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Abstract

In this paper we present a Clifford bundle approach to the geometry of a general
Riemann-Cartan-Weyl space (RCWS). In our formulation, the so-called Dirac opera-
tors play a fundamental role. We first introduce one these operators in the context of
a Riemannian space, calling it the fundamental Dirac operator (#). We show, among
other important results, that the fundamental Dirac operator can be written 3 = d—§,
where d and § are the familiar exterior derivative operator and the Hodge codifferen-
tial acting on sections of the Hodge bundle (interpreted as embedded in the Clifford
bundle). In connection with the fundamental Dirac operator, we introduce the con-
cepts of Dirac commutator and anticommutator and we investigate their geometrical
interpretation. With the theory of the symmetric automorphisms of a Clifford algebra
we introduce infinitely many other Dirac-like operators, one for each nondegenerate
bilinear form field that can be defined on the metric manifold M. We introduce also
the concepts of Ricei and Einstein operators which are useful for intrinsic formulations
of Einstein’s gravitational theory. Later we generalize the fundamental Dirac operator
and the Dirac commutators to a RCWS, showing their relations. In particular, we suc-
ceed in finding the correct generalization of the Hodge Laplacian to Riemann-Cartan
spaces and we identify the natural wave operator (£,) for these spaces. Apart from a
constant factor, £ is the relativistic Hamiltonian operator which generates the theory
of Markov processes of the Stochastic Mechanics. We obtain also new decompositions
of the general affine connection V defining the RCWS structure and we identify new
tensor objects. OQur findings clear many results obtained in formulations of the flat
space theory of gravitational field and of the theory of spinor fields in RCWS and sug-
gest several generalizations of these theories. This subject is discussed in two following
papers.
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1. Introduction

In this paper we give a Clifford bundle approach to the geometry of a general Riemann-
Cartan-Weyl space.

In Sec. 2 we briefly recall the mathematical concepts necessary to develop the ideas of this
work. The relation between exterior and Clifford algebras and how to work with the Clifford
product is presented. In addition, we develop the theory of the symmetric automorphisms
of a Clifford algebra, which plays an important role in our presentation, since it permits the
definition of new Clifford products starting from a given one. Finally, we present in this
section the relation between Cartan, Hodge and Clifford bundles and we recall Cartan’s
formulation of the differential geometry, extending it to a general Riemann-Cartan-Weyl
space (hereafter denoted RCWS).

In Sec. 3 we formulate the geometry of a RCWS in the Clifford bundle [C£(M)]. Here
we introduce the concept of the fundamental Dirac operator & (related to the Levi-Civita
connection D of an oriented Riemannian space with metric v (M = (M, D,v)). Using this
operator, we define the concepts of fundamental Dirac commutator and anticommutator
and we discuss the very interesting geometrical meaning of these operators. In addition,
using the theory of the symmetric automorphisms (Sec. 2), we introduce infinitely many
other Dirac-like operators, one for each nondegenerate symmetric bilinear form field which
can be defined on the metric manifold M. We study relations between these operators and
the fundamental Dirac operator.

Subsequently, we introduce the Dirac operator @ of a general RCWS. This operator is
related to the general affine connection V defining the RCWS structure. We then introduce
the analogous of the concepts of Dirac commutator and anticommutator for 8 and explore
their geometrical meaning. In particular, the fundamental Dirac commutator permits us
to give the structure of a Lie algebra to the cotangent bundle, in analogy to the way that
the bracket of vector fields defines a Lie algebra structure for the tangent bundle (the
coefficients of the fundamental Dirac anticommutator—called the Killing coefficients—are
related to the Lie derivative of the metric by a very interesting relation [Eq. 52]).

We obtain new decompositions of the general connection V, exhibiting some tensor
quantities which have not been identified in the literature. Qur results sheds a new light on
the flat space formulations of the theory of the gravitational field and on the theory of spinor
fields in RCWS. The discussion of these subject will be presented in other publications.

Finally we study the square of the Dirac operator & in a Riemann-Cartan space. We
succeed to determine the correct generalization of the Hodge Laplacian in such spaces,
thereby identifying a wave operator £, that (appart from a constant factor) is the rela-
tivistic Hamiltonian operator that describes the theory of Markov processes, as described
recently by Rapoport.Il] Applications of the mathematical concepts developed here to the
gravitational theory and to the theory of spinor fields in RCWS will be presented in two
following papers.[? (See also (4]

2. Mathematical Preliminaries

In this section we briefly recall some mathematical concepts necessary to develop the
ideas of this work.



2.1. Exterior and Clifford Algebras
a. Exterior and Grassmann Algebras

Let V be an n-dimensional real vector space, V* its dual space, T"V the space of the
r-contravariant tensors over V (r > 0, T°V = IR, T'V = V) and let TV be the tensor
algebra of V.

We define the ezterior algebra of V as the quotient algebra

TV
AV="5"

where J C TV is the bilateral ideal in TV generated by the elements of the form u@v+v®u,
with u,v € V. The elements of AV will be called multivectors, or multiforms if V is the
dual of some previously specified vector space.

Let p: TV — AV be the canonical projection of TV onto AV. Multiplication in AV will
be denoted as usually by A : AV — AV and called ezterior product. We have

AAB=p(A® B), (1)

for every A,B € AV, where ® : TV — TV is the usual tensor product.

We recall that AV is a 2"-dimensional associative algebra with unity. In addition, it is
a Z-graded algebra, i.e.,

AV = ATV,
r=0
with
ATV A AV C ATHY,
r,s > 0, where A"V = p(T"V) is the (7 )-dimensional subspace of the r-vectors on V.
(A% =IR; AW = V; A"V = {0} if r > n) If A € A"V for some fixed r (r = 0,...,n), then
A is said to be homogeneous. For any such multivectors we have:

AAB=(-1)"BAA, (2)

AeANV, Be AV,
We recall also that any endomorphism % : V — V can be extended in unique way to a
homomorphism Ay : AV — AV, satisfying:

Apop = poyp. (3)

The restriction of this map to the subspace A"V is denoted A"¢ : A"V — A"V and it is
called the r-th exterior power of the map . We have:

A"Y(ur Ao A ) = () A A P(u,), (4)

for every u1,...,u, € V. In particular, A% = 1 is the identity map of IR, for any .

Now let us suppose that V is a metric vector space, that is, it is endowed with a non-
degenerate metric tensor vy € T2V* of signature (p,q). We can use this metric tensor to
induce an scalar product {, ) : AV x AV — R on AV, by letting

(A, B) = det(y(ui,v;)), (5)
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for homogeneous multivectors A = yy A...Au, € A"V and B = 1 A...Av, € A"V,
u;,v; € V, i =1,...,r. This scalar product is extended to all of AV due to linearity and
orthogonality ({(A,B) = 0if A € A"V,B € A°V, r # 3). The algebra AV endowed with this
internal product is called the Grassmann algebra of V and it will be denoted by A(V, 7).

If the metric vector space (V,v) is also endowed with an orientation, i.e., a volume
n-vector T € A™V such that

(T’T) = (_1):;’ (6)

then we can still introduce a natural isomorphism between the spaces A"V and A"V (r =
0,...,n), called Hodge star operator (or Hodge dual) and denoted by * : A"V — A"V,
We have:

AAxB = {A,B)T, )

for every A,B € A"V. Of course, this operator is naturally extended to an isomorphism
* : AV — AV by linearity. The inverse *~! : A" "V — A"V of the Hodge star operator is
given by:

« 1= (=1)" " "ggn 3 &,

where sgn ¥ = 5/|7| denotes the sign of the determinant 5 = det(y,z).

b. Clifford Algebras

The Clifford algebra CE(V,~) of a metric vector space (V,7) is defined as the quotient

algebra!
Cl(V,7) = 1;,—V ;
¥

where J, C T'V is the bilateral ideal of TV generated by the elements of the form u ® v +
v ® u — 2y(u,v), with u,v € V C TV. Clifford algebras generated by symmetric bilinear
forms are sometimes referred as orthogonal, in order to be distinguished from the symplectic
Clifford algebras, which are generated by skew-symmetric bilinear forms. (See, e.g., [7].)

Let p, : TV — C{(V,v) be the natural projection of TV onto the quotient algebra
Cl(V,~). Multiplication in Cé(V,~) will be denoted as usually by juxtaposition and called
Clifford product. We have:

AB = p,(A® B), (8)

A,B € Cl(V,7). The subspaces IR,V C TV are identified with their images in Ce(V,7).
Then, in particular, for u,v € V C C{(V,v), we have:

uv + vu = 27(u, v).

