QUASI - NEWTON METHODS AND
THE SOLUTION OF SOME FLUID
MECHANICS PROBLEMS

Mdrcia A. Gomes - Ruggiero
Daniel N. Kozakevich
José Mario Martinez

RT-IMECC
IM/4077

Dezembro

RP 61/92

Relatério de Pesquisa J

Instituto de Matematica _
Estatistica e Ciéncia da Computagao

UNIVERSIDADE ESTADUAL DE CAMPINAS
Campinas - Sao Paulo - Brasil

Ra?t
IM/61/92




T

Peribdico

ABSTRACT - In this paper we consider the application of Quasi-Newton methods to the resolution
of the Cavity Problem. This is a fourth order boundary value problem governed by the Navier-Stokes
equations. Its finite difference discretization represents an interesting case study for algorithms that solve
sparse nonlinear systems. We conclude that the Quasi-Newton algorithms that save on linear algebra at
each iteration are more efficient than the classical Newton method.

IMECC - UNICAMP

Universidade Estadual de Campinas
CP 6065

13081 Campinas SP

Brasil

O conteiido do presente Relatdrio de Pesquisa é de tnica responsabilidade dos autores.

Dezembro ~ 1992



QUASI-NEWTON METHODS AND THE
SOLUTION OF SOME FLUID
MECHANICS PROBLEMS *)

Madrcia A. Gomes - Ruggiero
Daniel N. Kozakevich

José Mario Martinez

Department of Applied Mathematics
University of Campinas
IMECC-UNICAMP, CP 6065,
13081 Campinas SP, Brazil.
E-Mail: Martinez@ccvax.unicamp.br

Abstract In this paper we consider the application of Quasi-Newton methods to the res-
olution of the Cavity Problem. This is a fourth order boundary value problem governed
by the Navier-Stokes equations. Its finite difference discretization represents an interest-
ing case study for algorithms that solve sparse nonlinear systems. We conclude that the
Quasi-Newton algorithms that save on linear algebra at each iteration are more efficient
than the classical Newton method.

Key words: Nonlinear systems of equations, Newton’s method, Quasi-Newton methods,
stream function, Navier-Stokes equations, cavity problems.

November 30, 1992

(*) Work supported by FAPESP under Grants 90-3724-6 and 90-0301-7 FINEP, CNPq and FAEP -
UNICAMP. '



https://v3.camscanner.com/user/download

1.- Introduction

We consider nonlinear systems of equations

F(z) =0 (1.1)

where F : R* — R" is differentiable, n is large and the Jacobian matrix J(z) is sparse.
The best known algorithm for solving (1.1) is Newton’s method. This is an iterative
method which, at each iteration, proceeds by solving the linear system

J(:c,,)a,, = --F(.‘Dk) (1.2)
and defining
Thyr = Tp + Sp. (1.3)

See Ortega and Rheinboldt [1970], Schwetlick [1974], Dennis and Schnabel [1983], Os-
trowski [1973].

At each iteration of Newton’s method, we compute the first derivatives of F and we
solve the linear system (1.2). We take the point of view that computing derivatives is not
very hard, at least when automatic differentation routines ( Griewank [1992], Iri [1984],
Rall [1984], [1987]) are available. If this is not the case, we may use the numerical diffe-
rentation algorithms of Curtis, Powell and Reid [1974] and Coleman and Moré [1983]. See
also Coleman, Garbow and Moré [1984]. In general, the resolution of the linear system
{1.2) is a very costly computational problem, even if modern sparse techniques are used
( Duff, Erisman and Reid [1989], Duff [1977], George and Ng [1987|, Zlatev, Wasnieswski
and Schaumburg [1981]).

Quasi-Newton methods were introduced with the aim of alleviate the computational
work of the Newton iteration, but keeping some of the excellent local convergence proper-
ties of this method. See Broyden [1965], Broyden, Dennis and Moré [1973], Dennis and
Moré [1977], Dennis and Schnabel [1983], Dennis and Walker [1981], Martinez [1990b].

