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ABSTRACT - ln this paper we present a Clifford bundle approach to the geometry of a general 
Riemann-Cartan-Weyl space (RCWS). ln our formulation, the so-called Dirac operators play a funda-
mental role. We first introduce one these operators in the context of a Riemannian space, calling it the 
fundamental Dirac operator (8). We show, among other important results, that the fundamental Dirac 
operator can be written 8 = d - ó, where d and ó are the familiar exterior derivative operator and the 
Hodge codifferentiaJ acting on sections of the Hodge bundle (interpreted as embedded in the Clifford bun-
dle ). ln connection with the fundamental Dirac operator, we introduce the concepts ofDirac commutator 
and anticommutator and we investigate their geometrical interpretation. With the theory of the sym-
metric automorphisms of a Clifford algebra we introduce infinitely many other Dirac-like operators, one 
for each nondegenerate bilinear form field that can be defined on the metric manifold M. We introduce 
also the concepts of Ricci and Einstein operators which are useful for intrinsic formulations of Einstein's 
gravitational theory. Later we generalize the fundamentaJ Dirac operator and the Dirac commutators to 
a RCWS, showing their relations. ln particular, we succeed in finding the correct generalization of the 
Hodge Laplacian to Riemann-Cartan spaces and we identify the natural wave operator (.l'+) for these 
spaces. Apart frorn a constant factor, .C + is the relativistic Hamiltonian operator which generates the 
theory of Markov processes of the Stochastic Mechanics. We obtain also new decompositions of the gen-
eral affine connection 'iJ defining the RCWS structure and we identify new tensor objects. Our findings 
clear many results obtained in formulations of the flat space theory of gravitational field and of the theory 
of spinor fields in RCWS and suggest several generalizations of these theories. This subject is discussed 
in two following papers. 
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Abstract 

ln this paper we present a Clifford bundle approach to the geometry of a general 
Riemann-Cartan-Weyl space (RCWS). ln our formulation, the so-called Dirac opera-
tors play a fundamental role. We first int roduce one these operators in the context of 
a Riemannian space, calling it the fundamental Dirac operator (êP). We show, among 
other important results, that the fundamental Dirac operator can be written êP = d -ô, 
where d and ô are the familiar exterior derivative operator and the Hodge codifferen-
tial acting on sections of the Hodge bundle (interpreted as embedded in the Clifford 
bundle) . ln connection with the fundamental Dirac operator, we int roduce the con-
cepts of Dirac commutator and anticommutator and we investigate their geometrical 
interpretation. With the theory of the symmetric automorphisms of a Clifford algebra 
we introduce infinitely many other Dirac-like operators, one for each nondegenerate 
bilinear forro field that can be defined on the metric manifold M. We introduce also 
the concepts of Ricci and Einstein operators which are useful for intrinsic formulations 
of Einstein's gravitational theory. Later we generalize the fundamental Dirac operator 
and the Dirac commutators to a RCWS, showing their relatious. ln particular, we suc-
ceed in finding the correct generalization of the Hodge Laplacian to Riemann-Cartan 
spaces and we identify the natural wave operator ( .l' +) for these spaces. Apart from a 
constant factor, .l'+ is t he relativistic Hamiltonian operator which generates the theory 
of Markov processes of the Stochastic Mechanics. We obtain also new decompositions 
of the general affine connection 'v defining the RCWS structure and we identify new 
tensor objects. Our findings clear many results obtained in formulations of the flat 
space theory of gravitational field and of the theory of spinor fields in RCWS and sug-
gest several generalizations of these theories. This subject is discussed in two following 
papers. 
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1. Introduction 

ln this paper we give a Clifford bundle approach to the geometry of a general Riemann-
Cartan-Weyl space. 

ln Sec. 2 we brie:fly recall the mathematical concepts necessary to develop the ideas of this 
work. The relation between exterior and Clifford algebras and how to work with the Clifford 
product is presented. ln addition, we develop the theory of the symmetric automorphisms 
of a Clifford algebra, which plays an important role in our presentation, since it permits the 
definition of new Clifford products starting from a given one. Finally, we present in this 
section the relation between Cartan, Hodge and Clifford bundles and we recall Cartan's 
formulation of the differential geometry, extending it to a general Riemann-Cartan-Weyl 
space (hereafter denoted RCWS). 

ln Sec. 3 we formula.te the geometry of a RCWS in the Clifford bundle [Ci(M)]. Here 
we introduce the concept of the fundamental Dirac operator fJ (related to the Levi-Civita 
connection D of an oriented Riemannian space with metric, (M = (M, D,,)). Using this 
operator, we define the concepts of fundamental Dirac commutator and anticommutator 
and we discuss the very interesting geometrical meaning of these operators. In addition, 
using the theory of the symmetric automorphisms (Sec. 2), we introduce infinitely many 
other Dirac-like operators, oue for each nondegenerate symmetric bilinear form field which 
can be defined on the metric manifold M. We study relations between these operators and 
the fundamental Dirac operator. 

Subsequently, we introduce the Dirac operator 8 of a general RCWS. This operator is 
related to the general affine connection "Çl defining the RCWS structure. We then introduce 
the analogous of the concepts of Dirac commutator and anticommutator for 8 and explore 
their geometrical meaning. ln particular, the fundamental Dirac commutator permits us 
to give the structure of a Lie algebra to the cotangent bundle, in analogy to the way that 
the bracket of vector fields defines a Lie algebra structure for the tangent bundle (the 
coefficients of the fundamental Dirac anticommutator- called the Killing coefficients-are 
related to the Lie derivative of the metric by a very interesting relation [Eq. 52]). 

We obtain new decompositions of the general connection "Çl, exhibiting some tensor 
quantities which have not been identified in the literature. Our results sheds a new light on 
the fl.at space formulations of the theory of the gravitational fiel d and on the theory of spinor 
fields in RCWS. The discussion of these subject will be presented in other publications. 

Finally we study the square of the Dirac operator ô in a Riemann-Cartan space. We 
succeed to determine the correct generalizatiou of the Hodge La.placian in such spaces, 
thereby identifying a wave operator .C+ that (appart from a constant factor) is the rela-
tivistic Hamiltonian opera.tor that describes the theory of l\1arkov processes, as described 
recently by RapoportJ11 Applications of the mathematical concepts developed here to the 
gravitational theory and to the theory of spinor fields in RCWS will be presented in two 
following papers.l2,3J (See also [4]) 

2. Mathematical Preliminaries 

ln this section we briefly recall some mathematical concepts necessary to develop the 
ideas of this work. 
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2.1. Exterior and Clifford Algebras 

a. Exterior and Grassmann Algebras 

Let V be an n-dimensional real vector spa.ce, V* its dual space, Trv the space of the 
r-contravariant tensors over V ( r O, TºV = Ill, T 1 V = V) and let TV be the tensor 
algebra of V. 

We define the exterior algebra of V as the quotient algebra 

AV= TV, 
J 

where J C TV is the bilateral ideal in TV generated by the elements of the form u@v+v@u, 
with u, v E V. The elements of AV will be called multivectors, or multiforms if V is the 
dual of some previously specified vector space. 

Let p : TV -+ AV be the canonical projection of TV onto AV. Multiplication in AV will 
be denoted as usually by /\ : AV -+ A V and called exterior product. We have 

A /\ B = p( A @ B ), ( 1) 

for every A,B E AV, where@: TV-+ TV is the usual tensor product. 
We recall that AV is a 2n-dimensional associative algebra with unity. ln addition, it is 

a zt-graded algebra, i.e., 

with 
ArV /\ A-'V e Ar+~v, 

r,s O, where ArV = p(TrV) is the ( ; )-dimensional subspace of the r-vectors on V. 
(AºV = Ill; A1V = V; ArV = {O} if r > n) If A E ArV for some fixed r (r =O, .. . , n), then 
A is said to be homogeneous. For any such multivectors we have: 

(2) 

AEArV, BEA3V. 
We recall also that any endomorphism 1/; : V -+ V can be extended in unique way to a 

homomorphism A'I/; : AV - AV, satisfying: 

(3) 

The restriction of this map to the subspace Arv is denoted Ar'I/; : ArV -+ Arv and it is 
called the r-th exterior power of the map 1/;. We have: 

(4) 

for every u1 , ... , Ur E V. ln particular, A 01/; = 1 is the identity map of IR, for any 'efJ. 
Now let us suppose that V is a metric vector space, that is, it is endowed with a non-

degenerate metric tensor I E 1'2V* of signature (JJ, q). We ca.n use this metric tensor to 
induce an scalar product ( , ) : A V x AV -+ lll on A\/, by letting 

(A, B) = det('Y( Ui, v; ) ), 

4 
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for homogeneous multivectors A = u1 /\ ... /\ Ur E Ar V and B = v1 /\ ... /\ Vr E Arv, 
u;, v; E V, i = I, ... , r. This scalar product is extended to all of AV due to linearity and 
orthogonality ((A,B) = O if A E ArV,B E A8 V, r cJ s). The algebra AV endowed with this 
internai product is called the Grassmann algebm of V and it will be denoted by A(V, 1 ). 

