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RESUMO

Neste trabalho, duas regras de comutação são propostas a fim de lidar com o problema de

rastreamento de trajetória de sistemas com comutação, cujas matrizes dinâmicas variam peri-

odicamente no tempo de acordo com um parâmetro θ, que pode ser tanto uma variável externa,

quanto dependente do estado. Neste último caso, o sistema torna-se altamente não-linear e o

projeto de controle mais desafiador. A primeira regra minimiza um custo garantido de desem-

penho enquanto a segunda leva em consideração o controle com ação integral para lidar com

incertezas de modelagem. O grande desafio do controle com ação integral vem do fato de sua

matriz dinâmica possuir posto incompleto. Em ambas, as condições são expressas em termos

de desigualdades matriciais lineares, que podem ser resolvidas facilmente através de softwares

disponíveis. Dois sistemas elétricos trifásicos são usados para validar as soluções propostas:

um conversor de potência AC-DC e uma máquina síncrona de imã permanente. Uma mon-

tagem experimental foi elaborada para a implementação prática da regra e seus resultados foram

comparados com técnicas recentes disponíveis na literatura.

Palavras–chave: Sistemas afins com comutação periódicos em θ; Rastreamento assintótico;

Controle com ação integral; Desigualdades matriciais lineares



ABSTRACT

In this work, two different switching rules are proposed to deal with the trajectory tracking

problem of switched systems, whose dynamic matrices vary periodically in time with respect to

a parameter θ, which can be an external or state-dependent. In the last case, the system becomes

highly nonlinear making the control design more challenging. The first rule minimizes a guar-

anteed cost of performance, while the second takes into account the control with integral action

to deal with model uncertainties. The great challenge in the control with integral action arises

from the fact that its dynamical matrix is rank deficient. In both, the conditions are expressed

in terms of linear matrix inequalities, which are simple to solve using ready available software.

Two three-phase electrical systems are used to validate the proposed switching rules: an AC-

DC power converter and a permanent magnet synchronous machine (PMSM). An experimental

setup has been elaborated to implement the switching strategy in the PMSM and to compare it

with recent techniques available in the literature.

Keywords: θ-periodic switched affine systems; asymptotic tracking; control with integral ac-

tion; linear matrix inequalities
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1 INTRODUCTION

Under the light of technological developments over the past few decades in electri-

cal and computer engineering, specially after digital controllers being widespread in industrial

applications, the study of dynamical systems that present an interaction between continuous

and discrete behaviors, also called hybrid systems, have become a topic of great interest. In

this class of systems, that are usually characterized by presenting nonlinear phenomena, an-

other subclass arises, formed by the switched systems. This subclass is defined by presenting

several subsystems and a switching rule that orchestrates the commutation among them, which

are called switching events. These events are known to be source of remarkable behaviors that

can either provide strong stability and performance properties or act as vicious disturbances,

see the seminal survey paper (DeCarlo et al., 2000) and the books (Liberzon, 2003; Sun; Ge,

2011) on this topic for examples. Proper control design, specially within safety-critical and

performance-sensible contexts, must not only carefully allow for these phenomena but also be

able to exploit them to enhance the closed-loop response.

Many researchers devoted their work to thoroughly study the switching stabiliza-

tion problem of many classes of switched systems. Naturally, switched linear systems have

received most of the attention. By exploring their linearity, necessary and sufficient conditions

for stabilizability were developed for continuous-time systems (Lin; Antsaklis, 2009) (under the

assumption that sliding modes do not occur) and for discrete-time systems (Fiacchini; Jungers,

2014). Numerically dealing with these conditions, though, is not an easy task. Indeed, the

NP-hardness of some instances of switched stabilization problems (e.g, quadratic stabilizabil-

ity (Lin; Antsaklis, 2009), polytopic-uncertain systems (Vlassis; Jungers, 2014)) is a fair moti-

vation to search for more conservative but computationally treatable design conditions, such as

those in (Geromel; Colaneri, 2006a; Fiacchini et al., 2015). Not surprisingly, for more general

classes of switched systems, most questions regarding switched stabilizability remain open.

For instance, by merely introducing affine switching terms to the switched linear

models, the homogeneity of the system is lost and asymptotic stability of the origin may no

longer be achievable. Indeed, this class of switched affine systems has a more intricate stabiliz-

ability problem where, besides the design of a stabilizing switching rule, the control expert must

determine a desired attractor in the state space. Examples of attractors to which switched affine
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systems can be stabilized are points (Bolzern; Spinelli, 2004; Deaecto et al., 2010), forward-

invariant compact sets (Hetel; Fridman, 2013; Egidio; Deaecto, 2019) and limit cycles (Patino

et al., 2009; Egidio et al., 2020; Serieye et al., 2020). Due to the substantial complexity of this

class, several problems that were already solved for switched linear systems remain open, for

example the stability analysis for polytopic systems.

As one may notice from the aforementioned references, one of the main motivations

for the study of switched affine systems is their ability to characterize the behavior of several

DC-DC power converters, see (Deaecto et al., 2010; Baldi et al., 2018; Beneux et al., 2019;

Garcia; Santos, 2021) for some examples. In fact, switching devices that allow the efficient

rerouting of energy in electrical systems are paramount for the development of power electronics

and electrical drives, specially considering the increasing concern in finding more effective ways

of producing, storing and using energy. However, the time-invariant nature of each subsystem

in switched affine models precludes the use of this class of systems to study AC devices directly,

requiring case-based analysis (e.g., (Trofino et al., 2009; Scharlau et al., 2013; Hadjeras et al.,

2019; Guo; Ren, 2020)) or formulations based on uncertain systems, such as linear parameter-

varying systems (e.g., (Delpoux et al., 2014)). The control design problem for AC devices is

generally formulated as a tracking problem, where the objective is to enforce the system output

to follow a time-varying trajectory profile of interest, which is more complicated than to ensure

simply stabilization.

Of course, the control of AC systems have been extensively studied by the power

electronics, electric machines and control communities under several different perspectives

such as classical frequency domain methods (Bacha et al., 2014), sliding mode control (Repe-

cho et al., 2017), model-predictive control (Rodriguez; Cortes, 2012), and other ad-hoc anal-

yses (Krause et al., 2013; Krishnan, 2017; Wu; Narimani, 2017). Nevertheless, a general

methodology for designing stabilizing switching laws to the subclass of switched systems that

models AC devices is a point of great importance to be considered in the literature. Recently, a

unified way to solve stabilization and tracking problems for power electronics converters have

been proposed in (Garcia; Santos, 2021) and (Garcia et al., 2021), respectively, based on a

quadratic Lyapunov function. In the current work our main goal is to go further by explor-

ing the time-varying nature of the θ-parameter through the adoption of a parameter-dependent

Lyapunov function in order to obtain less conservative design conditions. In this context, the

contributions can be summarized as follows:
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• we develop a general theorem to deal with the tracking problem of a class of switched

systems that are affine on the state and vary periodically on a parameter θ. This parameter

can characterize electrical and mechanical angles on AC systems, which provides a gen-

eral framework for many devices, while avoiding ad-hoc modulation strategies, auxiliary

reference frames and pulse-width modulation drivers.

• particular corollaries demonstrate how this general theory can be used to formulate sys-

tematic control-design procedures based on convex optimization, where the stability and

performance conditions are cast as linear matrix inequalities (LMIs), which are easily

handled by off-the-shelf softwares.

• the conceived theory is shown to generalize the preceding (and preliminary) results pre-

sented in (Egidio et al., 2019; Egidio et al., 2020; Egidio et al., 2022a) in many directions.

A more general Lyapunov-function dependent on the parameter θ is conceived, novel con-

ditions for the trajectory-tracking and integral control of these systems are provided and

new simulation and experimental results illustrate the theory.

1.1 Publications

As a result of the developed work, the following papers were produced:

• Costanzo, L. C.; Deaecto, G. S.; Egidio, L. N.; Barros, T. A. Nova metodologia de cont-

role para conversores de potência trifásicos cc-ca. In: Simpósio Brasileiro de Automação

Inteligente-SBAI. [S.l.: s.n.], 2021., p. 558–563.

• Deaecto, G. S.; Costanzo, L. C.; Egidio, L. N. Trajectory tracking for a class of θ-periodic

switched affine systems. Submitted, 2022.

1.2 Chapters Outline

This dissertation is divided in 6 chapters, whose contents are presented below:

• Chapter 1: Introduction

It presents the motivation, the state-of-the-art, the challenges and the objective of this

work.
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• Chapter 2: Preliminary Concepts

It outlines concepts that are already known in the literature, going from Lyapunov stability

theory to an introduction on switched systems, which are the main subject of this work.

Those concepts will be important for the next chapters.

• Chapter 3: θ-periodic Switched Systems

It encompasses the main theoretical results obtained in this work. In this chapter, first a

general methodology for the control of switched affine systems that are dependent on a

periodic parameter is presented, which ensures a guaranteed cost. After that, a switching

rule with integral action is developed in order give robustness to the controlled system.

• Chapter 4: Power Electronics Applications

It provides a corollary based on the first theorem presented in Chapter 3 to deal specif-

ically with the control of a three-phase AC-DC power converter. The results obtained

were validated and compared to others available in the literature. The effectiveness of the

solution is evidenced through computational simulations.

• Chapter 5: Electrical Machines Applications

It proposes a corollary based on the first theorem presented in Chapter 3 to deal specif-

ically with the control of a three-phase Permanent Magnet Synchronous Machine. The

results are also compared with other works from the literature. Its efficacy is put in evi-

dence through experimental essays through a switching rule that is equivalent to the one

proposed in the corollary, but more efficient in terms of computational effort.

• Chapter 6: Conclusions

It presents a summary about the obtained results and provides a perspective for future

work.
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2 PRELIMINARY CONCEPTS

In this chapter, some important concepts for the study of dynamical systems will be

presented. These concepts, widely studied in the literature, will be important to understand the

results obtained later in this work. Firstly, a general idea about equilibrium points and stability

of dynamical systems is presented. After that, an introduction to Lyapunov theory together

with an analysis about linear time-invariant systems are provided. Lastly, some introductory

results about switched systems are presented to put in evidence the intrinsic characteristics of

this important class of systems. The switched linear and affine systems are the focus of this

introductory part and several examples will be used to illustrate the essential aspects of this

theory.

To begin with our discussion, let us consider the general dynamical system with

representation given by

ẋ = f(x) (2.1)

where f ∈ Rn is a nonlinear or linear function and x ∈ Rn is the state vector.

2.1 Equilibrium Point

The vector xe ∈ Rn is said to be an equilibrium point of the dynamical system (2.1),

if once the system reaches this point at an instant t = t0, it remains in it for all future time, that

is, once x(t) = xe for t = t0 then x(t) = xe ∀ t ≥ t0, see (Luenberger, 1979). For simplicity, to

the analysis of nonlinear systems which present multiple equilibrium points, it is often common

to adopt the auxiliary state vector ξ = x− xe in order to obtain an equivalent system

ξ̇ = fe(ξ) (2.2)

whose origin is the unique equilibrium point. This change of variables makes the analysis easier

and will be used in the subsequent work.

2.2 Stability

The stability of a dynamical system is always defined with respect to an equilibrium

point. This point is said to be stable if, for any R > 0, there exists r > 0 such that for ∥x(0)∥ <

r, then ∥x(t)∥ < R for all t ≥ 0, otherwise this equilibrium point is said to be unstable, see
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(Slotine et al., 1991). In other words, according to (Luenberger, 1979) the equilibrium point

will be stable if the state vector tends to return to xe once moved slightly away from it, or at

least does not keep moving further away.

Given an initial condition in the state space, if x(t) → xe as t→ ∞, the equilibrium

point is referred to as asymptotically stable. If this occurs only for a set of initial conditions, the

equilibrium point is said to be locally stable. Contrarily, it is globally stable. In short, if for a

given system, we have x(t) → xe as t → ∞ for any initial condition, the equilibrium point xe

is said to be globally asymptotically stable. In this work, we are interested in obtaining design

conditions to ensure asymptotic stability of the switched systems under study.

2.3 Lyapunov Theory

One of the most useful approaches to determine the stability of dynamical systems

is the Lyapunov theory, first introduced in the doctoral dissertation “The general problem of

the stability of motion” by Aleksandr Mikhailovich Lyapunov, in 1892. This work presents

two methods for stability analysis, the linearization method and the direct method. The first

one determines the local stability of a nonlinear system equilibrium point analyzing its linear

approximation around that point. The second and more general one, which will be extensively

used in this work, determines stability by constructing an “energy-like” function for the system

and by examining its time variation.