Note that since the ideal J, C T'V is inhomogeneous, of even grade, it induces a parity
grading in the algebra C{(V,7), i.e.,

CUV,7) = C*(V,7) & CE~(V,7),

!For other possible definitions of Clifford algebras see, e.g., [5,6]. Here we shall be concerned only with
Clifford algebras over real vector spaces, induced by nondegenerate bilinear forms.



with

Cr(Vir) = p(EPTV)
r=0

G (V1) = pPTHV).
r=0

The elements of C¢*(V,v) form a subalgebra of C¢(V,v), called even subalgebra of CE(V,7).
We quote now a fundamental theorem concerning real Clifford algebras:[?

Universality of Cl(V,v)|If A is a real associative algebra with unity, then each linear
mapping ¥ : V — A such that:

($(w))* = v(u,u)

for every u € V, can be extended in a unique way to a homomorphism Cy, : CE(V,v) — A,
satisfying the relation:

Y = Cyops.

It follows from this result that if (V,v) and (V’,7') are two metric vector spaces and
% :V — V' is a linear mapping satisfying:

'Tf("x[)(u)s ¢(v)) = T(H’v) (9)

for every u,v € V, then there exists a homomorphism C,, : C{(V,v) — C{(V',v') between
their Clifford algebras such that:

Cyopy = py oy (10)

Moreover, if (V,7) and (V',7’) are metrically isomorphic? vector spaces, then their Clifford
algebras are isomorphic. In particular, two Clifford algebras C¢(V,y) and CE(V,v') with
the same underlying vector space V are isomorphic if and only if the bilinear forms v and
4" which induce them have the same signature. Therefore, there is essentially one Clifford
algebra for each signature on a given vector space V. We denote by C¥, ,, p + ¢ = n, the
Clifford algebra of the vector space IR" endowed with a metric tensor of signature (p, ¢).

Another important (indirect) consequence of the universality is that C(V, ) is isomor-
phic, as a vector space over IR, to the Grassmann algebra A(V,v). It is, then, 2"-dimensional
and given A € C¥(V,7) we can write:

A=34A), (1)

r=0

with (A), € A"V C GV, 7).
The elements of C{(V,~) will also be called multivectors (or multiforms, depending on
V). Furthermore, if A = (A), for some fixed 7, we say that A is homogeneous of grade r.

2We call metric isomorphism a vector space isomorphism satisfying Eq. 9. The term isometry will be
reserved to designate a metric isomorphism from a space onto itself.



In this case, we also write A = A, € A"V C C{(V,v). The Clifford product of homogeneous
multivectors A,, B, € C{(V,~) is given by the relation:

A.B, = (ArBs)|r—s| + (ArBs)[r-—s|+2 o T o (ArBs>r+s = Z(ATBS)|r—s|+2k5 (12)
k=0

where m = 3(r + s — |r — ).
We can introduce in C{(V,v) the following fundamental products: (cf. Hestenes!®))

IDot productl - CYV,v) x C{V,v) — CE(V,7), defined, for homogeneous multivec-
tors, by

A By = (A:B)yy- (13)

[Exterior product | A : ClV,7y) x CEV,7y) — CE(V,v), defined, for homogeneous mul-
tivectors, by

A, A By = (A By)ris. (14)

We observe that the exterior product is associative, i.e.,
AAN(BAC)=(AANB)AC=AABAC. (15)
For the dot product we have only the identities:

A, -(B,-C¢)= (A, ANBy)-C; for r+s<t, r,s>0

. 16
Ay - (Bs-Ci)=(A;-B,):Cy for r+t<s. (16)

We can still introduce in the algebra Ci(V,v) the main automorphism * : C{(V,y) —
C¢(V,v); the main antiautomorphism (reversion) ' : C{(V,v) — C¢(V,7v) and the conjuga-
tion": C¢(V,v) — CE(V,7), given respectively by:

(AB)* = A*B~,
(AB)' = B'A', (17)
A= (A",
for every A,B e Cl(V,7y),with A= AifAeR,A*=-AifAeVand A'=AifAeR
orAeV.

We present below some useful identities satisfied by the operations introduced above,
which are valid for every a,ay,...,a, €V, A, € ATV, B, € A°V, r,s > 0: (see [8])

(A7), = (4)," = (=1)(4),

(AN = (A)! = (-1yUD3(a),

A.-B,=(-1)y"VB,.A; r<s

Ar A Bs = (~1)°B; A Ay

a-A, = %(aAr —(=1)Asa); aAA,= %(aAr + (1) Ara)
aAr=a-Ar+aAA; Ara=A4Ar-a+ A Aa (18)



&- (ATBS} = (& B Ar}Bs + (“I)PAQ-(& C Bs)
= (aA A })Bs;—(—1) A(a A B;)

eA(A.B;} = (aAA)B,—(-1V 4 (a-B,)
= {a-A4;)B;+(-1)A(a A B,)

T
e-(ar...a:) =Y (-1)*"e-ar(a; ... cx_18k41--.ar)
=1

T
g-{arA...Aa;) = Z(——l}kﬂa-ak(a;l\.“!\ab_l Agrg Ao Aa)
k=1

We note in addition that the Clifford interior product of multivectors with the same grad-
uation is related to the Grassmann interior product by:

{A:, B:) = Al - B, (19)

for every A,,B, € A"V C CU(V,7),v > 0.
If the metric vector space (V, 7} is oriented, then we can also extend the Hodge star
operator to the Clifford algebra of V, by letting * : C{(V,v) — C¥(V,v) be given by:

£ A=) +(4),. (20)

This operator satisfies, for every A, € A"V and B; € AV, r,s > 0:

A AxB; =B, A%A;; v=3s

A -«B; = B,-%xA;; r+s=n

A, A*B, = (=1 «(AL-B,); r<s
Ar B, =(-1)"*(AlAB,); r+s<n
A, = Al-T=AlT

*T=sgn¥; x1=7T

(21)

c. Symmetric Automorphisms and Orthogonal Clifford Products

Besides the “natural” Clifford product of C{(V,v), we can introduce infinitely many
other Clifford-like products on this same algebra, one for each symmetric automorphism of
its underlying vector space. In what follows we are going to construct such new Clifford
products, which will play an important role in the theory to be developed subsequently.®

First of all, let us recall that there is a one-to-one correspondence between the endomor-
phisms of (V,7) and the bilinear forms over V. Indeed, to each endomorphism ¢ : V = ¥
we can associate a bilinear form ¥ : V x ¥V — IR, by the relation:

¥(w,v) = 1(u,¥(v)), (22)

3This possibility of introducing different Clifford products in the same Clifford algebra was already

established by Arcuri.®! Our results passibly explains those obtained by her, but we shall not pay atteation
to this subject in this paper.




for every u,v € V. Following the Hestenes’ approach ([8], Sec. 3-7) we associate to the
bilinear form ¥ a “dot product” of vectors in the algebra C{(V,v), by letting

wev=V¥(u,v)=u-P(v) (23)

for every u,v € V C C{(V, 7).

An endomorphism ¥ : V — V is said to be symmetric or skew-symmetric whether
its associated bilinear form ¥ is, respectively, symmetric or skew-symmetric. In the more
general case we can write a bilinear form ¥ as:

=0, +0_,

with ¥yi(u,v) = %(‘Il(u, v) £ ¥(v,u)), for every u,v € V. Then, correspondently, its asso-
ciated endomorphism % will be written as the sum of a symmetric and a skew-symmetric
endomorphism, i.e.,
Y= 'Irf)-&- + ¢,

with ¥4,9¥_ : V — V standing for the endomorphisms associated to the bilinear forms ¥
and ¥._, respectively.

If ¥ = ¢4 is a symmetric automorphism (nonsingular endomorphism) of (V,7), the
bilinear form ¥ associated to it has all the properties of a metric tensor on V, and it can
be used to define a new Clifford algebra structure C{(V, V). It can be easily proved that

Cl(V,¥) will be isomorphic to the original Clifford algebra Cf(V,7) if and only if there
exists an automorphism ¥'/2 : V — V such that:

w-9(v) = $/2(w) - $/7(o), (24

for every u,v € V. Transformations satisfying this relation are called positive and /2 is
sometimes called the “square root” of #. It can be easily proved (see below) that every
positive symmetric transformation possesses at most 2n square roots, all of them being
symmetric transformations, but only one being itself positive.

