, this choice ensures a large number of
events collected in the B — K™ T ;i channel and not only
maximizes the sensitivity of the R(K) measurement, but also
enables high-precision measurements of the B™ — Kt ptpu~
branching fraction.

The B™ candidates are formed using a pair of opposite-
sign (OS) same-flavor leptons with an invariant mass below
5GeV and a positively charged track, to which the kaon mass
is assigned. Several quality criteria are applied to each muon,
electron, and track candidates to reduce the number of mis-
reconstructed objects. Specifically, tracks are required to pass
the ‘high-purity’ track quality criteria [62, 65] with pt >
1GeV and |n| < 2.4. Since the triggering object is a muon,
to reconstruct the BT — K+ u+u~ decay only one additional
muon is needed. This muon is required to have OS with respect
to the triggering muon, pass the ‘medium’ muon identification
criteria, have pr > 2GeV, and satisfy |n| < 2.4. In the elec-
tron channel, in order to increase the purity of the sample,
we require at least one of the electrons to be reconstructed
with the PF algorithm. Both electrons are required to have
|| < 2.4. The two electrons must have points of origin sep-
arated, along the beam line direction, by |Az| < 1 cm and with
|Az| < 1cm of the point of origin of the muon that triggered
the event. At this stage, we apply only very loose requirements
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Table 2. Input variables used in the muon and electron channel BDTs.

Variable Description
Common variables
cos ozzD(BJr) Cosine of the angle in the plane transverse to the beams between the momentum vector
of the BT candidate and the line connecting the beam line and the SV.
p(BT vix) Probability of the SV kinematic fit.
Lyy/0xy Significance of the SV displacement in the transverse plane with respect to the beam line.
pr(Bh) Transverse momentum of the BT candidate; in the electron channel it is divided by
MK +ete—-
pr(KT) Transverse momentum of the K* candidate; in the electron channel it is divided by

MK+ete—-

Muon channel variables

min AR(pu, K1)
candidate.
min Az(p, K1)

AR = V/(An)? + (Ad)? distance between the KT candidate and the closest muon

Az distance between the points of origin of the K™ candidate and the closest muon

candidate along the beam line direction.

I50( t1ead) PF isolation for the pr-leading muon candidate, defined as a scalar pr sum all PF
candidates, excluding the muon candidate itself, within AR < 0.4 of the muon candidate
and corrected for pileup.

Electron channel variables
pr(Pi) /mg+ete—,i = 1,2 Transverse momenta of the two electron candidates, divided by mg+ o+ -

Az(P, K1), i=1,2
kaon candidate.
|dsp (KF,eFe™))|
7 d3p (KT, ete)|
AR(eT,e7)
AR(P,KT),i=1,2
lp(eTe™) xr|—[p(K+) xr|
Ip(ete™) xr|+p(KF)xr|

and SV.
IDP;, i =1,2)

IRp—04(P), i = 1,2 and I'5p_g 4(KT)

Longitudinal distance between the points of origin of each electron candidate and the

Kaon candidate 3D impact parameter significance with respect to the dielectron vertex.

AR between the two electron candidates.

AR between each electron candidate and the kaon candidate.

Asymmetry of the momentum of the dielectron system and that of the K™ momentum
with respect to the Bt candidate trajectory, where r is a unit vector connecting the PV
Electron ID BDT score for two electron candidates.

Relative track-based isolation of the two electron candidates and the K* candidate,

respectively, defined as a scalar pr sum of all additional tracks in a AR < 0.4 cone
around the candidate, divided by the candidate’s pr.

on the ID BDT output for the electrons, as it is used as an input
to the multivariate analysis described below. The transverse
momentum of the B candidate is required to exceed 3 and
1.75 GeV in the muon and electron channels, respectively.
The tracks of the three particles forming the BT can-
didate are fitted to a common vertex, using their measured
momentum vectors with the corresponding uncertainties, to
improve the mass measurement accuracy for both the B* can-
didate and the lepton pair. The kinematic fit algorithm [66]
constrains the tracks belonging to the BT candidates to ori-
ginate from a single vertex, and provides the vertex posi-
tion, covariance matrix, and xz of the fit. After the vertex-
ing is performed, the particle trajectories are refitted using this
secondary vertex (SV) as an additional constraint, and their
momenta are recomputed. The masses of the particles (leptons
and kaon) are fixed to their nominal values [4]. A loose set of
criteria is imposed on the SV fit probability, as well as the
Lyy /0y and cosaop(B™T) variables described in table 2. The
invariant mass of the B' candidate is required to be in the

range 5.0-5.6 (4.7-5.7) GeV for the muon (electron) channel.
In addition, in the electron channel, the two electron candid-
ates are fitted to a common vertex (‘dielectron vertex’), which
is used later in the analysis to define one of the discriminating
variables, |d3p(K™, ete™)|, described in table 2.

A significant fraction of semileptonic decays of heavy-
flavor hadrons, containing a semileptonic charm meson decay
or a hadronic D° — K~ 7t decay, remains in the preselec-
ted sample. The hadronic D° decays enter the sample because
of misidentification of the K~ or 7+ meson as a lepton.
Therefore, a charm veto is applied by requiring that, for a B
candidate, the invariant mass of the track, using the pion mass
assignment, and the OS lepton, using the kaon mass assign-
ment, is larger than 2 GeV. In the electron channel, we addi-
tionally require the invariant mass of the track, using the kaon
mass assignment, and the OS electron, using the pion mass
assignment, to also be larger than 2 GeV. This additional selec-
tion is not applied in the muon channel, as the probability to
reconstruct charged pions as muons is significantly smaller
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Figure 2. Analysis BDT output for signal (MC simulation, in black) and background (same-sign dilepton data, in red) for the muon channel
(left) and for the PF-PF (center) and PF-LP (right) electron channels. The histograms are normalized to unit area.

than that for kaons. Finally, to suppress events where a muon
is misreconstructed as a kaon candidate, the track under the
muon mass hypothesis and the OS muon belonging to a B™
candidate are required to have an invariant mass away from
known dimuon resonances.

The selected B* candidates are binned in qz, as described
in section 2. Events in each ¢® bin can be further divided
in regions based on the invariant mass of the B candid-
ate. The region where genuine B' candidates are expected,
5.07 < mg+,, < 5.49GeV, is denoted as the SR. The adjacent
mass regions 4.90 < mg+,+,- <5.07 (491 <mg+iete- <
5.07)GeV and 5.49 < myg+y < 5.65GeV are designated as
sidebands (SBs). The low-mass SB has a significant contamin-
ation from partially reconstructed B meson decays, while the
high-mass SB is dominated by combinatorial background.

