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Resumo

Questoes relacionadas a existéncia de solugoes suaves globais no tempo ou a possibilidade
de desenvolverem singularidades em tempo finito para determinadas equagoes na dinamica
dos fluidos podem ser desafiadoras e complexas. Neste trabalho, analisamos possiveis
cenarios de formagao de singularidade autossimilar para a equagao quase geostrofica de
superficie generalizada (gSQG) em duas dimensoes. Mostramos que, sob uma condigao
no crescimento da norma L" do perfil autossimilar e seu gradiente, o perfil autossimilar
¢é identicamente zero ou seu comportamento assintético LP pode ser caracterizado, para
p e r adequados, em intervalos apropriados do parametro autossimilar. Este resultado
generaliza e melhora o resultado andlogo provado para a equacao SQG em [76], e recupera
os resultados provados em [9], relativos as solugoes globalmente autossimilares da equagao
gSQG. Também analisamos a equacao gSQG com dissipacao fracionaria, generalizando
o resultado provado em [13], o qual exclui a possibilidade de singularidade globalmente
autossimilar em tempo finito para a equacao SQG dissipativa, sob certas condi¢oes no
perfil. Mais precisamente, assumindo que o gradiente do perfil autossimilar decai a zero
no infinito e a parte simétrica do gradiente da velocidade autossimilar é limitada nos
pontos de maximo do gradiente do perfil autossimilar, provamos que o perfil autossimilar

é identicamente nulo em R?.

Palavras-chave: Equacao gSQG, Laplaciano Fracionario, Potencial de Riesz, Solugoes

Autossimilares, Formacao de Singularidade.



Abstract

Questions related to the existence of global smooth solutions over time or the possibility
of developing singularities in finite time for certain equations in fluid dynamics can
be challenging and complex. In this work, we analyze possible scenarios of self-similar
singularity formation for the generalized surface quasi-geostrophic equation (gSQG) in two
dimensions. We show that, under a condition on the growth of the L" norm of the self-
similar profile and its gradient, the self-similar profile is identically zero or its asymptotic
LP behavior can be characterized, for suitable p and r, in appropriate intervals of the
self-similar parameter. This result generalizes and improves the analogous result proven
for the SQG equation in [76], and recovers the results proven in [9], related to globally
self-similar solutions of the gSQG equation. We also analyze the gSQG equation with
fractional dissipation, generalizing the result proven in [13], which excludes the possibility
of globally self-similar singularity in finite time for the dissipative SQG equation, under
certain conditions on the profile. More precisely, assuming that the gradient of the self-
similar profile decays to zero at infinity and the symmetric part of the self-similar velocity
gradient is bounded at the maximum points of the self-similar profile, we prove that the

self-similar profile is identically zero in R2.

Keywords: gSQG equation, Fractional Laplacian, Riesz Potential, Self-similar solution,

Blowup.



List of symbols

No,N,Z,R  set of non-negative integers, positive integers, integers, and real numbers,

respectively.
R real Euclidean space of dimension n.
Snt unit sphere in R™.
|| size of the multi-index a € N7, | = 27" | o
x® power of x € R™ of order || with a € Nj, 2* = [ I, 3.
-y inner product of points z,y € R", -y = 3" | z;u;.
|| Euclidean norm of # € R", || = y/2} + 23 + - - - + 22.
0“u partial derivative of u of order |a|, a multi-index, 0%u = {352 - - - 0% w.
Ot partial derivative of u with respect to t.
Vu Jacobian matrix of the vector field u = (uy, ug, . .., uy).
V-u divergence of the vector field u = (uy,ug, ..., uy,).
[l restriction of the function f to the set K.
XQ characteristic function of (2.
I, F() Fourier transform of the function f.
f*g convolution between the functions/distributions f and g.
A® Fractional Laplacian of order s > 0.
(—A)~2 Riesz potential of order s = 0.
xt perpendicular vector of x € R™.
C*(R™) space of smooth functions in R™ with compact support.
CMNQ) space of A\-Hoélder functions in ©Q, 0 < A < 1.
CYMR") space of functions that are C'(R") with Holder continuous first deriva-

tives of order « for 0 < A\ < 1.

CF(R™) space of functions f with 0*f continuous for all |a| < k, k € N.



e (?)
S(R")
S'(R")
LP(R")

Lp

loc

(R™)
C([0, T X)
AL<B

A~B

Sobolev space in €2.

space of Schwartz functions in R”.

space of tempered distributions in R".

Lebesgue space of p-integrable functions in R"™.

Lebesgue space of locally p-integrable functions in R”.

space of time-continuous functions with values in the Banach space X.
means that A < C'B for some constant C' > 0.

means that both A < B and B < A hold.
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1 Introduction

Fluid dynamics is an interdisciplinary field that uses concepts from physics and
mathematical tools to describe the flow of fluids, whether in a liquid or gaseous state,
under various conditions and subject to the influence of external forces. Essential for
understanding meteorological and oceanographic phenomena, fluid dynamics enables the
description of fluid behavior over time, see [65].

For certain equations in fluid dynamics, answering questions about the existence of
global smooth solutions on time or the possibility of developing singularities in finite
time can be challenging and complex. Among these equations, the 3D incompressible
Navier-Stokes equation stands out, modeling the movement of viscous incompressible
fluids, proposed by Claude-Louis Navier and George Gabriel Stokes in the 19th century.
The global well-posedness of these equations is one of the seven Millennium Prize Problems
proposed by the Clay Mathematics Institute (see [34]) in 2000, highlighting it as one of the
most significant challenges in the analysis of Partial Differential Equations and attracting
the attention of notorious researchers in this field.

Considering zero viscosity in the Navier-Stokes equations, we obtain the 3D incom-
pressible Euler equations, which characterize the movement of ideal fluids which are
incompressible fluids that offer no resistance to shear forces and have constant density. The
problem of global well-posedness for the incompressible 3D Euler equations also remains
open and is of great relevance. Recently, it was proven in [32] that solutions in C** can
develop singularity in finite time. For a well-detailed summary of the available results,
we refer to [31]. Furthermore, various numerical experiments indicate the possibility of
singularity formation in finite time, as seen in [38] 60l 5], 57, [58].

The issue of global well-posedness for the Euler equations in three dimensions can be
explored by studying equations that share similar analytical and geometric properties. A
notable example is the surface quasi-geostrophic (SQG) equation in R?, which models the
temperature or buoyancy of a strongly stratified fluid in a rapidly rotating regime in R?
(see [2, 1401 45], [55], 65]). Its similarity to the 3D Euler equations for incompressible fluids
has motivated its analytical study, which was initiated in [21]. Furthermore, the problem
of global well-posedness remains open (see [18] 23])

To advance the understanding of these equations, initial studies in [I5] and [29] started
to analyze intermediate equations between the vorticity equation for incompressible and
ideal flows in R? and the SQG equation. This investigation led to the development of
the generalized surface quasi-geostrophic equations in R2. This reflects the complexity
involved in studying the global well-posedness of solutions in fluid dynamics, emphasizing
the relevance of the study conducted in this project on self-similar solutions. In

it is observed that these types of solutions satisfy the blowup criteria in the sense can that
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develop singularity in finite time.

We consider the (dissipative) generalized surface quasi-geostrophic equation (gSQG) in

R? given by
O, +u-VO+rkAN9 =0, xeR? t>0,
{ u=-VL(-A)*30, zeR? t>0, (L0-1)
where 3,7 € (0,2) are fixed parameters, k = 0, § = 6(z,t) is an unknown scalar function,
and u = u(x,t) denotes a velocity field. The latter is given in terms of 6 according to
the second equation in (T.0.1)), where V* = (—=0,,01), (—A)™2, 0 < s < 2, is the Riesz
potential and A" is the Fractional Laplacian (see for definition). Invoking the

definition of the Riesz potential, we can also rewrite u as

u(z,t) = CzgP.V. J Ks(z —y)d(y, t)dy, (1.0.2)
RQ
where
at 9

and Cj is a constant depending only on f3, see [Section 2.2.2| for details.

To facilitate the understanding of notation during the development of the project, we
emphasize that in the dissipative case, that is, when x > 0, we will refer to equation (/1.0.1))
as the dissipative gSQG equation and as the dissipative SQG when § = 1. In the case
where k = 0, we will name it the gSQG equation, and when § = 1, the SQG equation.

Note that when x > 0 = 0 and n = 2, equation (|1.0.1]) reduces to the vorticity
formulation of the Navier-Stokes equations in R?, which is well-posed for any initial data
in L?(R?) (see [41, 54]). Now, if k = 0, considering 8 = 0, equation ((1.0.1]) reduces to the
vorticity formulation of the 2D incompressible Euler equations, which is well-posed for
initial data belonging to H*(R?) with s > 2 (see [30, [78]).

Among the available results, local existence and uniqueness for the Cauchy problem
associated with gSQG equation in the range 5 € (1,2) was shown in [14] for any initial
data in H*(R?), and later improved in [43] to any initial data in H*(R?), with s > 1 + 3.
An analogous local well-posedness result in H*(R?), s > 1 + /3, for the more regular case
S € (0,1] was shown in detail in [44] [77].

The dissipative gSQG equation was first introduced by Chae, Constantin, and Wu [16],
where they studied the global regularity of the intermediate equations between the 2D
Navier-Stokes equation and the dissipative SQG equation. Recently, this equation has
been intensively studied, and several results regarding local/global well-posedness have
been obtained. Specifically, in [60], the global well-posedness for the diagonal n = 3 was
established. In [61], global well-posedness was achieved for the regime 1 < § < 2 and
20 —2 < n < B. A recent work regarding the local well-posedness of the dissipative gSQG
equation was established in [46], which proved the existence and uniqueness of solutions
for arbitrary initial conditions in H'*#~7(R?), where n € (0,1) and 8 € (1,2). For further
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information, references [16, [14, 56| [19] are recommended, especially [46] for a well-detailed
diagram summarizing the available results.

As mentioned earlier, an important class of is when k > 0 and 8 = 1, in which
case the system is reduced to the dissipative SQG equations.

In some functional spaces of interest, such as H*(R?) and L*(IR?), the scale-invariance
of the norm of the solution of the dissipative SQG equation occurs when 1 = 1. For
this reason, the study of this system is usually divided into three dissipation ranges:
subcritical (1 < a < 2), critical (n = 1), and supercritical (0 < n < 1). The subcritical
case was well understood by Resnick [67], proving the existence of weak solutions and the
global well-posedness of the solution. Later, Constantin and Wu established in [24] that
any solution with a smooth initial value is smooth for all time. In the critical case, the
global well-posedness of the weak solution was established in [I8] 23], 53], using different
approaches. We also refer to[7), [52]. Finally, in the supercritical case, the problem of global
well-posedness remains an open problem (see [23, 26] 46]). However, local well-posedness
for large data and global well-posedness for small data has been established in [25] 48] 62]
and [26], 47], respectively. In this direction, an important recent development is a result
by Coti-Zelati and Vicol in [79], which proves the existence of a range for 1, dependent
on the H?(R?) and L*(R?) norms of the initial data, where the initial value issue for this
data is globally well-posed.

In addition to these analytical results, several computational studies were developed to
numerically investigate the possibility of finite-time singularity formation for the equation
(1.0.1)) in specific scenarios. Starting with the SQG equation, [21] indicated a possible
finite-time singularity in the form of a hyperbolic closing saddle, a suggestion that was
later contested in [20], 22] [64] via further numerical tests, and eventually theoretically ruled
out in [27, 2§]. On the other hand, in [70} [71], analyzing an alternative scenario proposed
by [42, [66], the authors found numerical evidence of a singularity occurring as a self-similar
cascade of filament instabilities. Regarding the gSQG equation, numerical simulations
were performed in [29] 59, [72] focusing on the evolution of patch-like initial data, i.e. given
by the indicator function of a spatial domain with smooth boundary [14] 36, [68, [69)].

While a rigorous proof of the formation of such singularities is still not available,
these numerical studies provide a strong motivation to investigate further solutions of the
equation that develop a finite-time singularity of self-similar type. In the dissipative
case, such solutions are defined with respect to the invariance under the following scaling
transformation

z,t, 0 — Az, \'t, \77P0,

with A € R*, n € (0,2); i.e. if 0 is a solution of (1.0.1)), then
Ox(z,t) = ANTPO( Nz, \Tt),

is also a solution. In the case k = 0, the equation ({1.0.1)) is invariant under the scaling
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transformation x,¢,0 — Az, \!T%, \172=80 with A € R*, a € R. Note that, in this case,
one of the scaling parameters does not come from the equation . We refer
for further details.

Precisely, we say that a solution 6 of the dissipative gSQG on R? and on a time interval
(0,T) is (globally) self-similar if 6(x,t) = Ox(z,t) for all (z,t) € R* x (0,T) and for all

A > 0. This implies that 6 can be expressed as

1 x 2
O(z,t) = - t)# © <(T - t)}}> for all (z,t) e R* x (0,7, (1.0.4)

for some function © : R? — R, which is called an associated self-similar profile. Similarly,

if k =0, the (globally) self-similar of the gSQG equation, is given by

1
O(x,t) = HW@( * > for all (x,t) € R? x (0,7T), (1.0.5)

t 1+« t1+&

where O is the self-similar profile and o« > —1 is called the scaling parameter.

To the best of our knowledge, the only available result concerning globally self-similar
solutions of the dissipative SQG equation is due to Chae in [13]. In this work, under
the assumption that the gradient of the self-similar profile decays to zero at infinity and
the symmetric part of the self-similar velocity gradient is bounded at the points of the
maximum gradient of the self-similar profile, Chae proves that the profile associated with
the globally self-similar solution is constant in R?. We emphasize that in , we
extend this result to cover all (1, 8) € (0,2) x (0,2).

Some results on the nonexistence of nontrivial globally self-similar solutions for the
SQG and gSQG equations were obtained in [12, 13] and [9], respectively, by imposing
suitable assumptions on the profile © and showing that © = 0 as a consequence, thus
excluding the possibility of finite-time singularity of this type. More precisely, [12] assumed
O € LP*(R?) n LP2(R?) with py, pe € [1,00] and p; < po, whereas [13] considered © € C'(R?)
such that lim,_,, |©(x)| = 0. Both [12] and [I3] utilize a particle trajectory and back-
to-labels map approach to establish that © = 0. In [9], the authors analyze the gSQG
equation in the case [ € [0, 1] and obtain an analogous result as in [12] while relying on a
different technique centered on a local LP inequality satisfied by the profile ©.

We also mention the recent work [37], where the construction of a class of non-radial
globally self-similar solutions with infinite energy of the gSQG in the case 5 € (0,1) was
obtained via suitable perturbations of a stationary solution. See additionally [I0], where the
authors consider solutions of the SQG equation in R? of the form 0(zy, xq,t) = z2fs, (1,1)
and construct a self-similar solution for the one-dimensional equation satisfied by f which
yields an infinite-energy solution for the SQG equation.

Beyond globally self-similar solutions, this thesis also studies the more general scenario
of solutions @ of the gSQG equation that satisfies an equality as in only locally in
space, namely with (x,t) € B,(x¢) x (0,T), for some p > 0. Here, B,,(z() denotes the ball in



17

R? centered at 0 and with radius p. In fact, since, for any ¢ € R?, §(z,t) = —0(z—x¢, T—1),
(z,t) € R? x (0,T), is also a solution of ((1.0.1)) due to its spatial translation and time
reversal symmetries, we may consider more generally solutions 6 of ((1.0.1)) that satisfy

0(x,t) = L e ( . w%) for all (x,t) € B,(zo) x (0,T),  (1.0.6)
(T —t) T+a (T —t)T+a

for some p > 0 and some profile function © : R> — R. We refer to such 6 as a locally

self-similar solution.

Besides the several numerical computations, the continuation criteria available for
the dissipative SQG equation and gSQG equation, when g € (0, 1], also provide a strong
motivation to further investigate self-similar blowup. Namely, for the gSQG equation, the
global regularity criterion in the case 5 € (0, 1] was obtained in [I5] for the norm of a given
solution in g-Holder spaces, which generalizes a previous regularity criterion established
for the SQG in [21]. Specifically, [15] shows that [0,7T) is a maximal interval of existence
for a solution 6 of the gSQG equation within the class C7(R?) n LY(R?), with o > 1 and
q>1,if

t
fing [ 100 8)leserds = o (10.7)

where C7(R?), 0 < v < 1, denotes the space of y-Hélder continuous functions on R?. For
the dissipative case, as far as known, the only available continuation criteria were obtained
in [16, Theorem 3.1]. Precisely, [0,7) is the maximal interval of existence for a solution 6
of the dissipative SQG equation within the class C([0,T); H*(R?)), s > 2, with T < oo, if
and only if there exist p,r with % <p<owand 1l <r < o such that

lim JS IV20|[},dt = o with 2 + 1< n. (1.0.8)
=T Jo p T
A straightforward computation shows that if © € C#(R?) then condition is indeed
consistent with the regularity criterion from [I5] when 3 € (0, 1]. Namely, (1.0.6)) implies
(1.0.7), and hence T represents a finite blowup time for ¢ in the class C7(R?) n LI(R?),
with ¢ > 1 and ¢ > 1. Similarly, this argument holds for the globally self-similar solution
and the continuation criteria proved in [16, Theorem 3.1]. For further details on
this topic, we refer to [Section 2.3
Up to the present moment, no results have been obtained regarding the non-existence
of locally self-similar blowup or the asymptotic behavior of the profile in L?(R?) space for
the dissipative gSQG equation. A significant challenge in this context is the analysis of
non-local operators, especially for the term A"6 in the equation . Since the Fractional
Laplacian is a non-local operator in R?, and the condition (1.0.4)) applies only within the
self-similar region, estimating A”# in the LP norm outside the self-similar region becomes

challenging when relying on assumptions about the profile. Furthermore, in contrast to
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globally self-similar solutions, formulating an equation that describes the profile directly
from seems not possible.

We point out that there are results concerning locally self-similar singularity scenarios
for the N-dimensional incompressible Euler equations, for N > 3, see [6], 17, [75]. These
self-similar solutions for the Euler system are broadly applied in numerical simulations, for
instance, the works [3, [49] 59] indicate the potential occurrence of self-similar blowups at
a finite time through the examination of vortex filament models or high symmetric flows.
For the Navier-Stokes equations, the question about the self-similar solutions was raised
by Leray in 1934, and the mathematical proof for the nonexistence of self-similar solutions
was only established, in 1996, in [63]. We refer to [8] for a summary of the available results.

