

ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 223 (2023) 223–230

1877-0509 © 2023 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the XII Latin-American Algorithms, Graphs and Op-
timization Symposium
10.1016/j.procs.2023.08.232

© 2023 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the XII Latin-American Algorithms, Graphs and Optimization
Symposium

Keywords: edge-independent spanning trees; edge-connectivity; graph decomposition

1. Introduction

A graph G is k-edge-connected if for any subset F of E(G) with |F| < k, G − F is connected. By Menger’s theorem

[1], this is equivalent to the statement that for every pair of vertices x, y if G, there are k edge-disjoint paths from x to

y in G.

Let G be a graph and let r be a fixed vertex of G. Two spanning trees T1 and T2 of G rooted at r are edge-independent

if for every vertex v ∈ V(G), the paths from v to r in T1 and from v to r in T2 are edge-disjoint. A set of spanning trees

rooted at r is edge-independent if the trees are pairwise edge-independent.

In 1984, Itai and Rodeh [2] introduced the concept of edge-independent spanning trees and proved that every

2-edge-connected graph has two edge-independent spanning trees rooted at any vertex r. In 1989, Itai and Zehavi

conjectured the following:

Conjecture 1.1 (Edge-Independent Spanning Trees Conjecture, Itai and Zehavi). Let G be a k-edge-connected

graph and let r be a vertex of G. Then G contains k edge-independent spanning trees rooted at r.

The case k = 3 of the conjecture was proven by Schlipf and Schmidt [3] and the case k = 4 was proven by Hoyer

and Thomas [4]. Both proofs rely on a result of Mader [5] that describes how to build iteratively any k-edge-connected

∗ Corresponding author. Tel: +55 51 99807-6037.

E-mail address: alonso.goncalves@ic.unicamp.br

XII Latin-American Algorithms, Graphs and Optimization Symposium (LAGOS 2023)

Five edge-independent spanning trees

Alonso Alia,∗, Orlando Leea

aInstitute of Computing, State University of Campinas, Campinas, Brazil

Abstract

Let G be a graph and let r be a fixed vertex of G. Two spanning trees T1 and T2 of G rooted at r are edge-independent if for

every vertex v ∈ V(G), the paths from v to r in T1 and from v to r in T2 are edge-disjoint. Itai and Zehavi conjectured that for

every k-edge-connected graph and any vertex r ∈ V(G) there are k edge-independent spanning trees rooted at r (Edge-Independent

Spanning Trees Conjecture). Itai and Rodeh proved the case k = 2, Schlipf and Schmidt proved the case k = 3, and Hoyer and

Thomas proved the case k = 4 of the conjecture. In this paper, we prove the case k = 5.

224 Alonso Ali et al. / Procedia Computer Science 223 (2023) 223–230

graph starting from a small graph. Using Mader’s theorem, Schlipf and Schmidt (respectively, Hoyer and Thomas)

showed that every 3-edge-connected (respectively, 4-edge-connected) graph admits a certain chain decomposition

(rooted at any vertex r) similar to an ear decomposition. These decompositions are then used to define an edge

numbering of the graph and to construct the required number of edge-independent spanning trees. In this paper,

we prove the case k = 5 of Itai-Zehavi’s conjecture. We use a similar approach to the one used by Hoyer and Thomas.

First, using Mader’s Theorem we prove that every 5-edge-connected graph G admits a certain chain decomposition

rooted at any vertex r, and then we use this decomposition to construct five edge-independent spanning trees of G

rooted at r. Due to space constraints, we only sketch most of the proofs.

In this section, we define our version of chain decomposition. Let G be a 5-edge-connected graph and fix a vertex

r ∈ V(G). In what follows, we introduce the types of “chains” that appear in the decomposition, and then we formally

define what a chain decomposition is. There are seven types of chains that appear in the decomposition; we note

that the first three types of chains (up chain, down chain and one-way chain) are essentially the ones used in the

chain decomposition of Hoyer and Thomas [4] and the other four types (singular forward, semi-singular forward,

singular backward and semi-singular backward chains) are introduced in this paper and we call them singular chains.