The final selection in each channel is based on a BDT,
which combines several variables into a classifier built using
the XGBoosT package. The input variables used in the BDT
are selected based on the forward elimination method (i.e. by
adding one variable at a time and either keeping or dropping
it based on the observed improvement in the performance)
and are summarized in table 2. In the electron channel, two
independent BDTs are trained for the PF-PF and PF-LP cat-
egories using the same input variables. Given the significantly
higher background in the electron channel, the corresponding
BDTs have more input variables and have all the momenta
variables normalized to the B* candidate mass myg+¢+.— to
ensure that a BDT score selection does not introduce peaks in
the invariant mass distributions (‘mass sculpting’). Both muon
and electron BDTs are tested thoroughly using data and sim-
ulated events to ensure that they do not introduce any mass
sculpting. The BDTs are trained in a supervised manner with
simulated Bt — K*/+¢~ decays in the low-¢* bin as signal
and data events from the low-g> bin SBs as background.

It is checked that the simulation describes the data well.
The comparisons are performed for all BDT input variables,
as well as the BDT output, using the (Plot technique [67],
where the reconstructed B™ candidate invariant mass is used
as the discriminating variable. The test is performed on the
BT — J/(¢+¢7)K' CRs, and good agreement between data
and simulation is found for all three channels (muon, PF-PF,
and PF-LP). After training, the BDT output is a continuous

function, as shown in figure 2, where high (low) values cor-
respond to signal-like (background-like) events. In this figure,
the background sample is obtained by using the SR selec-
tion, with the inversion of the OS requirement for the two
leptons (the same-sign CR). The optimal BDT working point
(WP) is chosen to maximize the expected significance of
the BT — K1/ /¢~ signal in the low-¢> region. In the muon
channel, the same BDT selection is applied to the J/1{ and
P(2S) CRs to allow for maximum cancellation of the sys-
tematic uncertainties, while in the electron channel, where
the dominant uncertainty is statistical, a looser BDT WP
is used for the resonance CRs to maximize the number of
events in the normalization channel. The muon, PF-PF, and
PF-LP channels are then combined statistically for the R(K)
extraction.

The product of the detector acceptance A and efficiency
€ is evaluated using simulated samples without the trigger
requirements. For the muon channel, the trigger efficiency g,
determined from simulated samples with and without the trig-
ger requirement and no reconstruction requirements, is found
to be approximately 0.4%. The low value of the trigger effi-
ciency is mainly due to the muon pt and displacement require-
ments. In the electron channel, since the BT — KTete™ can-
didates are found on the probe side, the €, component does
not enter in the R(K) extraction, as it is measured to be the
same for the low-¢* and the J /1 regions and hence cancels
completely in the R(K) ratio.

Slight differences between data and simulation in the muon
channel are mitigated with SFs applied to simulated events,
and the correction for the following effects are applied.

e Trigger efficiency: the difference in the trigger response is
corrected for by an SF, as a function of muon 7, pr, and the
SV displacement significance L,y /0y,. The SF is measured
with a tag-and-probe method [64], exploiting the J/1p —
pw ™ decays.

e Muon identification efficiency: the quality criteria imposed
on the muons may have different performance in data and
simulation. This SF is measured with the tag-and-probe
method.

e BDT efficiency: the BDT is using input variables that
have small differences between data and simulation. The
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Table 3. The product of acceptance, and offline and trigger
efficiency (Aeeyig) for the signal in the low—q2 region and for the
two resonance CRs. In the case of electrons, the trigger efficiency is
not included in the quoted .Ae numbers, as it cancels out in the R(K)
double ratio. Uncertainties are statistical only.

¢° range  Muon Aéeyig (%)  PF-PF Ae (%)  PF-LP Ae (%)
Low qz 0.08254+0.0013 2.95+0.07 1.50+0.05
I/ 0.0969 4 0.0006 2.48 +£0.03 1.08 £0.01
P(2S) 0.1112 4 0.0004 1.82+£0.02 0.68£0.01

corresponding SF is measured by comparing the BDT output
for the BT — J/y(u* 1~ )K™ events in data and simulation.

e Pileup: simulated events are reweighted to match the
evolving pileup conditions of the analyzed data.

o Higher-order corrections: leading-order PYTHIA simulation
is reweighted at the generator-level so that the B meson pr
and rapidity spectra match those from fixed-order perturb-
ative quantum chromodynamics calculations with resum-
mation of large logarithms that arise from soft and collin-
ear emissions [68, 69]. The reweighting is done using the
fixed-order plus next-to-leading logarithmic (FONLL) cal-
culations [70, 71], which are known to reproduce these spec-
tra in data with high accuracy.

It was found that applying the analogous SFs to the electron
channel changes the measured value of R(K) by less than
1.2%, which has a negligible effect on the final result given the
large statistical uncertainty in the electron channel. Therefore,
the SFs are not applied in the electron channel. The measured
Aeeyig in the muon channel for all ¢* bins, after applying these
corrections, is shown in figure Al. The Aeey;, or Ae values in
the low-¢? regions and two resonant CRs for the muon or elec-
tron channel are listed in table 3.

6. Mass fit

In each channel, the Bt — K¢/~ signal yield is extrac-
ted from an unbinned maximum likelihood fit to the invari-
ant mass spectrum of all BT candidates that pass the selection
criteria. Signal and background shapes are described by ana-
lytical functions or templates based on studies of simulated
events, with their normalization factors free to vary in the fit
to data. To allow a better description of the data, some para-
meters of the analytical functions are constrained within the
uncertainties obtained from a fit to simulated samples, rather
than being fixed. The same functional forms describing the
various contributions are shown to work well in all ¢> bins
in simulation; hence they are kept the same in the fit to data as
well.

