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Resumo
Questões relacionadas à existência de soluções suaves globais no tempo ou à possibilidade
de desenvolverem singularidades em tempo finito para determinadas equações na dinâmica
dos fluidos podem ser desafiadoras e complexas. Neste trabalho, analisamos possíveis
cenários de formação de singularidade autossimilar para a equação quase geostrófica de
superfície generalizada (gSQG) em duas dimensões. Mostramos que, sob uma condição
no crescimento da norma Lr do perfil autossimilar e seu gradiente, o perfil autossimilar
é identicamente zero ou seu comportamento assintótico Lp pode ser caracterizado, para
p e r adequados, em intervalos apropriados do parâmetro autossimilar. Este resultado
generaliza e melhora o resultado análogo provado para a equação SQG em [76], e recupera
os resultados provados em [9], relativos às soluções globalmente autossimilares da equação
gSQG. Também analisamos a equação gSQG com dissipação fracionária, generalizando
o resultado provado em [13], o qual exclui a possibilidade de singularidade globalmente
autossimilar em tempo finito para a equação SQG dissipativa, sob certas condições no
perfil. Mais precisamente, assumindo que o gradiente do perfil autossimilar decai a zero
no infinito e a parte simétrica do gradiente da velocidade autossimilar é limitada nos
pontos de máximo do gradiente do perfil autossimilar, provamos que o perfil autossimilar
é identicamente nulo em R2.

Palavras-chave: Equação gSQG, Laplaciano Fracionário, Potencial de Riesz, Soluções
Autossimilares, Formação de Singularidade.



Abstract
Questions related to the existence of global smooth solutions over time or the possibility
of developing singularities in finite time for certain equations in fluid dynamics can
be challenging and complex. In this work, we analyze possible scenarios of self-similar
singularity formation for the generalized surface quasi-geostrophic equation (gSQG) in two
dimensions. We show that, under a condition on the growth of the Lr norm of the self-
similar profile and its gradient, the self-similar profile is identically zero or its asymptotic
Lp behavior can be characterized, for suitable p and r, in appropriate intervals of the
self-similar parameter. This result generalizes and improves the analogous result proven
for the SQG equation in [76], and recovers the results proven in [9], related to globally
self-similar solutions of the gSQG equation. We also analyze the gSQG equation with
fractional dissipation, generalizing the result proven in [13], which excludes the possibility
of globally self-similar singularity in finite time for the dissipative SQG equation, under
certain conditions on the profile. More precisely, assuming that the gradient of the self-
similar profile decays to zero at infinity and the symmetric part of the self-similar velocity
gradient is bounded at the maximum points of the self-similar profile, we prove that the
self-similar profile is identically zero in R2.

Keywords: gSQG equation, Fractional Laplacian, Riesz Potential, Self-similar solution,
Blowup.



List of symbols
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|α| size of the multi-index α P Nn
0 , |α| “

řn
i“1 αi.

xα power of x P Rn of order |α| with α P Nn
0 , xα “

śn
i“1 x

αi
i .

x ¨ y inner product of points x, y P Rn, x ¨ y “
řn
i“1 xiyi.
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2
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2
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Bαu partial derivative of u of order |α|, α multi-index, Bαu “ Bα1
1 B

α2
2 ¨ ¨ ¨ Bαnn u.

Btu partial derivative of u with respect to t.

∇u Jacobian matrix of the vector field u “ pu1, u2, . . . , unq.

∇ ¨ u divergence of the vector field u “ pu1, u2, . . . , unq.

f |K restriction of the function f to the set K.

χΩ characteristic function of Ω.

f̂ , F(f) Fourier transform of the function f .

f ˚ g convolution between the functions/distributions f and g.

Λs Fractional Laplacian of order s ě 0.

p´∆q´ s
2 Riesz potential of order s ě 0.

xK perpendicular vector of x P Rn.

C8c pRnq space of smooth functions in Rn with compact support.

CλpΩq space of λ-Hölder functions in Ω, 0 ă λ ă 1.

C1,λpRnq space of functions that are C1pRnq with Hölder continuous first deriva-
tives of order α for 0 ă λ ă 1.

CkpRnq space of functions f with Bαf continuous for all |α| ď k, k P N.



W k,ppΩq Sobolev space in Ω.

SpRnq space of Schwartz functions in Rn.

S 1pRnq space of tempered distributions in Rn.

LppRnq Lebesgue space of p-integrable functions in Rn.

LplocpRnq Lebesgue space of locally p-integrable functions in Rn.

Cpr0, T s; Xq space of time-continuous functions with values in the Banach space X.

A À B means that A ď CB for some constant C ą 0.

A „ B means that both A À B and B À A hold.
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1 Introduction

Fluid dynamics is an interdisciplinary field that uses concepts from physics and
mathematical tools to describe the flow of fluids, whether in a liquid or gaseous state,
under various conditions and subject to the influence of external forces. Essential for
understanding meteorological and oceanographic phenomena, fluid dynamics enables the
description of fluid behavior over time, see [65].

For certain equations in fluid dynamics, answering questions about the existence of
global smooth solutions on time or the possibility of developing singularities in finite
time can be challenging and complex. Among these equations, the 3D incompressible
Navier-Stokes equation stands out, modeling the movement of viscous incompressible
fluids, proposed by Claude-Louis Navier and George Gabriel Stokes in the 19th century.
The global well-posedness of these equations is one of the seven Millennium Prize Problems
proposed by the Clay Mathematics Institute (see [34]) in 2000, highlighting it as one of the
most significant challenges in the analysis of Partial Differential Equations and attracting
the attention of notorious researchers in this field.

Considering zero viscosity in the Navier-Stokes equations, we obtain the 3D incom-
pressible Euler equations, which characterize the movement of ideal fluids which are
incompressible fluids that offer no resistance to shear forces and have constant density. The
problem of global well-posedness for the incompressible 3D Euler equations also remains
open and is of great relevance. Recently, it was proven in [32] that solutions in C1,α can
develop singularity in finite time. For a well-detailed summary of the available results,
we refer to [31]. Furthermore, various numerical experiments indicate the possibility of
singularity formation in finite time, as seen in [38, 50, 51, 57, 58].

The issue of global well-posedness for the Euler equations in three dimensions can be
explored by studying equations that share similar analytical and geometric properties. A
notable example is the surface quasi-geostrophic (SQG) equation in R2, which models the
temperature or buoyancy of a strongly stratified fluid in a rapidly rotating regime in R2

(see [2, 40, 45, 55, 65]). Its similarity to the 3D Euler equations for incompressible fluids
has motivated its analytical study, which was initiated in [21]. Furthermore, the problem
of global well-posedness remains open (see [18, 23])

To advance the understanding of these equations, initial studies in [15] and [29] started
to analyze intermediate equations between the vorticity equation for incompressible and
ideal flows in R2 and the SQG equation. This investigation led to the development of
the generalized surface quasi-geostrophic equations in R2. This reflects the complexity
involved in studying the global well-posedness of solutions in fluid dynamics, emphasizing
the relevance of the study conducted in this project on self-similar solutions. In Section 2.3,
it is observed that these types of solutions satisfy the blowup criteria in the sense can that
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develop singularity in finite time.
We consider the (dissipative) generalized surface quasi-geostrophic equation (gSQG) in

R2 given by
#

θt ` u ¨∇θ ` κΛηθ “ 0, x P R2, t ą 0,
u “ ´∇Kp´∆q´1`β

2 θ, x P R2, t ą 0,
(1.0.1)

where β, η P p0, 2q are fixed parameters, κ ě 0, θ “ θpx, tq is an unknown scalar function,
and u “ upx, tq denotes a velocity field. The latter is given in terms of θ according to
the second equation in (1.0.1), where ∇K “ p´B2, B1q, p´∆q´s{2, 0 ă s ă 2, is the Riesz
potential and Λη is the Fractional Laplacian (see Section 2.2.2 for definition). Invoking the
definition of the Riesz potential, we can also rewrite u as

upx, tq “ CβP.V.

ż

R2
Kβpx´ yqθpy, tqdy, (1.0.2)

where

Kβpxq “
xK

|x|2`β
, x P R2

zt0u, (1.0.3)

and Cβ is a constant depending only on β, see Section 2.2.2 for details.
To facilitate the understanding of notation during the development of the project, we

emphasize that in the dissipative case, that is, when κ ą 0, we will refer to equation (1.0.1)
as the dissipative gSQG equation and as the dissipative SQG when β “ 1. In the case
where κ “ 0, we will name it the gSQG equation, and when β “ 1, the SQG equation.

Note that when κ ě 0 β “ 0 and η “ 2, equation (1.0.1) reduces to the vorticity
formulation of the Navier-Stokes equations in R2, which is well-posed for any initial data
in L2pR2q (see [41, 54]). Now, if κ “ 0, considering β “ 0, equation (1.0.1) reduces to the
vorticity formulation of the 2D incompressible Euler equations, which is well-posed for
initial data belonging to HspR2q with s ą 2 (see [30, 78]).

Among the available results, local existence and uniqueness for the Cauchy problem
associated with gSQG equation in the range β P p1, 2q was shown in [14] for any initial
data in H4pR2q, and later improved in [43] to any initial data in HspR2q, with s ą 1` β.
An analogous local well-posedness result in HspR2q, s ą 1` β, for the more regular case
β P p0, 1s was shown in detail in [44, 77].

The dissipative gSQG equation was first introduced by Chae, Constantin, and Wu [16],
where they studied the global regularity of the intermediate equations between the 2D
Navier-Stokes equation and the dissipative SQG equation. Recently, this equation has
been intensively studied, and several results regarding local/global well-posedness have
been obtained. Specifically, in [60], the global well-posedness for the diagonal η “ β was
established. In [61], global well-posedness was achieved for the regime 1 ă β ă 2 and
2β ´ 2 ă η ă β. A recent work regarding the local well-posedness of the dissipative gSQG
equation was established in [46], which proved the existence and uniqueness of solutions
for arbitrary initial conditions in H1`β´ηpR2q, where η P p0, 1q and β P p1, 2q. For further
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information, references [16, 14, 56, 19] are recommended, especially [46] for a well-detailed
diagram summarizing the available results.

As mentioned earlier, an important class of (1.0.1) is when κ ą 0 and β “ 1, in which
case the system is reduced to the dissipative SQG equations.

In some functional spaces of interest, such as HspR2q and L8pR2q, the scale-invariance
of the norm of the solution of the dissipative SQG equation occurs when η “ 1. For
this reason, the study of this system is usually divided into three dissipation ranges:
subcritical (1 ă α ă 2), critical (η “ 1), and supercritical (0 ă η ă 1). The subcritical
case was well understood by Resnick [67], proving the existence of weak solutions and the
global well-posedness of the solution. Later, Constantin and Wu established in [24] that
any solution with a smooth initial value is smooth for all time. In the critical case, the
global well-posedness of the weak solution was established in [18, 23, 53], using different
approaches. We also refer to[7, 52]. Finally, in the supercritical case, the problem of global
well-posedness remains an open problem (see [23, 26, 46]). However, local well-posedness
for large data and global well-posedness for small data has been established in [25, 48, 62]
and [26, 47], respectively. In this direction, an important recent development is a result
by Coti-Zelati and Vicol in [79], which proves the existence of a range for η, dependent
on the H2pR2q and L2pR2q norms of the initial data, where the initial value issue for this
data is globally well-posed.

In addition to these analytical results, several computational studies were developed to
numerically investigate the possibility of finite-time singularity formation for the equation
(1.0.1) in specific scenarios. Starting with the SQG equation, [21] indicated a possible
finite-time singularity in the form of a hyperbolic closing saddle, a suggestion that was
later contested in [20, 22, 64] via further numerical tests, and eventually theoretically ruled
out in [27, 28]. On the other hand, in [70, 71], analyzing an alternative scenario proposed
by [42, 66], the authors found numerical evidence of a singularity occurring as a self-similar
cascade of filament instabilities. Regarding the gSQG equation, numerical simulations
were performed in [29, 59, 72] focusing on the evolution of patch-like initial data, i.e. given
by the indicator function of a spatial domain with smooth boundary [14, 36, 68, 69].

While a rigorous proof of the formation of such singularities is still not available,
these numerical studies provide a strong motivation to investigate further solutions of the
equation (1.0.1) that develop a finite-time singularity of self-similar type. In the dissipative
case, such solutions are defined with respect to the invariance under the following scaling
transformation

x, t, θ ÞÑ λx, ληt, λη´βθ,

with λ P R`, η P p0, 2q; i.e. if θ is a solution of (1.0.1), then

θλpx, tq “ λη´βθpλx, ληtq,

is also a solution. In the case κ “ 0, the equation (1.0.1) is invariant under the scaling
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transformation x, t, θ ÞÑ λx, λ1`αt, λ1`α´βθ, with λ P R`, α P R. Note that, in this case,
one of the scaling parameters does not come from the equation (1.0.1). We refer Section 2.3
for further details.

Precisely, we say that a solution θ of the dissipative gSQG on R2 and on a time interval
p0, T q is (globally) self-similar if θpx, tq “ θλpx, tq for all px, tq P R2 ˆ p0, T q and for all
λ ą 0. This implies that θ can be expressed as

θpx, tq “
1

pT ´ tq
η´β
η

Θ
˜

x

pT ´ tq
1
η

¸

for all px, tq P R2
ˆ p0, T q, (1.0.4)

for some function Θ : R2 Ñ R, which is called an associated self-similar profile. Similarly,
if κ “ 0, the (globally) self-similar of the gSQG equation, is given by

θpx, tq “
1

t
1`α´β

1`α
Θ
ˆ

x

t
1

1`α

˙

for all px, tq P R2
ˆ p0, T q, (1.0.5)

where Θ is the self-similar profile and α ą ´1 is called the scaling parameter.
To the best of our knowledge, the only available result concerning globally self-similar

solutions of the dissipative SQG equation is due to Chae in [13]. In this work, under
the assumption that the gradient of the self-similar profile decays to zero at infinity and
the symmetric part of the self-similar velocity gradient is bounded at the points of the
maximum gradient of the self-similar profile, Chae proves that the profile associated with
the globally self-similar solution is constant in R2. We emphasize that in Chapter 4, we
extend this result to cover all pη, βq P p0, 2q ˆ p0, 2q.

Some results on the nonexistence of nontrivial globally self-similar solutions for the
SQG and gSQG equations were obtained in [12, 13] and [9], respectively, by imposing
suitable assumptions on the profile Θ and showing that Θ ” 0 as a consequence, thus
excluding the possibility of finite-time singularity of this type. More precisely, [12] assumed
Θ P Lp1pR2qXLp2pR2q with p1, p2 P r1,8s and p1 ă p2, whereas [13] considered Θ P C1pR2q

such that lim|x|Ñ8 |Θpxq| “ 0. Both [12] and [13] utilize a particle trajectory and back-
to-labels map approach to establish that Θ ” 0. In [9], the authors analyze the gSQG
equation in the case β P r0, 1s and obtain an analogous result as in [12] while relying on a
different technique centered on a local Lp inequality satisfied by the profile Θ.

We also mention the recent work [37], where the construction of a class of non-radial
globally self-similar solutions with infinite energy of the gSQG in the case β P p0, 1q was
obtained via suitable perturbations of a stationary solution. See additionally [10], where the
authors consider solutions of the SQG equation in R2 of the form θpx1, x2, tq “ x2fx1px1, tq

and construct a self-similar solution for the one-dimensional equation satisfied by f which
yields an infinite-energy solution for the SQG equation.

Beyond globally self-similar solutions, this thesis also studies the more general scenario
of solutions θ of the gSQG equation that satisfies an equality as in (1.0.5) only locally in
space, namely with px, tq P Bρpx0qˆp0, T q, for some ρ ą 0. Here, Bρpx0q denotes the ball in
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R2 centered at 0 and with radius ρ. In fact, since, for any x0 P R2, θ̃px, tq “ ´θpx´x0, T´tq,
px, tq P R2 ˆ p0, T q, is also a solution of (1.0.1) due to its spatial translation and time
reversal symmetries, we may consider more generally solutions θ of (1.0.1) that satisfy

θpx, tq “
1

pT ´ tq
1`α´β

1`α
Θ
˜

x´ x0

pT ´ tq
1

1`α

¸

for all px, tq P Bρpx0q ˆ p0, T q, (1.0.6)

for some ρ ą 0 and some profile function Θ : R2 Ñ R. We refer to such θ as a locally
self-similar solution.

Besides the several numerical computations, the continuation criteria available for
the dissipative SQG equation and gSQG equation, when β P p0, 1s, also provide a strong
motivation to further investigate self-similar blowup. Namely, for the gSQG equation, the
global regularity criterion in the case β P p0, 1s was obtained in [15] for the norm of a given
solution in β-Hölder spaces, which generalizes a previous regularity criterion established
for the SQG in [21]. Specifically, [15] shows that r0, T q is a maximal interval of existence
for a solution θ of the gSQG equation within the class CσpR2q X LqpR2q, with σ ą 1 and
q ą 1, if

lim
tÑT

ż t

0
}θp¨, sq}CβpR2qds “ 8, (1.0.7)

where CγpR2q, 0 ă γ ď 1, denotes the space of γ-Hölder continuous functions on R2. For
the dissipative case, as far as known, the only available continuation criteria were obtained
in [16, Theorem 3.1]. Precisely, r0, T q is the maximal interval of existence for a solution θ
of the dissipative SQG equation within the class Cpr0, T q;HspR2qq, s ą 2, with T ă 8, if
and only if there exist p, r with 2

η
ă p ă 8 and 1 ă r ă 8 such that

lim
sÑT

ż s

0
||∇K

x θ||
r
Lpdt “ 8 with 2

p
`
η

r
ď η. (1.0.8)

A straightforward computation shows that if Θ P CβpR2q then condition (1.0.6) is indeed
consistent with the regularity criterion from [15] when β P p0, 1s. Namely, (1.0.6) implies
(1.0.7), and hence T represents a finite blowup time for θ in the class CσpR2q X LqpR2q,
with σ ą 1 and q ą 1. Similarly, this argument holds for the globally self-similar solution
(1.0.5) and the continuation criteria proved in [16, Theorem 3.1]. For further details on
this topic, we refer to Section 2.3.

Up to the present moment, no results have been obtained regarding the non-existence
of locally self-similar blowup or the asymptotic behavior of the profile in LppR2q space for
the dissipative gSQG equation. A significant challenge in this context is the analysis of
non-local operators, especially for the term Ληθ in the equation (1.0.1). Since the Fractional
Laplacian is a non-local operator in R2, and the condition (1.0.4) applies only within the
self-similar region, estimating Ληθ in the Lp norm outside the self-similar region becomes
challenging when relying on assumptions about the profile. Furthermore, in contrast to
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globally self-similar solutions, formulating an equation that describes the profile directly
from (1.0.1) seems not possible.

We point out that there are results concerning locally self-similar singularity scenarios
for the N -dimensional incompressible Euler equations, for N ě 3, see [6, 17, 75]. These
self-similar solutions for the Euler system are broadly applied in numerical simulations, for
instance, the works [3, 49, 59] indicate the potential occurrence of self-similar blowups at
a finite time through the examination of vortex filament models or high symmetric flows.
For the Navier-Stokes equations, the question about the self-similar solutions was raised
by Leray in 1934, and the mathematical proof for the nonexistence of self-similar solutions
was only established, in 1996, in [63]. We refer to [8] for a summary of the available results.

The analysis of self-similar blowup scenarios is more recent for the SQG equation. We
mention the result obtained in [76] that yields, similarly to the previous works for Euler
Equations [6, 75], suitable conditions on the self-similar profile under which the existence of
nontrivial Θ is only possible within an explicitly identified range of α, i.e. Θ must necessarily
be zero for α outside of this range. Moreover, any nontrivial profile corresponding to a
value of α in this range must satisfy a certain asymptotic characterization of its Lp average
over sufficiently large regions in the spatial domain, for some p ą 1. As a consequence,
this allows one to automatically exclude the existence of locally self-similar solutions with
sufficiently fast decaying profiles, while also guaranteeing the aforementioned asymptotic
characterization of the Lp average of certain non-decaying types of Θ.

This thesis is organized as follows, Chapter 2 is dedicated to recalling classical analysis
results regarding Lp space, Sobolev space, Singular integral, and others. Chapter 3 is based
on the paper [5], which was developed by the author in collaboration with his supervisor
and co-supervisor. This chapter is dedicated to the study of the locally self-similar solution
of the gSQG equation and it is divided into two sections, depending on the range of values
of the parameter β. Section 3.1 is committed to studying the case β P p1, 2q. Our goal
is to prove Theorem 3.1, which provides, under an assumption on the Lr growth of the
self-similar profile and its gradient, intervals of the scaling parameter where the profile is
identically zero or its asymptotic Lp behavior can be characterized, for suitable p and r.
Next, in Section 3.2, we present a similar result for β P p0, 1s in Theorem 3.2, assuming
only the growth bound for the profile, Θ. We emphasize that Theorem 3.2, also yields an
improvement in comparison to the analogous result from [76] regarding β “ 1. Specifically,
we allow for a larger range of possible values of the parameters r and γ under which
assumption (3.2.1) must be verified. Additionally, Theorem 3.2 includes as special case
the aforementioned result established in [9] concerning globally self-similar solutions of
the gSQG equation for β P p0, 1s, since every globally self-similar solution is also locally
self-similar.

The division of Chapter 3 into two cases, based on the parameter β, is necessary
because of the different conditions required for Θ in each case. This distinction arises from
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the specific approach required for estimating the component of u in (3.1.11), where the
integrand is restricted to the self-similar region, as detailed in Lemma 6.2 and Lemma 6.3.
For the less singular scenario, β P p0, 1s, we observe that the kernel Kβ, associated with the
velocity field u, satisfies ||Kβ ˚ f ||LqpBρp0qq À ||f ||LqpR2q for every f P LqpR2q and 1 ă q ă 8.
For β P p0, 1q, this result is obtained by invoking Young’s convolution inequality, together
with the integrability of Kβ near the origin. In the case β “ 1, this follows from the
fact that Kβ is a Calderón-Zygmund operator (see Section 2.2.1). On the other hand, for
β P p1, 2q, Kβ is neither a Calderón-Zygmund operator nor integrable near the origin. To
address this challenge, we write Kβpxq “ ∇Kp|x|´βq and apply integration by parts in
Kβ ˚ θ, thus transferring one derivative to θ, and hence to Θ, when restricting θ to the
self-similar region. Therefore, in this case, stronger assumptions on the profile are required
than in the case β P p0, 1s. Specifically, an additional growth condition on the Lr norm of
∇Θ is needed.

