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Resumo
Nesta dissertação, apresentam-se dois estudos derivados de pesquisas realizadas
sobre problemas de roteamento de veículos, com foco em abordar preocupações
multi-objetivo, incluindo riscos de acidentes, emissões de gases de efeito estufa
(GEE) e custos logísticos. No primeiro estudo, foi introduzida uma abordagem para
auxiliar na tomada de decisões no planejamento de rotas para uma empresa de
transporte rodoviário de carga, com o objetivo de minimizar tanto os custos logísticos
quanto os de risco. Dada a escassez de dados sobre acidentes, tornou-se imperativo
desenvolver um método analítico baseado em estatísticas básicas e simulação de
Monte Carlo para estimar os custos associados aos riscos de acidentes. Em seguida,
foi selecionada uma abordagem bi-objetiva baseada nos métodos PROMETHEE II e
método ϵ-restrito para lidar com os objetivos conflitantes inerentes a este problema
de roteamento de veículos. Os resultados destacaram a eficácia das abordagens
estatísticas e multi-objetivo na exploração dos trade-offs entre os custos logísticos
e de risco em um cenário real de roteamento de veículos. Por fim, como uma
sequência do primeiro, no segundo estudo, além de abordar riscos de acidentes
e custos logísticos, foi introduzido o objetivo de minimizar as emissões de CO2 ,
tornando o VRP tri-objetivo. Também explorou-se a consideração de uma frota
heterogênea composta por veículos pesados movidos a diesel, gás natural comprimido
e eletricidade, uma característica que foi relativamente pouco explorada na literatura.
Neste cenário, o método Augmented Weighted Tchebycheff foi empregado para lidar
com a natureza multi-objetiva do problema, enquanto uma heurística de algoritmo
genético aprimorada foi utilizada para gerar soluções viáveis como incumbentes do
processo de otimização exata. Os resultados revelaram que os veículos a diesel são
mais economicamente viáveis; no entanto, os caminhões elétricos foram preferidos
em cenários que priorizam preocupações ambientais, alcançando aproximadamente
uma redução de 90% nas emissões de CO2 . Contudo, resultaram em um aumento
de 35% nos custos logísticos quando comparados a maneira tradicional de VRP
que otimiza somente a dimensão econômica. As principais contribuições dessa
dissertação foram o desenvolvimento de uma abordagem que resolveu instâncias do
mundo real e facilitou a tomada de decisões no planejamento de rotas, considerando
diversos objetivos conflitantes associados a dimensões de sustentabilidade como



fatores ambientais, sociais e econômicos. Além disso, as abordagens demonstraram-
se úteis e simples na geração de soluções apenas ajustando os pesos da função
objetivo, possibilitando sua aplicação em diversos cenários.

Palavras-chave: VRP sustentável. Multi-Objetivo. Simulação de Monte Carlo.
Risco de acidente.



Abstract
In this dissertation, two studies are presented stemming from research conducted
on vehicle routing problems, with a focus on addressing multi-objective concerns
including accident risks, greenhouse gas (GHG) emissions, and logistic costs. In the
first study, an approach was introduced to aid decision-making in route planning
for a road freight company, with the objective of minimizing both logistic and
risk costs. Given the dearth of accident data, it became imperative to devise an
analytical method rooted in basic statistics and Monte Carlo simulation to estimate
the costs associated with accident risks. Then, a bi-objective approach based on
PROMETHEE II and the ϵ-constrained method were selected to address the con-
flicting objectives inherent in this vehicle routing problem. The findings underscored
the effectiveness of statistical and multi-objective approaches in exploring the trade-
offs between logistic and risk costs in a real-world vehicle routing scenario. Finally,
as a continuation of the first study, in the second study, in addition to addressing
accident risks and logistical costs, the objective of minimizing CO2 emissions was
introduced, making the tri-objective VRP. This second study also delved into the
consideration of a heterogeneous fleet consisting of heavy-duty vehicles powered
by Diesel, Compressed Natural Gas, and electricity characteristic that has been
relatively under explored in the literature. In this scenario, the Augmented Weighted
Tchebycheff method was employed to address the multi-objective nature of the
problem, while an enhanced genetic algorithm heuristic was utilized to generate fea-
sible solutions as a precursor to the exact optimization process. The results revealed
that Diesel vehicles are more economically viable; however, electricity-powered
trucks were favored in scenarios prioritizing environmental concerns, achieving
approximately a 90% reduction in CO2 emissions. Nonetheless, this choice resulted
in a 35% increase in logistics costs, when compared to the tradicional way of
VRP that optimizes only the economic dimension. The primary contributions of
this dissertation were the development of an approach that addressed real-world
instances and facilitated decision-making in route planning, considering various
conflicting objectives associated with sustainability dimensions such as environ-
mental, social, and economic factors. Furthermore, the approaches demonstrated



utility and simplicity in generating solutions merely by adjusting the weights of
the objective function, enabling their application across diverse scenarios.

Keywords: Sustainable VRP. Multi-objective. Monte Carlo simulation. Accident
risk.
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1 Introduction

Finding processes that ensure the needs of contemporary society, con-
sidering not only economic factors but also environmental and social aspects, is
crucial to guarantee a safer world for future generations, while mitigating socio-
environmental disasters resulting from human intervention.

According to the Sistema de Estimativas de Emissões e Remoções
de Gases de Efeito Estufa (SEEG, 2021), Brazil was responsible for emitting
approximately 2.4 billion tons of CO2 in 2021, marking an increase of 8% compared
to pre-pandemic levels in 2019, with the road freight sector accounting for 8.5% of
Brazil’s total CO2 emissions, making it the third most polluting sector.

While in the social dimension, according to the World Health Organiza-
tion (WHO), the costs of road accidents can reach up to 3% of a country’s Gross
Domestic Product (GDP), and deaths caused by traffic accidents are listed as the
eighth leading cause of death worldwide.

In Brazil, according to a report from the Confederação Nacional de
Transportes (CNT, 2022), there were 64,447 traffic accidents in 2022 solely on roads
managed by federal agencies, with 52,948 of these accidents resulting in deaths or
injuries, leading to an estimated total cost of 13 billion reais.

Given the absence of available data, it is likely that the figures provided
for traffic accidents are even higher. Accidents occurring on roads managed by the
states and within municipalities have not yet been taken into account, suggesting
that the actual numbers could be significantly higher.

Therefore, there is significant pressure for efficient processes ensuring
uninterrupted supply chain flow while minimizing negative socio-environmental
impacts. It is essential for road freight companies to integrate socio-environmental
considerations alongside economic factors in their decision-making process to plan
routes.

In this dissertation, two studies were presented in the area of multi-
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objective Vehicle Routing Problems (VRP), with a focus on minimizing economic,
social, and environmental impacts. The first study considered real instances obtained
from a road freight company located in the state of São Paulo, Brazil, that wishes to
optimize not only logistic costs but also the accidents risks (bi-objective VRP), as
some loads can have high shipment commercial values, causing significant financial
losses if an accident occurs.

As this study considered real instances and was concerned with seeking
real data, a basic statistical approach and Monte Carlo simulation to estimate the
risk costs of each arc proved necessary due to the limited data available on traffic
accidents. Real instances known to the authors were proposed to compare the results
obtained from the developed approach with those expected from reality. The primary
data sources, freely accessible from government agencies, include the Confederação
Nacional de Transportes (CNT, 2019), the Departamento de Estradas e Rodagem
do Estado de São Paulo (DER-SP, 2021), and the Departamento Nacional de
Infraestrutura e Transportes (DNIT, 2021).

Subsequently, the Preference Ranking Organization Method for Enrich-
ment Evaluations (PROMETHEE) II and ϵ-constrained methods were employed
to address a bi-objective VRP, incorporating logistics costs and risks. Finally, the
approach to estimate the risk cost proved to be coherent with what was expected
from reality, and the Pareto-optimal solutions of the bi-objective model represent
a consistent trade-off between logistic cost and accident risk, providing different
results to the decision-maker. This initial study is detailed in Chapter 2.

As a continuation of the first study, the second study, detailed in Chapter
3, incorporated the environmental dimension resulting in a tri-objective VRP aimed
at optimizing logistic costs, accident risks, and CO2 emissions. The same approach
used in Chapter 2 to estimate the risk was implemented in study of Chapter 3, and
we also focused on working with a real instance, which was larger than the first.
For this, we chose a large retail chain (Magazine Luiza) whose depot and stores
are located in cities in the macro-region of Campinas, state of São Paulo, Brazil.
A heterogeneous fleet was considered, including heavy-duty vehicles powered by
diesel, Compressed Natural Gas (CNG), and electricity, each with varying costs,
fuel consumption, and CO2 emissions.
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A scalarization method that would best handle a tri-objective problem
was desired, and the objectives are weighted by easily adjustable parameters to
generate various solutions, which decision-makers can evaluate to determine the ones
most suitable for their process. Therefore, the multi-objective approach utilized in
the second study was the Augmented Weighted Tchebycheff method, complemented
by the insertion of an enhanced Genetic Algorithm heuristic to generate viable
solutions for initializing the exact method, which struggles to find good initial
feasible solutions.

The results of Chapter 3 indicated that electric trucks were the most
selected in most scenarios, being less common only in scenarios where minimizing
logistics costs was highly preferred. Compared to a traditional VRP, which minimizes
only the economic dimension, significant reductions in CO2 emissions and accident
risks were achieved when the environmental and social dimension were highly
preferred, respectively, causing a significant increase in logistic costs.

Finally, the main contribution of these studies was the implementation
of multi-objective techniques to a VRP that could be applied to real instances of a
road freight company, aiming to minimize not only logistic costs but also accident
risks and CO2 emissions. Important definitions of the techniques used in these
studies are described to better guide the reader.

1.1 Multi-objective optimization
The multi-objective optimization problem is presented as follow:

minimize z “ tf1pxq, f2pxq, f3pxq, ..., fmpxqu

subject to : x P S
(1.1)

Where fmpxq represents each objective function m for m ě 2 in which
we want to optimize simultaneously, and the objective vector is z. The variable
vector x “ px1, x2, x3, . . . , xmq

T belongs to a decision feasible space (S) and the
objective vector z belongs to a objective feasible space (Z), as described in Figure
1 (MIETTINEN, 1998).
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Figure 1 – The set S representing the decision feasible space (left), and the set Z
representing the objective feasible space (right) (MIETTINEN, 1998).

fmpxq
I represents the ideal (minimum) solution when the objective m is

minimized in a single-objective optimization. This concept is important because, in
multi-objective problems, the objective functions fmpxq are often conflicting, e.g.,
if we prioritize the minimization of f1pxq, we will achieve the smallest difference
between f1pxq and f1pxq

I . However, this will penalize f2pxq increasing the difference
between f2pxq and f2pxq

I , thus illustrating the conflict between the objectives f1pxq

and f2pxq.

In contrast to single-objective optimizations, which generate only one
optimal solution, multi-objective optimizations can generate a set of various optimal
solutions, commonly called the Pareto optimal set or Pareto optimal frontier, as
described in Figure 1. Thus, we are more interested in analyzing the feasible
objective space Z over the feasible decision space S.

The Pareto frontier is composed of optimal objective vectors z˚, where
no component of this vector can be improved. In other words, for z˚

P Z, z˚ must
be better than or equal to all objectives of another vector z such that z˚

ď z and
strictly better in at least one objective m where fmpx˚

q ă fmpxq. Meeting these
conditions, we can then say that z˚ is a non-dominated vector, a very common
term in the multi-objective optimization to express that z˚ is a Pareto optimal
solution.

There are several methods that deal with multi-objective optimiza-
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tion problems. The most common methods include the weighted method, the
ϵ-constrained method, the weighted Tchebycheff method, and the augmented
weighted Tchebycheff method.

Generally, these methods are classified as a posteriori, a priori, and
interactive. In a posteriori methods, the entire Pareto optimal set is generated
and then presented to the decision-maker, who selects the most preferred solution
from the alternatives. In a priori methods, the decision-maker must specify their
preferences before generating solutions, meaning the decision-maker participates
in the search for solutions before the problem is solved. Finally, the interative
methods in multi-objective optimization provide a structured way to incorporate
decision-maker preferences progressively.

In conclusion, multi-objective optimization is an effective approach for
solving problems with multiple conflicting objectives. In this dissertation, multi-
objective optimization techniques were crucial in providing a set of Pareto optimal
solutions. These solutions enable decision-makers to understand the trade-offs
between economic factors, accident risks, and environmental dimensions, allowing
them to make informed decisions based on their preferences.

1.2 Monte Carlo simulation
Monte Carlo simulation is a powerful computational technique used

to estimate possible outcomes of uncertain events using random numbers. These
random numbers are akin to those generated by a roulette wheel, similar to those
found in the casinos of Monte Carlo, from which the method derives its name (ZIO,
2013).

Monte Carlo simulation involves generating random numbers from a
probability distribution to make estimates, e.g, in this dissertation, we aim to
estimate risk costs. This process typically includes the following steps: defining the
probabilistic model, generating input random values according to their probability
distribution functions, running the simulation for N iterations, estimating the mean
value after N iterations, and analyzing the results to draw conclusions.(CRUSE,
1997).
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One of the advantages of Monte Carlo simulation is that it relies on the
principles of probability and statistical inference, making it particularly useful in
fields where deterministic approaches are impossible due to the stochastic nature of
the systems being studied. However, depending on the desired level of accuracy, the
computational time to generate the results can be significantly high (ZIO, 2013).

Finally, Monte Carlo method proves to be an important technique
for solving problems of a probabilistic nature. Thus, for this dissertation, Monte
Carlo method was necessary to handle the input data on accident risks, which are
inherently probabilistic, and to generate the output risk costs that could be used
in a deterministic problem.
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2 Bi-objective approaches to deal with
accident risk and logistic costs in vehicle
routing problems.

Vehicle Routing Problems (VRP) have been widely researched through-
out history as a way of optimising routes by minimising distances and planning
deliveries efficiently, but the issue of risk in VRP has received less attention over
time. This is essential to increasing transport safety to avoid interruptions in supply
chains and improve delivery reliability. Therefore, this first study aims to support
decision makers to plan routes for road freight companies considering not only the
logistics cost, but also travel safety due to road hazards. An analytical approach
based on statistics was developed in which data of vehicle accidents and road
features were used to estimate the risk cost by using the Monte Carlo simulation. A
bi-objective approach based on PROMETHEE II and ϵ-constrained methods were
used in the Capacitated Vehicle Routing Problem (CVRP) to analyse the conflict
between the logistic cost and accident risk. Key contributions of this study are an
analytical approach based on statistics, Monte Carlo simulation and multi-objective
methods in a CVRP model to explore the trade-off between logistic costs and
accident risk expressed by a risk cost. The outcomes of the first study show to be
useful in practice to analyze transportation decisions in the VRP model involving
route planning considering accident risk.
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2.1 Introduction
In an increasingly globalised and connected world in which the popula-

tion and urbanisation increase every year, the pressure for more efficient, sustainable
and safe road freight has risen due to the greater demand for different types of
products. Road freight plays a fundamental role in global logistics due to the
flexibility of the infrastructure that this segment of transport offers, allowing a
door-to-door service, which is not possible in maritime, air and rail transportation
modes (ENGSTRÖM, 2016).

On the other hand, the reliability in road freight depends on some
elements that can be the cause of many accidents, interrupting the supply chain and
generating significant losses. According to data from the World Health Organization
(WHO), road accidents cost on average around 3% of the Gross Domestic Product
(GDP) of a country and lead to the death of 1.35 million people, and is the eighth
leading cause of death all around the world.

Thus, reducing the accident rate of road freight is an important factor
from a strategic and sustainable point of view, which aims to ensure logistical and
economical development. When an accident occurs, financial losses can lead to
large financial proportions, in addition to causing interruptions in the supply chain.
From this point, the need to reduce losses in road transportation can be highlighted
(ENGSTRÖM, 2016).

When a route is chosen for a vehicle that will leave a depot to deliver
goods to other locations, not only the logistic costs and the distance should be
considered, but also some route hazard measures should be added. Most of the VRP
studies consider only the logistic cost in the models to solve the routing problem.
Recently risk measurement was addressed in cash-in-transit problems through the
VRP, which consisted of a model that aimed to minimise the distances travelled
with the restriction that the risk value of robberies of heavy trucks during the
transportation of money was limited by a risk threshold (TALARICO; SÖRENSEN;
SPRINGAEL, 2015). More recently the route safety was also discussed in studies
on hazardous materials transportation such as fuel, flammable materials, gases and
others, aiming to reduce social and environmental impacts and increase transport
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safety by minimising the risk factor (HOLECZEK, 2021).

Despite the fact that the VRP has been widely studied throughout
its sixty-year history, few studies have addressed different types of risk in the
problem. As mentioned, some research has emerged in the areas of cash-in-transit
and hazardous materials, but they did not consider accident risk due to road
conditions in the models. This is likely because in most cases real data is difficult
to find and a methodology to estimate the risks should be developed.

Therefore, verifying the applications of the subject risk in VRP and
considering the lack of studies that address the accident risk due to characteristics of
the routes (infrastructure, traffic etc.), this study intends to contribute to filling this
gap by developing an analytical approach based on simple statistical calculations
coupled with two multi-criteria methods in a CVRP model to analyse the trade-off
between the logistics cost and accident risk measured by cost. The Preference
Ranking Organization Method for Enrichment Evaluations (PROMETHEE) II
and the ϵ-constrained methods were selected to solve this conflicting bi-objective
problem. Finally, the statistical approach to estimate risk cost was validated with
experts in cargo insurance and the obtained solutions were interpreted knowing the
characteristics of the roads well in the tested instance, indicating that the outcomes
were compatible with those expected.

This study is organized in four sections, besides this introduction. Section
2.2 reviews and discusses key studies which address risks in VRP. In Section 2.3,
the proposed analytical approach is presented in detail. Finally, the results (Section
2.4) are presented through the experimental studies and the conclusion is drawn in
Section 2.5.