6.1 Background composition

While the background composition differs from one ¢ bin to
another and from channel to channel, the background origin-
ates from the following common sources:

e Combinatorial background: this background stems from the
combination of objects from different b hadron decays, or
two muons from the same b hadron decay chain, with a ran-
dom track. The shape is extracted by exploiting the fact that
this background dominates the upper B™ mass SB, as well
as the same-sign CR.

e Partially reconstructed background: this background is dom-
inated by the B*%/+ — K*(892)%*X decays, where X is
T/, P(2S), or a nonresonant £ ¢~ pair. This background
arises from K*(892)° — K*7—, K*(892)* — K*#°, and
K*(892)% — K% decays, where either the K+ or 7+ track
is used together with the dilepton system to build a B
candidate, with the other decay particle being either lost or
ignored. In the latter case, potentially two B candidates are
reconstructed by combining the dilepton system with either
of the two tracks; both have significantly lower mass than the
nominal BT meson mass due to the missing other particle,
but still potentially contaminate the signal window in the
K¢+ ¢~ mass. Simulated B*"/* — K*(892)%/*X events are
used to derive the invariant mass distributions of the partially
reconstructed backgrounds.

e Cabibbo-suppressed background: this background is present
in both the resonant CRs and nonresonant SR, and it is very
similar to the signal signature, just with the kaon replaced by
a pion. This background cannot be discriminated from the
signal decay and it is accounted for using simulated events.

e Resonant background ‘leakage’: this background comes
from the fact that leptons produced in the BT —
J/W(te7)KT and BT —(2S)(¢+¢7)K" decays can
radiate final-state photons. In the case of muons, no photon
recovery algorithm is used, so these photons are not accoun-
ted for in the muon momentum reconstruction; in the case
of electrons, while most of these photons are picked by the
Gaussian sum filter algorithm and added to the momentum
of the reconstructed electrons, large-angle radiation may
still be missed. These effects reduce the ¢> to lower values
and generally result in migration of events across the ¢> bins.
The finite detector resolution and a much larger branching
fraction to the resonant mode can also contribute tails on
the high side. This background source is significant only in
the ¢? bins in the vicinity of the J /1 and {(2S) resonances,
and is estimated using simulated samples.

e Other b hadron decays: this is the most general background
that includes all partially reconstructed b hadron decays that
do not fit in any of the previous categories. Depending on the
¢” bin, different specific decays dominate in this category.
The shape of this background was evaluated using an inclus-
ive sample of soft QCD processes generated with PYTHIA,
with a filter that selected b hadron production. The mg+
distribution in this sample was found to be well described
by a falling exponential function in all ¢ bins.

A potential peaking background in the electron channel could
arise from hadrons misidentified as electrons in the all-
hadronic decays of the type B™ — KT h;h,, where h;, are
hadrons, dominated by BT — K" 7+7~ decays (with the
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branching fraction of ~1073, once the resonant charm ﬁow+
contribution is subtracted). The peaking structure is particu-
larly pronounced in the low-¢> region where the dipion sys-
tem generally has large momentum, and replacing it with
the dielectron hypothesis consequently does not shift sizably
the reconstructed invariant mass. This background, missed in
early R(K) measurements [9, 19, 20], was largely respons-
ible for the claimed anomaly, and after accounting for it, the
R(K) value is found to be compatible with the SM expecta-
tion [30, 31]. In the present analysis, we have developed the
identification of low-pr electrons and optimized the identi-
fication of PF electrons specifically to reduce the probabil-
ity of such misidentification. A typical misidentification rate
after the BDT selection is 107310~ per electron, making the
misidentified-hadron background very small. Nevertheless,
given the importance of the peaking background in the LHCb
case, we have made an explicit estimate of potential contribu-
tions of the misidentified-hadron background. We use a large

simulated sample of B* — D" (— K*7~ )7+ decays without
applying the charm veto (described in section 5) to estimate the
misidentification efficiency. In addition, we use a small sim-
ulated sample of charmless Bt — K™ 7~ 7+ decays to evalu-
ate the charm veto efficiency for this mode. The study showed
that the charm veto plus the identification requirements on PF
and LP electrons work very well to suppress the misidentifica-
tion background to a low level, as expected from squaring the
misidentification probability and applying the relative branch-
ing fractions for the signal and background processes. The
total estimated number of misidentified-hadron background
events in the low-g> region after the full analysis selection
is less than 0.3 events in each of the PF-PF and PF-LP cat-
egories. Compared to the expected signal yield, this peaking
background corresponds to <2 and <6%, respectively, for the
two categories, which is much smaller than the corresponding
statistical uncertainty. As this background is also shown to be
negligible in the muon channel, it is not included in the final
results.

6.2. Muon channel signal extraction

In the muon channel, two independent unbinned maximum
likelihood fits are performed to the BT candidate invariant
mass distribution: a ‘single’ fit in the low-¢* region and a
‘simultaneous’ fit across the 15 ¢* bins. The former is used
to measure R(K) and the integrated branching fraction of the
Bt — K' T~ decay, while the latter is used for the extrac-
tion of the differential branching fraction. While the two fits
give consistent results in the low-g? region, both in terms of the
central value and the uncertainty, the strategy of having two fits
achieves greater similarity between the B* — K*u* 1~ and
B* — K"ete™ channels and reduces the R(K) measurement
uncertainty.

In both the single fit of the low-g” region and the simultan-
eous fit, the signal is described with the sum of a double-sided
crystal ball (DCB) function [72, 73] and a Gaussian function.
All of the parameters of the DCB function are fixed based on

simulation. The mean and the width of the Gaussian function
in the single fit are free parameters. In the simultaneous fit,
while the width is allowed to float, the mean of the Gaussian
function is parameterized as a linear function of ¢> with a slope
of 0.0014 +0.0012GeV ™" to describe the observed depend-
ence in simulation. The rest of the parameters in the simultan-
eous fit are treated the same way as in the single fit.

e The BT — K*(892)%+X background is described by a
DCB function with the shape fixed from simulation. In
the simultaneous fit, an exponential function with paramet-
ers fixed from simulation is added to the DCB function
to account for the B™ candidates built with the 7 of the
K*(892) decay in the 11.0-19.24 GeV? ¢> range where the
contribution of this component is significant.

e The sum of the combinatorial and other B™ meson decays
backgrounds is described with a single exponential function,
except for the last g> bin of the simultaneous fit, where it is
multiplied by my+ ,+,~ — m,+,- —my to account for the
phase space suppression.

e The BT — 7+ X background is described by a DCB function
with the shape and relative yield with respect to the BT —
K*X signal fixed from simulation.

e The J/{ (P(2S)) resonant background leakage to nearby
¢* bins is described with a DCB function with the nor-
malization as a free parameter of the fit and the shape
parameters fixed by fitting simulated B* — J/{(u*p ™)K
(BT —(2S)(utp~)KT) events in the specific ¢*> bin.
This contribution is included only in the simultaneous fit
in the following ¢> bins: 6.0~7.0 and 7.0-8.0GeV? for the
BT — J/W(uTp~ )K" background, and 11.0-11.8, 11.8—
12.5, and 14.82-16.0GeV? for the BT — (2S) (ut ™)K ™
background.