The analysis of self-similar blowup scenarios is more recent for the SQG equation. We
mention the result obtained in [76] that yields, similarly to the previous works for Euler
Equations [6], [75], suitable conditions on the self-similar profile under which the existence of
nontrivial © is only possible within an explicitly identified range of v, i.e. © must necessarily
be zero for a outside of this range. Moreover, any nontrivial profile corresponding to a
value of « in this range must satisfy a certain asymptotic characterization of its LP average
over sufficiently large regions in the spatial domain, for some p > 1. As a consequence,
this allows one to automatically exclude the existence of locally self-similar solutions with
sufficiently fast decaying profiles, while also guaranteeing the aforementioned asymptotic
characterization of the LP average of certain non-decaying types of ©.

This thesis is organized as follows, is dedicated to recalling classical analysis
results regarding LP space, Sobolev space, Singular integral, and others. is based
on the paper [5], which was developed by the author in collaboration with his supervisor
and co-supervisor. This chapter is dedicated to the study of the locally self-similar solution
of the gSQG equation and it is divided into two sections, depending on the range of values
of the parameter f3. is committed to studying the case 5 € (1,2). Our goal
is to prove [Theorem 3.1, which provides, under an assumption on the L" growth of the
self-similar profile and its gradient, intervals of the scaling parameter where the profile is
identically zero or its asymptotic LP behavior can be characterized, for suitable p and r.
Next, in [Section 3.2 we present a similar result for 4 € (0,1] in[Theorem 3.2} assuming
only the growth bound for the profile, ©. We emphasize that [Theorem 3.2} also yields an
improvement in comparison to the analogous result from [76] regarding § = 1. Specifically,
we allow for a larger range of possible values of the parameters r and v under which
assumption (3.2.1)) must be verified. Additionally, includes as special case
the aforementioned result established in [9] concerning globally self-similar solutions of
the gSQG equation for 3 € (0, 1], since every globally self-similar solution is also locally
self-similar.

The division of into two cases, based on the parameter 3, is necessary

because of the different conditions required for © in each case. This distinction arises from
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the specific approach required for estimating the component of u in , where the
integrand is restricted to the self-similar region, as detailed in and [Lemma 6.3
For the less singular scenario, 5 € (0, 1], we observe that the kernel Kz, associated with the
velocity field u, satisfies || K3 * f||La(Bp0)) < ||f|Lar2) for every f e LI(R?*) and 1 < ¢ < 0.
For 8 € (0,1), this result is obtained by invoking Young’s convolution inequality, together
with the integrability of Kz near the origin. In the case § = 1, this follows from the
fact that Kz is a Calderén-Zygmund operator (see . On the other hand, for
B e (1,2), Kz is neither a Calderén-Zygmund operator nor integrable near the origin. To
address this challenge, we write Kg(x) = V+(]z|~?) and apply integration by parts in
Kpg = 0, thus transferring one derivative to 6, and hence to ©, when restricting 6 to the
self-similar region. Therefore, in this case, stronger assumptions on the profile are required
than in the case 5 € (0,1]. Specifically, an additional growth condition on the L" norm of
VO is needed.

In we study the globally self-similar solution to the dissipative gSQG
equation and extend the result proved by Chae in [13, Theorem 3.1] to cover all g € (0, 2),
beyond of the specific case of 5 = 1. More precisely, in [Theorem 4.1] under the assumption
that the gradient of the self-similar profile decays to zero at infinity and the symmetric part
of the self-similar velocity gradient is bounded at the points of the maximum gradient of the
profile, we conclude that the profile is identically null in R?, and hence, the non-existence

of globally self-similar blowup. In this case, the approach is made possible thanks to the

assumption that 6 is a globally self-similar solution. Thus, by invoking ((1.0.4)) in (1.0.1)),

we can derive the equation for the profile, ©.

In we provide a comprehensive proof of [Lemma 6.2] and [Lemma 6.3| as
well as the proof of the local LP inequality , which are referenced in the proofs
of [Theorem 3.1] and [Theorem 3.2 in [Chapter 3] Although the local L? inequality is also

utilized in [76] and [9], its proof is not included in these references.

Finally, in |Chapter 5, we summarize the original results obtained in this thesis and
discuss some interesting problems associated with self-similar solutions of the dissipative

gSQG equation that we plan to investigate further.
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2 Preliminary

In this chapter, we revisit several preliminary results employed in this thesis. We
commence by fixing the notation and revisiting fundamental concepts associated with L?
and Sobolev spaces. The subsequent section delves into the fractional Laplacian operator,
the Riesz operator and the Riesz transform. Later, we bring up some results related to
these operators. For further details, see [4, [33] 35} 39, [73, [74].

2.1 Functional Spaces

Fix @ < R™ an open set and 1 < p < c0. We denote by LP(2) the set of all measurable

functions for which the integral of the p-power of its absolute value is finite. More precisely,

LP(Q) = {f:Q— R | f is Lebesgue measurable with ||f||r) < o},

where )
x)Pdx p, if 1<p<o,
e - | () v
esssupg | f|, if p=oo.
The space LP(Q2) endorsed with the norm || - || is a Banach space.

The Sobolev spaces W™P(Q) with m € N and 1 < p < o0, consist of all locally
integrable functions f : Q — R such that for each multi-index « with |o| < m, D*f, exists
in the weak sense and belongs to LP(2). Well recall that W™P(Q2) is a Banach space when

endowed

1
| fllwmre@) = <Z|a|<m HDainp(Q)> "1 p< oo

maX|a|<m “Daf"LOC(Q) p =
Another important space in the study of partial differential equations is the Schwartz
space, S(R™). This space consists of smooth functions that, together with their derivatives,
decay faster than the reciprocal of any polynomial at infinity. More precisely, the Schwartz

space is defined as

S(R") :={feC*(R") [V a,feN"[f

CX,B < w} ?
where C*(R") is the function space of smooth functions from R™ to R and

| f]

o 1= sup |2%(D” f)(z)|
zeR”™

are the so-called Schwartz seminorms. We have that S(R") is a Fréchet space with the
topology defined by the Schwartz seminorms. We denote S’(R") the dual space of S(R™).
The element of S'(R™) are called tempered distribuitons.
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2.2 Classic Analysis Results

In this section, we review some analysis results related to convolution of functions, LP
inequality, and Sobolev Space embeddings. Let us initiate our discussion by recalling the
definition of convolution of two functions.

Let f,g : R® — R be measurable functions. We define the convolution of f and g,
denoted by f = g, as the following integral:

(f=g)(x) = . fW)g(x —y)dy, v eR", (2.2.1)

whenever this integral exists.
The mollifiers are a useful tool in mathematical analysis for smoothing out and

approximating functions with irregularities or singularities via convolution. To define them,
consider ¢ € C*(R") given by

b(z) = { Ce VA=) if o] < 1,

0, if |z| > 1.

where C'is a constant such that {3, ¢(x)dz = 1. Now, for each e > 0, consider the following

function .
X
- (x) = Ecb(g)‘ (2.2.2)

We call ¢ the standard mollifier and {¢.}.~o the mollifying family. The functions ¢. are
C™ and satisfy

¢e(z)dxr =1,
RTL

and
supp(¢e) = B(0,¢).
For f e L'(R"), we define

fe(x) = (0 = f)(z) = . ¢e(x —y)f(y)dy, v eR"
The family {f.}.~o satisfies the following properties:
a) f. € C*(R™).
b) fe — fae ase — 0.
c) If f e C(R™), then f. — f uniformly on compacts subsets of R" as ¢ — 0.
d) If 1 <p<ooand fe LP(R"), then f. — f in LP(R") as ¢ — 0.

Next, let us see several inequalities regarding the LP(R™) space. Let us start with

Young’s convolution inequality.
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Proposition 2.2.1. (Holder Inequality) Assume 1 < p,q < o0 such that 1% + é = 1.
Then, if ue LP(R") and v € LY(R"), we have uv € L*(R") and

f luv|dz < ||u||Le@ny||v]|La@ny
R7

Proposition 2.2.2. (Interpolation inequality) If 1 < p < q <r < o, then LP(R™) n
L"(R™) < LYR™) and

11 zaqny < (1 F11Zo @ 11z (k) (2.2.3)
where A = (¢ — 1)(11) - 571e(0,1).

Proposition 2.2.3. (Young’s convolution 'mequalzty) If1<p,q,r <o, feLP(R")
and g € LY(R") then f «ge L"(R") for 1 o+ E =14+1and

Lf * glor@ny < | f]zr@m 9] Lagny-

Before presenting some results regarding the Sobolev embedding, let us recall the

definition of continuous embedding between two normed vector spaces.

Definition 2.2.4. Let X and Y be two normed vector spaces, with norms | - [|x and |- ||y
respectively, such that X < Y. If the inclusion map (identity function) is continuous, i.e.,

if there exists a constant C' > 0 such that
lzly < Cllzlx, VzelX,
then X is said to be continuously embedded in Y and we write X — Y.

The next theorems are classical results of the Measure theory.

Theorem 2.1 (Dominated Convergence Theorem). Let {fi}7_, be a sequence of

integrable functions such that

fx = f a.e

Also, suppose
|fk5| < g a'e';v kv

for some integrable function g. Then
fr(x)dz — f(z)dx
R™ R™

Theorem 2.2 (Lebesgue Differentiation Theorem). Suppose f € Li,.(R™). For al-

most every x € R™, we have

dy = 0,
T"O|B | )|y
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and .
lim ——— fy)dy = f(z),
r=0 | B ()] Jp, @)
where B.(x) represents the ball of radius r centered at x, and |B,(x)| represents the volume

of this ball.
Now, we recall the Poincaré inequality.

Theorem 2.3 (Poincaré inequality). Let Q@ < R" be a bounded, connected, open subset
with a C! boundary 0. Assume 1 < p < oo. Then there exists a constant C, depending
only on n,p and Q, such that for each v e WP(Q) holds

lu = (wellrr@) < C[|Dul|rr @), (2.2.4)
where (u)g = & §o u(y)dy.
Now, let us introduce the Fourier transform and recall the Plancherel Theorem.

Definition 2.2.5. Suppose f € L}(R"). The Fourier transform of f, denoted by f or
F(f), is defined as

FE) = () = f eHET f(2)dz, € € R,

n

Theorem 2.4 (Plancherel theorem). Let f € L2(R™) A L*(R"). Then, f € L*(R"), and
the following equality holds:

| 1r@pas = [ 1R

Thus, since F : LY(R") n L?(R") — L*(R™) is an isometric application and L'(R™) n
L*(R") is a dense subset in L*(R™), it follows by density that there is a unique extension
of the Fourier transform on L?(IR"), which is also denoted by F. Therefore, we conclude

that for all f e L?(R") holds

IF ez = 1]l

We refer to [39] for more details.
From the definition of the Fourier transform, we may define the Sobolev H*® space, for

s = 0, as follows

HYR") = {f e S'(R") | [(1 + ¢[*)2]f e L*(R")},

and

[l s ey 2= (11 + [yl*) 2@l 2zny.
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The Sobolev space H*(R?) is continuously embedded in LP(R?) for all s > 1 — 12) and
p € [2,00) (see [I, Theorem 7.58]), i.e., there exists a constant ¢ > 0 such that for any
f € H*(R?) holds

1 F 1 e @2y < cl|fl]msee). (2.2.5)

We emphasize that given that if f € H*(R?) s > 0, it follows that

f- — f in H(R?), ase— 0.
where f. is the mollifying function of f. Moreover, it holds

[ fellms ey < [ fllms®e)- (2.2.6)

for some constant ¢ > 0.
Finally, let us recall the Cauchy Principal Value (P.V.) of an integral. Let ¢, be a
continuous function on R” except at the origin, then the Cauchy principal value of the

integral of ¢ is defined as
PV. | ¢(x)dr =lim o(z) de. (2.2.7)

where B.(0) denotes the ball in R" centered at the origin and with radius e.

2.2.1 Singular Integral

Our goal in this subsection is to introduce the Calderén-Zygmund kernel and then
state the Calderén-Zygmund Theorem. Additionally, we demonstrate that the kernel
Kg, associated with the velocity field, does not qualify as a Calderén-Zygmund kernel if
B € (0,2)\{1}. For further details, we refer to [74].

Definition 2.2.6. We say that a function K, locally integrable away from the origin, is a

Calderén-Zygmund singular kernel provided it verifies the following three properties:

1. For each 0 < ¢ < N holds

J K(z)dx| < e,
e<|¢|<N
where ¢; is a constant independent of ¢, N. Additional, lin(1) K(x) dzx exists
eV Je<|z|<N
for each fixed N.
2. For all R > 0 holds
|z||K (z)| dz < 2R, (2.2.8)

|z|<R

with ¢, independent of R.
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3. If y # 0, then
J |K(x —y) — K(x)| dz < s,
|z|=2]y|

with c3 independent of .

Now, we see that if K is a Calderén-Zygmund kernel, then the operator T' = K = f,

with f e LP(R") for 1 < p < 0, is a continuous operator in LP(R").

Theorem 2.5 (Calderén-Zygmund Theorem). Suppose that K is a Calderon-Zygmund
kernel and for f € CL(R™) let

@)= [ K-y e>0

lz—y|>e

Then there is a constant c = c,, depending only on p, so that

ITefllp < el £l (2.2.9)

Moreover, Tf = lim._oT.f exists in LP(R"), 1 < p < 00, and it also satisfies the estimate
(2.2.9). Furthermore, T.f and Tf are well-defined for arbitrary f in LP(R™), and the
norm inequality (2.2.9)) holds for these functions as well T, and T are called the Calderén-

Zygmund singular operator associated to K.

We highlight that the kernel associated with the velocity field u, given by Kz =
ot |z|~C+H) for € R?, is a Calderén-Zygmund kernel if and only if 3 = 1. To analyze the
condition outlined in (2.2.8)). Fix 3 € (0,2). It follows, by using polar coordinates in R?
that

R
|z][ Kg(2)| dw = lim J f —rdrdgp = 27 hm r1=Bdr.
J|m|<R o =0 Jecjei<r !x\ﬁ y B .

If B # 1, we have

R*>78 g2-h 2w _
i 2_5] = R*F. (2.2.10)

Now, if 8 =1, it follows from directly computation that

f 2l |K(2)| dz = R
|z|<R

Combining the last two results, we conclude that

f \z|| Ks(x )|dx—27rhml
lz|<R

2 p2-p
R*7", se 8 # 1,

f ||| Kp| dw = § 277 0
lz|<R R, se 0= 1.

Therefore, notice that if g # 1, it is not possible to obtain , and hence, we conclude

the statement.

[\
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2.2.2 Non-local Operators

Non-local operators are characterized by their ability to gather information across the
entire domain of a function, unlike local operators, which only obtain information from
specific points or neighborhoods. A prime example of a non-local operator is the integral
operator, which analyzes the entire function through integration, while strong derivatives
are a typical example of local operators, focusing on point variations of the function.

In this section, we aim to introduce the Fractional Laplacian and the Riesz Potential

in R™ and use their properties to derive the equation ((1.0.2)).
n

For a given n = 0, the fractional Laplacian of order 7, represented as A" := (—A)z,
extends the power of the classical Laplacian operator A to non-integer values. This operator
can be defined in various forms, including through the Fourier transform. Specifically, for
a function f e S(R™), it is established that

FIANIE) = [E]"F(F)(E), € R™

For n € (0,2), the Fractional Laplacian can also be interpreted as a singular integral

operator, expressed as

A"f(x) = d,, PV Jlw) = 1) dy, xzeR"and feSR"Y),

|z — y|
n

where P.V. represents the Value Principal, defined in (2.2.7)), and the constant d,,,, is given

by

4" (n/2 + n)
dppn = —w——-
72 [['(—n)|

where

0
[(z) = J t*~teldt.
0

is the Gamma function. When n = 2, we write d, 5 := d,,.
Given a € (0,2) and f € S(R"), we recall that the Riesz operator can be defined by

Fourier transform as

(o3

FU=A)2F1(E) = [T F(f)(§), e R™

We can also define the Riesz operator as an integral operator

(—A)% £(z) = cna JR W) g s eR and fe SERY), (2.2.11)

n o — gyl

where the constant ¢, o is expressed as

When n = 2, we used the notation ¢z, 1= c,.
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Now, let us briefly discuss the expression . Firstly, we emphasize that by applying
V4 in (2.2.11) and invoking a consequence of the Dominated Convergence Theorem (see
[35, Theorem 2.27]), we have that the velocity field u can be represented as the following

integral operator:

u(z,t) = —VE(=A)50(z, 1) = —VE (CBL by, ) dy)

2 |v =yl
= c4P.V. Lp 0(y,t)V+ (|I_1y|2+5> dy
= CsP.V. JRZ Kg(x —y)0(y, t)dy, (v,t) e R* x (0,7T), (2.2.12)
where Cg = —fcg and |
Ks(x) = ‘JM z € R2\{0}. (2.2.13)

Furthermore, we emphasize that V -u = 0.

2.2.3 Auxiliary results for the gSQG equation

We start by revisiting the Positivity Lemma of the Fractional Laplacian. This lemma
is an essential tool for establishing the maximum principle for the equation ((1.0.1]). For
further detailed of the proof, we refer [26, Lemma 2.5].

Lemma 2.1 ([26], Lemma 2.5). Let 0 <n < 2. If 0, A"0 € LP(R?) with 1 < p < o0, then
f 10|P"20A"0dx = 0.
R2

The next result establishes that the L? norms of the solution of (4.1)), are conserved

for all time.

Lemma 2.2 ([67], Lemma 3.2). Let 6 be a smooth solutions of the dissipative gSQG
equation (1.0.1) on R? x [0,T), with initial data 6y = 6(0). Then, for all2 < p < o, it
holds

10@)] > < [100][», VT €[0,T).

Proof. Let us start the proof by multiplying (1.0.1]) by [#|P~26 and then integrating it over
the spatial variables. This yields

J (0:0)[0]20dz + J 6]P~20(u - V)0dz + H;J OP20A"0dz — 0. (2.2.14)
R2 R2 R2

For the first term on the left-hand side, we have

ld 1d
0)|01P20dx = (16|7)d O|Pdx = ——||0||h»
| @oiopode =~ | adoryis = -5 | opas =il
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Then, we can rewrite (2.2.14]) as follows
jtueugp _ f 01P~20(u - V)0dz — /fpf 0]P~20A"0dz. (2.2.15)
R2 R2
Now, since V - u = 0, we deduce
pJ 10P20(u - V)fdx = J (u-V)|0|Pdz =0, (2.2.16)
R2 R2

where we used integration by parts. For the last term on the right-hand side of (2.2.15)), it
follows from [Lemma 2.1l that

—p/if |0]P~20A"0dz < 0. (2.2.17)
R2

Plugging (2.2.16) and (2.2.17)) into (2.2.15)), we obtain that
d
ol <o
Therefore, we conclude the proof. O

In the following, we summarize the available results regarding the local well-posedness
of solutions of the gSQG equation, as proved in [77, Theorem 1.1] for 0 < 5 < 1 and in
[43, Theorem 1.1] for 1 < 8 < 2.