If Eq. 24 is satisfied, we can reproduce the Clifford product of C{(V, ¥) into the algebra
CE(V,~) defining an operation V : C&(V,v) x C{V,v) — C¢V,7), by

AV B = Ay~ (A9 (A AME(B)), (25)

for every A,B € CU(V,7), where ¥~ 1/? is the inverse of the automorphism %'/? and by
abuse of notation we have written A9!/2 : C¢(V,v) > AV — AV ~ C{(V,~) for the mapping
defined according to Eq. 3. In particular, if u,v € V C C{(V,v) are vectors, then

uVv=uev+uAuv.

In addition, the product V : C{(V,v) x C{(V,v) — CE(V,~v) satisfies all the properties of
a Clifford product which we have stated previously. Indeed, denoting by  : C{(V,v) x
ClV,v) — CE(V,~v) the “dot product” induced by V : C&(V,v) x C{V,v) — C{V,v), i.e.,

A°B= Y (AVB),_y, (26)
r,8>0

9



we obtain relations analogous to those given in the earlier section, with the usual dot product
“.” replaced by this new one.

Furthermore, if we perform a change in the volume scale by introducing another volume
n-vector Ty € A™V such that

T:Il o p=(-1)4,
then we can also define the analogous of the Hodge duality operation for this new Clifford
product, by letting % : C¢(V,v) — C€(V,v) be given by:

A; A*B, = (Al » B,)7y, (27)

for every A,,B, € A"V C C{V,v), 7 = 0,...,n. Of course, the operation introduced in
this way satisfies relations analogous to those given by Egs. 21. In addition, it is related to
the natural Hodge star operator of the algebra by:

* = A2« A2, (28)

as can be easily verified.
Let us state our results in a more operational form. For this, we recall that every linear

transformation can be expressed as composition of elementary transformations of the types
R.:V =V and S, :V — V, defined by: (see 8, Sec. 3-6)

R.(u) = —aua™

Sap(t) = u+ (u- )b, (29)

for every u € V, where a,b € V are non-zero vectors parametrizing the transformation and
e~ = afa? = a/(a - a). Transformations of the type R, are called elementary reflections.
Remember that any isometry of (V,v) can always be written as the composite of at most =
such transformations.

The skew-symmetric part of a transformation of the type “S,,” will be denoted by Slat)-
We have:

]| 1
Sapj(u) = 3 (San(u) — Spa(n)) = S (aAb), (30)

for every u € V. By its turn, the symmetric part of a transformation of the type “S,;”
will be called a strain; it is a shear in the @ A b-plane if a - b = 0, or a dilation along a, if
a A b= 0. Obviously, a dilation along a direction a can be written more simply as:

Sa(u) = u+£(u-a)%, (31)

for every u € V, where £ € IR, £ > —1, is a scalar parameter. If £ = 0, then S, is the
identity map of V, for any a € V. If £ # 0, then S, is a contraction (-1 < £ < 0) or a
dilation (£ > 0), in the direction of a, by a factor 1 + €.

Every positive symmetric transformation can always be written as the composite of
dilations along at most n orthogonal directions. To see this, it is sufficient to remember
that for any symmetric transformation ¢ we can find an orthonormal basis {a,) of V for
which (aligned indices are not to be summed over)

Y(a,) = A s

10



where A(,) € R is the eigenvalue of ¥ associated to the eigenvector a, (p = 1,...,n).
Then, defining

a
Sult) = v+ (u-au)—, (32)
m
for every u € V, with §,y = A(,) — 1, we get:
Y= 51005,

If the symmetric transformation % is in addition positive, we have a, - ¥(a,) = ¥*/*(a,)-
Pt i) = /\( )8y - @y Then, since the signature of a bilinear form is preserverd by linear
transformations (Sylvester’s law of inertia), we conclude that:

_ Wbl/z(%)'?f’l/?(%) S

Aw) = —

0.

This means that in Eq. 32, & = A — 1 > 0 and therefore it satisfies the definition
of dilation given by Eq. 31. Note also that the positive square root of ¢ is given by
P2 = 512, ... 0 §3/% with

a
S (u) = u+ uylu- %)Eg—: (33)
u
for every v € V', where () = =1+ /A)-

With these results it is trivial to give an operational form to the product defined through
Eq. 25, although eventually this may demand a great deal of algebraic manipulation.

We stress finally that although we have considered only the positive symmetric transfor-
mations in the developments above, the formalism can be adapted to more general trans-
formations. This is beyond the purposes of this paper and will be discussed elsewhere.

2.2. Cartan and Hodge Bundles

In this section, we discuss briefly the processes of differentiation taking place in Cartan
and Hodge bundles and the formulation of differential geometry in these bundles. We shall
follow basically the terminology and notation of Choquet-Bruhat.[1%

a. Cartan Bundle

Let M be a n-dimensional C'* manifold, T; M the cotangent space of M at a point
2 € M and T*M the cotangent bundle of M.

We define the Cartan bundle over the cotangent bundle of M by:

n

AT"M) = | ATz M) = | PA(T; M),
EM reM r=0

where A(T;M), =z € M, is the exterior algebra of the vector space T* M. The sub-bundle
AT (T*M) C A(T*M) given by:

N(T*M)= | A(T2M)
TeM

11



is called the r-forms bundle (r = 0,...,n).
In the Cartan bundle, we can introduce the fundamental operator d : sec(A(T*M)) —
sec(A(T"M)),* called the exterior derivative and defined by the relations:

(i) d(A+ B)=dA+dB;

(i) d(AAB)=dAAB+ A" AdB;
(i) df(w) = u(f);

(iv) d*=0,

for every A, B € sec(A(T*M)), f € F(M) and u € sec(TM).

b. Hodge Bundle

Let us consider now an oriented metric manifold M = (M,v,7), i.e., we endow M with
a nondegenerate metric tensor field y € sec(TZM) of signature (p,q) and with a volume
n-form field 7 € sec(A"T*M ). We denote by v~ € sec( T9 M) the reciprocal of the metric
tensor v and by ( , ) : sec(A(TM)) X sec(A(T*M)) — F(M) the Grassmann product
induced on A(T*M) by the metric tensor y~!.

We call Hodge bundlie of the manifold M, to the pair:

AM) =(AT"M),(, ))-

In addition to the exterior derivative operator, we define in the Hodge bundle of M the
Hodge codifferential operator § : sec(A(T*M)) — sec(A(T*M)), given, for homogeneous
multiforms, by:

§=(-1)+"1d « (34)

We can still introduce the operator A : sec(A(T*M)) — sec(A(T*M)), called the Hodge
Laplacian, given by:®

A = —(dé + 6d). (35)

The exterior derivative, the Hodge codifferential and the Hodge Laplacian satisfy the
relations:

dd=686 =0; A= (d-6)?

dA = Ad; §A = Aé

b = (—1)tlxd; #6 = (—1)7dx
déx = x6d; *dé = dd*; *A = Ax

(36)

¢. Differential Geometry in the Cartan and Hodge Bundles

Let us now endow the oriented metric manifold M, with an arbitrary affine connection
V. The torsion and the curvature tensors of M, associated to the connection V, are given

“We denote by sec(X(M)) the space of the sections of a bundle X(M) and by F(M) the space of the
differentiable, real-valued, functions on M.

*Our definition of the Hodge Laplacian differs by a sign from the definition given by Choquet-Bruhat.[m}
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respectively by:

T(a,u,v) = a(Vyv — Vyu — [u,v]) 37)
R(w,a,u,v) = o Vyy Vypw — Vp Vyw — V[u v]w),
for every u,v,w € sec(T'M) and « € sec(T™ M), where

[u,v] = wv — vu

is the Lie bracket of the vector fields u and v.
Given an arbitrary moving frame (e,) on T M, we write:

leaseg] = cfyﬂeﬂ
Ve es = Lfge,,

where ‘-‘23 are the structure coefficients of the frame (e,) and L? ; are the connection coef-
ficients in this frame. Then,the components of the torsion and curvature tensors are given,
respectively, by:

Tos=Lop— Lga — cap

P TP p P Jo P JO o Tp (38)
R,u off = eﬂ(Lﬁp) - eB(Lau) + LaaLﬁu - LBaLau - CO!BLUJP
Now, let {(#”) be the dual frame of (e,) (i.e., 8°(es) = 8% ). Then we have:
1
6P = —-cb 6% A 0P
3Ces” N (39)

Ve 0° = =L,

and we introduce the connection 1-forms wj € sec(T*M), the torsion 2-forms ©° €
sec(A?(T™M)) and the curvature 2-forms Qj € sec(A*(T*M)), by the relations:

p_ 1P
wg = Laﬂﬂa,
1
0r = 51;*,},9“ A 6P (40)
1
Qf = SR apb® A 6°.