For the BT — J/{ (T~ )KT CRs, the fit is kept as close
as possible to the single fit in the low-¢> region in terms
of template functions and parameter treatment. Nevertheless,
because of the much smaller radiative tail due to the tight
2.9 <my+,- <3.2GeV requirement in the J/{ CR and the
different background sources, some of the templates are dif-
ferent from the ones used for nonresonant signal. The signal
is described by a sum of three Gaussian functions with all
shape parameters constrained within the uncertainties from a
fit to simulated data. The BT — J /1 (ut 1~ )K*(892) back-
ground is described with the sum of a DCB function and an
exponential function, with all the shape parameters fixed from
simulation, as in the 11.0-19.24 GeV? q2 range of the simul-
taneous fit.

The BT — (2S)(uT 1~ )K" CR is not used directly in
the analysis, but is utilized for several cross checks (such as
the Ry, (25 measurement). For validation purposes, the func-
tions used for the fit in the BT — 1(2S)(u* 1~ )K' CR are
exactly the same as in the low-¢> region, except for the BT —
J/W(pt ™ )K*(892)" background, which is described with
the sum of a DCB function and an exponential function with
all the shape parameters fixed from simulation, as in the 11—
19.24GeV? ¢? range of the simultaneous fit.
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Table 4. Fit functions used for signal and background sources in each ¢* bin in the muon channel. The—symbol indicates this background
is not included in this region.

Candidates / 6 MeV

Pull

Process BT - Ktutu~ BT = J/P(uTp)KT BT —¥(2S)(ptp )K"
Signal DCB + Gaussian Sum of 3 Gaussians DCB + Gaussian
Comb. & other b bkg. Exponential® Exponential Exponential
Bt — K*(892)"+X DCB (+ expon.) DCB + exponential DCB + exponential
BT »ntX DCB DCB DCB
BT — J/y(utp KT DCB (nearby ¢%) — —
Bt = (28)(ntp )K" DCB (nearby ¢°) — —
2 In the last ¢> bin the exponential function is multiplied by my + = — Myt - — m,'f to account for the phase space
suppression.
Table 5. Signal yields in the muon channel in the low-g* bin and resonant CRs.
Channel q2 range [GeVZ] Yield
BT =K utu~ 1.1-6.0 1267 & 55
BT = J/¥(uTp)KT 8.41-10.24 728 000 £ 1000
BT —(2S)(utu )K" 12.60-14.44 68300 £ 500
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Figure 3. Results of an unbinned likelihood fit to the Kz + 11~ invariant mass distributions in the low-¢* bin (upper), and in the

BT — J/W(ut ™)K (lower left) and BT — 1(2S) (1o~ )K™ (lower right) CRs. The error bars show the statistical uncertainty in data.
The lower panels show the distribution of the pull, which is defined as the Poisson probability to observe the number of event counts in data,
given the fit function, expressed in terms of the Gaussian significance.

The functions used in the fit are summarized in table 4. The
results of the unbinned maximum likelihood fit, with the sys-
tematic uncertainties represented by the nuisance parameters

in the likelihood with Gaussian priors, are shown in table 5 and
figure 3 for the low-¢* bin and resonant CRs and in table 10
and figures A3—A4 for the simultaneous fit.
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Table 6. Fit functions used to describe signal and various background components for the electron channel. The — symbol indicates this

background is not included in this region.

Process BT - K'ete™ BT —J/Wb(ete )K" BT — (2S)(ete  )K*
Signal DCB function CB + Gaussian CB + Gaussian

Comb. background Exponential Exponential Exponential

Bt — K*(892)*+X KDE template KDE template

BT — 7tX — CB function —

BT — J/h(eTe” )KT KDE template — —

Other b decays — KDE template KDE template

Table 7. Signal yields in the electron channel in the low-g* bin and resonant CRs.

Channel ¢° range [GeV?] PF-PF yield PF-LP yield
BT — KfeTe™ 1.1-6.0 179472 30459
BT — J/Pp(ete KT 8.41-10.24 4857 4 84 2098 =+ 58
BT — P(2S)(ete )K" 12.60-14.44 320 £ 20 94+ 11

6.3. Electron channel signal extraction

To extract the number of signal events, unbinned maximum
likelihood fits to the B candidate invariant mass distribu-
tion are performed in three ¢> regions. The ¢° regions con-
sidered are: low-¢> aiming at the signal B" — Ktete™ decay,
and two CRs aiming at BT — J/{(ete” )K" and BT —
P(2S)(ete™)KT decays. The high-¢> bin, above the V(2S)
resonance, has been studied, but the backgrounds in this bin
are too large to extract the BT — KT ete™ signal reliably; con-
sequently, it is not included in the analysis. Fits are done inde-
pendently in the PF-PF and PF-LP categories. Signal shapes
are described by either a DCB function or the sum of a one-
sided crystal ball (CB) function [72] and a Gaussian func-
tion. The same background sources as in the muon channel
also contribute here, albeit with different relative importance.
The partially reconstructed background is similar to that in the
muon channel. The combinatorial background is more prom-
inent with respect to the muon channel, because of the higher
fraction of hadrons misreconstructed as electrons. Finally, the
other b hadron decay background is represented by a separ-
ate template. In the electron channel, we use simulated dis-
tributions directly to construct various background templates.
This is achieved using the kernel density estimator (KDE)
method [74] applied to simulated events. The only exception
is the combinatorial background, for which a simple exponen-
tial with the slope and normalization floating in the fit is used.
The Cabibbo-suppressed decay background is negligible for
the low-g* and 1(2S) bins, and therefore is accounted for only
in the B" — J/((ete™ )K" CR. The relative normalization
of this background to the signal is fixed from simulation. The
shapes of various backgrounds are fixed from simulation and
the normalizations are free parameters of the fit, unless spe-
cified otherwise. The functions used in the fit are presented
in table 6. Figure 4 shows the KTete™ invariant mass distri-
bution for the electron channels in the three ¢> regions for the
PF-PF and PF-LP categories. The signal yields in these regions
are listed in table 7.