Theorem 2.6 ([77, Theorem 1.1], [43, Theorem 1.1]). Let 0 < § < 2 and 6y € H*(R?)
for s > 1+ (. Then there exists T = T(||0o||ms) > 0, such that the gSQG equation admits
a unique solution 0 € C([0,T), H*(R?)) satisfying 6(0) = 6.

For the local well-posedness of the fractionally dissipative gSQG equation, we compile
several results available in the literature in the following Theorem (see [16, 24] 27, 56 60,

67, [79]). We also refer to [46] for a well-detailed summary of the available results.

Theorem 2.7. Let (n,3) € (0,2) x (0,2) and 6y € H*(R?) for s > 1+ 8 —n. Then
there exists T = T(||6o]

solution

us) > 0, such that the dissipative gSQG equation admits a unique

0 C([0,T), H (R*)) n L*(0, T; H**# (R?)),
satisfying 0(0) = 6.

Now, let us recall some continuation criteria available for the equation (1.0.1]). We start
with the continuation criterion for the gSQG equation, as proved in [15], which generalizes
the result established in [21] for 8 = 1 as follows:

Theorem 2.8 ([I5], Theorem 1.5). Consider 0 < < 1. Let 6 be a solution of the ¢SQG
equation corresponding to the initial data 0y € C°(R?) n LY(R?) with § > 1 and q¢ > 1. Let
T > 0. If 0 satisfies

T
[ 100t < = 2218)
0

then 0 remains in C°(R%) n LY(R?) on the time interval [0, T).
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For the dissipative gSQG equation, the first continuation criterion was proved in [11]
Theorem 1.1] when 8 = 1, and later, observed in [16, Theorem 3.1] that it holds for all
B €0,1], as follows:

Theorem 2.9 ([16], Theorem 3.1). Fiz 8 € [0,1] and n € (0,1]. Let 6 be a solution of
(1.0.1)) with initial data 6y € H™(R?) with m > 2. If there are indices p,r with % <p<w®
and 1 < r < oo respectively such that
2
V40 e L7(0,T; LP(R?)) for some p,r with = + T< n. (2.2.19)
p T
then 6 remains in H™(R?) on [0,T].

2.3 Self-Similar solutions

Numerical simulations, as previously discussed, encourage further investigation of
solutions to the gSQG equation which exhibits a self-similar blowup. Therefore, this
section formally defines the locally and globally self-similar solutions to the gSQG equation
and dissipative gSQG equation. Here, we also analyze the continuation criteria mentioned
in [Section 2.2.3

Let us start by analyzing the self-similar solution of the gSQG equation. Such solu-
tions are defined regarding the invariance of gSQG equation under the following scaling
transformation (z,t,6) — (A\x, \1*ot, A\1T2780) with A € R*, a € R; i.e. if # is a solution
of with k = 0, then 0y(x,t) = AT P0(Az, A1) is also a solution. Specifically,
we say that, for a fixed scaling parameter a > —1, a solution 6 of on R? and on a
time interval (0,7 is (globally) self-similar if O(x,t) = 0(x,t) for all (z,t) € R? x (0,T)

and for all A > 0. This is equivalent to being able to write 0 as

O(x,t) = HLB S ( ° > for all (x,t) € R* x (0,7T), (2.3.1)

t T+ t1+a
for some function © : R? — R, which is called the associated self-similar profile.

In this work, we focus on studying the more general case of solution of the gSQG
equation that satisfies an equality as in (2.3.1)) only locally in space, namely with (z,t) €
B,(0) x (0,T), for some p > 0[] Here, B,(0) denotes the ball in R? centered at 0 and with
radius p. Since, for any z, € R?, it follows that 8(z,t) := —0(z—z0, T—t), (z,t) € R?x(0,T)
is also a solution of the SQG equation in view of its spatial translation and time reversal
symmetries, we may consider a more general form of solution of the gSQG equation as

follows

0(z,t) = T tl)l 6 ((TI—_tf?ia> for all (z,t) € By(xo) x (0,T),  (2.3.2)

1" Note that, in contrast to the identity 6(z,t) = 0 (z,t) for all (x,t) € R? x (0,T) and X > 0 satisfied
by € in the globally self-similar case, the local condition (2.3.2) with xg = 0 implies instead that
O(x,t) = Ox(x,t) for all x € Byingp,p23(0), t € (O,min {T, st §), and A > 0.
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where zy € R?.

Similarly, for the dissipative gSQG equation, such solutions are defined concerning the
invariance of with £ > 0, under the following scaling transformation (z,t,0) —
(Az, \t, X1=P0), with A € RT, n e (0,2); i.e. if # is a solution of with k > 0, then
Ox(x,t) = \17PO(\x, \"t) is also a solution. Repeating the same argument as before, we

can consider the more general globally self-similar solution, given by

1 T — T 9
O(x,t) = © : for all (x,t) e R* x (0,7), 3.
(x,t) (T—t)# ((T—t)n) I (z,t) e R* x (0,7T) (2.3.3)

where z, € R?.

Now, using the continuation criteria mentioned in [Section 2.2.3] let us prove that self-
similar solutions can develop finite-time singularity at time 7. Assume that 6 is a locally
self-similar solution of the gSQG equation and that the self-similar profile © € C#(R?) is

not null. We commence by recalling that

-

sup |9($7S)|’ 1f6=0,
z,yeR?2
O0(x,s) —0(y,s .
06 ey = 4 sup O g e ),

z,yeR? ‘l’ - y|
THEY
sup |VO(z,s)|, if g =1.

L z,yeR?

Without loss of generality, suppose /5 € (0,1). Thus, it follows from [Theorem 2.8 that

t t
iy [ 100 5)lescends > lng [ 16,9l o
0 0

t—T
t O(x,s) —0(y,s
g [ = B0l
t—-T 0 =z,yeBp(zq) ’x - y’
TH#Y
t o e ) -0 -2
B—a—1 _s)T+a —_5)I+a
— lim (T B S)W sup (T—s)T+ ; (T—s) 1+ ds
t—T 0 z,y€Bp(z() ’I’ - /y’
THEY
t '(—)(x_xol) - @(113301)
_$)T+a —s) THa
_ }111% (T — 8)_1 sup (T—t) T+ (T S)5+ ds.
T e e e
(T—s) 1+o (T—s)1+a

Since z,y € B,(x9) and s € [0,T), it follows that # = (x — x)(T — s)fl%a and § =
(y — o) (T — 3)_1%) belong to Br(s)(0), where 7(s) = p(T — 5)_1%&. Thus, we have

t t @(j)—@(gﬂ
lim | o, oyds = lim | (T —s)7" ==l .
R I L T = o
TF#Y
t

> lim 0 (T = 5)"H|O]les (s

= [1®lles (s, I (I(T' = 1) =InT) = +o0, if [[O|cs (5

W(O))ds

‘rr(())) ;é 0
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where we used that © € C°(R?). Therefore, we conclude the proof of the statement.
Now, in view of [Theorem 2.9} let us analyze the globally self-similar solutions of the
fractionally dissipative gSQG equation for § € [0, 1]. Assume that 6 is a globally self-similar

solution to the dissipative gSQG equation and that the self-similar profile © € W?(R?)
with 1 < p < o0 is not null. Thus, invoking (2.3.3)) with zy = 0, it follows that

VOt = Vi((T—lt)’Tf@((Tft)%)):m(vL@)(M>'

Then, by changing the variable y = (T — t)_%, we have
P
da:)

IV 0z, 1)1, = (JR (Tt)l("i““’ (V'e) ((Ti))

T — t)om C
- ( w)—ﬂimr (J |VL@(y)’pdy)
(T — )" e

hSA b

= (T — ) G| vrel),.

Supposing that 0 < ||[V+0||z» < o0 and integrating on time, we obtain

t t
| 1946, 0l0s = 119401 | (= 976775V,
0 0

since 0 < /<1 and z% < 7, we can deduce that

t
limJ V0], dt = 0.
t—T 0

Therefore, we conclude that T' is a potential instance of a finite-time blowup.
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3 Locally self-similar solutions of the gSQG

equation

The results presented in this chapter are based on the paper [5], which was developed
by the author during his Ph.D. program in collaboration with his supervisor and co-
supervisor. Here, our focus is on analyzing the locally self-similar solution of the gSQG

equation in R?, given by

0(z,t) = T tl)l — ((;_-5&) for all (z,t) € By(xo) x (0,T),  (3.0.1)

where v > —1 is a scaling parameter. As usual, B,(0) denotes the ball of radius p centered
at the origin, and © : R? — R the self-similar profile. According to we can
consider the solution, 6, of the gSQG equation within the class C([0,T), H*(R?)) with
s>1+4 0.

In this chapter, we employ the techniques developed by [9] and [76] to study the globally
self-similar solution and locally self-similar solution to the SQG equation, respectively.
Specifically, we extend these results to the gSQG equation for all 8 € (0, 2). Our main results
are split between the cases 3 € (0, 1] in [Theorem 3.2 and § € (1,2) in [Theorem 3.1} with
each one requiring different conditions on ©. These differences manifest in the estimates
of the component of the velocity field in the self-similar region, as outlined in for

0 <p<1,and (3.1.12) for 1 < 8 < 2. As mentioned in [Chapter 1, when 5 € (1,2),
Kz = 2t|2|~+# is neither a Calderén-Zygmund operator (see|Section 2.2.1)) or integrable

near the origin. To circumvent this issue, we write Kz(x) = V4(|z|7?) and integrate by
parts in , thus transferring one derivative to 8, and hence to © inside the self-similar
region. Now, in the case 5 € (0, 1], this is achieved thanks to the fact that the kernel K
from satisfies | K3 * fllLoB,0) < || fllpee) for every f e LI(R?) and 1 < ¢ < 0.
Finally, in the case 8 = 1, this follows from the fact that Kz is a Calderén-Zygmund
operator, whereas for 3 € (0, 1) this is a consequence of Young’s convolution inequality
together with K being integrable near the origin. Therefore, it is not necessary to impose
assumptions on the gradient of the profile.

We commence this chapter addressing the results for 1 < § < 2, followed by the results
for0 < g <1.

31 Casel <f8<?2

In this section, we address the gSQG equation in the scenario where 1 < § < 2, aiming

to analyze possible scenarios of self-similar blowup. More precisely, our goal is to prove that
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under an L" growth assumption on the self-similar profile and its gradient, we can identify
appropriate ranges of the scaling parameter where the profile is either identically zero,

which excludes blowup, or its LP asymptotic behavior can be characterized for suitable

values of  and p, see (Theorem 3.1})
Later, we present [Corollary 3.2) which gives different conditions for the profile and its

gradient, as decaying at infinity or growth bound on the gradient, as that ensures that
assumptions in holds. To prove this result, we also employ the techniques
developed by Xue in 76, Theorem 1.2].

Theorem 3.1. Fiz 3 € (1,2). Suppose 0 € C([0,T); H*(R?)) n L®(0,T; L'(R?)), with
s> 1+, is a solution to the gSQG equation that is locally self-similar in a ball
B,(xo) < R%, with scaling parameter a > —1 and profile © € C*(R?). Fiz also p > 1, and
suppose that for some r > p, v, € [0,r(8 — 1) + 2), and vy € [0,71 + ], it holds

f - ©(y)|"dy < L™, (3.1.1)
y|<

and

Jl velldy < L7 (3.1.2)
yl<

for all L sufficiently large. Under these conditions, it follows that if o > 3 + ;2) —1 or
-1 <a<ﬂ—1+27% then © = 0. Moreover, if a € [5—1—1—2*%,5—14—%] then either

© =0 or © is a nontrivial profile, and it satisfies
|, _, ey ~ pzore (319
yl<

for all L sufficiently large.

As mentioned earlier, the proof is guided by a similar approach to that proposed in [9] [76]
and also starts from the local LP equality satisfied by any solution 6 € C([0,T); H*(R?)) n
L*(0,T; LP(R?)), with s > 1 + 3, of (1.0.1). Namely, for fixed 0 < t; < t; < T and

pe[l,00),
f 0z, 1) Py, t2)dr — f 0(z, 1) Py, t1)de
R2 R2

to to
_ J J 0(z, )P (x, t)dadt + J J 0(z, )P (- V)y(e, t)dedt, (3.1.4)
t1 R2 t1 R2

for every smooth and compactly supported test function 7 on R? x [0,0), i.e. €

C*([0,0) x R% R). See for details of the proof.
The proof of is divided into three cases, each corresponding to a particular

range of «, as described in the statement. In the scenarios where a > 3 + % —1or
—l<a<p-1+ 2_%, the aim is to establish that

fl - ©(y)[Pdy < L°  for some o < 0. (3.1.5)
S
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which implies that taking L — oo it follows that © = 0. In the first case, is directly
derived from the local self-similarity condition, , combined with the maximum
principle . For another case, a similar inequality to is obtained by
establishing a fundamental local L? inequality from the local equality , see
below. This is derived by suitably employing cut-off functions to split the velocity field
u into its restrictions to the self-similar region and the corresponding exterior. With the
help of assumptions , , and we then estimate the terms on the
right-hand side of to yield an upper bound for S\yl <L |O(y)[Pdy. Next, we redo
the estimates by using this new upper bound and bootstrap on this argument until we
eventually arrive at an upper bound as in (3.1.5) with a negative power of L. Redoing
the estimates by using this new upper bound and proceeding via bootstrapping on this
argument, we eventually arrive at an upper bound as in with a negative power of
L.

In the final scenario, where g — 1 + 27% <a<f-1+ %, it is necessary to prove
that every nontrivial profile © satisfies . The upper bound is guaranteed from the
estimate derived for the first range of «, whereas for the lower bound we proceed by
contradiction. Namely, assuming that such lower estimate does not hold, it follows that ©
must satisfy the same local L” inequality as in the second case, . Proceeding with
a similar analysis from this case, we then arrive at the contradiction that © = 0.

Now, let us start the proof:

Proof. Without loss of generality, we may assume zy = 0. The proof is divided into three

different cases, each corresponding to a particular range for o within the interval (—1,c0).

Case 1: In the first scenario, let us prove that if a > 3 + % — 1, then ©® =0 in R?,
Fix t € [0,T) and denote L = p(T — t)l%a Invoking the local self-similarity of 6, namely
(3.0.1)), and changing variables, it follows that
o x
(T —t)m+=

1
[ orar- —r |
|lz|<p (T —t) 1+ |lz|<p

_ CLP(““‘B)‘QJ Oy dy. (3.1.6)

lyl<L

p

dx

Since s > 1, it follows by Sobolev embedding that 6(0) € H*(R?) < LP(R?) for every
p = 2. This implies that

10615 = [6(0) 15 for all t € [0,7) and § > 2, (3.1.7)

see e.g. [67, Theorem 3.3]. Thus, by Holder’s inequality [2.2.1] it follows that for all p € [1, )

and p = max{2, p}, we have

J |0(x,t)|Pde < C|6(0)||zs for all t € [0,T).
lz|<p
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Hence, we obtain from ([3.1.6) that
j - O(y)[Pdy < CL> P+, (3.1.8)
y|I<

Since 2 — p(1 + o — ) < 0, taking the limit as t — 7" in (3.1.8)), which implies L — oo, we
deduce that © = 0 in R2.

Case 2: In this scenario, we assume that -1 <a < g -1+ 2;& Here we once again
show that © = 0 in R

Take cut-off functions ¢e, ¢, € C*(R?) with 0 < Go,dp < 1,0
in Bf,(0), and ¢, = 1 in B,»(0), ¢, = 0 in By(0). Fix t1,2 €

have in particular that

p =11
4 4
[0,7). From B13), we

| ot Pos e = | 1o trostorte = [ | (et - Vos@loe e
(3.1.9)

We proceed to analyze each term in (3.1.9)), starting with the first two terms on the
left-hand side. By the local self-similarity of 0, (3.0.1)), it follows that for ¢ = 1,2

1 X
0 Ui Poo dr = 1to— N =
fR2| ($ ! )| ¢4($) ' (T—ti)p< 1+a6) JRQ <(T_t)1+a>

p

¢e(z)dz

1 _1
- p(ta—p)=2 J O)[PPe (y(T —t;) e )dy
(T — ti) Tro R2
S W T G110
Y P

where [; = (T — ti)fl%a, i=1,2.
To analyze the term in the right-hand side of (3.1.9)), we first decompose the velocity
field u into a term involving the self-similarity region and another one outside of it. More

precisely, recalling that
u(e.t) = CoPV. | Kale = 0)(y. )y
R2

where N
Kg(x) = z € R*\{0}.

\x’2+ﬁ’
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Thus, it follows that

u(x,t)

= CaPY. | Koo =)0l 00,0y + CPV- [ Kol =)0y 1= &)y
r— )t

= CPV. JR |(_yg|§)+59(y7 )op(y)dy + CP.V. fR Ka(z =)0y, t)(1 — dp(y))dy

= ey [ Vi (o) S0y + CoPY. [ Kate =801 - 0,0y

|z —

=5GPV, 0 dy — =C3P.V.| ————40 Lo (y)d
3P JRQ E —y‘ﬁv (4, 1) 0 (y)dy 35 J;{Q R (v, t)V=9,(y)dy

+ PV Kol = )00 (1~ 040y

= u(z,t) + u?(z,t) + u®(z,1), (3.1.11)

where the second to last equality follows by integration by parts. We now analyze each of
these terms. By the local self-similarity of 4, (3.0.1]), we get

1 1

Cs 1 | y
=———55PV vie [ Y ,
B(T —t) et J]R? |z —y|® <<T—t) )925 (y)dy

VE0(y, t)d,(y)dy

Cﬁ 1 L 1
-—— 2 __pvV. — Ve T —t)ma)d
oYY e -0
C,B 1 L _1
S < — A Ve - vte T —t)Ta)d
e B P TSl
LS 0N L — (3.1.12)
B(T — t)T+e (T —t)T+a
where
M) (3, 1) L oo s
VW (z,t) == PV. JRZ P y’BV O(y) o, (y(T —t)T+a)dy. (3.1.13)

Next, we analyze u® (x,t). Note that due to the presence of Ve (z) in the right-hand
side of (3.1.9), it suffices to consider x € R? with p/8 < |z| < p/4. Then, since for each

such z we have |z —y| > |y‘ for every |y| = p/2, it follows that

1
O SO lel DI )y
o

|z —
(y,1)]
<C’J dy
ly|=4 lyl?