2.3.1 Lyaponov’s Direct Method

The main idea of the Lyapunov’s direct method is based on the fact that if the

total energy of a system is continuously decreasing, the dynamical system, linear or not, will

eventually settle down to an equilibrium point. Thus, it is possible to conclude the stability of

a system by analyzing the time variation of a scalar function, called Lyapunov function, which

must present some specific characteristics.

Definition 2.1. The function v(x) : D → R with domain D ⊂ Rn is a Lyapunov function if it

presents the following set of conditions (Khalil, 2002):

• v(x) is continuously differentiable

• v(x) = 0 for x = xe
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• v(x) > 0, ∀x ̸= xe

• v̇(x) ≤ 0, ∀x ̸= xe

If, for a given system, these requirements are verified, then it is possible to conclude

that the system is stable. Besides that, if the last condition is strictly negative and the domain

D ≡ Rn, then the system is globally asymptotically stable.

2.3.2 Linear Time-Invariant Systems

An n-order linear time-invariant (LTI) system can be represented by a series of n

linear differential equations of first order, whose unforced system is given by the following state

space representation

ẋ(t) = Ax(t), x(0) = x0 (2.3)

z(t) = Ex(t) (2.4)

where x ∈ Rn is the state vector, z ∈ Rp is the controlled output and x0 is the initial condition.

The first equation (2.3) is called dynamic equation , while the second (2.3) is called output

equation.

For an LTI system, the set of equilibrium points can be determined by the null space

of matrix A, defined by Ax = 0. In the case where the matrix A is non-singular, the system

presents a single equilibrium point at the origin xe = 0, otherwise, it can present an infinite

number of equilibrium points.

For this class of dynamical systems, a necessary and sufficient condition for stability

comes from the analysis of the eigenvalues of A. In this case, the origin is a globally asymptot-

ically stable equilibrium point if and only if Re (γi(A)) < 0 for all i = 1, . . . , n, where γi(A) is

the i-th eigenvalue of matrix A. This can be verified from the general solution to (2.3) given by

x(t) = eAtx0 (2.5)

where using V −1AV = J = diag{J1, . . . , Jr}, with Ji being a Jordan block associated with

the eigenvalue γi(A), we have

eAt = V eJtV −1 =
r∑

i=1

mi∑
k=1

tk−1eγi(A)tRik (2.6)
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where mi is the order of the Jordan block Ji, see (Khalil, 2002) for details. It is clear from (2.6)

that the state x(t) of (2.5) always evolves towards the origin whenever Re (γi(A)) < 0, ∀i =

1, . . . , n.

Besides the analysis of the eigenvalues, another possibility to conclude about the

stability of an LTI system is to apply the Lyapunov theory. In this case, a Lyapunov function

candidate is the quadratic one, given by:

v(x) = x′Px, P = P ′ > 0 (2.7)

The time-derivative of this function along an arbitrary trajectory of the system (2.3) results in

another quadratic form

v̇(x) =
d

dt
(x′Px)

= ẋ′Px+ x′Pẋ

= x′(A′P + PA)x = −x′Qx (2.8)

where

A′P + PA = −Q (2.9)

is called Lyapunov equation. Notice that, whenever Q > 0, the equation (2.9) provides a

solution P > 0, we have v̇(x) < 0, indicating that the origin xe = 0 is a globally asymptotically

equilibrium point, see Definition 2.1. Actually, as it will be formalized in the next lemma, this

condition is not only sufficient, but also necessary for the stability of LTI systems.

Lemma 2.1. Given a positive definite matrix Q > 0, there exists a unique solution P > 0 to

the Lyapunov equation (2.9) if and only if matrix A is Hurwitz stable.

Proof. The sufficiency follows directly from the before mentioned reasoning. Indeed, consider-

ing the Lyapunov function (2.7) as being the square of the distance between a point x(t) in the

state space to the origin xe = 0, if there exists a matrix P > 0 satisfying the Lyapunov equation

for Q > 0, then this distance will always be decreasing, as a consequence from the fact that

v̇(x) < 0, ∀x ̸= 0, indicating that the system (2.3) is globally asymptotically stable.

To prove the necessity, we need to suppose that matrix A is Hurwitz stable and to

find a unique solution P > 0 for the Lyapunov equation (2.9) withQ > 0 given. Let us consider

a candidate P as being

P =

∫ ∞

0

eA
′tQeAtdt (2.10)
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Using (2.5) as the analytical solution of (2.3) with an arbitrary x(0) = x0 ̸= 0 ∈ Rn, we have

x′0Px0 =

∫ ∞

0

x′0e
A′tQeAtx0dt

=

∫ ∞

0

x(t)′Qx(t)dt > 0 (2.11)

indicating that the candidate P is indeed definite positive, since Q > 0. Now replacing (2.10)

into (2.9), we obtain

A′P + PA = A′
(∫ ∞

0

eA
′tQeAtdt

)
+

(∫ ∞

0

eA
′tQeAtdt

)
A

=

∫ ∞

0

(A′eA
′tQeAt + eA

′tQeAtA)dt

=

∫ ∞

0

d

dt
(eA

′tQeAt)dt

= lim
t→∞

eA
′tQeAt −Q (2.12)

Notice that lim
t→∞

eA
′tQeAt = 0 because the matrix A is Hurwitz stable, resulting back in the

equation (2.9).

Now, to prove that (2.10) is a unique solution, let us consider another matrix P̂ ̸= P ,

which provides

A′(P − P̂ ) + (P − P̂ )A = 0 (2.13)

Multiplying to the left by eA′t and to the right by its transpose, we have

eA
′t
(
A′(P − P̂ ) + (P − P̂ )A

)
eAt =

d

dt
(eA

′t(P − P̂ )eAt) = 0 (2.14)

Hence

eA
′t(P − P̂ )eAt = K, ∀t ≥ 0 (2.15)

where K is a constant matrix for all t ≥ 0. Evaluating then the equality for t = 0 and t → ∞

it is possible to conclude that P = P̂ is the unique solution. Thus, whenever the matrix A is

Hurwitz stable, the Lyapunov equation has a unique solution P > 0, concluding the proof.

Lastly, whenever the system (2.3)-(2.4) is asymptotically stable, the quality of its

transient response can be evaluated by the index

J =

∫ ∞

0

z(t)′z(t)dt (2.16)

which can be exactly calculated from the solution of the Lyapunov equation (2.9) for Q = E ′E.

Indeed, in this case v̇(x(t)) = −x(t)′E ′Ex(t) = −z(t)′z(t), and we have

J = −
∫ ∞

0

v̇dt = v(x(0))− lim
t→∞

v(x(t)) = x′0Px0 (2.17)

since limt→∞ v(x(t)) = 0 due to the asymptotic stability of the system.
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2.4 Switched Systems

Hybrid systems are characterized by systems that present an interaction between

continuous and discrete dynamics. When details of its discrete behavior are ignored and in-

stead all possible switching combinations from a certain class are considered, a subclass, called

switched systems, is obtained, see (Liberzon, 2003). They present a finite set of subsystems and

a switching function (or rule) responsible for selecting one of them at each instant of time. This

rule can be a disturbance in the system or a control variable to be designed. In the first situation,

the purpose is to ensure stability of the overall system for any arbitrary switching rule. In the

second, when all subsystems are unstable, the interest lies in designing a switching rule able to

ensure stability and suitable performance. Otherwise, if at least one of the subsystems is stable,

the rule can still be designed to improve the system overall performance. In this work, the goal

is to treat the case where the switching rule is the unique control variable of the system. In both

situations, it is common the presence of sliding modes in the system. This behavior is intrinsic

of the switched systems and is characterized by a particular dynamic, different from that of each

isolated subsystem. Although, in several cases, sliding modes are important to ensure asymp-

totic stability, they imply in a arbitrarily high switching frequency, also known as chattering,

which can damage physical components that are not designed to work under such conditions,

(Liberzon, 2003; Sun; Ge, 2011).

Besides the theoretical challenges, the great interest in the study of this class of

systems arises from the wide number of practical applications, as this class is able to represent

several real systems, going from power electronics and electric machines to automotive control,

network control, aircraft and air traffic control, and computer disks.

2.4.1 Switched Linear Systems

A switched linear system is composed of a finite number of subsystems that are

linear and time-invariant. They can be described by the following state space representation

ẋ(t) = Aσx(t), x(0) = x0 (2.18)

z(t) = Eσx(t) (2.19)

where x ∈ Rn is the state, z ∈ Rp is the controlled output and σ(t) = u(x(t)) : Rn →

K := {1, . . . , N} is the state-dependent switching rule that selects one among N available

subsystems at each instant of time. Notice that, if the matrices Ai, ∀i ∈ K are non singular,
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the origin xe = 0 is the unique equilibrium point shared by all the subsystems. The following

definition defines the convex combination of matrices with the same dimension and will be

important afterward.

Definition 2.2. The subscript Xλ defines the linear combination of matrices {X1, . . . , XN} as

Xλ =
∑
i∈K

λiXi (2.20)

where

Λ :=

{
λ ∈ RN : λj ≥ 0,

∑
j∈K

λj = 1

}
(2.21)

is the unit simplex.

For this class of switched systems, several results have been proposed in the liter-

ature, going from stability analysis (Geromel; Colaneri, 2006b; Lin; Antsaklis, 2009; Shorten

et al., 2007; Scharlau et al., 2014), state and output feedback control (Geromel et al., 2008;

Deaecto et al., 2011a; Duan; Wu, 2014) to robust and linear parameter varying (LPV) con-

trol (Geromel; Deaecto, 2009; Deaecto et al., 2011b; Zhai, 2001). They differ among them

from the adoption of different Lyapunov functions, as the quadratic in (Zhai, 2001), min-type in

(Geromel; Colaneri, 2006b; Deaecto et al., 2011a; Duan; Wu, 2014) and max-type in (Scharlau

et al., 2014), leading to sufficient conditions with different degrees of conservatism. The sim-

plest one is the quadratic Lyapunov function v(x) = x′Px, whose stability conditions are given

in the next theorem which is also available in (Deaecto et al., 2010).

Theorem 2.1. Consider the switched linear system (2.18)-(2.19) and defineQi = E ′
iEi. If there

exist a vector λ ∈ Λ and a symmetric positive definite matrix P > 0 satisfying

A′
λP + PAλ +Qλ < 0 (2.22)

then, the switching rule σ(t) = u(x(t)) with

u(x) = argmin
i∈K

x′(A′
iP + PAi +Qi)x (2.23)

makes the equilibrium point xe = 0 globally asymptotically stable and ensures that the inequal-

ity

∥z∥22 < x′0Px0 (2.24)

is valid.
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Proof. The proof is available in (Deaecto et al., 2010) but will be repeated due to its importance

for our context of study. It begins by evaluating the time derivative of the quadratic Lyapunov

function v(x) = x′Px along an arbitrary trajectory of the system, resulting in

v̇(x) = x′(A′
σP + PAσ +Qσ)x− z′z

= min
i∈K

x′(A′
iP + PAi +Qi)x− z′z

= min
λ∈Λ

x′(A′
λP + PAλ +Qλ)x− z′z

≤ x′(A′
λP + PAλ +Qλ)x− z′z

< −z′z (2.25)

where the second equality comes from the switching function (2.23), the third equality and the

first inequality are due to the minimum operator, and the last inequality is a consequence from

the validity of (2.22). Now, integrating both sides of

v̇(x) < −z′z (2.26)

from t = 0 to t → ∞, we obtain (2.24) since limt→∞ v(x(t)) = 0 as a consequence of the

system asymptotic stability.

Notice that, in the general case, with λ ∈ Λ and P > 0 as variables, the conditions

of this theorem are extremely difficult to solve. Indeed, finding λ ∈ Λ such that Aλ is Hurwitz

stable is known to be an NP-hard problem, see (Blondel; Tsitsiklis, 1997). However, for a

λ ∈ Λ given, the conditions become linear matrix inequalities (LMIs) being very simple to

solve by off-the-shelf algorithms, see (Boyd et al., 1994). Hence, we can solve Theorem 2.1 by

searching the vector λ ∈ Λ that provides the better guaranteed performance (2.24). The next

numerical example illustrates the use of Theorem 2.1 in a switched linear system composed of

two unstable subsystems.