Multiplying Eqs. 38 by 16> A 6° and using Eqs. 39 and 40, we get the Cartan’s structure
equations:
df? = d6° +wH A 0% = ©°
dwf = dwf + Wh A = Q8
where d : sec(A(T*M)) — sec(A(T*M)) denotes the covariant exterior derivative related
to the connection V.
Since we are dealing with a metric manifold, we must complete Cartan’s structure equa-

tions with the equations stating the relation between the connection and the metric. For
this, following the usual nomenclature,111213] we write:

(41)

Qaﬁ.u = "va')'ﬁ,u = —e&(‘)(ﬁu) + 70;1];;,5‘ + V8o Lcoxu. (42)

13



and we call nonmetricity to the tensor field having these components.® Correspondently,
we introduce the nonmetricity 2-forms, by:

i |
Q’ = -éQE’amG" AG°, (43)
where Qfmﬁ] = Y**(Qopy — Qpap). Multiplying Eq. 42 by 6> A 8° and using Eq. 41a, we get:
db,=db, -winbg=9,, (44)
where (6,,) is the reciprocal frame of (6°) (i.e., 8, = 7,,8") and

2,=0,-Q,.

Eq. 44 can be used as the complement of Cartan’s structure equations for the case of a
metric manifold.

Differentiating Eqs. 41 and Eq. 44 we obtain the Bianchi identities:”

dO’ = dO*+WjA0f =QfN0°
dQ8 = dQ - QAW +WiAQE =0 (45)
dd, = do,-wlAdy=-0P A6,

Let us recall finally that any triple (M,~,V) where (v,V) is a gemetrical structure on
M such that

V=0 and T[V]#0 (46)
is called Cartan space. By another side, if

Vy#0 and T[V]=0 (47)

then (M,7,V) is called Weyl space. Finally, if torsion and nonmetricity are both null, i.e.,
if

Vy =0 and T[V] =0, (48)

then (M,~,V) is called Riemann space and the pair (v, V) is called Riemannian structure.
In addition, if torsion and nonmetricity are both non-null, then (M, v, V) is called Riemann-
Cartan- Weyl space.

For each metric tensor defined on the manifold M there exists one and only one con-
nection in the conditions of Eq. 48, which is called Levi-Civita connection of the metric
considered. With the exception of the covariant derivative associated to the Levi-Civita
connection (which will be denoted simply by D) and their coefficients (which will be de-
noted by F:ﬁ) any other quantity referring to a Riemannian structure will be denote by a
hat over its usual symbol.

®We use the notation V.i! = (Ve )i = (Vi)h,: for the components of the covariant derivative of a
tensor field t. This is not to be confused with Ve, 15" = eo(tL ), the derivative of the components of  in
the direction of e..

"To our knowledge, Eqs. 44 and 45c are not found anywhere in the literature, although they appear to
be the most natural extension of the structure equations for metric manifolds. We include Eq. 45¢ among
the Bianchi identities for completeness.
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3. Differential Geometry in the Clifford Bundle

We call Clifford bundle of the (oriented) metric manifold M = (M,~,T) to the vector
bundle:

cemy= T2 - curz g,
L TeM

where T(M) denotes the tensor bundle of M, J,-1 C T(M) is the ideal of T(M) generated
by the elements of the form o ® 8+ 3 ® a — 2v7'(a, 8), with «,8 € sec(T"M) C T(M)
and CE(T: M, ") is the Clifford algebra of the metric vector space (T M,5;). It can be
shown that:[14

CUM) = Pso, (p,q) X 4d Ry,

where Pgp, (5,q) is the principal bundle of orthonormal frames and Ad is the adjoint rep-
resentation of Spin (p,q), i.e., Ad : SO, (p,q) — Aut(IR,,), Ad: S504(p,q) — Aut(RR,,),
u — Ad,, with Adyz = uzu™,Vu € SO4(p,q),Vz € R, ,.

It can be defined in the Clifford bundle a differential operator @, here called the funda-
mental Dirac operator, which is closely related to the Levi-Civita connection of M. In what
follows we shall study this operator and subsequently we will show that it can be generalized
to connections other than the Levi-Civita, i.e., to connections defining a general Riemann-
Cartan-Weyl geometry. Moreover, making use of the results developed in Sec. 2.1.c, we
will show that it is possible to introduce infinitely many others Dirac-like operators, one
for each bilinear form field on the manifold M. These constructions will enable us to for-
mulate the geometry of Riemann-Cartan-Weyl spaces in the Clifford bundle. Some new
geometrical concepts, like the Dirac commutator and anticommutator, will be introduced
and we will present a new decomposition of a general affine connection, identifying some
new relevant tensors which are important for the clear understanding of the formulation of
the gravitational theory in flat space and other related subjects appearing in the literature.

3.1. The Fundamental Dirac Operator

a. Definition; Basic Properties

Given u € sec(T'M) and % € sec(T™M) C sec(C€(M)), consider the tensorial mapping
Y~ uDy, ¥ € sec(CLM)). Since DyJ,—1 C J3*, where J 1 is the ideal used in the def-
inition of C£(M), the notion of covariant derivative (related to the Levi-Civita connection)

pass to the quotient bundle C{(M) and we can define the fundamental Dirac operator (or
fundamental Dirac derivative)

8 = Ti(@ D).

If (#*) is a moving frame on T M, dual to the moving frame (e,) on TM, we have:
& =06 De, (49)
For A € sec(C4(M)),
OA =0%(De, Ay = 8% (DeyA) + 6% A (De, A)
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and then we define:
d-A 6% - (De,y A)
IANA = 6*A (DeaA),

I

in order to have:

=03 -+0A (50)
It is easily established that the operators @- and @A satisfy the following identities:
AAN(AANB)=(dANA)AB+A*A(dAB)

3 (A, -Bs)=(0AA,) B+ A" (8-By); r+1<s (51)
Bx = (=1)"+A; *8-= (=1)"+1IA+

In addition to these identities, we have the following fundamental result:(14:15:16]

| Proposition 1 I The fundamental Dirac derivative @ is related to the exterior derivative
d and to the Hodge codifferential § by:

d=d-3§, (52)
that is, we have dA = d and 8- = 6.
[Proof] If f is a function, d A f = 0% A De, f = ea(f)8° = df and - f = 6 - De, f = 0.

For the 1-form fields #* of a moving frame on T°M, we have d A 6* = 6% A D 0”7 =
—I2:6 NOP = —f A OP = doe.

Now, for a r-forms field w = }wa,..o. 0% A... A 0%, we get, using Eq. 5la, & Aw
L(dweyap NN ABOT gy 0, d8% ABP2 A AT+t (= 1) g, o 0% AL
0°r-1 A d6°r) = dw. Finally, using Eq. 36c and Eq. 51c, we get & - w = —dw.

a> |

Note finally that given an arbitrary coordinate moving frame (6 = dz?) on M (2” :
U— 1R, U C M, are coordinate functions), we have the following interesting relations:

1
860 = 4Ly = ——0,(\/Fir*
g/ 0.61 (_ﬁ'[ (Viamn™)

(53)
39, =Tt = ‘/ﬁ—!aa(ﬂ),

where (3,) is the dual frame of (dz*).

b. Dirac Commutator and Dirac Anticommutator
Given the 1-form fields o, 8 € sec(T*M) C sec(C{(M)), we define:

[.8] = (a-3)—-(B-0)a
{o,} = (a-0)8+(B-3)e,

where & denotes the fundamental Dirac operator of the manifold. These operations will

be called, respectively, the Dirac commutator and the Dirac anticommutator of the 1-form
fields a and 3.

(54)
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We note that we have the identities:

[, 5]
{e, 8}

- (aAB)~[(@-a)AB-an(d-B)] (55)
In(a-B)-[(@Ae)-B-a-(dAB).

it

i

The algebraic meaning of these equations is clear: they state that the Dirac commutator
and the Dirac anticommutator measure the amount by which the operators 8- = —§ and
dA = d fail to satisfy the Leibniz rule when applied, respectively, to the exterior and to the
dot product of 1-form fields.

Now, let (e,) be an arbitrary moving frame on T'M, (6°) its dual frame on T*M and
(04) the reciprocal frame of (§”). From Egs. 54 we obtain, respectively:

Egassﬁ]’ = Deagﬁ = De'gea
= (Fgﬁ . Fga )019
= Czﬁap, (56)

{0a.05} = De 05+ Degba
= (Fgﬁ +I%,)8,
= bgﬁgm (37)

where I'Y 5 are the components of the Levi-Civita connection D of v, ¢  are the structure
coefficients of the frame (e,) and we are introducing the notation b7, = I'2; + I'z,. (The
meaning of these coefficients will be discussed below.)