In Chapter 4, we study the globally self-similar solution to the dissipative gSQG
equation and extend the result proved by Chae in [13, Theorem 3.1] to cover all β P p0, 2q,
beyond of the specific case of β “ 1. More precisely, in Theorem 4.1, under the assumption
that the gradient of the self-similar profile decays to zero at infinity and the symmetric part
of the self-similar velocity gradient is bounded at the points of the maximum gradient of the
profile, we conclude that the profile is identically null in R2, and hence, the non-existence
of globally self-similar blowup. In this case, the approach is made possible thanks to the
assumption that θ is a globally self-similar solution. Thus, by invoking (1.0.4) in (1.0.1),
we can derive the equation for the profile, Θ.

In Chapter 6, we provide a comprehensive proof of Lemma 6.2 and Lemma 6.3, as
well as the proof of the local Lp inequality (3.1.4), which are referenced in the proofs
of Theorem 3.1 and Theorem 3.2 in Chapter 3. Although the local Lp inequality is also
utilized in [76] and [9], its proof is not included in these references.

Finally, in Chapter 5, we summarize the original results obtained in this thesis and
discuss some interesting problems associated with self-similar solutions of the dissipative
gSQG equation that we plan to investigate further.
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2 Preliminary

In this chapter, we revisit several preliminary results employed in this thesis. We
commence by fixing the notation and revisiting fundamental concepts associated with Lp

and Sobolev spaces. The subsequent section delves into the fractional Laplacian operator,
the Riesz operator and the Riesz transform. Later, we bring up some results related to
these operators. For further details, see [4, 33, 35, 39, 73, 74].

2.1 Functional Spaces
Fix Ω Ă Rn an open set and 1 ď p ď 8. We denote by LppΩq the set of all measurable

functions for which the integral of the p-power of its absolute value is finite. More precisely,

LppΩq “ tf : Ω Ñ R | f is Lebesgue measurable with ||f ||LppΩq ă 8u,

where

||f ||LppΩq “

$

’

&

’

%

ˆ
ż

Ω
|fpxq|pdx

˙
1
p

, if 1 ď p ă 8,

ess supΩ |f |, if p “ 8.

The space LppΩq endorsed with the norm || ¨ || is a Banach space.
The Sobolev spaces Wm,ppΩq with m P N and 1 ď p ď 8, consist of all locally

integrable functions f : Ω Ñ R such that for each multi-index α with |α| ď m, Dαf , exists
in the weak sense and belongs to LppΩq. Well recall that Wm,ppΩq is a Banach space when
endowed

}f}Wm,ppΩq :“

$

&

%

´

ř

|α|ďm }D
αf}pLppΩq

¯
1
p 1 ď p ă 8;

max|α|ďm }Dαf}L8pΩq p “ 8
,

Another important space in the study of partial differential equations is the Schwartz
space, SpRnq. This space consists of smooth functions that, together with their derivatives,
decay faster than the reciprocal of any polynomial at infinity. More precisely, the Schwartz
space is defined as

SpRn
q :“ tf P C8pRn

q | @ α, β P Nn, }f}α,β ă 8u ,

where C8pRn
q is the function space of smooth functions from Rn to R and

}f}α,β :“ sup
xPRn

ˇ

ˇxαpDβfqpxq
ˇ

ˇ

are the so-called Schwartz seminorms. We have that SpRnq is a Fréchet space with the
topology defined by the Schwartz seminorms. We denote S 1pRnq the dual space of SpRnq.
The element of S 1pRnq are called tempered distribuitons.
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2.2 Classic Analysis Results
In this section, we review some analysis results related to convolution of functions, Lp

inequality, and Sobolev Space embeddings. Let us initiate our discussion by recalling the
definition of convolution of two functions.

Let f, g : Rn Ñ R be measurable functions. We define the convolution of f and g,
denoted by f ˚ g, as the following integral:

pf ˚ gqpxq “

ż

Rn
fpyqgpx´ yqdy, x P Rn, (2.2.1)

whenever this integral exists.
The mollifiers are a useful tool in mathematical analysis for smoothing out and

approximating functions with irregularities or singularities via convolution. To define them,
consider φ P C8pRnq given by

φpxq “

#

Ce´1{p1´|x|2q, if |x| ă 1,
0, if |x| ě 1.

where C is a constant such that
ş

Rn φpxqdx “ 1. Now, for each ε ą 0, consider the following
function

φεpxq “
1
ε
φ

ˆ

x

ε

˙

. (2.2.2)

We call φ the standard mollifier and tφεuεą0 the mollifying family. The functions φε are
C8 and satisfy

ż

Rn
φεpxqdx “ 1,

and
supppφεq Ă Bp0, εq.

For f P L1pRnq, we define

fεpxq “ pφε ˚ fqpxq “

ż

Rn
φεpx´ yqfpyqdy, x P Rn.

The family tfεuεą0 satisfies the following properties:

a) fε P C8pRnq.

b) fε Ñ f a.e. as εÑ 0.

c) If f P CpRnq, then fε Ñ f uniformly on compacts subsets of Rn as εÑ 0.

d) If 1 ď p ă 8 and f P LppRnq, then fε Ñ f in LppRnq as εÑ 0.

Next, let us see several inequalities regarding the LppRnq space. Let us start with
Young’s convolution inequality.
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Proposition 2.2.1. (Hölder Inequality) Assume 1 ď p, q ď 8 such that 1
p
` 1

q
“ 1.

Then, if u P LppRnq and v P LqpRnq, we have uv P L1pRnq and
ż

Rn
|uv|dx ď ||u||LppRnq||v||LqpRnq.

Proposition 2.2.2. (Interpolation inequality) If 1 ď p ă q ă r ď 8, then LppRnq X

LrpRnq Ă LqpRnq and

||f ||LqpRnq ď ||f ||
λ
LppRnq||f ||

1´λ
LrpRnq, (2.2.3)

where λ “ p1
q
´ 1

r
qp1
p
´ 1

r
q´1 P p0, 1q.

Proposition 2.2.3. (Young’s convolution inequality) If 1 ď p, q, r ď 8, f P LppRnq

and g P LqpRnq then f ˚ g P LrpRnq for 1
p
` 1

q
“ 1

r
` 1 and

}f ˚ g}LrpRnq ď }f}LppRnq}g}LqpRnq.

Before presenting some results regarding the Sobolev embedding, let us recall the
definition of continuous embedding between two normed vector spaces.

Definition 2.2.4. Let X and Y be two normed vector spaces, with norms } ¨ }X and } ¨ }Y
respectively, such that X Ď Y. If the inclusion map (identity function) is continuous, i.e.,
if there exists a constant C ą 0 such that

}x}Y ď C}x}X , @ x P X,

then X is said to be continuously embedded in Y and we write X ãÑ Y.

The next theorems are classical results of the Measure theory.

Theorem 2.1 (Dominated Convergence Theorem). Let tfku8k“1 be a sequence of
integrable functions such that

fk Ñ f a.e.

Also, suppose
|fk| ď g a.e.,@ k,

for some integrable function g. Then
ż

Rn
fkpxqdxÑ

ż

Rn
fpxqdx

Theorem 2.2 (Lebesgue Differentiation Theorem). Suppose f P L1
locpRnq. For al-

most every x P Rn, we have

lim
rÑ0

1
|Brpxq|

ż

Brpxq

|fpyq ´ fpxq|dy “ 0,
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and
lim
rÑ0

1
|Brpxq|

ż

Brpxq

fpyqdy “ fpxq,

where Brpxq represents the ball of radius r centered at x, and |Brpxq| represents the volume
of this ball.

Now, we recall the Poincaré inequality.

Theorem 2.3 (Poincaré inequality). Let Ω Ă Rn be a bounded, connected, open subset
with a C1 boundary BΩ. Assume 1 ď p ď 8. Then there exists a constant C, depending
only on n, p and Ω, such that for each u P W 1,ppΩq holds

||u´ puqΩ||LppΩq ď C||Du||LppΩq, (2.2.4)

where puqΩ “ 1
|Ω|

ş

Ω upyqdy.

Now, let us introduce the Fourier transform and recall the Plancherel Theorem.

Definition 2.2.5. Suppose f P L1pRnq. The Fourier transform of f , denoted by f̂ or
Fpfq, is defined as

Fpfqpξq “ f̂pξq “

ż

Rn
e´2πiξ¨xfpxqdx, ξ P Rn.

Theorem 2.4 (Plancherel theorem). Let f P L2pRnqXL1pRnq. Then, f̂ P L2pRnq, and
the following equality holds:

ż

Rn
|fpxq|2 dx “

ż

Rn
|f̂pξq|2 dξ.

Thus, since F : L1pRnq X L2pRnq Ñ L2pRnq is an isometric application and L1pRnq X

L2pRnq is a dense subset in L2pRnq, it follows by density that there is a unique extension
of the Fourier transform on L2pRnq, which is also denoted by F . Therefore, we conclude
that for all f P L2pRnq holds

||Fpfq||L2pRnq “ ||f ||L2pRnq.

We refer to [39] for more details.
From the definition of the Fourier transform, we may define the Sobolev Hs space, for

s ě 0, as follows

Hs
pRn

q “ tf P S 1pRn
q | rp1` |ξ|2q s2 sf̂ P L2

pRn
qu,

and
||u||HspRnq :“ ||p1` |y|2q s2 û||L2pRnq.



24

The Sobolev space HspR2q is continuously embedded in LppR2q for all s ě 1 ´ 2
p
and

p P r2,8q (see [1, Theorem 7.58]), i.e., there exists a constant c ą 0 such that for any
f P HspR2q holds

||f ||LppR2q ď c||f ||HspR2q. (2.2.5)

We emphasize that given that if f P HspR2q s ě 0, it follows that

fε Ñ f in Hs
pR2
q, as εÑ 0.

where fε is the mollifying function of f . Moreover, it holds

||fε||HspR2q ď c||f ||HspR2q. (2.2.6)

for some constant c ą 0.
Finally, let us recall the Cauchy Principal Value (P.V.) of an integral. Let φ, be a

continuous function on Rn except at the origin, then the Cauchy principal value of the
integral of φ is defined as

P.V.

ż

Rn
φpxqdx “ lim

εÑ0

ż

RnzBεp0q
φpxq dx. (2.2.7)

where Bεp0q denotes the ball in Rn centered at the origin and with radius ε.

2.2.1 Singular Integral

Our goal in this subsection is to introduce the Calderón-Zygmund kernel and then
state the Calderón-Zygmund Theorem. Additionally, we demonstrate that the kernel
Kβ, associated with the velocity field, does not qualify as a Calderón-Zygmund kernel if
β P p0, 2qzt1u. For further details, we refer to [74].

Definition 2.2.6. We say that a function K, locally integrable away from the origin, is a
Calderón-Zygmund singular kernel provided it verifies the following three properties:

1. For each 0 ă ε ă N holds
ˇ

ˇ

ˇ

ˇ

ż

εă|ξ|ăN

Kpxq dx

ˇ

ˇ

ˇ

ˇ

ď c1,

where c1 is a constant independent of ε, N . Additional, lim
εÑ0

ż

εă|x|ăN

Kpxq dx exists

for each fixed N .

2. For all R ą 0 holds
ż

|x|ďR

|x||Kpxq| dx ď c2R, (2.2.8)

with c2 independent of R.



25

3. If y ‰ 0, then
ż

|x|ě2|y|
|Kpx´ yq ´Kpxq| dx ď c3,

with c3 independent of y.

Now, we see that if K is a Calderón-Zygmund kernel, then the operator T “ K ˚ f ,
with f P LppRnq for 1 ă p ă 8, is a continuous operator in LppRnq.

Theorem 2.5 (Calderón-Zygmund Theorem). Suppose that K is a Calderon-Zygmund
kernel and for f P C80 pRnq let

Tεfpxq “

ż

|x´y|ąε

Kpx´ yqfpyqdy, ε ą 0.

Then there is a constant c “ cp, depending only on p, so that

}Tεf}p ď c}f}p. (2.2.9)

Moreover, Tf “ limεÑ0 Tεf exists in LppRnq, 1 ă p ă 8, and it also satisfies the estimate
(2.2.9). Furthermore, Tεf and Tf are well-defined for arbitrary f in LppRnq, and the
norm inequality (2.2.9) holds for these functions as well Tε and T are called the Calderón-
Zygmund singular operator associated to K.

We highlight that the kernel associated with the velocity field u, given by Kβ “

xK|x|´p2`βq for x P R2, is a Calderón-Zygmund kernel if and only if β “ 1. To analyze the
condition outlined in (2.2.8). Fix β P p0, 2q. It follows, by using polar coordinates in R2,
that

ż

|x|ďR

|x||Kβpxq| dx “ lim
εÑ0

ż

εă|x|ďR

1
|x|β

“ lim
εÑ0

ż R

ε

ż 2π

0

1
rβ
rdrdφ “ 2π lim

εÑ0

ż R

ε

r1´βdr.

If β ‰ 1, we have
ż

|x|ďR

|x||Kβpxq| dx “ 2π lim
εÑ0

„

R2´β

2´ β ´
ε2´β

2´ β



“
2π

2´ βR
2´β. (2.2.10)

Now, if β “ 1, it follows from directly computation that
ż

|x|ďR

|x||Kpxq| dx “ R.

Combining the last two results, we conclude that

ż

|x|ďR

|x||Kβ| dx “

$

&

%

2π
2´βR

2´β, se β ‰ 1,

R, se β “ 1.

Therefore, notice that if β ‰ 1, it is not possible to obtain (2.2.8), and hence, we conclude
the statement.
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2.2.2 Non-local Operators

Non-local operators are characterized by their ability to gather information across the
entire domain of a function, unlike local operators, which only obtain information from
specific points or neighborhoods. A prime example of a non-local operator is the integral
operator, which analyzes the entire function through integration, while strong derivatives
are a typical example of local operators, focusing on point variations of the function.

In this section, we aim to introduce the Fractional Laplacian and the Riesz Potential
in Rn and use their properties to derive the equation (1.0.2).

For a given η ě 0, the fractional Laplacian of order η, represented as Λη :“ p´∆q η2 ,
extends the power of the classical Laplacian operator ∆ to non-integer values. This operator
can be defined in various forms, including through the Fourier transform. Specifically, for
a function f P SpRnq, it is established that

FrΛη
pfqspξq “ |ξ|ηFpfqpξq, ξ P Rn.

For η P p0, 2q, the Fractional Laplacian can also be interpreted as a singular integral
operator, expressed as

Ληfpxq “ dη,nP.V.

ż

Rn

fpxq ´ fpyq

|x´ y|n`η
dy, x P Rn and f P SpRn

q,

where P.V. represents the Value Principal, defined in (2.2.7), and the constant dη,n is given
by

dη,n “
4ηΓpn{2` ηq
π
n
2 |Γp´ηq|

.

where
Γpzq “

ż 8

0
tz´1etdt.

is the Gamma function. When n “ 2, we write dη,2 :“ dη.
Given α P p0, 2q and f P SpRnq, we recall that the Riesz operator can be defined by

Fourier transform as

Frp´∆q´α
2 f spξq “ |ξ|´αFpfqpξq, ξ P Rn.

We can also define the Riesz operator as an integral operator

p´∆q´α
2 fpxq “ cn,α

ż

Rn

fpyq

|x´ y|n´α
dy, x P Rn and f P SpRn

q, (2.2.11)

where the constant cn,α is expressed as

cn,α “ π
n
2 2α

Γ
`

n´α
2

˘

Γ
`

α
2

˘ .

When n “ 2, we used the notation c2,α :“ cα.
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Now, let us briefly discuss the expression (1.0.2). Firstly, we emphasize that by applying
∇K in (2.2.11) and invoking a consequence of the Dominated Convergence Theorem (see
[35, Theorem 2.27]), we have that the velocity field u can be represented as the following
integral operator:

upx, tq “ ´∇K
x p´∆q´1`β

2 θpx, tq “ ´∇K
x

ˆ

cβ

ż

R2

θpy, tq

|x´ y|β
dy

˙

“ cβP.V.
ż

R2
θpy, tq∇K

x

ˆ

1
|x´ y|2`β

˙

dy

“ CβP.V.
ż

R2
Kβpx´ yqθpy, tqdy, px, tq P R2

ˆ p0, T q, (2.2.12)

where Cβ “ ´βcβ and

Kβpxq :“ xK

|x|2`β
, x P R2

zt0u. (2.2.13)

Furthermore, we emphasize that ∇ ¨ u “ 0.

2.2.3 Auxiliary results for the gSQG equation

We start by revisiting the Positivity Lemma of the Fractional Laplacian. This lemma
is an essential tool for establishing the maximum principle for the equation (1.0.1). For
further detailed of the proof, we refer [26, Lemma 2.5].

Lemma 2.1 ([26], Lemma 2.5). Let 0 ď η ď 2. If θ,Ληθ P LppR2q with 1 ď p ă 8, then
ż

R2
|θ|p´2θΛηθdx ě 0.

The next result establishes that the Lp norms of the solution of (4.1), are conserved
for all time.

Lemma 2.2 ([67], Lemma 3.2). Let θ be a smooth solutions of the dissipative gSQG
equation (1.0.1) on R2 ˆ r0, T q, with initial data θ0 “ θp0q. Then, for all 2 ď p ă 8, it
holds

||θptq||Lp ď ||θ0||Lp , @ t P r0, T q.

Proof. Let us start the proof by multiplying (1.0.1) by |θ|p´2θ and then integrating it over
the spatial variables. This yields

ż

R2
pBtθq|θ|

p´2θdx`

ż

R2
|θ|p´2θpu ¨∇qθdx` κ

ż

R2
|θ|p´2θΛηθdx “ 0. (2.2.14)

For the first term on the left-hand side, we have
ż

R2
pBtθq|θ|

p´2θdx “
1
p

ż

R2
Btp|θ|

p
qdx “

1
p

d

dt

ż

R2
|θ|pdx “

1
p

d

dt
||θ||pLp .
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Then, we can rewrite (2.2.14) as follows
d

dt
||θ||pLp “ ´p

ż

R2
|θ|p´2θpu ¨∇qθdx´ κp

ż

R2
|θ|p´2θΛηθdx. (2.2.15)

Now, since ∇ ¨ u “ 0, we deduce

p

ż

R2
|θ|p´2θpu ¨∇qθdx “

ż

R2
pu ¨∇q|θ|pdx “ 0, (2.2.16)

where we used integration by parts. For the last term on the right-hand side of (2.2.15), it
follows from Lemma 2.1 that

´pκ

ż

R2
|θ|p´2θΛηθdx ď 0. (2.2.17)

Plugging (2.2.16) and (2.2.17) into (2.2.15), we obtain that
d

dt
||θ||pLp ď 0.

Therefore, we conclude the proof.

In the following, we summarize the available results regarding the local well-posedness
of solutions of the gSQG equation, as proved in [77, Theorem 1.1] for 0 ă β ď 1 and in
[43, Theorem 1.1] for 1 ă β ă 2.

Theorem 2.6 ([77, Theorem 1.1], [43, Theorem 1.1]). Let 0 ă β ă 2 and θ0 P H
spR2q

for s ą 1` β. Then there exists T “ T p||θ0||Hsq ą 0, such that the gSQG equation admits
a unique solution θ P Cpr0, T q, HspR2qq satisfying θp0q “ θ0.

For the local well-posedness of the fractionally dissipative gSQG equation, we compile
several results available in the literature in the following Theorem (see [16, 24, 27, 56, 60,
67, 79]). We also refer to [46] for a well-detailed summary of the available results.

Theorem 2.7. Let pη, βq P p0, 2q ˆ p0, 2q and θ0 P H
spR2q for s ą 1 ` β ´ η. Then

there exists T “ T p||θ0||Hsq ą 0, such that the dissipative gSQG equation admits a unique
solution

θ P Cpr0, T q, Hs
pR2
qq X L2

p0, T ;Hs` η
2 pR2

qq,

satisfying θp0q “ θ0.

Now, let us recall some continuation criteria available for the equation (1.0.1). We start
with the continuation criterion for the gSQG equation, as proved in [15], which generalizes
the result established in [21] for β “ 1 as follows:

Theorem 2.8 ([15], Theorem 1.5). Consider 0 ď β ď 1. Let θ be a solution of the gSQG
equation corresponding to the initial data θ0 P CδpR2q X LqpR2q with δ ą 1 and q ą 1. Let
T ą 0. If θ satisfies

ż T

0
||θp¨, tq||CβpR2qdt ă 8, (2.2.18)

then θ remains in CδpR2q X LqpR2q on the time interval r0, T s.
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For the dissipative gSQG equation, the first continuation criterion was proved in [11,
Theorem 1.1] when β “ 1, and later, observed in [16, Theorem 3.1] that it holds for all
β P r0, 1s, as follows:

Theorem 2.9 ([16], Theorem 3.1). Fix β P r0, 1s and η P p0, 1s. Let θ be a solution of
(1.0.1) with initial data θ0 P H

mpR2q with m ą 2. If there are indices p, r with 2
η
ă p ă 8

and 1 ă r ă 8 respectively such that

∇Kθ P Lrp0, T ;LppR2
qq for some p,r with 2

p
`
η

r
ď η. (2.2.19)

then θ remains in HmpR2q on [0,T].

2.3 Self-Similar solutions
Numerical simulations, as previously discussed, encourage further investigation of

solutions to the gSQG equation which exhibits a self-similar blowup. Therefore, this
section formally defines the locally and globally self-similar solutions to the gSQG equation
and dissipative gSQG equation. Here, we also analyze the continuation criteria mentioned
in Section 2.2.3.

Let us start by analyzing the self-similar solution of the gSQG equation. Such solu-
tions are defined regarding the invariance of gSQG equation under the following scaling
transformation px, t, θq ÞÑ pλx, λ1`αt, λ1`α´βθq, with λ P R`, α P R; i.e. if θ is a solution
of (1.0.1) with κ “ 0, then θλpx, tq “ λ1`α´βθpλx, λ1`αtq is also a solution. Specifically,
we say that, for a fixed scaling parameter α ą ´1, a solution θ of (1.0.1) on R2 and on a
time interval p0, T q is (globally) self-similar if θpx, tq “ θλpx, tq for all px, tq P R2 ˆ p0, T q
and for all λ ą 0. This is equivalent to being able to write θ as

θpx, tq “
1

t
1`α´β

1`α
Θ
ˆ

x

t
1

1`α

˙

for all px, tq P R2
ˆ p0, T q, (2.3.1)

for some function Θ : R2 Ñ R, which is called the associated self-similar profile.
In this work, we focus on studying the more general case of solution of the gSQG

equation that satisfies an equality as in (2.3.1) only locally in space, namely with px, tq P
Bρp0qˆ p0, T q, for some ρ ą 0 1. Here, Bρp0q denotes the ball in R2 centered at 0 and with
radius ρ. Since, for any x0 P R2, it follows that θ̃px, tq :“ ´θpx´x0, T´tq, px, tq P R2ˆp0, T q
is also a solution of the SQG equation in view of its spatial translation and time reversal
symmetries, we may consider a more general form of solution of the gSQG equation as
follows

θpx, tq “
1

pT ´ tq
1`α´β

1`α
Θ
˜

x´ x0

pT ´ tq
1

1`α

¸

for all px, tq P Bρpx0q ˆ p0, T q, (2.3.2)

1 Note that, in contrast to the identity θpx, tq “ θλpx, tq for all px, tq P R2 ˆ p0, T q and λ ą 0 satisfied
by θ in the globally self-similar case, the local condition (2.3.2) with x0 “ 0 implies instead that
θpx, tq “ θλpx, tq for all x P Bmintρ,ρ{λup0q, t P

`

0,min
 

T, T
λ1`α

(˘

, and λ ą 0.
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where x0 P R2.