If the metric vector space (V,,) is also endowed with an orientation, i.e., a volume 
n-vector T E Anv such that 

(6) 

then we can still introd uce a natural isomorphism hetween the spaces Ar V and A n-rv ( r = 
O, . . . ,n), called Hodge star operator (or Hodge dual) and denoted by *: Arv-+ An-rv. 
We have: 

(7) 

for every A, B E Arv. Of course, this operator is naturally extended to an isomorphism 
*: AV-+ AV hy linearity. The inverse *-1 : An-ry-+ ArV of the Hodge star operator is 
given by: 

*-1 = (-1y(n-r)sgn -'y *, 

where sgn i = -y /ltl denotes the sign of the determinant -y = det( 'Yo/3) -

b. Clifford Algebras 

The Clifford algebra Ge(V, 1 ) of a metric vector space (V,,) is defined as the quotient 
algebra1 

TV 
Ge(V,,) = T' 

-y 

where J -y C TV is the bilateral ideal of TV generated by the elements of the form u ® v + 
v ® u - 21 ( u, v ), with u, v E V C TV. Clifford algebras generated by symmetric bilinear 
forms are sometimes referred as orthogonal, in arder to be distinguished from the symplectic 
Clifford algebras, which are generated by skew-symmetric bilinear forms. (See, e.g., [7].) 

Let P-r : TV -+ Ge(V, 'Y) be the natural projection of TV onto the quotient algebra 
Ct(V, 1 ). Multiplication in Ge(V, 1 ) will be denoted as usually by juxtaposition and called 
Clifford product. We have: 

AB = p,,(A ® B ), (8) 

A,B E Cl(V,-;-). The subspaces IR,V C TV are identified with their images in Ge(V, 1 ). 
Then, in particular, for u, v E V C Ct(V, -;-), we have: 

uv + vu = 2-;-(u, v). 

Note that since the ideal J-y C TV is inhomogeneous, of even grade, it induces a parity 
grading in the algebra Ge(V, 'Y ), i.e., 

1 For other possible definitions of Clifford algebras see, e.g. , [5,6]. Here we shall be concerned only with 
Clifford algebras over real vector spaces, induced by nondegenerate bilinear forms. 
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with 
00 

et+(V,-y) = p.y(ffiT2rV) 
r=O 
00 

a-(V,-y) = p.y(E9T2r+iv). 
r=O 

The elements of Ci+(V, 1 ) forma subalgebra of Cl(V,-y), called even subalgebro of Ci(V,-y). 
We quote now a fundamental theorem concerning real Clifford algebras:[7J 

1 Universality of Cl(V; ')') 1 If A .is a real associative algebra with u11íty, the11 each linear 
mapping 1/J : V - A such that: 

(t/J(u))2 = 1 (u,u) 

for every u E V, can be extended in a unique way to a homomorphism C,t,: Ci(V, 1 )-+ A, 
satisfying the relation: 

It follows from this result that if (V, 1} and (V', 1'} are two metric vector spaces and 
1/J : V -> V' is a linear mapping satisfying: 

,'(1P(u),1P(v)) = 1 (u,v) (9) 

for every u, v E V, then there exists a homomorphism C,t, : Ci(V, 1 ) -> Ci(V', ,') between 
their Clifford algebras such that: 

(10) 

Moreover, if (V, 1 ) and (V',,') are metrically isomorphic2 vector spaces, then their Clifford 
algebras are isomorphic. ln particular, two Clifford algebras Ce(V, 1 ) and Cl(V, 1') with 
the sarne underlying vector space V are isomorphic if and only if the bilinear forms 1' and 
7' which induce them have the sarne signature. Therefore, there is essentially one Clifford 
algebra for each signature on a given vector space V. We denote by Clp,q, p + q = n, the 
Clifford algebra of the vector space lRn endowed with a metric tensor of signature (p,q). 

Another irnportant (indirect) consequence of the universality is that Ci(V, AI) is isomor-
phic, as a vector space over JR, to the Grassmann algebra A(V, 1 ). It is, then, 2n-dimensional 
and given A E Ci(V, 1 ) we can write: 

n 

A= }:{A)r, (11) 
r=O 

with (A)r E Arv C Ci(V, 1 ). 
The elements of Cl(V, 1 ) will also be called multivectors ( or multiforms, depending on 

V). Furthermore, if A = (A)r for some fixed r, we say that A is homogeneous of grade r. 
2 We call metric isomorphism a vector space ísomorphism satisfyiµg Eq. 9. The term isometry will be 

reserved to designate a. metric isomorphism from a. spa.ce onto ítself. 
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ln this case, we also write A= Ar E ArV C Cl(V,,). The Clifford product of homogeneous 
multivectors Ar, B., E Cf(V, 1) is given by the relation: 

m 

ArB., = (ArBs)lr-sl + (ArBs)lr- sl+2 + • • • + (ArBs}r+s = L (ArBs)lr-.,l+2k, (12) 
k=O 

where m = ½(r + s - Ir - s1)-
We can introduce in Cl(V, 1 ) the following fundamental products: ( cf. Hestenes[81) 

1 Dot product 1 · : Cl(V, 1 ) X Cl(V, 1 ) -+ Cl(V, 1 ) , defined, for homogeneous multivec-
tors, by 

(13) 

1 Exterior product 1 /\ : Cl(V, 1 ) x Cl(V, 1 ) -+ Cl(V, 1 ), defined, for homogeneous mul-
tivectors, by 

We observe that the exterior product is associative, i.e., 

A I\ (B I\ C) = (AI\ B) I\ e= A I\ B I\ e. 

For the dot product we have only the identities: 

Ar · (B ., • Ct) = (Ar I\ B.,) • Ct for r + s S t , r, s > O 
Ar • (B., • Ct) = (Ar • B.,) • Ct for r + t $ s. 

(14) 

(15) 

(16) 

We can still introduce in the algebra Cf(V, 1 ) the main au.tomorphism * : Cl(V, 1 ) -+ 
Cl(V, 1 ); the main antiau.tomorphism (reversion) 1 : Cl(V, 1 ) - Cl(V,1 ) and the conjuga-
tion -= Cl(V,1 )-+ Cl(V,1 ), given respectively by: 

(AB)* = A* B*, 
(AB)1 = B1 At, 
Ã = (A1)*, 

(17) 

for every A,B E Cl(V,,), with .4· = A if A E IR, A*= -A if A E V and A1 = A if A E IR 
or A E V. 

We present below some useful identities satisfied by the operations introduced above, 
which are valid for every a , a1 , ... ,ar E V, Ar E ArV, B., E A5 V , 1·,s O: (see [8]) 

(A*)r = (A)r* = (-lY(A)r 
(A1)r = (A)r1 = (-1y(r-l)/2(A)r 
Âr ·B., =(-ly(s-l)B., ·Ar; rSs 
Arl\Bs = (-IYªBsl\Ar 

a· Ar= ~(aAr - (-lY Ara); a I\ Ar = ~(aAr + (-lY Ara) 

aAr =a· Ar+ a I\ Ar; Ara= Ar · a+ Ar I\ a 

7 
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a· (ArBs) = (a· Ar)Bs + (-1}'" A.-(a. • Bs} 
= (a J\ A.-)Bs - (-lf A .. (a I\ Bs) 

a J\ (A.-Bs} (a/\ A.-)Bs -(-lt A .. (a • Bs) 
(a· A.-)Bs + (-1}>" Ar(aJ\ Bs) 

T 

a· (ali •. . a,.)= L(-1l+la • a1:(a1 ···ªA:-1ª1:+1 ... a,.} 
Ã:=1 

T 

a · (a1 /\ . . - A a,.) = E(-1t+1a • a1c(a1 A ... /\ a1:-1 A ªk+i A ... A a,.) 
k=l 

We note in addition that the Clifford interior product of multivectors with the sarne grad-
uation is related. to the Grassma.nn interior product by: 

(19) 

forevery A..,B .. E ArV C a(V,7),r > O. 
If the metric vector space {V, 7} is oriented, then we can also a-tend the Hodge sta.r 

operator to the Clifford algehra of V, by letting * : Cl(V, 1) - Cl(V, 'Y) be given by: 

T 

This opera.tor sa.tisfies, for every Ar E ArV and Bs E AªV, r,s O: 

A.- /\ *Bs = Bs A *Ar; T = S 

Ar • *Bs = Bs • *Ar; r + S = n 
.4 .. A *Bs = (-1yC-1) *(A~ · Bs); r s 
Ar·*Bs=(-lf~•(A~A.B3); r+s~n 
*A,,. = A.~ - T = T 

*T = sgn ')'; •1 = T 

e. Symmetric Automorphisms and Orthogonal Clifford Products 

(20) 

(21) 

Besides the "natural" Clifford product of Cl(V, 'Y ), we can introd uce infinitely many 
other Clifford-like products on this same algebra., one for each symmetric automorphism of 
its underlying vector spa.ce. ln what follows we are going to construct such new Clifford 
products, wh.ich will pla.y an important role in the theory to be developed subsequently.3 

First of ali, let us recall tha.t there is a one-to-one correspondence between the endomor-
phisms of {V,;} a.nd the bilinear forms over V . Indeed, to each endomorphism 1/; : V -+ V 
we can associate a bilinear forro IV : V x V -+ IR, by the relation: 

w(u,v) = 1(u,1/;(v)), (22) 
3This possibility of introducing ditferent Clifford products in the sarne Clifford algebr:a was already 

esta.blished by Arcuri.[9J Our results possibly expla.ins those obta.ined by her, but we shall not pay a.ttention 
to this subject in this paper. 
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for every u, v E V. Following the Hestenes' approach ([8], Sec. 3-7) we associate to the 
bilinear form iJ! a "dot product" of vectors in the algebra Ci(V, 1 ), by letting 

U o V = iJ!( u, V) = U • -ip( V) (23) 

for every u, v E V C Cl(V, 1 ). 
An endomorphism VJ : V -+ V is said to be symmetric or skew-symmetric whether 

its associated bilinear form iJ! is, respectively, symmetric or skew-symmetric. ln the more 
general case we can write a bilinear form iJ! as: 

with iJ!±(u,v) = ½(iJ!(u, v) ± llt(v,u )), for every u,v E V. Then, correspondently, its asso-
ciated endomorphism 'l/J will be written as the sum of a symmetric and a skew-symmetric 
endomorphism, i .e., 

7/; = 7P+ + '/P-, 

with 'l/J+, 7/;_ : V-+ V standing for the endomorphisms associated to the bilinear forms iJ!+ 
and iJ! _, respectively. 