In a typical Quasi-Newton iteration, (1.2) is replaced by

Bisy = —F(zy) (1.4)

and the resolution of (1.4) is inexpensive when compared with the resolution of (1.2).
A systematic comparison of Quasi-Newton methods for large sparse nonlinear systems
has been developed in the Applied Mathematics Laboratory of the University of Campi-
nas during the last five years, As a result, we developed the package NIGHTINGALE,
where some of the most successful Quasi-Newton methods with “cheap linear algebra”
have been implemented. See Broyden [1965], Dennis and Marwil [1982], Martinez [1983,
1984, 1987, 1990a], Gomes-Ruggiero, Martinez and Moretti [1992], Gomes-Ruggiero and
Martinez [1992]. In Tewarson and Zhang [1987], Tewarson [1988] and Martinez and Zam-
baldi [1992] potentially useful methods that are not yet incorporated to NIGHTINGALE
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are analyzed.

The validation of nonlinear equations solvers requires a very careful selection of me-
aningful test problems (Moré [1989]). Some of the more interesting tests for algorithms
which solve nonlinear systems come from the discretization of boundary value problems
(Ortega and Rheinboldt [1970], Schwandt [1984], Watson [1979, 1980, 1983], Watson and
Scott [1987], Watson and Wang [1981].) In this paper we apply several Quasi-Newton
methods to the Cavity Problem ( Peyret and Taylor [1985]), which is a boundary value
problem governed by a fourth order partial differential equation in terms of the stream
function. For low Reynolds numbers, the problem is almost linear, while, when the Rey-
nolds number is large, the problem is highly nonlinear. We test Quasi-Newton methods
for problems with increasing Reynolds numbers, up to the vicinity of a “turning point”
( Rheinboldt [1986]). Going through this turning point requires the use of Homotopy or

Continuation techniques (Rheinboldt [1986], Watson, Billups and Morgan [1987]) that are
beyond the scope of our study.

This paper is organized as follows. In Section 2, we describe the methods implemen-
ted. In Section 3, we survey the theoretical convergence results relative to these methods.
In Section 4, we describe the Cavity Problem and its discretization. In Section 5, we
report our numerical experiments. The conclusions of the study are given in Section 6.

2.- The algorithms

In this section we describe briefly the methods that are compared in the present study.
More detailed descriptions of these methods can be found in Gomes-Ruggiero, Martinez

and Moretti [1992] and Gomes-Ruggiero and Martinez [1992]. The methods are:

(1) Newton’s method.

(2) Modified Newton method.

(3) Broyden’s method.

(4) Column-Updating method.

The following features are common to the implementation of the four methods:

(a) The iterations are of type (1.4) - (1.3) except if ||sk|lcc > A where A is a parameter
given by the user. In this case, we replace s, by s, A/||si]lee-

(b) At the first iteration, (1.2) is solved using the algorithm for sparse LU factorization
with partial pivoting introduced by George and Ng [1987]. This factorization has proved
to be more efficient than more classical sparsity schemes due stability reasons (Zambaldi
[1990]). The subsequent iterations of Newton also use the George-Ng method for solving
(1.2).

(c) If, in the course of a factorization, singularity or severe ill-conditioning of By is
detected, By is modified in order to transform it in a “less ill-conditioned matrix” . The




same decision is adopted if “near-singularity” is detected when a rank-one correction is
added to B;_, (methods (5) and (6)). The details of these modifications are given in
Gomes-Ruggiero, Martinez and Moretti [1992].

In Newton's method, By = J(z) for all k = 0,1,2,.... We also choose By = J(zg)
in the Quasi - Newton methods of the NIGHTINGALE package. The definition of By,
in the Quasi - Newton methods for k = 0,1,2, ... is as follows:

Modified Newton method:

Bisy = B;. (2.1)
Broyden’s method:

(yx — Bisi)st

By = B + 7o (2.2)
where
8k = Thy1 — Tk, (2.3)
Y = F(2i41) — Fzi). (2.4)
Column-Updating Method:
Bus = B, + W= Brsvley (2.5)

T
€5u 8k

where {e;,....¢,} is the canonical basis of IR", s, and y, are given by (2.3) and (2.4)
respectively and

ekl = llswlloo- (2.6)

In Broyden’s method, we have that
(sx — Bg'w)si By

Bit =By’ + . 2.7
el st By v (&9)
Therefore,
Bl = +wsi)...(I + uosg) By, (2.8)
where, for £ = 0,1,...,k, we have:
ue = 8¢ — By ye/s7 By 've. (2.9)

By (2.8) and (2.9), Broyden's method can be implemented storing ug, . . ., uy, 89, . . ., 8%

plus the LU factorization of By ( Matthies and Strang [1979], Griewank [1986], Gomes-
Ruggiero, Martinez and Moretti [1992]).