Similarly, for the dissipative gSQG equation, such solutions are defined concerning the
invariance of (1.0.1) with κ ą 0, under the following scaling transformation px, t, θq ÞÑ
pλx, ληt, λη´βθq, with λ P R`, η P p0, 2q; i.e. if θ is a solution of (1.0.1) with κ ą 0, then
θλpx, tq “ λη´βθpλx, ληtq is also a solution. Repeating the same argument as before, we
can consider the more general globally self-similar solution, given by

θpx, tq “
1

pT ´ tq
η´β
η

Θ
˜

x´ x0

pT ´ tq
1
η

¸

for all px, tq P R2
ˆ p0, T q, (2.3.3)

where x0 P R2.

Now, using the continuation criteria mentioned in Section 2.2.3, let us prove that self-
similar solutions can develop finite-time singularity at time T . Assume that θ is a locally
self-similar solution of the gSQG equation and that the self-similar profile Θ P CβpR2q is
not null. We commence by recalling that

}θp¨, sq}CβpR2q “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

sup
x,yPR2

|θpx, sq|, if β “ 0,

sup
x,yPR2
x‰y

|θpx, sq ´ θpy, sq|

|x´ y|β
, if β P p0, 1q,

sup
x,yPR2

|∇θpx, sq|, if β “ 1.

Without loss of generality, suppose β P p0, 1q. Thus, it follows from Theorem 2.8 that

lim
tÑT

ż t

0
}θp¨, sq}CβpR2qds ě lim

tÑT

ż t

0
}θp¨, sq}CβpBρpx0qqds

“ lim
tÑT

ż t

0
sup

x,yPBρpx0q
x‰y

|θpx, sq ´ θpy, sq|

|x´ y|β
ds

“ lim
tÑT

ż t

0
pT ´ sq

β´α´1
1`α sup

x,yPBρpx0q
x‰y

ˇ

ˇ

ˇ

ˇ

Θ
ˆ

x´x0

pT´sq
1

1`α

˙

´Θ
ˆ

y´x0

pT´sq
1

1`α

˙
ˇ

ˇ

ˇ

ˇ

|x´ y|β
ds

“ lim
tÑT

ż t

0
pT ´ sq´1 sup

x,yPBρpx0q
x‰y

ˇ

ˇ

ˇ

ˇ

Θ
ˆ

x´x0

pT´tq
1

1`α

˙

´Θ
ˆ

y´x0

pT´sq
1

1`α

˙ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x´x0

pT´sq
1

1`α
´

y´x0

pT´sq
1

1`α

ˇ

ˇ

ˇ

ˇ

β ds.

Since x, y P Bρpx0q and s P r0, T q, it follows that x̃ “ px ´ x0qpT ´ sq´
1

1`α and ỹ “

py ´ x0qppT ´ sq
´ 1

1`α q belong to Bπpsqp0q, where πpsq “ ρpT ´ sq´
1

1`α . Thus, we have

lim
tÑT

ż t

0
}θp¨, sq}CβpR2qds “ lim

tÑT

ż t

0
pT ´ sq´1 sup

x̃,ỹPBπpsq
x‰y

|Θpx̃q ´Θpỹq|
|x̃´ ỹ|

ds (2.3.4)

ě lim
tÑT

ż t

0
pT ´ sq´1

||Θ||CβpBπp0qqds

“ ||Θ||CβpBπp0qq lim
tÑT
plnpT ´ tq ´ lnT q “ `8, if ||Θ||CβpBπp0qq ‰ 0.
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where we used that Θ P CβpR2q. Therefore, we conclude the proof of the statement.
Now, in view of Theorem 2.9, let us analyze the globally self-similar solutions of the

fractionally dissipative gSQG equation for β P r0, 1s. Assume that θ is a globally self-similar
solution to the dissipative gSQG equation and that the self-similar profile Θ P W 1,ppR2q

with 1 ď p ă 8 is not null. Thus, invoking (2.3.3) with x0 “ 0, it follows that

∇K
x θpx, tq “ ∇K

x

ˆ

1
pT ´ tq

η´β
η

Θ
ˆ

x

pT ´ tq
1
η

˙˙

“
1

pT ´ tq
η´β`1
η

p∇KΘq
ˆ

x

pT ´ tq
1
η

˙

.

Then, by changing the variable y “ xpT ´ tq´
1
η , we have

||∇x
Kθpx, tq||rLp “

ˆ
ż

R2

1
pT ´ tq

pη´β`1qp
η

ˇ

ˇ

ˇ

ˇ

`

∇KΘ
˘

ˆ

x

pT ´ tq
1
η

˙
ˇ

ˇ

ˇ

ˇ

p

dx

˙
r
p

“
pT ´ tq

2r
pη

pT ´ tq
pη´β`1qr

η

ˆ
ż

R2
|∇KΘpyq|pdy

˙
r
p

“ pT ´ sq
r
η
p 2
p
´η`β´1q

||∇KΘ||rLp .

Supposing that 0 ă ||∇KΘ||Lp ă 8 and integrating on time, we obtain
ż t

0
||∇Kθp¨, tq||rLpds “ ||∇KΘ||Lp

ż t

0
pT ´ sq

r
η
p 2
p
´η`β´1qds,

since 0 ď β ď 1 and 2
p
ă η, we can deduce that

lim
tÑT

ż t

0
||∇Kθ||rLpdt “ 8.

Therefore, we conclude that T is a potential instance of a finite-time blowup.
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3 Locally self-similar solutions of the gSQG
equation

The results presented in this chapter are based on the paper [5], which was developed
by the author during his Ph.D. program in collaboration with his supervisor and co-
supervisor. Here, our focus is on analyzing the locally self-similar solution of the gSQG
equation in R2, given by

θpx, tq “
1

pT ´ tq
1`α´β

1`α
Θ
˜

x´ x0

pT ´ tq
1

1`α

¸

for all px, tq P Bρpx0q ˆ p0, T q, (3.0.1)

where α ą ´1 is a scaling parameter. As usual, Bρp0q denotes the ball of radius ρ centered
at the origin, and Θ : R2 Ñ R the self-similar profile. According to Theorem 2.6, we can
consider the solution, θ, of the gSQG equation within the class Cpr0, T q, HspR2qq with
s ą 1` β.

In this chapter, we employ the techniques developed by [9] and [76] to study the globally
self-similar solution and locally self-similar solution to the SQG equation, respectively.
Specifically, we extend these results to the gSQG equation for all β P p0, 2q. Our main results
are split between the cases β P p0, 1s in Theorem 3.2, and β P p1, 2q in Theorem 3.1, with
each one requiring different conditions on Θ. These differences manifest in the estimates
of the component of the velocity field in the self-similar region, as outlined in (3.2.5) for
0 ă β ď 1, and (3.1.12) for 1 ă β ă 2. As mentioned in Chapter 1, when β P p1, 2q,
Kβ “ xK|x|´p2`βq is neither a Calderón-Zygmund operator (see Section 2.2.1) or integrable
near the origin. To circumvent this issue, we write Kβpxq “ ∇Kp|x|´βq and integrate by
parts in (1.0.2), thus transferring one derivative to θ, and hence to Θ inside the self-similar
region. Now, in the case β P p0, 1s, this is achieved thanks to the fact that the kernel Kβ

from (1.0.2) satisfies }Kβ ˚ f}LqpBρp0qq À }f}LqpR2q for every f P LqpR2q and 1 ă q ă 8.
Finally, in the case β “ 1, this follows from the fact that Kβ is a Calderón-Zygmund
operator, whereas for β P p0, 1q this is a consequence of Young’s convolution inequality
together with Kβ being integrable near the origin. Therefore, it is not necessary to impose
assumptions on the gradient of the profile.

We commence this chapter addressing the results for 1 ă β ă 2, followed by the results
for 0 ă β ď 1.

3.1 Case 1 ă β ă 2

In this section, we address the gSQG equation in the scenario where 1 ă β ă 2, aiming
to analyze possible scenarios of self-similar blowup. More precisely, our goal is to prove that
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under an Lr growth assumption on the self-similar profile and its gradient, we can identify
appropriate ranges of the scaling parameter where the profile is either identically zero,
which excludes blowup, or its Lp asymptotic behavior can be characterized for suitable
values of r and p, see (Theorem 3.1.)

Later, we present Corollary 3.2, which gives different conditions for the profile and its
gradient, as decaying at infinity or growth bound on the gradient, as that ensures that
assumptions in Theorem 3.1 holds. To prove this result, we also employ the techniques
developed by Xue in [76, Theorem 1.2].

Theorem 3.1. Fix β P p1, 2q. Suppose θ P Cpr0, T q;HspR2qq X L8p0, T ;L1pR2qq, with
s ą 1` β, is a solution to the gSQG equation (1.0.1) that is locally self-similar in a ball
Bρpx0q Ă R2, with scaling parameter α ą ´1 and profile Θ P C1pR2q. Fix also p ě 1, and
suppose that for some r ą p, γ1 P r0, rpβ ´ 1q ` 2q, and γ0 P r0, γ1 ` rs, it holds

ż

|y|ďL

|Θpyq|rdy À Lγ0 , (3.1.1)

and
ż

|y|ďL

|∇Θpyq|rdy À Lγ1 (3.1.2)

for all L sufficiently large. Under these conditions, it follows that if α ą β ` 2
p
´ 1 or

´1 ă α ă β´ 1` 2´γ0
r

then Θ ” 0. Moreover, if α P
”

β ´ 1` 2´γ0
r
, β ´ 1` 2

p

ı

then either
Θ ” 0 or Θ is a nontrivial profile, and it satisfies

ż

|y|ďL

|Θpyq|pdy „ L2´pp1`α´βq (3.1.3)

for all L sufficiently large.

As mentioned earlier, the proof is guided by a similar approach to that proposed in [9, 76]
and also starts from the local Lp equality satisfied by any solution θ P Cpr0, T q;HspR2qq X

L8p0, T ;LppR2qq, with s ą 1 ` β, of (1.0.1). Namely, for fixed 0 ă t1 ă t2 ă T and
p P r1,8q,
ż

R2
|θpx, t2q|

pηpx, t2qdx´

ż

R2
|θpx, t1q|

pηpx, t1qdx

“

ż t2

t1

ż

R2
|θpx, tq|pBtηpx, tqdxdt`

ż t2

t1

ż

R2
|θpx, tq|ppu ¨∇qηpx, tqdxdt, (3.1.4)

for every smooth and compactly supported test function η on R2 ˆ r0,8q, i.e. η P
C8c pr0,8q ˆ R2,Rq. See Section 6.2 for details of the proof.

The proof of Theorem 3.1 is divided into three cases, each corresponding to a particular
range of α, as described in the statement. In the scenarios where α ą β ` 2

p
´ 1 or

´1 ă α ă β ´ 1` 2´γ0
r

, the aim is to establish that
ż

|y|ÀL

|Θpyq|pdy À Lσ for some σ ă 0. (3.1.5)
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which implies that taking LÑ 8 it follows that Θ ” 0. In the first case, (3.1.5) is directly
derived from the local self-similarity condition, (3.0.1), combined with the maximum
principle Lemma 2.2. For another case, a similar inequality to (3.1.5) is obtained by
establishing a fundamental local Lp inequality from the local equality (3.1.4), see (3.1.22)
below. This is derived by suitably employing cut-off functions to split the velocity field
u into its restrictions to the self-similar region and the corresponding exterior. With the
help of assumptions (3.1.1), (3.1.2), and Lemma 6.2, we then estimate the terms on the
right-hand side of (3.1.22) to yield an upper bound for

ş

|y|ÀL
|Θpyq|pdy. Next, we redo

the estimates by using this new upper bound and bootstrap on this argument until we
eventually arrive at an upper bound as in (3.1.5) with a negative power of L. Redoing
the estimates by using this new upper bound and proceeding via bootstrapping on this
argument, we eventually arrive at an upper bound as in (3.1.5) with a negative power of
L.

In the final scenario, where β ´ 1 ` 2´γ0
r
ď α ď β ´ 1 ` 2

p
, it is necessary to prove

that every nontrivial profile Θ satisfies (3.1.3). The upper bound is guaranteed from the
estimate derived for the first range of α, whereas for the lower bound we proceed by
contradiction. Namely, assuming that such lower estimate does not hold, it follows that Θ
must satisfy the same local Lp inequality as in the second case, (3.1.22). Proceeding with
a similar analysis from this case, we then arrive at the contradiction that Θ ” 0.

Now, let us start the proof:

Proof. Without loss of generality, we may assume x0 “ 0. The proof is divided into three
different cases, each corresponding to a particular range for α within the interval p´1,8q.

Case 1: In the first scenario, let us prove that if α ą β ` 2
p
´ 1, then Θ ” 0 in R2.

Fix t P r0, T q and denote L “ ρpT ´ tq
´1

1`α . Invoking the local self-similarity of θ, namely
(3.0.1), and changing variables, it follows that

ż

|x|ďρ

|θpx, tq|pdx “
1

pT ´ tq
pp1`α´βq

1`α

ż

|x|ďρ

ˇ

ˇ

ˇ

ˇ

ˇ

Θ
˜

x

pT ´ tq
1

1`α

¸
ˇ

ˇ

ˇ

ˇ

ˇ

p

dx

“ CLpp1`α´βq´2
ż

|y|ďL

|Θpyq|pdy. (3.1.6)

Since s ą 1, it follows by Sobolev embedding that θp0q P HspR2q Ă Lp̃pR2q for every
p̃ ě 2. This implies that

}θptq}Lp̃ “ }θp0q}Lp̃ for all t P r0, T q and p̃ ě 2, (3.1.7)

see e.g. [67, Theorem 3.3]. Thus, by Hölder’s inequality 2.2.1, it follows that for all p P r1,8q
and p̃ ě maxt2, pu, we have

ż

|x|ďρ

|θpx, tq|pdx ď C}θp0q}Lp̃ for all t P r0, T q.
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Hence, we obtain from (3.1.6) that
ż

|y|ďL

|Θpyq|pdy ď CL2´pp1`α´βq. (3.1.8)

Since 2´ pp1` α´ βq ă 0, taking the limit as tÑ T in (3.1.8), which implies LÑ 8, we
deduce that Θ ” 0 in R2.

Case 2: In this scenario, we assume that ´1 ă α ă β ´ 1 ` 2´γ0
r

. Here we once again
show that Θ ” 0 in R2.

Take cut-off functions φ ρ
4
, φρ P C8pR2q with 0 ď φ ρ

4
, φρ ď 1, φ ρ

4
” 1 in Bρ{8p0q, φ ρ

4
” 0

in Bc
ρ{4p0q, and φρ ” 1 in Bρ{2p0q, φρ ” 0 in Bc

ρp0q. Fix t1, t2 P r0, T q. From (3.1.4), we
have in particular that
ż

R2
|θpx, t2q|

pφ ρ
4
pxqdx´

ż

R2
|θpx, t1q|

pφ ρ
4
pxqdx “

ż t2

t1

ż

R2
pupx, tq ¨∇φ ρ

4
pxqq|θpx, tq|pdx dt.

(3.1.9)

We proceed to analyze each term in (3.1.9), starting with the first two terms on the
left-hand side. By the local self-similarity of θ, (3.0.1), it follows that for i “ 1, 2

ż

R2
|θpx, tiq|

pφ ρ
4
pxqdx “

1
pT ´ tiq

pp1`α´βq
1`α

ż

R2

ˇ

ˇ

ˇ

ˇ

Θ
ˆ

x

pT ´ tiq
1

1`α

˙ˇ

ˇ

ˇ

ˇ

p

φ ρ
4
pxqdx

“
1

pT ´ tiq
pp1`α´βq´2

1`α

ż

R2
|Θpyq|pφ ρ

4
pypT ´ tiq

1
1`α qdy

“ l
pp1`α´βq´2
i

ż

|y|ď ρ
4 li

|Θpyq|pφ ρ
4
pyl´1

i qdy, (3.1.10)

where li “ pT ´ tiq´
1

1`α , i “ 1, 2.
To analyze the term in the right-hand side of (3.1.9), we first decompose the velocity

field u into a term involving the self-similarity region and another one outside of it. More
precisely, recalling that

upx, tq “ CβP.V.

ż

R2
Kβpx´ yqθpy, tqdy,

where
Kβpxq :“ xK

|x|2`β
, x P R2

zt0u.
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Thus, it follows that

upx, tq

“ CβP.V.

ż

R2
Kβpx´ yqθpy, tqφρpyqdy ` CβP.V.

ż

R2
Kβpx´ yqθpy, tqp1´ φρpyqqdy

“ CβP.V.

ż

R2

px´ yqK

|x´ y|2`β
θpy, tqφρpyqdy ` CβP.V.

ż

R2
Kβpx´ yqθpy, tqp1´ φρpyqqdy

“
1
β
CβP.V.

ż

R2
∇K
y

ˆ

1
|x´ y|β

˙

θpy, tqφρpyqdy ` CβP.V.

ż

R2
Kβpx´ yqθpy, tqp1´ φρpyqqdy

“ ´
1
β
CβP.V.

ż

R2

1
|x´ y|β

∇Kθpy, tqφρpyqdy ´
1
β
CβP.V.

ż

R2

1
|x´ y|β

θpy, tq∇Kφρpyqdy

` CβP.V.

ż

R2
Kβpx´ yqθpy, tqp1´ φρpyqqdy

“: up1qpx, tq ` up2qpx, tq ` up3qpx, tq, (3.1.11)

where the second to last equality follows by integration by parts. We now analyze each of
these terms. By the local self-similarity of θ, (3.0.1), we get

up1qpx, tq “ ´
1
β
CβP.V.

ż

R2

1
|x´ y|β

∇Kθpy, tqφρpyqdy

“ ´
Cβ

βpT ´ tq
2`α´β

1`α
P.V.

ż

R2

1
|x´ y|β

∇KΘ
˜

y

pT ´ tq
1

1`α

¸

φρpyqdy

“ ´
Cβ

βpT ´ tq
α´β
1`α

P.V.

ż

R2

1
|x´ pT ´ tq

1
1`αy|β

∇KΘpyqφρpypT ´ tq
1

1`α qdy

“ ´
Cβ

βpT ´ tq
α

1`α
P.V.

ż

R2

1
|pT ´ tq

´1
1`αx´ y|β

∇KΘpyqφρpypT ´ tq
1

1`α qdy

“ ´
Cβ

βpT ´ tq
α

1`α
V p1q

˜

x

pT ´ tq
1

1`α
, t

¸

, (3.1.12)

where

V p1qpx, tq :“ P.V.