2.2 Literature related to risk in VRP
VRP have been extensively studied throughout their history to support

real-life applications. Risk and travel safety in VRP have received greater attention
in applications for road freight of hazardous materials, whose risk is associated
with socio-environmental damage, and cash-in-transit, which is related to cargo
theft (TALARICO et al., 2017).
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Erkut & Ingolfsson (2005) cited eight risk models that were developed
for the optimisation of hazardous materials transportation, whose three main ones
are presented in Table 1. Considering a path r as a set of links ti1, i2, ..., inu, the first
risk model IPr is calculated through the probability of the undesirable occurrence
event of each link pi, while the second PEr considers only the number of people
exposed to risk Di. In the traditional model, risk TRr is a product between the
probability of the undesirable event pi and its measure of consequence Ci.

Table 1 – Risk assessment models. Adapted from Erkut & Ingolfsson (2005).

Model Equation
Incident Probability IPr “

ÿ

iPr

pi pi “ accident probability

Population Exposure PEr “
ÿ

iPr

Di Di “ population exposure

Traditional Risk TRr “
ÿ

iPr

pi.Ci pi “ accident probability

Ci “ measure of the consequence

To investigate the behaviour of these three risk models in VRP, Holeczek
(2021) used mono-objective functions that minimise distance, accident risk and
population exposure.

The results showed that the Traditional Risk TRr generated the lowest
total risk value when compared to the other models, however when considering
the total distance obtained for the TRr, the greatest deviation in relation to the
minimum total distance can be observed.

The Incident Probability IPr offers the best trade-off with an economical
goal and it is most appropriate for problems where the consequences are uncertain.
Regarding the Population Exposed PEr, the data are more easily acquired and
the results are evaluated more intuitively by the decision maker, but it can only be
applied to problems that consider urban areas, because for an environment, such
as rural areas, other factors must be considered.

The elements of each model such as accident probability, consequences,
number of people exposed and others, are defined according to the case being
studied. Androutsopoulos & Zografos (2012) and Carrese et al. (2022), for example,
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studied risks in hazardous materials transportation and they considered that the
undesirable event would be the road accident whose consequence is related to
the number of people exposed to risk. On the other hand, Talarico, Sörensen &
Springael (2015) applied the risk in the cash-in-transit routing problem that they
considered the probability of a robbery is proportional to the distance of the route
and, as a consequence, the amount of cash transported in the truck.

In addition to those elements, the models also vary according to the
risk approach used in VRP. Thus, Table 2 shows some key features in the risk
calculations used by the authors.

Du et al. (2017), Pradhananga et al. (2014) and Wang et al. (2018)
applied the concept of the traditional model, as proposed by Erkut & Ingolfsson
(2005), in which the probability of an accident was used as an undesirable event
and the exposed population as a consequence. Androutsopoulos & Zografos (2012)
and Holeczek (2021) applied the traditional definition, however it was considered as
load dependent, that is, the amount of load factor is added to the model and varies
as deliveries are made. Carrese et al. (2022) was also addressed the traditional risk
model, but two other factors that interfere in the driver’s attention are added to
the objective function: the Altimetric Index and the Planimetric Index. The first
considers the ground elevations along the route while the second is introduced to
take into account geometrical constraints related to the road radius.

Bula et al. (2016) and Bula et al. (2019) also use the traditional risk
which comprises the probability of an undesirable event pi and population exposure
as the measure of consequence Ci. They consider several aspects that play an
important role in determining the likelihood of an undesirable occurrence. Therefore,
the pi is combined as a result of: accident probability related to the type of truck,
probability of hazardous materials released in case of an accident, parameters that
represent the characteristics of the materials and the amount of cargo carried, and
also the length of arc in the route.

Chai et al. (2023) argue that many studies consider only issues such as
accident probabilities, the population exposed and consequences for the environment,
but it is also important to consider the driver’s behavior as a main cause of accidents.
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Thereby, Chai et al. (2023) introduce the driver’s behavior as a factor that also
influences the risk of accidents in the transport of hazardous materials. Some
aspects that impact the driver risk were considered, such as: age, driving experience,
educational background, gender, driving speed and driving habits.

As a variation of hazardous materials models, the cash-in-transit ones
arise. Talarico, Sörensen & Springael (2015) and Talarico et al. (2017) proposed
the traditional method to calculate the risk of robbery. As already mentioned, they
considered the consequence as equivalent to the amount of value being transported.
Ghannadpour & Zandiyeh (2020) also assumed the consequence as the same
manner and the distance travelled is proportional to the risk of theft, but added
to the model a factor relative to the frequency of using the same route and the
ambushing probabilities to the vehicle and its success. The authors also state that
the probability of a robber attack was estimated using game theory and a model
minimizes the risk of cash-in-transit developed using multi-criteria decision-making
approaches.

Talarico, Sörensen & Springael (2015) and Bula et al. (2016) used a
mono-objective function in which the first authors minimised the distances and the
second the accident risk. Androutsopoulos & Zografos (2012), Bula et al. (2019),
Pradhananga et al. (2014), Ghannadpour & Zandiyeh (2020) and Wang et al. (2018)
suggested bi-objective functions that analyse both logistics costs or distances and
risks. Multi-objectives are presented by Carrese et al. (2022) and Zheng (2010)
whereby the last one aimed to minimise the distance, weighted the risk by the
traditional method (probability of accident and a consequence) adding the number
of people exposed.

Milovanović (2012) developed a methodology to calculate road accident
risks when transporting hazardous materials, which considers some elements that
influence the accident probability, as well as elements that influence their conse-
quences. These elements were measured from indirect interviews in which experts
obtained numerical risk results for each route through this analysis. On the other
hand, it did not use mathematical models of VRP to optimise routes and it did
not consider statistical analysis.
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Generally, the risk factor is analysed as an objective to be minimised,
however Talarico, Sörensen & Springael (2015) considered it as a constraint in which
the risk value is defined by a risk threshold and classified as the Risk constrained
Cash-in-Transit Vehicle Routing Problem (RCTVRP). Wang et al. (2018) restricted
the condition that no vehicles of the same fleet should travel in echelon because
when there are two or more vehicles using the same route at the same time, the
consequences are considered to be greater whether or not an accident occurs between
them.

Table 2 – Characteristics of risks in VRP studies.

Authors Case Studied VRP type Objective Function Risk Approach Real data
Androutsopoulos & Zo-
grafos (2012)

Hazardous Mate-
rials

Vehicle Routing Problem
with Time Windows

Travel time dependent and
Implied hazard/risk related

accident probability * popula-
tion exposure * load amount No

Bula et al. (2016) Hazardous Mate-
rials

Homogeneous Vehicle
Routing Problem Implied hazard/risk related

accident probability related
to truck type * release prob-
ability * load characteristics
* route length * load amount
population exposure

No

Bula et al. (2019) Hazardous Mate-
rials

Homogeneous Vehicle
Routing Problem

Distance dependent and Im-
plied hazard/risk related

accident probability related
to truck type * release prob-
ability * route length * load
characteristics * load amount
* population exposure

No

Carrese et al. (2022) Hazardous Mate-
rials

Vehicle Routing Problem
with Time Windows

Travel time dependent and
Implied hazard/risk related

accident probability * popu-
lation exposure + altimetric
index + planimetric index

Yes

Du et al. (2017) Hazardous Mate-
rials

Multi-depot Vehicle
Routing Problem Implied hazard/risk related accident probability * popu-

lation exposure Yes

Ghannadpour &
Zandiyeh (2020) Cash-in-Transit Vehicle Routing Problem

with Time Windows
Distance dependent and Im-
plied hazard/risk related

robbery attack probability *
theft success probability *
route length * load amount *
frequency of repeated use of
a route

No

Holeczek (2021) Hazardous Mate-
rials

Capacitated Vehicle
Routing Problem

Distance dependent and Im-
plied hazard/risk related

accident probability * popula-
tion exposure * load amount Yes

Pradhananga et al.
(2014)

Hazardous Mate-
rials

Vehicle Routing Problem
with Time Windows

Travel time dependent and
Implied hazard/risk related

accident probability * popu-
lation exposure Yes

Talarico, Sörensen &
Springael (2015) Cash-in-Transit

Risk constrained Cash-in-
Transit Vehicle Routing
Problem

Distance dependent arc length * load amount No

Talarico et al. (2017) Cash-in-Transit
Risk constrained Cash-in-
Transit Vehicle Routing
Problem

Distance dependent arc length * load amount No

Wang et al. (2018) Hazardous Mate-
rials

Vehicle Routing Problem
with Time Windows

Distance dependent and Im-
plied hazard/risk related

accident probability * popu-
lation exposure No

Zheng (2010) Hazardous Mate-
rials

Capacitated Vehicle
Routing Problem

Distance dependent, Implied
hazard/risk related and Oth-
ers

accident probability * conse-
quence + population expo-
sure

No

Chai et al. (2023) Hazardous Mate-
rials

Vehicle Routing Problem
with Soft Time Window
for Hazardous Materials

Distance dependent and Im-
plied hazard/risk related

accident probability * popu-
lation exposure * driving risk
* load amount * arc length

Yes

This study Indistinct load
type

Capacitated Vehicle
Routing Problem

Distance dependent and
Implied hazard/risk re-
lated

accident probability, road
infrastructure and traffic,
load value

Yes

For risk measurement, some studies addressed how the data were ex-
plored, and according to Du et al. (2017), real historical data from accidents should
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be integrated and resort to big data in terms of formulating models to transport
hazardous materials. Moreover, Talarico, Sörensen & Springael (2015) mention that
there is lack of data available and Androutsopoulos & Zografos (2012) indicate
there is no data exploration related to risk measurement due to its complexity and
also states that future studies should deal with this issue.

Pradhananga et al. (2014) estimated accident rates using data collected
from the Institute for Traffic Accident Research and Data Analysis (ITARDA) and
the Ministry of Land, Infrastructure, Transport and Tourism (MLIT), both from
Japan. For a future study, Pradhananga et al. (2014) proposed extensions of the
model considering such characteristics for the hazardous materials routing problem
using real-time traffic information and the effects of infrastructural characteristics
of the road network.

Carrese et al. (2022) calculated the road accident probability using data
obtained by the mobility agency in Rome, quantified population density through
a census data and measured the infrastructure through the Google Application
Programming Interface (API).

Although some studies still try to deal with using real data in their
problems, the probabilistic view in data analysis is not addressed in more depth.
This study aims to use the probabilistic approach of the accident occurrences
in the model. Table 2 summarises the problem features such as the VRP type,
objective function and real world-data with a VRP taxonomic discussed in Braekers,
Ramaekers & Van Nieuwenhuyse (2016). It can be observed that the studies are
concentrated in only two areas: hazardous materials and cash-in-transit. Regarding
other segments of transport, there are few studies that take into account risks in
VRP despite its importance as a result of damage when an accident occurs.

2.3 Analytical approach
In this section, a detailed description with an illustration of the workflow

to apply the analytical approach is provided (Figure 2). Firstly, the parameters,
variables and constraints of the model representing the Capacitated Vehicle Routing
Problem (CVRP) were defined and the logistic costs (cij) were calculated by the
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online tool qualp, which considers fuel expenses, based on the vehicle’s consumption,
and tolls along the road if applicable.

The accident probability (Paccidentij) was generated by a statistical
calculation that considers historical records from Brazilian government agencies
whose information is publicly available on the web and from a load insurance
company. Among the government agencies, there are: the National Transport
Confederation (CNT, 2019), the Department of Roads and Highways of the State of
Sao Paulo (DER-SP, 2021) and the National Department of Transport Infrastructure
(DNIT, 2021). Some characteristics that interfere in the accident probabilities were
extracted by Milovanović (2012) and all collected and processed data used in this
study is available at github.

The data were processed using the Knime Analytic Platform tool, which
generated the accident probabilities for each arc. Then, from the probability results,
the Monte Carlo simulation was implemented to obtain the risk costs (rij).

Two different methods were performed to deal with the bi-objective
problem, e.g., the Preference Ranking Optimization Method for Enrichment Evalu-
ation (PROMETHEE II) and the ϵ-constrained method. The CVRP and these two
methods were implemented using Python, and the results were obtained by Gurobi
Optimization.

The results from PROMETHEE II and ϵ-constrained methods were
compared and analysed. The method used to calculate the rij will be explained
and how the PROMETHEE II and ϵ-constrained method were used in the CVRP.

2.3.1 Calculating the accident risk cost

As already mentioned, the risk cost rij was generated for each arc
connecting location i to location j. A location can be a city or centroid, for example.
The arc (ij) may have more than one distinguished roads.

These calculations were performed by using the Knime Analytics Plat-
form, according to the workflows represented in Figures 3, 4 and 5 and Equations
(2.1) until (2.9). This approach to estimate rij was necessary particularly because
there are little data available referring to road accidents.

https://qualp.com.br/#/
https://github.com/GabrielBilato/paper_riskVRP_2022
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Figure 2 – Workflow of the analytical approach in this study.

A general probability of accidents (Pgeneral) occurring on any road in
Brazil according to the workflow shown in Figure 3 was estimated. Data collected
from DER-SP (2021) indicate the flow of all vehicles Vsp and heavy vehicles HVsp

in the State of Sao Paulo (sp). They were used to calculate the share of heavy
vehicles Psp that circulates in the roads of Sao Paulo State by Equation (2.1).

For the sake of simplicity and lack of specific data, it is assumed that Psp

is the same for all Brazilian Federal roads, therefore in Equation (2.2) the flow of
heavy vehicles (HV ) is calculated using the flow of all vehicles in Federal roads (Vbr)
– data extracted from DNIT (2021). Finally, Pgeneral was generated by Equation
(2.3) from the number of accidents in Brazilians’ Federal roads (Naccidents), collected
from CNT (2019), and HV from Equation (2.2).

Psp “ HVsp{Vsp (2.1)
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Figure 3 – Workflow to calculate Pgeneral.

HV “ Psp.Vbr (2.2)

Pgeneral “
Naccidents

HV
. 100% (2.3)

The elements considered for the calculation of rij are: the types of roads
and the traffic of heavy vehicles. These elements were based on Milovanović (2012)
and the first is considered because in Brazil there are several types of roads that
demonstrate different safety levels. The Accident Panel Report prepared by CNT
(2019) breaks it into five categories as presented by Table 3. The number of deaths
per hundred of accidents extracted from this report is also shown, and is used in
the calculations for accident risk.

Table 3 – Death rate per type of road (CNT, 2019).

Road type Death rate per 100 accidents
Two-lane two-way road with central safety lane 12.3

Two-lane two-way road with central barrier 8.5
Two-lane two-way road with central line 18.0

Single-lane one-way road 11.9
Single-lane two-way road 22.3

The flow of heavy vehicles is obtained by speed radars installed along
the roads (DER-SP, 2021) and it was considered as directly proportional to the
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accident probabilities as it was observed that two roads had the same infrastructure,
distinguished only by the flow: the one with highest flow had more accidents, thus
having greater probability of this occurrence.

Parameters ith and ivh represent the types of road (i.e. number of lanes,
central barrier etc.) and the flow of heavy vehicles, respectively. These are calculated
according to the workflow shown in Figure 4, where road h belongs to the problem
roads of set H (h P H) (CNT, 2019; DER-SP, 2021).

Initially, x̄ and ȳ must be calculated by Equations (2.4) and (2.5), which
represent the average flow of vehicles xh running in road h and the yh the death
rate of road type h. In the study, as there are 49 roads and five types of them, the
parameter are Nh “ 49 and Nt “ 5.

Then, the parameters ivh and ith were calculated by Equations (2.6)
and (2.7), which basically consists of a condition, i.e. if ivh or ith is greater than
1.0, the accident probability on road h will be greater than the general probability
(Pgeneral), otherwise the values are less than 1.0.

It is important to explain that two or more arcs comprising the same
roads may present different risk costs according to the road distance in those arcs.
For example, in a given arc, the vehicle would be on the more dangerous road for
longer than the other arc in which a vehicle would travel for a short time on this
same dangerous road.

x̄ “

ř

hPH xh

Nh
(2.4)

ȳ “

ř

tPT yt

Nt
(2.5)

ivh “ 1 `
xh ´ x̄

x̄
, @ h P H (2.6)

ith “ 1 `
yh ´ ȳ

ȳ
, @ h P H (2.7)
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eij “

ř

hPH ivh.ith.lh
lij

, @pi, jq P E (2.8)

Paccidentij “ Pgeneral.eij , @pi, jq P E (2.9)

Figure 4 – Workflow to calculate parameters ivh e ith.

In some arcs, the vehicle may pass through more than one road (h),
e.g., the arc Limeira to Cosmópolis has two roads: h1 named SP330 and h2 named
SP133 whose flows and features are distinguished. Thus, a parameter named eij is
needed, which is weighted by ivh, ith and lh, and represented by Equation (2.8) as
shown in the workflow of Figure (5). Where lh is the length that the truck traverses
each road h of the arc ij and lij represents the total length of the arc. Finally,
Equation (2.9) describes the accident probability Paccidentij of the arc ij.

After finding the Paccidentij, it is possible to estimate rij using the
Monte Carlo simulation. This can be done using data provided by the cargo
insurance companies, which collected the accident occurrences and the cargo losses
involved (Table 4).
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Figure 5 – Workflow to calculate eij and Paccidentij.

Table 4 – Value involved in accident cargo transportation.

Range of values occurrence
$ 0.01 to $ 200,000.00 37.91%

$ 200,000.00 to $ 300,000.00 24.17%
$ 300,000.00 to $ 500,000.00 19.91%

$ 500,000.00 to $ 1,000,000.00 16.11%
$ 1,000,000.00 or more 1.90%

Figure 6 illustrates an example of how the probabilities are distributed.
The maximum cargo value for each range and the cost to the road freight company
is considered as being 1% of its value; a deductible that cargo insurances usually
charge. Thus, in the occurrence of an accident in the range between $0.01 and
$200,000.00, the value to be considered is always the highest of the range, which is
in this case $200,000.00, thus the deductible cost for the carrier should be $2,000.00.