Clearly, Eq. 56 states that the Dirac commutator is the analogous of the Lie bracket of
vector fields. These operations have similar properties. In particular, the Dirac commutator
satisfies the Jacobi identity:

[, 18,011 + [8, [w, o]] + [w, [, 8]} = 0,

a,f,w € sec(T*M) C C4(M). Therefore it gives to the cotangent bundle of M the structure
of a Lie algebra.

The geometrical meaning of the Dirac commutator and the Dirac anticommutator is
also easily stated from Egs. 56 and 57. In fact, Eq. 56 means that the Dirac commutator
measures the amount by which the “vectors” 8, and @3 and their infinitesimal lifts along the
“integral lines” of each other fail to form a parallelogram. By its turn, Eq. 57 means that
the Dirac anticommutator measures the rate of deformation of the frame (6.): {8a, 60}
gives the rate of dilation of the field 8, under dislocations along its own integral lines,
while {8,803}, @ # 3, gives the rate of variation of the angle between 6, and 63, under
dislocations in the direction of each other.

We state now our second fundamental result:

lProposition 2] The coefficients b’;ﬁ of the Dirac anticommutator in a moving frame
(8,) are given by:

bop = —(£ep7)os) (58)
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where £ .o denotes the Lie derivative in the direction of the vector field e’ and (e’) is the
dual frame of (6,).

The coefficients I'y; of the Levi-Civita connection of y are given by: (e.g.,
Choquet-Bruhat(19)

]

12 = 37 lealrse) + ea(v0a) = €0(105)]

1
+ §TN [‘Tuac:B + VuBCoa ~ 7#0‘::,6] . (59)
Hence,
b:ﬁ =y [eﬁ(%w) + ea(V08) — €o(7pa) = Tuacz., = 'Y.u.ﬂ‘::a] (60)
and the r.h.s. of Eq. 60 is just the negative of the components of the Lie derivative of the
metric tensor 7 in the direction of e? = ¥*7e,. .

In view of the result stated by Eq. 58, the attempt to find (if existing) a moving frame for
which b';ﬁ = 0 is equivalent to solve, locally, the Killing equations for the manifold. Because
of this we shall refer to these coefficients as the Killing coefficients of the frame. Of course,
since the solutions of the Killing equations are restricted by the structure of the metric as
well as by the topology of the manifold, it will not be possible, in the more general case, to
find any moving frame for which these coefficients are all null.

c. Associated Dirac Operators

In view of the results stated in Sec. 2.1.c, it is clear that besides the fundamental Dirac
operator we have just analyzed, we can also introduce in the Clifford bundle C¢(M) infinitely
many other Dirac-like operators, one for each nondegenerate symmetric bilinear form field
that can be defined on the metric manifold M.

Hereafter we convention to denote by g € sec(TZM) an arbitrarily fixed nondegenerate
positive symmetric bilinear form field on M, by ¢=' € sec(T9M) its reciprocal bilinear
form on T*M and by h € sec(T} M) the “field of linear transformations” which induces g.
Observe that we have:

g7\ (@,B) = a-h7(B) = k() - A™V/2(),

for every a, 3 € sec(T* M), where h~' and h=1/2 are the reciprocals of the transformations
h and h'/? respectively.® We stress that the bilinear form field ¢ is not to be confused with
the metric tensor v of the manifold.

We also denote by V : C€{(M) x C&(M) — Cé(M) the “Clifford product” induced on
C{(M) by the bilinear form field ¢=' and by  : C{(M) x C¢(M) — C{(M) the “Clifford
dot product” associated to “Vv.”

We call Dirac operator associated to the bilinear form ¢g=' € sec(T§ M) the operator:

d = dv = Tr(i v Dy).

8We call reciprocal of a linear transl’o.rmation Y :V — V to the transformation ¥~ : V* — V* defined
by ¥~'ove = ve o1, where (v.u)(v) = y(u,v), for every u,v € V. There is no risk of confusion with the
inverse of the transformation #, since this last one is a transformation of V onto V.
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With respect to a moving frame (%) of T* M we have:

0=0%V De_, (61)
where {e,) is the dual frame of (§*). We define also
3o =62 D,
so that o 5 ]
d=030 + IN=08- + A, (62)

because the exterior part of the operator & coincides with that of the operator .

Of course, the properties of the operator & differ from those of the fundamental Dirac
operator 3. It is enough to state the properties of the operator @, which are obtained
from the following proposition:

LProposition 3| The operators @ and 8- are related by:

Jow=3 o+s-, (63)

for every w € sec(C{(M)), where s = g*? D,g,,0" € sec(T*M) is called the dilation 1-form
of the bilinear form g.

Given a r-forms field w = ;%wal,__arﬂm A ... AB% € sec(Cf(M)), we have

De w= ﬁ(Dpwal_"ar)G"” A ... A%, with

I
” © I
Dyway..ap = €plWay...ar) — Fpalwmz-..ar = Fpa,‘-"al-..ar_m- (64)

Then, 6° o De,w = 4 Dyway 0,07 > (65 A...AB™) = LDjwn, 0 (¢P10°2 A NG 4+t
(=1)"Higrargoa A A g ), or

_ 1

T (r—1)

9" Dowoag..ar8% A ... NG (65)

Now, taking into account the identities 9°° Dpwoay...ar = Dp(9°%Woss..ar) — (DogP Yosag.. o}
9ouDyg”° = —g°° D,gs, and recalling also that g7 = v°# g5, we conclude that

T - 1)17p°(ngi‘wuaz...a,)9°‘2 A cosiB
1 aT
& (r - 1)‘7.0 (gaﬂpagﬁp)gﬁwuaz...areaz Pz BRI,
Therefore, writing Woa,..a, = 84Wyas..., and By gaﬁDaggp, we obtain the Eq. (63). =

3.2. The Dirac Operator in Riemann-Cartan-Weyl Spaces

a. Definition; Basic Properties

We now consider the manifold M = (M,~,7) endowed with an arbitrary affine connec-
tion V. In this case, the notion of covariant derivative does not pass to the quotient bundle
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CYM)I Duspite this, it is still a well defined operation and in analogy with the earlier
gection, we can associate to it, acting on the sections of C4(M), the operator:

8 = Tv(il Va).

We call this operator simply the Dirac operator (or Dirae derivative). Also as before, if
{6%) is & moving frame on T*M, dual to the moving frame (e) on T'M, we have:

8 = ¢ Vea (66)

and we define:
B:A = 0% (Ve,A)
OANA = @ A (Ve,A),

for every A € sec(C4(M)), 8o that:
O =0 +0A (67)
The operator OA satisfies, for every A, B € sec(CYM)):
BA(AAB)=(BAA)AB+ A" A(8AB), (68)

what generalizes Eq. 5la. By lts turn, Eq. 81¢ I8 generalized according to the following
propesition:

Propesition 4| Let Q° be the nenmetrieity 2-forms associated with the connection V
in an arbitrary moving frame (6°). Then we have, for homogeneous multiforms,

(=1)'4=18% = A+ Q" A%,

(ul)v‘s#i*mia,\* = O Qi} 'jp! (69)

where $,A = 6, - A and j,A = 8, A A, for every A € sec(CUM)).

|' Pi‘@@f' Lot w = %wﬁi.,mém Ao A8 € see(AT(M)) € see(C2(M)) be a r-form
field on M. We have (g, A ... Afg ) Aww = ({85, Ao  ABp)  w)T = w57 and
it follows that Ve, [(8s A ... A B ) A ww] = es(wp,,5)7 But on the other hand, we
ﬁlgﬁ h&\ﬁé v{%ﬁ[caﬁl Ao A 9{3;) A *W] = aﬁi f\ Y A 989 i\ Vg\ﬂ, %* W + (Lgﬁiw»ﬁa‘“fﬁp + e +
L33 By rarn)T = (@55, Wpas + o+ Q55 W, 8,015)T a1d thevefore we get, after some
algebraic manipulation:
Véﬁ ¥ ) 2 *Veﬁw + Qg“p ¥ (9” A (99 ‘w))\ (?ﬂ)
from which Eqa. 69 follow immediately. L

Taking Into aceount the result stated in the above proposition and the definition of the
Hodge codifferential (Eq. 34), we are motivated to introduce in the Clifford bundle the
Dirae eoderivative operator, given, for homogeneons multiforms, by:

&= (=1)"»=1 8« ()
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Of course, we have: N
O=(-1Y+18-+ + (-1 *+13A%

and we can, then, define:

c=(=1)*19Ax=-8-4Q*- 7,

QD? Q_‘N

72
A=(=1)+18-+x=8A+Q" A1, k2
so that: -
8=09-+0A (73)
The following identities are trivially established:
8= (-1)+ x5«
¥ = (—1)118%; =& = (-1 0= (74)
80x = +x39; +8d = Do