If 'l/J = 1/;+ is a symmetric autornorphism (nonsingular endomorphism) of (V,,}, the 
bilinear form Ili associated to it has all the properties of a metric tensor on V, and it can 
be used to define a new Clifford algebra structure Ci(V, w). It can be easily proved that 
Cl(V, iJ!) will be isomorphic to the original Clifford algebra Cl(V, 1 ) if and only if there 
exists an automorphism -ip1/ 2 : V - V such that: 

(24) 

for every u , v E V. Transformations satisfying t his relation are called positive and 'l/;1/ 2 is 
sometimes called the "square root" of 7/;. It can be easily proved (see below) that every 
positive syrnmetric transformation possesses at most 2n square roots, all of them being 
symmetric transformations, but only one being itself positive. 

If Eq. 24 is satisfied, we can reproduce the Clifford product of Ci(V, \JI) into the algebra 
Ci(V, 1 ) defining an operation V : Cl( V,,) x Cf( V,, ) - a( V, , ) , by 

(25) 

for every A,B E Ci(V,,) , where 7/;- 1/ 2 is the inverse of the automorphism 'l/;1 / 2 and by 
abuse of notation we have wri tten A 'l/;112 : Ci(V, -y) AV -+ A V Ce (V, 1) for the mapping 
defined according to Eq. 3. ln particular, if u, v E V C Ci(V, 1 ) are vectors , then 

U V V = U O V+ U /\ V. 

ln addition, the product V : Ci(V, 1) x Cl(V, 1) -+ Cl(V, 1 ) satisfies all the properties of 
a Clifford product which we have stated previously. Indeed, denoting by O : Ci(V, 1) x 
Ci(V,-y) - Ge(V,-y) the "dot product" induced by V : Cf(V,-y) x Ge(V,,)-, Ci(V,-y), i.e., 

A O B = L (.4 V B }lr-sl• (26) 
r,s>O 
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we obtain rela.tions analogous to those given in the earlier section, with the usual dot product 
"·" replaced by this new one. 

Furthermore, if we perform a change in the volume scale by introducing another volume 
n-vector Tq, E Anv such that 

T • µ = ( -1 )9, 
then we can also define the analogous of the Hodge duality operation for this new Clifford 
product, by letting *: Ci(V,1') - Ci(V,1') be given by: 

(27) 

for every Ar, Br E Ar V e Cl(V, 1' ), r = O, ... , n. Of course, the operation introduced in 
this way satisfies relations analogous to those given by Eqs. 21. ln addition, it is related to 
the natural Hodge star operator of the algebra by: 

(28) 

as can be easily verified. 
Let us state our results in a more operational form. For this, we recall that every linear 

transformation can be expressed as composition of elernentary transformations of the types 
Ra : V - V and Sab : V - V , defined by: (see (s], Sec. 3-6) 

Ra(u) = -aua-1 

Sab(u) = u + (u • a)b, 
(29) 

for every u E V, where a, b E V are non-zero vectors parametrizing the transformation and 
a-1 = a/a2 = a/(a • a). Transforrnations of the type Ra are called elementary reftections. 
Remember that any isometry of (V, -y) can always be written as the composite of at most n 
such transformations. 

The skew-symmetric part of a transformation of the type "Sab" will be denoted by S[ab)· 
We have: 

(30) 

for every u E V. By its tum, the symmetric part of a transformation of the type "Sab" 
will be called a strain; it is a shear· in the a/\ b-plane if a • b = O, or a dilation along a, if 
a/\ b = O. Obviously, a dilation along a direction a can be written more simply as: 

(31) 

for every u E V, where € E IR, { > -1, is a scalar para.meter. If € = O, then Sa is the 
identity map of V, for any a E V. If # O, then Sa is a contra.ction ( -1 < € < O) or a 
dilation (€ > O), in the direction of a, by a factor 1 + ~-

Every positive symmetric transformation can always be written as the composite of 
dilations along at most n orthogonal directions. To see this, it is sufficient to remember 
that for any symmetric transforrnation tp we can find an orthonormal basis {aµ.) of V for 
which (aligned índices are not to be summed over) 

10 



where •\µ) E IR is the eigenvalue of 'lj, associated to the eigenvector aµ (µ = 1, . .. , n). 
Then, defining 

for every u E V, with ~(µ)=À(µ) - 1, we get: 

'lp = S1 o··· oSn. 

If the symmetric transformation 'i/J is in addítion positive, we have aµ• 1/J( aµ) = 'ljJ1l2 ( aµ). 
'ljJ1l2

( aµ) = À(µ)ªµ • ªw Then, since the signature of a bilinear form is preserverd by linear 
transformations (Sylvester's law of inertia), we conclude that: 

This means that in Eq. 32, ~(µ) = À(µ) - 1 > O and therefore it satisfies the definition 
of dílation given by Eq. 31. Note also that the positive square root of 7/J is given by 
'lpl/2 = s;l2 o , , • o s;/2 , with 

(33) 

for every u E V, where ( (µ) = -1 + ~-
With these results it is trivial to give an operational form to the product defined through 

Eq. 25, although eventually this may demand a great <leal of algebraic manipulation. 
We stress finally that although we have considered only the positive symmetric transfor-

mations in the developments above, the formalism ca.n be a.da.pted to more general trans-
formations. This is beyond the purposes of this paper and will be discussed elsewhere. 

2.2. Cartan and Hodge Bundles 

ln this section, we discuss briefly the processes of differentiation taking place in Cartan 
and Hodge bundles and the formulation of differential geometry in these bundles. We shall 
follow basically the terminology and notation of Choquet-Bruhat.!101 

a. Cartan Bundle 

Let M be a n-dimensional C 00 manifold, r; M the cotangent space of M at a point 
x E M and T* M the cotangent bundle of M. 

We define the Cartan bundle over the cotangent bundle of M by: 
n 

A(T*M) = LJ A(T;M) = LJ $Ar(T;M), 
xEM xEMr=O 

where A(T;M), x EM, is the exterior algebra of the vector space T;M. The sub-bundle 
Ar(T*M) e A(T*M) given by: 

Ar(T* M) = u Ar(T;M) 
xEM 
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is called the r-forms bundle ( r = O, ... , n ). 
ln the Cartan bundle, we can introduce the fundamental operator d : sec(A(T* M)) --+ 

sec(A(T* M)),4 called the exterior derivative and defined by the relations: 

{i) d(A+B)=dA+dB; 
(ii) d(AAB)=dAAB+A•AdB; 
{iii) df(u)=u(f); 
(iv) d2 = O, 

for every A, B E sec(A{T* M)), J E :F(M) and u E sec(T M). 

b. Hodge Bundle 

Let us consider now an oriented metric manifold M = (M,·'f,T), i.e., we endow M with 
a nondegenerate metric tensor fiel d , E sec(TJ M) of signature (JJ, q) and with a volume 
n-form field TE sec(AnT*M). We denote by ..,,-1 E sec(TfM) the reciproca} of the metric 
tensor ')' and by ( , ) : sec(A(T· M)) X sec(A(T· M)) -- :F(M) the Grassmann product 
induced on A(T* M) by the metric tensor 1- 1 . 

We call Hodge bundle of the manifold M, to the pair: 

A(M)= (A(T*M),(, )}. 

ln addition to the exterior derivative operator, we define in the Hodge bundle of M the 
Hodge codifferential operator ô : sec(A(T* M)) --+ sec(A(T• M)), given, for homogeneous 
multiforms, by: 

(34) 

We can still introduce the operator ó. : sec(A(T* M))--+ sec(A(T* M)), called the Hodge 
Laplacian, given by:5 

ó.= -(dó+ ód). (35) 

The exterior derivative, the Hodge codifferential and the Hodge Laplacian satisfy the 
relations: 

dd = 8ó = O; ó. = ( d - li)2 

dó. = ó.d; óó. = ó.ó 

Ó•= (-1y+1.d; *ô= (-lYd• 
dó• = *ód; *dó= ód*; •ó. = ó.• 

ç. Differential Geometry in the Cartan and Hodge Bundles 

(36) 

Let us now endow the oriented metric manifold M, with an arbitrary affine connection 
V. The torsion and the curvature tensors of M, associated to the connection V, are given 

4 We denote by sec(X(M)) the space of the sections of a bundle X(M) and by :F(M) the space of the 
differentiable, real-valued, functions on M. 