Figure 6 also shows the accumulated percentage values, between 0 and 1,
for each accident cost on the right. This is important for the Monte Carlo simulation,
which at each iteration selects a random value between 0 and 1 that corresponds
to an accident cost. For example, according to Figure 6, each percentage range is
equivalent to its cost, and therefore any value selected in the range between 0 and
0.990971 will correspond to an accident cost equal to $0.00.

Thus, a number of 1,000,000 iterations are performed for each arc ij of
the problem and the average risk cost of an accident rij is estimated and it is used in
the objective function of the CVRP. This number of iterations was chosen because
the accident probabilities are very low, and thus the values of rij presented a better
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Figure 6 – Accident probabilities and their costs in the Monte Carlo simulation.

convergence. However, when the number of iterations is greater, the resolution time
also increases, but rij results show few differences. Therefore, for this problem, the
amount of 1,000,000 iterations was ideal.

2.3.2 Bi-objective in the CVRP

The Capacitated Vehicle Routing Problem (CVRP) was used in a real
problem of a freight transportation company located in the city of Limeira/SP. The
connection among the cities in the region was represented by graph G “ pV, Aq,
where V “ t0, ..., nu is the set of vertices representing the cities and A is the set
of arcs between i and j. In the problem, there are k identical vehicles each one
with capacity cap, and they start and finish at a depot in Limeira. The CVRP
minimizing logistics cost (cij) and risk cost (rij) was also tested in four different
instances in which the number of cities varied between 10 to 18 and the number of
trucks ranged from 3 to 8, and this is because the number of cities increased, the
demand also changed. The instances were named as follows: n10 ´ k3, n12 ´ k4,
n15 ´ k8, n18 ´ k8.

The model is a two-index vehicle flow formulation, as described in Toth &
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Vigo (2002), where Xij is a binary variable which takes value 1 if a vehicle traverses
an arc pi, jq P A and takes value 0 otherwise. The Mixed Integer Programming
model was implemented in Python and used Gurobi Optimizer (version 10.0.0) to
solve the CVRP.

2.3.3 The PROMETHEE II method

PROMETHEE II is a Multi Criteria Decision Making (MCDM) approach
designed to deal with conflicting criteria. The method consists of ranking alternatives
through a pairwise comparison by different weighted criteria and it comprises four
steps, as discussed in Brans & Smet (2016).

• Step 1: A preference function Pωpaa, abq is built to compare functions gωpaaq

and gωpabq and takes 1 if the alternative aa is preferable to ab in a criteria ω,
pω P Ωq, or 0 otherwise, as Expression (2.10).

Pωpaa, abq “

$

&

%

1, if gωpaaq ă gωpabq

0, if gωpaaq ě gωpabq
(2.10)

• Step 2: The sum of preference (π) of each criteria ω weighted by wω is
described by Expression (2.11)

πpaa, abq “
ÿ

ωPΩ
Pωpaa, abqwω , @ pa, bq P M, a ‰ b (2.11)

• Step 3: The positive ranking flow (ϕ`) and the negative ranking flow (ϕ´)
described by Expressions (2.12) and (2.13), respectively, represents how
alternative aa is ranked compared to all others. M is the set all alternatives.

ϕ`
paaq “

1
|M | ´ 1

ÿ

bPM

πpaa, abq , @ a P M (2.12)
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ϕ´
paaq “

1
|M | ´ 1

ÿ

bPM

πpab, aaq , @ a P M (2.13)

ϕpaaq “ ϕ`
paaq ´ ϕ´

paaq (2.14)

• Step 4: Finally, the ranking flow ϕpaaq is a difference of ϕ`
paaq and ϕ´

paaq

as shown in Expression (2.14) where the higher the ϕpaaq, the better the
alternative paaq compared to others.

In this study, aa and ab are the arcs of the problem and ω is the criteria
related to logistics and risk costs. The weight wω P r0, 1s and if w1 increases as a
proportion of p, then w2 decreases (1 ´ p), once

ÿ

ωPΩ
wω “ 1. As the alternatives are

the arcs and they are symmetric, one can change an alternative aa (@a P M) to
an arc pi, jq (i.e. ϕpaaq “ ϕij), thus ϕij is used as the parameter in the objective
function of the CVRP as described below:.

min
ÿ

iPV

ÿ

jPV

ϕij.Xij (2.15)

ÿ

iPV

Xij “ 1 @ j P V zt0u (2.16)

ÿ

jPV

Xij “ 1 @ i P V zt0u (2.17)

ÿ

iPV

Xi0 “ K (2.18)

ÿ

jPV

X0j “ K (2.19)

Ui ´ Uj ` cap.Xij ď cap ´ dj @ pi, jq P V zt0u i ‰ j | di ` dj ď cap (2.20)
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di ď Ui ď cap @ i P V zt0u (2.21)

Xij P t0, 1u @ pi, jq P V (2.22)

Ui P R`
@ i P V (2.23)

Expression (2.15) is the objective function that minimises the ranking
flow (ϕij). The objective function value is accounted for in the variable Z. Expres-
sions (2.16) and (2.17) impose that for each vertex representing a location there is
only one entry and one exit, respectively. Expressions (2.18) and (2.19) represent
the depot where it receives and leaves a number of arcs equal to the number of
vehicles k. Expressions (2.20) and (2.21) impose the capacity limit cap and the
connectivity requirements along the route, where Constraints (2.20) guarantee the
sub-tour elimination proposed by Miller, Tucker & Zemlin (1960) and adapted to
CVRP. The continuous variable Ui represents the load of the vehicle after visiting
customer i (TOTH; VIGO, 2002). The domain of the decision variables of the
routes are described in Expressions (2.22) and (2.23).

2.3.4 ϵ-constrained method

The ϵ-constrained method optimises just one objective taking the others
as constraints by limiting them to an upper bound, defined by parameter ϵ, in
the case of a minimization problem. In the ϵ-constrained non-dominated efficient
solutions can be produced and other advantages are the linearity preservation of
the original problem.

In this study, the logistic cost is kept as the objective to be minimized
and adds the risk cost as the constraint to be met. Therefore, the difference of
this method with the previous one is that the objective function Eq. (2.24) only
minimises

ÿ

iPV

ÿ

jPV

cij.Xij and it is added to the set of the remaining constraints of

the CVRP with the new one limited to the risk expressed by Eq. (2.25). A variation
of ϵ is made within the range of feasible region to obtain different solutions.
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min
ÿ

iPV

ÿ

jPV

cij.Xij (2.24)

ÿ

iPV

ÿ

jPV

rij.Xij ď ϵ (2.25)

2.4 Experimental results
A freight transportation company in Limeira/SP collaborated in this

study supplying real data. The set of all locations in the instance is shown on the
map in Figure 7, where the depot in Limeira is identified by the letter "D".

Figure 7 – Set of locations in all instances of this study.

2.4.1 Results of risk cost

The risk cost (rij) was obtained by the Monte Carlo simulation and a
part of the results are shown in Table 5. It was observed that rij was obtained
in line with what was expected. When comparing the arcs that have the same
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type of roads such as Piracicaba to Santa Barbara d’Oeste and Limeira to Mogi
Mirim, the rij for the first arc is greater in the risk cost (rij “ 1339.24) than the
second (rij “ 150.21), and it was expected because of the higher traffic (6,819
heavy vehicles) on the road h “ SP304. On the other hand, the second arc is road
h “ SP147 where the heavy vehicle flow is only 757 making it a low-risk arc.

In the arcs, Mogi Mirim to Rio Claro (rij “ 464.18) and Araras to
Paulinia (rij “ 859.05), the types of roads are equal for both, but in the first one,
the truck goes by a longer distance (lh “ 47.6 km) on a safer road (h “ SP147)
whereas it is the opposite for the second arc. The same occurs when Limeira to
Cosmópolis and Araras to Rio Claro are compared. On the second, the truck runs
most of its way (lh “ 21.7 km) on a safer road (h “ SP191) making the risk cost of
this arc lower (rij “ 345.60) than the first (rij “ 1082.12), where the truck travels
on two roads with high levels of risk.

When comparing arcs that present similar or nearly a vehicle flow such
as Mogi Mirim to Araras and Limeira to Mogi Mirim, it is noted that rij for the
first is greater than the second due to the Mogi Mirim to Araras arc, which is built
by a road (h “ SP191) single-lane two-way road, according to the nomenclature of
CNT (2019), which has the highest death rate among all road types.

It can be observed that SP147 is a very safe road because of its road
type, two-lane two-way road with a central safety lane, and the low flow of vehicles.
When a vehicle travels long distances on roads such as the SP147, rij tends to be
low and the arc is safe. On the other hand, roads SP304 and SP330 penalise the
rij due to their high flow of vehicles.

Other analyses, such as this, were also carried out and the same conclu-
sions were reached. Thus, it can be stated that the analytical approach followed
to find rij was satisfactory as consistent results were found according to those
expected.

The risk cost of using a road, that will be used for all arcs, obtained
from the Monte Carlo simulation is presented in Table 5.
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Table 5 – Risk cost (rij) obtained from Monte Carlo simulation.

Arcs (ij) cij ($) rij ($) h Type of Road Flow of heavy vehicles lh (km)
Limeira – Cosmópolis 51.70 1082.12 SP330 Two-lane two-way road with central safety lane 4980 16.5

SP133 Single-lane two-way road 3373 16.4
Holambra – Cosmópolis 50.76 418.44 SP107 Single-lane two-way road 1790 15.2

SP332 Two-lane two-way road with central safety lane 1842 10.9
Limeira – Mogi Mirim 117.87 150.21 SP147 Two-lane two-way road with central safety lane 757 54.2
Limeira – Piracicaba 80.19 147.80 SP147 Two-lane two-way road with central safety lane 757 36.9
Limeira – Araras 72.11 971.9 SP330 Two-lane two-way road with central safety lane 4980 31
Limeira – Rio Claro 80.76 974.65 SP330 Two-lane two-way road with central safety lane 4980 12.5

SP310 Two-lane two-way road with central safety lane 4950 24
Araras – Santa Bárbara d’Oeste 92.56 702.63 SP330 Two-lane two-way road with central safety lane 4980 14.3

SP348 Two-lane two-way road with central safety lane 2490 38.7
SP304 Two-lane two-way road with central safety lane 6819 5.9

Santa Bárbara d’Oeste – Sumaré 77.71 536.04 SP304 Two-lane two-way road with central safety lane 6819 4.7
SP348 Two-lane two-way road with central safety lane 2490 24.9

Araras – Rio Claro 40.38 345.60 SP191 Single-lane two-way road 650 21.7
SP330 Two-lane two-way road with central safety lane 4980 4

Mogi Mirim – Rio Claro 177.26 464.18 SP147 Two-lane two-way road with central safety lane 535 47.6
SP330 Two-lane two-way road with central safety lane 4980 6
SP310 Two-lane two-way road with central safety lane 4150 23.6

Piracicaba – Santa Barbara d’Oeste 44.78 1339.24 SP304 Two-lane two-way road with central safety lane 6819 28.5
Araras – Paulínia 163.00 859.05 SP330 Two-lane two-way road with central safety lane 4980 35.1

SP147 Two-lane two-way road with central safety lane 535 16.5
SP332 Two lane two-way road with central safety lane 1603 19.9

Piracicaba – Americana 77.47 1349.1 SP304 Two-lane two-way road with central safety lane 4980 49.3
Mogi Mirim – Araras 110.20 217.33 SP191 Single-lane two-way road 650 48.3
Jundiaí – Socorro 286.54 430.29 SP360-1 Single-lane two-way road 1458 22.0

SP063 Single-lane two-way road 1267 40.0
SP008 Single-lane two-way road 1301 47.0

Amparo – Jundiaí 128.06 327.31 SP360-2 Single-lane two-way road 585 40.0
SP065 Two-lane two-way road with central safety lane 5780 4.4
SP063 Single-lane two-way road 1267 9.5

SP360-1 Single-lane two-way road 1458 19
Araras – São João da Boa Vista 222.20 498.75 SP330 Two-lane two-way road with central safety lane 4980 38

SP225 Single-lane two-way road 880 50
SP344-1 Single-lane two-way road 862 24

Cosmópolis – Amparo 106.39 610.90 SP332 Two-lane two-way road with central safety lane 1842 10.9
SP107 Single-lane two-way road 1790 47.1
SP95-2 Single-lane two-way road 1765 9.7

2.4.2 Solving the bi-objective function in the CVRP

The optimized results of the CVRP with the bi-objective methods
are presented in Figure 8. Analysing the Pareto Frontier of each instance, the ϵ-
constrained method resulted in more varied solutions than Promethee II as setting
an upper bound for the constraints could lead to finding weak efficient solutions.

However, it is difficult to find an effective ϵ interval covering all possible
feasible solutions, that is, the smallest value of ϵ should be found that still makes the
solution feasible or a value of ϵ high enough covering all possible optimal solutions.
Therefore, in the case of this study and according to Equation (2.25), the ϵ must
be greater than the minimum risk value, otherwise the solution is unfeasible, or as
high as the maximum risk to cover all possible optimal solutions.

Thus, the PROMETHEE II method can be used as a support to find
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the range of values of ϵ. For the results of instance n10-k3 according to Figure
8(a) and Table 6, when wω = 0 the risk assumes the maximum value (rij.Xij =
4616.64). On the other hand, when wω = 1 the risk is minimum (rij.Xij = 3463.52).
Therefore, in instance n10-k3 when ϵ ă 3463.52, the solution is infeasible, and
when ϵ “ 4616.64, it is large enough to cover all optimal solutions, making the
ideal interval of ϵ equal to 3463.52 ď ϵ ď 4616.64.

To detail the routes of each solution that compose the Pareto frontier
of each instance, see Figures 9, 10, 11 and 12. The cost details of each route of each
instance are explained in Tables 6, 7, 8 and 9, respectively.

(a) n10-k3 (b) n12-k4

(c) n15-k8 (d) n18-k8

Figure 8 – Pareto frontier from optimization with PROMETHEE II and ϵ-
constrained methods.
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2.4.3 Analysis of Solutions for instance n10-k3

Figure 9 presents the routes that correspond to optimal solutions that
compose the Pareto Frontier for instance n10-k3 shown in Figure 8(a). The total
risk cost, total logistic cost and which roads belong to each solution are shown in
Table 6.

(a) ϵ “ 4650 (b) ϵ “ 4500

(c) ϵ “ 4250 (d) ϵ “ 4100

Figure 9 – Optimal solutions from Pareto-Frontier, for instance n10-k3.

Table 6 – Routes for each solution of instance n10-k3 presented in Figure 9.

Figure ϵ wω cijXij ($) ∆cijXij rijXij ($) ∆rijXij Routes
1)D–Holambra–Mogi Mirim–Araras–D

9(a) 4650 0 to 0.45 729.69 - 4616.64 - 2)D–Piracicaba–Rio Claro–D
3)D–Santa Bárbara d’Oeste–Sumaré–Paulínia–Cosmópolis–D
1)D–Santa Bárbara d’Oeste–Cosmópolis–Paulínia–Sumaré–D

9(b) 4500 - 778.01 Ò 6.62% 4477.14 Ó 3.02% 2)D–Piracicaba–Rio Claro–D
3)D–Araras–Holambra–Mogi Mirim–D

1)D–Mogi Mirim–Araras–Santa Bárbara d’Oeste–D
9(c) 4250 - 833.67 Ò 14.25% 4238.76 Ó 8.19% 2)D–Piracicaba–Rio Claro–D

3)D–Cosmópolis–Holambra–Sumaré–Paulínia–D
1)D–Mogi Mirim–Araras–Santa Bárbara d’Oeste–D

9(d) 4100 0.5 to 1.0 834.36 Ò 14.34% 3463.52 Ó 24.98% 2)D–Piracicaba–Rio Claro–D
3)D–Sumaré–Paulínia–Cosmópolis–Holambra–D

In Figure 9(b), the green arc from Limeira to Mogi Mirim has been
included in a VRP solution when the risk is relevant enough as compared to the
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initial solution for instances n10-k3 (Figure 9(a)). The inclusion of green arcs
observed in Figures 9(b), 9(c) and 9(d) provided a greater reduction in the risk cost
than the increase in the logistic costs (Table 6). Road SP147 plays an important
role in the risk reduction as it is one of the safest roads in the problem.

Limeira to Cosmópolis (red arc in Figures 9(a) and 9(c)) is removed
from the solution when ϵ “ 4500 due to the high-risk levels of roads SP330 and
SP133. Although its logistic cost is low (cij “ 51.70), the arc returned as a solution
when ϵ “ 4250 and removed again when ϵ “ 4100 because the optimization in this
case tends to prioritize safety instead of the logistic costs. The same happens for
Limeira to Araras (red arc in Figure 9(b)) which is removed when ϵ “ 4250 and
Araras to Santa Barbara d’Oeste (green one in Figure 9(c)) is considered due to
the difference of their risk cost rij.

Road SP147 connects Mogi Mirim to Piracicaba, passing by Limeira.
When ϵ = 4500 (Figure 9(b)), the model selects this road for the vehicle to travel
completely due to its high safety level. On the other hand, when the logistics cost
is prioritized at ϵ = 4650 (Figure 9(a)), a section of this road, the path from Mogi
Mirim to Limeira, is not considered as a solution and the Holambra to Cosmópolis
arc that comprises the SP107 and SP133 highways, is added.

The model also selects routes composed by SP348, which connects
Araras to Santa Bárbara d’Oeste, from ϵ = 4250 (Figure 9(c)) due to its low
accident risk. Nonetheless, the SP133 that forms the Limeira to Cosmópolis and
Santa Bárbara d’Oeste to Cosmópolis arcs, is excluded when the accident risk
should be minimum (Figure 9(d)), as this road is a single-lane two-way road with
high truck traffic.