7. Systematic uncertainties

Statistical uncertainties in the signal yields are propagated into
the measurement of R(K). The final statistical uncertainty in
R(K) is dominated by the yield in the low-g bin in the electron
channel, which is of order of 40% (as can be seen in figure 4).

Systematic uncertainties in this analysis fall into two cat-
egories: those due to the finite size of the signal MC samples
used for the Ae estimates, which are statistical in nature,
and those that reflect certain assumptions made in the ana-
lysis. Systematic uncertainties are calculated independently
for the muon and electron channel parts of R(K), because
they largely cancel in the single ratios, B* — K*¢+¢= /BT —
J/P(€+£7)K™, in each of the two channels. Consequently,
only the uncertainties that do not cancel or cancel partially are
discussed in this section. The uncertainties in the muon and
electron channels are treated as uncorrelated, which is suppor-
ted by the fact that the two channels have different sources of
systematic uncertainties due to differences in the trigger, kin-
ematics (because of the tag-side vs. probe-side selection), and
lepton reconstruction. To evaluate the impact of a systematic
source, the R(K) ratio is remeasured after changing the cent-
ral value for the source under study by £1o. The difference
between the modified and nominal values of the single ratio is
used as the systematic uncertainty.

71. Systematic uncertainties in the muon channel single ratio

The dominant systematic uncertainties in the single ratio
BT = K" utpu= /BT = J/W(utp~)KT, in order of import-
ance, are as follows:

e Parameterization of the background function of the Bt —
Kt pt ™ fit: this uncertainty is estimated by using a falling
tail of a Gaussian function instead of an exponential function
to describe the dominant combinatorial plus other B meson
decays background. The effect is 1.8%.
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Figure 4. The K*eTe™ invariant mass spectrum with the results of the fit shown with the red line in the low-q2 region (upper row),
B™ — J/P(eTe”)K CR (middle row), and B — (2S)(eTe™ )K™ CR (lower row) for the PF-PF (left column) and PF-LP (right

column) categories. The shoulder below the nominal B meson mass for the {»(2S) CR is due to the narrow ¢” range in this bin compared

to the size of the radiative tail. Notations are as in figure 3.

e Operating below the trigger plateau: the uncertainty in the
trigger turn-on effects was estimated by repeating the meas-
urement after tightening the offline requirements. The cor-
responding uncertainty is 1.3%.

e Uncertainty in the FONLL SFs: simulated events are
reweighted in pr and rapidity of the B candidate according
to the FONLL predictions. The corresponding uncertainty is

0.9%.

e Parameterization of the background function in the Bt —
J/W(pt ™)K CRfit: the uncertainty is estimated the same
way as in the SR. The effect is 0.6%.

e Description of the J/1{ meson radiative tail: events in the
Bt — J/W(ut ™)K T channel are selected using a fixed ¢>
window. A mismodeling of the tail can lead to an incorrect
calculation of efficiency. This effect is estimated by repeat-
ing the measurement in a larger ¢> window, by relaxing the
lower boundary from 2.9 to 2.8 GeV. The effect is 0.5%.

e Pileup: the pileup profile is reweighted using a +4.6% vari-
ation in the total inelastic pp cross section [75]. The corres-
ponding uncertainty is 0.4%.

e Parameterization of the signal shape in the low-¢g> BT —
K™~ fit: the uncertainty due to the signal description is
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Table 8. Major sources of uncertainty in the BT — Ky p ™/
B* — J/W(ut ™)K ratio measurement.

Impact on the

Source R(K) ratio (%)
Background description, low—q2 bin 1.8
Trigger turn-on 1.3
Reweighting in pr and rapidity 0.9
Background description, J /1 CR 0.6
J /1 meson radiative tail description 0.5
Pileup 0.4
Signal shape description 0.3
Trigger efficiency 0.2
J /1 resonance shape description 0.1
Nonresonant contribution to the J/1{p CR 0.1
Total systematic uncertainty 2.6
Statistical uncertainty in MC samples 1.7
Statistical uncertainty in data 7.5
Total uncertainty 8.1

estimated by adding an extra Gaussian function to the signal
template and repeating the fit. The corresponding systematic
uncertainty is 0.3%.

Uncertainty in the trigger SFs: the combined statistical and
systematic uncertainty from the SF measurement is obtained
using the tag-and-probe method. The effect is 0.2%.
Parameterization of the signal shape in the BT —
J/P(pt ™)K fit: this uncertainty is evaluated in the same
way as in the low-¢? bin. The corresponding uncertainty is
0.1%.

The nonresonant BT — K+ i+ 1~ contribution in the BT —
J/P(utp~)K' CR: the predicted BY — Kt p ™ contri-
bution in the J /1 ¢* range using PYTHIA is subtracted from
the signal yield. The effect is 0.1%.

Other uncertainty sources were also studied (e.g. several SFs
related to the BDT), but found to have a negligible effect
(<0.01%) and are therefore omitted. The systematic sources
are treated as uncorrelated, and the overall uncertainty in the
low-g? bin is found to be 2.6%. The statistical uncertainty
in the same bin is 7.5% and the uncertainty from the lim-
ited size of the simulation sample used for the Ae calcula-
tions is 1.7%. The uncertainties in the B" — K™ T p=/BT —
J/A(ut ™)K ratio measurement are summarized in table 8.
For the differential branching fraction measurement the same
systematic sources are evaluated in each ¢ bin and the result-
ing uncertainties are shown in figure A2. In most q2 bins, the
data statistical uncertainty is dominant.

72. Systematic uncertainties in the electron channel single
ratio

Since the yield of Bt — K*eTe™ events in the low-g* bin
is small, the overall uncertainty is dominated by the statist-
ical uncertainty. The sources of systematic uncertainties in

the electron channel are generally different from those in the
muon channel, due to different kinematics and reconstruction
performance.

The dominant uncertainties in the single ratio BT —
Ktete /BT — J/W(ete™)K™, in order of importance, are as
follows:

e Parameterization of signal and background shapes: both the
signal and background shapes in the fits of the low-g> SR
and J/1{ CR are modified and the difference is taken as an
uncertainty. The modification is done by replacing the KDE-
based templates with analytical functions similar to the ones
used in the muon channel. The signal description in the
low-¢g? bin was modified by adding an extra Gaussian func-
tion, and the exponential describing the combinatorial back-
ground was replaced by a second-order Chebyshev polyno-
mial. The combined uncertainty in the fit parameterization
because of the signal and background variations is about 5%
each in the PF-PF and PF-LP categories.