5 Our definition of the Hodge Laplacian differs by a sign from the definition given by Choquet-Bruhat.1101 
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respectively by: 

T (a,u,v) = a(v'uv - v'vu - [u,v]) 
R (w,a, u,v) = a(v'uv'vw - v'vv'uw - v'[u,v]w), 

for every u, v, w E sec(T M) and a E sec(T"' M), where 

[u,v] = uv - vu 

is the Lie bracket of the vector fields u and v. 
Given an arbitrary moving frame (ea) on T M, we write: 

[ea, e13] = c:13eP 

v'eae/3 i:13ep, 

(37) 

where c~8 a.re the structure coefficients of the frame (e0) and L: 13 are the connection coef-
ficients in this frame. Then,the components of the torsion and curvature tensors are given, 
respectively, by: 

T~f3 = i:f3 - Lpa- - <13 
R,,Paf3 = e0 (L;;,.) - ep(L~,,) + L~uLp,. - i;;uL~,, - c~8L~,,-

(38) 

Now, let (EJP) be the dual frame of (e0) (i.e., fJP(e0) = 8~ ). Then we have: 

dfJP = _ !CP aBº /\ (}fJ 2 o,., 

v'e°' EJP = -L~pf)13 
(39) 

and we introduce the connection 1-forms wp E sec(T"' M), the torsion 2-forms 0P E 
sec(A2(T*M)) and the curvature 2-forms ílp E sec(A2(T*M)), by the relations: 

P - LP fJº W/3 - a-{3 ' 

0P = ! Tp (}°' /\ (Jf3 2 a-{3 

1 n: = 2 R,,Pa-PBº /\ oP. 

(40) 

Multiplying Eqs. 38 by ½B°' /\ (}f3 and using Eqs. 39 and 40, we get the Cartan's structure 
equations: 

d(}P = d(}P + Wp /\ 813 = 0 P 

dwi = c1wi + w~ /\ = n~, 
(41) 

where d : sec(A(T* M )) -+ sec(A(T'" M)) denotes the covariant exterior derivative related 
to the connection V . 

Since we are dealing with a metric rnanifold, we must complete Cartan's structure equa-
tions with the equations stating the relation between the connection and the metric. For 
this, following the usual nornenclature,l11•12•13l we write: 

(42) 
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and we call nonmetricity to the tensor field having these components.6 Correspondently, 
we introduce the nonmetricity 2-forms, by: 

(43) 

where Qf0131 = 7Pµ(Q 0 13µ -Q130 µ). Multiplying Eq. 42 by Oª 1\013 and using Eq. 41a, we get: 

dBµ = d8µ - w~ /\ 0/J = ~µ, 

where (8µ) is the reciprocai frame of (BP) (i.e., Bµ = 7µ11811
) and 

~µ=0µ-Qµ. 

{44) 

Eq. 44 can be used as the complement of Cartan's structure equations for the case of a 
metric manifold. 

Differentiating Eqs. 41 and Eq. 44 we obtain the Bianchi identities:7 

d0P = d0P + wp " e.a = n1p " o/3 
dfiP µ = dfiP - n,P /\ w13 + wP /\ n,.8 = O µ {3 µ {3 µ (45) 
diPµ = diPµ - w! /\ iP8 = -n~ A 88 . 

Let us recall finally that any triple {M, 7, V) where ("f, V) is a gemetrical structure on 
M such that 

and T[V] -=f. O (46) 
is called Cartan space. By another side, if 

and T[V] = O (47) 

then {M,7, V) is called Weyl space. Finally, if torsion and nonmetricity are both null, i.e., 
if 

v, = o and T[V] = O, (48) 

then (M,7, V) is called Riemann space and the pair (7, V) is called Riemannian structure. 
ln addition, if torsion and nonmetricity are both non-null, then (M,,, V) is called Riemann-
Cartan- Weyl space. 

For each rnetric tensor defined on the rnanifold M there exists one and only one con-
nection in the conditions of Eq. 48, which is called Levi-Civita connection of the metric 
considered. With the exception of the covariaut derivative associated to the Levi-Civita 
connection (which will be denoted simply by D) and their coefficients (which will be de-
noted by rt.a) any other quantity referring to a Riemannian structure will be denote by a 
hat over its usual symbol. 

6 We use the nota.tion v'.,tt::: = (Vea t)~::. = (Vt)~;;: .. for lhe components oí the cova.riant deriva.tive of a. 
tensor field t. This is not to be confused with v'eatt::: = ea(t~::: ), the deriva.tive of the components of t in 
the direction of ea. 

7 To our knowledge, Eqs. 44 and 45c are not found a.nywhere in the litera.ture, a.lthough they a.ppear to 
be the most natural extension of the structure equa.tions for metric manifolds. We include Eq. 45c a.mong 
the Bia.nchi identities for completeness. 
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3. Differential Geometry in the Clifford Bundle 

We call Clifford bundle of the (oriented) metric ma.nifold A1 = (M,"f, T) to the vector 
bundle: 

Ci(M) = T(M) = LJ Ci(T*M - 1 ) 

J :X ,'Y:x ' 
'"Y-1 :xEM 

where T(M) denotes the tensor bundle of M, J'"Y-1 C T(M) is the ideal of T(M) generated 
by the elements of the forro a@ f3 + f3@ a - 21-1 (0,/3), with a ,/3 E sec(T*M) C T(M) 
and Ci(T;M,,;1 ) is the Clifford algebra of the rnetric vector space (T;M,,;1

). It can be 
shown that:l141 

where Pso+(p,q) is the principal bundle of orthonormal frames and Ad is the adjoint rep-
resentation of Spin+(p,q), i.e., Ad: SO+(p,q)-+ Aut(IRp,q ), Ad : SO+(p,q)--+ Aut(IRv,q), 
u - Adu, with Adux = uxu-1, 'vu E SO+(p,q), 'vx E IRp,q· 

lt can be defined in the Clifford bundle a differential operator ;J, here called the funda-
mental Dirac operator, which is closely related to the Levi-Civita connection of M . In what 
follows we shall study this operator and subsequently we will show that it can be generalized 
to connections other than the Levi-Civita, i.e. , to connections defining a general Riemann-
Cartan-Weyl geornetry. Moreover, making use of the results developed in Sec. 2.1.c, we 
will show that it is possible to introduce infinitely rnauy others Dirac-like operators, one 
for each bilinear form field on the manifold .,i\11. These constructions will enable us to for-
mula.te the geometry of Riemann-Cartan-Weyl spaces in the Clifford bundle. Some new 
geometrical concepts, like the Dirac commutator and anticommutator, will be introduced 
and we will present a new decomposition of a general affine connection, identifying some 
new relevant tensors which are important for the clear understanding of the formulation of 
the gravitational theory in flat space and other related subjects appearing in the literature. 

3.1. The Fundamental Dirac Operator 

a. Definition; Basic Properties 

Given u E sec(T M) and íi: E sec(T* M) C sec(Cl(M )), consider the tensorial mapping 
1/; - uDu'l/;, 1/; E sec(Ci(M)). Since Dulr1 Ç J:;1, where J '"Y - 1 is the ideal used in the def-
inition of Ci(M), the notion of covariant deriva.tive (related to the Levi-Civita connection) 
pass to the quotient bundle Ci(M) and we can define the fundamental Dirac operator (or 
fundamental Dirac derivative) 

= Tr(u Du ). 

If (0"') is a moving frame on T*M , dual to the moving fra.me (eo,) on TM, we have: 

(49) 

For A E sec(Cl(M)), 
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a.nd then we define: 

in order to have: 

éJ • A = 8° • ( .De0 A) 
éJAA = 8°A(De0 A), 

lt is ea.sily established that the operators é). and éJA satisfy the following identities: 

é) A (A A B) = (éJ A A) A B + A• A (éJ A B) 
éJ • ( Ar • B s) = ( éJ A Ar) • B., + Ar• • ( éJ • B.,); r + 1 s 
é).*= (-lt*éJA; *ª· = (-lY+l""* 

(50) 

(51) 

ln addition to these identities, we have the following fundamental result:Í14•15•161 

Proposition 1 The fundamental Dirac deriva.tive éJ is related to the exterior deriva.tive 
d an to t e o ge codifferential 8 by: 

é)= d- 8, (52) 

that is, we have <1/\ = d and iJ . = -6. 

1 Proofl If J is a function , lJ A J = 8ª A De0 J = e0 (!)8° = df and lJ • f = 8ª • De0 f = O. 
For the 1-form fields 8P of a moving frame on T• M , we ha ve ;} /\ (JP = 8° /\ De

0 
8P = 

- I'!riª /\ 9fJ = -w~ /\ (Jf3 = dfJP . 

Now, for a r-forms field w = ~w0 1 ... 0 .8°1 /\ • •• /\ 8° r , we get, using Eq. 51a, lJ /\ w = 
:r( dwa,1 , .. 0tr /\ 90t1 A .. . /\ 90tr + Wa,I ... a.d8º1 /\ IJ02 /\ ••• /\ IJOr + . .. + ( - 1 y +iwªl ···ª•8º1 /\ . . . /\ 
8°r-1 A d(}ª •) = dw. Finally, using Eq. 36c and Eq. 51c, we get éJ • w = -8w. 

Note finally that given an arbitrary coordinate moving frame (8P = dxP) on M (xP : 
U -+ IR, U e M , are coordinate functions ), we have the following interesting relations: 

(53) 

where (8e,) is the dual frame of (dxP} . 

b. Dirac Commutator and Dirac Anticommutator 

Given the 1-form fields a,/3 E sec(T* M) C sec(Cl(M)), we define: 

[a,/3] = (a·IJ)/3-(/3·/J)a 
{a, /3} = (a· éJ)/3 + (/3 • éJ)a, 

(54) 

where lJ denotes the fundamental Dirac opera.tor of the ma.nifold. These opera.tions will 
be called, respectively, the Dirac commutator and the Dirac anticommutator of the 1-form 
fields a and /3. 
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We note that we have the identities: 

[a, .B) 
{a,,B} 

/j • (a A .B) - [(<J • a) A .B - a/\ (<J • ,B)) 
= a/\ Ca • /3) - [Cb /\a)· ,B - a· (/J !\ .B)]. 