< O10] poorromey < ClO(0)] 12, (3.1.14)

2

where in the last line we applied Holder’s inequality and (3.1.7)) with p = 2.
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Finally, for the last term in (3.1.11]), u®(z,t), we proceed similarly as was done for
u®(x,t) in (3.1.14) and obtain that

O = Co | b 010~ 6wy

0(y,
< OJ | "y(fmf'dy < C0(0)] 1. (3.1.15)
yl=4

From (3.1.12)), (3.1.14)) and (3.1.15]), we may then estimate the term in the right-hand

side of (3.1.9) as

0(z,t)["(u(z,t) - Voe(z))de dt'

R2

to Y

< L JRQ |u1(x,t)||V¢£(m)||9(a:,t)|pdx dt + Jtl J}RQ |m(w,t)||Vq5§(;p)||9(m7t)|pdx dt
| Vo (2)]0(z, )" dz d
+£1 JR2 ’ug(x,t)H ¢4(x>‘| (-T t)’ T dt

to 1 x T
= CJ a+p(ita—p) f v — 0t |||O| ——
t1 (T — t) 1+« R2 (T — t) 1+« (T — t) 1+a
to 1 X
+ CJ p(l+a—p) J @ 1
t (T —t) 1 Jr2 (T —t)T+a T

to 1 B
<CJ;1 ( )aﬂp(MJ |V ( 7t)||®(y)|p|V¢£(y(T—t)1+a)|dydt

1+

p

|V¢ (x)|dz dt

o (z)|dx dt

1
w0 [ i [ OOV o @110

In view of the support of V., we may restrict the integrands in (3.1.16)) to (y,t) €
R? x [t1,ts] such that p/8 < |y|(T — t)l%a < p/4. In particular, each such y satisfies
pl1/8 < ly| < pla/4, where we recall that [; = (T — ti)_l%a, i = 1,2. Then, for each fixed
y € R? with ply/8 < |y| < pla/4, we define the set

1 1
Ay = {te [tl,tg] . g|y| < (T—t)m <

RS

1}. (3.1.17)

|y

After rearrangement, it is easy to see that

p 1+a P 1+o
T—|-— I — | =— ,
<4Iy|) (8Iy|) ]

so that its length satisfies |A,| < cap/|y[' ™. Thus, denoting by 14, the indicator function

A, c
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of the set A,, it follows from (3.1.16) that

i 0(z,t)["(u(z,t) - Voe(z))de dt'

2
: VO (y, ) [[O())
<C J J : 14 (8)dy dt
eh<lyl<sly IyIQ‘“—p“w—ﬂ) A, (H)dy

O(y)[?
+ CJ J A, (t)dy dt
le<|y|<”z2 \3/!2 et L)

O
= Cﬁz <yl<gry [y)FoPlre=s) |V(1) (y,t) (14, (t)dt dy
gUSsly 2

of oo [
+ Ta,(t dt dy
21 <lyl<2ls |y|2—P(ta= |y[2-p(+a=B) t

cof PO, [T

2—a—p(l+a— 3+a—p(l+a—
Ll <|yl<8ly Y| P 2 Llhi<|yl<2ly Y| o 2

where

~

V(l)(y) — Jtz |V(1)(y,t)|]1Ay(t)dt

t1
JtQ
t1

Plugging (3.1.18) into (3.1.9)) and recalling (3.1.10)), yields

1, ()dt. (3.1.19)

1, o
JRZ yy_z|ﬁv O(2)pp(2(T — )T+ )d

e I R e C T

T7(1) P p
e f VOWIewr?, | o f OWI" 1 (3120
P Ehi<lyl<gla

§l1<|y|<§l2 |y‘2fa7p(l+afﬁ) ‘y‘3+a7p(1+a75)

Note that, by Holder’s inequality and assumption (3 , it follows that

g | Jt)Pos iy iy < czf;(”””( |
R

y|<fle

< Clp(1+a—ﬂ)+(%—2)$
< 2 .
Since, by the current assumption on «, we have (1 +«a — 3) + (70 — 2)/r < 0, then
zf;(”“—ﬁ)—?f OW)Poe(yly )dy — 0 asly — o, (3.1.21)
R2

Thus, denoting L := £[; and taking the limit in (3.1.20)) as to — T', so that I, — o0, we

obtain

1 VO )[|Oy) O
- p < )
s |, PO <O it | | e

(3.1.22)
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In what follows, we always assume that L is sufficiently large (equivalently, ¢, is sufficiently

close to T'), so that assumptions (3.1.1)) and - can be applied.
We now further estimate each of the terms on the right-hand side of (3.1.22) by splitting
the integrals according to a dyadic decomposition. For the first term, we make use of

below, which yields a control on the L™ norm of the function VD on a dyadic
shell under assumption (3.1.2]). We obtain

[ Irwiewr,
lyl>L

|y|27afp(1+a76)

0 1 -

< VO (y)|le(y)lrd
s |y, POWIOwr

k=0
1 7 % g p+1
1S rd J /o) rd ok 2(1-2tt)
(2k[)2-a—p(l+a—p) (le|~2kL | ()l y) ( ]2 ©(y)|"dy ) ( )

1
(2kL)2 a—p(l+a—p)

—~

/
Q

e
Mg I8 T8

(2PL)tmem A (2R L) (25 L) TR

<C (QkL)p(1+a—ﬁ)—2—6+3+”1r—‘2+M

T
o

< C"Lp(l-l-()z—ﬁ)_Q—ﬁ-l‘?ri-’y1f72-"-M7 (3123)

where in the last inequality we used the hypotheses that < f — 1 + 2*% and 7, <
r(f—1)+2.

For the second term in the right-hand side of , applying again the dyadic
decomposition together with Holder’s inequality, yields

N

O)I” = 1 f
d X () Pd
JyIBL ‘y’3+a—P(1+a—,8> Y = 2kL)3+a—p(1+a—ﬁ) [~ 2F L ’ (y)’ Y

—~

P

(2’“L)3+a1—p<1+a—a) <L|~m I@(y)ley> C(2F0)2(-8)

(2kL)p(1+a76)737a(2kL)’y0 (2kL> (1-2)

y
Q
s

k=0

7
Q
s

o
Il
o

(2kL)p(1+a75)f2fa+1+(’YO72)%

RgE

<C

ol
Il
o

< C[P(+aB)-241—ar COT2E (3.1.24)

where we used that —1 < o < f— 1+ 2= =1, Combining (3.1.23) and m with m

we deduce that
J O(y)[Pdy < CLP A+ 020 | ot B2 a0 (3.1.25)
lyl<L

where

ag :=max{1—a+<%22)p,3—5+(%r_2)+(%;2)p}- (3.1.26)
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Note that, if ay < 0, we conclude that © = 0 on R?, i.e., no locally self-similar blowup
occurs and the proof is finished. Otherwise, if ag > 0, we improve the estimates in (3.1.23))
and by making use of the new upper bound in . In particular, for the first
term in the right-hand side of , we leverage (13.1.25)) via a suitable interpolation
inequality. Namely, in view of the assumption on v, we may take ¢q € (p,r) sufficiently

close to p such that

0<71<r(5—1—2(1—p>)+2, (3.1.27)
q
and
_ 9 _
0 < < 2P <5—1+ 71—2(1—]’». (3.1.28)
(g —p)p r q
Then, by interpolation, we have
1) 1-6
[ ewrar < ([ 1ewra) ([ ewra) (3.1.20)
lyl<L lyl<L ly|<L
< OLw+1=90  with §:.= 4 ¢ (0,1). (3.1.30)
r—p

Next, employing once again the dyadic decomposition and Holder’s inequality, we

derive via (3.1.25)), (3.1.30)), and that

J VOl
ly|=L

|y|2—a—p(1+a—6)

1

o] 1 % ~ T p 1
<C O(y)|“d VO rdy ) (28 0)205)
Z (QkL)2—afp(1+aﬂ3) <J|y|~2kL | (y)| y) (ijQkL | (y)| ?/) ( )

k=0

1
(2kL)27afp(1+a7ﬁ)

(QkL)g(aotﬂ(l*l;)’Yo) (2k:L)771+1—a—5(2kL)2(17§f%

78

<C

i
o

+1-8+2(1-2) a0 (1-2)

<C

(QkL)p(lJraiﬁ)i%raoJr%(1*5)(’Y0*a0)+ 71;2

gt

i
o

< C Y (2FLypitasf)-2ta—ar (3.1.31)

gt

i
o

where

ay = (1—5>(ao—%)+5—1+2;”1 —2(1—2;) + ag (1—§>- (3.1.32)

3

Recall from (3.1.23)) and ([3.1.24)) that ag+p(1+a— ) —2 < 0. Then, to obtain a finite
sum in (3.1.31)), it suffices to show that a; > 0. Firstly, assume that ag =1 — a + @.

From (3.1.26)), it follows that —1 < a < f—2+ 2_% Moreover, since 1 —0 = (¢—p)/(r—p),
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we have
al_zéqf ;(ao—vo)+6—1+ ;71_2(q;p)+a0(q2p)
zggziiiaozgg:p§0+ﬁl+ _T% 2(qqp) (3.1.33)
_rla=p, B "
_q(r_p)( l—a)+B8—1+ > 0, (3.1.34)

where the inequality follows by using that r > ¢, which implies r(q — p) < q(r — p).
Now, if ag =3 — B + (71;2) - (70:2)27, then from (3.1.26)) we have § — 2 + 2_% <a<
b—1+ 2‘% Hence, from (3.1.33)),

o — "la=p) (3_5+ (=2 . (70—2)19) —ngq"_p§7°+ﬁ_l+2_% _yla=p)

q(r —p) r r r q
B (5o B Bl
=(ﬁ—1+2 %) (1—2Ei:§§)=<5—1+2;%>§E::§;>0, (3.1.35)

where we used that r > ¢ >pand vy <7r(f—1) + 2.
Therefore, a; > 0, and it follows from (3.1.31)) that

7geY) p
f |V (y)H@(yN dy < CLp(1+ocfﬁ)f2+aofa1. (3136)
WIsL |y|2—a—p(1+a—6)
Similarly, since ag + p(1 + o — ) — 2 < 0 and « > —1, we obtain for the second term
in the right-hand side of (3.1.22)) that

[T Y [ ewra
ly|=L ’y|3+a pHa B 3+a —pllte=p) ly|~2FL

k=0

0
k1 \a
Okz (2kL 3+o¢ —p(l4+a— )(2 L) ’

CLp (1+a—B)—2+ao— (1+oz). (3137)

Plugging (3.1.36) and (3.1.37) into (3.1.22)), we deduce that

f 1O(y)|Pdy < CL~ 4 L%~ (+e)
ly|<L
< OLY™,  where by := min{ay, 1 + a} > 0. (3.1.38)

Again, if ag — by < 0 then the proof is finished. Otherwise, we proceed with the
bootstrap argument by now leveraging ((3.1.38]) to obtain improved estimates. To put this

argument into a more general form, suppose that

f O(y)[Pdy < CL?  with o < ag.
ly|<L
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From the interpolation inequality (3.1.29)), we have
fl - 1O(y)|1dy < CL72+00=9), (3.1.39)
yl<

where we recall that § = (r — ¢)/(r — p). Then, proceeding similarly as in (3.1.31)) and

recalling the definition of a; in (3.1.32)), we obtain

(1) P
J VW (y)|[0(y)] ay
ly|=L

|y|2—a—p(1+a—ﬂ)

0
! a n p_1
< C Z (QkL)E(J<5+'Yo(1—5)) (QkL)l—a—5+7 (2kL)2(1_E_?)
kT \2—a— a—
(28 L)2mamp(ta=h)
<(C i (Qk‘L)P(l+Oé_/3)—2+0%p+70(1—5)§+1—,8+71T_2+2(1_§)
k=0
S dp Sp
<C Z (QkL)P(l'f‘Oé_/B)—?'f‘ao—a1+07—a07
k=0

< O P+e—B)—2+a—a1+ 2 (0—ao)

, (3.1.40)

where the last inequality follows from the fact that ag + p(1 + o — ) —2 <0, a; > 0, and
o < ag.

Next, similarly as in , we obtain for the second term in the right-hand side of
that

©(y)[” > 1 .
flyl>L [y[Pro-pli+a=p) W= O];) (2k L)3+a—p(1+a—p) (2°L)
< C’Lp(l+a—5)—2+a—(1+a)’ (3.1.41)

where the last inequality is justified by the fact that p(1+a—0) —2+o <p(l+a—p) —

2+ ap <0, and o > —1. Therefore, combining (3.1.40) and (3.1.41]) with (3.1.22)), yields
J |@(y)|pdy < CLao*er(afao)ép + CL07(1+04)’ (3142)
ly|<L
where
op

0, :=— € (0,1).

,=Le)
Note that

cre—(te) if ap—(1+a)=(ag—0)(1-95,), (3.1.43)

f O@)Pdy < artlo—a0)ss '
ly|<L cLoomarlomale it g — (14 a) < (ag—o)(1 —6,).  (3.1.44)
Let us now specialize this estimate to the case 0 = ag — by, as in (3.1.38]), where we

recall that by = min{a;, 1 + a}. Firstly, suppose by = a1, so that a; <1+ «a. Since 6, < 1,
it follows from (3.1.44)) with ¢ = ag — a; that

fu ; 1O(y)|Pdy < CLw~ 1 (1+%), (3.1.45)
yl<
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If ag — a1 (1 + 6,) < 0, then © = 0 in R?. Otherwise, i.e. if ag — a;(1 + &,) = 0, we invoke
(3.1.44) with 0 = ag — a1(1 + J,) and obtain

f O(y)[Pdy < CLwo~ e (10+03), (3.1.46)
lyl<L
Hence, repeating this process n times, for any given n € N, we arrive at
1-57 !

f |@(y)|de < CLao—a1(1+6p+6Z2,+...+6;) _ CLao*tLl( 1—6p ) (3147)

lyl<L
Taking the limit as n — oo and observing that _6:;: — 1_16p = 38:5 ; as n — o0, we
obtain

a(r—p)
J ©y)|Pdy < CL™ . (3.1.48)
lyl<L
Now, recalling the definition of a; in (3.1.32)), and particularly (3.1.33)), we have
q(r —p)
ag — aq
r(g—p)
_ 92 —
_ao_q(T p) {T( )ao_p(q p)%Jrﬁ_H N ,a—p)
rig—p) La(r—p) = q(r—p) r q
_ 9 _ _
=p[% a(r = p) (5— Nl p))]<o, (3.1.49)
r p(a—p) r q

where the inequality follows from . Therefore, it follows from that © =0
in R2.

Next, let us consider the case when by = 1 + «a, so that a; > 1 + a. We apply
(3.1.43)-(3.1.44) with 0 = ag — (1 + ) and obtain

J 0Py < O/ [00-2(1+a) if a—(1+a)=(1+a)(1-46,), (3.1.50)
v CLom O i a — (1+0) < (1+a)(1-4,).  (3.151)

If the powers of L in both (3.1.50) and (3.1.51) are negative, then we conclude the
proof. Otherwise, we proceed to improve on the upper bound of S|y| <L |O(y)|Pdy again via
bootstrapping. To this end, we start by taking mg € {1,2,...} as the smallest integer such
that

— (14 o) <me(l+ a)(1—19,). (3.1.52)
If mg =1, then m holds. On the other hand, if my > 2 then
(mo—1)(1+a)(1-90,) <a;—(1+a). (3.1.53)

and (i3.1.50)) holds. In the latter case, we may repeat this computation (mg—1)-times, where
at each kth time with k = 1,...,mo — 2, we invoke (3.1.43) with 0 = ag — (k + 1)(1 + «),
and at k = my — 1 we invoke (3.1.44)) with o = ag — mo(1 + «). We then arrive at

J 1O(y)|Pdy < CL™™",  where by := a; + mo(1 + )F,. (3.1.54)
lyl<L
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Note that b; > aq, and that (3.1.54]) in fact holds for all mg > 1.
If ag — by < 0, the proof is finished. Otherwise, we proceed similarly as before and
apply (3.1.43)-(3.1.44) with o = ag — by, which yields

f O(y)Pdy < CLooh=(+a) g (1+a)—=0b:i(1-46,) =0, (3.1.55)
e S ez e - (14 a) = bi(1-6,) <0 (3.156)

Then, if necessary, we proceed by taking m; € {0,1,2,...} the smallest integer such that
a; — (14+a) —b(1—9,) <mi(l+a)(l—275,).
After repeating this process m; times, we obtain

J O(y)[Pdy < CL™,  where by := a; + (b + m1(1 + @))d,.
lylsL

Here we note that by > a1 + a16,.
We may keep on iteratively repeating the same argument if necessary and denote by

m, €{0,1,2,...}, for each n e N, n =2 3,..., the smallest integer such that
a; — (1 4+ o) —b,(1 —9,) <m,(1+a)(l—20d,)
to obtain

f O(y)|Pdy < CL* 1 where b,y = a1 + (b, + mu(1 + a))6,. (3.1.57)
lyl<L

Moreover, we have

buyr > a1(1+ 6, + ... +6,).

Therefore, by the same argument from (3.1.47))-(3.1.49)), we deduce by taking the limit as
n — o0 in (3.1.57) that © = 0 in R?. This concludes the proof of this case.

Case 3: Finally, suppose that 5 —1 + 2;& <a<f-1+ %. In this case, we prove that
either © = 0 in R?, or © # 0 and (3.1.3)) holds.
Assume O # 0. From the first case, and particularly (3.1.8]), it follows that

f O(y)[Pdy < L*P0+*=F for all L » 1. (3.1.58)
lyl<L

Therefore, it only remains to show that

f O(y)Pdy 2 L* PP for all L » 1. (3.1.59)
lyl<L

Suppose by contradiction that (3.1.59|) does not hold. Then, there exists a sequence of

positive numbers L;, ¢ € N, such that L; — o0 as i — o0 and

o |
——— O(y)|Pdy — 0 as i — .
L7 e, | |

(2
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Taking Iy = 4L;/p and L := pl;/8 » 1 in (§3.1.20)), it follows after taking ¢ — oo that

1 VOl O)[”
- p < .
L2-p(1+a—p) Jy|<L ‘Q(y)‘ dy CJ ’y|27afp(1+oz75) dy +C jy}L |y|3+a7p(1+a76) dy

ly|=L
(3.1.60)

We now proceed similarly as in (3.1.29)-(3.1.38)). Namely, we fix ¢ € (p,r) such that
(3.1.27)-(3.1.28) hold. Then, by interpolation, (3.1.58)) and assumption (3.1.1)), we have

g 1-5
f O(y)|*dy < (J |®(y)|pdy> <f |@(y>|rdy> < OLEP+a=B)str01-3)
ly|<L ly|l<L ly|<L

where 6 = (r — q)/(r — p).
Proceeding analogously as in (3.1.31]) and recalling that 6, := dp/q, we estimate

f VOwlewr
\

|2—a—p(1+a—,3)

y|=L |y

< O(y qdy) U VO (y "dy) ok )24 =%)
24 (QFL)z-a-rirad) wmm’ ()l |y|~2kL‘ W)l (2°L)

oo
<C Z (2kL)p(1+a75)+a72(2kL>%(2—p(1+a—6))6+vo§(1—5)<2kL)17a75+771 (sz)Z(l—g—%)
k=0
q

< CLPO+a=A)=2(1=0)+108 (1=8)+1-f+1=42(1-8) (3.1.61)

where in the last inequality we used that o < — 1+ ]% and condition (3.1.28]).
Moreover, analogously as in (3.1.37)), we obtain

OW)P S 1 f
dy < O(y)[dy
jy}L |y|3+a—p(1+a—6) = (2kL)3+a—P(1+a—5) ly|~2FL
[ee}
< C (2kL)p(1+a75)737a(QkL)pr(lJrafB) < Cva(lJroz)7 (3162)
k=0

where we recall that o > —1.