Example 2.4.1. Consider the switched linear system (2.18)-(2.19) defined by the matrices

A1 =

 1 5

−5 1

 , A2 =

−2.5 3.5

4.5 −3.5

 , E1 = E2 = I (2.27)

with the respective eigenvalues γi(A1) ∈ {1 + 5
√
−1, 1 − 5

√
−1} and γi(A2) ∈ {1, −7} for

i = 1, 2. Notice that both subsystems are unstable. The first subsystem has an unstable focus

at the origin, while the second has a saddle at the origin, as illustrated in the phase portraits of

Figure 2.1.
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Figure 2.1 – Phase plane of individual subsystems

For a given λ ∈ Λ, we have solved the optimization problem

inf
P>0, ρ>0

ρ (2.28)

subject to the LMI (2.22) and

P − ρI < 0 (2.29)

We have made a search on the vector λ ∈ Λ, choosing the one that provides the smallest guar-

anteed cost (2.28). Notice that, this cost is more conservative than (2.24) since the inequality

∥z∥22 < x′0Px0 < ρx′0x0 (2.30)

is valid. However, the correspondent optimization problem is independent of initial conditions

chosen around the same circumference, that is, x0 ∈ X0 where

X0 = {x0 ∈ Rn : ∥x0∥ = r} (2.31)

for an arbitrary r > 0. The solution to this problem, associated to ρ = 1.8854, has provided

λ = [0.583 0.417]′ and the positive definite matrix

P =

0.5140 0.2540

0.2540 1.8383

 (2.32)

important to the implementation of the switching rule (2.23). Figure 2.2 provides the resulting

phase portrait of the switched linear system for initial conditions taken in a circumference of

radius r = 8, where the origin is pointed by the blue ×. We can observe that the state trajectories
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Figure 2.2 – Phase plane of controlled system

converge to the origin as expected. In this figure, the switching surface obtained as the locus of

the equation

x′P (A1 − A2)x = 0 (2.33)

is highlighted in dashed line, where it is possible to identify the sliding surface. Figure 2.3

shows the state trajectories for a initial condition x0 = [2.4721 7.6085]′ with its associated

switching function. We can observe that after 0.3 seconds the system evolves towards the origin

in a sliding mode.
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Figure 2.3 – Phase portrait of controlled system
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2.4.2 Switched Affine Systems

Switched affine systems can be seen as an generalization of the switched linear

systems, which are characterized by the presence of an affine term in its dynamical equation.

This class is represented by the following state space realization

ẋ(t) = Aσx(t) + bσ, x(0) = x0 (2.34)

z(t) = Eσx(t) (2.35)

where x ∈ Rn is the state vector, z ∈ Rp is the controlled output and σ(t) = u(x(t)) is the

switching function to be designed to guarantee global asymptotic stability of an equilibrium

point xe of interest. The matrices Ai and bi represent the i-th available subsystem for all i ∈

K := {1, . . . , N}. The presence of the affine term results in a set of equilibrium points forming

a region of great interest in the state space, given by

Xe = {−A−1
λ bλ : Aλ ∈ H, λ ∈ Λ} (2.36)

where H is the set of Hurwitz matrices. This characteristic makes the control problem substan-

tially more complicated than the linear case, because besides the design of a global asymptotic

stabilizing switching rule, it is also necessary to determine the set of attainable equilibrium

points.

Usually, the equilibrium point xe of interest does not match with any of the individ-

ual subsystems, therefore, an arbitrarily high switching frequency is required to ensure asymp-

totic stability. Given an equilibrium point of interest xe ∈ Xe and considering the auxiliary state

vector ξ = x− xe, we can rewrite the system (2.34)-(2.35) as

ξ̇(t) = Aσξ(t) + ℓσ, ξ(0) = ξ0 (2.37)

ze(t) = Eσξ(t) (2.38)

where ℓi = Aixe + bi and ze = z − Eσxe. This change of variable allows us to deal with the

stabilization problem to the origin as the unique equilibrium point since x(t) → xe whenever

ξ → 0. The literature presents some results dealing with this stabilization problem, as for in-

stance (Deaecto et al., 2010; Bolzern; Spinelli, 2004; Patino et al., 2009). All of them adopting

the quadratic Lyapunov function

v(ξ) = ξ′Pξ, P > 0 (2.39)
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The great difficulty in adopting a more general Lyapunov function, as the non-convex ones, is to

deal with the reachability of the equilibrium point of interest. The reference (Baldi et al., 2018)

has proposed stability conditions based on a convex, but time-varying Lyapunov function, which

is naturally less conservative than the ones based on (2.39) but more difficult to implement. The

next theorem provides the stabilization conditions also available in (Deaecto et al., 2010).

Theorem 2.2. Consider the switched affine system (2.34)-(2.35), the equilibrium point of inter-

est xe ∈ Xe and its associated vector λ ∈ Λ and define Qi = E ′
iEi. If there exists a symmetric

positive definite matrix P > 0 satisfying the LMI

A′
λP + PAλ +Qλ < 0 (2.40)

then, the switching rule σ(t) = u(ξ(t)) with

u(ξ) = argmin
i∈K

ξ′(A′
iP + PAi +Qi)ξ + 2ξ′Pℓi (2.41)

and ξ = x−xe, makes the equilibrium point xe ∈ Xe globally asymptotically stable and ensures

that the inequality

∥ze∥22 < ξ′0Pξ0 (2.42)

with ze = z − Eσxe is valid.

Proof. The proof is also available in (Deaecto et al., 2010). Consider the equivalent switched

affine system (2.37)-(2.38). We start the proof by evaluating the time derivative of (2.39) along

an arbitrary trajectory of this system together with the proposed switching rule (2.41) obtaining

v̇(ξ) = ξ̇′Pξ + ξ′P ξ̇

= ξ′(A′
σP + PAσ +Qσ)ξ + 2ξ′Pℓσ − z′eze

= min
i∈K

ξ′(A′
iP + PAi +Qi)ξ + 2ξ′Pℓi − z′eze

= min
λ∈Λ

ξ′(A′
λP + PAλ +Qλ)ξ + 2ξ′Pℓλ − z′eze

≤ ξ′(A′
λP + PAλ +Qλ)ξ + 2ξ′Pℓλ − z′eze

< −z′eze (2.43)

where the third equality is due to the switching rule, the fourth equality and the first inequality

come from the minimum operator and the last inequality is a consequence of (2.40) and of the

fact that ℓλ = 0 because xe ∈ Xe. The guaranteed cost is obtained by the same procedure

adopted in Theorem 2.1.
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Notice that the proposed conditions do not require any stability property of the

isolated subsystems. Only the convex combination Aλ must be Hurwitz stable as a sufficient

condition for stabilization. Moreover, different from Theorem 2.1 the conditions are linear

matrix inequalities, since λ ∈ Λ is not a variable but a given vector associated to the equilibrium

point xe ∈ Xe. The next example illustrates the main features of this control technique.

Example 2.4.2. Consider the switched affine system (2.34)-(2.35) given by the following ma-

trices

A1 =

 1 5

−5 1

 , A2 =

−2.5 3.5

4.5 −3.5

 , b1 =
 10

−24

 , b2 =
−25

31

 (2.44)

with E1 = E2 = I and the respective equilibrium points

xe▲ =

−5

−1

 , xe• =
−3

5

 (2.45)
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Figure 2.4 – Equilibrium points

The dynamical matrices are the same already adopted in the previous example, be-

ing the first subsystem characterized by an unstable focus at xe▲ and the second one charac-

terized by a saddle at xe• . The set of attainable equilibrium points was calculated from (2.36)

and illustrated in Figure 2.4, where the dashed line represents all the equilibrium points, while

the red continuous line only those for which Aλ ∈ H. We have chosen the equilibrium point

xe = [0.2499 1.5393]′ associated with the vector λ = [0.53 0.47]′. Figure 2.5 provides the

phase portraits of the individual subsystems represented by the shifted variable ξ = x − xe.
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Figure 2.5 – Phase portraits of individual subsystems

The initial conditions adopted for the first and second subsystems were ∥x0 − xe▲∥ < 1 and

∥x0 − xe•∥ < 1, respectively. We have solved the optimization problem

inf
P>0,ρ>0

ρ (2.46)

subject to the LMI (2.40) and (2.29), which is more conservative than (2.42) but, as discussed

in (2.30), is independent of initial conditions chosen around the same circumference. We have

obtained the guaranteed cost ρ = 2.1613 and the positive definite matrix

P =

0.4281 0.4184

0.4184 2.0603

 (2.47)

important for the switching function implementation (2.41).
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Figure 2.6 – Phase portrait of the controlled system
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Choosing initial conditions such that ∥ξ0∥ < 8 we have obtained the phase portrait

of Figure 2.6. In this figure the colors red and green represent the actuation of the first and sec-

ond subsystems, respectively, and the blue × indicates the origin. The dashed line corresponds

to the switching surface, where the rule can select a different subsystem or makes the system

to evolve on a sliding mode. Figures 2.7 and 2.8 shows, respectively, the state trajectories over

time and its corresponding switching rule for x0 = [−4.00 6.9282]′, highlighted in Figure 2.6

by the color purple. It is possible to see that around 0.425s, the switching signal assumes a

arbitrarily high frequency, which characterizes the presence of sliding modes.
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Figure 2.7 – State trajectories
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Figure 2.8 – Switching rule over time

The previous example was important to illustrate the main characteristics of the

switching rule provided in Theorem 2.2. Notice that in (2.41), matrix P > 0 is dependent on
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the equilibrium point xe ∈ Xe through the vector λ ∈ Λ and needs to be recalculated whenever

a new point is chosen. This can be an inconvenient in practical implementations, as for instance,

in the control of DC-DC power converters where it is very common changes in the operating

point. The next theorem, also available in (Deaecto et al., 2010), deals with the design of a

switching rule that is more conservative than that of Theorem 2.2, but is robust with respect to

change in the equilibrium points and can be a good alternative for practical implementations.

Theorem 2.3. Consider the switched affine system (2.34)-(2.35), an equilibrium point xe ∈ Xe

and define Qi = E ′
iEi. If there exists a symmetric positive definite matrix P > 0 satisfying the

LMIs

A′
iP + PAi +Qi < 0, i ∈ K (2.48)

then, the switching rule σ(t) = u(ξ(t)) with

u(ξ) = argmin
i∈K

ξ′Pℓi (2.49)

and ξ = x−xe, makes the equilibrium point xe ∈ Xe globally asymptotically stable and ensures

that the inequality (2.42) is satisfied with ze = z − Eσxe.

Proof. The proof, also available in (Deaecto et al., 2010), follows the same steps of the one in

Theorem 2.2. The time derivative of the Lyapunov function (2.39) along an arbitrary trajectory

of system (2.37)-(2.38) provides

v̇(ξ) = ξ′(A′
σP + PAσ +Qσ)ξ + 2ξ′Pℓσ − z′eze

< min
i∈K

2ξ′Pℓi − z′eze

≤ 2ξ′Pℓλ − z′eze

= −z′eze (2.50)

where the first inequality comes from the LMI (2.48) and from the switching function (2.49).

The last inequality is due to the minimum operator and the last equality is a consequence of the

fact that ℓλ = 0 because xe ∈ Xe. The guaranteed cost is obtained as in Theorem 2.2 concluding

the proof.

Notice that in this case, matrix P is robust with respect to changes in the equilib-

rium points, as a result, any equilibrium point xe ∈ Xe can be selected using the same matrix P .

Besides, the switching rule is linear and simpler to implement in practical applications. Nev-

ertheless, since the system needs to be quadratically stable, that is, all the subsystems must be
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Table 2.1 – Buck-Boost converter parameters

Vo 100 V
R 2 Ω
L 500 µH
Co 470 µF
Ro 50 Ω

stable and to admit the same solution P > 0, the problem becomes much more stringent than

the one of Theorem 2.2. An alternative strategy which is also robust with respect to changes in

the equilibrium points, but less stringent than (2.49), has been proposed in (Silva et al., 2022).

In this reference, several min-type switching rules were experimentally validated and com-

pared, from the theoretical and practical viewpoints. The next example of practical appealing

illustrates the main characteristics of the switching rule (2.49).
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Figure 2.9 – Buck-Booster Inverter schematic

Example 2.4.3. Consider a buck-boost converter modelled as the switched affine system (2.34)-

(2.35) with the state vector defined as x = [iL vC ]
′ and the matrices given by

A1 =

−R/L 0

0 −1/(RoCo)

 , A2 =

−R/L −1/L

1/Co −1/(RoCo)


b1 =

Vo/L
0

 , b2 =
0
0

 ,
(2.51)

The electric circuit is presented in Figure 2.9 and the numerical parameters are provided in

Table 2.1. The controlled output is defined with

E1 = E2 =

0.1 0

0 1

 (2.52)

The equilibrium points of each isolated subsystem is given respectivelly by

xe▲ =

50
0

 , xe• =
0
0

 (2.53)
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Solving the optimization problem (2.46) subject to (2.48) and (2.29), we have obtained ρ =

0.012 associated to the positive definite matrix

P =

0.0109 0.0003

0.0003 0.0119

 (2.54)

used for the implementation of the switching rule (2.49). Figure 2.10 presents the phase portrait

of the switched affine system for several equilibrium points.
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Figure 2.10 – Phase portrait of the controlled system

In this figure the dotted line represents the set of attainable equilibrium points Xe,

and the purple continuous lines are the state trajectories evolving from the same initial condition

x0 = [0 0]′. Notice that all the equilibrium points were attained with success. Figure 2.11

and 2.12 shows the time evolution of the current and voltage for the equilibrium point xe =

[31.2258 212.9032]′. Observe that the occurrence of sliding modes from t = 0.045ms onward

is essential to make the trajectories fixed on the equilibrium point.