A singular chain consists of an edge that has an “orientation”. As we show in Section 6, the union of all singular

chains is one of the five edge-independent spanning trees that we construct.

A decomposition of a graph G is a sequence (G0,G1, . . . ,Gm) of edge-disjoint subgraphs of G such that each edge

of G belongs to exactly one Gi. Roughly speaking, a decomposition (G0,G1, . . . ,Gm) of G is a chain decomposition

if each Gi is a path or a cycle with certain connectivity constraints. In order to simplify the presentation, we describe

each type of chain as a subgraph connecting H := Hi =
⋃i−1

j=0 G j and H := Hi =
⋃m

j=i+1 G j.

For a vertex v, an edge incident to v is non-valid if it is a singular chain and v is its tail; otherwise, we say that

such edge is a valid edge of v. This rather technical definition is necessary to guarantee that the five spanning trees are

edge-independent. In the decomposition, every vertex other than the root r is the tail of exactly one singular chain.

Definition 1.2 (Up chain). Let (H,H) be a pair of edge-disjoint subgraphs of G. An up chain of G with respect to

(H,H) is a subgraph of G, edge-disjoint from H and H, which is

1. either a path with at least one edge in which every vertex is r or has at least two valid edges in H, and its

endpoints are r or have at least one valid edge in H,

2. or a cycle in which every vertex is r or has at least two valid edges in H, and some vertex v is r or has at least

two valid edges in H. In this case, we call v the endpoint of the up chain and the remaining vertices its internal

vertices.

Definition 1.3 (Down chain). Let (H,H) be a pair of edge-disjoint subgraphs of G. A down chain of G with respect

to (H,H) is an up chain of G with respect to (H,H).

Definition 1.4 (One-way chain). Let (H,H) be a pair of edge-disjoint subgraphs of G. A one-way chain of G with

respect to (H,H) is a subgraph of G induced by an edge e = uv � E(H ∪ H) such that u is r or has at least two valid

edges in H, and v is r or has at least two valid edges in H. We call u the tail and v the head of the one-way chain and

both are endpoints of it.

Definition 1.5 (Singular forward chain). Let (H,H) be a pair of edge-disjoint subgraphs of G. A singular forward

chain of G with respect to (H,H) is a subgraph of G induced by an edge e = uv � E(H ∪ H) such that u is r or has at

least two valid edges in H and at least two valid edges in H, and v is r or has at least two valid edges in H. We call u

the tail and v the head of the singular forward chain and both are endpoints of it.

Definition 1.6 (Semi-singular forward chain). Let (H,H) be a pair of edge-disjoint subgraphs of G. A semi-singular

forward chain of G with respect to (H,H) is a subgraph of G induced by an edge e = uv � E(H ∪ H) such that u is r

or has at least one valid edge in H, and v is r or has at least two valid edges in H. We call u the tail and v the head of

the semi-singular forward chain and both are endpoints of it.

Definition 1.7 (Singular backward chain). Let (H,H) be a pair of edge-disjoint subgraphs of G. A singular back-

ward chain of G with respect to (H,H) is a subgraph of G induced by an edge e = uv � E(H ∪ H) such that u is r or

 Alonso Ali et al. / Procedia Computer Science 223 (2023) 223–230 225

has at least two valid edges in H and at least two valid edges in H, and v is r or has at least two valid edges in H. We

call u the tail and v the head of the singular backward chain and both are endpoints of it.

Definition 1.8 (Semi-singular backward chain). Let (H,H) be a pair of edge-disjoint subgraphs of G. A semi-

singular backward chain of G with respect to (H,H) is a subgraph of G induced by an edge e = uv � E(H ∪ H)

such that u is r or has at least one valid edge in H, and v is r or has at least two valid edges in H. We call u the tail and

v the head of the singular backward chain and both are endpoints of it.

For the remainder of the text, we refer to these structures as chains. Vertices in chains that are not its endpoints are

called its internal vertices. We refer to a chain as a singular chain if it is one of the chains described from Definitions

1.5 to 1.8. We call a chain short if it is a one-way chain or a singular chain.