Thus, from (3.1.60),

L2—p(11+a—ﬁ) J 10(y)Pdy < CLEITa=A=D0=0)tr0fA-0)+1-p+ U=42(1-8) | o —(1+a),
lyl<L

Note that the power of L in the first term from the right-hand side cannot be smaller than

the power of L in the second term. Indeed, since 1 — ¢, = 2&3:2;, a=p—-1+ 2_%, and

Yo < 71 + 7, we deduce that

(m1+a—5)—m(y—@y+%§u—5y+1—5+72f2+2(1—2>+1+a

7“(q—p)+7p(q—p)+2*6+’V1—2+2(1*p>
gr—p)  "qlr—p) r q
— 7
.

2 _ —
_ 2p=1)lg p)+1+%+2<1kp)%:1+7&7°>o_ (3.1.63)
a0 —) : o) T T

D (2—7)—2

2
+B8 -1+
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Hence,
fl = O(y)[Pdy < CL>PUref=d, (3.1.64)
yl<

where

dy = (2—p(1+a—5))<1—5p)—%2(1—5)—1+5+2;%—2(1—2) > 0.

(3.1.65)

If 2—p(l+a—pB)—dy < 0 then (3.1.64) implies that © = 0 in R?, which yields a
contradiction and finishes the proof. Otherwise, for 2 — p(1 + o — ) — dy = 0, we repeat
the above argument by using now the improved estimate ([3.1.64)). This gives

j . O(y)|"dy < CLE-PIHeANo=dod+ (=070 (3.1.66)
yI<

and

: f
©(y)["dy
L2—p(1+a=p) Wl<L

gk

<C <2kL)p(1+a75)+a72(2kL)5p(2—p(1+a—5))—d05p+705(1—6)+1—a—ﬂ+w71+2(1—§—%)
k=0
0
+C Z (2kL)p(1+a75)737a(2kL>27p(1+a7,8)—d0
k=0
0
<C Z(2kL)(p(1+a_ﬂ)—2)(1—5p)+705(1—5)+1—6+%’2+2(1—§)—dogp
k=0
)
+C Y (28~ (te)—do
k=0
< QL %0+d) 4 o ~(+a)—do CLfdo(Hép)’

where we used that 0 < dy < 1 + a, according to (3.1.63)), (3.1.65)). Thus,

f 1O(y)[Pdy < O [2P(I+a=p)—do(1+dp)
lyl<L

We may repeat this process for as many n times, n € N, as necessary, to obtain that

1—sntl
J 0(y)Pdy < O [2—P(+a=B)—do(1+8p+82+...+87) _ CL2*P(1+a*ﬁ)*d0< 5, )
lyl<L

. 167t —
Since 4%— — 5 15 = 4P 595 — o0, then
—9p —9p r(q—p)

q(r—p)

f O(y) Py < CL2POre-P-a iG] (3.1.67)
lyl<L
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From the definition of dy in (3.1.65)) and condition (3.1.28]), we have

B 0 gy g.4r—p)

2—p(1+ B) dor(q_p)
o Gt 0N P oo gntla=p) _pla—p)
Sropirasy) r(¢ —p) [(2 P 6))Q(7’—P) ar—p)

+5+2_%—2<1—pﬂ
r q

:ﬂ%_w_p) (ﬁ_H?—T%_g(l_p))]@. (3.1.68)

p(q —p) q

Therefore, we deduce from ([3.1.68)) that © = 0 in R?, which is a contradiction with our
starting assumption that © # 0 in R2. This concludes the proof.
O

The subsequent result provides a criterion for the profile to exclude self-similar blow-
up by assuming a specific decay behavior at infinity. Furthermore, under the growth
bound on the profile and its gradient, we obtain an appropriate range for «, where the
characterization of the LP norm as in for possible types of blowup profiles.

Corollary 3.1. Fiz € (1,2). Suppose 0 € C([0,T); H*(R?)) n L*(0,T; L*(R?)), with
s> 1+, is a solution to the gSQG equation (1.0.1)) that is locally self-similar in a ball
B, (%) = R?, with scaling parameter o > —1 and profile © € C*(R?). Then, the following

statements hold:

(i) If there exist some og > 0 and o1 > 0 such that |O(y)| < |y|~7° and |VO(y)| < |y|~*
for all ly| » 1, then © = 0 in R?.

(ii) Suppose that |O(y)| = 1 for all |y| » 1, and that there exists a real number 0 <
o1 < B —1 such that [VO(y)| < |y|7* for all |y| » 1. Then the values of o admitting
nontrivial profiles belong to the interval [ — 2 — o1, 8 — 1] and for each such « the
corresponding profile © satisfies

\[ O(y)Pdy ~ L+1+0—5)
ly|<L

for every p € [1,0) and for all L sufficiently large.

Proof. We start with the proof of [(i)] Let M be a positive constant such that [ (y)| < |y~

and |[VO(y)| < |y|~* for all |y| = M. Thus, since © € C*(R?), it follows that for all L > 0

and r > max{ 2 l} we have

oo’ o1 |

1
| ewras| ewras| a<c
W< [yl <M =0 Y]
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and

1
f wwmmwﬁ‘ wwwmwj' dy < C.
ly|<L ly|<M

= |y

2 2
) 00 o1

Let p; := max {1 } Then, the assumptions of [Theorem 3.1| are satisfied with

the following parameter choices: p = p1, r = p1 + 1, 79 = 0, and 7; = 0. Consequently,
the values of o that admit a nontrivial corresponding profile © belong to the interval
[6 —1+-2-8-1+ p%] On the other hand, note that the assumptions of [Theorem 3.1

p1+17
are also satisfied with p =py +k, r =p1+k+1, 7 =0, and 1, = 0, for any £ > 0.

This implies that the values of a admitting nontrivial profiles must also belong to the

interval [ﬁ -1+ ﬁ,ﬁ -1+ ﬁ] for any k£ > 0. In particular, for k£ > 2, we obtain

that a € [ﬂ—l—i—ﬁ,ﬁ—l—%lﬁ] N [ﬁ—l—l—plil,ﬁ—ljtp%] = . Therefore, we
conclude that © = 0 in R?.

We proceed to prove[(ii)} Let M > 0 such that |[VO(y)| < |y|** for all |y| > M, and fix
any p € [1,00). Observe that, for all L » 1 and r > p,

| vewras| vewrdy+ | iy
lyl<L ly|<M

M<ly|<L

< CJ dy + L"“”f dy < CL7V 2 (3.1.69)
ly|<M M<ly|l<L
where we used that © € C*(R?). Then, it follows by Sobolev embedding that
[ tewray<cpmae
ly|<L

Therefore, the assumptions of are satisfied by setting v, = oyr + 2 and
Yo = (01 + 1)r + 2 = v; + r. It follows that the values of o admitting nontrivial profiles

belong to the interval [ﬂ —2—0,0—-1+ %] and the corresponding profile satisfies
CyL>PU+a=h) < f O(y)[Pdy < CLL* PHHe=A) forall L » 1, (3.1.70)
lyl<L
for some positive constants C7,Cs. On the other hand, since [O(y)| = 1 for |y| » 1, it

follows that

J ©(y)[Pdy = CL* for L » 1. (3.1.71)
lyl<L

Combining the upper bound in (3.1.70) with (3.1.71)), we must have 1 + o — 8 < 0, which
implies that the values of av admitting nontrivial profiles in fact belong to [ —2—o01, 5 —1].
This completes the proof. n
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32 Case0< <1

This section is dedicated to studying the locally self-similar solution of the gSQG
equation for the case when, 0 < 8 < 1. Here, differently from the case 1 < < 2, we
only assume a L" growth in the self-similar profile, and analogous to [Theorem 3.1| we
obtain certain ranges of the scaling parameter where the profile is either identically zero,
excluding any locally self-similar blowup, or, for appropriate values of r and p, its L?

asymptotic behavior can be characterized.
In the case = 1, improves upon the results previously proven by Xue

[76], offering greater flexibility for the parameters r and «. Furthermore, our assumptions
on the parameters r and y for to hold, namely r > p and v € [0,r + 2), are weaker
than those in [76, Theorem 1.1], where it is assumed that r = p + 1 and v € [0,7 — p).
Moreover, for 0 < 8 < 1, recovers the result established in [9] concerning
globally self-similar solutions of the gSQG equation, with weaker assumptions, since any

globally self-similar solution is also locally self-similar.

Theorem 3.2. Fiz 8 € (0,1]. Suppose 6 € C([0,T); H*) n L*([0,T); L"), with s > 1 + f3,
is a solution to the gSQG equation that is locally-self-similar in a ball B,(xq) < R?,
with scaling parameter o > —1 and profile © € C1(R?). Fiz also p > 1, and suppose that
for some r > p and 7 € [0, fr + 2), it holds

j - O(y)|"dy < L7 (3.2.1)
y|I<

for all L sufficiently large. Under these condition, it follows that if « >  — 1 + % or
-1 <04<B—1+2%7 then © = 0. Moreover, if « € [6—14—2%7, —1+%] then either

© =0 or © is a nontrivial profile and it satisfies
f O(y)[Pdy ~ LPPIHeP), (3.2.2)
ly|<L
for all L sufficiently large.
Proof. The proof follows a structure similar to that of and is also divided

based on three distinct ranges for a.

Case 1:

The first case is when a > [ + % — 1, and the proof is identical to the firt case in

Mheorem 3.1

Case 2:
The second case is when —1 <a < -1+ 2_77 Our goal is to prove that © = 0 in R2.
To this end, let us recall that from (6.2.1)), we derive the local LP equality that

| ot Pos@)da = | 16 trostorts = [ | (et Vos@loe e e,
(3.2.3)
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where ¢, € C*(R?) with 0 < ¢p < 1 such that ¢o =11in By, and ¢ =0 in B ,.
Proceeding to estimate each term individually. The distinction from the case 1 < 3 < 2,
arises in the estimation of u, which is attributed to the distinct integrability characteristics
of K within the self-similar region for 0 < 5 < 1. In the special case of § = 1, Kz is
a Calderén-Zygmund operator. To facilitate this analysis, consider the following cut-off
function: ¢, € C*(R?) with 0 < ¢, < 1 such that ¢, = 1 in B, and ¢, =0 in BS,
Fix ti,t € [0,T). Let us decompose u into two components: one within the self-

similarity region and the other outside it. Thus,
(e 0) = CoP'V. | Kl = )00 00, (0)dy + CoPV. [ Kl — )00 (1 = 0,(0))dy
R2 R2
= aW(x,t) + a®@(x,1). (3.2.4)

Invoking the local self-similarity of 6, given in , and repeating the computation in
(3.1.12)), we obtain

u(z, 1)
= CBPV JR2 K/j(l’ - y)Q(y, t)¢p(y)dy

' L@ \f(ffgc—_y?IJ2>+l 7 <

— O4(T — t) T )
(@) Jo m@w><
B)

a+2)

(T — ) P.v.f
RQ

Epee ) p(y)dy

(T —t)% (T
o T 2+5) N
:C“T‘““””‘LZQT_ﬂ;—y)g_wﬁ—w’ Oy)d, (y(T — 1) 7% )dy
_ G ol
R (@—aﬁﬁﬁ’ (3.25)
where

UD(2,1) = P.V. | Kylz = y)0)o,(y(T — )77 )dy.

R2
Given that K3 is square integrable in any region excluding the origin, for all g > 0, it
follows that when p/8 < |z| < p/4, we derive that

. Oyt
[a®(z,1)] < ng | ||y(|ﬁ+1>|dy < Cg/(6(0)]] 2. (3.2.6)
yI=5

Repeating the same computation as in (3.1.16) - (3.1.18)), it leads to the conclusion that
the right-hand side of (3.2.3)) can be estimated by

0(x,t)[P(u(x,t) - Voe(z))dz dt‘

r7(1) P p
<cf U @mmwy@+cj OWIP 4 (327
<lyl<flz §

|y|2—a—p(1+a—[3) §11<|y\<£l2 |y|3+a—p(1+o¢—ﬂ)
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where

PV. | Ks(y = 2)0(2)@,(=(T — )% )dz

RQ

T, (£)dt. (3.2.8)

The indicator function 14, is associated with the set A,, which is defined for each y € R?,

satisfying pl1/8 < |y| < pla/4, as follows

1 1 1

where the length of the set A, is bounded by |A,| < ca,,/|y[*"*. Plugging this back into
and recalling that

| el I T A

lyl<fli

where [; = (T — ti)*l%«l, i = 1,2, we obtain that

R I e A M R
2 R2

T ey, lyproritesd) el <lyl<tr, [yfPromPiresd o

Note that, invoking Holder’s inequality and assumption (3.2.1)), we have that

a—pB)— a—PB)— r 2(1-2
B [ etPey oty <5 ([ o) B
R? ly|<§l2
< ol
Since a < f — 1+ =2 it follows that (1 + a — 3) + (y — 2)/r < 0. Hence,
l§(1+a_ﬂ)_2f 0[Pz (yly)dy — 0 as ly — o (3.2.11)
R2

Setting L := £/, and taking the limit in (3.2.10) as t — T, so that [, — oo, we obtain

Ol

[y[3+a—p(ira—p) Y
(3.2.12)

1 OO
- p
[2—p(1+a—p) J|y§L| (y)fPdy < © WS |y[2-e—P(1+a=p) dy+CJ

ly|>L

We now start to estimate each term on the right-hand side, employing the dyadic
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decomposition together with and Holder inequality. More precisely,

[ TOwlewr,
ly|=L

‘y‘2fafp(1+a75)

0 1 N
T ()ey)[rd
,;0 ok [,)2—a-p(i+a—5) L%gly@wl Wllew)dy

S 1 r7 % v ptl
0O (y)"d ) (J o(y)"d ) ok L)2(1-7)
1 (2FL)2-a-p(l+a=p) (Jy|~2kL| (y)"dy |y\~2kL’ (W)'dy ) (2°L)

1
T

ey
I

('Y—T(Oé-i-ﬁ)) (2/6[/)7% (QkL)Q(lfﬁ)

Q

(2°L)

i
k 2a (1+a—
k:02L —p(l+a—p)

L)ato=0)- 24+ (A0 g9

MS

<CL IR (3.2.13)

where in the last inequality we used the assumption that o < §—1 + 2_77 and v < Or + 2.
To address the second term on the right-hand side of (3.2.12), we once again apply

the dyadic decomposition, in combination with Hélder’s inequality, to obtain

f ©@)P oy < i 1 J ) Py
) ‘y’3+a*p(1+a*ﬂ) (2kL)3+afp(1+afﬂ) ([~ 2* L

k=0

P

S i (QkL)3+al—P(1+a—ﬂ) <L|~m |@(y)|’"dy> (k0

0
< O Y (2FLyptte ek Ly (2 )2(1-F)

< CLp(1+a—B)—2+1—a+@’ (3.2.14)

where we used the fact that —1 < a < 8 — 1+ 2. Combining (3.2.13) and (3.2.14) with
(13.2.12), and recalling that a« < g — 1 + 2_77, we deduce that

(P+1)(’Y 2) —B+2

f O(y)Pdy < CLE2-p+2 | opi-a+ 52 o opao (3.2.15)
lyl<L

where

p(y=2)

Goi=1—a+ (3.2.16)

Observe that, if @y < 0, we conclude that © is identically zero on R?, then the proof is
complete. Otherwise, if ag = 0, let us improve the estimates of the terms on the right-hand
side of m 3.2.10]) by using the new upper bound established in (3.2.15]). To accomplish this,
we highlight that since r > p, we may take ¢ > 1 such that

+1
p<q< r(rp—l—l) <. (3.2.17)



53

Then, by interpolation, it follows that

LSL o= (L|<L ‘@(y)‘pdy)é (L|<L |@(y)lrdy) -

. r—dq
th 6 := 0,1). 3.2.18
with 3= T € (0.1) (3:2.18)

< CL&06+(175)7

Y

Next, by applying the dyadic decomposition once more and using Holder’s inequality,

we obtain from ({3.2.16)), (3.2.18)), and that
[ Dwiewr,
ly[=L

‘y‘2fafp(1+a75)

QI3

1

(LWL |(7(1)(y)|qdy) " (2b1)2(-5)

pt+1

<2kL)§(605+v(1—6))(2kL)%(&06-&-7(1—6)—(1(044-5))<2kL>2(1—T)

[

< O(y qdy)
= (2kL)2—o¢—p(1+a—ﬁ) lyl~2¢ 1 ‘ ( )‘

1
(2kL)2—a—p(1+a—,B)

N
s

k=0
< i (QkL)p(1+o¢—ﬁ)—2+oz+&o <pt11)6 +’y<p+1)q(176) —a—,B+2(1—pT+l)
k=0
0
< 2 (QkL)p(1+a—ﬂ)—2+a0+ao(Lf}l)“—1)—6+77(P“)q(1’5)+2(1—%)
k=0
0
< Y @FLypire i (3.2.19)
k=0
where
+1)d +1)(1—-9 +1
i ::&0<1—(p))+5—(p ) )7—2<1—p>. (3.2.20)
q q q

Recalling from (3.2.14]) that ag + p(1 + a« — ) — 2 < 0. Then, to ensure that (3.2.19) is

bounded, it suffices to prove that a; > 0. Thus, since a« < § — 1 + 2_77, dp=1—a+ 22,

and 1 — 9 = %, it follows that

r—

i = a0<1—(p+1>5)+5_(P+1)(1—5)7_2(1_p+1>
q

q q
_ (1*%7—2) (1*(1’0-1-1)5)+5*(p+1)(1—5)fy*2(1*p—|—1)
r q q q
(p+1(r—2) (p+1)s (p+1(1—0)y p+1

i (2_6+ r (1_ q )+ﬁ_ q _2(1_q>
_ 2p+DHA-0)  (p+DO—2) (1_6(p+1>)+55(p+1)_(p+1)(1—6)v

q r q q q
_ (+1)(2—9) [1 54 5(p+1)] g+ 1)

q r
)2y ([ T4 (p+1)(r—q)
- q <T(T—p)> o (r—p)g
_ W 1r—q (2—~+pr)>0 (3.2.21)
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where in the last inequality we used that v < gr + 2. Therefore, we conclude from (3.2.19))
that

oW O(y)|P -
JH L! WIOWII | < e ppu+a-s)-2+ao-a (3.2.22)
y|=

|y|27a7p(1+afﬁ)