Constraint on the BT — J/{(ete™)K™ contribution: the
normalization of the J/1{ meson leakage background in
the BT — K*eTe™ channel in the low-g> region is con-
strained to the expected yield from the fit in the BT —
J/W(eTe”)KT CR. The uncertainty is dominated by the
statistical uncertainty in the yield of this background and is
estimated using pseudo-experiments, while the contribution
from the radiative tail mismodeling is negligible. The uncer-
tainty amounts to 4 (9)% in the PF-PF (PF-LP) category.
The BDT efficiency stability: the BDT WP is chosen to max-
imize the expected significance of the BT — KTeTe™ sig-
nal in the low-¢> region. A variation of the WP correspond-
ing to a variation of +10% in the expected significance is
chosen to evaluate the stability. The corresponding system-
atic uncertainty is 2 (5)% for the PF-PF (PF-LP) category.
The BDT cross-validation: to allow for the entire data set to
be used both in the BDT training and testing, an eight-fold
cross validation is used, resulting in eight different BDTs.
The spread in the efficiency of these BDTs is used as the
uncertainty, amounting to 2 (3)% in the PF-PF (PF-LP)
category.

Triggers in the B parking data set: in the electron channel
all the B parking triggers are used for the measurement.
The small kinematical correlation between the tag and probe
sides could have an impact on the R(K) value. Due to a com-
plicated mixture of L1 and HLT triggers, some of which are
prescaled as a function of the instantaneous luminosity, the
composition in terms of trigger paths is different in simu-
lated samples than in data. To account for this, the trigger
efficiency ratio between the low-g> SR and J /1) CR is estim-
ated for several individual trigger paths and the variation of
this ratio is taken as a systematic uncertainty amounting to
1 (4)% for the PF-PF (PF-LP) category.

The BDT SF: this SF accounts for the differences in the BDT
WP efficiency between data and simulation. The efficiency
of the nominal WP with respect to a loose selection, which
is nearly fully efficient for signal, is computed in the J/{
CR, and transferred to the low-g* bin using simulation. The
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Table 9. Major sources of uncertainty in the BT — KTeTe™/

B* — J/W(ete  )K' ratio measurement in the PF-PF and PF-LP
categories. The last row shows the statistical uncertainty, which is
the same as the total uncertainty within the quoted precision.

Impact on the
R(K) ratio (%)

PF-PF PF-LP

Source

Signal and background description
J /1 event leakage to the low-¢” bin
BDT efficiency stability

BDT cross validation

Trigger efficiency

BDT data/simulation difference

J/ meson radiative tail description

——= = NN W
— N AW WL O W

Total systematic uncertainty 7 13

Statistical and total uncertainty 40 200

uncertainty from this source is 1 (2)% in the PF-PF (PF-LP)
category.

e Description of the J/1{ meson radiative tail: this uncertainty
is estimated in the same way as in the muon channel, except
that the enlargement of the ¢> window is bigger in the case
of electrons to account for the larger radiative tail. The effect
is 1% for both PF-PF and PF-LP categories.

Other sources of uncertainty have an impact of less than 1% on
the BT — K*ete /BT — J/W(ete)K™ ratio. The reason
the uncertainties in the BDT performance are much larger in
the electron channel than in the muon one is the much tighter
WP used, which results in effectively smaller training samples
and higher sensitivity to data-to-simulation differences in the
tails of the distributions of the various input variables. All
sources of systematic uncertainties are treated as uncorrel-
ated, which results in an overall systematic uncertainty in the
BT — KTete /BT — J/P(ete” )K" single ratio of 7 and
13% for the PF-PF and PF-LP categories, respectively. The
systematic uncertainties are small compared to the statistical
ones which are 40 (200)% for the PF-PF (PF-LP) channel.
Table 9 summarizes the uncertainties in the electron channel.

8. Results

In this section, we report the following results:

e measurement of the differential branching fraction of the
Bt — K"t pu~ decay in the full ¢> range, excluding the
J /1P and P (2S) resonances;

e measurement of the integrated branching fractions of the
Bt — K"~ decay in the low-g? region and in the full
¢* range; and

e measurement of R(K) in the low-¢? region.

To validate the analysis procedure we performed several cross-
checks, the two most important ones being the measurement
of the Ry(os) and Ry/y ratios. The former is defined by

equation (3), i.e. exchanging the Bt — KT/*/~ decay by
the BT — (2S)(¢T¢~)K™ one. The latter is the ratio of the
BT — J/(pt ™)K and BT — J/1(ete™)KT branching
fractions. Both these ratios are expected and measured [4] to
be flavor-universal (i.e. equal to unity), with high precision. An
important added value of the Ry, cross-check is that various
efficiencies and corrections that cancel out in the R(K) double
ratio, only partially cancel or do not cancel in the Ry, single
ratio. Therefore, this cross check also validates the systematic
uncertainties that cancel in the R(K) ratio.

The results of our measurement in the combination of the
PF-PF and PF-LP categories are: Ry, (zs) = 0.9661007% and
Ry = 1.006f8:8%g, where the uncertainties shown are statist-
ical only. Both the Ry, (»s) and Ry, measurements are consist-
ent with unity within one standard deviation, with a precision
of a few percent. The systematic uncertainty due to the lack
of cancellation of various efficiencies and from sources dis-
cussed in section 7 for both ratios is estimated to be around 7%.
Consistent results are obtained in the PF-PF and PF-LP cat-
egories separately, albeit with larger statistical uncertainties.

8.1. Measurement of the differential B(B™ — Kt utp™)

To reduce the systematic uncertainty, the differential branch-
ing fraction in each ¢* bin is normalized to B(BT —

T/ (ptp )K",

BB = K" 1) [dmin: Ginax)
NB+—>K+;L+;¢* [qrzninvqrznax]
Ni+ g/ (ut i+ [8:41,10.24] GeV?

(Aceuie)g 3 (s i+ 18:41,10.24] GeV?

(AGGlrig)B+_>K+M+N— [qrzmna qrznax]

x B(B* = J/WKH)BI/p — putu), )

where Np+_,x+,+,~ and Np+_j/p(u+pu-)k+ are the meas-
ured yields from the fit in the ¢?> region indicated in the
brackets and B(B™ — J /(= )KT) is the world-average
value of the BT — J/{(utp~)K™ branching fraction [4].
The measured differential branching fraction of the B™ —
K* = decay is summarized in table 10. The correlation
matrix between the extracted values of the differential branch-
ing fraction in different ¢> bins is shown in figure AS.