(55) 

The algehraic meaning of these equations is clear: t hey state that the Dirac commutator 
and the Dirac anticommutator measure the amount by which the operators (). = -~ and 
/)/\ = d fail to sa.tisfy the Leibniz rule when applied, respectively, to the exterior a.nd to the 
dot product of 1-form fields. 

Now, let (ea) he a.n a.rbitrary moving fra.me on TM, (8P) its dual frame on T*M a.nd 
(8a) the reciprocal frame of (8P). From Eqs. 54 we obtain, respectively: 

[Oa, Op] Dea0.6 - DefJBª 
= cri,6 - rpa)8P 

= c:{JoP, (56) 

{Oa, 8.e} De0 8.e + Def38º 
= cr i.e + r ;Ot)8p 
= b:.a0p , (57) 

where ri.e are the components of the Levi-Civita connection D of 1 , c:.a are the structure 
coeffi.cients of the fra.me (e0) and we a.re introducing t he notation b: .a = r i.e+ r ; 0 • CThe 
mea.ning of these coeffi.cients will be discussed below.) 

Clearly, Eq. 56 sta.tes that the Dirac commutator is the analogous of the Lie bracket of 
vector fields. These operations have similar properties. ln particular, the Dirac commutator 
sa.tisfies the Jacobi identity: 

[a,(,B,w)] + (/3,(w,a]] + [w,[a,,B]] = O, 

a, ,B,w E sec(T* M) e Cl(M ). Therefore it gives to the cotangent bundle of M the structure 
of a Lie algebra. 

The geometrical meaning of the Dirac commutator and t he Dirac anticommutator is 
also ea.sily st ated from Eqs. 56 and 57. ln fact, Eq. 56 mea.ns that the Dirac commutator 
measures the amount by which the "vectors" 00 ande.a and thei r infin itesimal lifts along the 
"integral lines" of each other fail to forro a parallelogram. Ily its turn , Eq. 57 means that 
the Dirac anticommutator measures the ra te of deformation of the frame {80): {80,80} 
gives the rate of dilation of the field 80 under dislocations along its own integral lines, 
while {80 , 0p}, a ::/- ,B, gives the rate of variation of the angle between 80 and B.e, under 
dislocations in the direction of each other. 

We state now our second fundamental result: 

1 Proposition 2 I The coefficie11ts b~.B of the Dirac anticommutator in a moving frame 
{80 ) are given by: 

(58) 
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where .C eP denotes the Lie derivative in the direction of the vector field eP and (eP} is the 
dual frame of (0cr}· 

1 Proofl The coefficients r:/J of the Levi,Civita connection of 'Y are given by: (e.g., 
Choquet-Bruhatl101) 

(59) 

Hence, 
(60) 

and the r.h.s. of Eq. 60 is just the negative of the components of the Lie derivative of the 
metric tensor 'Y in the direction of eP = 1 P<f e". • 

ln view of the result stated by Eq. 58, the attempt to find (if existing) a moving frame for 
which b:13 = O is equivalent to solve, locally, the Killing equations for the manifold. Because 
of this we shall refer to these coefficients as the [(illing coefficients of t he frame. Of course, 
since the solutions of the Killing equations are restricte<l by the structure of the rnetric as 
well a.s by the topology of the m::inifold, it will not be possible, in the mme general case, to 
find any moving frame for which these coefficients are ali null. 

e. Associated Dirac Operators 

ln view of the results stated in Sec. 2.1.c, it is clear that besides the fundamental Dira.c 
operator we havejust analyzed, we can also introduce in the Clifford bundle Cl(M) infinitely 
many other Dirac-like operators, one for each nondegenera.te symmetric bilinear form field 
that can be defined on the metric manifold M. 

Hereafter we convention to denote by g E sec(TJ M) a.n arbitra.rily fixed nondegenerate 
positive symmetric bilinea.r form field on M, by g-1 E sec(J1> M) its reciprocai bilinear 
form on T* M and by h E sec(Ti1 .M) the "field of linear tra.nsforma.tions" which induces g. 
Observe that we have: 

for every a,(3 E sec(T* M), where h-1 and h-1/2 are the reciprocais of the transformations 
h and h112 respectively.8 We stress that the bilinear form field g is not to be confused with 
the metric tensor, of the manifold. 

We also denote by V : Cl(M) x Cl(M) ...... Cl(M) the "Clifford product" induced on 
Ci(M) by the bilinea.r forro fieJ<l g-1 and hy O : Cl(M) x Cl(M) - Ci(M) the "Clifford 
dot product" associated to "V." 

We call Dirac operator associate,l to the bilinear form g- 1 E sec(TJ M) the operator: 

iJ = /)V = Tr(ü V .Du,). 
8 We call reciprocai o{ a linear transformation 1/, : V - V to the transfocmation t/, - 1 

: v• - v• defined 
by tp- 1 º'Y• = 'Y• ot/J, where ('Y.u)(v) = 'Y(u,11), for every u,v E V. T here is no risk of confusion with the 
inverse of the transformation ,j,, since this last one is a. tra.nsformation of V onto V . 
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With respect to a. moving frame (O"') of T* M we have: 

(61) 

where (e0) is the dual frame of (IP). We define also 

so tha.t 
(62) 

beca.use the exterior part of the operator iJ coincides with that of the operator IJ. 
Of course, the properties of the operator iP differ from those of the fundamental Dirac 

operator <}. It is enough to state the properties of the operator h • , which are obtained 
from the following proposition: 

1 Proposition 31 The operators h O and IJ. are related by: 

i) o w = ". w + s. w, (63) 

for every w E sec(Cl(M)), where s = gPª Dp9aµOµ. E sec(T* M) is called the dilation 1-form 
of the bilinear form g. 

1 Proofl Given a 1·-forms field w = ~w01 ... 0 J}"'1 /\ ... /\ O"'r E sec(Cl(M)), we have 
DepW = :r(Dpwo,1 .. ,ar)0"'1 /\ •.. /\ Oªr , with 

D w - e (w ) - I'µ w - • • • - I'µ. w P Ot ,--Or - P "'t •·•ªr pa1 /J,Ct2 .. . 0r POr "'t •··"'r-1 µ.• (64) 

Then, OP o DepW = -:r Dpwo,l ., .CtrOP o ( 0ª1 /\ ..• /\ O"'r) = :r Dpwc,1 ·--C>r(gPª1 OC>2 /\ ... /\ OC>r + .. . + 
(-1r+lgPªr0"'1 /\ ... /\ Oªr-1 ), or 

iÍI o -
1 

pa D 0C>2 A A oC>r 
V w - (r - l)!g pWaa2 ... C>r /\ ••• /\ • (65) 

Now, taking into account the identities g P<T DpW<Ta2---C>r = Dp(gP<T Waa2 ... 0lr) - ( DpgP<T)w<Ta2---0r j 

9aµDpgpa = -gP<T Dpg<Tµ and recalling also that gP<T = 1 Pµ.g:, we conclude that 

+ 

Therefore, writing Waa2 ... ar = g~wµa2 .. . Ctr and Sp = g 013 Da9{3p, we obtain the Eq. (63). • 

3.2. The Dirac Operator in Riemann-Cartan-Weyl Spaces 
a. Definition; Basic Properties 

We now consider the manifold J\li = (M,1,r) endowed with an arbitrary affine connec-
tion v'. ln this case, the notion of covariant deriva.tive does not pass to the quotient bundle 
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Cl(M).171 Dospitc this1 it Is still a, Wêll dêfinêd opêra,tion and in analogy with the ea.rlier 
seetlon, Wê ca.tt assoeiate to it, a.cting on the !iêction-s of Ct(M), the opera.tor: 

8 Tr(ii Vu), 

W@ caill thie operator !limply thê Dirac ôpeMtôr (or Dirac det•ivative). Also as hefore, ii 
(9~) li! a, tntJvlng frãfliê ott T• MI duo.1 tõ the moving fra.me (eo-) cm T M, wê have: 

(66) 

8, A e • (VeffA) 
8 A A li1I r A (Ve&A), 

íor @v@ry A E sêe(Ct(M)), Yo that: 

(67) 

(68) 

wha.t ge1rnraUzê11 Eq, 5h.. By lts tm·n, EQ, Sle is g1m@ra.lb1ed aecording to the füllowing 
propositJon: 

Propo1diion 4 Lêt q;; lrn tl1@ nonm@trlcity 2-íbrms Msociêted witl1 tl1@ 001mectio.n V 
ln êíl Ar trary movlllg &&nu, (6fl), Tlwn we h«w@, for lmmogéneous nrnltiforms, 

(=1)"• .. 18,, i= IJA+Qfltd,,, 
(- l)"+l,;=lOA• = 8, .... QP,J,,, 

wh@r@ il>A "" 91; • A ttnd ivA 9P A A, for @Vêty A e s@e(Ct(J\"1)), 

(69) 

[fii!tdJ Lot w ~wft1 .. ,r;f0°1 A .. , A fJº" e ti@e{N'(M)) C ~~t(Ct(M)) he r-form 
fimd 01\ M, Wa ltn,vo {9tJ, A ... A 9pf) A = ((9i,f I\ ... I\ 9111) 'w)T" = WfJ1 .. .jiy.'f' a.nd 
lt follOWfl th11t v~!J [(ti/Jl I\ , .. A HtJr ) /\ *W] = tlty ( w~I ..,/Jr )T, lht t Ol\ th~ otl\er ha.nd, 
ã.lga haiw v'@t1 [(0111 I\ . , , A 9op) A •wl a 9fj1 A . , . A 9131, A Vt., -. w + ( L!131 w,,13~ ... fJ, + •, • + 
L!fJ~wo, ... fJr .. 1P)'f = (Q!tl1Wvf1~ ... ~1' + ''' + Q!,,,Wt11 .. ,i,,a1j))'r IU\d thtwefot'e Wê gêt, a.fter some 
~lg@bri\ile ttui,fiipuls.th:m: 

Ve" * w !!:\ • v'e1'W + Q(f1w • (IJl-i A ( 911 
• cw) ), 

trom which Eqs. 69 follow innnedlã.truy. 