Similarly, in the Column-Updating Method, we have that

i (8% — Bflm)er] [ (80 — BE’W)CT] s
i izl u]. .. = x| g1, _
Bg, [l + e}; Bi'y '+ e}; By By (2.10)




Bify = (I +wej) -+ (I +uoe],) By, (2.11)
where i
8¢ — Dy Ug
Uy = —m—r—, 2.12
: e?g'Bt lyl ( )

{=0,,1,,2,.... Formula (2.11) allows us to implement the Column-Updating Method
for large - scale problems, storing the vectors, uy, ..., u,, the indices jo,...,J;, and the
factorization of By. For details of this implementation see Gomes-Ruggiero and Martinez
[1992]. Comparing (2.7)-(2.9) with (2.10)-(2.12), we observe that a typical iteration of

the Column - Updating Method uses less computer time and less storage than Broyden
for large - scale problems.

3.- Survey of Convergence Results

We assume that F': () C R" — R", Q an open and convex set, F € C'(Q), F(z.) =0,
J(z.) nonsingular, and that there exist L,p > 0 such that for all z € Q,

1 (2) - J(z.)l| < Lllz — .| (3.1)

We consider the algorithms described in Section 2, without correction of near-
singularity, and without control of the stepsize. Let us survey the convergence results
related to these algorithms. Theorems 3.1 and 3.2 are related to Newton’s method, the
Modified Newton method and Broyden’s method. These theorems say that the sequences
generated by these methods are well defined and linearly convergent to z., if the initial
point and the initial B, are close enough to z. and J(z.) respectively.

Theorem 3.1 Given r € (0,1), there exists € = g(r) > 0 such that if ||zg — 2.|| < €, the

sequences {x,} generated by Newton and Modified Newton are well defined, converge to
x,, and satisfy

[lzrsr = za]| < 7 ||2e — 2. (3.2)
for all k= 0,1,2,:. ..

Proof. See Dennis and Schnabel [1983]. o

Theorem 8.2 Given r € (0,1), there exist ¢ = e(r) > 0, & = §(r) > 0 such that if

[|zo = #.|| € & and ||By — J(2.)|| < 8, the sequence {24} generated by Broyden is well
defined, converges to x,, and satisfies




lZk4 = 2] < v lloy — 2.]| (3.3)
forall b =012

Proof. See Dennis and Schnabel [1983].

Theorem 3.3 is the classical theorem on the order of convergence of Newton (quadratic
when p = 1), and Theorem 3.4 says that the convergence of Broyden is ()-superlinear.

Theorem 3.3 Under the hypotheses of Theorem 3.1, if {z4} is generated by Newton’s
method, there exists ¢ > 0 such that

ke = 2all € ¢ llmp — 2.]JP* (3.4)
forall k=012,

n]

Proof. See, for instance, Ortega and Rheinboldt [1970], Dennis and Schnabel [1983].

Theorem 3.4 Under the hypotheses of Theorem 3.2, if {x,} is generated by Broyden’s
method, we have that :

lim [lone = zull/llox — 2l =0 (3.5)
Proof. See Dennis and Schnabel [1983]. 4

Let us consider now the Column - Updabmg method. In 1984, Martinez proved that
under the usual hypotheses on F, this method has local and superlinear convergence
with Jacobian restarts every m iterations. This means that we use the formula (2.5) if
k + 1 is not a multiple of a fixed integer m > 0, and we set Biyy = J(2441) otherwise.
This theoretical result is not completely satisfactory, since we know that it is satisfied
by methods whose performance is poorer than the performance of the Column-Updating
method. In fact, numerical experiments performed in the last ten years showed that, in
most practical cases, the behavior of the Column-Updating method is very similar to the
behavior of Broyden. The following results were proved recently and tend to reduce the
gap between theory and practice with respect to this method.

Theorem 3.5 Suppose that the sequence {x;} generated by the Column - Updating
- method, is well defined, converges to ., and satisfies (3.8). Then,

Jim llzksan = ]|/ |lox = =] = 0 (3.6)




Jim [l — 2.][* = 0 (3.7)
Proof. See Martinez [1992¢c]. ¢

Theorem 8.8 Assume that n = 2 . Given r € (0,1), there exists € = g(r) > 0,
& = 8(r) > 0, such that if ||lzg — z.|| < &, and ||Bo — J(z.)|| < 6 the sequence {z;}
generated by Column - Updating method, is well defined, converges to z,, and satisfies
(3.3), (3.6) and (3.7).