An interesting discussion is about robustness of the min-type switching rules with

respect to parameter uncertainties, as load variations. In this case, the equilibrium point is not

known, since it depends directly on the dynamical matrices of the system, which are subject

to uncertainties. It is not simple to design a switching rule without the exact knowledge of

this point, which make this problem very challenging from theoretical and practical viewpoints.

Due to its complexity, there are only few works dealing with this topic, although it has attracted

the attention of the scientific community in the last years, see the recent references (Baldi et al.,

2018), (Beneux et al., 2019).
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Figure 2.11 – iL trajectory
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Figure 2.12 – vC trajectory

2.5 Final Considerations

In this chapter some important concepts for the comprehension of this work were

presented. First, we introduced the idea of equilibrium points and stability of dynamical sys-

tems. After that, the Lyapunov theory was presented, which is the basis for all theory devel-

oped in the subsequent chapters. For more details about those, see (Khalil, 2002),(Slotine et

al., 1991), and (Luenberger, 1979). Lastly, we made an introduction to the main features of

switched systems, which can be further studied in references (Liberzon, 2003) and (Sun, 2006).

We have focused on the switched linear and affine systems and presented several academic and

practical examples to illustrate the most important concepts.
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3 θ-PERIODIC SWITCHED SYSTEMS

In this chapter, the trajectory tracking problem of a class of switched systems is

treated, which is the most important theoretical result of this dissertation. This class is more

general than the previously studied switched affine systems and is characterized by presenting

matrices in the dynamical equation that are periodic with respect to a parameter θ, describing

two important subclass of systems: the parameter-dependent switched affine systems, when θ is

an exogenous parameter and, the more challenging one, the switched nonlinear systems, when

it is state-dependent. The obtained results are expressed in terms of linear matrix inequalities

and take into account a guaranteed cost of performance. In order to consider robustness with

respect to model uncertainties, making the problem more realistic to practical implementations,

we have proposed a control with integral action. From the theoretical viewpoint, the difficulty in

the integral control was to ensure the negative definiteness of the time derivative of the Lyapunov

function when all the convex combinations of the dynamical matrices are singular. The results

presented in this chapter are available in (Deaecto et al., 2022).

As it will be clear in the next chapters, the theoretical results here presented have a

relevant practical appeal and will be applied in two different areas of the electrical engineering:

power electronics and electric machines.

3.1 Problem Formulation

Consider the θ-periodic switched affine system given by

ẋ = Aσ(θ)x+ bσ(θ), x(0) = x0 (3.1)

where x ∈ Rn is the state and σ ∈ K := {1, ..., N} is the switching signal that selects, at each

instant of time, one of theN available subsystems. The matrix-valued functionsAi(θ) and bi(θ)

are periodic and continuous with respect to the time-varying parameter θ(t) : R+ → R, with

period θP defined as θP = min{θ̂ > 0 : Xi(θ + θ̂) = Xi(θ) ∀i ∈ K, Xi = (Ai, bi), θ ∈ R+}.

It is supposed that θ is an almost everywhere differentiable function and belongs to a bounded

set θ̇ ∈ ΘD for all t ≥ 0 with

ΘD = {θ̇ ∈ R : ω ≤ θ̇ ≤ ω, ω, ω ∈ R} (3.2)
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In our context, θ can be an exogenous parameter and, therefore, the switched affine system

(3.1) is parameter-dependent or it can be state-dependent, making the switched system (3.1)

highly nonlinear. The control methodology here proposed allows us to treat both cases with

almost the same approach. However, when θ is an exogenous parameter, the asymptotic tracking

guarantee is global and becomes local when it is state-dependent. Define ΘP = [0, θP ] and let

xe(t, θ) ∈ Rn be a desired trajectory to be tracked by the action of the switching function

σ(t). The trajectory profile xe(t, θ) ∈ Rn is chosen by the designer according to the system

characteristics and must satisfy certain conditions to be presented afterward. With the auxiliary

variable ξ(t) = x(t)− xe(t, θ), the system (3.1) can be rewritten as

ξ̇ = Aσ(θ)ξ + ℓσ(t, θ, θ̇), ξ(0) = ξ0 (3.3)

where ℓi(t, θ, θ̇) = Ai(θ)xe(t, θ) + bi(θ)− ẋe(t, θ, θ̇) and ξ0 = x0 − xe0, with xe0 = xe(0).

The control goal is to design a state-dependent switching function u(x, t, θ, θ̇) :

Rn×R+×ΘP×ΘD → K such that the switching control σ(t) = u(x(t), t, θ(t), θ̇(t)) guarantees

the asymptotic tracking of the desired trajectory xe(t, θ), that is

lim
t→∞

x(t)− xe(t, θ) = 0 (3.4)

This is accomplished by means of design conditions that ensure the asymptotic stability of the

origin ξ = 0 of (3.3) and the minimization of a suitable upper bound on the quadratic cost

J =

∫ ∞

0

ξ(t)′Qξ(t)dt (3.5)

where Q ≥ 0 is a given matrix.

Before continuing let us define the matrix R(θ) that will be important to obtain the

design conditions.

Definition 3.1. Define the periodic matrix-valued function R(θ) : ΘP → Rn×n with the fol-

lowing properties:

R(θ)′R(θ) = I, Ṙ(θ) = R(θ)Ω(θ̇) (3.6)

where Ω(θ̇) ∈ Rn×n is linear with respect to θ̇ and skew-symmetric.

There are several matrices satisfying these properties, as for instance, the rotation

matrices in the special orthogonal group SO(n) (Gallier; Xu, 2003), widely used to model rota-

tional dynamic systems, as the robotic ones. Another very useful class of matrices is composed
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of constant matrices M ∈ M ⊂ Rn×n for which the commutative property

MR(θ) = R(θ)M (3.7)

is valid. Notice that the class M must be defined for eachR(θ), since this property is dependent

on the structure of this matrix that naturally satisfies the properties (3.6).

We are particularly interested in studying switched affine systems described by (3.1)

and satisfying the following assumptions.

Assumptions: There must exist λ(t, θ, θ̇) ∈ Λ such that:

a) The trajectory xe(t, θ) satisfies the equality

ℓλ(t, θ, θ̇) = 0 (3.8)

for all t ∈ R+, θ ∈ ΘP and θ̇ ∈ ΘD.

b) The vector λ that satisfies (3.8) must yield a convex combination of θ-dependent matrices

Ai(θ), ∀i ∈ K, satisfying the identity

Aλ(θ) = R(θ)ARR(θ)
′ (3.9)

with a suitable constant matrix AR ∈ Rn×n.

These assumptions can be satisfied by various real world systems, as for instance,

the AC-DC power converters and the permanent magnet synchronous machines (PMSM), which

will be studied in the next two chapters, respectively. Under a similar perspective, using less

general design conditions, the control of these systems have also been treated in (Egidio et al.,

2020) and (Egidio et al., 2022a) . In the next two chapters, we present a comparison with

the control techniques proposed in these references with some discussions to put in evidence

the main features of the proposed control theory. The assumption (3.8) is not only important to

define the class of admissible trajectories but also states a necessary condition for the differential

equation (3.1) to have a stabilizable equilibrium at the origin ξ = 0, considering Filippov

solutions, see (Liberzon, 2003). The assumption (3.9) is useful to obtain conditions expressed

in terms of linear matrix inequalities (LMIs), being solved without difficulty by readily available

algorithms in the literature, see the book (Boyd et al., 1994).

In the next sections, our main results are presented. First, the trajectory tracking

problem is treated taking into account the minimization of an upper bound of (3.5). In a second
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step, due to its importance in practical applications, the control with integral action is taken

into account only for the case when θ is an exogenous parameter. It is more intricate than

the previous one, since every convex combination of the dynamic matrices is rank deficient.

Nevertheless, we provide design conditions that ensure that the time derivative of the Lyapunov

function is always strictly negative. Both results will be particularized, in the next two chapters,

to cope with the control of two electrical devices of distinct nature: a three-phase AC-DC power

converter and a permanent magnet synchronous machine.

3.2 Tracking With Guaranteed Cost

Let us adopt the following Lyapunov function candidate

v(ξ, θ) = ξ′P (θ)ξ (3.10)

with positive definite matrix

P (θ) = R(θ)PRR(θ)
′ (3.11)

where matrix 0 < PR ∈ Rn×n must satisfy some conditions to be presented in the next theorem.

The time-derivative of (3.10) with respect to an arbitrary trajectory (ξ(t), θ(t)) is given by

v̇(ξ, θ) =
∂v(ξ, θ)

∂ξ

′

(Aσ(θ)ξ + ℓσ(t, θ, θ̇)) +
∂v(ξ, θ)

∂θ
θ̇

= ξ′Wσ(θ, θ̇)ξ + 2ξ′P (θ)ℓσ(t, θ, θ̇) (3.12)

with

Wi(θ, θ̇) = Ai(θ)
′P (θ) + P (θ)Ai(θ) + Ṗ (θ) (3.13)

and Ṗ (θ) = R(θ)He{PRΩ(θ̇)′}R(θ)′. The associated state-dependent switching function σ(t) =

u(ξ(t), t, θ(t), θ̇(t)) is the following

u(ξ, t, θ, θ̇) = argmin
i∈K

ξ′Wi(θ, θ̇)ξ + 2ξ′P (θ)ℓi(t, θ, θ̇) (3.14)

Notice that this switching function guarantees the asymptotic tracking to the equilibrium trajec-

tory xe(t, θ) whenever v̇(ξ, θ) < 0 for all ξ ̸= 0 indicating that the origin ξ = 0 of (3.3) is an

asymptotically stable equilibrium point. This can be ensured by design conditions expressed as

the solution to a set of LMIs. The next theorem presents this important result.

Theorem 3.1. Consider the matrix-valued function R(θ) defined in (3.6), the set θ̇ ∈ ΘD pro-

vided in (3.2) and let 0 ≤ Q ∈ M be given. Assuming that system (3.3) and the equilibrium
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trajectory xe(t, θ) satisfy the assumptions (3.8) and (3.9), if there exists a matrix PR > 0 solu-

tion to the linear matrix inequalities

He{PRAR(ω)}+Q < 0 (3.15)

He{PRAR(ω)}+Q < 0 (3.16)

with AR(ω) = AR + Ω(ω)′ then, the switching function σ(t) = u(ξ(t), t, θ(t), θ̇(t)) given in

(3.14) ensures the asymptotic stability of the origin ξ = 0 and that the following inequality

J < Tr(PRY ) (3.17)

is satisfied with Y = R(θ0)
′ξ0ξ

′
0R(θ0).

Proof. The time-derivative of the Lyapunov function defined in (3.10) along an arbitrary trajec-

tory (ξ(t), θ(t)) and under the action of the switching rule σ(t) = u(ξ(t), t, θ(t), θ̇(t)) defined

in (3.14) provides

v̇(ξ, t, θ, θ̇) = min
i∈K

ξ′Wi(θ, θ̇)ξ + 2ξ′P (θ)ℓi(t, θ, θ̇)

= min
λ∈Λ

ξ′Wλ(θ, θ̇)ξ + 2ξ′P (θ)ℓλ(t, θ, θ̇)

≤ ξ′Wλ(θ, θ̇)ξ + 2ξ′P (θ)ℓλ(t, θ, θ̇)

< −ξ′Qξ < 0 (3.18)

where the second equality and the first inequality are due to the min operator and the last in-

equality follows from the assumptions that ℓλ(t, θ, θ̇) = 0 and that Aλ(θ) can be written as in

(3.9). Indeed, considering Aλ(θ) = R(θ)ARR(θ)
′ and using P (θ) given in (3.11), we obtain

Wλ(·) = R(θ)
(
He{PRAR(θ̇)}+Q

)
R(θ)′−R(θ)QR(θ)′

<−R(θ)QR(θ)′ = −Q (3.19)

where the inequality comes from the fact that Q ∈ M and, as a consequence, the equality

R(θ)QR(θ)′ = QR(θ)R(θ)′ = Q holds and from the validity of (3.15) and (3.16), which

is equivalent to ensure that He{PRAR(θ̇)} + Q < 0 for some θ̇ ∈ ΘD. Indeed, the linear

dependence of Ω(θ̇) with respect to θ̇ allows us to write Ω(θ̇) = αΩ(ω) + (1− α)Ω(ω) for all

0 ≤ α ≤ 1 and, therefore, checking if the inequality is valid at these extrema is equivalent to

check the same for all θ̇ ∈ ΘD. Finally, integrating both sides of (5.1) from t = 0 to t→ ∞ we
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have

J < v(ξ0, θ0)

= ξ′0R(θ0)PRR(θ0)
′ξ0

= Tr(PRY ) (3.20)

where the last equality comes from the cyclic property of the trace function. The proof is

concluded.