(70) 
lí 

fiiklng lnto MC()Ut1.t th~ t'üsult sta,t@d ln thê abo~ prnposition M1d th@ <l@flnition of th4.'l 
Hodg@ eodlfi'@l'ênthil (~;q. 34)l we n.1·~ mõtiv~têd to htt\'()tlute ln tlHi Cllffo1·d bundle tlte 
DiNt oodtJrivat,vtí opet'ãtm\ giwn, fot' bomt)g{?noous multifonns, by: 

('fl) 
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Of course, we have: 

and we can, then, define: 

so that: 

ã. = (-lY *- l 8 /\ * = -8 • + QP • ip 

ã/\ = (-lY *-l 8. * = 8 /\ + QP /\ ip, 

The following identities are trivially established: 

8 = ( -1y+1 *-lã* 
*8=(-1y+iã*; *ã= (-1Y8* 
8ã* = *ã8; *8ã = ã8* 
*82 = -ã2*; *ã2 = -82* 

(72) 

(73) 

(74) 

ln addition, we note that the Dirac coderivative permit us to generalize Eq. 51b in a very 
elegant way. ln fact, in consequence of Prop. 4 we have: 

1 Corolary I For every Ar E sec(Ar(M)) C sec(Cl(.M)) and Bs E sec(A-'(M)) C 
sec(Ci(M)), with r + 1 $ s, it holds: 

(75) 

1 Proofl Given a 1-form field a E sec(T* M) C sec(Cf(M )) and a r-form field w E 
sec(Ar(M)) C sec(Cf(M)), we have, from Eq. 70, that Veq * (a· w) = *Veq(a · w + 
Qq1.w * [8µ /\ (Bv •(a· w))]. We have also that Veq * (a · w) = (-1y +1 veq(a /\ *w) = 
*[(Veqa) • W +a· (Veqw + Qqµva • (8µ /\ (Bv • w))], where we have used Eq. 70 once again. 
It follows that: 

(76) 

Then, recalling that ( a1 /\ ... /\ ar) • w :;= a1 • ... • ar • w, with o1, ... , ar E sec(T* M),w E 
sec(A5 (M)),r $ s + 1, and applying Eq. 76 successively in this expression, we get Eq. 75. 

Another very important consequence of Prop. 4 states the relation between the operators 
8 and /J: 

1 Proposition 51 Let ~P = 0 P - QP, where 0P and QP denote, respectively, the tocsion 
a.nd the nonmetricity 2-forms of the connection V in an arbitrary moving frame (BP) . Then: 

é). = (9. - ~p • j P' 

fJ/\ = ~/\ - 0P /\ i p, 
(77) 

1 Proofl If J is a function, 8 /\ J =Oª/\ 'veo:f = e0 (f )Bº = df and 8 · f = 8°' · 've°'f = O. 
For the 1-form field 8P of a moving frame on T· M, we have 8 /\ OP = 8°' /\ Veo:8P = 
-L~riª /\ ()f3 = -w~ /\ 9/3 = d()P _ 0 P. 
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Now, for a r-form field w = ~Wa1 ... aJJª1 I\ . .. /\ 8°r' we get 8 /\ w = ~(dwal•••ªT A 
8ª1 A ... A Oªr + w01 .,.ard8ª1 A Oª-i A ... A Oªr + · · · + (-1y+1w01 ... ar8ª1 A ... A (Pr-1 A 
dOªr) - .!.(w 0°1 A 002 A ... A 8°r + · ·. + {-l)r+lw 8º1 A ... A OOr-1 A 0°r) = r! CYl .,.Cltr Oll 0°.!)!r 

dw- ~0P A(wPOl'l··•Otr8ª2 
/\ ••• /\OCXr + ·. ·+ (-1y+1

wa1 ... 0tr-1p.OCX1 A .. . /\Oºr-l) = dw-0P Aipw, 
what proves Eq. 77a. 

Finally, from Eqs. 69b and 77a we obtain ô/\ *W = (-1 y+i *ª • w - ( -1 y+i *QP • j Pw = 
IJ /\ *W - 0P /\ *W = ( -1 y+i *" • w - ( -1 y+i * 0P • j Pw. Therefore, ô • w = lJ • w - ~P • j Pw, 
what proves Eq. 77b. • 

From Eqs. 77 we ohtain the expressions of 8· a.nd 8/\ in terms of ;J. and IJ/\: 

ã. = -iJ• + QP • j p 

ã/\ = IJ/\- ~p /\ip. 
(78) 

Obviously, the Dirac coderivative associated to the fundamental Dirac operator is given by: 

We observe finally that we can still introduce another Dirac operator, obtained by com-
bining the arbitrary affine connection V with the algebraic structure induced by the generic 
bilinear form field g E sec(TJ M). With respect to an arbitra.ry moving frame (8") on T* M, 
this operator has the expression: 

(79) 
lt is clear that in the particular case where V is the Levi-Civita connection of g, the operator 
8V-which in this case is the fundamental Dirac operator associated to g-will satisfy the 
properties presented in Sec. 3.1.a, with the usual Clifford produtc exchanged by the product 
"V." ln addition, for a more general connection we can apply the results of Sec. 3.2.a, once 
again with all the ocurrences of I replaced by g. (ln particular, the fundamental Dirac 
operator associated to 'Y is replaced by that associated to g.) 

b. Torsion, Strain, Shear and Dilation of a Connection 

ln analogy with the introd uction of the Dirac commutator and the Dirac anticommutator, 
let us define the operations: 

[a,,B] = (a· 8),B - (,8 • 8)a - (a,,B] 
fo,/3g = (a·8)f3+(/3·8)a-{a,/3}, 

{80) 

for every a, /3 E sec(T* M). We have subtracted the Dirac commutator and the Dirac anti-
commutator in the r.h.s. of these expressions in order to have objects which are independent 
of the structure of the fields on which they are applied. 

If (80) is the reciprocai of an arbitrary moving frame (fJP) on 1'* M, we get, from Eq. 80a: 

where T!r; are the components of the usual torsion tensor (Eq. 38). Note from this last 
equation that the operation defined through Eq. 80a does not satisfy the Jacobi identity. 
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lndeed we have: 

L [801, [813,0c,]) = L (Tt,, - Q[o,µJ)(T%u - Q~u])8p, 
[01J3u J [01J3u J 

where the summation in this equation is to be performed on the cyclic permutations of the 
índices a, /3 and <:1. 

From Eq. 80h, we get: 
f8o, ,8(3 = (s:(3 - QêOlm>ºP• 

where Q(o,,8) = 1 P11(Q01,au + Qt30,u) and we have written: 

(81) 

lt can he easily shown that the object having these components is also a tensor. Using the 
nornenclature of the theories of continuum media,[17,is] we will call it the straín tensor of 
the connection. Note that it can be further decomposed into: 

S p - s~p 2 p 
c,(3 - c,(3 + -s f c,(3 n 

where S~,a is its traceless part, which will be called the shear of the connection, and 

is its trace part, which will be called the dilation of the connection. 
It is trivially established that: 

where I'!,a = ½(b:.a + <.a) are the components of the Levi-Civita connection of-y.9 

(82) 

(83) 

(84) 

Eq. 84 can be used to relate the covariant derivatives with respect to the connections D 
and V of any tensor field on the manifold. ln particular, recalling that D01,,au = e01 ('Y,a<1) -
"fµ.uI'i.a - 113µ.I'/:u = O, we get the expression of the nonmetricity tensor of v' in terms of the 
torsion and the strain, namely, 

(85) 

Eq. 85 can be inverted to yield the expression of the strain in terms of the torsion and the 
nonmetricity. We get: 

(86) 

9 We note tha.t the possibility of decomposing the connectiou coefficieuts into rotation (torsion), shear 
and dila.tion has a.lready been suggested by Baekler et ul.,[l3] but in their work tliey do not arrive a.t the 
identifica.tion of a tensor-like qua.ntity associated to these last two objects. 
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Indeed we have: 

L (Ocr, [013,0u]] = L (ri,, - Qfoµ))(Tffu - Q[J3u))0p , 
(ol3u) (oJ3u) 

where the summation in this equation is to be performed on the cyclic permutations of the 
índices a,/3 and CT. 