ż

R2

1
|x´ y|β

∇KΘpyqφρpypT ´ tq
1

1`α qdy. (3.1.13)

Next, we analyze up2qpx, tq. Note that due to the presence of ∇φ ρ
4
pxq in the right-hand

side of (3.1.9), it suffices to consider x P R2 with ρ{8 ď |x| ď ρ{4. Then, since for each
such x we have |x´ y| ě |y|

2 for every |y| ě ρ{2, it follows that

|up2qpx, tq| ď C

ż

ρ
2ď|y|ďρ

1
|x´ y|β

|θpy, tq||∇Kφρpyq|dy

ď C

ż

|y|ě ρ
2

|θpy, tq|

|y|β
dy

ď C}θ}L8p0,T ;L2pR2qq ď C}θp0q}L2 , (3.1.14)

where in the last line we applied Hölder’s inequality and (3.1.7) with p̃ “ 2.
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Finally, for the last term in (3.1.11), up3qpx, tq, we proceed similarly as was done for
up2qpx, tq in (3.1.14) and obtain that

|up3qpx, tq| “ Cβ

ż

|y|ěρ{2

1
|x´ y|β`1 |θpy, tq|p1´ φρpyqqdy

ď C

ż

|y|ě ρ
2

|θpy, tq|

|y|β`1 dy ď C}θp0q}L2 . (3.1.15)

From (3.1.12), (3.1.14) and (3.1.15), we may then estimate the term in the right-hand
side of (3.1.9) as

ˇ

ˇ

ˇ

ˇ

ż t2

t1

ż

R2
|θpx, tq|ppupx, tq ¨∇φ ρ

4
pxqqdx dt

ˇ

ˇ

ˇ

ˇ

ď

ż t2

t1

ż

R2
|u1px, tq||∇φ ρ

4
pxq||θpx, tq|pdx dt`

ż t2

t1

ż

R2
|u2px, tq||∇φ ρ

4
pxq||θpx, tq|pdx dt

`

ż t2

t1

ż

R2
|u3px, tq||∇φ ρ

4
pxq||θpx, tq|pdx dt

ď C

ż t2

t1

1
pT ´ tq

α`pp1`α´βq
1`α

ż

R2

ˇ

ˇ

ˇ

ˇ

ˇ

V p1q

˜

x

pT ´ tq
1

1`α
, t

¸
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Θ
˜

x

pT ´ tq
1

1`α

¸
ˇ

ˇ

ˇ

ˇ

ˇ

p

|∇φ ρ
4
pxq|dx dt

` C

ż t2

t1

1
pT ´ tq

pp1`α´βq
1`α

ż

R2

ˇ

ˇ

ˇ

ˇ

Θ
˜

x

pT ´ tq
1

1`α

¸

ˇ

ˇ

ˇ

ˇ

p

|∇φ ρ
4
pxq|dx dt

ď C

ż t2

t1

1
pT ´ tq

α´2`pp1`α´βq
1`α

ż

R2
|V p1q py, tq ||Θpyq|p|∇φ ρ

4
pypT ´ tq

1
1`α q|dy dt

` C

ż t2

t1

1
pT ´ tq

pp1`α´βq´2
1`α

ż

R2
|Θpyq|p|∇φ ρ

4
pypT ´ tq

1
1`α q|dy dt. (3.1.16)

In view of the support of ∇φ ρ
4
, we may restrict the integrands in (3.1.16) to py, tq P

R2 ˆ rt1, t2s such that ρ{8 ď |y|pT ´ tq
1

1`α ď ρ{4. In particular, each such y satisfies
ρl1{8 ď |y| ď ρl2{4, where we recall that li “ pT ´ tiq´

1
1`α , i “ 1, 2. Then, for each fixed

y P R2 with ρl1{8 ď |y| ď ρl2{4, we define the set

Ay :“
"

t P rt1, t2s : ρ8
1
|y|
ď pT ´ tq

1
1`α ď

ρ

4
1
|y|

*

. (3.1.17)

After rearrangement, it is easy to see that

Ay Ă

«

T ´

ˆ

ρ

4|y|

˙1`α

, T ´

ˆ

ρ

8|y|

˙1`α
ff

,

so that its length satisfies |Ay| ď cα,ρ{|y|
1`α. Thus, denoting by 1Ay the indicator function
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of the set Ay, it follows from (3.1.16) that
ˇ

ˇ

ˇ

ˇ

ż t2

t1

ż

R2
|θpx, tq|ppupx, tq ¨∇φ ρ

4
pxqqdx dt

ˇ

ˇ

ˇ

ˇ

ď C

ż t2

t1

ż

ρ
8 l1ď|y|ď

ρ
4 l2

|V p1q py, tq ||Θpyq|p
|y|2´α´pp1`α´βq

1Ayptqdy dt

` C

ż t2

t1

ż

ρ
8 l1ď|y|ď

ρ
4 l2

|Θpyq|p
|y|2´pp1`α´βq

1Ayptqdy dt

ď C

ż

ρ
8 l1ď|y|ď

ρ
4 l2

|Θpyq|p
|y|2´α´pp1`α´βq

ż t2

t1

|V p1q py, tq |1Ayptqdt dy

` C

ż

ρ
8 l1ď|y|ď

ρ
4 l2

|Θpyq|p
|y|2´pp1`α´βq

ż t2

t1

1Ayptqdt dy

ď C

ż

ρ
8 l1ď|y|ď

ρ
4 l2

|rV p1qpyq||Θpyq|p
|y|2´α´pp1`α´βq

dy ` C

ż

ρ
8 l1ď|y|ď

ρ
4 l2

|Θpyq|p
|y|3`α´pp1`α´βq

dy, (3.1.18)

where

rV p1qpyq :“
ż t2

t1

|V p1qpy, tq|1Ayptqdt

“

ż t2

t1

ˇ

ˇ

ˇ

ˇ

ż

R2

1
|y ´ z|β

∇KΘpzqφρpzpT ´ tq
1

1`α qdz

ˇ

ˇ

ˇ

ˇ

1Ayptqdt. (3.1.19)

Plugging (3.1.18) into (3.1.9) and recalling (3.1.10), yields
ˇ

ˇ

ˇ

ˇ

l
pp1`α´βq´2
2

ż

R2
|Θpyq|pφ ρ

4
pyl´1

2 qdy ´ l
pp1`α´βq´2
1

ż

R2
|Θpyq|pφ ρ

4
pyl´1

1 qdy

ˇ

ˇ

ˇ

ˇ

ď C

ż

ρ
8 l1ď|y|ď

ρ
4 l2

|rV p1qpyq||Θpyq|p
|y|2´α´pp1`α´βq

dy ` C

ż

ρ
8 l1ď|y|ď

ρ
4 l2

|Θpyq|p
|y|3`α´pp1`α´βq

dy. (3.1.20)

Note that, by Hölder’s inequality and assumption (3.1.1), it follows that

l
pp1`α´βq´2
2

ż

R2
|Θpyq|pφ ρ

4
pyl´1

2 qdy ď Cl
pp1`α´βq´2
2

ˆ
ż

|y|ď ρ
4 l2

|Θpyq|rdy
˙

p
r

l
2p1´ p

r q
2

ď Cl
pp1`α´βq`pγ0´2q p

r
2 .

Since, by the current assumption on α, we have p1` α ´ βq ` pγ0 ´ 2q{r ă 0, then

l
pp1`α´βq´2
2

ż

R2
|Θpyq|pφ ρ

4
pyl´1

2 qdy Ñ 0 as l2 Ñ 8. (3.1.21)

Thus, denoting L :“ ρ
8 l1 and taking the limit in (3.1.20) as t2 Ñ T , so that l2 Ñ 8, we

obtain

1
L2´pp1`α´βq

ż

|y|ďL

|Θpyq|pdy ď C

ż

|y|ěL

|rV p1qpyq||Θpyq|p
|y|2´α´pp1`α´βq

dy ` C

ż

|y|ěL

|Θpyq|p
|y|3`α´pp1`α´βq

dy.

(3.1.22)



39

In what follows, we always assume that L is sufficiently large (equivalently, t1 is sufficiently
close to T ), so that assumptions (3.1.1) and (3.1.2) can be applied.

We now further estimate each of the terms on the right-hand side of (3.1.22) by splitting
the integrals according to a dyadic decomposition. For the first term, we make use of
Lemma 6.2 below, which yields a control on the Lr norm of the function rV p1q on a dyadic
shell under assumption (3.1.2). We obtain
ż

|y|ěL

|rV p1qpyq||Θpyq|p
|y|2´α´pp1`α´βq

dy

ď

8
ÿ

k“0

1
p2kLq2´α´pp1`α´βq

ż

2kLď|y|ď2k`1L

|rV p1qpyq||Θpyq|pdy

ď C
8
ÿ

k“0

1
p2kLq2´α´pp1`α´βq

ˆ
ż

|y|„2kL
|rV p1qpyq|rdy

˙
1
r
ˆ
ż

|y|„2kL
|Θpyq|rdy

˙

p
r

p2kLq2p1´
p`1
r q

ď C
8
ÿ

k“0

1
p2kLq2´α´pp1`α´βq p2

kLq1´α´β`
γ1
r p2kLqγ0

p
r p2kLq2´

2p
r
´ 2
r

ď C
8
ÿ

k“0
p2kLqpp1`α´βq´2´β`3` γ1´2

r
`
pγ0´2qp

r

ď CLpp1`α´βq´2´β`3` γ1´2
r
`
pγ0´2qp

r , (3.1.23)

where in the last inequality we used the hypotheses that α ă β ´ 1 ` 2´γ0
r

and γ1 ă

rpβ ´ 1q ` 2.
For the second term in the right-hand side of (3.1.22), applying again the dyadic

decomposition together with Hölder’s inequality, yields
ż

|y|ěL

|Θpyq|p
|y|3`α´pp1`α´βq

dy ď
8
ÿ

k“0

1
p2kLq3`α´pp1`α´βq

ż

|y|„2kL
|Θpyq|pdy

ď C
8
ÿ

k“0

1
p2kLq3`α´pp1`α´βq

ˆ
ż

|y|„2kL
|Θpyq|rdy

˙

p
r

p2kLq2p1´
p
r q

ď C
8
ÿ

k“0
p2kLqpp1`α´βq´3´α

p2kLqγ0
p
r p2kLq2p1´

p
r q

ď C
8
ÿ

k“0
p2kLqpp1`α´βq´2´α`1`pγ0´2q p

r

ď CLpp1`α´βq´2`1´α` pγ0´2qp
r , (3.1.24)

where we used that ´1 ă α ă β´ 1` 2´γ0
r

. Combining (3.1.23) and (3.1.24) with (3.1.22),
we deduce that

ż

|y|ďL

|Θpyq|pdy ď CL3´β` pγ1´2q
r

`
pγ0´2qp

r ` CL1´α` pγ0´2qp
r ď CLa0 , (3.1.25)

where

a0 :“ max
"

1´ α ` pγ0 ´ 2qp
r

, 3´ β ` pγ1 ´ 2q
r

`
pγ0 ´ 2qp

r

*

. (3.1.26)
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Note that, if a0 ă 0, we conclude that Θ ” 0 on R2, i.e., no locally self-similar blowup
occurs and the proof is finished. Otherwise, if a0 ě 0, we improve the estimates in (3.1.23)
and (3.1.24) by making use of the new upper bound in (3.1.25). In particular, for the first
term in the right-hand side of (3.1.22), we leverage (3.1.25) via a suitable interpolation
inequality. Namely, in view of the assumption on γ1, we may take q P pp, rq sufficiently
close to p such that

0 ď γ1 ă r

ˆ

β ´ 1´ 2
ˆ

1´ p

q

˙˙

` 2, (3.1.27)

and

0 ď γ0 ă
pr ´ pqq

pq ´ pqp

ˆ

β ´ 1` 2´ γ1

r
´ 2

ˆ

1´ p

q

˙˙

. (3.1.28)

Then, by interpolation, we have
ż

|y|ďL

|Θpyq|qdy ď
ˆ
ż

|y|ďL

|Θpyq|pdy
˙δ ˆż

|y|ďL

|Θpyq|rdy
˙1´δ

(3.1.29)

ď CLa0δ`p1´δqγ0 , with δ :“ r ´ q

r ´ p
P p0, 1q. (3.1.30)

Next, employing once again the dyadic decomposition and Hölder’s inequality, we
derive via (3.1.25), (3.1.30), and Lemma 6.2 that
ż

|y|ěL

|rV p1qpyq||Θpyq|p
|y|2´α´pp1`α´βq

dy

ď C
8
ÿ

k“0

1
p2kLq2´α´pp1`α´βq

ˆ
ż

|y|„2kL
|Θpyq|qdy

˙

p
q
ˆ
ż

|y|„2kL
|rV p1qpyq|rdy

˙
1
r

p2kLq2p1´
p
q
´ 1
r
q

ď C
8
ÿ

k“0

1
p2kLq2´α´pp1`α´βq p2

kLq
p
q
pa0δ`p1´δqγ0qp2kLq

γ1
r
`1´α´β

p2kLq2p1´
p
q
´ 1
r
q

ď C
8
ÿ

k“0
p2kLqpp1`α´βq´2`a0`

p
q
p1´δqpγ0´a0q`

γ1´2
r
`1´β`2p1´ p

q q´a0p1´ p
q q

ď C
8
ÿ

k“0
p2kLqpp1`α´βq´2`a0´a1 , (3.1.31)

where

a1 :“ p

q
p1´ δqpa0 ´ γ0q ` β ´ 1` 2´ γ1

r
´ 2

ˆ

1´ p

q

˙

` a0

ˆ

1´ p

q

˙

. (3.1.32)

Recall from (3.1.23) and (3.1.24) that a0`pp1`α´βq´2 ă 0. Then, to obtain a finite
sum in (3.1.31), it suffices to show that a1 ě 0. Firstly, assume that a0 “ 1´ α` pγ0´2qp

r
.

From (3.1.26), it follows that ´1 ă α ď β´2` 2´γ1
r

. Moreover, since 1´δ “ pq´pq{pr´pq,
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we have

a1 “
ppq ´ pq

qpr ´ pq
pa0 ´ γ0q ` β ´ 1` 2´ γ1

r
´ 2pq ´ pq

q
` a0

pq ´ pq

q

“
rpq ´ pq

qpr ´ pq
a0 ´

ppq ´ pq

qpr ´ pq
γ0 ` β ´ 1` 2´ γ1

r
´ 2pq ´ pq

q
(3.1.33)

“
rpq ´ pq

qpr ´ pq
p´1´ αq ` β ´ 1` 2´ γ1

r
ą 0, (3.1.34)

where the inequality follows by using that r ą q, which implies rpq ´ pq ă qpr ´ pq.
Now, if a0 “ 3´ β ` pγ1´2q

r
`
pγ0´2qp

r
, then from (3.1.26) we have β ´ 2` 2´γ1

r
ď α ă

β ´ 1` 2´γ0
r

. Hence, from (3.1.33),

a1 “
rpq ´ pq

qpr ´ pq

ˆ

3´ β ` pγ1 ´ 2q
r

`
pγ0 ´ 2qp

r

˙

´
ppq ´ pq

qpr ´ pq
γ0 ` β ´ 1` 2´ γ1

r
´ 2pq ´ pq

q

“
rpq ´ pq

qpr ´ pq

ˆ

3´ β ` pγ1 ´ 2q
r

´
2p
r

˙

` β ´ 1` 2´ γ1

r
´ 2pq ´ pq

q

“

ˆ

β ´ 1` 2´ γ1

r

˙ˆ

1´ rpq ´ pq

qpr ´ pq

˙

“

ˆ

β ´ 1` 2´ γ1

r

˙

ppr ´ qq

qpr ´ pq
ą 0, (3.1.35)

where we used that r ą q ą p and γ1 ă rpβ ´ 1q ` 2.
Therefore, a1 ą 0, and it follows from (3.1.31) that

ż

|y|ěL

|rV p1qpyq||Θpyq|p
|y|2´α´pp1`α´βq

dy ď CLpp1`α´βq´2`a0´a1 . (3.1.36)

Similarly, since a0 ` pp1` α ´ βq ´ 2 ă 0 and α ą ´1, we obtain for the second term
in the right-hand side of (3.1.22) that

ż

|y|ěL

|Θpyq|p
|y|3`α´pp1`α´βq

dy ď
8
ÿ

k“0

1
p2kLq3`α´pp1`α´βq

ż

|y|„2kL
|Θpyq|pdy

ď C
8
ÿ

k“0

1
p2kLq3`α´pp1`α´βq p2

kLqa0

ď CLpp1`α´βq´2`a0´p1`αq. (3.1.37)

Plugging (3.1.36) and (3.1.37) into (3.1.22), we deduce that
ż

|y|ďL

|Θpyq|pdy ď CLa0´a1 ` cLa0´p1`αq

ď CLa0´b0 , where b0 :“ minta1, 1` αu ą 0. (3.1.38)

Again, if a0 ´ b0 ă 0 then the proof is finished. Otherwise, we proceed with the
bootstrap argument by now leveraging (3.1.38) to obtain improved estimates. To put this
argument into a more general form, suppose that

ż

|y|ďL

|Θpyq|pdy ď CLσ with σ ď a0.
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From the interpolation inequality (3.1.29), we have
ż

|y|ďL

|Θpyq|qdy ď CLσδ`γ0p1´δq, (3.1.39)

where we recall that δ “ pr ´ qq{pr ´ pq. Then, proceeding similarly as in (3.1.31) and
recalling the definition of a1 in (3.1.32), we obtain

ż

|y|ěL

|rV p1qpyq||Θpyq|p
|y|2´α´pp1`α´βq

dy

ď C
8
ÿ

k“0

1
p2kLq2´α´pp1`α´βq p2

kLq
p
q
pσδ`γ0p1´δqqp2kLq1´α´β`

γ1
r p2kLq2p1´

p
q
´ 1
r q

ď C
8
ÿ

k“0
p2kLqpp1`α´βq´2`σ δp

q
`γ0p1´δq pq`1´β` γ1´2

r
`2p1´ p

q q

ď C
8
ÿ

k“0
p2kLqpp1`α´βq´2`a0´a1`σ

δp
q
´a0

δp
q

ď CLpp1`α´βq´2`a0´a1`
δp
q
pσ´a0q, (3.1.40)

where the last inequality follows from the fact that a0 ` pp1` α´ βq ´ 2 ă 0, a1 ą 0, and
σ ď a0.

Next, similarly as in (3.1.37), we obtain for the second term in the right-hand side of
(3.1.22) that

ż

|y|ěL

|Θpyq|p
|y|3`α´pp1`α´βq

dy ď C
8
ÿ

k“0

1
p2kLq3`α´pp1`α´βq p2

kLqσ

ď CLpp1`α´βq´2`σ´p1`αq, (3.1.41)

where the last inequality is justified by the fact that pp1`α´ βq´ 2` σ ď pp1`α´ βq´
2` a0 ă 0, and α ą ´1. Therefore, combining (3.1.40) and (3.1.41) with (3.1.22), yields

ż

|y|ďL

|Θpyq|pdy ď CLa0´a1`pσ´a0qδp ` CLσ´p1`αq, (3.1.42)

where

δp :“ δp

q
P p0, 1q.

Note that
ż

|y|ďL

|Θpyq|pdy ď
#

CLσ´p1`αq if a1 ´ p1` αq ě pa0 ´ σqp1´ δpq,

CLa0´a1`pσ´a0qδp if a1 ´ p1` αq ă pa0 ´ σqp1´ δpq.

(3.1.43)

(3.1.44)

Let us now specialize this estimate to the case σ “ a0 ´ b0, as in (3.1.38), where we
recall that b0 “ minta1, 1` αu. Firstly, suppose b0 “ a1, so that a1 ď 1` α. Since δp ă 1,
it follows from (3.1.44) with σ “ a0 ´ a1 that

ż

|y|ďL

|Θpyq|pdy ď CLa0´a1p1`δpq. (3.1.45)
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If a0 ´ a1p1` δpq ă 0, then Θ ” 0 in R2. Otherwise, i.e. if a0 ´ a1p1` δpq ě 0, we invoke
(3.1.44) with σ “ a0 ´ a1p1` δpq and obtain

ż

|y|ďL

|Θpyq|pdy ď CLa0´a1p1`δp`δ2
pq. (3.1.46)

Hence, repeating this process n times, for any given n P N, we arrive at
ż

|y|ďL

|Θpyq|pdy ď CLa0´a1p1`δp`δ2
p`...`δ

n
p q “ CL

a0´a1

ˆ

1´δn`1
p

1´δp

˙

. (3.1.47)

Taking the limit as n Ñ 8 and observing that 1´δn`1
p

1´δp Ñ 1
1´δp “

qpr´pq
rpq´pq

as n Ñ 8, we
obtain

ż

|y|ďL

|Θpyq|pdy ď CLa0´a1
qpr´pq
rpq´pq . (3.1.48)

Now, recalling the definition of a1 in (3.1.32), and particularly (3.1.33), we have

a0 ´ a1
qpr ´ pq

rpq ´ pq

“ a0 ´
qpr ´ pq

rpq ´ pq

„

rpq ´ pq

qpr ´ pq
a0 ´

ppq ´ pq

qpr ´ pq
γ0 ` β ´ 1` 2´ γ1

r
´ 2pq ´ pq

q



“
p

r

„

γ0 ´
qpr ´ pq

ppq ´ pq

ˆ

β ´ 1` 2´ γ1

r
´ 2pq ´ pq

q

˙

ă 0, (3.1.49)

where the inequality follows from (3.1.28). Therefore, it follows from (3.1.48) that Θ ” 0
in R2.

Next, let us consider the case when b0 “ 1 ` α, so that a1 ě 1 ` α. We apply
(3.1.43)-(3.1.44) with σ “ a0 ´ p1` αq and obtain

ż

|y|ďL

|Θpyq|pdy ď
#

CLa0´2p1`αq if a1 ´ p1` αq ě p1` αqp1´ δpq,

CLa0´a1´p1`αqδp if a1 ´ p1` αq ă p1` αqp1´ δpq.

(3.1.50)

(3.1.51)

If the powers of L in both (3.1.50) and (3.1.51) are negative, then we conclude the
proof. Otherwise, we proceed to improve on the upper bound of

ş

|y|ďL
|Θpyq|pdy again via

bootstrapping. To this end, we start by taking m0 P t1, 2, . . .u as the smallest integer such
that

a1 ´ p1` αq ă m0p1` αqp1´ δpq. (3.1.52)

If m0 “ 1, then (3.1.51) holds. On the other hand, if m0 ě 2 then

pm0 ´ 1qp1` αqp1´ δpq ď a1 ´ p1` αq. (3.1.53)

and (3.1.50) holds. In the latter case, we may repeat this computation pm0´1q-times, where
at each kth time with k “ 1, . . . ,m0 ´ 2, we invoke (3.1.43) with σ “ a0 ´ pk ` 1qp1` αq,
and at k “ m0 ´ 1 we invoke (3.1.44) with σ “ a0 ´m0p1` αq. We then arrive at

ż

|y|ďL

|Θpyq|pdy ď CLa0´b1 , where b1 :“ a1 `m0p1` αqδp. (3.1.54)
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Note that b1 ą a1, and that (3.1.54) in fact holds for all m0 ě 1.
If a0 ´ b1 ă 0, the proof is finished. Otherwise, we proceed similarly as before and

apply (3.1.43)-(3.1.44) with σ “ a0 ´ b1, which yields

ż

|y|ďL

|Θpyq|pdy ď
#

CLa0´b1´p1`αq if a1 ´ p1` αq ´ b1p1´ δpq ě 0,

CLa0´a1´b1δp if a1 ´ p1` αq ´ b1p1´ δpq ă 0.

(3.1.55)

(3.1.56)

Then, if necessary, we proceed by taking m1 P t0, 1, 2, . . .u the smallest integer such that

a1 ´ p1` αq ´ b1p1´ δpq ă m1p1` αqp1´ δpq.

After repeating this process m1 times, we obtain
ż

|y|ďL

|Θpyq|pdy ď CLa0´b2 , where b2 :“ a1 ` pb1 `m1p1` αqqδp.

Here we note that b2 ą a1 ` a1δp.
We may keep on iteratively repeating the same argument if necessary and denote by

mn P t0, 1, 2, . . .u, for each n P N, n “ 2, 3, . . ., the smallest integer such that

a1 ´ p1` αq ´ bnp1´ δpq ă mnp1` αqp1´ δpq

to obtain
ż

|y|ďL

|Θpyq|pdy ď CLa0´bn`1 , where bn`1 :“ a1 ` pbn `mnp1` αqqδp. (3.1.57)

Moreover, we have

bn`1 ą a1p1` δp ` . . .` δnp q.

Therefore, by the same argument from (3.1.47)-(3.1.49), we deduce by taking the limit as
nÑ 8 in (3.1.57) that Θ ” 0 in R2. This concludes the proof of this case.

Case 3: Finally, suppose that β ´ 1` 2´γ0
r
ď α ď β ´ 1` 2

p
. In this case, we prove that

either Θ ” 0 in R2, or Θ ı 0 and (3.1.3) holds.
Assume Θ ı 0. From the first case, and particularly (3.1.8), it follows that

ż

|y|ďL

|Θpyq|pdy À L2´pp1`α´βq for all L " 1. (3.1.58)

Therefore, it only remains to show that
ż

|y|ďL

|Θpyq|pdy Á L2´pp1`α´βq for all L " 1. (3.1.59)

Suppose by contradiction that (3.1.59) does not hold. Then, there exists a sequence of
positive numbers Li, i P N, such that Li Ñ 8 as iÑ 8 and

1
L

2´pp1`α´βq
i

ż

|y|ďLi

|Θpyq|pdy Ñ 0 as iÑ 8.
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Taking l2 “ 4Li{ρ and L :“ ρl1{8 " 1 in (3.1.20), it follows after taking iÑ 8 that

1
L2´pp1`α´βq

ż

|y|ďL

|Θpyq|pdy ď C

ż

|y|ěL

|rV p1qpyq||Θpyq|p
|y|2´α´pp1`α´βq

dy ` C

ż

|y|ěL

|Θpyq|p
|y|3`α´pp1`α´βq

dy.