+8?% = —52*; «9% = _ 9%

In addition, we note that the Dirac coderivative permit us to generalize Eq. 51b in a very
elegant way. In fact, in consequence of Prop. 4 we have:

m For every A, € sec(A"(M)) C sec(C{(M)) and B, € sec(A*(M)) C
sec(C£(M)), with r + 1 < s, it holds:

d-(Ar-B,)=(8AA) B, +(-1Y4, (8- B,). (75)

Given a l-form field o € sec(T*M) C sec(C€(M)) and a r-form field w €
sec(A"(M)) C sec(C{(M)), we have, from Eq. 70, that Ve, * (o - w) = *Ve (a-w +
Qo * [0 A (8” - (@ - w))]. We have also that Ve, * (@ -w) = (=1)"+1V oA *w) =

*[(Ve, @) -w+ o (Ve,w + Qopva - (6* A (8 - w))], where we have used Eq. 70 once again.
It follows that:

Ve, (a-w) = (Ve,a) - w+a-(Ve,w) + Qoua’t” -w. (76)

Then, recalling that (a1 A... A ;) w=ay-...  a, -w, with ay,...,a, € sec(T*M),w €
sec(A*(M)),r < s+ 1, and applying Eq. 76 successively in this expression, we get Eq. 75. ®

Another very important consequence of Prop. 4 states the relation between the operators
d and 3:

lProposition 51 Let % = ©° — Q*, where ©” and Q” denote, respectively, the torsion
and the nonmetricity 2-forms of the connection V in an arbitrary moving frame (6°). Then:

PRl (17)
ON = IA-0°A1,

[Proof] If f is a function, ONf=6"NVe,f=eaf)0° =df and B f = 0% Ve, f = 0.
For the 1-form ﬁeld 6” of a moving frame on T=M, we have & A 67 = 6% A Ve, 07 =
—L756% A 6P = —~wh A 6P = dov — O,
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Now, for a r-form field w = ;lgwal_"arﬂ‘" A AB, we get AW = ff(dwm_,_a, A
60 AL NGt woy a0 dB NG AL A e (=1) 0 0 AL A1 A
d8°7) — H(Wa1..a, 0™ ABP2 AL AB™ 4o 4 (1) g, 0 0% AL A G A OO =
dw — ;l?ep/\(wpaz...areaz A NG '+(_1)r+lwax...ar——1ﬂam A ’Aeahl) = dw—@"/\ipw,
what proves Eq. 77a.

Finally, from Eqs. 69b and 77a we obtain 8 A sw = (—1)" 1483 -w — (-1)"*1xQ" - Jw=
AN+ — 0 Asw = (-1 48w - (~1)"+' £ ©” - j w. Therefore, & w = d -w — d° ¥ JR
what proves Eq. 77b. o

From Egs. 77 we obtain the expressions of 8- and A in terms of 3- and JA:

G

= _a'+qp‘jp

78
A = IN-D°A1,. (78)

Q

Obviously, the Dirac coderivative associated to the fundamental Dirac operator is given by:
d=d + 6.

We observe finally that we can still introduce another Dirac operator, obtained by com-
bining the arbitrary affine connection V with the algebraic structure induced by the generic
bilinear form field g € sec(TZM). With respect to an arbitrary moving frame (0*Yon T*M,
this operator has the expression:

v =0°VvVe,. (79)

It is clear that in the particular case where V is the Levi-Civita connection of g, the operator
@V—which in this case is the fundamental Dirac operator associated to g—will satisfy the
properties presented in Sec. 3.1.a, with the usual Clifford produtc exchanged by the product
“v.” In addition, for a more general connection we can apply the results of Sec. 3.2.a, once
again with all the ocurrences of v replaced by g. (In particular, the fundamental Dirac
operator associated to 7 is replaced by that associated to g.)

b. Torsion, Strain, Shear and Dilation of a Connection

In analogy with the introduction of the Dirac commutator and the Dirac anticommutator,
let us define the operations:

[,8] = (e-8)8-(8-8)a—[a,B]
fa,ﬂg = (aa)ﬂ-}-(ﬂa)a—{a,ﬂ},
for every a, 3 € sec(T*M). We have subtracted the Dirac commutator and the Dirac anti-

commutator in the r.h.s. of these expressions in order to have objects which are independent
of the structure of the fields on which they are applied.

If (6,) is the reciprocal of an arbitrary moving frame (6°) on T* M, we get, from Eq. 80a:
[00?93] = (T.-fﬁ - Qﬂ,'@])am

where T:ﬁ are the components of the usual torsion tensor (Eq. 38). Note from this last
equation that the operation defined through Eq. 80a does not satisfy the Jacobi identity.

(80)
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Indeed we have:
S e 183001 = 3 (T, = Qo (TS — Q)60
[aBs] [x8e]

where the summation in this equation is to be performed on the cyclic permutations of the
indices a, 3 and o.
From Eq. 80b, we get:

1,85 = (525~ Qo0
where Qfaﬂ) = Y (Qaps + QBac) and we have written:

It can be easily shown that the object having these components is also a tensor. Using the
nomenclature of the theories of continuum media,'"!8 we will call it the strain tensor of
the connection. Note that it can be further decomposed into:

~ 2

where § gﬂ is its traceless part, which will be called the shear of the connection, and

1
=150, (83)

is its trace part, which will be called the dilation of the connection.
It is trivially established that:

1 1.
where I'fg = %(bgﬂ + ¢} 3) are the components of the Levi-Civita connection of 4.°

Eq. 84 can be used to relate the covariant derivatives with respect to the connections D
and V of any tensor field on the manifold. In particular, recalling that Dyyse = €a(Vgs) —

Via F:ﬁ —Ypull, = 0, we get the expression of the nonmetricity tensor of V in terms of the
torsion and the strain, namely,

-I- 1 o Ly
Qupe = 5(7uaT:ﬁ +4gadie)+ 5(7#0'5::,6 + ¥6uSa0 ) (85)

Eq. 85 can be inverted to yield the expression of the strain in terms of the torsion and the
nonmetricity. We get:

Szﬁ = 7'00 (Qaﬁo + Qﬁocx = Qoaﬁ) = 7pa(7,6,uT£a o+ TanTga)- (86)

?We note that the possibility of decomposing the connection coefficients into rotation (torsion), shear

and dilation has already been suggested by Baekler et ol 13 but in their work they do not arrive at the
identification of a tensor-like quantity associated to these last two objects.
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Indeed we have:

Z [ecn [85,90]] = Z (Tgp - Qfa;z])(T#a - Qﬁia})ap’
[xB0]) [Bo]

where the summation in this equation is to be performed on the cyclic permutations of the
indices a, 3 and o.

From Eq. 80b, we get:
19.,00 = (Sgﬁ - Qfam)f)p,

where Qfaﬁ) = 1" (Qaps + Qpac) and we have written:
§ts=Lbg+ Lp, — b5 (81)

It can be easily shown that the object having these components is also a tensor. Using the
nomenclature of the theories of continuum media,'"® we will call it the strain tensor of
the connection. Note that it can be further decomposed into:

p 2
o8 = Sap ¥~ Vas (82)
where ,§‘:B is its traceless part, which will be called the shear of the connection, and

= 2985, (83)

is its trace part, which will be called the dilation of the connection.
It is trivially established that:

1

Lep=Tas 3

1
where I'b; = 3(b, s T Ch) are the components of the Levi-Civita connection of 7.0
Eq. 84 can be used to relate the covariant derivatives with respect to the connections D
and V of any tensor field on the manifold. In particular, recalling that Dyvs, = €a{78s) —

Yoser I‘:ﬂ - 18u %, = 0, we get the expression of the nonmetricity tensor of V in terms of the
torsion and the strain, namely,

l ]- 1 R
Qope = '2'(7uaT:3 +7uTee) + 5(’7#0533 + Y6uSko)- (85)

Eq. 85 can be inverted to yield the expression of the strain in terms of the torsion and the
nonmetricity. We get:

S::,@ = ')‘pa(Qaﬁcr + Qﬁoor = Qoaﬁ) - 790(7ﬁuT;a + ‘)"cquﬂg)- (86)

?We note that the possibility of decomposing the connection coefficients into rotation (torsion), shear

and dilation has already been suggested by Baekler et aI.,[m] but in their work they do not arrive at the
identification of a tensor-like quantity associated to these last two objects.
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From Eqgs. 85 and 86 it is clear that nonmetricity and strain can be used interchangeably

in the description of the geometry of a Riemann-Cartan-Weyl space. In particular, we have
the relation:

Qa,!?a + Qaaﬁ + Qﬁaa = Jafle + Saa,@ + Sﬁaaa (87)

where Sug, = 7,,533. Thus, the strain tensor of a Weyl space satisfies the relation:
Saﬁo + Sao:,B o+ S,Bo’a =0.
In order to simplify our next equations, let us introduce the notation:
1
_ TP )
Nop = Lap = Tap = 5(Tap + Sap)- (8)

From Eq. 86 it follows that:

b
Ai;g = _57'0 (Va'ma + V,G'Yaa = Va‘)’a,@)
1 T
- §7p (7uaT:B +YusTo0 - 'TuaTgﬁ)s (89)
where we have used that Q.g, = —Va7s,. Note the similarity of this equation with that

which gives the coefficients of a Riemannian connection (Eq. 59). Note also that for Vy = 0,
Aﬂﬂ is the so-called contorsion tensor.1°

Returning to Eq. 84, we obtain now the relation between the curvature tensor R,

associated to the connection V and the Riemann curvature tensor R,% of the Levi-Civita
connection D associated to the metric y. We get, by a simple calculation:

R o = ﬁ:.upaﬁ * Jx:p[cxﬁ]v (90)
where:
Jifap = DO,A%” 2 A%GA‘,’M s VO,A‘f@u ~ B A+ B (91)
Multiplying both sides of Eq. 90 by 6% A 6° we get:
Q=02 + J2, (92)
where we have written: !
Ih = 54 enf” A 8-, (93)

From Eq. 90 we get also the relation between the Ricci tensors of the connections V and
D. We have:
Rio=Ryo + Jpors (94)
with

Juw = Do, — DA + AN, — N A
= Voldl, = VNL, = AL AT + AL (95)

10Eqs. 88 and 89 have appeared in the literature in two different contexts: with V4 = 0, they have been
used in the formulations of the theory of the spinor fields in Riemann-Cartan spacest!?2% and with T{Vl=0

they have been used in the formulations of the gravitational theory in a space endowed with a background
metric.[21:22,23,24,25]
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Observe that since the connection V is arbitrary, its Ricci tensor will not be generally
symmetric. Then, since the Ricci tensor of D is necessarily symmetric, we can split Eq. 94
into:

R[#a] = JEL‘O‘] (96)
R(ua) = Bua) + J(ua)-

Now we specialize the above results for the case where the general connection V is
the Levi-Civita connection of the bilinear form field g € sec(TZM), i.e., T[V] = 0 and
Vg = 0. The results that we are going to obtain generalize and clear up those found in the
formulations of the gravitational theory in a background metric space.[21:22:23,24]

First of all, note that the connection D plays with respect to the tensor field ¢ a role
analogous to that played by the connection V with respect to the metric tensor ¥ and in
consequence we shall have similar equations relating these two pairs of objects. In particular,

the strain of D with respect to g equals the negative of the strain of V with respect to 7,
since we have:

ngﬁ 5 Lgﬁ i chx _ bgﬁ & _(Fcf,@ + Fga b d;ﬂ)’

where b0y = I'f5 4+ Tp and dfy = L2, + L7, denote the Killing coefficients of the frame
with respect to the tensors v and g respectively. Furthermore, in view of Eq. 89, we can

write A‘;ﬂ = %Szﬁ as:
p L o
Aa,@ = _57 (vor'fﬁv + VYoo = VoTap)
1
= _igpa(D&gﬁo + Dsgoc — Dsgap)- (97)
We introduce the notation:

g
k= = 98
7 (98)

Then we have the following very interesting relations:

(L E . 1
A‘:w = —57 BVGYQﬁ = '2'9 ﬁDagaﬁ = Eea(";)

1
PPN = —=Dy(rg") (99)
o 1 B
~y ﬁ&f;ﬁ = Fv"'(ﬁ: 1_},90)_

Another important consequence of the assumption that V is a Levi-Civita connection is
that its Ricci tensor will then be symmetric. In view of Eqs. 96, this will be achieved if and
only if the following equivalent conditions hold:

(100)
Vall s = VAL,
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c. Structure Equations

With the results stated above, we can write down the structure equations of the RCWS
structure defined by the connection V in terms of the Riemannian structure defined by the
metric 7. For this, let us write Eq. 84 in the form:

ws = 0h+ wp = wh+ 15 + 05, (101)

with ws = Lgﬁﬂa‘, O = Fa‘:ﬁﬂ", wp = A‘;‘GB", Tp = %T::BB"' and af, = %Sgﬁb"". Then,
recalling Eq. 92 and the structure equations for both the RCWS and the Riemannian
structures, we easily conclude that:

wy A6 = 0F

z‘uﬂ A= -8, (102)

dw’, + wi A wh = T8,

where d is the exterior covariant derivative associated to the Levi-Civita connection D of
4. The third of these equations can also be written as:

dw’, — wh AW = J?, (103)

with d the exterior covariant derivative of the connection V.

Now, the Bianchi identities for the RCWS structure are easily obtained by differentiating
the above equations. We get:

dor = J5A6° — uwf A OF
d®, = T Ay + v A& (104)
dJs = Q5 A wld - wlh A QS

or equivalently,
de’ = J§ A 6P
de, = .{g Abg ) (105)
dJ% = Qf Awl — wh A Q8.

4. The Square of the Dirac Operator

4.1. D’Alembertian, Ricci and Einstein Operators

As we have seen in the Sec. 3.1, the fundamental Dirac operator 3 of a manifold M =
(M,~,T) is given by (Eq. 52)
d=d-54.

Then the square of this operator, 3% = @@, will be given by:
3% = (d—8)(d—8) = —(dé + 8d) = A, (106)

that is, 32 is the usual Hodge Laplacian of the manifold (Eq. 35).
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On the other hand, remembering also that (Eq. 49)
d=0Dg,,

where (6*) is an arbitrary reference frame on the manifold and D is the Levi-Civita con-
nection of the metric vy, we have:

32

(6> De,, )(9ﬁpeﬁ) = aa(eﬂpeaneﬁ + (De,8°) Dey)
= 7°P(De,Des — I’5De,) + 6% A 6°(De, Dey — I5De,)-

Then defining the operators:

2:8 = 7*(De,Des ~ I3pDe,) (107)
dND = 6°A0%(De,Dey—I’4De,),
we can write:
¥ =3-0+0A0 (108)

It is important to observe that the operators 3 - @ e d A @ do not have anything analogous
in the formulation of the differential geometry in the Cartan and Hodge bundles.
The operator @ - & can also be written as:

i g

Applying this operator to the 1-forms of the frame (6%), we get:

1 -
(@-3)8* = _5-,-°ﬁM,,#Qﬁ3P, (110)

where:
M} op = ealIS,) + ea(Ik) — T4, I5, — Th I3, — b5, (111)

The proof that an object with these components is a tensor is a consequence of the following
proposition:

IProposition GI For every r-form fleld w € sec(A™M), w = Zway..a 0 A... A", we
have:

_ 1
(8-8)w = -mf*ﬁpapﬁwm___mem A... N, (112)

where D, Dgwy, ..o, are the components of the covariant derivative of w.

We have Degw = L Dpway..ar® A ... A GO, with Dgws, . .0, = (ep(Way..ar) —

I, Woayor — *** — If, Way..oryo).  Therefore, De,Desw = L(ea(Dpway...ar) =
3o Dpanis..ion = “%— Ig, Dwa,..ar_10)80°* A ... A 8% and we conclude that:

1
(.DeaDe‘@ - F:,B‘Dep)w = FDQDBLJG],"OTOG' A NGO,
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Multiplying this equation by 7*? and using the Eq. 107a, we get the Eq. 112. -

In view of Eq. 112, we shall call the operator @ - @ the D’Alembertian. Note that the
D’Alembertian of the 1-forms #* can also be written as:

1
(8- 3)0* = +v*P D, Dsb%6° = §7ﬂﬁ(papﬁég + DD, 84)6°
and therefore, taking into account the Eq. 110, we conclude that:
M,*op = —(DaDp8% + DgDabl), (113)

what proves our assertion that M’p“‘,g are the components of a tensor.
By its turn, the operator @ A @ can also be written as:

g 1
IND = 590‘ A 9'8 {DEQDG,Q - Deﬁ.Den = 6‘;61)69] . (114)
Applying this operator to the 1-forms of the frame (6%), we get:

(B AB)* = —ZR,*.5(6° AO°)0P = —Q40”, (115)

3
2
where f?.p“a,g are the components of the curvature tensor of the connection D. From Egs. 18f,
we get:

" —0er.ge L Q I

QL0r = QF - 62 + Q0 A 6°.