The SP330 road is long and passes by several cities in the region, such
as Limeira, Americana, Araras, Sumaré, and it is considered in the solutions only
when the logistic cost is prioritized due to heavy traffic, similarly to SP133, which
is shorter in distance and more risky for accidents. On the other hand, the SP147
and SP348 roads are preferred when the low accident risk is recommended.
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2.4.4 Analysis of Solutions for instance n12-k4

Figure 10 presents the routes that correspond to optimal solutions that
comprise the Pareto Frontier of instance n12-k4 (Figure 8(b)). Table 7 summarizes
the key results.

(a) ϵ “ 10200 (b) ϵ “ 9900

(c) ϵ “ 7750 (d) ϵ “ 7300

Figure 10 – Optimal solutions from Pareto-Frontier for instance n12-k4.

The Limeira to Mogi Mirim, Limeira to Piracicaba and Santa Bárbara
d’Oeste to Sumaré arcs are introduced as a solution when ϵ = 9900 (green arcs in
Figure 10(b)) and those are kept as solutions at ϵ = 7750 and ϵ = 7300. Limeira
to Mogi Mirim and Limeira to Piracicaba are considered because these arcs are
formed by the SP147 road, which is a very safe way, as already mentioned in the
previous instance. Santa Bárbara d’Oeste to Sumaré are also included as the SP348
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road that makes up this arc has low truck traffic and it is a two-lane two-way road
with a central safety lane.

Table 7 – Routes for each solution of instance n12-k4 presented in Figure 10.

Figure ϵ wω cijXij ($) ∆cijXij rijXij ($) ∆rijXij Routes
1)D–Santa Bárbara d’Oeste–Piracicaba–Rio Claro–Araras–D

10(a) 10200 0.0 to 0.20 1535.16 - 9979.97 2)D–Amparo–Paulínia–D
3)D–Cosmópolis–Mogi Mirim–São João da Boa Vista–D

4)D–Americana–Sumaré–D
1)D–Santa Bárbara d’Oeste–Sumaré–D

10(b) 9900 - 1572.56 Ò 2.04% 8449.35 Ó 15.34% 2)D–Cosmópolis–Amparo–Mogi Mirim–D
3)D–Piracicaba–Rio Claro–Araras–São João da Boa Vista–D

4)D–Americana–Paulínia–D
1)D–Santa Bárbara d’Oeste–Sumaré–D

10(c) 7550 - 1696.06 Ò 8.77% 7728.52 Ó 22.56% 2)D–Mogi Mirim–Cosmópolis–Amparo–D
3)D–Piracicaba–Rio Claro–Araras–São João da Boa Vista–D

4)D–Paulínia–Americana–D
1)D–Santa Bárbara D’Oeste–Sumaré–D

10(d) 7300 0.55 to 1.0 1835.59 Ò 16.37% 6953.59 Ó 30.32% 2)D–Mogi Mirim–Cosmópolis–São João da Boa Vista–D
3)D–Americana–Paulínia–D

4)D–Piracicaba–Rio Claro–Araras–Amparo-D

The Piracicaba to Santa Bárbara d’Oeste and Limeira to Araras arcs
(red arcs in Figure 10(a)) have a low logistic cost, and thus are selected as a
route when ϵ = 10200. However, when ϵ = 9900, ϵ = 7750 and ϵ = 7300, these
arcs are excluded as a solution due to their high risk cost. The Piracicaba to
Santa Bárbara d’Oeste and Limeira to Araras arcs are formed by roads SP304 and
SP330, respectively, which have the highest accident risk among all the roads in
the problem.

The Araras to São João da Boa Vista and Cosmópolis to Amparo arcs
(red arcs in Figure 10(c)) do not have such a high accident risk as the Piracicaba
to Santa Bárbara d’Oeste arc, and therefore they are selected as a solution for
the routes at ϵ = 9900 and ϵ = 7750. However, when the safety level is even more
prioritized at ϵ = 7300, these arcs are eliminated.

Thus, similarly as the previous solution for instance n10-k3, the routes
with the SP147 and SP348 roads are preferable and the routes with the SP304 and
SP330 roads are excluded when the safety level is prioritized.

2.4.5 Analysis of Solutions for instance n15-k8

Figure 11 presents the routes that correspond to optimal solutions that
compose the Pareto Frontier of instance n15-k8 (Figure 8(c)). Table 8 summarizes
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the key results.

Figure 11(a) displays the optimal solution with the lowest total logistic
cost and consequently with a higher accident risk. This solution includes the
Americana to Piracicaba arc (red arc in Figure 11(a)) which has a low logistic
cost, but its accident risk is high due to the high traffic on road SP304. When the
accident risk is reduced, other routes are configured as shown in Figures 11(b) and
11(c), where the safe roads are introduced (SP147 and SP191, respectively) as their
logistical costs are not high.

The Limeira to Rio Claro arc (Figure 11(b)) also has low logistics cost
and high accident risk because it contains two roads that are dangerous shown by
the data, SP310 and SP330. However, this arc is still considered as a solution when
the accident risk starts to be prioritized at ϵ = 13300. However, when the safety
level is even more prioritized at ϵ = 12150 and ϵ = 12000, the model excludes this
arc as a solution and selects a safer one, such as the arc passing by Araras to Rio
Claro (Figure 11(c)).
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(a) ϵ “ 15400 (b) ϵ “ 13300

(c) ϵ “ 12150 (d) ϵ “ 12000

Figure 11 – Optimal solutions from Pareto-Frontier for instance n15-k8.
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Table 8 – Routes for each solution of instance n15-k8 presented in Figure 11.

Figure ϵ wω cijXij ($) ∆cijXij rijXij ($) ∆rijXij Routes
1)D–Mogi Mirim–D
2)D–Cosmópolis–D

3)D–Santa Bárbara d’Oeste–Tambaú–D
11(a) 15400 0.0 3081.24 - 15374.34 - 4)D–Sumaré–Amparo–D

5)D–Jundiaí–Araras–D
6)D–São João da Boa Vista–D

7)D–Paulínia–Pedreira–D
8)D–Americana–Piracicaba–Rio Claro–D

1)D–Tambaú–D
2)D–Mogi Mirim–D

3)D–Amparo–Sumaré–Santa Bárbara d’Oeste–D
11(b) 13300 - 3123.56 Ò 1.37% 13255.95 Ó 13.78% 4)D–Cosmópolis–D

5)D–Jundiaí–Araras–D
6)D–São João da Boa Vista–D

7)D–Paulínia–Pedreira–D
8)D–Americana–Rio Claro–Piracicaba–D

1)D–Tambaú–D
2)D–Mogi Mirim–D

3)D–Amparo–D
11(c) 12150 0.05 to 0.40 3260.07 Ò 5.80% 12113.77 Ó 21.21% 4)D–Americana–Jundiaí–D

5)D–Santa Bárbara d’Oeste–Sumaré–Cosmópolis–D
6)D–São João da Boa Vista–D

7)D–Paulínia–Pedreira–D
8)D–Araras–Rio Claro–Piracicaba–D

1)D–Tambaú–D
2)D–Mogi Mirim–D

3)D–Amparo–D
11(d) 12000 0.45 to 1.0 3370.42 Ò 9.39% 11758.74 Ó 23.52% 4)D–Americana–Paulínia–D

5)D–Santa Bárbara d’Oeste–Sumaré–Cosmópolis–D
6)D–São João da Boa Vista–D

7)D–Jundiaí–Pedreira–D
8)D–Araras–Rio Claro–Piracicaba–D

2.4.6 Analysis of Solutions for instance n18-k8

Figure 12 presents the routes that correspond to optimal solutions that
compose the Pareto Frontier of instance n18-k8 (Figure 8(d)). Table 9 summarizes
the key results.

The Limeira to Rio Claro arc (red arc in Figure 12(a)) is introduced as
an optimal solution when ϵ = 14850 due to its low logistics cost. However, when
risk is prioritized in ϵ = 12550, ϵ = 11700 and ϵ = 11100, this arc is excluded due
to the high accident risk in SP330 and SP310, similarly as indicated in instance
n15-k8. The Araras to Rio Claro arc (green arc in Figure 12(b)) is preferred as a
solution when ϵ = 12550, ϵ = 11700 and ϵ = 11100 as it has low risks of accident.

The Jundiaí to Socorro arc (red arc in Figure 12(a)) is selected as an
optimal solution only in ϵ = 14850. When the risk is prioritized, the routes obtained
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in ϵ = 12550, ϵ = 11700 and ϵ = 11100 do not contain the Jundiaí to Socorro arc
and the new solution introduces the Amparo to Jundiaí arc (green arc in Figure
12(b)) as option. This is because on the Amparo to Jundiaí arc, the vehicle travels
mostly on the SP360-2 road, where the volume of vehicles is low, while on the
Jundiaí to Socorro arc, the vehicle travels only on roads with high traffic. Thus,
the risk cost for the Amparo to Jundiaí arc is lower and preferable as an optimal
solution.

(a) ϵ “ 14850 (b) ϵ “ 12550

(c) ϵ “ 11700 (d) ϵ “ 11100

Figure 12 – Optimized routes for instance n18-k8.
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Table 9 – Routing solution of instance n18-k8 presented in Figure 12.

Figure ϵ wω cijXij ($) ∆cijXij rijXij ($) ∆rijXij Routes
1)D–Mogi Mirim–Araras-D

2)D–São João da Boa Vista–Tambaú–D
3)D–Cosmópolis–D

12(a) 14850 - 2967.41 - 14836.43 - 4)D–Santa Bárbara d’Oeste–Sumaré–Americana–Limeira
5)D–Piracicaba–São Pedro–Rio Claro–D

6)D–Paulínia–D
7)D–Pedreira–Amparo–Serra Negra–D

8)D–Jundiaí–Socorro–D
1)D–Mogi Mirim–Serra Negra–D

2)D–Tambaú–São João da Boa Vista–D
3)D–Jundiaí–Amparo–Socorro–D

12(b) 12550 0.35 to 0.40 3221.46 Ò 8.56% 12544.98 Ó 15.44% 4)D–Santa Bárbara d’Oeste–Sumaré–D
5)D–Piracicaba–D
6)D–Paulínia–D

7)D–São Pedro–Rio Claro–Araras–Pedreira–D
8)D–Cosmópolis–Americana–D

1)D–Mogi Mirim–Serra Negra–D
2)D–Tambaú–São João da Boa Vista–D

3)D–Jundiaí–Amparo–D
12(c) 11700 - 3542.54 Ò 19.38% 12113.77 Ó 21.46% 4)D–Santa Bárbara d’Oeste–Sumaré–D

5)D–Piracicaba–D
6)D–Paulínia–D

7)D–Pedreira–Araras–Rio Claro–São Pedro–D
8)D–Socorro–Cosmópolis–Americana–D

1)D–Mogi Mirim–Serra Negra–D
2)D–Americana–Cosmópolis–Socorro–D

3)D–Tambaú–Paulínia–D
12(d) 11100 0.80 3951.87 Ò 33.18% 11090.86 Ó 25.25% 4)D–Amparo–Jundiaí–D

5)D–São João da Boa Vista–D
6)D–São Pedro–Rio Claro–Araras–Pedreira–D

7)D–Santa Bárbara d’Oeste–Sumaré–D
8)D–Piracicaba–D

2.5 Final remarks
The need to consider accident risk in VRP is important because when

an accident occurs not only are people exposed to risk, but the loss of transported
goods can have major consequences such as: financial, interruptions in the supply
chain and social-environmental impacts.

This study considered the issue of route safety in the VRP for a cargo
transportation company to support decision-makers to choose the best routes that
minimise both the logistics costs and accident risks.

Due to the limited data availability of road accidents, an analytical
approach based on simple statistic calculations was developed to estimate the
accident probabilities for each arc between locations, and the costs related to the
accident were estimated through Monte Carlo simulations. The PROMETHEE
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II and ϵ-constrained methods were implemented to deal with the bi-objective (i.e.
tradeoff between logistic cost and accident risk cost) in the VRP. The obtained
results were coherent for the analytical approach as a whole, converging to what
was expected of the problem.

Analysing the results of instance n10-k3 presented in Table 6, the
increase in logistic cost is greater than the risk cost reduction at ϵ = 4500, but
when the security level of the routes receives higher priority, the risk cost reduction
is greater at ϵ = 4100. On the other hand, in instance n18-k8 (results in Table 9),
the opposite happened. In the first moment, the risk cost reduction is greater at ϵ

= 12550 and ϵ = 11700, but the increase in logistics cost is greater when security is
on the highest prioritization level (ϵ = 11100). For instances n12-k4 (Table 7) and
n15-k8 (Table 8), the risk cost reduction is greater than the increases in logistics
costs for all safety levels.

Thus, a decision-maker could analyse the total logistic cost and risk
of accidents, and one could plan the routes based on which safety level it wishes
to operate, as the level of operational safety depends on some factors such as the
cargo type and the cargo value.

It can be affirmed that the analytical approach worked coherently by
representing the trade-off between logistics costs and the risk of accident due to
more dangerous roads. According to the parameters that regulate the bi-objective
approaches, the model may prioritize safer routes or the logistic costs, showing
different solutions to the decision-maker.

The limitation of the study was the small amount of data and their types
to estimate the risk cost in an even better way, as more data and different types
of information on road hazards could be used to develop better risk models. For
further studies, as presented in Chapter 3, the analytical approach will be extended
to include more conflicting objectives to the logistical cost, such as environmental
costs, making the VRP more multi-objective.
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3 Augmented Weighted Tchebycheff for
solving VRP considering accident risk
and CO2 emission using a fleet powered
by diesel, electric, and CNG.

Multi-Objective Vehicle Routing Problems (MO-VRP) have attracted
attention in the area of sustainability in which the objective is to optimize jointly
the economic, environmental, and social dimensions. They have gained significant
attention in sustainability studies due to their focus on optimizing economic, en-
vironmental, and social dimensions. As a continuation of Chapter 2, this study
presents an application of MO-VRP to a real-case problem, aiming to minimize
logistics costs, CO2 emissions, and accident risks. The company employs a heteroge-
neous fleet with heavy-duty vehicles powered by various energy sources, including
battery (electric vehicles), compressed natural gas, and diesel fuel. The MO-VRP
was tackled using the Augmented Weighted Tchebycheff (AWT) method, and an
enhanced Genetic Algorithm was employed as a heuristic to generate feasible solu-
tions, which helped to warm-start the optimization process in the exact method
when the model struggled to find solutions. To the best of our knowledge, few
studies have applied the AWT approach to multi-objective and sustainable VRP,
and limited research has been conducted on determining the optimal mix of vehicles
using different energy sources. The results showed that diesel trucks were the
most economically viable, but alternative fuel vehicles were preferred in scenarios
prioritizing environmental considerations, achieving a nearly 90% reduction in
CO2 emissions. However, this led to an almost 35% increase in logistics costs.
Additionally, some routes were consistently chosen across different scenarios due
to their short distances and low accident risks. Routes with short distances but
higher accident risks, though less frequently chosen, could become more viable
if road conditions were improved. Finally, the analytical approach proved to be
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useful for the transportation company to make decisions when planning deliveries
considering the three elements of sustainability as a result of its simplicity in
generating solutions, either by changing the weights of the objective function or by
allowing the model to be applied in several scenarios.
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3.1 Introduction
The need for sustainable development has become increasingly urgent

amid recent events such as rapid population growth, natural and social disasters,
climate change, and many other reasons. Furthermore, sustainable development is
important because the needs of the current generation must be met, but resources
must also be guaranteed for the next generations (DÜNDAR; ÖMÜRGÖNÜLŞEN;
SOYSAL, 2021). The Triple Bottom Line (TBL) approach supports the concept of
sustainability by promoting a balance between economic, social, and environmental
aspects (ELKINGTON, 2001). In the Vehicle Routing Problems (VRP), Dündar,
Ömürgönülşen & Soysal (2021) and Reyes-Rubiano et al. (2020) claim that the
economic dimension remains the most extensively explored, while Ferreira, Steiner
& Junior (2020) and Qiao et al. (2020) observe that risk is often underrepresented.

The quantity of CO2 equivalent in the atmosphere could be understood
as an indicative of global warming. According to the Sistema de Estimativas
de Emissões e Remoções de Gases de Efeito Estufa (SEEG, 2021), Brazil was
responsible for the emission of approximately 2.4 billion tons of CO2 equivalent in
2021, which represented an increase of 8% compared to 2019, the last year before
the COVID-19 pandemic; and transportation sector contributed 8.5% of total CO2

emissions in Brazil.

In the social dimension, Abdullahi et al. (2021) state that the risk of
accidents is one of the most crucial social indicators in road transport. As mentioned
by the Confederação Brasileira de Transportes (CNT, 2022), in 2022 road accidents
accounted for 64,447 records only on Brazilian federal roads, resulting in 52,948
cases with deaths or injuries and an estimated total cost of approximately 13 billion
Brazilian reais.

In addition to considering logistic costs and accident risks, road freight
transport companies must integrate environmental considerations into their decision-
making processes. This includes prioritizing the reduction of greenhouse gas (GHG)
emissions and incorporating alternative fuel vehicles (AFVs) alongside traditional
diesel vehicles in their fleets. Studies on sustainable VRP are less common compared
to the extensive research on the general VRP topic. However, they have gained
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notable attention in recent years, as shown in the upcoming literature review.

This study did not focus on exploring VRP formulations or solution
methods. Instead, it implemented a multi-objective approach based on the Aug-
mented Weighted Tchebycheff method to find efficient, non-dominated solutions for
a VRP that simultaneously considers logistics costs, environmental impact, and
social criteria. We applied this approach to a real instance from a large retail chain
in Brazil with a heterogeneous fleet, including diesel-powered trucks, compressed
natural gas (CNG) vehicles, and electric trucks with battery power. The company
seeks to identify the optimal mix of vehicles to use for deliveries, aiming to minimize
carbon dioxide emissions and accident risks while maintaining efficient logistics
and cost-effectiveness.