The most important point about this theorem is that it provides a switching function

σ(ξ(t), t, θ(t), θ̇(t)) able to asymptotically track a trajectory xe(t, θ) of interest by means of

LMI conditions that do not depend explicitly on θ. Regardless of θ(t) being an exogenous or a

state-dependent parameter, the design conditions in Theorem 3.1 guarantee asymptotic stability

of the origin ξ = 0 under the assumption that θ̇ ∈ ΘD. However, when θ is exogenous, the

stability holds globally if the assumption is not violated whereas, when θ is state dependent,

the boundedness of θ̇ may only be ensured locally. These aspects will be fully illustrated in the

next two chapters through the control of the two already mentioned devices: the AC-DC power

converter, where θ is an external parameter, and the permanent magnet synchronous machine

where θ is state-dependent.

Another remark is that this result can be analyzed in the light of the Floquet theory

for continuous-time periodic linear systems, see (Bittanti; Colaneri, 2009). Based on this theory,

matrix R(θ(t)) can be seen as a generalized Floquet transformation for an averaged system

defined by (Aλ(θ), ℓλ(t, θ, θ̇)) and given by

ξ̇ = R(θ)ARR(θ)
′ξ (3.21)

whenever the assumptions (3.8)-(3.9) are satisfied. Indeed, with the similarity transformation

ξ(t) = R(θ(t))ξ̂(t), we obtain the equivalent system

˙̂
ξ = (AR +Ω(θ̇)′)ξ̂ (3.22)

whose stability is ensured by the validity of the LMIs (3.15)-(3.16), which, in turn, imply the

stability of the system (3.21). Notice that our context is, however, more general than that of

periodic systems, because the periodicity of the system (3.21) is not necessarily with respect to

time itself but rather with the time-varying scalar θ(t). For the particular case where θ̇(t) = ω ∈

R is constant for all t ∈ R, matrixAR+Ω(ω)′ is a Floquet factor and the inequalities of Theorem
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3.1 are equivalent to the well-known Floquet-Lyapunov necessary and sufficient conditions for

the stability of the system ξ̇ = R(ωt)ARR(ωt)
′ξ. Moreover, by means of the fundamental

matrix X(t) = R(θ(t))e(A+Ω(ω)′)t the analytic solution of this system can be directly obtained

as being

ξ(t) = R(θ(t))e(AR+Ω(ω)′)tR(θ(0))′ξ(0) (3.23)

These points are illustrated in the control of the AC-DC converter that will be treated in the next

chapter where the case θ̇(t) = ω ∈ R occurs. The next subsection provides conditions for the

control with integral action of this class of systems.

3.3 Control With Integral Action

Consider the θ-periodic augmented system

ξ̇a =

 Aσ(θ) 0

C⊥R(θ)
′ 0

 ξa +
ℓσ(t, θ, θ̇)

0

 (3.24)

with θ being an exogenous parameter such that θ̇(t) = ω is constant for all t ∈ R+. The

augmented state vector is ξa = [ξ′ ξ′⊥]
′ with ξ⊥ ∈ Rm. This system was obtained by adding the

state variable

ξ⊥ =

∫ t

0

C⊥R(θ(τ))
′ξ(τ)dτ (3.25)

to (3.3). Suppose that the assumptions (3.8)-(3.9) remain valid and that matrix AR + Ω(ω)

is nonsingular for ω ∈ ΘD. Notice that the augmented dynamic matrix is rank deficient and

does not admit a Hurwitz stable convex combination of the matrices of the subsystems. Hence,

the conditions provided in the previous subsection cannot be applied to the augmented system

(3.24) since, due to the integrator (3.25), there will always exist persistent null eigenvalues. In

this case, let us adopt the augmented Lyapunov function candidate

V (ξ, θ) = ξ′a

 P (θ) •

P ′
xR(θ)

′ P⊥

 ξa (3.26)

with Px and P⊥ of appropriate dimensions. Let us also define the function

fi(·) =
∂V

∂ξa

′
ξ̇a

∣∣∣∣
σ=i

+
∂V

∂θ
θ̇

=


ξ

ξ⊥

1


′
He{Ki(θ)}+Ṗ (θ) • •

Ui(θ, ω) 0 •

ℓ′iP (θ) ℓ′iR(θ)Px 0



ξ

ξ⊥

1

 (3.27)
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with matricesUi(θ, ω) = P ′
xR(θ)

′Ai(θ)+P⊥C⊥R(θ)
′+P ′

xΩ(ω)′R(θ)′ andKi(θ) = P (θ)Ai(θ)+

R(θ)C ′
⊥P

′
xR(θ)

′. In this function, the dependency of ℓi with respect to (t, θ, ω) was omitted by

simplicity. The next theorem provides conditions for the asymptotic stability of the augmented

system (3.24) by means of the switching function σ(t) = u(ξa, t, θ, ω) with

u(ξa, t, θ, ω) = argmin
i∈K

fi(ξa, t, θ, ω) (3.28)

and fi given in (3.27). As it will be clear afterward, besides the requirements on the dynamical

matrices, establishing conditions on the affine terms is essential to guarantee that the time-

derivative of the Lyapunov function be strictly negative definite.

Theorem 3.2. Consider the augmented system (3.24) with θ being an exogenous parameter,

where θ̇(t) = ω ∈ ΘD is constant and let the matrix-valued function R(θ) be defined in (3.6).

Assume that system (3.3) and the trajectory xe(t, θ) satisfy the assumptions (3.8)-(3.9) and de-

fine the vector-valued function gi(t, θ, ω) = C⊥(AR+Ω(ω)′)−1R(θ)′ℓi(t, θ, ω). If the condition

0 ∈ Int(co({gi : i ∈ K})) (3.29)

is verified for all t ∈ R, θ ∈ ΘP and ω ∈ ΘD and there exist symmetric matrices PR and P⊥

solution to the inequalities A′
RPRAR •

−P⊥C⊥ P⊥

 > 0 (3.30)

He {A′
R (A′

RPRAR − C ′
⊥P⊥C⊥)} < 0 (3.31)

with AR = AR + Ω(ω)′, then, for the augmented system (3.24), the switching function σ(t) =

u(ξa(t), t, θ(t), ω) given in (3.28) with

P ′
x = −P⊥C⊥A−1

R (3.32)

ensures asymptotic stability of the origin ξa = 0.

Proof. Adopting the Lyapunov function candidate (3.26), let us demonstrate that under an ar-

bitrary trajectory of (3.24) and the switching function (3.28), we have V̇ (ξa, t, θ, ω) < 0 for all

t ≥ 0 and ξa ̸= 0. From this point on, we omit the dependence of V̇ with respect to (ξa, t, θ, ω)

to ease the notation. From (3.27) and the switching function (3.28) we obtain

V̇ = min
i∈K

fi(ξa, t, θ, ω)

= min
µ∗∈Λ

fµ∗(ξa, t, θ, ω)

≤ fµ(ξa, t, θ, ω), ∀µ ∈ Λ (3.33)
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Let us consider two cases: ξ ̸= 0 and ξ = 0. When ξ ̸= 0, we have

V̇ ≤ fλ(ξa, t, θ, ω)

= ξ′R(θ)
(
He{PRAR − C ′

⊥P⊥C⊥A−1
R }

)
R(θ)′ξ

< 0 (3.34)

where it has been used λ ∈ Λ that satisfies the assumptions (3.8)-(3.9) leading to Aλ(θ) =

R(θ)ARR(θ)
′ and ℓλ(t, θ, ω) = 0. Also, it has been chosen Px given in (3.32) which makes

Uλ(θ, ω) null in (3.27). Moreover, the inequality in (3.34) follows from the validity of (3.31)

after multiplying to the right by A−1
R and to the left by its transpose.

Now, for the case where ξ = 0 and using Px given in (3.32), the function fi(·)

becomes

fi(t, θ, ω) = −2ξ′⊥P⊥C⊥A−1
R R(θ)′ℓi(t, θ, ω) (3.35)

leading to the following time-derivative of the Lyapunov function

V̇ = min
i∈K

−2ξ′⊥P⊥gi(t, θ, ω)

= min
µ∗∈Λ

−2ξ′⊥P⊥gµ∗(t, θ, ω)

≤ −2ϵξ′⊥P⊥ξ⊥

< 0 (3.36)

where the last inequality is due to the fact that ϵξ⊥ ∈ Int(co({gi : i ∈ K})) for ϵ > 0 arbitrarily

small, which is implied by the condition 0 ∈ Int(co({gi : i ∈ K})). From the two cases, we

have V̇ < 0 for all t ≥ 0 and ξa ̸= 0. It is also important to observe that V (ξa, θ) > 0 whenever

the inequality PR •

P ′
x P⊥

 > 0 (3.37)

holds, since it becomes the Lyapunov matrix (3.26) when multiplied to the left by diag(R(θ), I)

and to the right by its transpose. This inequality with Px given in (3.32) is ensured by (3.30)

after multiplying it to the right by diag(A−1
R , I) and to the left by the transpose. The proof is

concluded.

This result is one of the first to provide conditions that ensure that V̇ < 0 for all

t ≥ 0 and ξa ̸= 0 to θ-periodic switched affine systems, when the dynamic matrix is rank

deficient. The stabilization problem for a simpler class of rank-deficient switched systems that
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does not take into account the periodicity with respect to the θ-parameter has been treated in

(Egidio et al., 2022b). Notice that the condition (3.29) concerning the affine terms is essential

to accomplish this goal, in the sense that, otherwise, it would only be possible to ensure that

V̇ ≤ 0. The condition (3.29) can be checked by verifying if there exists µ(t, θ, ω) ∈ Int(Λ)

such that gµ = 0 and rank([gi]i∈K) = m. Fortunately, for several electrical devices, as the

three phase AC-DC converter treated in the next chapter, the same vector λ that satisfies the

assumptions (3.8)-(3.9) can be chosen such that λ ∈ Int(Λ) and, therefore, the general condition

is simplified by checking if rank([gi]i∈K) = m for all t ∈ R+, θ ∈ ΘP and θ̇ ∈ ΘD. Notice

that the dependency of gi with respect to time is inherited by the equilibrium trajectory xe(t, θ),

which can be chosen by the designer to contain relevant information for a limited time interval

t ∈ [0, TF ). Thus, the rank condition can be verified by making a fine grid on the limited sets

[0, TF ) × Θp × ΘD. Unfortunately, at this moment, the integral action was studied only for

the case where θ is an exogenous parameter and θ̇ = ω is constant. The case where θ is state-

dependent is more complicated and will be treated in future work. Although, this constraint

exists, the developed theory still covers a great variety of systems as the three-phase AC-DC

converters to be treated in the next chapter.

3.4 Final Considerations

In this chapter, was presented a general methodology for the control design of a

switching rule capable of ensuring asymptotic tracking of a desired trajectory for switched

systems whose dynamic matrices depend on a periodic parameter. When this parameter is

exogenous, the design conditions ensure global asymptotic tracking and can be generalized

to cope with integral action, making the technique robust with respect to model uncertainties

and, therefore, more realistic. When this parameter is state-dependent, the system is highly

nonlinear and the asymptotic tracking is only local. In this case, the control with integral action

is more challenging and an important subject to future research. All the obtained conditions

were expressed in terms of linear matrix inequalities and are simple to implement in several

real systems. The next two chapters are dedicated to illustrate these results in the control of two

electric circuits of distinct nature: a three-phase AC-DC converter considered in Chapter 4 and

a permanent magnet synchronous machine in Chapter 5.
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4 POWER ELECTRONICS APPLICATIONS

In this chapter, the theoretical results proposed in the previous one will be special-

ized to cope with the control of three-phase AC-DC power converters that can be modeled as

a parameter dependent switched affine system. In this sense, a corollary is proposed to show

that the solution of a simply Lyapunov equation is sufficient to regulate the output voltage of

the converter to a desired DC value, ensuring unitary power factor. The obtained design condi-

tions are also available in (Deaecto et al., 2022) and are a generalization of the results proposed

in (Egidio et al., 2020), used here for the sake of comparison. This last reference takes into

account a less general Lyapunov function and leads to a more conservative results. The same

theory has been adopted to the control of DC-AC power converters and the results are avail-

able in (Costanzo et al., 2021) indicating its applicability in the control of different three-phase

power converters. An example shows the efficiency of the proposed theory and illustrates the

validity of the integral action in case of load variations.