(3.1.60)

We now proceed similarly as in (3.1.29)-(3.1.38). Namely, we fix q P pp, rq such that
(3.1.27)-(3.1.28) hold. Then, by interpolation, (3.1.58) and assumption (3.1.1), we have
ż

|y|ďL

|Θpyq|qdy ď
ˆ
ż

|y|ďL

|Θpyq|pdy
˙δ ˆż

|y|ďL

|Θpyq|rdy
˙1´δ

ď CLp2´pp1`α´βqqδ`γ0p1´δq,

where δ “ pr ´ qq{pr ´ pq.
Proceeding analogously as in (3.1.31) and recalling that δp :“ δp{q, we estimate

ż

|y|ěL

|rV p1qpyq||Θpyq|p
|y|2´α´pp1`α´βq

dy

ď

8
ÿ

k“0

1
p2kLq2´α´pp1`α´βq

ˆ
ż

|y|„2kL
|Θpyq|qdy

˙

p
q
ˆ
ż

|y|„2kL
|rV p1qpyq|rdy

˙
1
r

p2kLq2p1´
p
q
´ 1
r
q

ď C
8
ÿ

k“0
p2kLqpp1`α´βq`α´2

p2kLq
p
q
p2´pp1`α´βqqδ`γ0

p
q
p1´δq

p2kLq1´α´β`
γ1
r p2kLq2p1´

p
q
´ 1
r
q

ď CLppp1`α´βq´2qp1´δpq`γ0
p
q
p1´δq`1´β` γ1´2

r
`2p1´ p

q q, (3.1.61)

where in the last inequality we used that α ď β ´ 1` 2
p
and condition (3.1.28).

Moreover, analogously as in (3.1.37), we obtain
ż

|y|ěL

|Θpyq|p
|y|3`α´pp1`α´βq

dy ď
8
ÿ

k“0

1
p2kLq3`α´pp1`α´βq

ż

|y|„2kL
|Θpyq|pdy

ď C
8
ÿ

k“0
p2kLqpp1`α´βq´3´α

p2kLq2´pp1`α´βq ď CL´p1`αq, (3.1.62)

where we recall that α ą ´1.
Thus, from (3.1.60),

1
L2´pp1`α´βq

ż

|y|ďL

|Θpyq|pdy ď CLppp1`α´βq´2qp1´δpq`γ0
p
q
p1´δq`1´β` γ1´2

r
`2p1´ p

q q ` CL´p1`αq.

Note that the power of L in the first term from the right-hand side cannot be smaller than
the power of L in the second term. Indeed, since 1´ δp “

rpq´pq
qpr´pq

, α ě β ´ 1` 2´γ0
r

, and
γ0 ď γ1 ` r, we deduce that

ppp1` α ´ βq ´ 2q p1´ δpq ` γ0
p

q
p1´ δq ` 1´ β ` γ1 ´ 2

r
` 2

ˆ

1´ p

q

˙

` 1` α

ě
ppq ´ pq

qpr ´ pq
p2´ γ0q ´ 2rpq ´ pq

qpr ´ pq
` γ0

ppq ´ pq

qpr ´ pq
` 2´ β ` γ1 ´ 2

r
` 2

ˆ

1´ p

q

˙

` β ´ 1` 2´ γ0

r

ě
2pp´ rqpq ´ pq

qpr ´ pq
` 1` γ1

r
` 2

ˆ

1´ p

q

˙

´
γ0

r
“ 1` γ1

r
´
γ0

r
ě 0. (3.1.63)
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Hence,
ż

|y|ďL

|Θpyq|pdy ď CL2´pp1`α´βq´d0 , (3.1.64)

where

d0 :“ p2´ pp1` α ´ βqq p1´ δpq ´ γ0
p

q
p1´ δq ´ 1` β ` 2´ γ1

r
´ 2

ˆ

1´ p

q

˙

ą 0.

(3.1.65)

If 2 ´ pp1 ` α ´ βq ´ d0 ă 0 then (3.1.64) implies that Θ ” 0 in R2, which yields a
contradiction and finishes the proof. Otherwise, for 2´ pp1` α´ βq ´ d0 ě 0, we repeat
the above argument by using now the improved estimate (3.1.64). This gives

ż

|y|ďL

|Θpyq|qdy ď CLp2´pp1`α´βqqδ´d0δ`p1´δqγ0 (3.1.66)

and

1
L2´pp1`α´βq

ż

|y|ďL

|Θpyq|pdy

ď C
8
ÿ

k“0
p2kLqpp1`α´βq`α´2

p2kLqδpp2´pp1`α´βqq´d0δp`γ0
p
q
p1´δq`1´α´β` γ1

r
`2p1´ p

q
´ 1
r q

` C
8
ÿ

k“0
p2kLqpp1`α´βq´3´α

p2kLq2´pp1`α´βq´d0

ď C
8
ÿ

k“0
p2kLqppp1`α´βq´2qp1´δpq`γ0

p
q
p1´δq`1´β` γ1´2

r
`2p1´ p

q q´d0δp

` C
8
ÿ

k“0
p2kLq´p1`αq´d0

ď CL´d0p1`δpq ` CL´p1`αq´d0 ď CL´d0p1`δpq,

where we used that 0 ă d0 ď 1` α, according to (3.1.63), (3.1.65). Thus,
ż

|y|ďL

|Θpyq|pdy ď CL2´pp1`α´βq´d0p1`δpq.

We may repeat this process for as many n times, n P N, as necessary, to obtain that
ż

|y|ďL

|Θpyq|pdy ď CL2´pp1`α´βq´d0p1`δp`δ2
p`...`δ

n
p q “ CL

2´pp1`α´βq´d0

ˆ

1´δn`1
p

1´δp

˙

.

Since 1´δn`1
p

1´δp Ñ 1
1´δp “

qpr´pq
rpq´pq

as nÑ 8, then
ż

|y|ďL

|Θpyq|pdy ď CL2´pp1`α´βq´d0
qpr´pq
rpq´pq . (3.1.67)
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From the definition of d0 in (3.1.65) and condition (3.1.28), we have

2´ pp1` α ´ βq ´ d0
qpr ´ pq

rpq ´ pq

“ 2´ pp1` α ´ βq ´ qpr ´ pq

rpq ´ pq

„

p2´ pp1` α ´ βqqrpq ´ pq
qpr ´ pq

´ γ0
ppq ´ pq

qpr ´ pq
´ 1

`β `
2´ γ1

r
´ 2

ˆ

1´ p

q

˙

“
p

r

„

γ0 ´
qpr ´ pq

ppq ´ pq

ˆ

β ´ 1` 2´ γ1

r
´ 2

ˆ

1´ p

q

˙˙

ă 0. (3.1.68)

Therefore, we deduce from (3.1.68) that Θ ” 0 in R2, which is a contradiction with our
starting assumption that Θ ı 0 in R2. This concludes the proof.

The subsequent result provides a criterion for the profile to exclude self-similar blow-
up by assuming a specific decay behavior at infinity. Furthermore, under the growth
bound on the profile and its gradient, we obtain an appropriate range for α, where the
characterization of the Lp norm as in (3.1.3) for possible types of blowup profiles.

Corollary 3.1. Fix β P p1, 2q. Suppose θ P Cpr0, T q;HspR2qq X L8p0, T ;L1pR2qq, with
s ą 1` β, is a solution to the gSQG equation (1.0.1) that is locally self-similar in a ball
Bρpx0q Ă R2, with scaling parameter α ą ´1 and profile Θ P C1pR2q. Then, the following
statements hold:

(i) If there exist some σ0 ą 0 and σ1 ą 0 such that |Θpyq| À |y|´σ0 and |∇Θpyq| À |y|´σ1

for all |y| " 1, then Θ ” 0 in R2.

(ii) Suppose that |Θpyq| Á 1 for all |y| " 1, and that there exists a real number 0 ď
σ1 ă β ´ 1 such that |∇Θpyq| À |y|σ1 for all |y| " 1. Then the values of α admitting
nontrivial profiles belong to the interval rβ ´ 2´ σ1, β ´ 1s and for each such α the
corresponding profile Θ satisfies

ż

|y|ďL

|Θpyq|pdy „ L2´pp1`α´βq

for every p P r1,8q and for all L sufficiently large.

Proof. We start with the proof of (i). LetM be a positive constant such that |Θpyq| À |y|´σ0

and |∇Θpyq| À |y|´σ1 for all |y| ěM . Thus, since Θ P C1pR2q, it follows that for all L ą 0
and r ą max

!

2
σ0
, 2
σ1

)

, we have
ż

|y|ďL

|Θpyq|rdy ď
ż

|y|ďM

|Θpyq|rdy `
ż

|y|ěM

1
|y|rσ0

dy ď C,
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and
ż

|y|ďL

|∇Θpyq|rdy ď
ż

|y|ďM

|∇Θpyq|rdy `
ż

|y|ěM

1
|y|rσ1

dy ď C.

Let p1 :“ max
!

1, 2
σ0
, 2
σ1

)

. Then, the assumptions of Theorem 3.1 are satisfied with
the following parameter choices: p “ p1, r “ p1 ` 1, γ0 “ 0, and γ1 “ 0. Consequently,
the values of α that admit a nontrivial corresponding profile Θ belong to the interval
”

β ´ 1` 2
p1`1 , β ´ 1` 2

p1

ı

. On the other hand, note that the assumptions of Theorem 3.1
are also satisfied with p “ p1 ` k, r “ p1 ` k ` 1, γ0 “ 0, and γ1 “ 0, for any k ą 0.
This implies that the values of α admitting nontrivial profiles must also belong to the
interval

”

β ´ 1` 2
p1`k`1 , β ´ 1` 2

p1`k

ı

for any k ą 0. In particular, for k ě 2, we obtain

that α P
”

β ´ 1` 2
p1`k`1 , β ´ 1` 2

p1`k

ı

X

”

β ´ 1` 2
p1`1 , β ´ 1` 2

p1

ı

“ H. Therefore, we
conclude that Θ ” 0 in R2.

We proceed to prove (ii). Let M ą 0 such that |∇Θpyq| À |y|σ1 for all |y| ěM , and fix
any p P r1,8q. Observe that, for all L " 1 and r ą p,

ż

|y|ďL

|∇Θpyq|rdy ď
ż

|y|ďM

|∇Θpyq|rdy `
ż

Mď|y|ďL

|y|σ1rdy

ď C

ż

|y|ďM

dy ` Lσ1r

ż

Mď|y|ďL

dy ď CLσ1r`2, (3.1.69)

where we used that Θ P C1pR2q. Then, it follows by Sobolev embedding that
ż

|y|ďL

|Θpyq|rdy ď CLpσ1`1qr`2.

Therefore, the assumptions of Theorem 3.1 are satisfied by setting γ1 “ σ1r ` 2 and
γ0 “ pσ1 ` 1qr ` 2 “ γ1 ` r. It follows that the values of α admitting nontrivial profiles
belong to the interval

”

β ´ 2´ σ1, β ´ 1` 2
p

ı

and the corresponding profile satisfies

C1L
2´pp1`α´βq

ď

ż

|y|ďL

|Θpyq|pdy ď C2L
2´pp1`α´βq for all L " 1, (3.1.70)

for some positive constants C1, C2. On the other hand, since |Θpyq| Á 1 for |y| " 1, it
follows that

ż

|y|ďL

|Θpyq|pdy ě CL2 for L " 1. (3.1.71)

Combining the upper bound in (3.1.70) with (3.1.71), we must have 1` α´ β ď 0, which
implies that the values of α admitting nontrivial profiles in fact belong to rβ´2´σ1, β´1s.
This completes the proof.
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3.2 Case 0 ă β ď 1

This section is dedicated to studying the locally self-similar solution of the gSQG
equation for the case when, 0 ă β ď 1. Here, differently from the case 1 ă β ă 2, we
only assume a Lr growth in the self-similar profile, and analogous to Theorem 3.1, we
obtain certain ranges of the scaling parameter where the profile is either identically zero,
excluding any locally self-similar blowup, or, for appropriate values of r and p, its Lp

asymptotic behavior can be characterized.
In the case β “ 1, Theorem 3.2 improves upon the results previously proven by Xue

[76], offering greater flexibility for the parameters r and γ. Furthermore, our assumptions
on the parameters r and γ for (3.2.1) to hold, namely r ą p and γ P r0, r ` 2q, are weaker
than those in [76, Theorem 1.1], where it is assumed that r ě p ` 1 and γ P r0, r ´ pq.
Moreover, for 0 ă β ă 1, Theorem 3.2 recovers the result established in [9] concerning
globally self-similar solutions of the gSQG equation, with weaker assumptions, since any
globally self-similar solution is also locally self-similar.

Theorem 3.2. Fix β P p0, 1s. Suppose θ P Cpr0, T q;Hsq X L8pr0, T q;L1q, with s ą 1` β,
is a solution to the gSQG equation (1.0.1) that is locally-self-similar in a ball Bρpx0q Ă R2,
with scaling parameter α ą ´1 and profile Θ P C1pR2q. Fix also p ą 1, and suppose that
for some r ą p and γ P r0, βr ` 2q, it holds

ż

|y|ďL

|Θpyq|rdy À Lγ (3.2.1)

for all L sufficiently large. Under these condition, it follows that if α ą β ´ 1 ` 2
p
or

´1 ă α ă β ´ 1` 2´γ
r

then Θ ” 0. Moreover, if α P
”

β ´ 1` 2´γ
r
, β ´ 1` 2

p

ı

then either
Θ ” 0 or Θ is a nontrivial profile and it satisfies

ż

|y|ďL

|Θpyq|pdy „ L2´pp1`α´βq, (3.2.2)

for all L sufficiently large.

Proof. The proof follows a structure similar to that of Theorem 3.1 and is also divided
based on three distinct ranges for α.

Case 1:
The first case is when α ą β ` 2

p
´ 1, and the proof is identical to the firt case in

Theorem 3.1.

Case 2:
The second case is when ´1 ă α ă β ´ 1` 2´γ

r
. Our goal is to prove that Θ ” 0 in R2.

To this end, let us recall that from (6.2.1), we derive the local Lp equality that
ż

R2
|θpx, t2q|

pφ ρ
4
pxqdx´

ż

R2
|θpx, t1q|

pφ ρ
4
pxqdx “

ż t2

t1

ż

R2
pupx, tq ¨∇φ ρ

4
pxqq|θpx, tq|pdx dt,

(3.2.3)
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where φ ρ
4
P C8pR2q with 0 ď φ ρ

4
ď 1 such that φ ρ

4
” 1 in Bρ{8, and φ ρ

4
” 0 in Bc

ρ{4.
Proceeding to estimate each term individually. The distinction from the case 1 ă β ă 2,

arises in the estimation of u, which is attributed to the distinct integrability characteristics
of Kβ within the self-similar region for 0 ă β ă 1. In the special case of β “ 1, Kβ is
a Calderón-Zygmund operator. To facilitate this analysis, consider the following cut-off
function: φρ P C8pR2q with 0 ď φρ ď 1 such that φρ ” 1 in Bρ{2, and φρ ” 0 in Bc

ρ.
Fix t1, t2 P r0, T q. Let us decompose u into two components: one within the self-

similarity region and the other outside it. Thus,

upx, tq “ CβP.V.

ż

R2
Kβpx´ yqθpy, tqφρpyqdy ` CβP.V.

ż

R2
Kβpx´ yqθpy, tqp1´ φρpyqqdy

“: ũp1qpx, tq ` ũp2qpx, tq. (3.2.4)

Invoking the local self-similarity of θ, given in (3.0.1), and repeating the computation in
(3.1.12), we obtain

up1qpx, tq

“ CβP.V.

ż

R2
Kβpx´ yqθpy, tqφρpyqdy

“ CβpT ´ tq
β´α´1

1`α P.V.
ż

R2

px´ yqK

|x´ y|2`β
Θ
ˆ

y

pT ´ tq
1

1`α

˙

φρpyqdy

“ CβpT ´ tq
´pα`2q

1`α P.V.

ż

R2

px´ yqK

pT ´ tq
1
α

|x´ y|´p2`βq

pT ´ tq
´p2`βq

α

Θ
ˆ

y

pT ´ tq
1

1`α

˙

φρpyqdy

“ CβpT ´ tq
´α

1`αP.V.

ż

R2

ˆ

x

pT ´ tq
1
α

´ y

˙Kˇ
ˇ

ˇ

ˇ

x

pT ´ tq
1
α

´ y

ˇ

ˇ

ˇ

ˇ

´p2`βq

ΘpyqφρpypT ´ tq
1

1`α qdy

“
Cβ

pT ´ tq
α

1`α
U p1q

ˆ

x

pT ´ tq
1

1`α
, t

˙

, (3.2.5)

where
U p1qpx, tq :“ P.V.

ż

R2
Kβpx´ yqΘpyqφρpypT ´ tq

1
1`α qdy.

Given that Kβ is square integrable in any region excluding the origin, for all β ą 0, it
follows that when ρ{8 ď |x| ď ρ{4, we derive that

|ũp2qpx, tq| ď Cβ

ż

|y|ě ρ
2

|θpy, tq|

|y|β`1 dy ď Cβ||θp0q||L2 . (3.2.6)

Repeating the same computation as in (3.1.16) - (3.1.18), it leads to the conclusion that
the right-hand side of (3.2.3) can be estimated by

ˇ

ˇ

ˇ

ˇ

ż t2

t1

ż

R2
|θpx, tq|ppupx, tq ¨∇φ ρ

4
pxqqdx dt

ˇ

ˇ

ˇ

ˇ

ď C

ż

ρ
8 l1ď|y|ď

ρ
4 l2

|rU p1qpyq||Θpyq|p
|y|2´α´pp1`α´βq

dy ` C

ż

ρ
8 l1ď|y|ď

ρ
4 l2

|Θpyq|p
|y|3`α´pp1`α´βq

dy, (3.2.7)
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where

rU p1qpyq “

ż t2

t1

ˇ

ˇ

ˇ

ˇ

P.V.

ż

R2
Kβpy ´ zqΘpzqφρpzpT ´ tq

1
1`α qdz

ˇ

ˇ

ˇ

ˇ

1Ayptqdt. (3.2.8)

The indicator function 1Ay is associated with the set Ay, which is defined for each y P R2,
satisfying ρl1{8 ď |y| ď ρl2{4, as follows

Ay :“
"

t P rt1, t2s : ρ8
1
|y|
ď pT ´ tq

1
1`α ď

ρ

4
1
|y|

*

. (3.2.9)

where the length of the set Ay is bounded by |Ay| ď cα,ρ{|y|
1`α. Plugging this back into

(3.2.3) and recalling that
ż

R2
|θpx, tiq|

pφ ρ
4
pxqdx “ l

pp1`α´βq´2
i

ż

|y|ď ρ
4 li

|Θpyq|pφ ρ
4
pyl´1

i qdy,

where li “ pT ´ tiq´
1

1`α , i “ 1, 2, we obtain that
ˇ

ˇ

ˇ

ˇ

l
pp1`α´βq´2
2

ż

R2
|Θpyq|pφ ρ

4
pyl´1

2 qdy ´ l
pp1`α´βq´2
1

ż

R2
|Θpyq|pφ ρ

4
pyl´1

1 qdy

ˇ

ˇ

ˇ

ˇ

ď

ż

ρ
8 l1ď|y|ď

ρ
4 l2

|rU p1qpyq||Θpyq|p
|y|2´α´pp1`α´βq

dy `

ż

ρ
8 l1ď|y|ď

ρ
4 l2

|Θpyq|p
|y|3`α´pp1`α´βq

dy, (3.2.10)

Note that, invoking Hölder’s inequality and assumption (3.2.1), we have that

l
pp1`α´βq´2
2

ż

R2
|Θpyq|pφ ρ

4
pyl´1

2 qdy ď l
pp1`α´βq´2
2

ˆ
ż

|y|ď ρ
4 l2

|Θpyq|rdy
˙

p
r

l
2p1´ p

r q
2

ď Cl
pp1`α´βq`pγ´2q p

r
2 .

Since α ă β ´ 1` 2´γ
r
, it follows that p1` α ´ βq ` pγ ´ 2q{r ă 0. Hence,

l
pp1`α´βq´2
2

ż

R2
|Θpyq|pφ ρ

4
pyl´1

2 qdy Ñ 0 as l2 Ñ 8. (3.2.11)

Setting L :“ ρ
8 l1 and taking the limit in (3.2.10) as t2 Ñ T , so that l2 Ñ 8, we obtain

1
L2´pp1`α´βq

ż

|y|ďL

|Θpyq|pdy ď C

ż

|y|ěL

|rU p1qpyq||Θpyq|p
|y|2´α´pp1`α´βq

dy ` C

ż

|y|ěL

|Θpyq|p
|y|3`α´pp1`α´βq

dy.