From Eq. 80b, we get: 
f80 ,0p = (S;/3 - Q(o/3 ))Bp, 

where Q(oJ3) = "'/"(Qa{Ju + Qp0,,) and we have written: 

(81) 

lt can be easily shown that the object having these components is also a tensor. Using the 
nomenclature of the theories of continuum media,l17,is) we will call it the strain tensor of 
the connection. Note that it can be further decomposed into: 

Sp s-p 2 p 
a{J = a/3 + -S iaf3 n 

where s:{J is its traceless part, which will be called the shear of the connection, and 

is its trace part, which will be called the dilation of the connection. 
lt is trivially established that: 

where ri13 = ½(b:13 + c:13 ) are the components of the Levi-Civita. connection of "f.9 

(82) 

(83) 

(84) 

Eq. 84 can be used to relate the covariant deriva.tives with respect to the connections D 
and V of any tensor field on the manifold. ln particular, recalling that D0 ;13" = ec,{if3u) -

1µur;13 - ;13µI'/:u = O, we get the expression of the nonmetricity tensor of v' in terms of the 
torsion and the strain, namely, 

(85) 

Eq. 85 can be inverted to yield the expression of the strain in terms of the torsion and the 
nonmetricity. We get: · 

(86) 

9 We note tha.t the possibility of decomposing the connectiou coefficieut.s into rota.tion (torsion), shea.r 
a.nd dila.tion has a.lrea.dy beeu suggested by Ba.ekler et al.,(13] but in their work they do not a.rrive a.t the 
identifica.tion of a. tensor-like qua.ntity associa.teci to these last two objects. 
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Frorn Eqs. 85 a.nd 86 it is clea.r tha.t nonrnetricity a.nd stra.in ca.n be used intercha.ngea.bly 
in the description of the geometry of a Riemann-Cartan-Weyl spa.ce. ln pa.rticula.r, we ha.ve 
the rela.tion: 

Qo,{3u + Q,,o,(3 + Q/30,a = So,/3q + Suo,/3 + S13,,0,, {87) 

where So,J3u = ipas:13. Thus, the stra.in tensor of a Weyl space satisfies the relation: 

S0 13,, + Suo,/3 + S13,,0, = O. 

ln order to simplify our next equations, let us introduce the nota.tion: 

(88) 

From Eq. 86 it follows that: 

~{J - -i,P"(VolBu + 'il(Ji'uo. - 'ilai'o,{3) 

~,Pª (1' µo,T:13 + 1 µ/3 TJ:0 - 1 µu r:0 ), {89) 

where we have used that Q 0 13,, = -'ilo,1J3u• Note the similarity of this equation with that 
which gives the coefficients of a Riema.nnian connection (Eq. 59). Note a.lso tha.t for V, = O, 
.6.:.8 is the so-called contorsion tensor. 10 

Returning to Eq. 84, we obtain now the relation between the curvature tensor R,/0,13 
a.ssocia.ted to the connection V and the Riemann curvature tensor RµPo.8 of the Levi-Civita 
connection D a.ssociated to the metric ,. We get, by a. simple calculation: 

(90) 

where: 
JµPo,{3 = Do.tfo,. - Af'/3u.6.~µ = 'vatfo,,. - f:4u.6.{3µ + .6.~/3~µ· (91) 

Multiplying both sides of Eq. 90 by ½Bçv /\ 8f3 we get: 

!}P = QP + JP µ µ µ• (92) 

where we have written: 
(93) 

From Eq. 90 we get a.lso the relation between the Ricci tensors of the connections \7 and 
D. We ha.ve: 

{94) 
with 

(95) 
10Eqs. 88 and 89 have appeared in the literature in two difl'erent contexts: with V"'( = O, they have been 

used in the formulations of the theory of the spinor fields in Riemann-Cartan spacesfl9 ,20] and with T[V] = O 
they have been used in the fornmlations of the gravitat.ional theory in a space endowed with a background 
metric. [21,22,23 ,24,25) 
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Observe that since the connection v' is arbitrary, its Ricci tensor will not be generally 
symmetric. Then, since the Ricci tensor of D is necessarily symmetric, we can split Eq. 94 
into: 

R[µa) = J[µa) 

R(µa) = R(µa) + J(µa)· 
(96) 

Now we specialize the above results for the case where the general connection v' is 
the Levi-Civita connection of the bilinear form field g E sec(TJ .M), i.e., T[V] = O and 
v'g = O. The r-esults that we are going to obtain generalize and clear up those found in the 
formulations of'the gravitational theory in a background metric space.l21,22,23 ,24l 

First of all, note that the connection D plays with respect to the tensor field g a role 
analogous to that played by the connection v' with respect to the metric tensor I and in 
consequence we shall have similar equations relating these two pairs of objects. In particular, 
the strain of D with respect to g equals the negative of the strain of v' with respect to 1 , 
since we have: 

where b:/3 = r:/3 + I'Ja and d:/3 = L ~13 + L~ª denote the Killing coefficients of the frame 
with respect to the tensors I and g respectively. Furthermore, in view of Eq. 89, we can 

• /\P lSP wnte u.o,f3 = 2 o,f3 a.s: 

/Yc,{3 = - i,P"( v"o,1/30- + v'131au - 'vu1c,/3) 

= "igP"(Do,g/3<1 + Df3 gau - D.,.ga13). 

We introduce the notation: 

Then we have the following very interesting relations: 

(97) 

(98) 

(99) 

Another important consequence of the assumption that v' is a Levi-Civita connection is 
that its Ricci tensor will then be symmetric. ln view of Eqs. 96, this will be achieved if and 
only if the following equivalent conditions hold: 

Da 6.~13 = D13 ~ª 

v'o,6.~/3 = 'vf3~a· 
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e. Structure Equations 

With the results stated above, we can write down the structure equations of the RCWS 
structure defined by the connection V in terms of the Riemannian structure defined by the 
metric '"Y· For this, let us write Eq. 84 in the form: 

(101) 

Wl'th w~ = Lpoª()º, w· = rp L)Q wp - AP ()º Tp - lTP ()º a11d (Tp - 1 SP LlO Then 
,., ,., ,., o{Ju ' /3 - u.o/3 ' /3 - 2 o,{3 /3 - 2 o,{Ju • ' 

recalling Eq. 92 and the structure equations for both the RCWS and the Riemannian 
structures, we easily conclude that: 

w~ A 9/3 = 0P 

/\ ()/3 = -tµ 

dw: + w~ A~ = J~, 

(102) 

where d is the exterior covariant derivative associated to the Levi-Civita. connection D of 
'"Y· The third of these equations can also be written as: 

(103) 

with d the exterior covariant derivative of the connection V. 
Now, the Bianchi identities for the RCWS structure are easily obtained by differentiating 

the above equations. We get: 

or equivalently, 
d0P = J~ A ()f3 

dt - Jf3 A ()a µ,- µ, /J 

dJP = Ô.P A wf3 - wP A r,,/3 µ, /3 µ, /3 µ,· 

4. The Square of the Dirac Operator 

4.1. D' Alembertian, Ricci and Einstein Operators 

(104) 

(105) 

As we have seen in the Sec. 3.1, the fundamental Dirac operator éJ of a manifold M = 
(M, '"Y, r) is given by (Eq. 52) 

éJ = d- 6. 

Then the square of this operator, b 2 = /Jê), will be given by: 

{106) 

that is, IJ2 is the usual Hodge Laplacian of the manifold ( Eq. 35 }. 
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On the other ha.nd , remembering a.lso tha.t (Eq. 49) 

where (8"'} is a.n a.rbitra.ry reference fra.me on the manifold and D is the Levi-Civita con-
nection of the metric 'Y, we have: 

h2 = (8ª De0 )(813 De13 ) = 8ª(813 De0 De13 + (De 0 813 )De13 ) 

= -yª13(De0 De13 - r : 13De,J + 8° A 813(De0 De13 - r : 13Dep). 

Then defining the operators: 

it • it = -yª13(De0 De13 - r:13Dep) 

it A. /J 8° A 813(De0 De13 - r:13Dep), 
(107) 

we can wri te: 
(108) 

lt is important to observe that the operators /J • /j e /J A /J do not have anything analogous 
in the formulation of the differential geometry in the Cartan and Hodge bundles. 

The operator h • /J can a.lso be written as: 

(109) 

Applying this operator to the 1-forms of the frame (8ª), we get: 

(110) 

where: 
(111) 

The proof that an object with these components is a tensor is a consequence of the following 
proposition: 

1 Proposition 61 For every r-form field w E sec(Ar M), w = ~w01 .,.orff>1 A . .. A 8ºr, we 
have: 

(112) 

where D 0D f3Wa1 ... ar are the components of the covaria.nt deriva.tive of w. 

1 Proofl We have De13W = ~D13wo1 ... 0r8º1 /\ ... /\ 8° · , with D t3Wo1 .. ,o, = (e13(wa1 , .. or) -
I'$01w"º2••·º• - ••• - rgc,,Wo1 ... Ctr-1<1 )- Therefore, Dec, De13W = ~(ea(D13wc,J ... or) 
rio1Dt3W<102 ... Ctr - ' • • - r ;Or Dt3Wo1 ... 0r-J<T)8º 1 /\ •, • /\ 8ª• and we conclude that: 
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Multiplying this equation by 1 °/3 and using the Eq. 107a, we get the Eq. 112. 

ln view of Eq. 112, we shall call the operator /J • ;J the D'Alembertian. Note that the 
D'Alemhertian of the 1-forms (),,. can also be written as: 

and therefore, taking into account the Eq. 110, we conclude that: 

(113) 

what proves our assertion that M / ' cx/3 are the components of a tensor. 
By its tum, the operator ;J A '1 can also be written as: 

(114) 

Applying this operator to the 1-forms of the frame (00}, we get: 

(115) 

where Rp,,. 0 13 are the components ofthe curvature tensor of the connection D. From Eqs.18f, 
we get: 

n~op = n~ . BP + n~ " BP. 