4.1 Three-Phase AC-DC Power Converter

At this moment, let us first define the vector functions

f(θ) =


sin(θ)

sin(θ − 2π/3)

sin(θ − 4π/3)

 , g(θ) =


cos(θ)

cos(θ − 2π/3)

cos(θ − 4π/3)

 (4.1)

Notice that h′f(θ) = 0, ∀θ ∈ R, with h = [1 1 1]′, allowing us to conclude that the vector

function f(θ) belongs to a plane Π in R3 perpendicular to the vector h, formally defined as

Π = {v ∈ R3 : h′v = 0} (4.2)

Consequently, along a trajectory of θ, the-time derivative of f(θ) belongs to the same plane Π,

since ḟ(θ) = θ̇g(θ) and h′g(θ) = 0. It also follows that

f(θ)′f(θ) = 3/2, f(θ)′g(θ) = 0, g(θ)′g(θ) = 3/2 (4.3)

which will be largely used afterwards.

This system has been borrowed from (Egidio et al., 2020) and (Bouafia et al., 2009).

The former is a preliminary version of the present results, but based on a simpler Lyapunov
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Figure 4.1 – Three-phase AC-DC power converter

Table 4.1 – Switching function σ, switches state and vector Si

σ sw1 sw2 sw3 S ′
σ

1 0 0 1 [ -1/3 -1/3 2/3]
2 0 1 0 [ -1/3 2/3 -1/3 ]
3 0 1 1 [ -2/3 1/3 1/3 ]
4 1 0 0 [ 2/3 -1/3 -1/3 ]
5 1 0 1 [ 1/3 -2/3 1/3 ]
6 1 1 0 [1/3 1/3 -2/3 ]

7
1 1 1

[0 0 0]
0 0 0

function and without considering the integral action. The electric circuit is given in Figure 4.1

and its dynamic model is described by the following switched system

ẋ(t) = Aσ(t)x(t) + b(θ(t)), x(0) = x0 (4.4)

where x(t) = [iϕ(t)
′ vo(t)]

′ ∈ R4 is the state, with iϕ(t) = [ia(t) ib(t) ic(t)]
′ ∈ R3 formed by

the phase currents and vo(t) ∈ R being the output voltage. The time-varying parameter θ(t) is

supposed to be known and represents the electrical angle given by θ(t) = ωt+ θ0 with constant

angular frequency θ̇(t) = ω, ∀t ∈ R+. The system matrices are given by

Ai =

−(RL/L)I3 −(1/L)Si

(1/C)S ′
i −1/(RoC)

 , b(θ) =
(1/L)vϕ

0

 (4.5)

where RL and L are the resistance and inductance of each coupling inductor, C is the dc-

link capacitance, Ro is the load resistance, vϕ = vmf(θ) is the input voltage and vm is the

peak phase-to-neutral voltage. The switching signal σ(t) ∈ K = {1, . . . , 7} and the vectors

Si ∈ R3, i ∈ K, take values according to Table 4.1. In this electric circuit, each pair (sw1, sw4),

(sw2, sw5) and (sw3, sw6) is alternately commanded and swi, ∀i = {1, 2, 3}, is 1 when the switch

is closed and 0 when it is open.

Notice that the electrical angle θ(t) is an external time-varying parameter. More-

over, the switching signal appears only in the dynamic matrix Aσ, whereas the parameter θ
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appears only in the affine term b(θ). Due to the three-phase nature of the system we will adopt

the matrix

R(θ) =

√2/3f(θ)
√

2/3g(θ)
√
1/3h 0

0 0 0 1

 (4.6)

which satisfies the properties (3.6) with

Ω(ω) =


0 −ω 0 0

ω 0 0 0

0 0 0 0

0 0 0 0

 (4.7)

The equilibrium trajectory of interest is of the form

xe(θ(t)) =

i∗f(θ(t))
vo∗

 (4.8)

where the pair (i∗, vo∗) has to belong to a suitable set Xe, which fulfills the assumptions (3.8)-

(3.9). This equilibrium trajectory is responsible to regulate the output voltage to a desired value

vo∗, ensuring unitary power factor, where the phase currents must track a sinusoidal reference

iϕ∗(t) = i∗f(θ(t)) synchronized with the source phase voltages.

Adopting the auxiliary variable ξ(t) = x(t)−xe(θ) we obtain the equivalent system

ξ̇ = Aσξ + ℓσ(θ, ω), ξ(0) = ξ0 (4.9)

where ℓi(θ, ω) = Aixe(θ) + b(θ) − ẋe(θ, ω) and ξ0 = x0 − xe0, with xe0 = xe(0). The next

corollary particularizes Theorem 3.1 to cope with the control of the AC-DC power converter.

Corollary 4.1. Consider the switched affine system (4.4) defined by matrices (4.5), with elec-

trical angle θ(t) = ωt + θ0, the matrix-valued function R(θ) given in (4.6) with the associated

matrix Ω(ω) given in (4.7) and let 0 ≤ Q ∈ M be given. The equilibrium trajectory xe(θ(t))

given in (4.8), with (i∗, vo∗) belonging to the set

Xe = C1
⋂

C2 (4.10)

where

C1 = {(i∗, vo∗) : (vm −RLi∗)
2 + (Lωi∗)

2 ≤ v2o∗/3} (4.11)

C2 = {(i∗, vo∗) : RLi
2
∗ − vmi∗ + 2v2o∗/(3Ro) = 0} (4.12)
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allows the system (4.4) to satisfy the assumptions (3.8)-(3.9) with

AR=


−RL/L 0 0 βvd/L

0 −RL/L 0 βωi∗

0 0 −RL/L 0

−βvd/C −βLωi∗/C 0 −1/(RoC)

 (4.13)

where β =
√
6/(2vo∗) and vd = RLi∗ − vm. If there exists a matrix PR > 0 solution to the

Lyapunov equation

He{PR(AR +Ω(ω)′)}+Q = −εI (4.14)

with ϵ > 0 arbitrarily small, then the switching function σ(t) = u(ξ(t), θ(t), ω) given in (3.14)

ensures the global asymptotic stability of the origin ξ = 0 of (3.3) and satisfies the inequality

J < Tr(PRY ) (4.15)

with Y = R(θ0)
′ξ0ξ

′
0R(θ0).

Proof. First of all, let us show that the assumptions (3.8)-(3.9) are satisfied. Observe that vectors

Si,∀i ∈ K, lie in the same plane Π of f(θ) and g(θ) defined in (4.2), since h′Si = 0, ∀i ∈ K.

Moreover, they form the vertices of a regular hexagon defined as

P = {v ∈ R3 : v =
∑
i∈K

λiSi, ∀λ ∈ Λ} (4.16)

From ℓi(θ, θ̇) = Aixe(θ) + b(θ)− ẋe(θ) we have

ℓλ(θ, θ̇) =

−(1/L) (vdf(θ) + Lωi∗g(θ) + vo∗Sλ)

(1/C)
(
i∗S

′
λ(θ)f(θ)− vo∗/Ro

)  (4.17)

and the first row is null whenever we choose λ(θ, ω) ∈ Λ such that

Sλ =
vm −RLi∗

vo∗
f(θ)− Lωi∗

vo∗
g(θ) (4.18)

Now, it is important to analyze under which conditions this choice is valid. Notice that Sλ

is a linear combination of vectors {f(θ), g(θ)} and, therefore, also belongs to the same plane

Π. Hence, for each θ and ω it is always possible to find a convex combination λ(θ, ω) ∈ Λ

satisfying (4.18) if Sλ ∈ F where

F = {v ∈ R3 : h′v = 0, v′v ≤ r2} (4.19)
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Table 4.2 – AC-DC converter parameters

Ro 175 Ω
RL 0.56 Ω
L 19.5 mH
ω 2π × 50 rad/s
C 2.35 mF
vM 40.825 V

with r = 1/
√
2 being the radius of the greatest circumference with center at the origin inside

the hexagon P. Hence, the set C1 provides the pairs (i∗, vo∗) for which ∥Sλ∥2 ≤ 1/2. On the

other hand, the pairs (i∗, vo∗) in C2 make null the second row of (4.17) after adopting Sλ given

in (4.18). Thus, the equilibrium trajectory xe(θ) defined in (4.8), with (i∗, vo∗) belonging to

Xe, ensures that the assumption (3.8) is satisfied. Replacing Sλ of (4.18) in the matrix Aλ(θ)

and rearranging the terms, we verify that the assumption (3.9) is satisfied with AR given in

(4.13). Now, as θ̇ = ω is constant, the inequalities (3.15)-(3.16) of Theorem 3.1 are replaced

by the Lyapunov equation (4.14). The switching function and the guaranteed cost follow from

Theorem 3.1 concluding thus the proof.

It is important to highlight that the control methodology is based on the solution of a

simple Lyapunov equation and ensures global asymptotic tracking to xe(θ) whenever ω ∈ ΘD.

Moreover, this corollary provides a design condition that is less conservative than the LMIs

proposed in (Egidio et al., 2020) due to the adoption of a Lyapunov function that is dependent

on a more comprehensive matrix R(θ).

To take into account robustness with respect to model uncertainties, the control with

integral action can be obtained directly by the conditions of Theorem 3.2, which are LMIs since

θ̇ = ω is constant for all t ≥ 0. It is important to recall that the equilibrium trajectory xe(θ) must

belong to the set (4.11) andAR is given in (4.13) in order to satisfy the assumptions (3.8)-(3.10).

4.2 Simulation Results

Consider the AC-DC converter with its electric circuit presented in Figure 4.1,

whose mathematical model is described by the system (4.4) with matrices (4.5). The numeri-

cal parameters were borrowed from (Bouafia et al., 2009) and given in Table 4.2. As already

mentioned, the same converter has been studied in the reference (Egidio et al., 2020), which is

a preliminary version of the present results, but adopting a less general Lyapunov function and

without taking into account the integral action. The main control goal is to regulate the output
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Figure 4.2 – Output voltages from (3.14) and from the averaged system

voltage to a steady-state value of vo∗ = 120 V ensuring unitary power factor for the system.

Notice that the pair (i∗, vo∗) with i∗ = 1.3694 A belongs to the set Xe defined in (4.11) and,

therefore, the trajectory (4.8) with these values is attainable.

Solving the conditions of Corollary 4.1 with Q = diag(0, 0, 0, 1), x(0) = 0 and

θ(0) = 0, we have obtained the same results provided in the preliminary paper (Egidio et al.,

2020). However, solving the optimization problem

J < min
PR>0

Tr(P (0)) = Tr(PR) (4.20)

with PR > 0 being the solution of the Lyapunov equation (4.14), we obtained a guaranteed cost

of J < 0.1851 while the results of reference (Egidio et al., 2020) have provided a guaranteed

cost of J < 0.2309, which is 25% greater. This puts in evidence that the proposed conditions

in Corollary 4.1 are more general than the ones of (Egidio et al., 2020). An interpretation for

the upper bound (4.20) is that it is valid for initial conditions such that ∥ξ0∥ ≤ 1. Indeed, we

have

ξ′0P (0)ξ0 ≤ max
∥ξ0∥≤1

ξ′0P (0)ξ0 = γmax(P (0)) ≤ Tr(P (0)) (4.21)

where γmax(P (0)) is the maximum eigenvalue of P (0). Figure 4.2 shows in solid line the output

voltage obtained through the solution of (4.20) and in dot-dashed line the one obtained by the

averaged system (3.21). This puts in evidence the importance of the closed-loop switching

function to performance enhancement.

Let us now change our focus to the control with integral action, which has not been

treated in (Egidio et al., 2020), and not fully explored in the literature to date. Consider the

augmented system (3.24) with

C⊥ =
[
0 0 0 1

]
(4.22)
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for which the state (3.25) becomes

ξ⊥ =

∫ t

0

vo(τ)− vo∗ dτ (4.23)

enforcing vo(t) → vo∗ robustly, whenever the system is stable.