(3.2.12)

We now start to estimate each term on the right-hand side, employing the dyadic
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decomposition together with Lemma 6.3 and Holder inequality. More precisely,
ż

|y|ěL

|rU p1qpyq||Θpyq|p
|y|2´α´pp1`α´βq

dy

ď

8
ÿ

k“0

1
p2kLq2´α´pp1`α´βq

ż

2kLď|y|ď2k`1L

|rU p1qpyq||Θpyq|pdy

ď

8
ÿ

k“0

1
p2kLq2´α´pp1`α´βq

ˆ
ż

|y|„2kL
|rU p1qpyq|rdy

˙
1
r
ˆ
ż

|y|„2kL
|Θpyq|rdy

˙

p
r

p2kLq2p1´
p`1
r q

ď C
8
ÿ

k“0

1
p2kLq2´α´pp1`α´βq p2

kLq
1
r
pγ´rpα`βqq

p2kLqγ
p
r p2kLq2p1´

p`1
r q

ď C
8
ÿ

k“0
p2kLqpp1`α´βq´2` pp`1qpγ´2q

r
´β`2

ď CLpp1`α´βq´2` pp`1qpγ´2q
r

´β`2 (3.2.13)

where in the last inequality we used the assumption that α ă β ´ 1` 2´γ
r

and γ ă βr` 2.
To address the second term on the right-hand side of (3.2.12), we once again apply

the dyadic decomposition, in combination with Hölder’s inequality, to obtain
ż

|y|ěL

|Θpyq|p
|y|3`α´pp1`α´βq

dy ď
8
ÿ

k“0

1
p2kLq3`α´pp1`α´βq

ż

|y|„2kL
|Θpyq|pdy

ď

8
ÿ

k“0

1
p2kLq3`α´pp1`α´βq

ˆ
ż

|y|„2kL
|Θpyq|rdy

˙

p
r

p2kLq2p1´
p
r q

ď C
8
ÿ

k“0
p2kLqpp1`α´βq´3´α

p2kLqγ
p
r p2kLq2p1´

p
r q

ď C
8
ÿ

k“0
p2kLqpp1`α´βq´2´α`1`pγ´2q p

r

ď CLpp1`α´βq´2`1´α` pγ´2qp
r , (3.2.14)

where we used the fact that ´1 ă α ă β ´ 1` 2´γ
r
. Combining (3.2.13) and (3.2.14) with

(3.2.12), and recalling that α ă β ´ 1` 2´γ
r
, we deduce that

ż

|y|ďL

|Θpyq|pdy ď CL
pp`1qpγ´2q

r
´β`2

` CL1´α` pγ´2qp
r ď CLã0 , (3.2.15)

where

ã0 :“ 1´ α ` ppγ ´ 2q
r

. (3.2.16)

Observe that, if ã0 ă 0, we conclude that Θ is identically zero on R2, then the proof is
complete. Otherwise, if ã0 ě 0, let us improve the estimates of the terms on the right-hand
side of (3.2.10) by using the new upper bound established in (3.2.15). To accomplish this,
we highlight that since r ą p, we may take q ě 1 such that

p ă q ă
rpp` 1q
r ` 1 ă r. (3.2.17)
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Then, by interpolation, it follows that
ż

|y|ďL

|Θpyq|qdy ď
ˆ
ż

|y|ďL

|Θpyq|pdy
˙δ ˆż

|y|ďL

|Θpyq|rdy
˙1´δ

ď CLã0δ`p1´δqγ, with δ :“ r ´ q

r ´ p
P p0, 1q. (3.2.18)

Next, by applying the dyadic decomposition once more and using Hölder’s inequality,
we obtain from (3.2.16), (3.2.18), and Lemma 6.3 that

ż

|y|ěL

|rU p1qpyq||Θpyq|p
|y|2´α´pp1`α´βq

dy

ď

8
ÿ

k“0

1
p2kLq2´α´pp1`α´βq

ˆ
ż

|y|„2kL
|Θpyq|qdy

˙

p
q
ˆ
ż

|y|„2kL
|rU p1qpyq|qdy

˙
1
q

p2kLq2p1´
p`1
q q

ď

8
ÿ

k“0

1
p2kLq2´α´pp1`α´βq p2

kLq
p
q
pã0δ`γp1´δqqp2kLq

1
q
pã0δ`γp1´δq´qpα`βqqp2kLq2p1´

p`1
q q

ď

8
ÿ

k“0
p2kLqpp1`α´βq´2`α`ã0

pp`1qδ
q

`γ
pp`1qp1´δq

q
´α´β`2p1´ p`1

q q

ď

8
ÿ

k“0
p2kLqpp1`α´βq´2`ã0`ã0p

pp`1qδ
q

´1q´β`γ pp`1qp1´δq
q

`2p1´ p`1
q q

ď

8
ÿ

k“0
p2kLqpp1`α´βq´2`ã0´ã1 , (3.2.19)

where

ã1 :“ ã0

ˆ

1´ pp` 1qδ
q

˙

` β ´
pp` 1qp1´ δqγ

q
´ 2

ˆ

1´ p` 1
q

˙

. (3.2.20)

Recalling from (3.2.14) that ã0 ` pp1 ` α ´ βq ´ 2 ă 0. Then, to ensure that (3.2.19) is
bounded, it suffices to prove that ã1 ě 0. Thus, since α ă β ´ 1` 2´γ

r
, ã0 “ 1´ α ` γ´2

r
,

and 1´ δ “ q´p
r´p

, it follows that

ã1 “ ã0

ˆ

1´ pp` 1qδ
q

˙

` β ´
pp` 1qp1´ δqγ

q
´ 2

ˆ

1´ p` 1
q

˙

“

ˆ

1´ α ` γ ´ 2
r

˙ˆ

1´ pp` 1qδ
q

˙

` β ´
pp` 1qp1´ δqγ

q
´ 2

ˆ

1´ p` 1
q

˙

ą

ˆ

2´ β ` pp` 1qpγ ´ 2q
r

˙ˆ

1´ pp` 1qδ
q

˙

` β ´
pp` 1qp1´ δqγ

q
´ 2

ˆ

1´ p` 1
q

˙

“
2pp` 1qp1´ δq

q
`
pp` 1qpγ ´ 2q

r

ˆ

1´ δpp` 1q
q

˙

` βδ
pp` 1q
q

´
pp` 1qp1´ δqγ

q

“
pp` 1qp2´ γq

q

„

1´ δ ´ q ´ δpp` 1q
r



` βδ
pp` 1q
q

“
pp` 1qp2´ γq

q

ˆ

r ´ q

rpr ´ pq

˙

` β
pp` 1qpr ´ qq
pr ´ pqq

“
pp` 1qpr ´ qq
rqpr ´ pq

p2´ γ ` βrq ą 0 (3.2.21)
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where in the last inequality we used that γ ă βr` 2. Therefore, we conclude from (3.2.19)
that

ż

|y|ěL

|rU p1qpyq||Θpyq|p
|y|2´α´pp1`α´βq

dy ď CLpp1`α´βq´2`ã0´ã1 . (3.2.22)

For another term, invoking (3.2.15) and recalling that ã0 ` pp1 ` α ´ βq ´ 2 ă 0 and
´1 ă α, it follows that

ż

|y|ěL

|Θpyq|p
|y|3`α´pp1`α´βq

dy ď
8
ÿ

k“0

1
p2kLq3`α´pp1`α´βq

ż

|y|„2kL
|Θpyq|pdy

ď C
8
ÿ

k“0

1
p2kLq3`α´pp1`α´βq p2

kLq3`α´pp1`α´βq`ã0

ď CLpp1`α´βq´2`ã0´p1`αq. (3.2.23)

Plugging (3.2.22) and (3.2.23) into (3.2.12), we deduce that
ż

|y|ďL

|Θpyq|pdy ď CLã0´ã1 ` cLã0´p1`αq

ď CLã0´b0 , where b̃0 :“ mintã1, 1` αu ą 0. (3.2.24)

Clearly, if ã0 ´ b̃0 ă 0, we finished the proof. Otherwise, analogous to (3.1.42), we proceed
to obtain a more general form for the profile estimate in Lp. Let us assume that

ż

|y|ďL

|Θpyq|pdy ď CLσ with σ ď ã0. (3.2.25)

From the interpolation inequality (3.2.18), we have
ż

|y|ďL

|Θpyq|qdy ď CLσδ`γp1´δq. (3.2.26)

Then, proceeding similarly as in (3.2.19) and recalling the definition of ã1 in (3.2.20), we
obtain

ż

|y|ěL

|rU p1qpyq||Θpyq|p
|y|2´α´pp1`α´βq

dy

ď C
8
ÿ

k“0

1
p2kLq2´α´pp1`α´βq p2

kLq
p
q
pσδ`γp1´δqq

p2kLq
1
q
pσδ`p1´δqγ´qpα`βqq

p2kLq2p1´
p`1
q q

ď C
8
ÿ

k“0
p2kLqpp1`α´βq´2`σ δpp`1q

q
`γ

p1´δqpp`1q
q

´β`2p1´ p`1
q q

ď C
8
ÿ

k“0
p2kLqpp1`α´βq´2`ã0´ã1`σ

δpp`1q
q

´ã0
δpp`1q
q

ď CLpp1`α´βq´2`ã0´ã1`
δpp`1q
q

pσ´ã0q, (3.2.27)
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where we used that ã0 ` pp1` α ´ βq ´ 2 ă 0, ã1 ą 0, and σ ď ã0. For another term, it
follows that

ż

|y|ěL

|Θpyq|p
|y|3`α´pp1`α´βq

dy ď C
8
ÿ

k“0

1
p2kLq3`α´pp1`α´βq p2

kLqσ

ď CLpp1`α´βq´2`σ´p1`αq, (3.2.28)

where we used that pp1 ` α ´ βq ´ 2 ` σ ď pp1 ` α ´ βq ´ 2 ` ã0 ă 0, and α ą ´1.
Therefore, combining (3.2.27) and (3.2.28) with (3.2.12), we obtain

ż

|y|ďL

|Θpyq|pdy ď CLã0´ã1`pσ´ã0qδp ` CLσ´p1`αq, (3.2.29)

where

δp :“ δpp` 1q
q

“
pp` 1qpr ´ qq
qpr ´ pq

ą 1.

The inequality above holds due to the choice of q in (3.2.17). We emphasize that the
condition δp ą 1 implies that the power on the right-hand side in (3.2.29) will be more
negative. This will simplify the calculations that follow, in contrast to the case 1 ă β ă 2,
where δp ă 1.

Let us analyze the general estimate (3.2.29) to the case σ “ ã0 ´ b0, as in (3.2.24).
Starting with the assumption that b0 “ 1 ` α, we can deduce from (3.2.29) with σ “

ã0 ´ p1` αq that
ż

|y|ďL

|Θpyq|pdy ď CLã0´ã1´p1`αqδp ` CLã0´2p1`αq

ď CLã0´2p1`αq, (3.2.30)

where we used the fact that b̃0 “ 1 ` α ď ã1 and δp ą 1. It is important to note that if
ã0´ 2p1`αq ă 0, then Θ is identically zero in R2. On the other hand, if ã0´ 2p1`αq ě 0,
we apply (3.2.29) with σ “ ã0 ´ 2p1` αq to obtain

ż

|y|ďL

|Θpyq|pdy ď CLã0´ã1´2p1`αqδp ` CLã0´3p1`αq

ď CLã0´3p1`αq. (3.2.31)

Once again, we use the fact that 1` α ď ã1 and δp ą 1. Therefore, if needed, by repeating
this process n times for any given n P N, and setting σ “ ã0 ´ kp1 ` αq at each kth
iteration, where k P 3, . . . , n, and arrive at

ż

|y|ďL

|Θpyq|pdy ď CLã0´np1`αqδp (3.2.32)

Taking the limit as nÑ 8 and observing that 1` α ě 0, we conclude that Θ ” 0 on R2.
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In the secondary scenario where b̃0 “ ã1 and ã1 ď 1` α, we proceed similarly to the
case b0 “ 1`α in the proof of Theorem 3.1. We invoke (3.2.29) with σ “ ã0´ ã1 to obtain

ż

|y|ďL

|Θpyq|pdy ď
#

CLã0´ã1´p1`αq if ã1δp ě p1` αq,

CLã0´ã1p1`δpq if ã1δp ă p1` αq.

(3.2.33)

(3.2.34)

The proof concludes if the exponents of L in both (3.2.33) and (3.2.34) are negative.
Otherwise, we can consider m0 P t1, 2, . . .u be the smallest integer such that

ã1δ
m0
p ě 1` α.

If m0 “ 1, then (3.2.33) is satisfied. Otherwise, for m0 ě 2, the minimality of m0 implies
that

ã1δ
m0´1
p ă 1` α

and (3.2.34) holds. In this scenario, the computation can be iteratively conducted pm0´ 1q
times. At each kth iteration with k “ 1, . . . ,m0´2, we invoke (3.2.29) with σ “ ã0´ ã1p1`
δp` . . .`δ

k
pq, and, for k “ m0´1, we invoke (3.2.29) with σ “ ã0´ ã1p1`δp` . . .`δm0´1

p q.
This approach results in

ż

|y|ďL

|Θpyq|pdy ď CLã0´b̃1 , where b̃1 :“ ã1p1` δp ` . . .` δm0´1
p q ` p1` αq, (3.2.35)

which is valid for all m0 ě 1.
Now, if ã0 ´ b̃1 ą 0, we emphasize that, in contrast to the proof of case 2 in Theorem

(3.1), which required the construction of a sequence of the smallest integers mn associated
with bn to ultimately prove that the profile is null, such construction is unnecessary in this
instance. Since δp ą 1, it accelerates the process of making the exponents negative. More
precisely, let us apply (3.2.29) n times, for any given n P N, where at the k-th iteration,
we set σ “ ã0 ´ b̃1 ´ pk ´ 1qp1` αq to derive

ż

|y|ďL

|Θpyq|pdy ď CLã0´ã1´pb̃1`pk´1qp1`αqqδp ` CLã0´b̃1´kp1`αq, (3.2.36)

recalling that b̃1 :“ ã1p1` δp ` . . .` δm0´1
p q ` p1` αq and ã1δ

m0
p ě 1` α, we obtain that

ã1 ` pb̃1 ` pk ´ 1qp1` αqqδp ´ rb̃1 ` kp1` αqs

“ ã1 ` b̃1pδp ´ 1q ` p1` αqppk ´ 1qδp ´ kq

“ ã1 ` rã1p1` δp ` . . .` δm0´1
p q ` p1` αqspδp ´ 1q ` p1` αqppk ´ 1qδp ´ kq

“ ã1pã1 ` ã1δp ` . . .` ã1δ
m0´1
p qpδp ´ 1q ` p1` αqppk ´ 1qδp ´ kq

“ ã1 ` ã1pδ
m0
p ´ 1q ` p1` αqpkδp ´ pk ` 1qq

ą ã1δ
m0
p ´ p1` αq ě 0
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the second term in the the right-hand side of (3.2.36) is larger, so that k “ n, we arrive at
ż

|y|ďL

|Θpyq|pdy ď CLã0´b̃1´np1`αq. (3.2.37)

Since α ą ´1, there exists n sufficiently large such that ã0 ´ b̃1 ´ np1 ` αq ă 0, which
implies that Θ ” 0 and concludes the proof of this case.

Case 3:
Finally, in the case β ´ 1` 2´γ

r
ď α ď β ´ 1` 2

p
, let us prove that either Θ ” 0 in R2,

or Θ ı 0 and (3.2.2) is satisfied.
We start by supposing that Θ ı 0 and recalling that

ż

|y|ďL

|Θpyq|pdy À L2´pp1`α´βq for all L " 1. (3.2.38)

Thus, we only must establish that
ż

|y|ďL

|Θpyq|pdy Á L2´pp1`α´βq for all L " 1. (3.2.39)

Next, let us replicate the argument by contradiction argument employed in Case 3 of
Theorem 3.1. By assuming that (3.2.39) does not hold, it follows that there exists a
sequence of positive numbers Li, with i P N, such that Li Ñ 8 as iÑ 8 and

1
L

2´pp1`α´βq
i

ż

|y|ďLi

|Θpyq|pdy Ñ 0 as iÑ 8.

Setting l2 “ 4Li{ρ, L :“ ρl1{8 " 1 and later taking Li Ñ 8 in (3.2.10), we obtain

1
L2´pp1`α´βq

ż

|y|ďL

|Θpyq|pdy ď C

ż

|y|ěL

|rV p1qpyq||Θpyq|p
|y|2´α´pp1`α´βq

dy ` C

ż

|y|ěL

|Θpyq|p
|y|3`α´pp1`α´βq

dy.

(3.2.40)

We now proceed similarly as previously approach. Namely, we fix q P pp, rq such
that condition (3.2.17) holds. Then, by interpolation, and considering both (3.2.38) and
assumption (3.2.1), we obtain
ż

|y|ďL

|Θpyq|qdy ď
ˆ
ż

|y|ďL

|Θpyq|pdy
˙δ ˆż

|y|ďL

|Θpyq|rdy
˙1´δ

ď CLp2´pp1`α´βqqδ`γp1´δq,

where δ “ pr ´ qq{pr ´ pq. Proceeding analogously to (3.2.19) and recalling that δp :“
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δpp` 1q{q ą 1, it follows that
ż

|y|ěL

|rU p1qpyq||Θpyq|p
|y|2´α´pp1`α´βq

dy

ď

8
ÿ

k“0

1
p2kLq2´α´pp1`α´βq

ˆ
ż

|y|„2kL
|Θpyq|qdy

˙

p
q
ˆ
ż

|y|„2kL
|rU p1qpyq|qdy

˙
1
q

p2kLq2p1´
p`1
q q

ď C
8
ÿ

k“0
p2kLqpp1`α´βq`α´2

p2kLq
p
q
pp2´pp1`α´βqqδ`γp1´δqq

p2kLq
1
q
pp2´pp1`α´βqqδ`γp1´δq´qpα`βqq

ˆ p2kLq2p1´
p`1
q q

ď C
8
ÿ

k“0
p2kLqppp1`α´βq´2qp1´δpq`γ pp`1qp1´δq

q
´β`2p1´ p`1

q q, (3.2.41)

since α ě β ´ 1` 2´γ
r
, δp ą 1, and γ ă βr ` 2, we deduce that

ppp1` α ´ βq ´ 2q p1´ δpq ` γ
pp` 1qp1´ δq

q
´ β ` 2

ˆ

1´ p` 1
q

˙

ď p1´ δpq
´

´γ
p

r
` 2

´p

r
´ 1

¯¯

` γ
pp` 1qp1´ δq

q
´ β ` 2

ˆ

1´ p` 1
q

˙

“ γ

ˆ

pp` 1qp1´ δq
q

´
p

r
p1´ δpq

˙

` 2
´p

r
´ 1

¯

p1´ δpq ´ β ` 2
ˆ

1´ p` 1
q

˙

“ γ

ˆ

pp` 1qpq ´ pq
qpr ´ pq

´
p

r

ˆ

1´ pp` 1qpr ´ qq
qpr ´ pq

˙˙

´ β

` 2
„

´p

r
´ 1

¯

ˆ

1´ pp` 1qpr ´ qq
qpr ´ pq

˙

` 1´ p` 1
q



“
γ

r
´

2
r
´ β ă 0,

where we used that 1´δ “ q´p
r´p

and δp “ p`1
q
δ “ pp`1qpr´qq

qpr´pq
. Plugging this back into (3.2.41),

we conclude
ż

|y|ěL

|rU p1qpyq||Θpyq|p
|y|2´α´pp1`α´βq

dy ď CLppp1`α´βq´2qp1´δpq`γ pp`1qp1´δq
q

´β`2p1´ p`1
q q. (3.2.42)

Now, for another term, we have that
ż

|y|ěL

|Θpyq|p
|y|3`α´pp1`α´βq

dy ď
8
ÿ

k“0

1
p2kLq3`α´pp1`α´βq

ż

|y|„2kL
|Θpyq|pdy

ď C
8
ÿ

k“0
p2kLqpp1`α´βq´3´α

p2kLq2´pp1`α´βq

ď CL´p1`αq. (3.2.43)

Plugging (3.2.42) and (3.2.43) in (3.2.40), we obtain

1
L2´pp1`α´βq

ż

|y|ďL

|Θpyq|pdy ď CLppp1`α´βq´2qp1´δpq`γ pp`1qp1´δq
q

´β`2p1´ p`1
q q ` CL´p1`αq,
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which implies that
ż

|y|ďL

|Θpyq|pdy ď CLD´d̃0 ` CLD´p1`αq, (3.2.44)

where
D :“ 2´ pp1` α ´ βq,

and
d̃0 :“ D p1´ δpq ´ γ

pp` 1qp1´ δq
q

` β ´ 2
ˆ

1´ p` 1
q

˙

ą 0.

This estimate will be used repeatedly to improve the upper bound of
ş

|y|ďL
|Θpyq|pdy. To

present this in a more organized manner, assume that
ż

|y|ďL

|Θpyq|pdy ď CLσ with σ ď 2´ pp1` α ´ βq.

Then, based on estimates similar to (3.1.39)-(3.1.41), we obtain from (3.2.10) the following
general estimate

ż

|y|ďL

|Θpyq|pdy ď CLD´d̃0`pσ´Dqδp ` CLσ´p1`αq, (3.2.45)

Let us follow the analysis setting σ “ D in (3.2.45) to recover (3.2.44). Note that, if
both power indexes in (3.2.44) are positive, we conclude that Θ ” 0 in R2, which yields
a contradiction and finishes the proof. Otherwise, we commence to analyze each power
separately.

To start, assume that d̃0 ě 1` α, then from (3.2.44), it holds
ż

|y|ďL

|Θpyq|pdy ď CLD´p1`αq.

Setting σ “ D ´ p1` αq in (3.2.45), we obtain
ż

|y|ďL

|Θpyq|pdy ď CLD´2p1`αq,

Therefore, this process can be iteratively applied n times, as required, for any given n P N,
to obtain

ż

|y|ďL

|Θpyq|pdy ď CLD´np1`αq,

Since α ą ´1, we can find n sufficiently large such that D ´ np1 ` αq ă 0, which
consequently infers that Θ ” 0.

If D ´ d̃0 ă 0, the proof is finished. Otherwise, if D ´ d̃0 ě 0, we apply (3.2.45) with
σ “ D ´ d̃0 to arrive at

ż

|y|ďL

|Θpyq|pdy ď
#

CLD´d̃0´p1`αq if δpd̃0 ě 1` α,

CLD´d̃0p1`δpq if δpd̃0 ă 1` α.

(3.2.46)

(3.2.47)
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Then, if necessary, we proceed by taking m0 P t1, 2, . . .u the smallest integer such that

δm0
p d̃0 ě 1` α.

Thus,

δm0´1
p d̃0 ă 1` α.

We can iterate this computation m0 ´ 1 times and obtain that
ż

|y|ďL

|Θpyq|pdy ď CLD´d̃1 ,

where d̃1 :“ d̃0p1 ` δp ` δ2
p ` . . . ` δm0´1

p q ` p1 ` αq. If D ´ d̃1 ă 0, the proof is finished.
Otherwise, we apply (3.2.45) n times, for any given n P N, where at the k-th iteration we
take σ “ D ´ d̃1 ´ pk ´ 1qp1` αq and use that

d̃0`pd̃1`pk´1qp1`αqqδp´rd̃1`kp1`αqs “ d̃0δ
m0
p `p1`αqpkδp´pk`1qq ą d̃0δ

m0
p ´p1`αq ě 0,

This process leads to
ż

|y|ďL

|Θpyq|pdy ď CLD´d̃1´np1`αq.

Since α ą ´1, there exists n sufficiently large such that D ´ d̃1 ´ np1 ` αq ă 0, which
implies Θ ” 0.

Thus, in each case, we proved that Θ ” 0 in R2, which is a contradiction with our
initial assumption that Θ ı 0 in R2. This concludes the proof.

The following result resembles Corollary 3.1, with subtle changes to the profile assump-
tions, since we no longer have assumptions on ∇Θ.