Proof. See Martinez [1992¢]. o

Theorem 8.7 Given r € {0,1), m a positive integer, there exists ¢ = e(r) > 0,
& = &(r) > 0, such that if ||zg — z.|| < €, and ||By — J(z.)|| € 6 if k is a multiple
of m, the sequence {z,} generated by Column - Updating method, except perhaps when k
is multiple of m, is well defined, converges to z., and satisfies (3.3), (3.6) and (3.7).

Proof. See Martinez [1992¢]. o

Up to now, Theorems 3.5, 3.6 and 3.7 are the best results we have for explaining
the numerical behavior of the Column-Updating method. There is still a large gap bet-
ween theory and practice. In particular, we do not know yet if a local convergence result
like Theorem 3.2 holds for this method if n # 2. Theorem 3.5 says that, assuming li-
near convergence, R- superlinear convergence (Ortega and Rheinboldt [1970]) takes place.
However, this is a weak result compared with the Q-superlinear convergence of Broyden.
The main problem is that it has not been found a Bounded Deterioration result (Broyden,
Dennis and Moré [1973]) allowing the accumulation of infinite many small deteriorations
in the updating of By. Such results are easy to obtain in the case of Broyden and other
Least Change Secant Update (LCSU) methods (Dennis and Schnabel [1983], Dennis and
Walker [1981], Martinez [1990b]) because LCSU algorithms involve orthogonal projecti-
ons, which is not the case of the Column- Updating method.

4.- The Cavity Problem and its Discretization

The stream function-vorticity equations can be written in the case of a steady plane
flow in the following form (Peyret and Taylor [1985)):

790 2-Aw=0 (4.1)
w+Ap =0, (4.2)



where 1 is the stream function, w is the vorticity, Re is the Reynolds Number and # =
(u,v) is the velocity with components expressed in terms of the stream function. That is,
U= Py, U= -,

Suitable boundary conditions must be added to equations (4.1) and (4.2) in order to
complete the formulation of the boundary value problem.

Setting w = — V¥ in (4.1), we obtain a nonlinear fourth-order equation for the stream
function: _
P(¥) = A% + Re [p.(A), — ¥, (At),] =0 (4.3)
For Re = 0 this equation reduces to the biharmonic linear equation
A = 0. (4.4)

We assume that the cavity is the unit square R = {(z,y) € R’ | 0 < z,y < 1}
and we use the boundary conditions proposed by Bourcier and Francois (see Peyret and
Taylor [1985, p. 199]: ¥(x,y) = 0 on the boundary, %ﬁ— = —162*(1 —z)?if y = 1, and
X =0ify#1l.

The equation {4.3) defines, with the boundary conditions above, an elliptic fourth -
order two-dimensional boundary problem in a single unknown, which we attempt to solve
using its finite difference aproximation.

For the aproximation of the nonlinear operator P[], we set (Collatz, [1973]):

P (k] & {20054 — 8(¢541 + Bjksr + Yicr + Piko1) + 2Pjaa e + Uy np + Yinse2 +
Wik—1 )t 5000t 020 H i k2 902+ Re (5010 — Vim0 (5o b1 =405 ki1 4 Bipr pr +
Viksr — irrh1 40500 — Vi1 k1 — Pin-2) + Ve — Vi1 )(Pipon — W50 4 — Y a+
Jiwrks1 F 405 00 — Vi 0k + Vg1 ke — Vici k)] }-

Using this discretization , and varying the Reynolds number Re, we obtain different
nonlinear systems

flz, Re) =0 : (4.5)

where the nonlinearity increases with Re.

5.- Numerical Experiments

Our tests consist of solving the system (4.5) for Re = 250, 500, ...,2000, using the
solution of f(xz, Re) = 0 as initial approximation for the resolution of f(z, Re +250) = 0.
Observe that if Re = 0, the system is linear, so, in absence of rounding errors, the methods
described in Section 2 solve it in exactly one iteration.

A similar computational behavior was observed for different grid sizes. Here we report
the results obtained dividing the interval [0, 1] into 32 subintervals. Thus, the nonlinear
system has 29 x 29 = 841 equations and unknowns.