Adopting AR given in (4.13), and taking into account that for the AC-DC converter,

the term gi(θ, ω) is a function of θ ∈ ΘP and θ̇ = ω, ∀t ≥ 0, we verified the condition (3.29)

of Theorem 3.2 by confirming that rank([gi]i∈K) = m = 1 for all θ ∈ Θ̃P ⊂ ΘP , where

Θ̃P is obtained by a sufficiently refined grid of ΘP . As discussed just after Theorem 3.2, this

is possible, because the same vector λ that satisfies the assumptions (3.8)-(3.9) is such that

λ ∈ int(Λ). Indeed, notice that the chosen pair (i∗, vo∗) is associated to λ(θ, ω) ∈ Λ such

that ∥Sλ∥2 < 1/2, which corresponds to a circle that lies in the interior of the regular hexagon

(4.16), implying that λ ∈ int(Λ). Moreover, matrices

PR =


0.1840 0.1384 0.0000 0.2580

0.1384 0.5960 0.0000 0.8520

0.0000 0.0000 1.3943 0.0000

0.2580 0.8520 0.0000 1.6105

 , P⊥ = 10.0082 (4.24)

represent a feasible solution to the LMIs (3.30)-(3.31) and will be used to implement the switch-

ing function (3.28) with fi(·) defined in (3.27). As it is already known in the literature, the

integral controller is very useful to ensure robustness w.r.t. the steady-state performance, but

can deteriorate considerably the transient response, since it generally causes overshoot and a

great settling time as a consequence of the depletion and refilling process necessary to make

ξ⊥ → 0 in (4.23), see (Beerens et al., 2019) and (Prieur et al., 2018) for details. An important

result to circumvent this problem has been proposed in (Clegg, 1958) and consists in resetting

the state ξ⊥(t) whenever vo(t) reaches the set point vo∗. Inspired on this result we have added

the following reset condition to the augmented system (3.24)

ξ⊥(t+) = 0, f (sign(ξ⊥(t))δ +∆vo(t)) ξ⊥(t) < 0 (4.25)

where ∆vo = vo − vo∗ and δ > 0 is adopted to avoid unnecessary resets caused by numerical

oscillations or small perturbations enforcing the system to respect an interval vo∗ ± δ where the

reset does not occur.

We have implemented the switching function (3.28) with matrices (4.24) consid-

ering that during the time interval t ∈ [4, 8) [s] the load was abruptly reduced to 0.7Ro and
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augmented in the sequel to 1.3Ro during the time interval t ∈ [8, 12). Figure 4.3 presents the

output voltages for the pure integral control in dashed-dot lines, and for the reset integral control

in continuous lines, with the associated state variables ξ⊥.
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Figure 4.3 – Output voltages and the corresponding ξ⊥

Notice that in both cases the switching strategy successfully brought the output

voltage vo(t) to 120 [V] as desired, even during the intervals where the system suffered pertur-

bations. Also, it is noticeable that the simple reset action proposed in (Clegg, 1958) reduced

considerably the overshoot and the settling time. The literature provides other reset strategies,

which could be more efficient for the present case, see (Beerens et al., 2019; Zhao; Wang, 2016)

as some examples. However, this point is not our focus at this moment and a deep study about

reset techniques will be left for future work. Figure 4.4 presents the a and b phase currents, only

for the reset integral control, with a highlight showing that they converge to the reference cur-

rent presented in dashed line. The associated switching function is also presented in the same

figure with a highlight in the transient response.
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Figure 4.4 – Phase currents (a and b) and the corresponding switching function

4.3 Final Considerations

In this chapter, the conditions obtained in Chapter 3 were applied in an AC-DC

power converter, whose dynamic model was borrowed from (Egidio et al., 2020). The design

conditions have been described as the solution of a simple Lyapunov equation and were efficient

to ensure DC output voltage regulation and unitary power factor. Also, the guaranteed cost

obtained was lower than the one provided by (Egidio et al., 2020), which puts in evidence that

the new conditions are in fact less conservative. Furthermore, we illustrated the efficacy of the

switching rule with integral action by changing the nominal value of R0 and showing that the

switching rule was still capable of ensure asymptotic stability to same trajectory of interest.
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5 ELECTRIC MACHINES APPLICATIONS

In this chapter, the theoretical results proposed in Chapter 3 will be specialized

to cope with the control of a permanent magnet synchronous machine (PMSM). Differently

from the previously studied AC-DC power converter, where θ was an exogenous parameter,

here it is state-dependent making the switched system highly nonlinear and more complicated

to obtain the design conditions. A corollary based on the general conditions of Theorem 3.1

provides design conditions that ensure local asymptotic stability of a trajectory of interest for

the PMSM. The obtained results are also available in (Deaecto et al., 2022) and are compared

to the ones of the recent reference (Egidio et al., 2022a), that treats the same problem but using

a simpler Lyapunov condition. An experimental arrangement was elaborated to validate the

control methodology and to show its efficiency with respect to others available in the literature.

5.1 Three-Phase PMSM

Consider the three-phase permanent magnet synchronous machine with np pairs of

poles depicted in Figure 5.1 and borrowed from (Egidio et al., 2019) and (Egidio et al., 2022a).

Its dynamic model is described by the following switched system

ẋ(t) = A(θ(t))x(t) + bσ(t), x(0) = x0 (5.1)

θ̇(t) = npωM(t), θ(0) = θ0 (5.2)

where x(t) = [iϕ(t)
′ ωM(t)]′ ∈ R4 is the state with iϕ(t) = [ia(t) ib(t) ic(t)]

′ ∈ R3 and the pair

(A(θ), bi) is given by

A(θ)=

−(RL/L)I3 −λMf(θ)/L

λMf(θ)
′/JM −cM/JM

, bi=
 VdcSi/L

−τM/JM

 (5.3)

where RL and L are the resistance and the equivalent inductance per phase, respectively, JM is

the rotor moment of inertia, λM is the peak value of the mutual flux linkage, cM is the viscous

friction coefficient and τM is the external constant torque. In this case, θM(t) is the shaft angular

displacement of the machine and ωM(t) is its correspondent angular velocity. According to

(5.2), its relationship with the electrical angle θ is θM = θ/np. Let us define θ̇(t) = ω(t) which

naturally is not constant and must belong to the set ΘD defined in (3.2).
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Figure 5.1 – PMSM and inverter schematic

Table 5.1 – Switching function σ, switches state and vector Si

σ sw1 sw2 sw3 S ′
σ

1 0 0 1 [ -1/3 -1/3 2/3]
2 0 1 0 [ -1/3 2/3 -1/3 ]
3 0 1 1 [ -2/3 1/3 1/3 ]
4 1 0 0 [ 2/3 -1/3 -1/3 ]
5 1 0 1 [ 1/3 -2/3 1/3 ]
6 1 1 0 [1/3 1/3 -2/3 ]

7
1 1 1

[0 0 0]
0 0 0

The functions f(θ) and g(θ) are the same adopted in the previous chapter and will

be repeated for convenience

f(θ) =


sin(θ)

sin(θ − 2π/3)

sin(θ − 4π/3)

 , g(θ) =


cos(θ)

cos(θ − 2π/3)

cos(θ − 4π/3)

 (5.4)

Notice that they satisfy the properties (4.2) and (4.3) that will be also useful in this chapter. The

switching signal σ(t) ∈ K = {1, . . . , 7} and the vectors Si ∈ R3, i ∈ K, take values according

to Table 5.1.

Notice that, the parameter θ is state-dependent because it is obtained from rotational

velocity ωM(t) in (5.2), which is one of the state variables. This case is more intricate than the

one of the AC-DC converter, since the dependence of θ with respect to the state ωM makes the

PMSM model highly nonlinear. Moreover, unlike the converter, the parameter θ appears only in

the dynamic matrix A(θ) while the switching signal appears only in the affine term bσ. Again,

let us adopt the matrix

R(θ) =

√2/3f(θ)
√

2/3g(θ)
√
1/3h 0

0 0 0 1

 (5.5)
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which satisfies the properties (3.6) with

Ω(ω) =


0 −ω 0 0

ω 0 0 0

0 0 0 0

0 0 0 0

 (5.6)

The equilibrium trajectory is of the form

xe(t, θ) =

i∗(t)f(θ(t))
ωM∗(t)

 (5.7)

where the main goal is to track a pre-defined rotational velocity profile ωM∗(t) with a compatible

current reference iϕ∗(t) = i∗(t)f(θ(t)). The next corollary particularizes the result of Theorem

3.1 to cope with this more intricate problem, where the switched system (3.3) is nonlinear and

the reference trajectory (5.7) is time-dependent and more general than the one considered in

(4.8) for the AC-DC converter.

Corollary 5.1. Consider the switched affine system (5.1)-(5.2) defined by matrices (5.3), the

matrix-valued function R(θ) given in (5.5) with the associated matrix Ω(ω) given in (5.6) and

let 0 ≤ Q ∈ M be given. The current trajectory iϕ∗(t) = i∗(t)f(θ(t)) where

i∗(t) =
2(cMωM∗(t) + JM ω̇M∗(t) + τM)

3λM
(5.8)

with ωM∗(t) being a desired rotational velocity profile belonging, pointwise in time, to the set

C∗=
{
ωM :∆(ωM)′(ψψ′+κ2φφ′)∆(ωM)≤ 3(λMVdc)

2

4

}
(5.9)

where κ = max{|ω|, |ω|} and

ψ=
[
RLcM+3λ2M/2 JMRL+LcM JML RL

]′
(5.10)

φ=
[
LcM JML 0 L

]′
(5.11)

∆(ωM)=
[
ωM ω̇M ω̈M τM

]′
(5.12)

allow the system (5.1)-(5.2) to satisfy the assumptions (3.8)-(3.9) with matrix

AR =


−RL/L 0 0 −γ/L

0 −RL/L 0 0

0 0 −RL/L 0

γ/JM 0 0 −cM/JM

 (5.13)
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with γ =
√
6λM/2. If there exists a matrix PR > 0 solution to the linear matrix inequalities

(3.15)-(3.16) then the switching function σ(t) = u(ξ(t), t, θ(t), ω(t)) with

u(ξ, t, θ, ω) = argmin
i∈K

ξ′P (θ)bi (5.14)

ensures the asymptotic stability of the origin ξ = 0 whenever ω(t) ∈ ΘD and satisfies the

inequality (3.17) with Y = R(θ0)
′ξ0ξ

′
0R(θ0).

Proof. The proof follows the same reasoning of Corollary 4.1 and, therefore, will be presented

in general lines. It consists in showing that the equilibrium trajectory xe(t, θ), with i∗(t) given

in (5.8) and ω∗(t) satisfying (5.9), together with Aλ(θ), with AR given in (5.13), ensure that the

assumptions (3.8)-(3.9) hold. The other conditions follow directly from the validity of Theorem

3.1. Notice that, as the dynamic matrix is independent of σ, the assumption (3.9) is directly

verified by using AR given in (5.13). To check the assumption (3.8) recall that the vectors

Si,∀i ∈ K, form the vertices of the regular hexagon P defined in (4.16), which is in the same

plane Π of f(θ) and g(θ). Using the equilibrium trajectory xe(t, θ) given in (5.7), we have

ℓλ=

 −ϑ(t, θ)f(θ)/L−ωi∗g(θ)+(Vdc/L)Sλ(θ)

3λM i∗/(2JM)−cMωM∗/JM−ω̇M∗−τM/JM

 (5.15)

where ϑ(t) = RLi∗ + λMωM∗ + Ldi∗/dt and it was omitted the dependence of ℓλ with respect

to (t, θ, ω). Notice that i∗(t) given in (5.8) makes null the second row of (5.15), while the first

row is null whenever we choose λ(t, θ, ω) ∈ Λ such that

Sλ =
ϑ(t, θ)

Vdc
f(θ) +

Lωi∗
Vdc

g(θ) (5.16)

This vector belongs to the same plane Π of the hexagon P. Hence, for all t ≥ 0, θ ∈ ΘP

and ω ∈ ΘD, it is always possible to find a convex combination λ(t, θ, ω) ∈ Λ for which the

identity (5.16) holds, if Sλ belongs to F defined in (4.19), with r = 1/
√
2 being the radius

of the greatest circumference inside the hexagon P and centered at the origin. Notice that

∥Sλ∥2 = 3(a21 + a2ω
2)/2 for all ω ∈ ΘD with a1 = ϑ(t, ω)/Vdc and a2 = Li∗/Vdc. Thus, after

replacing (5.8) in (5.16), we have that ∥Sλ∥2ω=κ ≤ 1/2 for all ω ∈ ΘD whenever ωM∗(t) belongs

to the set C∗ given in (5.9). The switching function follows from (3.14) after taking into account

that A(θ) is index independent and the guaranteed cost is the same provided in Theorem 3.1

concluding thus the proof.