For another term, invoking (3.2.15)) and recalling that ao + p(1 + « — ) — 2 < 0 and
—1 < «, it follows that

oW i O(y)[Pd
wisz YT P“*a 7 (2KL)3+o- p<1+a 5) y)Fay

k=0 ly|~2kL

2k1‘/)3+a7p(1+a75)+&0

1
S CICZ:]O (2kL)3+a—p(1+a=p) (

< CL])(I‘FQ*ﬁ)*Q‘Faof(l‘Fa). (3223)

Plugging (]3.2.22)) and (3.2.23) into (3.2.12)), we deduce that
f 1O(y)|Pdy < CL¥~% 4 ¢~ (+e)
ly|<L
< CL%7%  where by := min{a,, 1 + a} > 0. (3.2.24)

Clearly, if do — by < 0, we finished the proof. Otherwise, analogous to ([3.1.42)), we proceed

to obtain a more general form for the profile estimate in LP. Let us assume that
f O(y)|Pdy < CL°  with o < do. (3.2.25)
lyl<L
From the interpolation inequality (3.2.18]), we have

L ; 10(y)|%dy < CL7+(1=9), (3.2.26)
Yy <

Then, proceeding similarly as in (3.2.19) and recalling the definition of a; in (3.2.20f), we

obtain

[ TOwlewr,,
\

|2—a—p(1+a B)

y|=L ’y

1
OZ 2]<:L 2—a—p(l+a—p)

(QkL)g(mH-’y(l—(S))(ZkL)%(aé-}-(l—é)'y—q(a-&-ﬁ))(sz)Q(l—pT“)

d(p+1) (1=8)(p+1) +1
<C (QkL)p(l—i-a—,B)—?-i-a ) py U2l _gia(1-2HL)

M8|

ey
I

0

6(p+1) —do (p+1)
q

(QkL)P(l-i-Oé B)—2+ao—a1+o—=—

gk

<C

Ed

o

< O [POFo=f)=2+ao—a+ 25 o —a0) (3.2.27)
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where we used that a9+ p(1+ o — ) —2 <0, @; > 0, and o < ag. For another term, it
follows that

©@)P i Ly
s [y[Propites 5 4 (2kL)3+a- p<1+a B)

< Opita=f=2to—(lta) (3.2.28)

where we used that p(1+a—08)—2+0c <p(l+a—p)—2+ad <0, and a > —1.

Therefore, combining (3.2.27)) and (3.2.28) with (3.2.12]), we obtain

J |@(y)|de < CLdofélJr(affzo)ép + CL07(1+04)7 (3229)
lyl<L

where
o(p+1) _(p+1)(r—q)
q q(r —p)

The inequality above holds due to the choice of ¢ in (3.2.17)). We emphasize that the
condition 9, > 1 implies that the power on the right-hand side in (3.2.29) will be more

op 1= > 1.

negative. This will simplify the calculations that follow, in contrast to the case 1 < § < 2,
where 6, < 1.

Let us analyze the general estimate to the case 0 = ag — by, as in (3.2.24).
Starting with the assumption that by = 1 + «, we can deduce from (3.2.29) with o =
ao — (1 + ) that

J |®(y)|pdy < CLaO_dl_(1+a)5p 4 C’Ldo—Q(l-i-a)
lyl<L
< QLR (3.2.30)

where we used the fact that by = 1 + o < d; and 0, > 1. It is important to note that if
o — 2(1+a) < 0, then © is identically zero in R?. On the other hand, if o —2(1+ «) = 0,
we apply (3.2.29)) with o = a9 — 2(1 + «) to obtain

© Pdy < CL6075172(1+Q)(SP 4 C’Ld073(1+a)
wl y)ray
ylsL
< QLR (3.2.31)

Once again, we use the fact that 1 + o < @, and 0, > 1. Therefore, if needed, by repeating
this process n times for any given n € N, and setting o = ay — k(1 + «) at each kth

iteration, where k € 3,...,n, and arrive at

f - |O(y)[Pdy < CLAo— "1+ (3.2.32)
Yy <

Taking the limit as n — oo and observing that 1 + « > 0, we conclude that © = 0 on R2.
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In the secondary scenario where l;o = ay, and a; < 1 + «, we proceed similarly to the
case by = 1 + « in the proof of [Theorem 3.1, We invoke ((3.2.29)) with ¢ = Gy — a; to obtain

J ) Pdy < CL%~m=(+a)if G5, > (1 + a), (3.2.33)
i<k CLoo~a+%) if G5, < (1+ a). (3.2.34)

The proof concludes if the exponents of L in both (3.2.33)) and (3.2.34)) are negative.
Otherwise, we can consider mg € {1,2,...} be the smallest integer such that

d15;'1°>1+a.

If mg = 1, then (3.2.33) is satisfied. Otherwise, for mg = 2, the minimality of my implies
that

&15;710_1 <l+a«a

and ((3.2.34)) holds. In this scenario, the computation can be iteratively conducted (mg— 1)
times. At each kth iteration with k = 1,...,mg— 2, we invoke (3.2.29)) with 0 = ag—ay(1+
Op+...+0r), and, for k = mg—1, we invoke ([3.2.29) with 0 = dg—ay(1+0,+...+0,°7").

This approach results in
f |O(y)|Pdy < CL%™  where by = ar(1+6,+...+ 5;”0_1) + (1+a), (3.2.35)
lyl<L

which is valid for all mg > 1.

Now, if Gy — b; > 0, we emphasize that, in contrast to the proof of case 2 in Theorem
(3.1]), which required the construction of a sequence of the smallest integers m,, associated
with b, to ultimately prove that the profile is null, such construction is unnecessary in this
instance. Since 0, > 1, it accelerates the process of making the exponents negative. More
precisely, let us apply n times, for any given n € N, where at the k-th iteration,
we set 0 = dg — by — (k — 1)(1 4+ a) to derive

f |@(y)|pdy < OLdo—Eu—(El+(k—1)(1+a))6p + CrLdo—Bl—lc(1+a)7 (3236)
lyl<L

recalling that by := a;(1+ 6, + ... + o071 + (14 ) and @07 > 1 + «, we obtain that

ar + (b + (k—1)(1 + a))s, — [b + k(1 + a)]
= a1+ 01(6, — 1) + (1 +a)((k—1)6, — k)
=+ [a(1+0,+...+ 0 )+ 1+ )], — 1) + (1 +a)((k—1)5, — k)
= (a1 + @10y + ... + @16, ) (6, — 1) + (1 + a)((k — 1)6, — k)
= a1+ a1(6, — 1) + (1 + a)(kép — (k + 1))

> 16, — (1 +a) =0
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the second term in the the right-hand side of (3.2.36)) is larger, so that k = n, we arrive at

j . O(y)|Pdy < CLPo-bi-n(i+e), (3.2.37)
yI<

Since o > —1, there exists n sufficiently large such that ag — by — n(1 + a) < 0, which

implies that © = 0 and concludes the proof of this case.

Case 3:
Finally, in the case § — 1 + 2_77 <a<f-1+ %, let us prove that either © = 0 in R?,

or © # 0 and (3.2.2)) is satisfied.
We start by supposing that © # 0 and recalling that

f' . 0(y)|Pdy < L¥ P38 forall L » 1. (3.2.38)
yl<
Thus, we only must establish that

f |O(y)|Pdy = L2 PA+e=B)  forall L > 1. (3.2.39)
lyl<L

Next, let us replicate the argument by contradiction argument employed in Case 3 of
Theorem 3.1, By assuming that (3.2.39) does not hold, it follows that there exists a

sequence of positive numbers L;, with ¢ € N, such that L; — o0 as ¢ — o0 and
L O(y)Pd 0 '
72-p(i+a=5) <L, O(y)[Pdy — 0 asi— .
Setting ly = 4L;/p, L := pl1/8 » 1 and later taking L; — oo in ({3.2.10)), we obtain

VO (y) |0y O(y)|P
[y|2—a—p(i+a=p) dy +C [Fra—p(i+a=—p) Y

(3.2.40)

1 J
O(y)[dy < C
[2—p(1+a—B) <L

ly>L wi=L 1Y

We now proceed similarly as previously approach. Namely, we fix ¢ € (p,r) such
that condition (3.2.17)) holds. Then, by interpolation, and considering both (3.2.38)) and

assumption (3.2.1)), we obtain

5 1-5
J ©(y)|"dy < (f |@(y)|pdy) (J |@(y)|7“dy) < O LCp(+a=B)ity(1-0)
lyl<L lyl<L ly|<L

where 6 = (r — ¢q)/(r — p). Proceeding analogously to (3.2.19) and recalling that §, :=
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d(p+1)/q > 1, it follows that

[ TOwlewr
ly|=L

|y|2—a—p(1+a—,3)

P

© 1 q ~ é p+1
< O(y)|*d TO(y)ady ) (28L)20-")
s ([, ewr) ([ wvwr) @)

=0

b

0
< O 3 (2Fpyplira-)ta=2(gh [) REp(+0=p)isa(1=0) (gh ) 1 (2-p(1+a=B)bs1(1—0)—g(or+)
k=0

1 pt+1

x (2+0)2(0-50)

), (3.2.41)

since o > 6—1—1— , 0, > 1, and v < Br + 2, we deduce that

(p(1+a—5)—2)(1_5p)+7(p+1>q(15)_5”(1_1921)
<(1—5)< 7p+2<2—1>) 7W—6+2<1—p;1>
S G B A) RE TGV CET SRV R (R

:,y((erl)(q—p) _p(l_ (p+1)('f°—q)>) iy

q(r —p) r q(r —p)
|G 0T
e

where we used that 1 —§ = 22 and §, = 21§ = (“17
q q(r—p)

. Plugging this back into (3.2.41]),

we conclude

TDWIOWP ;o cpwita-p-20-5)1 @800 gia(1-2) (39 4o,
WI>L |y|2—a—p(1+a—5)

Now, for another term, we have that

[l a< [ ewra
) ’y|3+a p1+Oé B (2kL 3+a—p(l+a—p) yl~2t T

k=0

0
<C Z <2kL>p(1+a—6)—3—o<<2kL)2—p(1+a—6)
-

< oL+, (3.2.43)

Plugging (3.2.42)) and ([3.2.43)) in (3.2.40f), we obtain

1
[2—p(1+a—pB)

f O(y)[Pdy < CLEA+e=A-2A=5)+yBEE=-p12(1-20) 4 oy ~(1+a)
Jyl<L
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which implies that
Jl . O(y)[Pdy < CLP~% 4+ o LP~(+e), (3.2.44)
yI<

where
D:=2—p(l+a-7),

and

JO::D(l—ép)—'qu(l_(s)+ﬂ—2(1—pzl) > 0.

This estimate will be used repeatedly to improve the upper bound of S|y\<L |O(y)[Pdy. To

present this in a more organized manner, assume that

f' ‘ O(y)|Pdy < CL? with o <2—p(1+ a—f).
ylI<L

Then, based on estimates similar to (3.1.39)-(3.1.41)), we obtain from (3.2.10)) the following

general estimate

f ’@(y>’de < CLD—J0+(0—D)6P + C«Lo—(1+cu)7 (3245>
ly|<L

Let us follow the analysis setting o = D in (3.2.45)) to recover (3.2.44)). Note that, if
both power indexes in (3.2.44)) are positive, we conclude that © = 0 in R?, which yields

a contradiction and finishes the proof. Otherwise, we commence to analyze each power
separately.
To start, assume that dy = 1 + «, then from (3.2.44)), it holds

[ tewpay < oo,
ly|<L
Setting 0 = D — (1 4+ «) in (3.2.45)), we obtain
[ tewrdy < oz,
lyl<L

Therefore, this process can be iteratively applied n times, as required, for any given n € N,

to obtain
[ tewrdy < oo
lyl<L

Since a > —1, we can find n sufficiently large such that D — n(l + a) < 0, which
consequently infers that © = 0.
If D —dy < 0, the proof is finished. Otherwise, if D — dy = 0, we apply (3.2.45) with

oc=D — JO to arrive at

D—do—(1+a) 7
f O(y)Pdy < cLP® if 51,6{0 >1+a, (3.2.46)
lyl<L CLP~00) i §,dy <1+ a. (3.2.47)
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Then, if necessary, we proceed by taking mg € {1,2,...} the smallest integer such that
oody =1+ a.
Thus,
oo tdy < 1+ o

We can iterate this computation my — 1 times and obtain that
| tewray < ce-,
lyl<L

where d; := dy(1 + 0, + 4. o)+ (1+a)IfD- dy < 0, the proof is finished.
Otherwise, we apply (3.2.45) n times, for any given n € N, where at the k-th iteration we
take 0 = D —d; — (k— 1)(1 + «) and use that

do+(dy+(k—1)(1+))8,—[di+k(1+a)] = dod+(1+a) (kdy—(k+1)) > dodi™ —(1+a) > 0,
This process leads to

J O(y)|[Pdy < CLP~h-n(+e),
lyl<L

Since a > —1, there exists n sufficiently large such that D — d; — n(1l + a) < 0, which
implies © = 0.
Thus, in each case, we proved that © = 0 in R?, which is a contradiction with our

initial assumption that © # 0 in R?. This concludes the proof. n

The following result resembles [Corollary 3.1 with subtle changes to the profile assump-

tions, since we no longer have assumptions on VO.

Corollary 3.2. Fiz 3 € (0,1]. Suppose 6 € C([0,T); H*(R?)) n L*(0,T; L*(R?)), with
s> 14 f, is a locally self-similar solution to the gSQG equation that is locally self-similar
in a ball B,(xo) = R?, with scaling parameter a > —1 and profile © € C#(R?). Then, the

following statements hold:

(i) If there ezists some o > 0 such that |O(y)| < |y|=7 for all |y| » 1, then no locally

self-similar blowup occurs, i.e., © =0 in R?.

(i7) If there ezists some o € (0,) such that 1 < |©(y)| < |y|7 for all |y| » 1, then the
values of o admitting nontrivial profiles belong to [ — 1 — 0,8 — 1], and for each

such « the corresponding profile © satisfies
|ty ~ pzovtsen,
lyl<L

for every p € [1,0) and for all L sufficiently large.
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Proof. We follow a similar proof as in and make the appropriate modifications.
As such, to prove[(i)| we first take M to be a positive constant such that [O(y)| < |y|~7
for all |y| = M. Since © € C#(R?), we obtain that for all L > 0 and r > 2

1
f O)|"dy < J ©(y)["dy + J ——dy < C.
lyl<L ly|l<M ly|=M Y|

Then, denoting p; := max {1, %}, it follows that the assumptions of |Theorem 3.2| are satis-

fied with p = py, 7 = p1+1and v = 0. As a consequence, the values of o admitting nontrivial
2 2 :

T b—1+ p—l]. Moreover, since the as-

sumptions of [Theorem 3.2]are also verified with p = p; +k, r = p;+ k—l— 1 and v = 0, for any

k > 0, then such o must also belong to [B 1+ 1 + 5 ] for any k > 0. Tak-

profiles ©® must belong to the interval [6 -1+

p1+k+175

ing k > 2. it follows that o € [5—1+p _2_ 31 ﬂm] [/3—1+p1+1,/3—1+a] _
@, and we deduce that © = 0 in R?, as desired.

Regarding item [(ii)] let us now consider M > 0 such that |O(y)| < |y|° for all |y| > M
and fix an arbitrary p € [1,0) and r > p. Similarly as in (3.1.69), we have that for L » 1

f O(y)|"dy < f ©O(y)|"dy + f ly|"7dy < CL"*2, (3.2.48)
lyl<L lyl<M

M<ly|<L

where we again used the fact that © is a continuous function in R? to bound the first
integral.

Setting 7 = or + 2 and recalling that o € (0, ), we have from that
a may admit nontrivial profiles belongs to the interval [B —1—0,0+ % — 1| and the

corresponding profile satisfies

CyL>P+o=) < f O(y)[Pdy < CoL> P00 for all L » 1, (3.2.49)
lyl<L

for some positive constant C,Cy. On the other hand, since |#(y)| = 1 for |y| 2 1, we
obtain that

f O(y)[Pdy = CL?, for L » 1. (3.2.50)
lyl<L

Combining the upper bound (3.2.49) with (3.2.50), we must have that 1 + a — 8 < 0,
which implies that the values of a admitting nontrivial profiles belongs to the interval

[ —1— 0,8 — 1]. Therefore, we conclude the proof. O
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4 Global self-similar solutions of the dissipa-

tive gSQG equation

In this chapter, we focus on studying the globally self-similar solutions of the fractionally
dissipative gSQG equation. Our main result, presented in [Theorem 4.1 extends the result
proved by Chae in [I3, Theorem 3.1] to cover all 5 € (0,2), beyond the specific case of
g =1 states that, under the assumptions that the gradient of the self-similar
profile decays to zero at infinity and the symmetric part of the self-similar velocity gradient
is bounded at the points of maximum gradient of the self-similar profile, any possibility of
a globally self-similar blowup in finite time is excluded.

We recall that the fractionally dissipative generalized surface quasi-geostrophic equation
in R? is given by

O, +u-VO+rkAN0=0, xeR? t>0,

4.1
u=-V(=A)1*30, zeR? t>0, (1)

where n € (0,2] and 5 € (0,2) are given parameters, k > 0 , f(x,t) is an unknown
scalar function, u(x,t) = (u;(z,t),us(z,t)) € R? denotes a velocity field, and (—A)~%2,
0 < s < 2, is the Riesz potential, and A" is the fractional Laplacian.

Now, let us recall the globally self-similar solutions of dissipative gSQG equation, as

follows:

1 T — X 2,
9(x,t)=<T_t)w®((T_t>;>, (x,t) e R* x [0,T), (4.2)

for some function © : R? — R, which is called an associated self-similar profile.

Solutions that are globally self-similar preserve their self-similar characteristics through-
out the entire spatial domain. This property facilitates the analysis of the non-local
operators present in the equation , such as the Fractional Laplacian and the Riesz
operator. Additionally, this particularity enables us to deduce the equation for the profile
O, by invoking the globally self-similarity assumption of € in .

To obtain the equation for the profile, O, let us analyze separately each term in
. Let us commence with the Fractional Laplacian and, afterward, the velocity field u.