This study is organized in four sections, besides this introduction. Section
3.2 reviews existing research on VRP that addresses accident risk and sustainability,
either together or separately. It also identifies gaps in the literature that this study
seeks to reduce. Section 3.3 details the VRP model and outlines the equations
used in our proposed analytical approach. Section 3.4 presents the results of
computational experiments and discusses key findings. Finally, Section 3.5 offers
concluding remarks, bringing some words about the limitations of our study, and
suggests avenues for future studies on this topic.

3.2 Literature related to sustainable VRP
As stated in Section 3.1, the goal of sustainability in the vehicle routing

problem is to optimize economic, environmental, and social aspects. In this literature
review, we focused on papers that address accident risks and sustainable elements
in multi-objective VRP. Table 10 highlights that most studies concerning the Triple
Bottom Line approach in VRP have been conducted in recent years.

According to Ferreira, Steiner & Junior (2020), most studies on multi-
objective VRP optimization focus primarily on economic factors such as costs
and profits, as well as environmental aspects that are limited to greenhouse gas
emissions and fuel consumption. Social considerations are less frequently explored,
presenting an opportunity for contribution to the literature. Similarly, Dündar,



Chapter 3. Augmented Weighted Tchebycheff for solving VRP considering accident risk and CO2

emission using a fleet powered by diesel, electric, and CNG. 57

Ömürgönülşen & Soysal (2021) note that social aspects continue to receive limited
attention, while economic factors remain the dominant priority among the three
pillars of sustainability.

Dündar, Ömürgönülşen & Soysal (2021) mention that in sustainable
VRP, the economic dimension typically encompasses operating costs and profits,
while the environmental dimension focuses on reducing greenhouse gas emissions,
fuel consumption, and promoting the use of electric vehicles. The social dimension
includes addressing accident risks, customer satisfaction, employee job satisfaction,
punctuality in deliveries, and creating new job opportunities.

In terms of social considerations, research on risks and safety in road
freight often centers on the transport of hazardous materials, where the risk involves
potential socio-environmental disasters, and cash-in-transit transport, which is
primarily concerned with theft (TALARICO et al., 2017). According to Carrese et
al. (2022) and Holeczek (2021), the risk of damage is proportional to the probability
of accidents and the number of people exposed to such risk. Additionally, Holeczek
(2021), Abdullahi et al. (2021), and Reyes-Rubiano et al. (2020) highlighted the
importance of considering the load amount as a significant factor in assessing
accident risk. Besides these risk factors, Chai et al. (2023) add drive behavior as a
relevant factor that affects the risk of hazardous materials transportation.

Talarico et al. (2017) and Ghannadpour & Zandiyeh (2020) applied
their studies on cash-in-transit transport, focusing on the risk of robberies, which
is directly proportional to the amount of monetary assets and the distance traveled.
Ghannadpour, Zandieh & Esmaeili (2021) reduced the risk of hospital waste
contamination by shortening collection times. Similarly, Lin, Musa & Yap (2023)
minimized the risk of contamination by considering the number of people exposed
during transport, the amount of waste being carried, and the probability of disease
transmission.

Some studies have optimized social dimension factors beyond risks. For
instance, Ouhader & kyal (2017) and Mondal & Roy (2021) focused on maximizing
job creation as a social factor, while Ganji et al. (2020) aimed to minimize customer
dissatisfaction by avoiding service during less-preferred time windows. The model
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outlined in Prajapati et al. (2022) aimed to minimize penalties from late deliveries
and accident risks, both of which were directly connected to vehicle speeds. The
model also emphasized the importance of speed control since higher speeds increase
the probability of accidents, while lower speeds can result in delivery delays.

In the environmental dimension, Demir, Bektaş & Laporte (2014) assert
that CO2 emissions are directly related to the amount of fuel consumed by the
vehicle. Authors such as Ouhader & kyal (2017), Molina et al. (2014), Mojtahedi
et al. (2021), Abdullahi et al. (2021), Reyes-Rubiano et al. (2020), and Qiao et al.
(2020) work to minimize CO2 emissions, while Demir, Bektaş & Laporte (2014), Xu
et al. (2019), Ghannadpour, Zandieh & Esmaeili (2021), and Kopfer, Schönberger
& Kopfer (2014) focus on reducing fuel consumption. Consequently most authors
prioritize minimizing both CO2 emissions and fuel consumption.

There are several alternative methods for measuring the environmental
dimension. For instance, Ganji et al. (2020) aimed to minimize carbon emissions by
considering factors such as load amount, average arc speed, type of vehicle, distance
between origin and destination, and arc-specific constants (related to acceleration
and road angle). Similarly, Prajapati et al. (2022) reduced carbon emissions by
accounting for carbon taxation costs based on fuel consumption and distance
traveled. Meanwhile, Abdoli, MirHassani & Hooshmand (2017) and Niranjani &
Umamaheswari (2022) minimize total GHG emissions considering a vehicle emission
rate that is measured by the ratio between the mass of GHG generated due to the
distance traveled.

In terms of multi-objective approaches, Table 10 displays that some
Multi-Objective Evolutionary Algorithms (MOEAs) were the most commonly used
method for tackling multi-objective problems, followed by scalarization methods
such as the ϵ-constrained and the weighted sum approaches. Ferreira, Steiner &
Junior (2020) also identified heuristics, the ϵ-constrained and the weighted method
as the most prevalent multi-objective techniques applied in VRP, corroborating the
bibliographic research. Regarding the Augmented Weighted Tchebycheff method,
only Mondal & Roy (2021) employed it for addressing multi-objective sustainable
VRP.
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Dächert, Gorski & Klamroth (2012) claim that one of the advantages of
the Augmented Weighted Tchebycheff method is that every non-dominated point of
a multi-objective optimization problem can be generated by varying the weights of
each criterion in a single optimization function. Additionally, Molina et al. (2014),
Mondal & Roy (2021), Filho, Oliveira & Melo (2023) argue that another advantage
of the AWT method is its ability to avoid weakly non-dominated solutions. Thus,
this study explores these positive aspects to solve the multi-objective VRP.

When exploring the optimization approaches presented in Table 10,
heuristic methods were implemented in most studies, with Particle Swarm Opti-
mization (PSO) and Simulated Annealing (SA) algorithms being the most common.
Ferreira, Steiner & Junior (2020) found that, concerning multi-objective vehicle
routing optimization with environmental considerations, genetic algorithms were
the most extensively studied, followed by PSO and SA. Souza (2023) argued that
genetic algorithms do not perform well compared to other heuristics due to their
more random nature in generating new individuals. This way, Souza (2023) en-
hanced a genetic algorithm to generate higher-quality solutions for a VRP with a
mixed fleet, though they did not consider the multi-objective approach.

As Table 10 indicates, no papers considered the use of heuristic and exact
methods simultaneously. Ferreira, Steiner & Junior (2020) highlighted the need for
studies that seek a hybrid approach, where heuristic procedures are implemented to
enhance the performance of an exact method. In this study, we aim to implement
the enhanced Genetic Algorithm found in Souza (2023) with a multi-objective
approach to initiate the exact method due to the significant computational effort
required to find feasible solutions to the problem.

On the subject of fleets, Erdoğan & Miller-Hooks (2012), Abdoli, MirHas-
sani & Hooshmand (2017), and Reyes-Rubiano et al. (2020) suggest for future work
the addition of heterogeneous fleets with alternative fuels, such as electricity or
CNG, to better represent reality. Only Abdoli, MirHassani & Hooshmand (2017)
emphasize the implementation of an approach with vehicles powered by multiple
energy sources, where the mono-objective function minimizes the total GHG emis-
sions. In this case, they considered a homogeneous fleet with bi-fuel vehicles, each
composed of two separate tanks, one containing petroleum-based fuel and the other
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containing an alternative fuel.

Asghari & Al-e-hashem (2021) note that despite the extensive literature
in the field of green transportation, most publications considering AFVs assumed
only a homogeneous fleet condition, as evident from Table 10, and did not consider
the development of approaches for determining the optimal combination of vehicles
powered by different fuels. Therefore, this study addresses this literature gap by
minimizing the three dimensions of sustainability using a heterogeneous fleet with
vehicles powered by batteries, CNG, and diesel fuel.

Table 10 – Multi-objective VRP with risks and sustainable considerations.
Authors Objective function Fleet Multi-objective approach Solution method

Env. Social Econ. :: Het. AFV MES :: WM EC WT AWT MOEA OA :: HE EX
Abdoli, MirHassani & Hooshmand (2017) ✓ ✓ ✓ ✓
Abdullahi et al. (2021) ✓ ✓ ✓ ✓ ✓ ✓
Bektaş & Laporte (2011) ✓ ✓ ✓
Carrese et al. (2022) ✓ ✓ ✓ ✓
Chai et al. (2023) ✓ ✓ ✓ ✓
Demir, Bektaş & Laporte (2014) ✓ ✓ ✓ ✓ ✓
Erdoğan & Miller-Hooks (2012) ✓ ✓ ✓
Euchi & Yassine (2023) ✓ ✓ ✓
Ganji et al. (2020) ✓ ✓ ✓ ✓ ✓ ✓
Ghannadpour & Zandiyeh (2020) ✓ ✓ ✓ ✓
Ghannadpour, Zandieh & Esmaeili (2021) ✓ ✓ ✓ ✓ ✓
Kopfer, Schönberger & Kopfer (2014) ✓ ✓ ✓
Lin, Musa & Yap (2023) ✓ ✓ ✓ ✓ ✓
Mojtahedi et al. (2021) ✓ ✓ ✓ ✓ ✓ ✓ ✓
Molina et al. (2014) ✓ ✓ ✓ ✓ ✓
Mondal & Roy (2021) ✓ ✓ ✓ ✓ ✓
Niranjani & Umamaheswari (2022) ✓ ✓ ✓ ✓ ✓
Ouhader & kyal (2017) ✓ ✓ ✓ ✓ ✓
Prajapati et al. (2022) ✓ ✓ ✓ ✓ ✓
Qiao et al. (2020) ✓ ✓ ✓ ✓
Reyes-Rubiano et al. (2020) ✓ ✓ ✓ ✓
Soleimani, Chaharlang & Ghaderi (2018) ✓ ✓ ✓ ✓
Talarico et al. (2017) ✓ ✓
Xu et al. (2019) ✓ ✓ ✓ ✓
This study ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
AFVs: Alternative Fuel Vehicles, AWT: Augmented Weighted Tchebycheff, EC: ϵ-constrained, Econ.: Economic,Env.: Environmental, EX: Exact,
Het: Heterogeneous, HE: Heuristic, MES: Multiple Energy Sources, MOEA: Multi-objective evolutionary algorithms, OA: Other Algorithms,
WM: Weighted Method, WT: Weighted Tchebycheff.

3.2.1 Review of Literature gap

Based on the literature review of multi-objective and sustainable VRP,
several gaps have been identified that this study aims to address. The following
sections outline these gaps and explain how this study intends to tackle them.

• Ferreira, Steiner & Junior (2020) and Dündar, Ömürgönülşen & Soysal (2021)
state that the risk dimension is less common in the literature. Therefore, a
multi-objective VRP was developed to support decision-making in minimizing
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the three dimensions of the Triple Bottom Line: social, environmental, and
economic.

• The simultaneous use of heuristic and exact methods to solve specifically
multi-objective sustainable VRP optimization has not been explored before.
Thus, this study aims to implement an enhanced Genetic Algorithm to
generate good feasible solutions to initiate the exact method.

• To the best of our knowledge, few studies on multi-objective and sustainable
VRP have addressed heterogeneous fleets, where vehicles are powered by
multiple energy sources such as batteries, CNG, and diesel fuel. Therefore,
this subject was added to make the problem more realistic, as costs, fuel
consumption, and CO2 emissions vary for each type of vehicle.

• Few papers have addressed the implementation of the Augmented Weighted
Tchebycheff (AWT) method to deal with multi-objective VRP (MO-VRP).
Thus, this study experimented with the use of the AWT method as a way
to generate efficient non-dominated solutions, and also due to the ease of
handling the weighted parameters for a decision-maker to find solutions for
different scenarios.

3.3 Analytical approach
The mathematical approach used to solve the MO-VRP was divided into

four phases, summarized in the workflow described in Figure 13. The highlighted
processes represent the contributions of this study to the literature. The first phase
consisted of defining the MO-VRP, assigning parameters and objectives to be
minimized, grouping vehicles, and exploring the HVRP formulation.

Then, in Phase 2, the enhanced Genetic Algorithm developed by Souza
(2023) was implemented to generate feasible solutions for use in Phase 3, which
initiated the exact method. In Phase 3, the formulation of the Augmented Weighted
Tchebycheff method was applied, where the initial lexicographic Pareto optimal
solutions were identified using the VRPSolverEasy (ERRAMI et al., 2023) to
normalize the objective functions. Subsequently, after finding the lexicographic
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Pareto optimal solutions, the MO-VRP was solved using the Augmented Weighted
Tchebycheff method with the commercial solver Gurobi 10.0.3.

The results obtained were analyzed in Phase 4. Considering the per-
spective of a decision-maker, it is necessary to validate whether the solution is
suitable for the company’s process. If it is suitable, the decision is made based on
the obtained solution; otherwise, the weights are adjusted to generate new solutions.
Therefore, this study analyzed solutions for several scenarios, with experiments
conducted using different sets of weights to allow for the evaluation and comparison
of outcomes.

Figure 13 – Workflow of the analytical approach in this study.

3.3.1 Phase 1: Multi-Objective Heterogeneous Vehicle Routing Problem
MO-HVRP

During Phase 1, primarily the MO-HVRP parameters were defined
(Section 3.3.1.1) and then the mathematical formulation for the problem is presented
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(Section 3.3.1.2).

3.3.1.1 Phase 1.1: Parameters of HVRP

Table 11 provides parameters such as the average consumption (consuk),
fuel price per volume (costk), and the CO2 emission rate (emissk). The values for
cijk and eijk were calculated using Equations 3.1 and 3.3, respectively. In this case,
it was assumed that electric vehicles do not produce CO2 , considering only the
tank-to-wheel aspect, where CO2 generation is attributed solely to fuel consumption
for vehicle propulsion. The entire chain of fuel production and transportation was
not considered. The fuel consumption and CO2 emission parameters were collected
from manufacturers producing these vehicle groups and were based on standard
heavy-duty vehicles with a Gross Total Weight of 40 tons. The prices (in Brazilian
reais – BRL) of the three fuel types were collected in July 2023 from fueling stations
located on roads in São Paulo state, Brazil.

Due to the difficulty of finding information about fuel consumption and
CO2 emissions, these parameters were considered constant and do not change with
variations in load amount. The speed of the vehicles is also constant and equal for
all groups. The Alternative Fuel Vehicles (AFVs) were included in the problem,
specifically electric vehicles and those powered by Compressed Natural Gas (CNG).
The AFVs do not have restrictions on the distance they can travel, meaning the
vehicles are sufficiently fueled at the depot to complete all deliveries and return.

Table 11 – Parameters of each group of vehicle.

Diesel CNG Eletric
Fuel consumption 3.03 km/L 2.17 km/m3 0.98 km/kWh
Fuel price (BRL) $ 4.59/L $ 3.89/m3 $ 1.95/KWh
Emission of CO2 (Kg/Km) 2.03 1.76 -

Finally, the data used to calculate the risk of accidents, rij, for each
arc ij, were collected from the CNT (2019), DER-SP (2021), and DNIT (2021).
It was assumed that the factors influencing the risk of accidents include road
infrastructure and the volume of heavy vehicle traffic traversing them. The rij

values were considered to be the same for all vehicle groups and were presented in
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monetary losses ($), estimated by Monte Carlo simulations. The detailed procedure
is described in Chapter 2.

3.3.1.2 Phase 1.2: MO-HVRP Mathematical Model

The Multi-Objective Vehicle Routing Problem (MO-VRP) was applied
to a large retail chain (Magazine Luiza) whose depot and stores are located in
cities in the macro-region of Campinas, state of São Paulo, Brazil. The connections
among the cities in the region were represented by a graph G “ pV, Aq, where
V “ t0, . . . , nu is the set of vertices representing the cities, and A is the set of arcs
between vertex i and vertex j.

The problem involves a heterogeneous fleet, with the set K “ tk1, k2, k3u

composed of three vehicle groups: diesel fuel, CNG, and electric. An unlimited
number of vehicles is available, all having the same capacity (cap), and starting
and ending at the depot in Louveira. The MO-VRP was tested on an instance with
53 cities located in São Paulo state, as represented in Figure 14. The markers in
blue represent the delivery cities, and the marker in red represents the depot.

The model employs a three-index vehicle flow formulation, which is a
modification of the two-index vehicle flow formulation described in Toth & Vigo
(2002). The sets, parameters, and variables are described as follows.

Sets:

V: set of all vertices representing the locations (delivery cities and the depot);

K: set of vehicle groups.

Parameters:

fuelk : fuel price per unit volume for vehicle group k;

consuk : fuel consumption of vehicle group k;

distij : distance between city i and city j;

cijk : logistic cost of vehicle in the group k that traverses the arc ij;
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emissk : CO2 emission rate for vehicle in group k:

eijk : CO2 emission of vehicle in the group k that traverses arc ij;

rij : accident risk cost between city i and j;

di : demand in city i;

cap : vehicle capacity (the same for all).

Variables:

Xijk : binary variable that takes the value 1 if a vehicle from group k traverses
arc pi, jq P A, and takes the value 0 otherwise;

Yk : integer variable representing the total number of vehicles from each group
k used to make the deliveries;

Uik : positive variable which account the cumulative load of vehicle k after
visiting note i.

Each part of the objective function for the MO-VRP is described below.