Notice that differently from the AC-DC converter where the asymptotic tracking is

global, in this case it is valid only in the region where ω(t) = npωM(t), dependent on fourth state
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Table 5.2 – PMSM parameters

RL 2.19Ω
L 8.1 mH
λM 6.02× 10−2 V.s/rad
cM 4.16× 10−4 N.m.s/rad
τM 7.90× 10−3 V
JM 3.71× 10−4kg.m2

Vdc 100 V

component, is inside the set ΘD. A theoretical guarantee that ω(t) does not leave ΘD is provided

in the recent reference (Egidio et al., 2022a), which treats the same problem but by means of

conditions based on a less general Lyapunov function. These two control methodologies will

be compared afterward by means of experimental results.

5.2 Experimental Results

In this section, the theoretical results are illustrated through the control of a perma-

nent magnet synchronous machine with four pair of poles np = 4 fed by a voltage source in-

verter as presented in Figure 5.1. The numerical parameters were identified and are shown in Ta-

ble 5.2. The designed switching function was embedded in a Texas Instruments TMS320F28069

microcontroller (MCU) and a dead time of 1µs was considered for operating each pair of

switches. The motor used in the experiment was the Estun EMJ-04APB24 and a propeller with

50.8 cm of diameter was coupled to its shaft. The phase currents were measured through shunt

resistors and data were acquired by analog-to-digital converters and quadrature encoder pulse

modules. To measure rotational velocity and displacement, an attached incremental encoder

with 2,500 pulses per rotation was used. Its signal was filtered by a first order Butterworth filter

with cutoff frequency ωc = 4,000 rad/s and discretized through the bilinear transformation. A

photo of the experimental arrangement is presented in Figure 5.2.

The experiment will illustrate the asymptotic tracking of two pre-defined trajectory

profiles ensuring a suitable guaranteed cost. It was considered that the set ΘD in (3.2) is defined

with |θ̇| < κ = 800 rad/s which is equivalent to have a angular velocity constrained to the set

|ωM | < 200 rad/s. We have used a control frequency of 40 kHz, which is enough to make all

the calculations needed for the switching rule implementation in the time interval between two

control interruptions. Moreover, this frequency is sufficiently high to allow that the switching

function be implemented under a continuous-time perspective. We have solved the conditions
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Figure 5.2 – Experimental arrangement

of Corollary 5.1 with the objective function (4.20), adopted previously in the control of the

AC-DC converter, but subject to (3.15)-(3.16). As mentioned just after (4.20), the reason for

adopting this function is to make the control design independent of the system initial condition

x(0). Adopting Q = diag(I3, 1), we have obtained a guaranteed cost of J < 7.3846 associated

to

PR =


2.4032 0.0000 0 0.0532

0.0000 4.6439 0 −0.0000

0 0 0.0020 0

0.0532 −0.0000 0 0.3356

 (5.17)

important to implement the switching function (5.14). Solving the same problem but with the

design conditions proposed in Theorem 3 of reference (Egidio et al., 2022a), we have obtained

a guaranteed cost of J < 14.2657, which is 93% greater than the one resulting from the Corol-

lary 5.1, which indicates that the results here proposed are not more conservative. We have

implemented the switching function (5.14) for two different rotational velocity profiles that sat-

isfy, pointwise in time, the condition (5.9). The second profile present some discontinuities that
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Figure 5.3 – Experimental and simulated angular velocity and a and b phase currents for ω∗ =
100 rad/s

can be viewed as new initial conditions for the remaining reference trajectory, see (Egidio et al.,

2022a) for a discussion about this point.

The first profile consists in a step reference of ω∗(t) = 100 rad/s used to validate

the identified model and for the sake of comparison. The first plot of Figure 5.3 shows in solid

lines the measurement of the angular velocity ω(t) obtained through the experimental set with

its correspondent simulation, both resulting from the switching function of Corollary 5.1 with

PR given in (5.17). It is possible to observe that the responses are very close and the angular

velocity ω(t) has reached ω∗(t) as expected, validating the model and the proposed control

technique. In the same figure, the angular velocity obtained by simulation from (Egidio et
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Figure 5.4 – Experimental velocity for a time-varying reference profile

al., 2022a) is presented in dot-dashed line. It is noticeable that with the switching rule (5.14)

of Corollary 5.1, the convergence to ω∗(t) is faster. The second and third plots of Figure 5.3

present the associated a and b phase currents for the technique of Corollary 5.1 together with

the associated reference current iϕ∗(t), showing that it is indeed reached as expected.

In the second profile, a time-varying velocity trajectory composed of a sinusoid and

successive ramps has been considered. Figure 5.4 shows in the first plot the measurement of

the angular velocity ω(t) and the adopted reference ω∗(t) in solid and dotted lines, respectively,

and in the second and third plots the correspondent measurements of the a and b phase currents.

Notice that the desired profile was tracked as expected and, compared to the step reference, the

peak currents were attenuated leading to a smoother transient response.
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5.3 Computational Analysis

The proposed switching rule was embedded in a Texas Instrument (TI) microcon-

troller through the software Code Composer Studio 9.0 that is an integrated development en-

vironment that supports TI’s microcontrollers. As this rule was designed to operate in an arbi-

trarily high switching frequency, which is not possible in practical implementations, an effort

had to be made to reduce the number of calculations allowing a control frequency as close as

possible to the ideal one. The control frequency of 40 kHz was the one adopted for this practi-

cal application and was considered high enough to obtain results near the theoretical ones. For

this purpose, it is imperative to embed a switching function less computational demanding than

(5.14). In fact, we have that

σ(ξ) = argmin
i∈K

ξ′RθPRR
′
θbi

= argmin
i∈K

ξ′

R̂θP̂RR̂
′
θ

d̂′RR̂
′
θ

Si (5.18)

where R̂θ ∈ R3×3 and P̂R ∈ R3×3 are given by

R̂θ =
[√

2
3
f(θ)

√
2
3
g(θ)

√
1
3
h
]
, PR =

P̂R d̂R

d̂′R q̂R

 (5.19)

with R̂θ obtained from (5.6). The second equality in (5.18) can be still simplified to the equiva-

lent form

σ(ξ) = argmin
i∈K

ξ′rMiν(θ) (5.20)

where vector ν(θ) = [sin(θ) cos(θ) 2 sin(θ) cos(θ) (1 − 2 sin2(θ)) 1]′ and ξr is obtained

from ξ without its third component, because it was used the fact that ic = −ia − ib. After

some algebraic manipulations and using the trigonometric identities, we have obtained that the

constant matrix Mi ∈ R3×5 is given by

Mi = TL



∑3
j=1 p1jSij

∑3
j=1(m1j + n1j)Sij∑3

j=1 p2jSij

∑3
j=1(m2j + n2j)Sij∑3

j=1 p3jSij

∑3
j=1(m3j + n3j)Sij∑3

j=1(d̂R1rj + d̂R2uj)Sij 0

TR (5.21)
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with matrices TL and TR defined as

TL =


1 0 −1 0

0 1 −1 0

0 0 0 1

 , TR =



1 0 0 0 0

0 1 0 0 0

0 0 0 −1/2 1/2

0 0 0 1/2 1/2

0 0 1/2 0 0


(5.22)

At this point, it is important to make some remarks about the notation. The symbols in boldface

represents matrices whose elements are vectors, as for instance, mij ∈ R1×3 denotes the vector

of dimension R1×3 placed in position (i, j) of matrix m ∈ R3×9. The same reasoning is valid

for the other matrices and the dimension of each element-vector will be clear afterward together

with its definition. The notation Ggij = Gg(i, j) corresponds to the scalar placed in the position

(i, j) of matrix Gg, and for the vectors Sij represents the j-th component of the vector Si. The

same reasoning is adopted for the other matrices and vectors.

Thus, the vectors mij ∈ R1×3 and nij ∈ R1×3 are defined by

mij =
[
Gfj1Gai1 Gfj2Gai2 Gfj2Gai1 +Gfj1Gai2

]
(5.23)

and

nij =
[
Ggj1Gbi1 Ggj2Gbi2 Ggj2Gbi1 +Ggj1Gbi2

]
(5.24)

respectively, for all i, j = 1, 2, 3, with

[
Gf Gg

]
=

√
2

3


1 0 0 1

−1/2 −
√
3/2

√
3/2 −1/2

−1/2
√
3/2 −

√
3/2 −1/2

 (5.25)

and Ga = P̂R11Gf + P̂R21Gg, Gb = P̂R12Gf + P̂R22Gg and Gc = P̂R13Gf + P̂R23Gg matrices

of order 3 × 2. The vectors rj ∈ R1×2 and uj ∈ R1×2 are formed by rows of Gf and Gg,

respectively. They compose the associated matrices r ∈ R3×2 and u ∈ R3×2 and are defined of

the following form

rj = e′jGf , uj = e′jGg (5.26)

with ej being the j-th column of the third order identity matrix. Lastly, the element-vector

pij ∈ R1×2 composes the matrix p ∈ R3×6 and is defined as

pij =
(
e′iGc + e′j

(
P̂R31Gf + P̂R32Gg

))
/
√
3 (5.27)

The switching rule (5.20) is equivalent to (5.14) but computationally more efficient in terms of

computational effort and, therefore, it was used in all the experimental essays.
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5.4 Final Considerations

In this chapter, the theoretical results presented in Chapter 3 were specialized to

cope with the control of a Permanent Magnet Synchronous Machine. The method proved to be

effective ensuring asymptotic tracking of a desired trajectory and the conditions were less con-

servative than the ones proposed in (Egidio et al., 2022a), presenting a lower guaranteed cost.

An experimental arrangement was elaborated to validate the designed switching rule, which

was simplified to become more efficient in terms of required computational effort, allowing

higher switching frequency. The obtained measures were coincident with the simulation re-

sults, validating the experimental identified model. Also, the transient response put in evidence

that the performance of this present control methodology overcomes the one obtained by the

recent control technique proposed in (Egidio et al., 2022a).
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6 CONCLUSIONS

During the course of this work, two techniques to the control of switched systems,

whose dynamic matrices vary periodically with a parameter θ, were developed. The nature of

this parameter allowed us to treat, with the same control methodology, two classes of systems:

the parameter-dependent switched affine system, when θ is exogenous, and the more challeng-

ing one, the nonlinear switched system, when it is state-dependent. First, a general switching

rule was proposed to deal with the trajectory tracking problem ensuring a guaranteed cost of

performance. Additionally, as this switching rule is sensitive to model uncertainties, another

one with integral action was proposed to give robustness to the model. The design conditions

for this last were more difficult to be obtained, since the associated dynamic matrix is rank de-

ficient and the negative-definiteness of the time-derivative of the Lyapunov function is ensured

only through conditions under the affine terms. Due to its complexity, the control with integral

action is constrained to systems where θ̇ is constant and does not admit a quadratic performance

index. All the obtained design conditions were expressed in terms of linear matrix inequalities,

being simple to solve using off-the-shelf algorithms.

Further, the obtained control methodologies were applied in a three-phase AC-DC

power converter, where θ is an exogenous parameter and represents the electrical angle of the

converter. For this case, the design conditions ensured global asymptotic tracking with effective

output voltage regulation and unitary power factor. The resulting guaranteed cost was smaller

than the one obtained by the control technique of (Egidio et al., 2020), putting in evidence

that the conditions developed in this work are in fact less conservative. The control with inte-

gral action has successfully accomplished the task of assuring trajectory tracking of the system

subjected to model uncertainties. The effectiveness of the solutions were illustrated through

computational simulations.

Lastly, a permanent magnet synchronous machine was controlled by the developed

switching function. In this case, θ is dependent on the rotational velocity of the machine, which

is one of the state variable, making the system highly nonlinear. For the nonlinear case, the pro-

posed conditions ensure local asymptotic tracking and a suitable guaranteed performance. An

experimental arrangement was elaborated and the obtained measurements were coincident with

the simulation ones validating the identified model. Moreover, the conditions also presented to
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be less conservative than the ones proposed in (Egidio et al., 2022a), providing a smaller guar-

anteed cost and a fast transient response. Some aspects on the practical implementation were

highlighted and discussed throughout the text.

About the perspectives for future work, some relevant topics are listed as follows:

• Obtain design conditions for the case where the switching frequency is bounded, making

the problem more realistic from the practical application viewpoint.

• Investigate how to include control with integral to the case where θ is state-dependent

and, as a consequence, the switched system is nonlinear.

• Propose a performance index, not necessarily quadratic, to the control with integral action

of switched affine systems. This topic is important even for the simpler case where the

dynamic matrices are constant.
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