Without loss of generality, assume that o = 0. Then, we have that
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A"0(x,t)

O(x,t) —0(y, )
= d,P.V. JRZ e

:dn(T—t) 7 PVJR2 @( > < n)] —y @+n) g dy
y |z — y[>*7
Jlo () o () e
= d)(T—t)5" 1PVJ ( ) ] =
). (4.3)

Now, invoking (2.2.12)), (4.2) and employing the same computation above, we have

[un
[un

= dn(T - t) = "

Q‘H
3=

3=

— (T -t "'A"0 ((T_t)

that the velocity field can be expressed as

u(z,t) = C4P.V. fw Kg(z —v)0(y,t)dy

8o (z—y)* y
— Oy(T - )5 P.v.f o _d
s =) r2 [ — y[*F <(T—t>n> !

N Lo (2+8)
:C(T—t) PV.J]R2 ((T—t)n_z) (T—t)%z_z O(z)dz
_ (T—t)va((T_t)}?), (4.4)
where U(z) = —VH(=A)~ 1+5@( ). Finally, invoking again (4.2), we obtain that
(=5 _ 5t z
0f(x,t) = p (T —1t) @((T—t)}7>
1 27; 1 X X
AT * vg((Tt)%)‘(Tt)i
and
Vo(z,t) = (T — t)‘*’,;” <(T f t)% ) . (4.5)

Plugging (4.3)) - into (4.1, it follows that © satifies

(n;ﬁ)(T_t)ﬁ;n1@<(Tft)%)+1(T_t)ﬁ;n1 i -v9< i )

(U - v@)((Tft)Q +(T - t)W—lA”@((Tft)J =0,

(T -t
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setting y = o(T — t)f% we derive the equation describing the profile © as follows:
m=5g
n

where U(y) = —VL(—A)’”g@(y) is the velocity field associate with the self-similar profile
O.

O(y) + 77 y-VO(y) + (U-V)O(y) + A"O(y) =0, for all y € R?, (4.6)

Next, let us see the following technical lemma:

Lemma 4.1. Let W : R? — R? and f : R> — R be differentiable functions. If V- W = 0,
then it holds

VHW - V)f)- VA f = SV - V)VEP - T [Sw V]

VW (VW)

5 is the symmetric part of the velocity gradient matriz VW .

where Sy =

Proof. Let us start the proof by computing the term on the left-hand side. Then,

V ((W V) ( )) (92(W161f+W2(32f) 01(W181f+W262f))
W10501 f — Walso f, Wh35, f + Wadi0af)

(=
= (-
(= W01 f — OaWada f, W01 f + 01 Wa0a f)
= (W
= (

"f_

)VLJC + (=0 Wh 01 f — 0sWala f, 01 W10 f + 01 Wa02 f)
W V)VLer( OaWOLf — 03 Walaf, —0sWadif + 0, Wadsf),

where in the last inequality, we employed the fact that div W = 0, which leads to
W1 = —0,Ws. Next, by taking the inner product with V+f, it yields

VHW V) f(y) -V f

1
= §(W V)|V + (—0aWioLf — 0aWada f, —02Wadr f + O1Wadaf) - V' f

1
= §(W : V)|VLJC\2 + OoWh 01 fOo f + 0aWala fOo f — OaWadi fOLf + O1Wada fOL f
1
= i(W . V)]VLf\Q + 0oWo(OofOof — O1fO1f) + CoWh Oy fOof + 01Wo01 fOaf. (4.7)

On the other hand, we have that

g (x) _ VW + (VW)t _ 1 281W1(I) 62W1(x) + 61WQ({L‘)
v 2 (’/31W2<.I') + 62W1 (.T) ZaQWQ(I) ‘
Then,
SyVif — 1 20:W1 Wi + 12 . —0a f
81W2 + 62W1 262W2 01f

(=201W10a2f + 0o W01 f + O1Wo0L f, =01 Wala f — 0oWi0a f + 20, W01 f)

(0 Walo f + OaW101f, =0 Wi 0o f + 0aWa0i f)

N RN = N

+ = (0eWalo f + O1Wao:1 f, =01 Walsa f + 0.Waih f),

(\V]
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where in the last inequality we used that ¢;W; = —d,W5. Now, taking the inner product

with V*f, we can conclude that
VEf-SyVEf = ;((%Wgagf + OoW1OLf, —0sW10af 4 05 Wooi f) - V4 f
+ ;(aQWﬁQf + OWR0Lf, 01 Wala f + Wadrf) - V- f
= 0oWo(O1forf — OafOof ) — OoW1 01 fOof — O1Wo01 fOaf.
We conclude the result by plugging this back into (4.7)). O

Next, we establish a straightforward result concerning the positivity of the inner
product between a vector field and its fractional Laplacian at the point of maximum of

the norm of the vector field.

Lemma 4.2. Let ne (0,2) and f € H™(R?). Then, for all
geM:={yeR® )|V f(y)|= sup VA ()]},

we have that

V@) - ANVEF() = 0. (4.8)

Proof. Let us start by recalling the definition of the fractional Laplacian, which is given by

An(vJ_f(g)) _ Pvf vlf(g) — vlf(z)

R2 ‘ﬂ - Z’H"

dz.

Taking the inner product with V* f(7), we obtain

- Jee |G — 2]+
(VY@ -V G) - V()
R2 |G — z[**7

IV @IV @) = IVEf ()]

R2 | — 2>

dz

dz = 0,

where we use that 7 is a maximum point of the function |V+f|. Hence, this concludes the

proof. n

The following theorem generalizes the result proven in [I3, Theorem 3.1] for § = 1, for

all g€ (0,2).

Theorem 4.1. Fiz n, 3 € (0,2). Suppose 6 € C([0,T); H*(R*)YI|, with s > 1+ 8 —n, is a
solution to the gSQG equation ([4.1)) that is globally self-similar in R?, with self-similar
profile ©. Assume that © € C'(R?) is a solution to the equation (4.6)) satisfying

lim |[V+O(y)| = 0. (4.9)

ly[—c0

L According to we can consider the solution € of the dissipative gSQG equation within the
class C([0,T), H*(R?)) with s > 1+ 8 — .
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Furthermore, suppose that there exists j € M := {y € R? / [V1O(y)| = sup,pz | VO ()|}

such that
n—p0+1

B(y) < (4.10)
1 1
Bly) = % Suly )%’ iFVely) # (4.11)
0, if ViO(y) =
where U is the velocity field associated with © and Sy = VU+( UX s the symmetric part

of the velocity gradient matriz VU. Under these conditions, @ 1s tdentically null.

Proof. This proof employs the technique developed by Chae in [13 Teorema 3.1] to exclude
the globally self-similar solution of the dissipative SQG equation.

Let us commence the proof by revisiting the equation for the profile, given by

o) + }7<y VO)) + (U V)O(y) + A"6(y) = 0

Applying V* to the equation above and then taking the inner product with V+0©, we

obtain
=5 - D ivtem)? + LV VO() - V40 + TH(U - V)O) - V6
+ Ve - A'V*O(y) = 0. (4.12)

Let us now analyze each term separately, beginning with the second term. Hence,

VL(IU -VO(y)) = Vl(y151@ + 420,0)
= (—y102010 — 20 — Y205,0, 010 + Y101, 0 + y201020)
= V4O + (—41020,0 — 420%,0,y10%,0 + 1,0,0,0)
= VO + (y- V)V+e.

Then, we deduce that
Vi(y-VO(y) Ve =|Vie + (y v)IveP (4.13)

For the third term in (4.12]), we invoke the Lemma (4.1) with f = © and W = U, we
obtain that

VH(U-V)O(y)) - V*+e = ;(U -V)|V*+e]? - Vvte - syvhe. (4.14)

Therefore, plugging (4.13)) and ( into , we obtain
3 1 1 1
= Nvi@( )+ 5\V@<y>|2 b ol VIVEOR + (U V)VEeP

—V'O(y) - SyV O(y) + V'O (y) - A"(V'O)(y) = 0. (4.15)
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Here, we highlight that in [I3], Theorem 3.1], the fourth term on the right-hand side in
is missing. Afterward, the correct equation was obtained. We point out this detail
to avoid any confusion that may arise if readers directly compare the results presented
here with those in [I3, Teorema 3.1].

Now, using , the equality above can be reformulated as

U= Dgh00) + 5ol DIVOWE + 50 VIVOW) - [VOPBE

+ V+O(y) - A(V+O)(y) = 0. (4.16)
Evaluating at g € M, we obtain
THe (1 - B ) -~V NV, (D)
Invoking Lemma with f = ©, we have that
Vie(g) - A(V+O)(§) = 0.

Plugging this inequality back into and recalling that B(y) < %, it follows that
IV+O()]? = 0 and consequently |V+O(y)| = 0 for all y € R2. Thus, we conclude that © is
constant.

Now, given that 6 is a globally self-similar solution, as expressed in (4.2)), we can deduce
that @ is spatially constant. More precisely, there is ¢ € R such that 0(t) = ¢(T — t)%,
for all t € [0, 7). On the other hand, since 6(t) € L?(R?), for t € [0,T), we conclude that
¢ =0, and hence, we conclude the proof.

O



68

5 Conclusion

This thesis presented significant results regarding the locally self-similar solutions of
the gSQG equation and the globally self-similar solutions of the dissipative gSQG equation.
In [Chapter 3| we conducted a rigorous study concerning locally self-similar solutions of
the gSQG equation, proving that under growth conditions on the profile and its gradient,
it is possible to identify ranges of the scaling parameter where the profile is identically
zero, or its LP asymptotic behavior is characterized, for suitable r, p.

One direction to advance this research involves refining the estimates for the velocity
field in the self-similar region, notably when 1 < § < 2, where is required the assumption
of growth condition on the profile and its gradient. This approach could involve exploring
new methods for estimating the function 17(1), as defined in and established by
without resorting the assumption of the that could yield weaker
conditions on the profile as presented in [Theorem 3.1 and might also enable us to identify
a larger range of the parameter scaling o, where the profile remains identically null, thereby
avoiding self-similar blowup.

In [Chapter 4], our focus shifted to the globally self-similar solutions of the dissipative
gSQG equation for n and § within the range (0,2). Assuming that the gradient of the
self-similar profile decays to zero at infinity and the symmetric part of the self-similar
velocity gradient is bounded at the points of the maximum gradient of the self-similar
profile, we established in that the profile is identically null in R?, excluding
any possibility of globally self-similar blowup. Looking forward, our future research aims
to develop new techniques that can achieve similar results under weaker conditions for the
self-similar profile. This includes exploring the equation for the profile ©, given in ,
to obtain further insights into the profile’s behavior.

We highlight that, to date, no results have been found in the literature regarding the
non-existence of locally self-similar blow-up for the dissipative gSQG equation, nor on the
asymptotic behavior of the profile in L?. Therefore, this field presents numerous significant
challenges, offering ample opportunities to advance our understanding of self-similar blowup

to the dissipative gSQG equation.
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6 Appendix

This appendix presents the proofs of |[Lemma 6.2 and [Lemma 6.3, as well the proof of

the local LP equality shown in (6.2.1)).
We highlight that in other studies that employed the local L? equality (6.2.1)), such as
in [9] and [76], the proof of this result is not provided. The case when p > 2 is classical

and follows from standard approximate arguments. On the other hand, when 1 < p < 2, a
suitable adjustment is necessary, see for details.

6.1 Auxiliary Lemmas

This section is dedicated to proving the auxiliary lemmas used in this work. Let us

start with Lemma [6.1], invoked in the proof of [Corollary 3.1 which establishes a growth
bound for the profile based on the growth bound for its gradient.

Lemma 6.1. Let © € C1(R?) and 1 < q < o0. Suppose that there is o > 0 such that

(j | M\VL@(y)lqdy)q <M, (6.1.1)
yl<

for some M > 1. Then, it holds

(j M\@)(y)\qdy) C<oMt (6.1.2)
yI<

Proof. We start by pointing out that since © € C'(R?), it follows from Poincaré¢ inequality
that

1
1©]]Lr(8,0)) < C|IVOI|Lr(B,(0)) + TJ o O(y)dy < C + ||VO|r(B. (o))

where B,.(0) = R" denotes the ball of radius r centered at the origin and C':= { ©) O(y)dy.

Thus, by applying change of variables and invoking the above inequality, we have

(] » |@<y>|%zy); - (jH |M3@<My>|wy); < jl B MO by

—C+ M ( J| B r<V@><My>\Qdy)‘l’

q

<O+ Mit3 (f |ve)<y>\qczy) '
lyl<M

<CM™a,

where we used that M > 1, O
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Next, let us prove [Lemma 6.2] and [Lemma 6.3 used in the proof of and
respectively. In [Lemma 6.2 we establish the upper bound for the function

~

V) as expressed in ([3.1.19)), which was utilized at multiple instances in the proof of

Theorem 3.1| for the case § € (1,2). More precisely, this result shows that the growth
assumption (3.1.2)), on the L™ norm of the gradient of the profile VO, results in an upper

bound on the L™ norm of V) over a certain annulus in R2. Later, presents

a similar outcome for the case 5 € (0,1] regarding U M) by relying on the assumption

outlined in (3.1.1)) on ©, which was applied in the proof of [Theorem 3.2}

Before proceeding, let us recall the definition of the set A, given in (3.1.17)), namely

Ay = {te[tlﬂb] el <(T_t)$<p 1}

“ 8yl Syl
41+a 81+a
L L B
Yy Yy

for fixed y € R*\{0} and 0 < t; <ty <T.

Lemma 6.2. Let € (1,2) and © € C'(R?). Suppose that for some r € [1,0) and v € R,
it holds

J IVO|"dy < L7 for all L » 1. (6.1.4)
lyl<L
Then, the function v defined by
~ t2 1
VW (y) = J f BVl@(z)gbp(z(T - t)l%a)dz 14, (t)dt, (6.1.5)
t1 R2 |y - Z|

with 0 < t; <ty <T and A, as given in (6.1.3)), satisfies the following estimate

J VO dy < L0 for all L » 1. (6.1.6)
L<lyl<2L
Proof. Denote by Kz the kernel from (6.1.5), i.e.,

— 1

Kp(y) = P R*\{0}.

From the definitions of V1) and A,, we have

1

( | W“)@)My)
L<y|<2L

to
B (LS|y|<2L <»£1

Koy — )V O)6y(=(T — )7e)dz mt)dt) dy)r

R2
rT— (T/Tl)_l;ra ~ r %
yl[r T — e
Ly|<2L \ JT— Tyl”a R2
r 1
IR L N :
- J (p/yl+a J (KﬂﬂBlsL(O)) (y - Z)V @¢p(z(T - t) Ite )dZ dt | dy
L<ly|l<2L \ Jr— A R2

ly[1+ex
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As usual, Bigr(0) denotes the ball of radius 18L centered at the origin, and we utilized
the fact that for |y| < 2L, |z| < p(T — t)fl%a and t < T — (%?)”a, it holds that
ly —z| < 2L+ p(T —t)” e < 2L + 8|y| < 18L.

Applying Minkowski and Young’s convolution inequality, we obtain

( |V<1><y>|7"dy)
L<ly|<2L

T,(ﬂ 1+a

) (J
e \Jrspyl<ar
)

1
T

(B sLos o) (v — 2)V-O)E,((T — 1) 75 2)dz dy) dt

"Q

T—(% R2
T_(P/L 1+ 1 %
e (L 00+ (7200, o1 dy)
,(L/T) 1+a o )
(/ |’K51318L(0)|’L1(R2)|’vL@(bp((')(T_t)m>’|LT(R2)dt
—(

)
4) ta
T—( L 1 %

( | ﬁdy>(f 1 |Vi®<y>|fdy) di
T—(LL)1+a ly|<18L Y ly|<p(T—t)” T+a

T (P/16)1+o¢

1
1 U r
[ omw) | ([ wewrd) i
ly|<18L Yl T—(22)1+a ly|<16L

T—(E30) e

< 1>F f ( f |V@(y)|7"dy) it (6.1.7)
T—(LL)i+a ly|<16L
Invoking assumption (|6 , it follows that for all L sufficiently large

|
f

T
|

T—

/1)1+a

|
<

T (2 e

1
(f |‘7(1)<y)|rdy> < LZBJ L%dt < L%+lfozfﬂ.
L<|y|<2L T_(PT/4)1+a

Therefore, we conclude (6.1.6)). O

Lemma 6.3. Let 3 € (0,1] and © € C°(R?). Suppose that for some r € [1,00) and v € R,
it holds

J | Oy)|"dy < L7, forall L » 1. (6.1.8)
ylsL

Then, the function ow defined by

~ t2
U (y) :J P.V.f
t1 R2

where 0 <ty <ty <T and A, as given in (6.1.3), satisfies the following estimate

WO AT — 0 L0 (619

f OO @)rdy < LD, forall L 1. (6.1.10)
L<|y|<2L

Proof. Let us initiate by considering 3 € (0, 1). It should be noted that in this scenario,
the kernel Kg(z) = y*|y|~?*9), y e R?\{0}, is integrable near the origin. Namely,

nyL |K5(y)|dy < Lﬂ . ‘y’lwdy <L (6.1.11)
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We may thus apply similar arguments as in the proof of to arrive at

T-(28) e !

<L<|y<2L ‘ﬁ(l)(y)rdy)i S L—(”f‘)lm <fRz K5+ ((90,(()(T — t>1i“))](y)|rdy) dt

T_(P/%)1+a
_1
<| Kol s 196, T = )58 s

T_(Lé‘*)ua

(J iy >JT(”/EG)M <J o()d )id
< ——=dy 2)|"dz t.
wi<ise [y['tP T (2A)e lyl<16L

Thus, it follows from (6.1.11)) and assumption (6.1.8) that

1 T_ # 1+a
([ ovwra) <e | Lidt < Lo,
L<lyl<2L T—(gt)"""

as desired.

Regarding the case 5 = 1, the proof is detailed in [76, Lemma 2.2], and it presents
nuanced differences from the preceding case, primarily because no longer holds.
However, in this specific situation, the kernel K is a Calderén-Zygmund operator (see

Section 2.2.1)), and hence |Kg * f|rom2) < | f|Lamz) for any f e LI(R?) and 1 < ¢ < 0.

By replacing the use of Young’s convolution inequality in (6.1.7)) by [Theorem 2.5, we can

derive
L<|y|<2L
r (et .
< f (J PV Ké_(y - Z)G)(Z)qb(Z(T — t)ﬁ)dz dy) dt
T—(g2)"" L<|y|<2L R2
(et L
< J\T_(,JLM)HQ (JRQ ‘@(Z)(ﬁ(Z(T — t)l+oz)dz| ) dt
1
< L*(1+a) (J |@(2)\rdz)
|2|<16L
) L%7(1+a)‘ (6.1.12)

This concludes the proof.