Corollary 3.2. Fix β P p0, 1s. Suppose θ P Cpr0, T q;HspR2qq X L8p0, T ;L1pR2qq, with
s ą 1` β, is a locally self-similar solution to the gSQG equation that is locally self-similar
in a ball Bρpx0q Ă R2, with scaling parameter α ą ´1 and profile Θ P CβpR2q. Then, the
following statements hold:

(i) If there exists some σ ą 0 such that |Θpyq| À |y|´σ for all |y| " 1, then no locally
self-similar blowup occurs, i.e., Θ ” 0 in R2.

(ii) If there exists some σ P p0, βq such that 1 À |Θpyq| À |y|σ for all |y| " 1, then the
values of α admitting nontrivial profiles belong to rβ ´ 1 ´ σ, β ´ 1s, and for each
such α the corresponding profile Θ satisfies

ż

|y|ďL

|Θpyq|pdy „ L2´pp1`α´βq,

for every p P r1,8q and for all L sufficiently large.
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Proof. We follow a similar proof as in Corollary 3.1 and make the appropriate modifications.
As such, to prove (i), we first take M to be a positive constant such that |Θpyq| À |y|´σ

for all |y| ěM . Since Θ P CβpR2q, we obtain that for all L ą 0 and r ą 2
σ

ż

|y|ďL

|Θpyq|rdy ď
ż

|y|ďM

|Θpyq|rdy `
ż

|y|ěM

1
|y|rσ

dy ď C.

Then, denoting p1 :“ max
 

1, 2
σ

(

, it follows that the assumptions of Theorem 3.2 are satis-
fied with p “ p1, r “ p1`1 and γ “ 0. As a consequence, the values of α admitting nontrivial
profiles Θ must belong to the interval

”

β ´ 1` 2
p1`1 , β ´ 1` 2

p1

ı

. Moreover, since the as-
sumptions of Theorem 3.2 are also verified with p “ p1`k, r “ p1`k`1 and γ “ 0, for any
k ą 0, then such α must also belong to

”

β ´ 1` 2
p1`k`1 , β ´ 1` 2

p1`k

ı

for any k ą 0. Tak-

ing k ě 2, it follows that α P
”

β ´ 1` 2
p1`k`1 , β ´ 1` 2

p1`k

ı

X

”

β ´ 1` 2
p1`1 , β ´ 1` 2

p1

ı

“

H, and we deduce that Θ ” 0 in R2, as desired.
Regarding item (ii), let us now consider M ą 0 such that |Θpyq| À |y|σ for all |y| ěM ,

and fix an arbitrary p P r1,8q and r ą p. Similarly as in (3.1.69), we have that for L " 1
ż

|y|ďL

|Θpyq|rdy ď
ż

|y|ďM

|Θpyq|rdy `
ż

Mď|y|ďL

|y|rσdy ď CLσr`2, (3.2.48)

where we again used the fact that Θ is a continuous function in R2 to bound the first
integral.

Setting γ “ σr ` 2 and recalling that σ P p0, βq, we have from Theorem 3.2 that
α may admit nontrivial profiles belongs to the interval

”

β ´ 1´ σ, β ` 2
p
´ 1

ı

and the
corresponding profile satisfies

C1L
2´pp1`α´βq

ď

ż

|y|ďL

|Θpyq|pdy ď C2L
2´pp1`α´βq, for all L " 1, (3.2.49)

for some positive constant C1, C2. On the other hand, since |θpyq| Á 1 for |y| Á 1, we
obtain that

ż

|y|ďL

|Θpyq|pdy ě CL2, for L " 1. (3.2.50)

Combining the upper bound (3.2.49) with (3.2.50), we must have that 1 ` α ´ β ă 0,
which implies that the values of α admitting nontrivial profiles belongs to the interval
rβ ´ 1´ σ, β ´ 1s. Therefore, we conclude the proof.
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4 Global self-similar solutions of the dissipa-
tive gSQG equation

In this chapter, we focus on studying the globally self-similar solutions of the fractionally
dissipative gSQG equation. Our main result, presented in Theorem 4.1, extends the result
proved by Chae in [13, Theorem 3.1] to cover all β P p0, 2q, beyond the specific case of
β “ 1. Theorem 4.1 states that, under the assumptions that the gradient of the self-similar
profile decays to zero at infinity and the symmetric part of the self-similar velocity gradient
is bounded at the points of maximum gradient of the self-similar profile, any possibility of
a globally self-similar blowup in finite time is excluded.

We recall that the fractionally dissipative generalized surface quasi-geostrophic equation
in R2 is given by

#

θt ` u ¨∇θ ` κΛηθ “ 0, x P R2, t ą 0,
u “ ´∇Kp´∆q´1`β

2 θ, x P R2, t ą 0,
(4.1)

where η P p0, 2s and β P p0, 2q are given parameters, κ ą 0 , θpx, tq is an unknown
scalar function, upx, tq “ pu1px, tq, u2px, tqq P R2 denotes a velocity field, and p´∆q´s{2,
0 ă s ă 2, is the Riesz potential, and Λη is the fractional Laplacian.

Now, let us recall the globally self-similar solutions of dissipative gSQG equation, as
follows:

θpx, tq “
1

pT ´ tq
η´β
η

Θ
ˆ

x´ x0

pT ´ tq
1
η

˙

, px, tq P R2
ˆ r0, T q, (4.2)

for some function Θ : R2 Ñ R, which is called an associated self-similar profile.
Solutions that are globally self-similar preserve their self-similar characteristics through-

out the entire spatial domain. This property facilitates the analysis of the non-local
operators present in the equation (4.1), such as the Fractional Laplacian and the Riesz
operator. Additionally, this particularity enables us to deduce the equation for the profile
Θ, by invoking the globally self-similarity assumption of θ in (4.1).

To obtain the equation for the profile, Θ, let us analyze separately each term in
(4.1). Let us commence with the Fractional Laplacian and, afterward, the velocity field u.
Without loss of generality, assume that x0 “ 0. Then, we have that
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Ληθpx, tq

“ dηP.V.
ż

R2

θpx, tq ´ θpy, tq

|x´ y|2`η
dy

“ dηpT ´ tq
β´η
η P.V.

ż

R2

«

Θ
˜

x

pT ´ tq
1
η

¸

´Θ
˜

y

pT ´ tq
1
η

¸ff

|x´ y|´p2`ηqdy

“ dηpT ´ tq
β´2η´2

η P.V.
ż

R2

«

Θ
˜

x

pT ´ tq
1
η

¸

´Θ
˜

y

pT ´ tq
1
η

¸ff

|x´ y|2`η

pT ´ tq
2`η
η

dy

“ dηpT ´ tq
β´η
η
´1P.V.

ż

R2

«

Θ
˜

x

pT ´ tq
1
η

¸

´Θpzq
ff
ˇ

ˇ

ˇ

ˇ

ˇ

x

pT ´ tq
1
η

´ z

ˇ

ˇ

ˇ

ˇ

ˇ

´p2`ηq

dz

“ pT ´ tq
β´η
η
´1ΛηΘ

˜

x

pT ´ tq
1
η

¸

. (4.3)

Now, invoking (2.2.12), (4.2) and employing the same computation above, we have
that the velocity field can be expressed as

upx, tq “ CβP.V.
ż

R2
Kβpx´ yqθpy, tqdy

“ CβpT ´ tq
β´η
η P.V.

ż

R2

px´ yqK

|x´ y|2`β
Θ
˜

y

pT ´ tq
1
η

¸

dy

“ CβpT ´ tq
1´η
η P.V.

ż

R2

˜

x

pT ´ tq
1
η

´ z

¸K ˇ
ˇ

ˇ

ˇ

ˇ

x

pT ´ tq
1
η

´ z

ˇ

ˇ

ˇ

ˇ

ˇ

´p2`βq

Θpzqdz

“ pT ´ tq
1´η
η U

˜

x

pT ´ tq
1
η

¸

, (4.4)

where Upxq “ ´∇Kp´∆q´1`β
2 Θpxq. Finally, invoking again (4.2), we obtain that

Btθpx, tq “
pη ´ βq

η
pT ´ tq

β´η
η
´1Θ

ˆ

x

pT ´ tq
1
η

˙

`
1
η
pT ´ tq

β´2η´1
η ∇Θ

ˆ

x

pT ´ tq
1
η

˙

¨
x

pT ´ tq
1
η

,

and

∇θpx, tq “ pT ´ tq
β´1´η
η ∇Θ

ˆ

x

pT ´ tq
1
η

˙

. (4.5)

Plugging (4.3) - (4.5) into (4.1), it follows that Θ satifies

pη ´ βq

η
pT ´ tq

β´η
η
´1Θ

ˆ

x

pT ´ tq
1
η

˙

`
1
η
pT ´ tq

β´η
η
´1 x

pT ´ tq
1
η

¨∇Θ
ˆ

x

pT ´ tq
1
η

˙

` pT ´ tq
β´η
η
´1
pU ¨∇Θq

ˆ

x

pT ´ tq
1
η

˙

` pT ´ tq
β´η
η
´1ΛηΘ

ˆ

x

pT ´ tq
1
η

˙

“ 0,
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setting y “ xpT ´ tq´
1
η , we derive the equation describing the profile Θ as follows:

pη ´ βq

η
Θpyq ` 1

η
y ¨∇Θpyq ` pU ¨∇qΘpyq ` ΛηΘpyq “ 0, for all y P R2, (4.6)

where Upyq “ ´∇Kp´∆q´1`β
2 Θpyq is the velocity field associate with the self-similar profile

Θ.
Next, let us see the following technical lemma:

Lemma 4.1. Let W : R2 Ñ R2 and f : R2 Ñ R be differentiable functions. If ∇ ¨W “ 0,
then it holds

∇K
ppW ¨∇qfq ¨∇Kf “

1
2pW ¨∇q|∇Kf |2 ´∇Kf ¨ rSW∇Kf s,

where SW “
∇W`p∇W qt

2 is the symmetric part of the velocity gradient matrix ∇W .

Proof. Let us start the proof by computing the term on the left-hand side. Then,

∇K
ppW ¨∇qfpyqq “ p´B2pW1B1f `W2B2fq, B1pW1B1f `W2B2fqq

“ p´W1B2B1f ´W2B
2
22f,W1B

2
11f `W2B1B2fq

` p´B2W1B1f ´ B2W2B2f, B1W1B1f ` B1W2B2fq

“ pW ¨∇q∇Kf ` p´B2W1B1f ´ B2W2B2f, B1W1B1f ` B1W2B2fq

“ pW ¨∇q∇Kf ` p´B2W1B1f ´ B2W2B2f,´B2W2B1f ` B1W2B2fq,

where in the last inequality, we employed the fact that div W “ 0, which leads to
B1W1 “ ´B2W2. Next, by taking the inner product with ∇Kf , it yields

∇K
ppW ¨∇qfpyqq ¨∇Kf

“
1
2pW ¨∇q|∇Kf |2 ` p´B2W1B1f ´ B2W2B2f,´B2W2B1f ` B1W2B2fq ¨∇Kf

“
1
2pW ¨∇q|∇Kf |2 ` B2W1B1fB2f ` B2W2B2fB2f ´ B2W2B1fB1f ` B1W2B2fB1f

“
1
2pW ¨∇q|∇Kf |2 ` B2W2pB2fB2f ´ B1fB1fq ` B2W1B1fB2f ` B1W2B1fB2f. (4.7)

On the other hand, we have that

SW pxq “
∇W ` p∇W qt

2 “
1
2

«

2B1W1pxq B2W1pxq ` B1W2pxq

B1W2pxq ` B2W1pxq 2B2W2pxq

ff

.

Then,

SW∇Kf “
1
2

«

2B1W1 B2W1 ` B1W2

B1W2 ` B2W1 2B2W2

ff

.

«

´B2f

B1f

ff

“
1
2p´2B1W1B2f ` B2W1B1f ` B1W2B1f,´B1W2B2f ´ B2W1B2f ` 2B2W2B1fq

“
1
2pB2W2B2f ` B2W1B1f,´B2W1B2f ` B2W2B1fq

`
1
2pB2W2B2f ` B1W2B1f,´B1W2B2f ` B2W2B1fq,
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where in the last inequality we used that B1W1 “ ´B2W2. Now, taking the inner product
with ∇Kf , we can conclude that

∇Kf ¨ SW∇Kf “
1
2pB2W2B2f ` B2W1B1f,´B2W1B2f ` B2W2B1fq ¨∇Kf

`
1
2pB2W2B2f ` B1W2B1f,´B1W2B2f ` B2W2B1fq ¨∇Kf

“ B2W2pB1fB1f ´ B2fB2fq ´ B2W1B1fB2f ´ B1W2B1fB2f.

We conclude the result by plugging this back into (4.7).

Next, we establish a straightforward result concerning the positivity of the inner
product between a vector field and its fractional Laplacian at the point of maximum of
the norm of the vector field.

Lemma 4.2. Let η P p0, 2q and f P H1`ηpR2q. Then, for all

ỹ P M :“ ty P R2
{ |∇Kfpyq| “ sup

xPR2
|∇Kfpxq|u,

we have that
∇Kfpỹq ¨ Λη

p∇Kfpỹqq ě 0. (4.8)

Proof. Let us start by recalling the definition of the fractional Laplacian, which is given by

Λη
p∇Kfpỹqq “ P.V.

ż

R2

∇Kfpỹq ´∇Kfpzq

|ỹ ´ z|2`η
dz.

Taking the inner product with ∇Kfpỹq, we obtain

∇Kfpỹq ¨ Λη∇Kfpỹq “ P.V.

ż

R2

∇Kfpỹq ¨∇Kfpỹq ´∇Kfpỹq ¨∇Kfpzq

|ỹ ´ z|2`η
dz

“ P.V.

ż

R2

|∇Kfpỹq|2 ´∇Kfpỹq ¨∇Kfpzq

|ỹ ´ z|2`η
dz

ě P.V.

ż

R2

|∇Kfpỹq|p|∇Kfpỹq| ´ |∇Kfpzq|q

|ỹ ´ z|2`η
dz ě 0,

where we use that ỹ is a maximum point of the function |∇Kf |. Hence, this concludes the
proof.

The following theorem generalizes the result proven in [13, Theorem 3.1] for β “ 1, for
all β P p0, 2q.

Theorem 4.1. Fix η, β P p0, 2q. Suppose θ P Cpr0, T q;HspR2qq1, with s ą 1` β ´ η, is a
solution to the gSQG equation (4.1) that is globally self-similar in R2, with self-similar
profile Θ. Assume that Θ P C1pR2q is a solution to the equation (4.6) satisfying

lim
|y|Ñ8

|∇KΘpyq| “ 0. (4.9)
1 According to Theorem 2.7, we can consider the solution θ of the dissipative gSQG equation within the

class Cpr0, T q, HspR2qq with s ą 1` β ´ η.
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Furthermore, suppose that there exists ỹ P M :“ ty P R2 { |∇KΘpyq| “ supxPR2 |∇KΘpxq|u
such that

Bpỹq ă
η ´ β ` 1

η
. (4.10)

Bpyq “

#

∇KΘpyq
|∇KΘpyq| ¨ SUpyq

∇KΘpyq
|∇KΘpyq| , if ∇KΘpyq ‰ 0

0, if ∇KΘpyq “ 0,
(4.11)

where U is the velocity field associated with Θ and SU “ ∇U`p∇Uqt
2 is the symmetric part

of the velocity gradient matrix ∇U. Under these conditions, Θ is identically null.

Proof. This proof employs the technique developed by Chae in [13, Teorema 3.1] to exclude
the globally self-similar solution of the dissipative SQG equation.

Let us commence the proof by revisiting the equation for the profile, given by

pη ´ βq

η
Θpyq ` 1

η
py ¨∇Θpyqq ` pU ¨∇qΘpyq ` ΛηΘpyq “ 0,

Applying ∇K to the equation above and then taking the inner product with ∇KΘ, we
obtain

pη ´ βq

η
|∇KΘpyq|2 ` 1

η
∇K
py ¨∇Θpyqq ¨∇KΘ`∇K

ppU ¨∇qΘpyqq ¨∇KΘ

`∇KΘ ¨ Λη∇KΘpyq “ 0. (4.12)

Let us now analyze each term separately, beginning with the second term. Hence,

∇K
py ¨∇Θpyqq “ ∇K

py1B1Θ` y2B2Θq

“ p´y1B2B1Θ´ B2Θ´ y2B
2
22Θ, B1Θ` y1B

2
11Θ` y2B1B2Θq

“ ∇KΘ` p´y1B2B1Θ´ y2B
2
22Θ, y1B

2
11Θ` y2B1B2Θq

“ ∇KΘ` py ¨∇q∇KΘ.

Then, we deduce that

∇K
py ¨∇Θpyqq ¨∇KΘ “ |∇KΘ|2 ` 1

2py ¨∇q|∇
KΘ|2 (4.13)

For the third term in (4.12), we invoke the Lemma (4.1) with f “ Θ and W “ U , we
obtain that

∇K
ppU ¨∇qΘpyqq ¨∇KΘ “

1
2pU ¨∇q|∇

KΘ|2 ´∇KΘ ¨ SU∇KΘ. (4.14)

Therefore, plugging (4.13) and (4.14) into (4.12), we obtain

pη ´ βq

η
|∇KΘpyq|2 ` 1

η
|∇Θpyq|2 ` 1

2η py ¨∇q|∇
KΘ|2 ` 1

2pU ¨∇q|∇
KΘ|2

´∇KΘpyq ¨ SU∇KΘpyq `∇KΘpyq ¨ Λη
p∇KΘqpyq “ 0. (4.15)
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Here, we highlight that in [13, Theorem 3.1], the fourth term on the right-hand side in
(4.15) is missing. Afterward, the correct equation was obtained. We point out this detail
to avoid any confusion that may arise if readers directly compare the results presented
here with those in [13, Teorema 3.1].

Now, using (4.11), the equality above can be reformulated as

pη ´ β ` 1q
η

|∇KΘpyq|2 ` 1
2η py ¨∇q|∇

KΘpyq|2 ` 1
2pU ¨∇q|∇

KΘpyq|2 ´ |∇KΘ|2Bpyq

`∇KΘpyq ¨ Λη
p∇KΘqpyq “ 0. (4.16)

Evaluating (4.16) at ỹ P M, we obtain

|∇KΘpỹq|2
ˆ

η ´ β ` 1
η

´Bpỹq

˙

“ ´∇KΘpỹq ¨ Λη
p∇KΘqpỹq. (4.17)

Invoking Lemma (4.2) with f “ Θ, we have that

∇KΘpỹq ¨ Λη
p∇KΘqpỹq ě 0.

Plugging this inequality back into (4.17) and recalling that Bpỹq ă η´β`1
η

, it follows that
|∇KΘpỹq|2 “ 0 and consequently |∇KΘpyq| “ 0 for all y P R2. Thus, we conclude that Θ is
constant.

Now, given that θ is a globally self-similar solution, as expressed in (4.2), we can deduce
that θ is spatially constant. More precisely, there is c P R such that θptq “ cpT ´ tq

η´β
η ,

for all t P r0, T q. On the other hand, since θptq P L2pR2q, for t P r0, T q, we conclude that
c ” 0, and hence, we conclude the proof.
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5 Conclusion

This thesis presented significant results regarding the locally self-similar solutions of
the gSQG equation and the globally self-similar solutions of the dissipative gSQG equation.
In Chapter 3, we conducted a rigorous study concerning locally self-similar solutions of
the gSQG equation, proving that under growth conditions on the profile and its gradient,
it is possible to identify ranges of the scaling parameter where the profile is identically
zero, or its Lp asymptotic behavior is characterized, for suitable r, p.

One direction to advance this research involves refining the estimates for the velocity
field in the self-similar region, notably when 1 ă β ă 2, where is required the assumption
of growth condition on the profile and its gradient. This approach could involve exploring
new methods for estimating the function rV p1q, as defined in (3.1.19) and established by
Lemma 6.2, without resorting the assumption of the Theorem 3.1 that could yield weaker
conditions on the profile as presented in Theorem 3.1, and might also enable us to identify
a larger range of the parameter scaling α, where the profile remains identically null, thereby
avoiding self-similar blowup.

In Chapter 4, our focus shifted to the globally self-similar solutions of the dissipative
gSQG equation for η and β within the range p0, 2q. Assuming that the gradient of the
self-similar profile decays to zero at infinity and the symmetric part of the self-similar
velocity gradient is bounded at the points of the maximum gradient of the self-similar
profile, we established in Theorem 4.1 that the profile is identically null in R2, excluding
any possibility of globally self-similar blowup. Looking forward, our future research aims
to develop new techniques that can achieve similar results under weaker conditions for the
self-similar profile. This includes exploring the equation for the profile Θ, given in (4.6),
to obtain further insights into the profile’s behavior.

We highlight that, to date, no results have been found in the literature regarding the
non-existence of locally self-similar blow-up for the dissipative gSQG equation, nor on the
asymptotic behavior of the profile in Lp. Therefore, this field presents numerous significant
challenges, offering ample opportunities to advance our understanding of self-similar blowup
to the dissipative gSQG equation.
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6 Appendix

This appendix presents the proofs of Lemma 6.2 and Lemma 6.3, as well the proof of
the local Lp equality shown in (6.2.1).

We highlight that in other studies that employed the local Lp equality (6.2.1), such as
in [9] and [76], the proof of this result is not provided. The case when p ě 2 is classical
and follows from standard approximate arguments. On the other hand, when 1 ď p ă 2, a
suitable adjustment is necessary, see Section 6.2 for details.

6.1 Auxiliary Lemmas
This section is dedicated to proving the auxiliary lemmas used in this work. Let us

start with Lemma 6.1, invoked in the proof of Corollary 3.1, which establishes a growth
bound for the profile based on the growth bound for its gradient.