Logistic costs: the logistic cost (cijk) was calculated using Equation (3.1),
and the first part of the objective function representing logistic costs is given
by Equation (3.2).

cijk “
fuelk

consuk

. distij @ k P K, @ pi, jq P V (3.1)

f1pxq “
ÿ

iPV

ÿ

jPV

ÿ

kPK

cijk . Xijk (3.2)

CO2 Emission: the CO2 emission (eijk) is calculated in Equation (3.3) and
the second part of the objective function representing the total emissions are
given by Equation (3.4).
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eijk “ emissk . distij @ k P K, @ pi, jq P V (3.3)

f2pxq “
ÿ

iPV

ÿ

jPV

ÿ

kPK

eijk . Xijk (3.4)

Risk of Accidents: the third part of the objective function that symbolizes
risk of accidents (rij) are represented by Equation (3.5).

f3pxq “
ÿ

iPV

ÿ

jPV

ÿ

kPK

rij . Xijk (3.5)

The Expression 3.6 represents complete objective function:

minimize : z “ tf1pxq, f2pxq, f3pxqu (3.6)
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The constrains of the MO-HVRP are described as follow.

ÿ

kPK

ÿ

iPV

Xijk “ 1 @ j P V zt0u (3.7)

ÿ

kPK

ÿ

jPV

Xijk “ 1 @ i P V zt0u (3.8)

ÿ

iPV

Xi0k “ Yk @ k P K (3.9)

ÿ

jPV

X0jk “ Yk @ k P K (3.10)

ÿ

kPK

Yk ě

ř

iPV

di

cap
(3.11)

ÿ

iPV zthu

Xihk ´
ÿ

jPV zthu

Xhjk “ 0 @ k P K, @ h P V zt0u (3.12)

Uik ´ Ujk ` cap . Xijk ď cap ´ dj @ pi, jq P V zt0u i ‰ j | di ` dj ď cap (3.13)

di ď Uik ď cap @ i P V zt0u (3.14)

Xijk P t0, 1u @ pi, jq P V, @ k P K (3.15)

Yk P Z`
@ k P K (3.16)

Uik P R`
@ k P K (3.17)
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Expressions (3.7) and (3.8) impose that for each vertex representing
a location, there is only one entry and one exit, respectively. Expressions (3.9)
and (3.10) represent the number of vehicles Yk that depart from and arrive at the
depot, respectively. We can also compute a lower bound on the number of vehicles
needed, which is the sum of all demands divided by the vehicle capacity, as shown
in Expression (3.11). This constraint is not necessary but usually helps to improve
the performance of the model resolution process.

Expression (3.12) represents the flow at vertex h, where the same
vehicle needs to arrive and depart from the nodes, with the exception of the depot.
Expressions (3.13) and (3.14) impose the vehicle capacity and the connectivity
requirements along the route. Constraints (3.13) ensure sub-tour elimination, as
proposed by Miller, Tucker & Zemlin (1960) and adapted to MO-VRP. The domain
of the decision variables for the routes is described in Expressions (3.15), (3.16),
and (3.17) (TOTH; VIGO, 2002).
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Figure 14 – Location of the cities in the problem.

Legend of Figure 14: 0: Louveira (depot), 1: Aguaí, 2: Águas de Lindóia, 3: Ameri-
cana, 4: Amparo, 5: Araras, 6: Arthur Nogueira, 7: Atibaia, 8: Bragança Paulista, 9:
Cabreúva, 10: Campinas, 11: Capivari, 12: Casa Branca, 13: Conchal, 14: Cordeirópo-
lis, 15: Cosmópolis, 16: Divinolândia, 17: Espirito Santo do Pinhal, 18: Hortolândia,
19: Indaiatuba, 20: Iracemápolis, 21: Itapira, 22: Itatiba, 23: Itupeva, 24: Jaguar-
iúna, 25: Jundiaí, 26: Laranjal Paulista, 27: Limeira, 29: Mococa, 30: Mogi Guaçu,
31: Mogi Mirim, 32: Monte Mor, 33: Nova Odessa, 34: Paulinia, 35: Pedreira, 36:
Piracaia, 37: Piracicaba, 38: Rio Claro, 39: Rio das Pedras, 40: Santa Bárbara
d’Oeste, 41: Santa Cruz das Palmeiras, 42: Santa Gertrudes, 43: Santo Antônio
de Posse, 44: São João da Boa Vista, 45: São José do Rio Pardo, 46: São Pedro,
47: Serra Negra, 48: Socorro, 49: Sumaré, 50: Tambaú, 51: Valinhos, 52: Vargem
Grande do Sul, 53: Vinhedo.
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3.3.2 Phase 2: Enhanced Genetic Algorithm

The implementation of a heuristic procedure became necessary to im-
prove the performance of the Augmented Weighted Tchebycheff multi-objective
method optimized by a exact approach, which requires a large computational effort
without the use of a heuristic.

Therefore, in this study, the Genetic Algorithm proposed by Souza
(2023) was improved and implemented to generate feasible solutions to initiate the
exact method using Gurobi. This was necessary because the solver took a long
time to find an initial feasible solution, which always demonstrated a large gap
relative to its lower bound.

The implementation followed the guidelines of Souza (2023), which
employed two mechanisms to improve the performance of the genetic algorithm.
One of these was the Split Algorithm proposed by Prins (2004), designed to handle a
sequence of customers without route delimiters. Instead of considering the sequence
0-3-5-0-4-0-2-1-0, where 0 represents the depot and 1, 2, 3, 4, and 5 are delivery
points, the algorithm considered only 3-5-4-2-1, removing the route delimiters
(0). This increased the efficiency of the algorithm. According to Souza (2023),
chromosomes with route delimiters complicate the code.

The second mechanism, developed by Blanton & Wainwright (1993),
utilizes two crossover operations. These operations compare each gene of the parent
chromosomes with a gene from a child precedence sequence and select the gene from
either Parent 1 or Parent 2, depending on which appears first in the child precedence
sequence. This explanation becomes clearer with the example represented in Figure
15.

In the first iteration, two individuals were randomly selected as parents
to generate a new individual (child). Subsequently, the first gene for the child was
chosen randomly from either parent 1 or parent 2. In this example, it was selected
gene 2 from parent 1. Consequently, the gene with the same value from parent 2
was chosen and exchanged with the gene in the first position (same position of
parent 1).

In the next step (Iteration 2), the genes in the second position of parent
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1 and parent 2 were compared with the first gene of the child. Assuming that the
distance between point 2 and point 5 is shorter than that between point 2 and
point 4, the second gene from parent 2 was selected for the child, and the gene with
the same value from parent 1 was exchanged with the gene in the second position.

In the Iteration 3, the genes of the third position of parents 1 and 2
were compared with the second gene of the child. In this case, the distance from
point 5 to point 6 is shorter than form point 5 to point 1. Thus, the point 6 was
selected as a new gene of the child.

This process was repeated successively, following the same procedure,
until the child’s chromosome was completed, representing a new individual and
containing a new solution for the problem.

Figure 15 – Illustration of Blanton & Wainwright (1993) crossover operations.

The heuristic was adapted to address a MO-VRP with a heterogeneous
fleet and was implemented in Python. Consequently, the Weight Sum method was
applied solely to guide the feasible solution that initiates the exact method in Phase
3. Its implementation was simpler because it did not require adding constraints to
the algorithm, and it did not alter the objective function.
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The proposed weighted objective function in Expression (3.18) was
defined as combination of three sustainability dimensions, aggregating the objectives
into a single objective with priority weights, where z˚ is the optimal solution
obtained from the sum of the weighted objectives. In this way, λm represents the
weights or the relative importance of dimension m P M , where M “ 1, 2, 3 denotes
the set of three dimensions. We also have 0 ď λm ď 1 and

ÿ

mPM

λm “ 1.

minimize : z˚
“

ÿ

mPM

λm . fmpxq (3.18)

Algorithm 1 is presented as pseudocode and returns the best solution
among all generations. The initial population consisted of random individuals, with
each solution calculated using Algorithm 2. The best solution was identified as the
individual in this initial population that had the minimal objective value.

Subsequently, crossover operations were implemented, including the
order crossover (OX) and two mechanisms proposed by Blanton & Wainwright
(1993): one starting from the beginning of the chromosome and the other starting
from the end. After performing the crossover operations and generating new
individuals for the new population, mutation operations were carried out. Finally,
an elitism function was added to replace a number of random individuals in the
population with the best solution found so far. Each new individual’s solution,
generated by crossover and mutation operations, needed to be calculated using
Algorithm 2.

3.3.3 Phase 3: Augmented Weighted Tchebycheff Method

In multi-objective optimization, techniques are needed to search for
the set of Pareto solutions that represent the best trade-offs between conflicting
objectives. Among the existing techniques, the Weighted Sum, ϵ-Constrained, and
Tchebycheff scalarization methods are the best-known approaches for dealing with
multi-objective problems.

Here, the Augmented Weighted Tchebycheff method was selected to
generate solutions for the MO-VRP because this approach has the main advantage
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Algorithm 1 : Enhanced Genetic Algorithm
Input: TotalInd Ð number of individuals in the population; TotalGen Ð

number of population; n Ð number of delivery cities
Initial population with random individuals without route delimiters
array router1 ... ns.
while i ă TotalInd do:

Indi Ð random.shuffleprouteq

SolrIndis Ð SplitPrinspIndiq

i Ð i ` 1
end while.
MinSol Ð SolrIndis

BestSol Ð MinSol
while Gen ă TotalGen do:

Crossover Operations
Selects two random individuals to generate a child
SolChild Ð SplitPrinspchildq

if SolChild ă BestSol then:
BestSol Ð SolChild

end if.
Mutation Operations
Selects a random individual
Selects two random points of this individual
Execute the mutation and generate a new individual
SolMut Ð SplitPrinspNewIndq

if SolMut ă BestSol then:
BestSol Ð SolMut

end if.
Elitism selection
Selects two random individuals of the population
Change these two individuals for the best solution to date and generante a

new individual
SolElit Ð SplitPrinspNewIndq

if SolElit ă BestSol then:
BestSol Ð SolElit

end if.
Gen = Gen + 1

end while.
return: BestSol
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Algorithm 2 : Split Algorithm for Mixed Fleet
Input: S Ð individual generated by enhanced Genetic Algorithm; ck Ð variable
cost of vehicle k; lij Ð length/distance between arcs ij; ek Ð CO2 emission rate
of vehicle k; cap Ð vehicle capacity; demi Ð delivery demand of city i; n Ð

number of delivery cities; λm Ð weight of objective m; V0 Ð 0.
for i Ð 1 to n do:

Vi Ð `8

end for.
for i Ð 1 to n do:

load Ð 0; dist Ð 0; risk Ð 0; car Ð 0; j Ð i
repeat:

load Ð load ` demSj

if i “ j then:
dist Ð l0,Sj

` lSj ,0
risk Ð r0,Sj

` rSj ,0
end if.
if i ‰ j then:

dist Ð dist ´ lSj´1,Sj
` lSj ,0

risk Ð risk ´ rSj´1,Sj
` rSj ,0

end if.
if load ď cap then:

Zij Ð `8

costpdieselq Ð cdiesel . dist . λ1 ` ediesel . dist . λ2 ` risk . λ3
costpgasq Ð ccng . dist . λ1 ` ecng . dist . λ2 ` risk . λ3
costpeletricq Ð celetric . dist . λ1 ` eeletric . dist . λ2 ` risk . λ3
if costpdieselq is the minimum then:

car Ð 0
Zij Ð costpdieselq

end if.
if costpcngq is the minimum then:

car Ð 1
Zij Ð costpgasq

end if.
if costpeletricq is the minimum then:

car Ð 2
Zij Ð costpeletricq

end if.
if Vi´1 ` Zij ă Vj then:

Vj Ð Vi´1 ` Zij
type_carrjs Ð car

end if.
j Ð j ` 1

end if.
this

until : (j ą n) or (load ą cap)
end for.
return: V, type_car
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of eliminating weakly efficient non-dominated solutions. Additionally, it does not
interfere with the set of feasible solutions by avoiding the addition of constraints
that limit the criterion space, which could make the use of exact methods more
exhaustive (FILHO; OLIVEIRA; MELO, 2023).

Another important advantage of the Tchebycheff method is its ability
to generate non-dominated solutions for a multi-objective optimization problem
by appropriately varying the weights of each criterion in the objective function
(DÄCHERT; GORSKI; KLAMROTH, 2012). This simplifies the decision-making
process because varying the weight parameters for each criterion allows the genera-
tion of solutions for different scenarios, even if the objectives are conflicting.

To the best of our knowledge, studies addressing the MO-VRP with
the Augmented Weighted Tchebycheff technique are less common. In this study,
the implementation of the Augmented Weighted Tchebycheff method followed the
guidelines and detailed explanations presented by Filho, Oliveira & Melo (2023),
who applied the method for optimization with three conflicting objectives in the
area of sugarcane cultivation.

The workflow described in Figure 16 represents the implementation of
the Augmented Weighted Tchebycheff method, which was divided into two steps. In
the first step, the lexicographic points were determined from the ideal and anti-ideal
vectors. In the second step, the Augmented Weighted Tchebycheff method was used
to identify the Pareto solutions through Expression (3.20).

Step 1: Determining the lexicographic points

The first step involved dividing the problem into three sub-problems,
as shown in Expression (3.19). Each sub-problem was minimized separately by
prioritizing logistic costs (f1pxq “ z1), CO2 emissions (f2pxq “ z2), and accident
risks (f3pxq “ z3). Here, zm “ tsm1, sm2, sm3u represents the optimal solution
vectors for each sub-problem m P M , where sm1, sm2, and sm3 correspond to the
solutions for logistic costs, CO2 emissions, and accident risks, respectively.
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minimize : zm “ fmpxq m P M

subject to : x P S
(3.19)

The set M represents the three sustainability dimensions we aim to
optimize, and the feasible decision space S is delimited by the constraints defined
by Expressions (3.7) to (3.17). zm is equivalent to the first three Pareto optimal
solutions and determines the boundaries of the Pareto surface.

Each value of the objectives contained in the solution set zm was com-
pared to obtain the ideal (vI

“ tvI
1 , vI

2 , vI
3u

T ) and anti-ideal (vA
“ tvA

1 , vA
2 , vA

3 u
T )

vectors, with the first symbolizing the best alternatives for each objective function
and the second symbolizing the worst alternatives. For example, for the logistic
cost, three different solutions were obtained: the first (s11) was calculated when
logistic cost was prioritized, the second (s21) when CO2 emissions were prioritized,
and the third (s31) when accident risks were prioritized. From this comparison, it
is possible to obtain the minimum value, which represents the ideal point (vI

1), and
the maximum value, which represents the anti-ideal point (vA

1 ).

The optimal solutions were generated by VRPSolverEasy (ERRAMI
et al., 2023), a Python package that provides a simple interface for VRPSolver
(PESSOA et al., 2020). VRPSolver is a Branch-Cut-and-Price algorithm specifically
designed for VRPs. For instances with fewer than 100 customers, it often produces
optimal solutions within a few minutes (PESSOA et al., 2020). In this case, it
generated the optimal lexicographic solutions necessary for normalizing the objective
functions in Step 2. The use of a solver specifically developed for VRPs was
justified, as it solved the instance presented in this study with significantly lower
computational effort compared to the commercial Gurobi solver. It is important
to highlight that the feasible solutions obtained through the enhanced Genetic
Algorithm were considered only in Step 2, not in Step 1.

Step 2: Determining efficient solutions

Using vI and vA obtained in Step 1, along with the feasible solutions
generated by the enhanced Genetic Algorithm, new efficient solutions can be found
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Figure 16 – Workflow of Augmented Weighted Tchebycheff

by minimizing the Expression (3.20).

minimize : α ` ρ .
ÿ

mPM

f̄mpxq

subject to : x P S

λm . f̄mpxq ď α @ m P M

α ě 0

(3.20)

Where: 0 ď λm ď 1 and
ÿ

mPM

λm “ 1. The normalized function f̄mpxq is

represented by Expression (3.21) and is obtained using vI and vA, found in Step 1.
Normalization of the objective functions was necessary because each objective has
a different order of magnitude.

An auxiliary variable α was considered to linearize the original Tcheby-
cheff formulation while maintaining convexity. ρ is a sufficient small positive
constant that makes part of the augmented term, which is added to balance the
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trade-off between the minimum deviation of each objective from its ideal point and
the minimum of the deviations’ sum of the objectives, achieving a well-distributed
set of solutions and avoiding weakly efficient solutions.

Dächert, Gorski & Klamroth (2012) states that a very low ρ can cause
problems because the augmented term in the objective function may lose significance.
On the other hand, a very high ρ can make non-dominated points unreachable.
Thus, Steuer (1989) suggests that ρ values between 0.01 and 0.0001 are normally
sufficient.

f̄mpxq “
fmpxq ´ vI

m

vA
m ´ vI

m

@ m P M (3.21)

The final formulation of the Augmented Weighted Tchebycheff method
for the MO-VRP problem was based on implementing Expression (3.20) along with
Expressions (3.7) to (3.17). The Mixed Integer Programming model was executed
in Python and utilized the Gurobi Optimizer (version 10.0.3) to solve the MO-VRP.
The Gurobi solver was chosen because it offers the flexibility to construct objective
functions and add new constraints. The alternative of using the VRPSolverEasy
was not considered because it is restricted designed to a subset of VRP variants
(ERRAMI et al., 2023), and does not allow for the addition of new constraints or
modifications to the objective function as required by the Augmented Weighted
Tchebycheff method.

3.4 Experimental results
The entire problem was based on a real instance from a large retail

chain, where some parameters were adapted to simulate conditions under which
the company could make decisions considering different sustainability dimensions.
Different scenarios were created, with each objective receiving different weights, to
analyze the solutions obtained for each scenario.

We started our analysis by presenting, in Table 12, the lexicographic
solutions of each sub-problem defined in model (3.19). Prioritizing the minimization
of logistic costs, the optimization yielded the lowest value for this objective (vI

1 “
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5613.52), while resulting in the maximum values for CO2 emissions (vA
2 “ 7506.13)

and risk costs (vA
3 “ 37534.72). This outcome was achieved by selecting only diesel

fuel vehicles due to their lower operational costs and prioritizing arcs with shorter
distances.