Since there are various and somewhat different theoretical
predictions for the SM value of d(B(B* — K it ™) /¢%, we
compare our measurement with the predictions from the HEP-
FIT [27, 76-78] v1.0, suPERISO [79, 80] v4.1, FLAVIO [81]
v2.5.5, and EOS [82, 83] v1.0.8 packages. These models rely
on different approaches in evaluating the effects of nonlocal
form-factor contributions, which is reflected in a sizable dif-
ference between the uncertainties in their predictions. None
of the calculations can reliably describe the regions between
the J/1{ and {(2S) resonances; hence the predictions are not
shown in this ¢ range. In addition, the HEPFIT package only
gives predictions for ¢> < 8GeV>. The comparison of our
measurement with the prediction of these models is shown in
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Table 10. The B™ — K™ ™11~ branching fraction,

d(B(B* — KTt ) /q” integrated over the specified ¢* range,
for the individual ¢ bins.. The uncertainties in the yields are
statistical uncertainties from the fit, while the branching fraction
uncertainties include both the statistical and systematic components.

¢° range Branching fraction
(GeV?) Signal yield 107%
0.1-0.98 260 £ 20 2.914+0.24
1.1-2.0 197 £19 1.934+0.20
2.0-3.0 306 £ 23 3.06 £0.25
3.04.0 260 +21 2.54+0.23
4.0-5.0 251+23 2.47+0.24
5.0-6.0 264 +27 2.5340.27
6.0-7.0 267 £21 2.504+0.23
7.0-8.0 256 £23 2.3440.25
11.0-11.8 207 £19 1.62+0.18
11.8-12.5 172+ 16 1.26 £0.14
14.82-16.0 272 +20 1.83+0.17
16.0-17.0 246 + 17 1.57£0.15
17.0-18.0 31719 2.1140.16
18.0-19.24 242 £19 1.74 4+ 0.15
19.24-22.9 158+ 19 2.0240.30
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Figure 5. Comparison of the measured differential

B™ — K" u'u~ branching fraction with the theoretical predictions
obtained using HEPFIT, SUPERISO, FLAVIO, and EOS packages. The
HEPFIT predictions are available only for ¢* < 8 GeV2.

figure 5. The measured differential branching fraction of the
Bt — K' T~ decay is generally lower than the theoretical
predictions for ¢> < 17 GeV?, which is consistent with the res-
ults reported by LHCDb [23, 24].

8.2. Measurement of the integrated B(B™ — K™ pu™)

The low-g” region is especially interesting because it is not
affected by higher-mass resonances and their interference
effects. Consequently, the branching fraction of the B™ —
K* = decay in this ¢* region can be measured with rel-
atively little theoretical dependence, using equation (4) over
the [1.1,6.0]GeV? ¢* range. In this range, the acceptance

Table 11. Comparison of the B(B* — K™ 1 11™) branching
fraction measurement in the low-¢* range and the theoretical
predictions based on the EOS, FLAVIO, SUPERISO, and HEPFIT
packages.

BBY = K utp)[1.1,6.0] GeV?

Source (10_8)
Measurement 12.42 +0.68
EOS 189+1.3
FLAVIO 17.1£2.7
SUPERISO 16.5+34
HEPFIT 19.84+7.3

times efficiency is essentially independent of the ¢ value,
as shown in figure Al. Therefore, any dependence on the-
ory can only arise from residual differences in the kinematic
distributions of the final-state particles between theory and
data. Since the acceptance times efficiency is evaluated using
events generated with the EVIGEN BT — Kyt p~ model
(discussed in section 4.2), which has been tuned using eTe™
experimental data, as well as lattice calculations, any such
residual differences are expected to be minimal. The resulting
measurement is

BBt —Krutp™)[1.1,6.0] GeV?
= (12.42£0.54 (stat) 4 0.11 (MC stat) + 0.40 (syst))
x 1078 = (12.4240.68) x 1075, (5)

This result is consistent with the present world-average value
of (12.6 £1.2) x 1073 [4] in a very similar range, 1.0 < ¢* <
6.0 GeVZ, and has a 40% smaller uncertainty. It is also consist-
ent with and has a similar uncertainty as the LHCb measure-
ment [24] in the 1.1 < ¢> < 6.0GeV? range, (11.86 +0.68) x
10~8, which presently dominates the world-average value.
(The larger uncertainty in the world-average value is due to
a SF of 1.9 introduced to address the tension between the
individual results.) The comparison between our measurement
and the theoretical predictions described above is shown in
table 11. All of the theoretical estimates are higher than our
measurement in the low-¢* region.

In order to determine the integrated B(BT — K*putpu™),
the result of equation (5) must be divided by the fraction
of events in the low-¢> bin. This fraction cannot be taken
directly from data because of the interference effects and
resonant contributions. Two theoretical models are used to
obtain the differential branching fraction distribution in the
full ¢* range, based on the FLAVIO and SUPERISO packages. The
resulting B(B™ — K ™) integrated branching fractions
are 43.54+ 1.9(stat) £0.4(MC stat) = 1.4(syst) =43.5+2.4
(FLAvVIO) and 43.9 £ 1.9(stat) £+ 0.4 (MC stat) £ 1.4(syst) =
43.9 4+ 2.4 (superiso), where the theoretical model uncer-
tainty is not included. Both results are in good agreement
with the world-average value of (45.3+3.5) x 1078 [4], as
well as with the LHCb measurement of (43.7 +2.7) x 1078
that explicitly subtracts various resonant contributions [84].
For the calculation of the integrated branching fraction
B(BT — K"uTu~), only FLAVIO and SUPERISO are used
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Figure 6. Log likelihood function from the fit profiled as a function
of R(K)~!. The dark and light grey area indicates the & 1 and + 2 o
bands respectively.

because EOs and HEPFIT do not provide predictions for the
entire ¢” range.

8.3. Measurement of R(K)

For the R(K) measurement, both the BY — K p*pu~ and
Bt — K'ete™ channels are used in the low-¢g” region, along
with the BT — J/W(uTp" )K" and BT — J/P(ete )K"
CRs, separately in the PF-PF and PF-LP electron channel cat-
egories and in their combination,. The details are given in
appendix A.2. The systematic uncertainties are incorporated
into the likelihood function assuming Gaussian distributions.
The correlation of a few minor uncertainties between the two
channels were found to have a negligible effect on the results.
A profile likelihood is used to obtain the confidence interval
of the parameter of interest, R(K)~".