Let (G0,G1, . . . ,Gm) be a sequence of subgraphs of G. For i in {0, 1, . . . ,m}, let Hi = G0 ∪ . . . ∪ Gi−1 and Hi =

Gi+1 ∪ . . . ∪Gm. Note that H0 and Hm are empty graphs. A chain decomposition of G rooted at r is a decomposition

(G0,G1, . . . ,Gm) of G such that

• every subgraph Gi is a chain with respect to (Hi,Hi),

• every vertex other than r is the tail of exactly one singular chain.

Note that G0 is either a closed up chain with endpoint r or a one-way chain with tail r. Similarly, Gm is either a

closed down chain with endpoint r or a one-way chain with head r.

An up chain Gi is minimal if none of its internal vertices are in V(Hi)∪{r}. Analogously, a down chain Gi is minimal

if none of its internal vertices are in V(Hi) ∪ {r}. A chain decomposition is minimal if every up chain and down chain

in it is minimal. A non-minimal up or down chain can be divided into minimal chains by breaking it at its offending

internal vertices, as long as the resulting chains are inserted sequentially in the decomposition and substituting the

divided chain; the resulting sequence of chains also gives rise to a chain decomposition. This remark is relevant since

it allows us to suppose that any chain decomposition is minimal; if it is not, then we can apply the previous operation.

Another important property is the symmetry of the chain decomposition. If D = (G0,G1, . . . ,Gm) is a chain decom-

position of G rooted at r, then so is D′ = (Gm,Gm−1, . . . ,G0). Moreover,

• every up chain in D is a down chain in D′ and vice versa,

• every one-way chain in D is a one-way chain in D′ with the roles of its head and tail swapped,

• every (semi-)singular backward chain in D is a (semi-)singular forward chain in D′ with the same head and tail,

and vice versa.

We now state the two main results of this paper which imply the case k = 5 of the Edge-Independent Spanning

Trees Conjecture.

Theorem 1.9. Let G be a 5-edge-connected graph and let r ∈ V(G). Then G has a chain decomposition rooted at r.

Theorem 1.10. Let G be a 5-edge-connected graph and let r ∈ V(G). If there is a chain decomposition of G rooted at

r, then there are five edge-independent spanning trees of G rooted at r.

2. Proof of Theorem 1.9

We present an outline of the proof of Theorem 1.9. In 1978, Mader proved that any k-edge-connected graph can

be constructed as follows: starting with a k-edge-connected graph with two or three vertices, we apply repeatedly a

sequence of operations called Mader operations [5]. A Mader operation always preserves k-edge-connectivity, i.e., if

a graph G is k-edge-connected, then so is a graph resulting from an application of a Mader operation to G. In what

follows, we describe the operations specifically for the case k = 5.

Definition 2.1. Let G be a 5-connected graph. A Mader operation on G is one of the following three procedures

applied on G:

226 Alonso Ali et al. / Procedia Computer Science 223 (2023) 223–230

r

(a) The chain decomposition of K5
2
. Red dotted edges are in the up chain G0,

the orange straight edge is the singular forward chain G1 with tail different

than r, and blue dashed edges are in the down chain G2.

r = a b c

(b) The chain decomposition of K5
3
. Red dotted edges are in the up chain

G0, the orange straight edges are singular forward chains G1 and G2 with

tail c and b, respectively, and blue dashed edges are in the down chain G3.

Fig. 1: The chain decomposition of K5
2

and K5
3

• Add an edge between any two vertices of G.

• Let e1 = xy and e2 = wz be distinct edges of E(G) and let u ∈ V(G). Remove e1 and e2 from E(G), add a new

vertex v and add the edges xv, yv, wv, zv and uv. We say that u was pinched and we refer to this operation as

pinch for the rest of the text.

• Let e1 = xy and e2 = wz be distinct edges of E(G). Remove e1 and e2 from E(G), add a new vertex v and add the

edges xv, yv, wv and zv; let G′ denote the resulting graph. Now select two distinct edges e3 = ab and e4 = cd,

not all incident to v. Remove e3 and e4 from E(G′), add a new vertex v′ and add the edges av′, bv′, cv′ and dv′.