The second term in the r.h.s. of this equation is identically null because of the Bianchi
identity given by Eq. 45a for the particular case of a symmetric connection (©* = 0). Using
Eqgs. 18c and 18i we can write the first term in the r.h.s. as:

Qu .67

where RE are the components of the Ricci tensor of the manifold. Thus we have:
(8 AD)* = R¥, (116)

where R* = Rsﬁﬁ are the Ricci 1-forms of the manifold. Because of this relation, we will
call the operator @ A @ the Ricci operator of the manifold.

The proposition below shows that the Ricci operator can be written in a purely algebraic
way:

[Proposition 7] The Ricci operator @ A J satisfies the relation:

DA =R Aiy + Q% Nipio, (117)
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where 347 = 4220 — Lpee go p 9B
w2 B

The Hodge Laplacian of an arbitrary r-form field w = 3—!wc,1___&r9"1 AN
is given by: (e.g., Choquet-Bruhat?%—recall that our definition differs by 2 sign from that

given there) Aw = %w = L(3%w),, o 8% A... A6, with:
(az"’)a]---ar = TGBDQDBwal---Qr
- Z(‘h l)pRgpwdﬂl ...&p...ar
P

- 2 Z('—1)p+qRpaqdapwpoal...&p...&q...ar? (118)
=
where the notation & means that the index & was exclude of the sequence.

The first term in the r.h.s. of this expression are the components of the D’Alembertian
of the field w.

Now, recalling that t,w = 8, -w = ,_l!(:.;;,_.,.(,Q___c,rG"’2 A AP o e (1) gy 0 o0 A
...A8%-1), we obtain:

s 1 .
Ro_ A2 0= —;‘* Z(—l)pRgpwo-Q]___&p_"ar a1 A AG*
‘L

and also,

f6r Kdd = -% S NP e o g | O A e A,
P<q
Hence, taking into account Eq. 108, we conclude that:
(FAB)w = RO Ai w4+ QP A B0,
for every r-form field w. =

Observe that applying the operator given by the second term in the r.h.s. of Eq. 117 to
the dual of the 1-forms 8#, we get:

Qoo AB° - (87 - £6*))
= —Qu A(6° A6 AB*)
= #(Q,, - (6° A 67 A 84)),

Q%7 Aiyig % 0*

where we have used the Eqs. 21c and 21d. Then, recalling the definition of the curvature
forms and using the Eq. 18j, we conclude that:

2 . 3 1. .
Q77 A2yi, 0" =2+ (RF - §RH“} =2xG*, (119)
where R is the scalar curvature of the manifold and G* are the Einstein 1-form fields.
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The observation above motivate us to introduce a new operator, 03, which will be called
the Finstein opergior, defined by:

a= % (@ Nijiy) s (120)
Obviously, we have: "
08 =G"=R*— -éfw. (121)

In addition, it is easy to verify that + (@ Ad)s = —FAd and +(B° A, )+ = B” -5,.
Thus we can also write the Einstein operator as:

o= —%(o Ad+ R -5,). (122)

Another important result is given by the following proposition:

gfmposition El Let &% be the Levi-Civita copnection 1-forms fields in an arbitrary
moving frame {#”) oa M. Then:

(@-3)0" = —(@-&8—a7-ar)er (123)
(FABW = —(dAah—agAab)eP, :

that is,
3’6" = (3ot — o) {124)

We have 8-&% = 6>- D, (I5,6°) = 0% -(ea(I§ )0° — T2, I2,05) = 7P ea(Th,)—
T2 075} e & - &% = (I5,6°) - (T%,0%) = 77°T%,T5, Then, —(3-a% — af - o£)8% =
1T*P(ealT3,) — TE, TG, — [T I8P = —39°P(eall},) + ep(TL,) — T2, T3, — T T2, —

Bo-ap

55075, )87 = (8 - 3)9*. The Eq. 123b is proved analogously. =

4.2. The Square of the Dirac Operator

Let us now compute the square of the Dirac operator 8 associated with am arbitrary
Riemann-Cartan-Weyl connection V. As in the earlier section, we have, by one side,

& = (B-+INB-+8n)
= §-8-+-BA+ONP-+IAA
and we write - 8- = 8%-, 8A @A = 8%A and

£, =8-BN+ N8B, (125)
so that:
Z2=9% + £, + A (126)

The operator £ corresponds, for the case of 2 Riemann-Cartan space, to the wave operator
introduced by Rapoport!! in his theory of Stochastic Mechanics. Obviously, for the case of
the fundamental Dirac operator, £ reduces to the usnal Hodge Laplacian of the manifold.
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Now, a similar calculation for the product 8 of the Dirac derivative and the Dirac
coderivative yields:

99=90-8-+£_+8ADA, (127)

with: 5 &
£_=8-0N+8 AN B (128)

On the other hand, we have also:

3‘2

(6°Ve, J(0°Vey) = 6%(68°Ve, Vey + (Ve 8°)Vey)
= 7*P(Ve,Vey — L55Ve,) + 6% A 0%(Ve, Ves — L:5Ve,)
and we can then define:

8-9 = ’Yaﬁ(veo,veg - Lzﬁvep)

_ 129
dND = 0%A6P(Ve,Ves — L25Ve,) kE)
in order to have:
°=0-0+018 (130)
The operator 8 - @ can also be written as:
1 1
9-8 = 8% 0°(Ve,Veg — Li5Ve,) + 567 - 0°(Ves Ve, — L, Ve,)
1
= 'Z"Taﬁ[veave,ﬁ + VegVe, — (L2 + L5, )Ve,]
or,
1
3-9= iyﬂﬂ(veaveﬁ + Ve Ve, — b5Ve,) — 5 Ve, (131)
By its turn, the operator 8 A @ can also be written as:
1 1
OND = 350 N8°(Ve,Veg — LisVe,) + 56” N8%(VesVe, — L5, Ve,)
1
= ;07 8°[Ve, Ve — VesVe, — (L85 — L5,)Ve,]
or,
1
DND = 0% N6 (Ve,Veg — Veg Ve, — chgVe,) — 0°Ve,. (132)

5. Conclusions

We have presented a Clifford bundle formulation for the geometry of a general Riemann-
Cartan-Weyl space (RCWS). The main ingredients of our presentation has been the intro-
duction of: (i) the fundamental Dirac operator &, related to the Levi-Civita connection D
of a Riemannian oriented space with metric v (M = (M, D,7)); (ii) the infinitely many
other Dirac-like operators (associated to @), one for each nondegenerate symmetric bilinear
form field which can be defined in M through the theory of the symmetric automorphisms
of Clifford algebras (Sec. 2); (iii) the Dirac operators of a general RCWS, related to the
general affine connection V defining the RCW structure.
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We introduced the concept of fundamental Dirac commutator of 1-form fields, which en-
able us to give the structure of Lie algebra to the cotangent bundle, in analogy to the way
that the bracket of vector fields defines a Lie algebra structure for the tangent bundle. We
introduced also the notion of the fundamental Dirac anticommutator of 1-form fields and we
showed that the coefficients 4/, ; - the Killing coefficients - of the expansion {6,685} = b*, 595
are related to the Lie derivative of the metric y by b 3 = —(£erY)ap, Which shows that
to find (if existing) a moving frame for which bzﬁ = 0 is equivalent to solve, locally, the
Killing equations for the manifold. Also, introducing the concept of Dirac commutator and
anticommutator of 1-form fields, we succeed in giving a simple decomposition of the general
connection V associated with the Dirac operator in torsion, strain and dilation, identifying
a new tensor-like object .S'gﬁ which has been used to relate the covariant derivatives with
respect to the connections D (the Levi-Civita connection of v) and V (a general affine
connection) of any tensor field on the manifold. We then got a simple way to relate the
curvature tensor R,”,s associated with the connection V and the Riemannian curvature
tensor R#"aﬁ of the Levi-Civita connection D of y. The results are particularly interestig
when V is the Levi-Civita connection of a symmetric bilinear form field g € sec(TZ M) (in-
troduced through the theory of the symmetric automorphims of the Clifford algebra), since
we get several formulas that clear up many results appearing in the flat space formulations
of Einstein’s gravitational theory as, e.g., in [23, 24].

Finally, we have studied in detail the square of the Dirac operator 8%, which does not
preserve the graduation of r-forms. We identified the natural wave operator in a general
RCWS (which preserves the graduations) as the operator £, which for the case of the
fundamental Dirac operator reduces to the usual Hodge Laplacian operator.
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