The values of R(K)~! extracted in the PF-PF and PF-LP
categories are 1.40f8:§g and O.SOfé:gg, respectively, where the
uncertainties are statistical only. These values are consistent
with each other and with unity. As expected from the corres-
ponding signal yields, the PF-PF result is much more precise.
The maximum likelihood fit for the combination of the PF-
PF and PF-LP categories gives R(K) ™' = 1.2870-3 where the
uncertainties are statistical only. The profile log likelihood of
the combined fit, In(L /Ly, ), as a function of R(K)~! is shown
in figure 6. The measurement of R(K) and its 68% confidence
interval can be obtained from those for R(K) ™!,

+0.09

R(K) =0.781035 (stat) "y s (syst) = 0.787031 (6)
which is within one standard deviation from the SM prediction
of approximately unity. The summary of the available R(K)

measurements is shown in figure A6.

9. Summary

We have reported the first test of LFU with the CMS exper-
iment at the LHC in B¥ — K¥ptu~ and B¥ — Kfete™

decays, as well as a measurement of differential and integ-
rated branching fractions of the nonresonant B — K* wru
decay. The analysis has been made possible by a dedicated
data set of proton-proton collisions at /s = 13TeV recor-
ded in 2018, using a special high-rate data stream designed
for collecting about 10 billion unbiased b hadron decays.
The ratio of the branching fractions B(B* — K* ™) to
B(B* — K¥ete) has been is determined from the measured
double ratio R(K) of these decays to the respective branching
fractions of the B¥ — J/WK* (J/P — ptp~) and (J/P —
ete™) decays, which allow for significant cancellation of sys-
tematic uncertainties. The ratio R(K) has been measured in
the range 1.1 < ¢* < 6.0GeV?, where g is the invariant mass
of the lepton pair, and was found to be R(K) = O.78f8é;,
in agreement with the SM expectation of ~1. This meas-
urement is limited by the statistical precision of the electron
channel. The integrated branching fraction in the same ¢°
range, B(B* — K*ptp~) = (12.42+0.68) x 1078, is con-
sistent with and has a comparable precision to the present
world average. This work has demonstrated the flexibility of
the CMS trigger and data acquisition system and has paved
the way to many other studies of a large unbiased sample of b
hadron decays collected by CMS in 2018.
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Appendix

A.1 Additional figures

In this section, we include auxiliary figures that are omitted from the main body of the paper.
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Figure A1. The product of acceptance and efficiency (Ae) of the B¥ — K+ 11~ channel, as a function of the muon pair g2, as measured
in simulated signal events, after all the corrections applied. Regions corresponding to resonances are displayed with red markers.
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Figure A2. Relative uncertainties in the differential branching fraction measurement of B¥ — K* 1,7 1u™ per ¢? bin. Different colors
correspond to data statistical, simulation statistical, and systematic uncertainties.
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Figure A3. The K* 1~ invariant mass distributions in various ¢* bins, with the result of the simultaneous fit overlaid in blue and the
individual fit components as described in the legends for (from upper left to lower right): [0,0.98], [1.1,2.0], [2.0,3.0] [3.0,4.0], [4.0,5.0],
[5.0,6.0], [6.0,7.0], and [7.0,8.0], ¢* bins. Notations are as in figure 3.
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Figure A4. The K* 1~ invariant mass distributions in various ¢* bins, with the result of the simultaneous fit overlaid in blue and the

individual fit components as described in the legends for (from upper left to lower right): [11.0,11.8], [11.8,12.5], [14.82,16.0], [16.0,17.0],
[17.0,18.0], [18.0,19.24], and [19.24,22.9] GeV* ¢* bins. Notations are as in figure 3.
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Figure A5. Correlation matrix for the differential branching fraction extraction between different ¢> bins in the simultaneous fit.
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Figure A6. Summary of R(K) measurements from BaBar [12], Belle [15], and LHCD [9, 19, 20] experiments, as well as the present CMS
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A.2. R(K) measurement formalism

The experimentally accessible equivalent of equation (2) can
be written as follows, using the event yields N from the fits to
the B candidate mass spectra and the products of acceptances
and efficiencies (Aeeyig in the muon channel and Ae in the
electron channel):

21

NB+—>K+/J4+M_ /NB+—>J/1|)(}L+H_)K+

o
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In order to obtain the best fit value of R(K) and its con-
fidence interval, the measured quantities Ng+_,g+,+,- and
N+ _k+cete— are expressed as

m

N+ Lkt pt -
NB+—>J/1D(;A+;¢*)K+ (Aeetrig)BJr*)K*,u*,u*

B -
BI/ b — ptp) (AEGHig)B+_>J/¢(/L+,f)K+

(A.2)
and

— NB* J/WP(ete— )KT

N+ g+e+e- = R(K) lRB B(J71|)/—(> e+e)—)
A (Ae)B+~)K+e+67 (A3)

(-’46)B+—>J/11)(e"’e—)KJr
+ Kkt utu—

where Rz = %. We note that R(K) ™! is used as

the parameter of interest instead of R(K) because this choice
makes the likelihood significantly more Gaussian.

A simultaneous fit is done using equations (A.2) and (A.3),
with the likelihood function in each lepton channel defined as

LH = »Cﬁ)w—qZ (NB+—>K+M+1F ) ’C?/ll) (NB+—>J/‘P(H+N7)K+)
X G ((AGfuig)B+_)K+H+M—)

%G ((,Lleetrig)lg+_>J /wumr)w) G (B‘}‘/ w) (A4
‘CP = E{J()W—qz (NB+—>K+e+e* ) £_]I)/L|) (NB+—>J/II)(e+e*)K+)
xG ((AG)BJr%K*eﬂa*)

%G ((Ags s ppiere - ) G (Bl (A5)

¢
where Elow—qz

hood function used in the low-¢> and J/1 regions, respect-
ively, G is the Gaussian function with the mean at the nom-
inal value of the argument and the RMS given by the cor-
responding uncertainty, and Bf v is the branching fraction of
the J/p — ¢ decay. The value of R(K) is measured by max-
imizing the likelihood function £ = £+ LF, either for a single
dielectron category or for the two categories simultaneously,
which is achieved by taking £F = £PF-PF LPFLP,

and Ef b (¢ = p or P) are the mass fit likeli-
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