6.2 Proof of the local L” inequality

The goal of this section is to prove the local LP equality, which is fundamental to
the proofs of [Theorem 3.1/ and [Theorem 3.2, More precisely, if 6§ € C([0,T); H*(R?)) with
s > 1+ 3, is a solution of gSQG equation (1.0.1)), then for every n € C*(R? x [0,T)), it
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holds

fRQ 6z, ta) P (e, ta)d — f 6z, t)Pr(e, 1) dz

RQ

— f:ﬁg \H(x,t)|p5t77(:c,t)d:cdt+LQJRQ 10(z,t)[P(u - V)y(z, t)dadt, (6.2.1)

where 0 < t; < t3,T, p € [1,0). The proof of will be divided into two cases, each
corresponding to p € [1,2) and p € [2 o) due to the approach employed. This method
involves multiplying the equation ({1 with k = 0, by 0.]0.[P~2, with 6. = p. =0 where p.
represents the standard mollifier. Thus, when p € [1, 2], we need to modify our approach
to avoid division by zero, as there may be values of z € R? where 6.(z) = 0.

Before proceeding with the proof, let us recall that
HY(R?) — [’(RY), if s>1—> and p> (6.2.2)
p
and
H*(R?) — CF(R?), ifs>k+1. (6.2.3)
Thus, since s > 1 + (3, it follows that 6(t) € LP(R?) for all p € [2,00) and (t) € Co(R?) for
all t € (0, 7). Now, observe that since 6 is a solution of the gSQG equation, then

00F + (uF - V)0 = (uF - V)0 — p.« [(u- V). (6.2.4)

Next, let us commence with the proof of (6.2.1)).

Case 1: 2 < p < 0.
Let us start by multiplying (6.2.4) by 6°|6°|P=2 5, which is well-defined since p > 2.
Subsequently, integrating over the spatial variable and applying integration by parts, we

obtain

p

= L@ 0°16° [P 2n(z, t) (uf - V)0 dzx — JR 0%16° P20 (2, 1) [pe * (u - V)0]d. (6.2.5)

| ntevaderteopde = [ 16rte 0 - Dt s
R2 R2

where we used in the second term on the left-hand side that V-u = 0. Now, by integrating
on time tq,t5 € [0,T) and later applying integration by parts to the initial term on the
left-hand side, we get

JRQ 0% t2) (e t2) do - fR 0 (@) P ) de
_ f 2 JRQ |0 (z,t)[POn(z, t)dx — JRZ 10 (2, )P (u - V(s t)doe

—pJ J 0%16°|P~2(u® - V)0 dadt — f f 0°16° P *np. * (v~ V)0dzdt  (6.2.6)
R2 R2
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We proceed to analyze each of these terms separately. Focusing on the first two and third
terms on the left-hand side of ([6.2.6)), and recalling that n € C*(R? x [0,T)) and 6° — 6
in LP for all p € [2,0), we deduced that for all ¢ € [0, ?)

r

f 0 )P t)de — | 1Bl ta) P, t)d (6.2.7)
R2 R2
r

J yea('xatl)‘pn(xatl)dx - ‘9(557751)’1077(%751)0537»
R2

JR?2

and

rto
J f (a0, )t — | J 0(z, ) Poum(x, dadt.  (6.2.8)
RQ

t1
For the last term on the left-hand side of (6.2.6)), we start by recalling that since
6 e C([0,T); H(R?)) with s > 1 + 3, it follows that

0°(t) — 0(t) in H*(R?), ase — 0, Y te[0,T)
Moreover, since s > 1 + (3, it follows from that

B8 B
Jul p2ezy = | = VH(=2) 50 2gae) = [IE13 F(O) | 2y = 1A%0]|2qee) < (6]

Hs(R2),
which implies that
uf(t) — u(t) in L*(R?), ase — 0, YV te[0,T). (6.2.9)

Then, for all n € CX(R? x [0,T)), we obtain

P Vindo = | 1o Vs

< (1677 (u” - V) = 1017 (u - V)n][ o1

< 107 (- V) = 107" (u - V)l | + 167 (w - V) — [0 (w - V)n]| 2

< 167 ((u = w) - V)nllze + [[(10°] = [617) (w - V)nl|:

< 10122 IVl | ool [0 = w2 + [[16°[7 = O[] 2 [l | 2 [ V]| oo (6.2.10)

Since that 6(t) € L*(R?), Vn(t) € L*(R?), and u(t) — wu(t) in L*(R?) for all ¢ € [0,1),
the first term on the right-hand side of (6.2.10]) goes to zero. For the second term, notice
that

f(yefyp—\eypwx:f \ef\%dx—zf yeayp\eypdwf 6% da, (6.2.11)
R?2 R? R2 R2

since 0.(t) — 0(t) in L1(R?) for all g € [2,0) and t € (0,T), it follows that [#*[P — |#]7 in
L*(R?). Hence,

J|95|2pdaz—>J 67dr  and J|9€|p|e|pdx—>f O7dr,  (6.2.12)
R2 R2 R2 R2
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which implies that

|16°]P — |0P||2 — 0, as e — 0.

Plugging this back into (6.2.10)) and taking ¢ — 0, we conclude that

f 0P (s - V) — f 017 (u - V)dz,  for all pe [2,00). (6.2.13)
Setting g(t) := {5, (|6°[7 (v - V)n — 0P (u- V)n)dz, with t € [ty,t5], it follows from ([6.2.10)

and the that g is uniformly bounded by ¢[[0o 7 2, |0]| (¢, 12, +), Which is integrable
in [t1,%2]. Hence, it follows by the [Theorem 2.1| that

f f |6°1P (u® nd$dt—>f J 0|7 (u - V)ndxdt, for all pe [2,00).  (6.2.14)
R? R?

Combining (6.2.7)), (6.2.8), (6.2.13) and (6.2.14]) with (6.2.6]), we establish that for all
p € [2,00), it holds

f 0(z, ) Py (z, t2)d — f 0(z, 1) Pn(e, t1)de
Rz ]R2

to to
— f J om| 0P dxdt + J f 1017 (w - V)ndxdt
t R2

= phm [J 0%|6°|P2n V)dr — | 0°|16°1P 2nlp. + (u-V)0]dx | dt  (6.2.15)

R2
Now, note that the right-hand side of ({6.2.15) converges to zero as € — 0. Indeed,
since 7 € C(R? x [0,T)) and 6(-,t) € Co(R?) for all ¢ € [0,T), from , it follows that
for each t € [0,7"),0°(-,t) — 6(-,t) uniformly on compact subsets of ]RQ. Then, we deduce
that |6°(t)|P~In(t) € L*(U), for all t € [0,T), where U is a subset of suppn(z,t) x [0,T).

Therefore, applying Holder and Young’s convolution inequalities, it is established that

f 0°16° P2 (u - V)6 da — f 0°16° 1P *nlp * (u - V)6]dx
RZ

RZ

JR2 0°16° P2 n((uf - V)07 — [pe * (u - V)0)])dx

< 071l | oo e | (0" - V)0 — [pe = (u - V)O)|| 1 g2y

< I - V)O" = (u” - V)O[ 12 + [[(u” - V)0 — (w- V)0 |11 + [|(w- V)0 = pe = (w- V)01
< w2V (07 = O)[[ 12 + [|u® = ul[r2[[VO[ L2 + [|(w - V)6 — pe + (u- V)| 11

< 0= [V (67 = O)|| 2 + [|u — ul|22]|VO|[r2 + [[(w- V)0 — pe + (w-V)O|[r1,  (6.2.16)

HS
where in the last inequality we used that since s > 1 4+ § holds

€ —1+8 pe 8 3 8 e
[ 22y = [ F(VH(=A)426%) |12 = [|1€]2F(6°)]|12 = || F(AZ67)]| 2
— |AZ6| 2 < ||6°] |z < 16|z (6.2.17)



83

Therefore, invoking ([2.2.6)) and (6.2.17)), we obtain that ||u® — u||;2 — 0 and ||V(6° —
0)||z: — 0 as ¢ — 0. For the last term in (6.2.16]), we observe that (v - V)6 € L'. Indeed,
from Holder’s inequality, it follows that

1w V)0l < [Jull2|IVOllre < [IAP0]]12|IV0l |2 < 1017 < oo

Hence,
P (u-V)0 — (u-V)f, in L', ase — 0.

Plugging all information above in (6.2.16)) and taking ¢ — 0, we obtain

J 95]95]”_277(x,t)(u5-V)G‘de—J 0%16° P20 (2, t)[pe * (u - V)0]dx| — 0.
R? R2
Furthermore, it follows from ([6.2.16]) and the maximum principle (Lemma 2.2)) that
h(t) = J O(z, )% (x, 1)|0° (2, 1) P2 n(z, t) (u® - V) (2, t)dx, t € [t1,ta],

R2

is uniformly bounded in time by ¢|[6o[7 2,6t t5,5+). Then, by the [Theorem 2.1, we
obtain that

JJ@%@%P? Qadxdtf f 0°16° 1P 2n[p. * (u - V)O]|dzdt — 0.  (6.2.18)
R2 R2

Combining (6.2.15)) and (6.2.18)), and taking ¢ — 0, we obtain , le.,

J}R? 0(z, to)[Pn(z, to)dx — J 10(z,t1)[Pn(z, t1)dx

R?

_ f:LQ |9(x,t)|pé‘t77(x,zf)dagdt+L"’JR2 107 (2, 1) (u - V)n(x, t)dadt. (6.2.19)

Case 2: 1 <p <2

Here, we proceed with the proof of the local L? inequality as outlined for
the range 1 < p < 2. Caution is necessary when multiplying (6.2.4 by 0.16.1P~2, as the
mollified function 6° might have real roots. Therefore, it is crucial to adjust the proof to

accommodate this specific aspect of this case.
Fix t1,ty € [0,T). Let n € C*(R? x [0,T)) and define the set K as follows:

K ={(x,t) R2x [0,T) / n(x,t) # 0} := suppmn,

since 7 is a continuous function, it follows that n(y) =0, V y € 0K.

Now, for each § > 0, we define
K.s5:={(x,t) € K nsuppb. : dist((x,t), d(K nsuppb.)) = d}, (6.2.20)

and

. 1, Zf (l’,t) € Ka,é;
Ves = { 0, if (x,t) € (K nsuppb.)-. (6.221)
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Let us extend v, s to all of R? x [0,T') as a continuous and affine function. Namely, for each
(z,t) € K50 (K nsuppf), take (2/,t') € K. 5 such that (2/,t') = inf ger_; (v, 5) — (2, 1)],
which is guaranteed by the fact that K. is a compact set. Now take the line passing
through the points (2/,¢') and (z,t), and let (2”,t") be the first point where it intersects
the boundary of K n supp 6., denoted as d(K n suppb;).

Note that (2”,t") = inf(, eca(knsuppo.) | (¥, 5) — (2, 1')]. Indeed, suppose that there is
another point (xg,t) € (K n suppb.) such that

dist((zo, to), (z', 1)) < dist((z", "), (z', 1)) = 0,

then it implies based on the characterization of 0K, s that (x¢, ) € int(K.5), which is a
contradiction.
Now, let A¢z) € [0, 1] be such that

(z,t) = (', 1) + Aapl(2",t") — (', 1)],

i.e.

((z, 1) = (1)) - (", 1") = (@, 1) _ (&, 1) = (1)) - (2", 2") = (&', 1))

Awt) = (2", ") — (', )] - 52 ’

where we utilized the fact that since (2”,t") € (K nsupp.) and (2/,t') € 0K, 5, it follows
that |(z”,t") — (2',t')| = 0. Therefore, for each (x,t) € K5 n (K nsupp@), we can define

Ves(@,t) = Yos(a’ 1) + Ay [Ves (2", ") — b s5(2,1)]
=1~ Agy), forall z e KI5 n (K nsuppf),

Note that, since (z,t) — Ay is an injective function, this ensures that 1. s(x,t) is a
well-defined function for all (z,t) € KZ; n (K nsupp0.). Therefore, we can extend 1. s to
all of R? x [0,T) as follows:

]_, if (I, t) € K575
Ves = 1 =A@y, if (z,1) € K50 (K nsuppb,) (6.2.22)
0, if (z,t) € (K msuppb.)°.

Additionally, based on straightforward calculations, we can deduce that
| Dz, yte,s(x, )| = (15, for all (z,t) € K5 n (K nsupp6.), (6.2.23)
and
Ves(x,t) = Lgnsuppo. (7,1) as & — 0, for all (x,t) e R? x [0, 7). (6.2.24)
Let us recall that 0. satisfies

0,0. + [u. - V10, = (u. - V)0. — p. = [(u- V). (6.2.25)
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Thus, we multiply ((6.2.25]) by 6.|6.[P~*nv. s, which is well-defined since supp ¢ s < supp 0.,

integrate over x in R? and later, apply integration by parts.

1 g, 1 Py .
]; J;R? 77(9177 t)ws,t;(xa t>at|9£($7 t)’ dr P J;R? ‘95(1', t)‘ (ue V)(’?(ﬂfa t)we,t?(x? t))dl’
= f 05|95|p_2771/}s,6(u5 : V)dil‘ - f 06|96|p_27]¢5,6[p5 * (11 ) V)Q]dl’,

R2 R2

where we used on the second term on the left-hand side, that V - u = 0. Thus, by using
the product rule to the second term on the left-hand sideE| , we obtain

1 1 1

f n. 5346 [Pdz — f sl (. - Vinde — f nI6.(u. - V)b da

D Jre2 P Jr2 D Jr2

=f 0,107 2. o (1. - V)6odir — J 010172 5[ + (u - V)0]dz. (6.2.26)
R2 R2

where in the last expression we integrate over t € [t1, t5] and subsequently apply integration

by parts, together with the product rule to the first term on the left-hand side and obtain

JRQ n(x,ta). 5(w,t2)|0(z, t2) [Pdx — J

R

to to
— J J 0[P Osie sdadt — J f Ve 510 P Omdadt
t1 R2 t1 R2

to to
_ f ¢€,5|ea|p(u€.vmdxdt—f f D07 (1. - V). yddt
t1 R2 t1 R2

77(:137 t1)¢€75(x> t1)|9($a t1)|pd$

to to
—p f f .10, 2t g (. - V)6oddt — p f f 0,107 2t s[p. » (u - V)0]dudr.
t1 JR2 t; JR2
(6.2.27)

The next goal is to prove that both the third and sixth terms on the left-hand side
of (6.2.27) are null. Let us start by analyzing the third term. Remember that since

K¢sn (K nsuppt,) is a compact set, any cover of the set admits a finite subcover.

Hence, without loss of generality, we can assume there are a finite number of points
(x1,t1), ..., (zp,tn) € (K nsuppb.),n € N, such that

K0 (K nsuppb.) € K50 (K nsuppf,) © U Bos(zi, t;),
i=1

where Bs(x;,t;), for i = 1,...,n, is a ball centered at (z;,t;) with radius §. We now recall
that the Lebesgue Differentiation Theorem (LDT) (see [Theorem 2.2)) holds for almost
everywhere (z,t) € R?x [0, T). Consequently, the set  := {(x,t) € R*x[0,T) | LDT holds}

is a dense subset in R? x [0,T). Therefore, for each i = 1,...,n, we choose (%;,t;) €

1 Note that the product 7t s may not be derivable because 1. 5 is not a smooth function. Therefore, if

necessary, we take a sequence of mollifying functions @_/Jg s = Pc * s, where p¢ is a standard mollifier
and later, we take the limit as ( — 0, to obtain ({6.2.26)).
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Q N Bys(w4,t;), which implies that the union of the sets Bss(#;,1;) forms a new cover for
K5 n (K nsuppf.). Thus

£

K50 (K nsuppb.) < U Bss(Z:, ;). (6.2.28)
i=1

Thus, recalling that supp ¢ 5 = K5 n (K nsupp#.), invoking (6.2.23) and (6.2.28)), and
applying the Lebesgue Differentiation Theorem, we deduce that

to
[ n(x,t>|eg<x,t>|patwe,5<x,t)dxdt\
t1 R2

lim
0—0

1
< lim | = f (s D)6, 1) Pdadt
6-0 | 4 Ksc’ém(KmsuprE)
> 1
<COlim |62 ) — n(x,t)]0:(x,t)|Pdxdt
=0 ;’B%(l‘i’ti” Bss(%4,t:)

=1

— 0. (6.2.29)

Hence, we obtain

to
lim f f 02, )10 (x, £) Posn s (z, ¢)dadt — 0.
t1 R2

6—0

The approach for the last term in the left-hand side of (6.2.27)) is identical to the

approach previously applied. Then, we also can conclude that

lim er J n(z, )0 (z,t)|P (e - V) 5(z, t)dzdt = 0. (6.2.30)
t JR2

0—0

Plugging (6.2.29) and (/6.2.30) in (6.2.27)) and taking the limit § — 0, we obtain

f (s )10 (2, 1) P — f (s 0010 (2, 41) P
K nsupp 6; K nsupp 0,

to
- J J o, D)0 (x, )P dudt — f 0., )P (w. - V), t)dwdt
t1 JKnsuppbe R2
to
= PJ f 0. (x,1)|0-(z, )P0 (2, t) (v, - V)0.(z, t)dxdt
t1 JKnsupp .

_p£2 L{ 0 0.(x, )]0 (z,)|P*n(z, )[pe * (0 - V)O(x,t))]dzdt (6.2.31)

It should be noted that (6.2.31) is analogous to (6.2.6)) for the case where 2 < p < 0.

Consequently, this enables us to replicate the same argument, leading to the conclusion
that for all 1 < p < 2, it holds

fn@ 0(z, t2)[Pn(z, to)dx — f 10(x,t1)|Pn(x, t1)dx

R2

- ftszQ |9(x,t)lpém(x,t)d.ocdtJrf:fR2 10(z, t)[P(u - V)n(z, t)dzdt. (6.2.32)
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where ty,t, € [0,T) and n € CX(R? x [0,7T)). Therefore, we conclude the proof of
for all 1 < p < o0.

We highlight that, choosing n(z,t) = h(x)y(t) for all (x,t) € R? x [0,T), where
h € C*(R?) and ¢ € C*®((0,T)) such that ¥ (t) = 1 for all ¢ € [t;,t5], we obtain from

(6.2.19) the equality (/6.2.33]) invoked in the proof of [Theorem 3.1| and [Theorem 3.2| More
precisely,

L@ |0(z, to)|Ph(x)dx — J]RQ 0(z, t1)|Ph(x)dxdt = LQ L@ 10(z,t)|P(u- V)h(x)dzdt, (6.2.33)

where p € [2, ).
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