To ensure a fair comparison, we ran the different methods in the following way: We
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ran the complete set of experiments using Newton's method, with the stopping criterion
eesr = Trlloe € 107Y|2k||loc. For each experiment (identified by the Reynolds number
Re), we call ¢(Re) = || f(x(Re), Re)||w, where z(Re) is the “solution” obtained by New-
ton, according to the stopping criterion mentioned above. The stopping criterion used for
the experiments with Quasi-Newton methods was ||f(zk, Re)|loc < £(Re). In this way,

we ensure that Quasi-Newton methods obtain an approximate solution at least as good
as the one obtained by Newton.

The results are presented in Table 1. The result of a particular experiment is re-
presented by two numbers (NI, TIME), where NI is the number of iterations performed,
and TIME is the computer CPU time used, in a SUN Workstation. Adding the CPU
times for all the experiments, we observe that the Column-Updating method ranked first,
with 99.92 seconds, the Modified Newton Method used 106.6 seconds, while Broyden and
Newton wasted 122.4 seconds and 207.92 seconds respectively. The fact that, on average,
the Modified Newton method behaved better than Broyden was quite surprising for us.
We also tried to solve this set of problems using the Diagonal-Scaling method and the
Row-Scaling method (Gomes-Ruggiero, Martinez and Moretti [1992]) but the results tur-

ned to be completely disappointing. In fact, these methods did not converge even for
Re = 250.

Reynolds | Newton | Mod. Newton | Broyden | Column-Updating

250 4; 30.11 56; 25.21 70; 34.28 20; 13.88
500 4; 30.10 30; 16.71 28; 17.03 29; 17.00
750 3; 23.52 10; 10.84 17; 13.36 13; 11.84
1000 | 3; 24.21 19; 13.94 10; 11.13 8; 10.48
1250 | 3; 24.55 9; 10.88 13; 12.28 4; 9.31

1500 | 3; 24.88 5; 9.68 5; 9.71 6; 9.98

1750 | 3; 25.20 5; 9.82 5; 9.78 6; 10.12
2000 | 3; 25.35 4; 9.52 19; 14.83 26; 16.81

Table 1 ~ Numerical Experiments.




8.- Conclusions

Boundary value problems coming from the Navier-Stokes equations are very impor-
tant, not only because their intrinsic relevance but also because they are representative
of other problems that model physical and engineering problems.

In this paper we showed that some Quasi-Newton methods are reliable alternatives
to Newton for these problems.

The NIGHTINGALE package was used for solving the Fluids Dynamics problems
considered in this paper. One of the strenghts of this code is the careful treatment of the
solution of the linear systems. For this purpose, we use the partial pivoting rule, which
ensures numerical stability, and the static data structure introduced by George and Ng
[1987]. In Newton we solve many nonlinear systems with the same Jacobian structure,
so the symbolic phase of the George - Ng method, which defines the data structure, is
executed only once.

In our tests we used true Jacobians at the first iteration. So, we were forced to
perform a complete LU factorization of a sparse matrix at this iteration. We tried to
alleviate this work by replacing the true Jacobian by a “False Jacobian”. With that
purpose, we eliminated some sub-diagonals of the true Jacobian, so that the factoriza-
tion became less expensive. We expected that the Quasi-Newton methods could correct
this simplification, incorporating the missing information as the process progreeded. This
phenomenon had ocurred in other tests concerning boundary valne problems (Martinez
and Zambaldi [1992]). Unhappily, in the problems studied in this paper, the behavior
of Quasi - Newton methods was very sensitive to “errors” on the initial Jacobian, and
their behavior turned to be very poor, even for modest simplifications (say, dropping only
one sub-diagonal). According to these results, our present feeling is that Quasi-Newton
methods are in fact very useful for large problems, when the structure of the Jacobian is
such that the sparse LU factorization is possible. For very large problems, say, 3D boun-
dary value problems, or nonlinear systems coming from very fine discretizations, Inexact
Newton methods (Dembo, Eisenstat and Steihaug [1983]), perhaps using Quasi-Newton
schemes as preconditioners (Martinez [1990b, 1992b]), seem to be the best choice. Further
research is necessary to characterize problems where the performance of Quasi-Newton
methods is not seriously affected by “proposital” errors on the initial Jacobian.

Acknowledgements: We are indebted to Francisco A.M. Gomes and Mario C. Zambaldi
for helpful discussions during the ellaboration of this work.
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