Finally, add an edge between the two new vertices v and v′. We refer to this operation as double pinch for the

rest of the text.

Mader made the following claim. Let K5
2

be the graph shown in Figure 1a and let K5
3

be the graph shown in Figure

1b. Every 5-edge-connected graph can be obtained through repeated applications of Mader operations starting from

K5
2

or K5
3

[5].

We use the same approach of Schlipf and Schmidt [3] for k = 3, and Hoyer and Thomas [4] for k = 4. First, we

show that both graphs K5
2

and K5
3

have a chain decomposition. Next, we show that the application of a Mader operation

on a graph with a chain decomposition results in a graph that also has a chain decomposition. This implies that every

5-edge-connected graph has a chain decomposition. Figures 1a and 1b illustrate the chain decomposition of K5
2

and

K5
3
, respectively.

To prove Theorem 1.9, it suffices to show that if G has a chain decomposition D, then the graph G′ obtained by an

application of a Mader operation has a chain decomposition D′. To achieve this, we show that a chain decomposition

D′ of G′ rooted at r can be obtained from D through local modifications, depending on the applied Mader operation

and which chains of D were affected by the (double) pinch operations.

The proof of Theorem 1.9 is divided into three sections, one dedicated to each Mader operation. The proof is done

by a case-by-case analysis for every possible combination of types of chains being pinched. Due to space constraints,

we omit the proofs, but we outline the main ideas. The following lemma is useful in our proof.

Lemma 2.2. Let v ∈ V(G). If v has less than two valid edges in Hi, then v has at least two valid edges in Hi.

Analogously, if v has less than two valid edges in Hi, then v has at least two valid edges in Hi.

In the next sections, we use the following approach. We assume that we have a chain decomposition D =

(G0,G1, . . . ,Gm) of a graph G and then we apply a Mader operation to G to obtain a new graph G′. We describe

how we modify D to obtain a chain decomposition D′ of G′. The modifications consist of inserting one or more new

chains in some position or exchanging one or more chains of D for new ones in D′.

3. Edge addition

Suppose an edge was added between vertices x and y. Let i be the smallest index of a chain in D containing x or y.

Without loss of generality, assume that x ∈ V(Gi).

If Gi is an up chain, then x is an internal vertex since there are no previous chains containing it. Insert xy as a

one-way chain with tail x immediately after Gi to obtain a chain decomposition D′ of G′.

If Gi is not an up chain, it must be a one-way chain or a singular forward chain with head x. In any case, x is

incident to two edges in Hi. Let Gi′ be the chain with the smallest index i′ > i containing x. If Gi′ is an up chain, then

 Alonso Ali et al. / Procedia Computer Science 223 (2023) 223–230 227

w z

x y

u

Pw Pz

Px Py

(a) Edges xy, wz and vertex u in G, before the pinch operation.

w z

x y

u

v
Pw Pz

Px Py

(b) Result of the pinch operation.

Fig. 2: Example of the pinch operation on edges xy, wz and vertex u.

x is one of its endpoints since every chain is minimal. If Gi′ is not an up chain, it is a one-way chain or a singular

forward chain with head x, so it has two edges in Hi′ . Note that x also has two edges in Hi′+1. Now consider vertex

y. Lemma 2.2 guarantees that y has two edges in Hi′ or in Hi′ . If y has two edges in Hi′ , insert xy as a one-way chain

with tail y immediately after Gi′ in D′; otherwise, insert it as a one-way chain with tail x.

4. Pinch

Let e1 = xy and e2 = wz be the edges and u the vertex being pinched. We denote by v the new vertex and by

ex, ey, ew, ez and eu the new edges connecting v to the respective vertices. Let Gi be the chain containing xy and let G j

be the chain containing wz. Henceforth, without loss of generality, we assume that i ≤ j. Let Px be the path from an

endpoint of Gi to x such that xy is not in Px. Define Py, Pz and Pw analogously. Figure 2 illustrates the pinch operation.