When prioritizing CO2 emissions and accident risks, only electric vehicles
were selected for both sub-problems, as they do not emit CO2 . This resulted in
the minimum value for the CO2 emission objective (vI

2 “ 0). Finally, by prioritizing
the minimization of accident risks, the optimization yielded the minimum risk cost
(vI

3 “ 28254.20) and the maximum logistical cost (vA
1 “ 12403.79).

Table 12 – Lexicographic pareto optimal solutions obtained by VRPSolver.
Scenarios :: Solution :: Quantity of vehicles

CO2 emission (kg) (A) Logistics ($) (B) Risks ($) A ` B ($) Diesel CNG Electric
L1 7506.13 5613.52 37534.72 43148.24 14 0 0
L2 0.00 9315.23 29382.89 38698.12 0 0 14
L3 0.00 12403.79 28254.20 40657.99 0 0 14

Scenario L1: Prioritization of Logistic costs; Scenario L2: Prioritization of CO2 emission; Scenario L3: Prioritization of Risks.

Based on the lexicographical solutions obtained, the MO-VRP was
then solved using the Augmented Weighted Tchebycheff method. Seven additional
scenarios were selected for this problem, as represented in Table 13. In each scenario,
weights were assigned to each objective: λ1 for logistic costs, λ2 for CO2 emissions,
and λ3 for minimizing accident risks.

The scenarios were designed to represent situations where evaluating
and assigning weights to each criterion must be considered according to the levels
of risk, CO2 emissions, and logistic costs within which a company wishes to operate.
In Scenarios S1 and S5, conditions were simulated where minimizing logistic costs
is prioritized, such as in transport operations with low cargo values and fewer risks
to the population in case of accidents. Conversely, if these risk factors need to be
prioritized, Scenarios S3 and S7 were created to focus on this criterion.

Due to concerns about environmental aspects, Scenarios S2 and S6
simulated the prioritization of reducing CO2 emissions over other criteria. Fi-
nally, Scenario S4 represents the condition where the three dimensions are equally
weighted, assuming the decision-maker considers them equally important in the
decision-process.
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In the Appendix A contains detailed results, and Table 13 presents the
solutions obtained for each scenario, including the number of vehicles from each
group that should be used. Electric vehicles were selected in most scenarios where
minimizing CO2 emissions was a priority, as they emit 0 kg/km of CO2 . Only in
Scenario S1 were more diesel fuel trucks selected, as the importance of minimizing
logistic costs was eight times greater than reducing CO2 emissions.

Table 13 – Solutions obtained for each scenarios.
Scenarios :: Weights :: Solutions :: Quantity of vehicles

CO2 emission (kg) (A) Logistics ($) (B) Risks ($) A ` B Diesel CNG Electric
λ1 “ 0.80

S1 λ2 “ 0.10 5924.35 6279.89 35293.74 41573.63 10 0 5
λ3 “ 0.10
λ1 “ 0.10

S2 λ2 “ 0.80 283.39 8355.17 31987.89 40343.06 1 0 14
λ3 “ 0.10
λ1 “ 0.10

S3 λ2 “ 0.10 3694.60 9534.11 28959.97 38494.08 6 0 8
λ3 “ 0.80
λ1 “ 0.333

S4 λ2 “ 0.333 2623.77 7995.87 31499.25 39495.10 5 0 10
λ3 “ 0.333
λ1 “ 0.50

S5 λ2 “ 0.25 3675.72 7272.12 32746.57 40018.69 7 0 8
λ3 “ 0.25
λ1 “ 0.25

S6 λ2 “ 0.50 1260.02 8095.63 31615.70 39711,33 3 0 12
λ3 “ 0.25
λ1 “ 0.25

S7 λ2 “ 0.25 3387.66 8699.27 30365.55 39064.82 3 0 12
λ3 “ 0.50

CNG vehicles were not selected for any of the scenarios because they
have higher operational costs and emit only 15% less CO2 compared to diesel
vehicles. Although CNG vehicles have lower costs than electric vehicles, their CO2

emissions are much higher. Consequently, when prioritizing the minimization of
logistic costs, diesel vehicles were preferred, and when prioritizing the reduction of
CO2 emissions, electric vehicles were selected.

In this case, selecting more CNG trucks requires addressing technological
improvements to reduce CO2 emissions and fuel consumption. According to Seo,
Kwon & Park (2020), technological advancements have the potential to reduce CO2

emissions from CNG trucks by 28-35% in the near future and by 41-51% in the
longer term.

New scenarios were made based on the assumption that CNG trucks
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emit 1.14 kg of CO2 per kilometer, with a projected potential reduction of 35%
in the near future, while diesel trucks maintain their current emission levels. The
results indicated that in Scenarios S2, S5, S6, and S7, at least one CNG truck was
utilized, whereas Scenario S3 included three CNG vehicles.

Regarding heavy-duty electric vehicles, according to Nykvist & Olsson
(2021), they are currently not economically viable compared to diesel vehicles in
terms of cost per distance. One factor that could enhance the viability of heavy-duty
electric vehicles is the energy density of the battery, measured in watt-hours per
kilogram (Wh/kg). Higher energy storage capacity in a battery results in a lighter
battery, which improves the vehicle’s autonomy. Consequently, in scenarios where
logistic costs are prioritized, electric vehicles may become more preferable than
diesel vehicles, also offering environmental benefits.

Analyzing the total logistic costs, CO2 emissions, and accident risks
presented in Table 13, the results demonstrated consistency with the weights
assigned in each scenario. The Augmented Weighted Tchebycheff method proved
suitable for the MO-VRP. For instance, when comparing the lexicographic solutions
from prioritizing the minimization of logistic costs (Scenario L1) and Scenario
S1, CO2 emissions were reduced from 7506.13 kg to 5924.35 kg, and the risk cost
decreased from $37534.72 to $35293.74. In Scenario S4, where the weights are equal,
a balanced solution was achieved, avoiding extreme values for each objective and
representing a satisfactory outcome for this scenario.

To compare the variation of the three dimensions in each scenario (S1,
S2, S3, S4, S5, S6, and S7) relative to the lexicographic Scenario L1, commonly used
in VRP for its focus on minimizing logistics costs, Figure 17 displays the variation in
the three dimensions investigated. Among all scenarios, the environmental dimension
exhibited significant negative variations due to the increased use of electric vehicles.
Conversely, the logistics cost dimension showed considerable positive variations when
prioritizing risk (Scenarios S3 and S7) and environmental concerns (Scenarios S2
and S6). In situations where the cargo type poses minimal risks to the population or
has low commercial shipment value, operating under Scenarios S3 and S7 is not cost-
effective due to their high costs. However, substantial technological improvements
in the efficiency of heavy-duty AFVs, as discussed earlier, would lead to a significant
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reduction in logistics cost variations, making AFVs more economically viable.

Figure 17 – Variation of each dimension comparing to scenario L1.

Regarding the routes presented in the solution sets of all scenarios,
Table 14 ranks the most frequently used routes, indicating the scenarios in which
they appear, the distances covered, and the associated risks of accidents. The most
frequently used route appears in the solution sets of six scenarios and is listed at the
top of Table 14. The other four routes appear in five scenarios each. These routes
share common characteristics, including shorter distances and lower accident risks
compared to the average distance (d̄ “ 311.49 km) and average risk (r̄ “ 2176.71)
of all routes across the scenarios. Consequently, they are selected more frequently
as optimal solutions.

The exceptions are the routes Louveira > Cabreúva > Itupeva > Jundiaí
> Itatiba > Louveira, and Louveira > Tambaú > Santa Cruz das Palmeiras >
Louveira. For the first route, although the risk was slightly above the average
(r̄ “ 2176.71), the total distance covered was one of the shortest. For the second
route, the distance was slightly above the average (d̄ “ 311.49) due to Tambaú
and Santa Cruz das Palmeiras being farther from the depot. However, the risk of
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accidents for this route was significantly below the average risk (r̄ “ 2176.71).

The ranking was also performed for the least used routes, as shown in
Table 15. These routes were characterized by either long distances or high accident
risks. The route Louveira > Casa Branca > Sumaré > Mococa > Louveira, which
appears in one scenario, required the vehicle to cover a distance of 715.50 km,
significantly above the average (d̄ “ 311.49 km). The routes Louveira > Americana
> Limeira > Iracemápolis > Santa Bárbara d’Oeste > Nova Odessa > Louveira
and Louveira > Nova Odessa > Santa Gertrudes > Cordeirópolis > Iracemápolis >
Santa Bárbara d’Oeste > Louveira had risks far exceeding the average (r̄ “ 2176.71).
Despite their short distances, these last two routes have high accident risks. They
could be candidates for selection in more scenarios if road conditions were improved.
Enhancements to these roads would reduce accident risks, making these routes
more viable in terms of safety.

Table 14 – Most frequently used routes.
Routes Scenarios Distance (km) Risk cost ($)
Louveira > Cabreúva > Itupeva > Jundiaí -> Itatiba > Louveira L3, S2, S3, S4, S5, S6 139.6 2317.57
Louveira > Serra Negra > Águas de Lindoia > Socorro > Louveira L1, S1, S2, S5, S6 231.2 1280.72
Louveira > Artur Nogueira > Itapira > Louveira L2, L3, S3, S4, S7 237.0 1395.15
Louveira > Atibaia > Piracaia > Bragança Paulista > Louveira S1, S2, S4, S5, S6 165.7 2054.38
Louveira > Tambaú > Santa Cruz das Palmeiras > Louveira S1, S2, S4, S6, S7 383.9 1551.25

Table 15 – Least frequently used routes.
Routes Scenarios Distance (km) Risk cost ($)

Louveira > Americana > Limeira > Iracemápolis > Santa Bárbara
d’Oeste > Nova Odessa > Louveira L1 201.60 5635.29

Louveira > Americana > Nova Odessa > São Pedro > Santa
Gertrudes > Pedreira > Louveira S2 387.50 4231.00

Louveira > Nova Odessa > Santa Gertrudes > Cordeirópolis >
Iracemápolis > Santa Bárbara d’Oeste > Louveira S1 152.11 3904.08

Louveira > Casa Branca > Sumaré > Mococa > Louveira L3 715.50 2141.53
Louveira > Conchal > Araras > Cordeirópolis > Santa Gertrudes
> Louveira L1 270.10 3732.40

3.5 Concluding remarks
Integrating procedures into road freight transport that consider financial

factors alongside environmental and social impacts is becoming increasingly relevant.
The primary objective of this study was to implement a sustainable Multi-Objective
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Vehicle Routing Problem (MO-VRP) that minimizes logistic costs, CO2 emissions,
and accident risks. This approach includes a heterogeneous fleet consisting of diverse
vehicle groups, such as Alternative Fuel Vehicles (AFVs) and diesel vehicles.

To address the MO-VRP, the Augmented Weighted Tchebycheff (AWT)
method was implemented. Multiple scenarios were created by assigning different
weights to the objectives, generating various solutions.

Given the complexity and computational demands of the problem when
using the AWT method, both heuristic and exact methods were employed to
generate solutions. The enhanced Genetic Algorithm produced feasible solutions to
initiate the exact method, which helped to optimize performance.

The results indicated that in most scenarios, electric vehicles were the
most utilized due to their significantly lower CO2 emissions, despite higher costs.
Conversely, CNG trucks were not used in any scenario because their emission
rate was much higher than that of electric vehicles and only 13% lower than
diesel, despite not having the highest cost. Thus, the findings suggest a need
for technological advancements in heavy-duty AFVs to enhance their economic
viability.

Additionally, the results showed that the optimization frequently selected
certain routes across different scenarios due to their short distances and low accident
risks. Some routes, which were less commonly selected, may become more viable in
future solutions with improvements in road conditions to reduce accident risks.

One benefit of this analytical approach is that users can generate
solutions for different scenarios by simply adjusting the weights of each objective,
selecting a solution compatible with their operations. Each transport operation
differs; for instance, some loads, such as hazardous materials and valuable cargo,
require safer operations over cheaper ones, while other types of cargo may prioritize
cost over risk. Similarly, if the user needs to focus on reducing environmental
impact, they can adjust the parameters to prioritize this dimension.

Thus, road freight transport companies can plan deliveries based on
sustainable aspects using the proposed analytical approach. By adjusting the
parameters that regulate the multi-objective problem, multiple scenarios can be
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generated, providing different solutions for decision-makers.

A limitation of this study was the lack of real data related to road
accidents and experimental data for CO2 emissions and fuel consumption of heavy
vehicles, which could contribute to more accurate and realistic results. Most electric
heavy trucks are still in the testing phase, explaining the difficulty in finding data
for this type of vehicle. For future work, we aim to incorporate more realistic
elements into the problem, such as varying fuel consumption and CO2 emissions
according to load weight, and considering the value of the cargo and its insurance.
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APPENDIX

A Detailed results of Chapter 3

This appendix contains detailed results of the study described in Chapter
3.
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Table 16 – Routes obtained for Scenario L1.
Vehicle Routes Distance (Km) Logistic Cost ($) CO2 (Kg) Risk ($)
Diesel Louveira > Santo Antonio de Posse > Itapira > Louveira 216.50 328.68 439.45 1658.45
Diesel Louveira > Rio Claro > São Pedro > Louveira 299.50 454.67 607.98 2252.63
Diesel Louveira > Casa Branca > Divinolândia > São João da

Boa Vista > Louveira
420.60 638.53 853.82 1629.97

Diesel Louveira > Paulinia > Artur Nogueira > Cosmópolis >
Louveira

172.70 262.18 350.58 2163.91

Diesel Louveira > Mococa > São José do Rio Pardo > Tambaú
> Santa Cruz das Palmeiras > Louveira

482.00 731.75 978.46 2290.80

Diesel Louveira > Itupeva > Cabreúva > Laranjal Paulista >
Capivari > Monte Mor > Hortolândia > Louveira

288.60 438.17 585.86 3065.60

Diesel Louveira > Serra Negra > Águas de Lindoia > Socorro
> Louveira

231.20 351.00 469.33 1280.72

Diesel Louveira > Campinas > Jaguariúna > Pedreira > Am-
paro > Itatiba > Louveira

153.00 232.28 310.59 3406.21

Diesel Louveira > Indaiatuba > Rio das Pedras > Piracicaba
> Sumaré > Louveira

230.10 349.33 467.10 3025.17

Diesel Louveira > Conchal > Araras > Cordeirópolis > Santa
Gertrudes > Louveira

270.10 410.05 548.30 3732.40

Diesel Louveira > Mogi Guaçu > Mogi Mirim > Valinhos >
Vinhedo > Louveira

195.70 297.10 397.27 2877.25

Diesel Louveira > Bragança Paulista > Piracaia > Atibaia >
Jundiaí > Louveira

187.30 284.35 380.22 2927.10

Diesel Louveira > Americana > Limeira > Iracemápolis <
Santa Bárbara d’Oeste > Nova Odessa > Louveira

201.60 306.06 409.25 5635.29

Diesel Louveira > Espirito Santo do Pinhal > Vargem Grande
do Sul > Aguaí > Louveira

348.70 529.38 707.861 1589.22

Total 3697.60 5613.52 7506.13 37534.72

Table 17 – Routes obtained for Scenario L2.
Vehicle Routes Distance (Km) Logistic Cost ($) CO2 (Kg) Risk ($)
Eletric Louveira > Artur Nogueira > Itapira > Louveira 237.00 471.58 0.00 1395.15
Eletric Louveira > Nova Odessa > Monte Mor > Hortolândia

> Rio das Pedras > Cordeirópolis > Serra Negra >
Louveira

437.90 871.33 0.00 2625.98

Eletric Louveira > Bragança Paulista > Piracaia > Socorro >
Louveira

257.50 512.37 0.00 1285.98

Eletric Louveira > Conchal > São Pedro > Araras > Pedreira
> Louveira

437.40 870.33 0.00 2137.82

Eletric Louveira > São João da Boa Vista > Divinolândia >
Casa Branca > Louveira

420.60 836.91 0.00 1629.97

Eletric Louveira > Laranjal Paulista > Limeira > Mogi Mirim
> Louveira

368.40 733.04 0.00 1423.72

Eletric Louveira > Mogi Guaçu > Cosmópolis > Campinas >
Paulínia > Louveira

281.50 560.13 0.00 2381.24

Eletric Louveira > Cabreúva > Piracicaba > Rio Claro > Capi-
vari > Louveira

336.50 669.57 0.00 1949.08

Eletric Louveira > Itupeva > Vinhedo > Valinhos > Santo
Antonio de Posse > Louveira

195.10 388.21 0.00 2938.10

Eletric Louveira > Mococa > São José do Rio Pardo > Santa
Cruz das Palmeiras > Tambaú > Louveira

482.80 960.67 0.00 2280.31

Eletric Louveira > Americana > Iracemápolis > Santa Bárbara
d’Oeste > Sumaré > Indaiatuba > Louveira

240.10 477.75 0.00 3797.34

Eletric Louveira > Espirito Santo do Pinhal > Aguaí > Vargem
Grande do Sul > Louveira

385.80 767.66 0.00 1450.00

Eletric Louveira > Jundiaí > Amparo > Louveira 179.60 357.37 0.00 1210.47
Eletric Louveira > Águas de Lindoia > Santa Gertrudes >

Jaguariúna > Louveira
421.30 838.30 0.00 2877.95

Total 4681.50 9315.23 0.00 29382.89
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Table 18 – Routes obtained for Scenario L3.
Vehicle Routes Distance (Km) Logistic Cost ($) CO2 (Kg) Risk ($)
Eletric Louveira > Artur Nogueira > Itapira > Louveira 715.50 1423.70 0.00 1395.15
Eletric Louveira > Casa Branca > Sumaré > Mococa > Louveira 464.00 923.26 0.00 2141.53
Eletric Louveira > Laranjal Paulista > Santa Bárbara d’Oeste

> Iracemápolis > Socorro > Louveira
440.40 876.31 0.00 1700.77

Eletric Louveira > Serra Negra > Santa Gertrudes > Piracicaba
> Mogi Guaçu > Louveira