The second term in the r.h.s. of this equation is identically null because of the Bianchi 
identity given by Eq. 45a for the particular case of a symmetric connection (0,,. = O). Using 
Eqs. 18c and 18i we can write the first term in the r.h.s. as: 

Ô,JJ. . BP 
p 

1 • {3 
= 2.R/'013(0CXA B ) ,BP 

= -t Rpµ. o/3(,Pº o-8 - ,Pf3 e cx) 

- ,pcx Rpµ. cx/3Bf3 = -R.~0{3 , 

where R~ are the components of the Ricci tensor of the manifold. Thus we have: 

(116) 

where R,JJ. = R.~0/3 are the Ricci 1-forms of the manifold. Because of this relation, we will 
call the operator ;J A ;J the Ricci opemto1· of the manifold. 

The proposition below shows that the Ricci operator can be written in a purely algebraic 
way: 

1 Proposition 71 The Ricci operator <l A /j satisfies the relation: 

(117) 
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where õp<J' = --yPP.fi: = ½ Í(,/JU o,f38ª A ofJ. 

1 Proofj The Hodge Lapla.cian of an arbitracy r-form field w = -;rw01 ... cc)J<k1 A ... A OC' .. 
is given by: (e.g., Choquet-Bruha.t[101-recall that our definition differs by a sign from that 
given there) 6.w = <l2w = ~(iJ2w)01 ___ 0 ,.fJC'1 A .. . A OCCr, with: 

(82w)a1 ... a.. = 1ªfJ Dc,Dpwo,l··•ªr 
"(-!)Pie._ W • L..,, ap 0'01 ···ªp•·•ªr 
p 

2 "(-1 \p·tq RP u w - -L..,, T Otq Op p0'0t1 ••• czp•••ªq•••c,,., (118) 
p,q 
p<q 

where the notation ó means tha.t the index o was exclude of the sequence. 
The fust term in the r.h.s. of this expression are the components of the D'Alembertian 

of the field w. 
Now, recalling tha.t iuw = (JO' ·W = -;r(w0'02---0-rlJC'2 /\ .. . /\00-r + •• ·+ (-1t+Iwc,l··•ºr-1<TOCC1 A 

... A IJªr-1 ), we obtain: 

and also, 

Hence, ta.king into account Eq. 108, we conclude tha.t: 

for every r-form field w. • 
Observe that applying the opera.tor given by the second term in the r.h.s. of Eq. 117 to 

the dual of the 1-forms IJI", we get: 

fi/JU /\ ipiu * (JP. = fipq A BP • ( 1/7 • *()I')) 
= -ÕP<T /\*(BP/\ eu/\ Oµ) 
= *(Õ(J<T • ( BP /\ (J<T /\ Oµ)), 

where we have used the Eqs. 21c and 21d. Then, recalling the definition of the curvature 
forros a.nd using the Eq. 18j, we conclude tha.t: 

(119) 

where Ris the scalar curvature of the manifold a.nd êµ are the Einstein 1-form :fields. 
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The obsen.-a.tion above _.:notiva.te os to introduce a new operator, O, whlch will be called 
the Einstein opemtor, defined by: 

(120) 

Ohviously, we have: 

(121) 

ln. ad.dition, it is easy to verify that . - Jca A 3)• = -a A a and *-1(ie /\ io-)* = .R!7 · iu-
Thus we can also write the Einstein operai(>r as: 

1 . 
D = - 2(cJ tdt + R" -;.,). (122) 

Another important result is given by the following proposition: 

1 Proposition 8 1 Let be the Levi-Civita. connection 1-forms lields in an arbitrary 
moiing &ame (OCZ) on _.\,f_ Then: 

(123) 

tliat is, 
(124) 

1 P:roofl We have 3 -~~ = IP -De&( r;i/J) = '° ·( ea( r;p'JIJP - r:pr:ptJP) = -,ªP( ea(I'pp) -
r:pr:p) e w: . w: = (I'1/JP) • (r:.,.r) = 7Pa r:ar;p. Then, - (a . - w: . ~)GP = 
-,aP(ea(I'pp) - I'!.,.lpp - I'!pI':p)(IP = - ½"f°P(ea(I';P) + ep(I'!p} - I'f:.,I'ffP - I'p.,F:p -
~pI'tP)IJP = { a - 1)0". The Eq. 123b is provoo analogonsly. • 

4.2. The Square of the Dirac Operator 

Let us now compute the sqnare of the Dirac operator 8 associated. with a.n a.rbitrary 
Riema:nn-Ca.rtan-Weyl connectíon V. As in the earlier section, we ha.ve, by one side, 

8 2 (8 • + 81\)(8 • + 8A) 
= a • 8 • + a -a " + a "'a . + 8" 8A 

a.nd we write 8- 8- = 8 2 -, 8A 8A = 8 2 A and 

Í:+ = 8-8A+8A8-, (125) 

so that: 
(126) 

The operator J: + corresponds, for the case of a Riemann-Carta.o space, to the wave ope.rator 
introduced by Rapoportl1J ín bis theocy of Stochastic Mecha.nics. Obviously, for the case o:f 
the fundamental Dirac operator, 1:+ reduces to the usual Hodge Laplacian of the manifold. 
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Now, a similar calculation for the product 88 of the Dirac deriva.tive and the Dirac 
coderivative yields: 

with: 

On the other hand, we have also: 

8 2 = (ff' Vea)((Jl'Ve/3) = Oª(Of3Vea Ve/3 + (VeªO/J)Ve/3) 

= A1ª/J(Ve0 Ve/3 - L:/3 Vep) + 8ª /\ e/J(Veª Ve/3 - L:/3 "vep) 

and we can then define: 

8 • 8 = 7ª/J(Veª Ve/3 - L:/3 VeP) 
8 /\ 8 Oª/\ 013(Veª Ve/3 - L:/3 Vep) 

in order to have: 
a2 = a-a+a " ª 

The operator 8 • a can also be written as: 

or, 

8 • 8 ½oª · 013(Vea Ve/3 - L: /3 Vep) + ½o/3 • Oª(Ve/3 Vea - L~ª Vep) 

½7º{J[Ve0 Ve{J + Ve{J Veª - (L:13 + L~ª )Vep] 

8 • 8 = }'"'lº {J(Vea Ve{J + Ve/3 Ve0 - b:{J Vep) - sPVeP 

By its tum, the operator a /\ 8 can also be written as: 

or, 

8 /\ 8 = toª/\ O(J("vea "vef3 - L:/3 "vep ) + ½o{J /\ 8ª (Vei3 "ve0 - L p0 "vep) 

~Oº/\ Of3[Vea Vef3 - "vef3 Ve0 - (L:f3 - Lpa)VeP] 

5. Conclusions 

(127) 

(128) 

(129) 

(130) 

(131) 

(132) 

We have presented a Clifford bundle formulation for the geometry of a general Riemann-
Cartan-Weyl space (RCWS). The main ingredients of our presentation has been the intro-
duction of: (i) the fundamental Dirac operator /J, related to the Levi-Civita connection D 
of a Riemannian oriented space with metric 7 (M = (M, D ,At)); (ii) the infinitely many 
other Dirac-like operators ( associa te d to /j), one for each nondegenerate symmetric bilinear 
forro :field which can be de:fined in M through the theory of the symmetric automorphisms 
of Clifford algebras (Sec. 2); (iii) the Dirac operators of a general RCWS, related to the 
general affi.ne connection V defining the RCW structure. 
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We introduced the concept of fundamental Dirac commutator of 1-form fields, which en-
able us to give the structtue of Lie algebra to the cotangent bundle, in analogy to the way 
that the bracket of vector fields defines a Lie algebra structure for the tangent bundle. We 
introduced also the notion of the fundamental Dirac anticommutator of 1-form fields and we 
showed that the coeffi.cients ~/3 - the Killing coeffi.cients- - of the expansion {Da, 9p} = b:/39P 
are related to the Lie derivative of the metric I by b~/3 = -( .C eP'Y )cxp, which shows that 
to find (if existing) a moving frame for which b:11 = O is equivalent to solve, locally, the 
Killing equations for the manifold. Also, introdudng the concept of Dirac commutator and 
anticommutator of 1-form fields, we succeed in giving a simple decomposition of the general 
connection \7 associa.ted with the Dirac operator in torsion, strain and dilatíon, identifying 
a new tensor-like object S~8 which has been used to relate the covariant derivatives with 
respect to the connections D ( the Levi-Civita connection of 1 ) and \7 ( a general affi.ne 
connection) of any tensor field on the manifold. We then got a simple way to relate the 
curvature tensor R/ c,f3 associated with the connection \7 and the Riemannian curvature 
tensor Íl1,P a/3 of the Levi-Civita connection D of 1 . The results are particularly interestig 
when \7 is the Levi-Civita connection of a symmetric bilinear forrn field g E sec(TJ M) (in-
troduced through the theory of the symmetric automorphims of the Clifford algebra), since 
we get severa! formulas tha.t clear up many results appearing in the flat space formulations 
of Einstein's gravitational theory as, e.g., in [23, 24]. 

Finally, we have studied in detail the square of the Dírac operator 8 2 , which does not 
preserve the graduation of r-forms. We identified the natural wave operator in a general 
RCWS (which preserves the graduations) as the operator .C+, which for the case of the 
fundamental Dirac operator reduces to the usual Hodge Laplaciau operator. 
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