We analyze now all possible types of chains that Gi and G j can be. For example, if Gi is an up chain, then every

vertex in the chain has two valid edges in later chains and the endpoints have a valid edge in earlier chains, by the

definition of an up chain. Since the pinch operation removes the edge xy from the graph and adds the edges ex and ey,

we modify the chain Gi so the chain decomposition remains valid. Note that PxexeyPy is similar to the chain Gi in D,

with the exception that the vertex v is added between x and y. Note as well that it is also an up chain: the endpoints

have a valid edge in earlier chains – since Px and Py remain intact, they are the same as Gi in D –, every vertex other

than v has two valid edges in later chains – since every vertex other than v was in the up chain Gi in D–, and v has two

valid edges that may be added in later chains (eu, ew and ez). This example illustrates the idea of the proof. Knowing

the type of the chain that the deleted edges were in, we are able to use that information to insert the new edges ex, ey,

ew, ez and eu into old or new chains making only local changes in the decomposition.

Although many details are omitted, each possible case follows the outline of the example: ex and ey are used to

“fix” the chain Gi broken by the pinch, ew and ez are used to “fix” G j and eu is generally added as a one-way chain or

a singular forward or singular backward chain. In the next section, we show that one of the five trees we want is built

from the property that every vertex in V(G) − {r} is the tail of exactly one singular chain; so we must ensure that the

new chain decomposition satisfies this property as well. Since the pinch and the double pinch operations are the only

operations that create a new vertex, it is necessary to make one of the new edges ex, ey, ew, ez or eu a singular chain

such that v is its tail in every case. This suffices to guarantee this property.

5. Double pinch

Let us recall the double pinch operation. Let e1 = xy and e2 = wz be distinct edges of E(G). Remove e1 and e2

from E(G), add a new vertex v and add the edges xv, yv, wv and zv in G′. After this, select two distinct edges e3 = ab

and e4 = cd, not all incident to v. Remove e3 and e4 from E(G′), add a new vertex v′ and add the edges av′, bv′, cv′

and dv′. After this, add an edge between the two new vertices v and v′. This operation results in a graph with two

new vertices, each with five new edges incident to it. Figure 3 illustrates the edges incident to each new vertex of this

operation.

This part of the proof follows the same strategy as the last section. We modify the decomposition of the graph prior

to the pinch to accommodate every new edge in a new chain. Note that a double pinch operation can be described

as two applications of a pinch operation but without adding the edge uv, and then adding an edge between the new

228 Alonso Ali et al. / Procedia Computer Science 223 (2023) 223–230

w z

x y

v

c d

a b

v′

Fig. 3: Double pinch operation applied to edges xy,wz, ab and cd in G.

vertices v and v′. So although a double pinch operation is more complex than a pinch operation, we can modify the

chains and insert the new edges using the same kind of strategy. Due to space constraints, we omit these details.

6. Constructing the five trees

In this section, we outline the proof of Theorem 1.10. Assume that we have a chain decomposition of G (rooted at

r) and let us show how to produce five edge-independent spanning trees rooted at r. We define the chain index CI(e)

of an edge e as the index of the chain containing e.

First, using the chain decomposition we define two partial edge numberings f and g that are then used to assign

edges to subgraphs T1, T2, T3, T4, and T5; afterward, we show that those subgraphs are five edge-independent spanning

trees. Trees T1 and T2 are associated with the edge numbering f , while T3 and T4 are associated with the edge

numbering g. For each numbering, we show that the pair of trees associated with it have different “trends” regarding

the paths leading to r. One of the trees follows a strictly decreasing path with respect to the edge numbering while the

other follows a strictly increasing path with respect to the same numbering. From this, it is straightforward to show

that both trees from the same edge numbering are edge-independent. To show that any two trees created from different

numberings are edge-independent, we argue that the difference in the numbering procedure guarantees that no same

edge is chosen when assigning them to one of the trees. The fifth tree is built in a different and novel way, by taking

all the edges which are part of a singular chain. This is the motivation for the requirement that every vertex other than

r must be the tail of a singular chain.