343.10 682.70 0.00 1768.92

Eletric Louveira > Capivari > Rio Claro > Amparo > Louveira 139.60 277.77 0.00 1052.59
Eletric Louveira > Cabreúva > Itupeva > Jundiaí > Itatiba >

Louveira
437.40 870.34 0.00 2317.57

Eletric Louveira > Pedreira > Araras > São Pedro > Conchal
> Louveira

620.60 1234.87 0.00 2137.82

Eletric Louveira > Indaiatuba > Rio das Pedras > Hortolândia
> Monte Mor > Nova Odessa > Divinolândia > Louveira

338.90 674.34 0.00 2651.40

Eletric Louveira > Bragança Paulista > Piracaia > Águas de
Lindoia > Atibaia > Louveira

316.00 628.77 0.00 2203.89

Eletric Louveira > Jaguariúna > Cordeirópolis > Santo Antônio
de Posse > Louveira

444.40 884.26 0.00 2296.84

Eletric Louveira > Vargem Grande do Sul > Limeira > Mogi
Mirim > Louveira

528.00 1050.61 0.00 1566.03

Eletric Louveira > São João da Boa Vista > Aguaí > Americana
> Espirito Santo do Pinhal > Louveira

471.50 938.19 0.00 2103.47

Eletric Louveira > Santa Cruz das Palmeiras > Paulínia >
Campinas > Cosmópolis > Louveira

737.30 1467.08 0.00 2405.04

Eletric Louveira > Tambaú > Valinhos > Vinhedo > São José
do Rio Pardo > Louveira

237.00 471.58 0.00 2347.18

Total 6233.70 12403.79 0.00 28254.20

Table 19 – Routes obtained for Scenario S1.
Vehicle Routes Distance (Km) Logistic Cost ($) CO2 (Kg) Risk ($)
Diesel Louveira > Aguaí > Casa Branca > Louveira 328.20 498.26 666.25 1633.36
Diesel Louveira > Atibaia > Piracaia > Bragança Paulista >

Louveira
165.70 251.56 336.37 2054.38

Diesel Louveira > Capivari > Rio das Pedras > Piracicaba >
Laranjal Paulista > Cabreúva > Louveira

322.80 490.06 655.28 1995.65

Diesel Louveira > Conchal > Araras > Limeira > Americana
> Louveira

256.10 388.80 519.88 3678.00

Diesel Louveira > Mococa > São José do Rio Pardo > Divi-
nolândia > Vargem Grande do Sul > São João da Boa
Vista > Louveira

462.80 702.60 939.48 2262.33

Diesel Louveira > Mogi Guaçu > Espirito Santo do Pinhal >
Amparo > Louveira

294.00 446.34 596.82 1248.73

Diesel Louveira > Mogi Mirim > Itapira > Louveira 214.80 326.10 436.04 1482.00
Diesel Louveira > Nova Odessa > Santa Gertrudes >

Cordeirópolis > Iracemápolis > Santa Bárbara D’Oeste
> Louveira

258.90 393.05 525.57 4557.72

Diesel Louveira > Serra Negra > Águas de Lindóia > Socorro
> Louveira

231.20 351.00 469.34 1280.70

Diesel Louveira > Tambaú > Santa Cruz das Palmeiras >
Louveira

383.90 582.82 779.32 1551.25

Eletric Louveira > Itatiba > Jundiaí > Itupeva > Louveira 90.50 180.08 0.00 1997.25
Eletric Louveira > Paulínia > Cosmópolis > Artur Nogueira >

Louveira
173.00 344.23 0.00 2075.72

Eletric Louveira > Pedreira > Santo Antônio de Posse > Jaguar-
iuna > Campinas > Indaiatuba > Louveira

206.40 410.69 0.00 3619.19

Eletric Louveira > Rio Claro > São Pedro > Louveira 299.50 595.94 0.00 2252.63
Eletric Louveira > Vinhedo > Valinhos > Hortolândia > Monte

Mor > Sumaré > Louveira
160.00 318.37 0.00 3605.35

Total 3847.80 6279.89 5924.35 35293.74
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Table 20 – Routes obtained for Scenario S2.
Vehicle Routes Distance (Km) Logistic Cost ($) CO2 (Kg) Risk ($)
Diesel Louveira > Cabreúva > Itupeva > Jundiaí > Itatiba >

Louveira
139.60 211.93 283.39 2317.57

Eletric Louveira > Aguaí > Divinolândia > São João da Boa
Vista > Louveira

403.10 802.09 0.00 1601.40

Eletric Louveira > Americana > Nova Odessa > São Pedro >
Santa Gertrudes > Pedreira > Louveira

387.50 771.05 0.00 4231.00

Eletric Louveira > Atibaia > Piracaia > Bragança Paulista >
Louveira

165.70 329.71 0.00 2054.38

Eletric Louveira > Capivari > Limeira > Piracicaba > Laranjal
Paulista > Louveira

373.00 742.19 0.00 1477.65

Eletric Louveira > Espirito Santo do Pinhal > Mogi Guaçu >
Amparo > Louveira

294.90 586.79 0.00 1168.35

Eletric Louveira > Mococa > São José do Rio Pardo > Vargem
Grande do Sul > Casa Branca > Louveira

444.50 884.46 0.00 2038.23

Eletric Louveira > Mogi Mirim > Artur Nogueira > Louveira 207.30 412.48 0.00 1512.06
Eletric Louveira > Monte Mor > Hortolândia > Rio das Pedras

> Iracemápolis > Santa Bárbara d’Oeste > Indaiatuba
> Louveira

302.70 602.31 0.00 2791.04

Eletric Louveira > Rio Claro > Araras > Conchal > Louveira 269.30 535.85 0.00 2131.24
Eletric Louveira > Santo Antonio de Posse > Itapira > Louveira 216.50 430.79 0.00 1658.45
Eletric Louveira > Serra Negra > Águas de Lindoia > Socorro

> Louveira
231.20 460.04 0.00 1280.72

Eletric Louveira > Sumaré > Cordeirópolis > Jaguariúna >
Louveira

271.80 540.83 0.00 2669.93

Eletric Louveira > Tambaú > Santa Cruz das Palmeiras >
Louveira

383.90 763.88 0.00 1551.25

Eletric Louveira > Vinhedo > Valinhos > Cosmópolis > Paulínia
> Campinas > Louveira

141.10 280.76 0.00 3504.12

Total 4232.10 8355.17 283.39 31987.89

Table 21 – Routes obtained for Scenario S3.
Vehicle Routes Distance (Km) Logistic Cost ($) CO2 (Kg) Risk ($)
Diesel Louveira > Artur Nogueira > Itapira > Louveira 237.00 359.80 481.11 1395.15
Diesel Louveira > Atibaia > Águas de Lindoia > Santa

Gertrudes > Jaguariúna > Louveira
421.30 639.60 855.24 2877.95

Diesel Louveira > Capivari > Rio Claro > Amparo > Louveira 343.10 520.88 696.49 1052.59
Diesel Louveira > Itatiba > Jundiaí > Itupeva > Cabreúva >

Louveira
139.60 211.93 283.39 2317.57

Diesel Louveira > Santa Cruz das Palmeiras > São José do Rio
Pardo > Casa Branca > Louveira

421.50 639.90 855.64 1738.85

Diesel Louveira > Socorro > Piracaia > Bragança Paulista >
Louveira

257.50 390.92 522.72 1285.76

Eletric Louveira > Aguaí > São João da Boa Vista > Tambaú
> Louveira

417.50 830.74 0.00 1678.97

Eletric Louveira > Divinolândia > Espirito Santo do Pinhal >
Vinhedo > Valinhos > Louveira

432.00 859.59 0.00 2327.44

Eletric Louveira > Indaiatuba > Sumaré > Santa Bárbara
d’Oeste > Iracemápolis > Americana > Louveira

240.10 477.75 0.00 3797.34

Eletric Louveira > Mococa > Limeira > Piracicaba > Mogi
Guaçu > Louveira

587.40 1168.81 0.00 1921.10

Eletric Louveira > Mogi Mirim > Rio das Pedras > Hortolândia
> Laranjal Paulista > Louveira

456.70 908.74 0.00 1654.63

Eletric Louveira > Nova Odessa > Monte Mor > Campinas >
Paulínia > Cosmópolis > Serra Negra > Louveira

354.70 705.78 0.00 2778.90

Eletric Louveira > Pedreira > Araras > São Pedro > Conchal
> Louveira

437.40 870.34 0.00 2137.82

Eletric Louveira > Vargem Grande do Sul > Cordeirópolis >
Santo Antonio de Posse > Louveira

477.10 949.33 0.00 1995.90

Total 5222.90 9534.11 3694.60 28959.97
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Table 22 – Routes obtained for Scenario S4.
Vehicle Routes Distance (Km) Logistic Cost ($) CO2 (Kg) Risk ($)
Diesel Louveira > Atibaia > Piracaia > Bragança Paulista >

Louveira
165.70 251.56 336.37 2054.38

Diesel Louveira > Divinolândia > São João da Boa Vista >
Aguaí > Louveira

405.50 615.61 823.16 1480.39

Diesel Louveira > Indaiatuba > Rio das Pedras > Santa
Gertrudes > Piracicaba > Capivari > Louveira

329.50 500.23 668.88 2319.76

Diesel Louveira > Itatiba > Jundiaí > Itupeva > Cabreúva >
Louveira

139.60 211.93 283.39 2317.57

Diesel Louveira > Socorro > Águas de Lindoia > Louveira 252.20 382.88 511.97 1358.97
Eletric Louveira > Artur Nogueira > Itapira > Louveira 237.00 471.58 0.00 1395.15
Eletric Louveira > Conchal > Araras > Rio Claro > Nova

Odessa > Louveira
288.00 573.06 0.00 2961.61

Eletric Louveira > Cosmópolis > Paulínia > Campinas > Monte
Mor > Hortolândia > Louveira

207.90 413.68 0.00 2856.55

Eletric Louveira > Espirito Santo do Pinhal > Amparo > Lou-
veira

294.90 586.79 0.00 1168.35

Eletric Louveira > Laranjal Paulista > São Pedro > Cordeirópo-
lis > Pedreira > Louveira

476.20 947.54 0.00 2363.28

Eletric Louveira > Mococa > São José do Rio Pardo > Casa
Branca > Vargem Grande do Sul > Louveira

450.30 896.01 0.00 1949.09

Eletric Louveira > Santa Cruz das Palmeiras > Tambaú >
Louveira

383.90 763.88 0.00 1551.25

Eletric Louveira > Santo Antonio de Posse > Jaguariúna >
Valinhos > Vinhedo > Louveira

152.00 302.45 0.00 3098.67

Eletric Louveira > Serra Negra > Limeira > Mogi Mirim >
Louveira

333.10 662.80 0.00 1261.63

Eletric Louveira > Sumare > Santa Barbara d’Oeste >
Iracemápolis > Americana > Louveira

209.00 415.87 0.00 3362.60

Total 4324.80 7995.87 2623.77 31499.25
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Table 23 – Routes obtained for Scenario S5.
Vehicle Routes Distance (Km) Logistic Cost ($) CO2 (Kg) Risk ($)
Diesel Louveira > Artur Nogueira > Cosmópolis > Paulínia >

Louveira
173.00 262.64 351.19 2075.72

Diesel Louveira > Campinas > Jaguariúna > Santo Antonio
de Posse > Louveira

151.60 230.15 307.75 2734.95

Diesel Louveira > Capivari > Hortolândia > Monte Mor >
Sumaré > Louveira

227.80 345.83 462.43 2243.68

Diesel Louveira > Divinolândia > São João da Boa Vista >
Aguaí > Louveira

405.50 615.61 823.16 1480.39

Diesel Louveira > Itatiba > Jundiaí > Itupeva > Cabreúva >
Louveira

139.60 211.93 283.39 2317.57

Diesel Louveira > Mococa > São José do Rio Pardo > Tambaú
> Santa Cruz das Palmeiras > Louveira

482.00 731.75 978.46 2290.80

Diesel Louveira > Serra Negra > Águas de Lindóia > Scorro >
Louveira

231.20 351.00 469.34 1280.72

Eletric Louveira > Atibaia > Piracaia > Bragança Paulista >
Louveira

165.70 329.71 0.00 2054.38

Eletric Louveira > Espirito Santo do Pinhal > Mogi Guaçu >
Amparo > Louveira

294.90 586.79 0.00 1168.35

Eletric Louveira > Indaiatuba > Rio das Pedras > Piracicaba
> Limeira > Pedreira > Louveira

331.10 658.82 0.00 2379.42

Eletric Louveira > Itapira > Mogi Mirim > Louveira 214.80 427.41 0.00 1482.00
Eletric Louveira > Nova Odessa > Rio Claro > Araras > Con-

chal > Louveira
288.00 573.06 0.00 2961.61

Eletric Louveira > Santa Bárbara d’Oeste > Iracemápolis >
Cordeirópolis > Americana > Louveira

231.10 459.84 0.00 3726.21

Eletric Louveira > Santa Gertrudes > São Pedro > Laranjal
Paulista > Louveira

393.80 783.58 0.00 2094.67

Eletric Louveira > Vinhedo > Valinhos > Vargem Grande do
Sul > Casa Branca > Louveira

353.80 703.99 0.00 2456.10

Total 4083.90 7272.12 3675.72 32746.57
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Table 24 – Routes obtained for Scenario S6.
Vehicle Routes Distance (Km) Logistic Cost ($) CO2 (Kg) Risk ($)
Diesel Louveira > Artur Nogueira > Cosmópolis > Paulínia >

Louveira
173.00 262.64 351.19 2075.72

Diesel Louveira > Santo Antonio de Posse > Itapira > Louveira 216.50 328.68 439.49 1658.45
Diesel Louveira > Socorro > Águas de Lindóia > Serra Negra

> Louveira
231.20 351.00 469.34 1280.72

Eletric Louveira > Atibaia > Piracaia > Bragança Paulista >
Louveira

165.70 329.71 0.00 2054.38

Eletric Louveira > Divinolândia > São João da Boa Vista >
Aguaí > Louveira

405.50 806.86 0.00 1480.39

Eletric Louveira > Itatiba > Jundiaí > Itupeva > Cabreúva >
Louveira

139.60 277.78 0.00 2317.57

Eletric Louveira > Jaguariúna > Mogi Guaçu > Espirito Santo
do Pinhal > Louveira

263.50 524.31 0.00 1989.74

Eletric Louveira > Mogi Mirim > Cordeirópolis > Amparo >
Amparo

330.00 656.63 0.00 1419.24

Eletric Louveira > Nova Odessa > São Pedro > Santa Gertrudes
> Capivari > Louveira

354.00 704.39 0.00 2867.55

Eletric Louveira > Pedreira > Limeira > Piracicaba > Rio das
Pedras > Indaiatuba > Louveira

331.00 658.82 0.00 2379.42

Eletric Louveira > Rio Claro > Araras > Conchal > Louveira 269.30 535.85 0.00 2131.24
Eletric Louveira > Sumaré > Santa Bárbara d’Oeste >

Iracemápolis > Americana > Louveira
209.00 415.87 0.00 3362.60

Eletric Louveira > Tambaú > Santa Cruz das Palmeiras >
Louveira

383.90 763.88 0.00 1551.25

Eletric Louveira > Vargem Grande do Sul > Casa Branca >
São José do Rio Pardo > Mococa > Louveira

450.30 896.01 0.00 1949.09

Eletric Louveira > Vinhedo > Valinhos > Campinas > Monte
Mor > Hortolândia > Laranjal Paulista > Louveira

293.10 583.21 0.00 3098.34

Total 4215.70 8095.63 1260.02 31615.70

Table 25 – Routes obtained for Scenario S7.
Vehicle Routes Distance (Km) Logistic Cost ($) CO2 (Kg) Risk ($)
Diesel Louveira > Aguaí > São João da Boa Vista > Divinolân-

dia > Louveira
405.50 615.61 823.16 1480.39

Diesel Louveira > Bragança Paulista > Piracaia > Amparo >
Louveira

222.60 337.94 451.88 792.06

Diesel Louveira > Paulínia > Cosmópolis > Campinas >
Jaguariúna > Louveira

206.80 313.95 419.80 2676.77

Diesel Louveira > Santa Cruz das Palmeiras > Tambaú >
Louveira

383.90 582.82 779.32 1551.25

Diesel Louveira > Serra Negra > Araras > São Pedro >
Cabreúva > Louveira

450.00 683.17 913.50 1748.11

Eletric Louveira > Artur Nogueira > Itapira > Louveira 237.00 471.58 0.00 1395.15
Eletric Louveira > Conchal > Limeira > Mogi Guaçu > Louveira 312.30 621.41 0.00 1662.74
Eletric Louveira > Itupeva > Jundiaí > Itatiba > Louveira 90.50 180.08 0.00 1997.25
Eletric Louveira > Laranjal Paulista > Santa Bárbara d’Oeste >

Iracemápolis > Rio das Pedras > Indaiatuba > Louveira
383.40 762.89 0.00 2108.26

Eletric Louveira > Pedreira > Cordeirópolis > Mogi Mirim >
Espirito Santo do Pinhal > Louveira

407.80 811.44 0.00 2358.86

Eletric Louveira > Rio Claro > Piracicaba > Santa Gertrudes
> Louveira

292.80 582.61 0.00 2544.25

Eletric Louveira > Socorro > Americana > Águas de Lindoia >
Atibaia > Louveira

510.10 1014.99 0.00 2551.78

Eletric Louveira > Sumaré > Capivari > Hortolândia > Monte
Mor > Nova Odessa > Louveira

270.00 537.24 0.00 3020.66

Eletric Louveira > Vargem Grande do Sul > Casa Branca >
São José do Rio Pardo > Mococa > Louveira

450.30 896.01 0.00 1949.09

Eletric Louveira > Vinhedo > Valinhos > Santo Antonio de
Posse > Louveira

144.50 287.53 0.00 2528.93

Total 4767.50 8699.27 3387.66 30365.55
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