Let us provide some details of the proof. We define two edge-numberings f and g as follows. The numbering f

assigns real values to edges in up chains, one-way chains, singular forward chains, and semi-singular forward chains,

while g assigns real values to edges in down chains, one-way chains, singular backward chains, and semi-singular

backward chains. Note that edges in one-way chains are numbered by both f and g. We refer to consecutive edges in

a chain as two edges that are incident to the same internal vertex of the chain. We note that the two edges incident to

an endpoint of a closed chain are not consecutive, since the endpoint is not an internal vertex of the chain.

For each vertex v distinct from r, we call f-edges of v the two edges incident to v with the two smallest chain

indexes. Analogously, we call g-edges of v the two edges incident to v with the two largest chain indexes. We note that

an edge in a down chain can never be an f -edge since it would mean that v has two edges incident to it with a lower

chain index. Similarly, an edge in an up chain can never be an g-edge.

We now state the numbering process of f . Let (G0,G1, . . . ,Gm) be a chain decomposition of G rooted at r. We

remark that f only numbers the edges in up chains, one-way chains, and (semi-)singular forward chains. First, we

number the edges of G0, and then proceed to G1, and so on. The numbering procedure for the edges in a chain Gi is

described next; one important detail which we omit in the description is that no two edges are assigned the same value

by f (this is possible because we assign real values).

• If Gi is a closed up chain containing r, then number each consecutive edge in the chain so that the values

increase monotonically, starting with an edge incident to r. The specific values do not matter as long as it keeps

the monotone property.

• If Gi is a closed up chain not containing r, then note that both f -edges of the endpoint are already numbered

since they are in earlier chains of the decomposition. Let α and β be the values assigned by f to those edges.

Number the edges in E(Gi) consecutively with monotonically increasing values between α and β.

 Alonso Ali et al. / Procedia Computer Science 223 (2023) 223–230 229

• If Gi is an open up chain containing r, then one of the endpoints of the chain Gi is r and the other is some vertex

v � r. Note that at least one f -edge of v is already numbered with some value, say α. Number the edges in

E(Gi) consecutively with monotonically increasing values greater than α from v to r.

• If Gi is an open up chain not containing r, then let x and y be the endpoints of the chain. Note that at least

one f -edge of x and one f -edge of y are already numbered. Let α and β be the values assigned by f to those

edges, respectively. Without loss of generality, assume that α < β. Number the edges in E(Gi) consecutively

with monotonically increasing values between α and β from x to y.

• If Gi is a one-way chain with tail r, then number the edge in Gi arbitrarily.

• If Gi is a one-way chain with tail v � r, then both f -edges of v are already numbered. Let α and β be the values

assigned by f to these edges. Number the edge in Gi with a value between α and β.

• If Gi is a singular forward chain with tail v, then both f -edges of v are already numbered. Let α and β be the

values assigned by f to these edges of the chain. Number the edge in Gi with a value between α and β.

• If Gi is a semi-singular forward chain with tail v, then an f -edge of v is already numbered. If the head of Gi

does not have a valid edge in an earlier chain, then let α be the value assigned by f to the f -edge of v. Number

the edge in Gi with a value greater than a. Otherwise, if the head of Gi has a valid edge in a previous chain, then

let β be the value assigned to it by f and number the edge in Gi with a value between α and β.

This concludes the numbering procedure f . The g-numbering is analogous to the f -numbering, but applied to the

reversed chain decomposition.

Now, let us describe how the subgraphs T1, T2, T3, T4, and T5 are built. For every vertex v � r, consider its two

f -edges and assign the edge with the smallest f -numbering to T1 and the other one to T2. Similarly, consider its two g-

edges and assign the one with the smallest g-numbering to T3 and the other one to T4. It follows from Lemma 6.1 that

all edges added to T1 are distinct; moreover, there are no cycles in T1, and a path in T1 towards r is (non-necessarily

monotonically) decreasing with respect to the chain indexes and strictly decreasing with respect to the f -values of its

edges. From these observations and the fact that T1 is created by choosing an edge from every vertex other than r, it

follows that T1 is a spanning tree of G rooted at r.

Lemma 6.1. For any v1 � r, consider the edge e1 incident to v1 and assigned to the subgraph T1. Let v2 be the

other end of the edge e1. If v2 � r, let e2 be the edge incident to v2 and assigned to T1. Then CI(e2) ≤ CI(e1) and

f (e2) < f (e1). □

Although omitted, the same argument used to prove Lemma 6.1 can be used to prove that a path in T2 towards r

is (non-necessarily monotonically) decreasing with respect to the chain indexes and monotonically increasing with

respect to the f -values of its edges. Hence, the spanning trees T1 and T2 are edge-independent due to the different

trends of f -values in paths towards r.

Analogously, Lemma 6.1 can be replicated to show that T3 and T4 are spanning trees of r and are edge-independent

because paths to the root in both of them are non-strictly increasing in chain index, but are strictly decreasing and

increasing in g-values, respectively. So, it has been shown that T1 and T2 are pair-wise edge-independent and so are

T3 and T4. To show that T1 is edge-independent with T3 and T4, note that the paths to the root in T1 are decreasing in

chain index while paths to the root in T3 and T4 are increasing, but not strictly. To see that an f -edge and an g-edge of

the same vertex are never in the same chain, remember that edges in down chains can not be f -edges and edges in up

chains can not be g-edges. The remaining possibilities are chains induced by a single edge, so an f -edge can not have

the same chain index as an g-edge of the same vertex. This concludes the argument that T1 is edge-independent with

T3 and T4 and the same argument can be made to show that it is true that T2 is edge-independent with T3 and T4.

It remains to show that T5 is a spanning tree of G and pairwise edge-independent with {T1, T2, T3, T4}. Since T5

is created by assigning exactly one edge from every vertex other than r to it, it is a spanning subgraph of G. To see

that T5 is a tree, consider the proof of Theorem 1.9 where every new vertex created with a pinch or a double pinch

is assigned to be the tail of a singular chain, and whenever a singular chain is removed from the graph a new one is

assigned to the former tail. Intuitively, every pinch or double pinch is always ‘hanging’ new vertices as leaves in T5.

230 Alonso Ali et al. / Procedia Computer Science 223 (2023) 223–230

This guarantees that for every chain decomposition, a spanning tree is induced by its singular chains. Finally, note

that the tail of a singular chain has two edges in previous chains and two edges in later chains. This means that a

singular chain is never an f - or an g-edge of its tail. Hence, T5 is edge-independent in relation to {T1, T2, T3, T4} since

every edge incident to a vertex v � r and assigned to T1, T2, T3 or T4 is different from the edge assigned to T5. This

concludes the proof of Theorem 1.10.

7. Conclusions

We were able to show that every 5-edge-connected graph has a chain decomposition and that five edge-independent

spanning trees can be constructed from a chain decomposition. This answers the case k = 5 of the Edge-Independent

Spanning Trees Conjecture.

8. Acknowledgments

This work is funded by grant 2020/11118-6, São Paulo Research Foundation (FAPESP) and grant 2015/11937-9,

São Paulo Research Foundation (FAPESP).

References

[1] K. Menger, Zur allgemeinen Kurventheorie, Fundamenta Mathematicae 10 (1) (1927) 96–115.

URL http://eudml.org/doc/211191

[2] A. Itai, M. Rodeh, The multi-tree approach to reliability in distributed networks, Inf. Comput. 79 (1) (1988) 43–59. doi:10.1016/

0890-5401(88)90016-8.

[3] L. Schlipf, J. M. Schmidt, Edge-orders, Algorithmica 81 (5) (2019) 1881–1900. doi:10.1007/s00453-018-0516-4.

[4] A. Hoyer, R. Thomas, Four edge-independent spanning trees, SIAM Journal on Discrete Mathematics 32 (1) (2018) 233–248. doi:10.1137/

17M1134056.

[5] W. Mader, A reduction method for edge-connectivity in graphs, in: B. Bollobás (Ed.), Advances in Graph Theory, Vol. 3 of Annals of Discrete

Mathematics, Elsevier, 1978, pp. 145–164. doi:10.1016/S0167-5060(08)70504-1.