Lemma 6.1. Let Θ P C1pR2q and 1 ď q ă 8. Suppose that there is σ ą 0 such that
ˆ
ż

|y|ďM

|∇KΘpyq|qdy
˙

1
q

ďMσ, (6.1.1)

for some M ą 1. Then, it holds
ˆ
ż

|y|ďM

|Θpyq|qdy
˙

1
q

ď CM1`σ
q (6.1.2)

Proof. We start by pointing out that since Θ P C1pR2q, it follows from Poincaré inequality
that

||Θ||LppBrp0qq ď C||∇Θ||LppBrp0qq `
1
r

ż

Brp0q
Θpyqdy ă C ` ||∇Θ||LppBrp0qq,

where Brp0q Ă Rn denotes the ball of radius r centered at the origin and C :“
ş

Brp0q Θpyqdy.
Thus, by applying change of variables and invoking the above inequality, we have
ˆ
ż

|y|ďM

|Θpyq|qdy
˙

1
q

“

ˆ
ż

|y|ď1
|M

2
qΘpMyq|qdy

˙
1
q

ď

ˆ
ż

|y|ď1
|M

2
q
`1
p∇ΘqpMyq|qdy

˙
1
q

“ C `M
2
q
`1
ˆ
ż

|y|ď1
|p∇ΘqpMyq|qdy

˙
1
q

ď C `M
2
q
`1´ 2

q

ˆ
ż

|y|ďM

|∇Θpyq|qdy
˙

1
q

ď C̃M1`σ
q .

where we used that M ą 1,
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Next, let us prove Lemma 6.2 and Lemma 6.3 used in the proof of Theorem 3.1 and
Theorem 3.2 respectively. In Lemma 6.2, we establish the upper bound for the function
rV p1q, as expressed in (3.1.19), which was utilized at multiple instances in the proof of
Theorem 3.1 for the case β P p1, 2q. More precisely, this result shows that the growth
assumption (3.1.2), on the Lr norm of the gradient of the profile ∇Θ, results in an upper
bound on the Lr norm of rV p1q over a certain annulus in R2. Later, Lemma 6.3 presents
a similar outcome for the case β P p0, 1s regarding rU p1q, by relying on the assumption
outlined in (3.1.1) on Θ, which was applied in the proof of Theorem 3.2.

Before proceeding, let us recall the definition of the set Ay given in (3.1.17), namely

Ay :“
"

t P rt1, t2s : ρ8
1
|y|
ď pT ´ tq

1
1`α ď

ρ

4
1
|y|

*

“

"

t P rt1, t2s : T ´ pρ{4q
1`α

|y|1`α
ď t ď T ´

pρ{8q1`α
|y|1`α

*

, (6.1.3)

for fixed y P R2zt0u and 0 ă t1 ă t2 ă T .

Lemma 6.2. Let β P p1, 2q and Θ P C1pR2q. Suppose that for some r P r1,8q and γ P R,
it holds

ż

|y|ďL

|∇Θ|rdy À Lγ for all L " 1. (6.1.4)

Then, the function rV p1q defined by

rV p1qpyq “

ż t2

t1

ˇ

ˇ

ˇ

ˇ

ż

R2

1
|y ´ z|β

∇KΘpzqφρpzpT ´ tq
1

1`α qdz

ˇ

ˇ

ˇ

ˇ

1Ayptqdt, (6.1.5)

with 0 ă t1 ă t2 ă T and Ay as given in (6.1.3), satisfies the following estimate
ż

Lď|y|ď2L
|rV p1qpyq|rdy À Lγ`rp1´α´βq for all L " 1. (6.1.6)

Proof. Denote by Kβ the kernel from (6.1.5), i.e.,

Kβpyq “
1
|y|β

, y P R2
zt0u.

From the definitions of rV p1q and Ay, we have
ˆ
ż

Lď|y|ď2L
|rV p1qpyq|rdy

˙
1
r

“

ˆ
ż

Lď|y|ď2L

ˆ
ż t2

t1

ˇ

ˇ

ˇ

ˇ

ż

R2
Kβpy ´ zq∇KΘpzqφρpzpT ´ tq

1
1`α qdz

ˇ

ˇ

ˇ

ˇ

1Ayptqdt

˙r

dy

˙

1
r

ď

¨

˝

ż

Lď|y|ď2L

¨

˝

ż T´
pρ{8q1`α

|y|1`α

T´
pρ{4q1`α
|y|1`α

ˇ

ˇ

ˇ

ˇ

ż

R2
Kβpy ´ zq∇KΘpzqφρpzpT ´ tq

1
1`α qdz

ˇ

ˇ

ˇ

ˇ

dt

˛

‚

r

dy

˛

‚

1
r

“

¨

˝

ż

Lď|y|ď2L

¨

˝

ż T´
pρ{8q1`α

|y|1`α

T´
pρ{4q1`α
|y|1`α

ˇ

ˇ

ˇ

ˇ

ż

R2

`

Kβ1B18Lp0q
˘

py ´ zq∇KΘφρpzpT ´ tq
1

1`α qdz

ˇ

ˇ

ˇ

ˇ

dt

˛

‚

r

dy

˛

‚

1
r

.
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As usual, B18Lp0q denotes the ball of radius 18L centered at the origin, and we utilized
the fact that for |y| ď 2L, |z| ď ρpT ´ tq´

1
1`α and t ď T ´ pρ{8

|y|
q1`α, it holds that

|y ´ z| ď 2L` ρpT ´ tq´
1

1`α ď 2L` 8|y| ď 18L.
Applying Minkowski and Young’s convolution inequality, we obtain

ˆ
ż

Lď|y|ď2L
|rV p1qpyq|rdy

˙
1
r

ď

ż T´p
ρ{16
L
q1`α

T´p
ρ{8
L
q1`α

ˆ
ż

Lď|y|ď2L

ˇ

ˇ

ˇ

ˇ

ż

R2

`

Kβ1B18Lp0q
˘

py ´ zq∇KΘpzqφρppT ´ tq
1

1`α zqdz

ˇ

ˇ

ˇ

ˇ

r

dy

˙
1
r

dt

ď

ż T´p
ρ{16
L
q1`α

T´p
ρ{4
L
q1`α

ˆ
ż

R2
|rpKβ1B18Lp0qq ˚ pp∇KΘφρpp¨qpT ´ tq

1
1`α qqspyq|rdy

˙
1
r

dt

ď

ż T´p
ρ{16
L
q1`α

T´p
ρ{4
L
q1`α

||Kβ1B18Lp0q||L1pR2q||∇KΘφρpp¨qpT ´ tq
1

1`α q||LrpR2qdt

À

ż T´p
ρ{16
L
q1`α

T´p
ρ{4
L
q1`α

ˆ
ż

|y|ď18L

1
|y|β

dy

˙ˆ
ż

|y|ďρpT´tq
´ 1

1`α
|∇KΘpyq|rdy

˙
1
r

dt

À

ˆ
ż

|y|ď18L

1
|y|β

dy

˙
ż T´p

ρ{16
L
q1`α

T´p
ρ{4
L
q1`α

ˆ
ż

|y|ď16L
|∇Θpyq|rdy

˙
1
r

dt

À L2´β
ż T´p

ρ{16
L
q1`α

T´p
ρ{4
L
q1`α

ˆ
ż

|y|ď16L
|∇Θpyq|rdy

˙
1
r

dt. (6.1.7)

Invoking assumption (6.1.4), it follows that for all L sufficiently large
ˆ
ż

Lď|y|ď2L
|rV p1qpyq|rdy

˙
1
r

À L2´β
ż T´p

ρ{16
L
q1`α

T´p
ρ{4
L
q1`α

L
γ
r dt À L

γ
r
`1´α´β.

Therefore, we conclude (6.1.6).

Lemma 6.3. Let β P p0, 1s and Θ P CβpR2q. Suppose that for some r P r1,8q and γ P R,
it holds

ż

|y|ďL

|Θpyq|rdy À Lγ, for all L " 1. (6.1.8)

Then, the function rU p1q defined by

rU p1qpyq “

ż t2

t1

P.V.

ż

R2

ˇ

ˇ

ˇ

ˇ

py ´ zqK

|y ´ z|2`β
ΘpzqφρpzpT ´ tq

1
1`α qdz

ˇ

ˇ

ˇ

ˇ

1Ayptqdt (6.1.9)

where 0 ă t1 ă t2 ă T and Ay as given in (6.1.3), satisfies the following estimate
ż

Lď|y|ď2L
|rU p1qpyq|rdy À Lγ´rpα`βq, for all L " 1. (6.1.10)

Proof. Let us initiate by considering β P p0, 1q. It should be noted that in this scenario,
the kernel Kβpxq “ yK|y|´p2`βq, y P R2zt0u, is integrable near the origin. Namely,

ż

|y|ÀL

|Kβpyq|dy ď

ż

|y|ÀL

1
|y|1`β

dy À L1´β. (6.1.11)
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We may thus apply similar arguments as in the proof of Lemma 6.2 to arrive at
ˆ
ż

Lď|y|ď2L
|rU p1qpyq|rdy

˙
1
r

ď

ż T´p
ρ{16
L
q1`α

T´p
ρ{4
L
q1`α

ˆ
ż

R2
|rKβ ˚ ppΘφρpp¨qpT ´ tq

1
1`α qqspyq|rdy

˙
1
r

dt

ď

ż T´p
ρ{16
L
q1`α

T´p
ρ{4
L
q1`α

||Kβ||L1pR2q||Θφρpp¨qpT ´ tq
1

1`α q||LrpR2qdt

ď

ˆ
ż

|y|ď18L

1
|y|1`β

dy

˙
ż T´p

ρ{16
L q

1`α

T´p
ρ{4
L q

1`α

ˆ
ż

|y|ď16L
|Θpzq|rdz

˙
1
r

dt.

Thus, it follows from (6.1.11) and assumption (6.1.8) that

ˆ
ż

Lď|y|ď2L
|rU p1qpyq|rdy

˙
1
r

À L1´β
ż T´p

ρ{16
L q

1`α

T´p
ρ{4
L q

1`α
L
γ
r dt À L

γ
r
´α´β,

as desired.
Regarding the case β “ 1, the proof is detailed in [76, Lemma 2.2], and it presents

nuanced differences from the preceding case, primarily because (6.1.11) no longer holds.
However, in this specific situation, the kernel Kβ is a Calderón-Zygmund operator (see
Section 2.2.1), and hence }Kβ ˚ f}LqpR2q À }f}LqpR2q for any f P LqpR2q and 1 ă q ă 8.
By replacing the use of Young’s convolution inequality in (6.1.7) by Theorem 2.5, we can
derive

ˆ
ż

Lď|y|ď2L
|rU p1qpyq|rdy

˙
1
r

ď

ż T´p
ρ{16
L q

1`α

T´p
ρ{4
L q

1`α

ˆ
ż

Lď|y|ď2L

ˇ

ˇ

ˇ

ˇ

P.V.

ż

R2
KK
β py ´ zqΘpzqφpzpT ´ tq

1
1`α qdz

ˇ

ˇ

ˇ

ˇ

r

dy

˙
1
r

dt

À

ż T´p
ρ{16
L q

1`α

T´p
ρ{4
L q

1`α

ˆ
ż

R2
|ΘpzqφpzpT ´ tq

1
1`α qdz|r

˙
1
r

dt

À L´p1`αq
ˆ
ż

|z|ď16L
|Θpzq|rdz

˙
1
r

À L
γ
r
´p1`αq. (6.1.12)

This concludes the proof.

6.2 Proof of the local Lp inequality
The goal of this section is to prove the local Lp equality, which is fundamental to

the proofs of Theorem 3.1 and Theorem 3.2. More precisely, if θ P Cpr0, T q;HspR2qq with
s ą 1` β, is a solution of gSQG equation (1.0.1), then for every η P C8c pR2 ˆ r0, T qq, it
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holds
ż

R2
|θpx, t2q|

pηpx, t2qdx´

ż

R2
|θpx, t1q|

pηpx, t1qdx

“

ż t2

t1

ż

R2
|θpx, tq|pBtηpx, tqdxdt`

ż t2

t1

ż

R2
|θpx, tq|ppu ¨∇qηpx, tqdxdt, (6.2.1)

where 0 ď t1 ă t2, T , p P r1,8q. The proof of (6.2.1) will be divided into two cases, each
corresponding to p P r1, 2q and p P r2,8q due to the approach employed. This method
involves multiplying the equation (1.0.1) with κ “ 0, by θε|θε|p´2, with θε “ ρε ˚ θ where ρε
represents the standard mollifier. Thus, when p P r1, 2s, we need to modify our approach
to avoid division by zero, as there may be values of x P R2 where θεpxq “ 0.

Before proceeding with the proof, let us recall that

Hs
pR2
q ãÑ LppR2

q, if s ě 1´ 2
p

and p ě 2, (6.2.2)

and
Hs
pR2
q ãÑ Ck0 pR2

q, if s ą k ` 1. (6.2.3)

Thus, since s ą 1` β, it follows that θptq P LppR2q for all p P r2,8q and θptq P C0pR2q for
all t P p0, T q. Now, observe that since θ is a solution of the gSQG equation, then

Btθ
ε
` puε ¨∇qθε “ puε ¨∇qθε ´ ρε ˚ rpu ¨∇qθs. (6.2.4)

Next, let us commence with the proof of (6.2.1).

Case 1: 2 ď p ă 8.
Let us start by multiplying (6.2.4) by θε|θε|p´2 η, which is well-defined since p ě 2.

Subsequently, integrating over the spatial variable and applying integration by parts, we
obtain

1
p

ż

R2
ηpx, tqBt|θ

ε
px, tq|pdx´

1
p

ż

R2
|θεpx, tq|ppuε ¨∇qηpx, tqdx

“

ż

R2
θε|θε|p´2ηpx, tqpuε ¨∇qθεdx´

ż

R2
θε|θε|p´2ηpx, tqrρε ˚ pu ¨∇qθsdx. (6.2.5)

where we used in the second term on the left-hand side that ∇ ¨u “ 0. Now, by integrating
on time t1, t2 P r0, T q and later applying integration by parts to the initial term on the
left-hand side, we get

ż

R2
|θεpx, t2q|

pηpx, t2qdx´

ż

R2
|θεpx, t1q|

pηpx, t1qdx

´

ż t2

t1

ż

R2
|θεpx, tq|pBtηpx, tqdx´

ż

R2
|θεpx, tq|ppuε ¨∇qηpx, tqdx

“ p

ż t2

t1

ż

R2
θε|θε|p´2

puε ¨∇qθεdxdt´ p
ż t2

t1

ż

R2
θε|θε|p´2ηρε ˚ ppu ¨∇qθdxdt (6.2.6)
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We proceed to analyze each of these terms separately. Focusing on the first two and third
terms on the left-hand side of (6.2.6), and recalling that η P C8c pR2 ˆ r0, T qq and θε Ñ θ

in Lp for all p P r2,8q, we deduced that for all t P r0, tq
ż

R2
|θεpx, t2q|

pηpx, t2qdx ÝÑ

ż

R2
|θpx, t2q|

pηpx, t2qdx (6.2.7)
ż

R2
|θεpx, t1q|

pηpx, t1qdx ÝÑ

ż

R2
|θpx, t1q|

pηpx, t1qdx,

and
ż t2

t1

ż

R2
|θεpx, tq|pBtηpx, tqdxdt ÝÑ

ż t2

t1

ż

R2
|θpx, tq|pBtηpx, tqdxdt. (6.2.8)

For the last term on the left-hand side of (6.2.6), we start by recalling that since
θ P Cpr0, T q;HspR2qq with s ą 1` β, it follows that

θεptq Ñ θptq in Hs
pR2
q, as εÑ 0, @ t P r0, T q

Moreover, since s ą 1` β, it follows from Theorem 2.4 that

}u}L2pR2q “ } ´∇K
p´∆q´1`β

2 θ}L2pR2q “ }|ξ|
β
2 Fpθq}L2pR2q “ ||Λ

β
2 θ||L2pR2q ď }θ}HspR2q,

which implies that

uεptq Ñ uptq in L2
pR2
q, as εÑ 0, @ t P r0, T q. (6.2.9)

Then, for all η P C8c pR2 ˆ r0, T qq, we obtain
ˇ

ˇ

ˇ

ˇ

ż

R2
|θε|ppuε ¨∇qηdx´

ż

R2
|θ|ppu ¨∇qηdx

ˇ

ˇ

ˇ

ˇ

ď |||θε|ppuε ¨∇qη ´ |θ|ppu ¨∇qη||L1

ď |||θε|ppuε ¨∇qη ´ |θε|ppu ¨∇qη||L1 ` |||θε|ppu ¨∇qη ´ |θ|ppu ¨∇qη||L1

ď |||θε|pppuε ´ uq ¨∇qη||L1 ` ||p|θε|p ´ |θ|pqpu ¨∇qη||L1

ď ||θ||pL2p ||∇η||L8 ||uε ´ u||L2 ` |||θε|p ´ |θ|p||L2 ||u||L2 ||∇η||L8 . (6.2.10)

Since that θptq P L2ppR2q, ∇ηptq P L8pR2q, and uεptq Ñ uptq in L2pR2q for all t P r0, tq,
the first term on the right-hand side of (6.2.10) goes to zero. For the second term, notice
that

ż

R2
p|θε|p ´ |θ|p|q2dx “

ż

R2
|θε|2pdx´ 2

ż

R2
|θε|p|θ|pdx`

ż

R2
|θ|2pdx, (6.2.11)

since θεptq Ñ θptq in LqpR2q for all q P r2,8q and t P p0, T q, it follows that |θε|p á |θ|p in
L2pR2q. Hence,

ż

R2
|θε|2pdx ÝÑ

ż

R2
|θ|2pdx and

ż

R2
|θε|p|θ|pdx ÝÑ

ż

R2
|θ|2pdx, (6.2.12)
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which implies that
|||θε|p ´ |θ|p||L2 Ñ 0, as εÑ 0.

Plugging this back into (6.2.10) and taking εÑ 0, we conclude that
ż

R2
|θε|ppuε ¨∇qηdx ÝÑ

ż

R2
|θ|ppu ¨∇qηdx, for all p P r2,8q. (6.2.13)

Setting gptq :“
ş

R2p|θ
ε|ppuε ¨∇qη ´ |θ|ppu ¨∇qηqdx, with t P rt1, t2s, it follows from (6.2.10)

and the Lemma 2.2 that g is uniformly bounded by c}θ0}
p
L2p}θ}L8pt1,t2,Hsq, which is integrable

in rt1, t2s. Hence, it follows by the Theorem 2.1 that
ż t2

t1

ż

R2
|θε|ppuε ¨∇qηdxdt ÝÑ

ż t2

t1

ż

R2
|θ|ppu ¨∇qηdxdt, for all p P r2,8q. (6.2.14)

Combining (6.2.7), (6.2.8), (6.2.13) and (6.2.14) with (6.2.6), we establish that for all
p P r2,8q, it holds

ż

R2
|θpx, t2q|

pηpx, t2qdx´

ż

R2
|θpx, t1q|

pηpx, t1qdx

´

ż t2

t1

ż

R2
Btη|θ|

pdxdt`

ż t2

t1

ż

R2
|θ|ppu ¨∇qηdxdt

“ p lim
εÑ0

ż t2

t1

„
ż

R2
θε|θε|p´2ηpuε ¨∇qθεdx´

ż

R2
θε|θε|p´2ηrρε ˚ pu ¨∇qθsdx



dt (6.2.15)

Now, note that the right-hand side of (6.2.15) converges to zero as ε Ñ 0. Indeed,
since η P C8c pR2 ˆ r0, T qq and θp¨, tq P C0pR2q for all t P r0, T q, from (6.2.3), it follows that
for each t P r0, T q, θεp¨, tq Ñ θp¨, tq uniformly on compact subsets of R2. Then, we deduce
that |θεptq|p´1ηptq P L8pUq, for all t P r0, T q, where U is a subset of supp ηpx, tq ˆ r0, T q.
Therefore, applying Hölder and Young’s convolution inequalities, it is established that
ˇ

ˇ

ˇ

ˇ

ż

R2
θε|θε|p´2ηpuε ¨∇qθεdx´

ż

R2
θε|θε|p´2ηrρε ˚ pu ¨∇qθsdx

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

R2
θε|θε|p´2ηppuε ¨∇qθε ´ rρε ˚ pu ¨∇qθsqdx

ˇ

ˇ

ˇ

ˇ

ď |||θε|p´1η||L8pR2q||pu
ε
¨∇qθε ´ rρε ˚ pu ¨∇qθs||L1pR2q

À ||puε ¨∇qθε ´ puε ¨∇qθ||L1 ` ||puε ¨∇qθ ´ pu ¨∇qθ||L1 ` ||pu ¨∇qθ ´ ρε ˚ pu ¨∇qθ||L1

À ||uε||L2 ||∇pθε ´ θq||L2 ` ||uε ´ u||L2 ||∇θ||L2 ` ||pu ¨∇qθ ´ ρε ˚ pu ¨∇qθ||L1

À ||θ||Hs ||∇pθε ´ θq||L2 ` ||uε ´ u||L2 ||∇θ||L2 ` ||pu ¨∇qθ ´ ρε ˚ pu ¨∇qθ||L1 , (6.2.16)

where in the last inequality we used that since s ą 1` β holds

||uε||L2pR2q “ ||Fp∇K
p´∆q´1`β

2 θεq||L2 “ |||ξ|
β
2 Fpθεq||L2 “ ||FpΛ

β
2 θεq||L2

“ ||Λ
β
2 θε||L2 ď ||θε||Hs ď ||θ||Hs . (6.2.17)
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Therefore, invoking (2.2.6) and (6.2.17), we obtain that ||uε ´ u||L2 Ñ 0 and ||∇pθε ´
θq||L2 Ñ 0 as εÑ 0. For the last term in (6.2.16), we observe that pu ¨∇qθ P L1. Indeed,
from Hölder’s inequality, it follows that

||pu ¨∇qθ||L1 ď ||u||L2 ||∇θ||L2 ď ||Λβ´1θ||L2 ||∇θ||L2 ď ||θ||2Hs ă 8.

Hence,
ρε ˚ pu ¨∇qθ Ñ pu ¨∇qθ, in L1, as εÑ 0.

Plugging all information above in (6.2.16) and taking εÑ 0, we obtain
ˇ

ˇ

ˇ

ˇ

ż

R2
θε|θε|p´2ηpx, tqpuε ¨∇qθεdx´

ż

R2
θε|θε|p´2ηpx, tqrρε ˚ pu ¨∇qθsdx

ˇ

ˇ

ˇ

ˇ

Ñ 0.

Furthermore, it follows from (6.2.16) and the maximum principle (Lemma 2.2) that

hptq “

ż

R2
θpx, tqεpx, tq|θεpx, tq|p´2ηpx, tqpuε ¨∇qθεpx, tqdx, t P rt1, t2s,

is uniformly bounded in time by c}θ0}
p
L2p}θ}L8pt1,t2,Hsq. Then, by the Theorem 2.1, we

obtain that
ż t2

t1

ż

R2
θε|θε|p´2ηpuε ¨∇qθεdxdt´

ż t2

t1

ż

R2
θε|θε|p´2ηrρε ˚ pu ¨∇qθsdxdtÑ 0. (6.2.18)

Combining (6.2.15) and (6.2.18), and taking εÑ 0, we obtain (6.2.1), i.e.,
ż

R2
|θpx, t2q|

pηpx, t2qdx´

ż

R2
|θpx, t1q|

pηpx, t1qdx

“

ż t2

t1

ż

R2
|θpx, tq|pBtηpx, tqdxdt`

ż t2

t1

ż

R2
|θ|ppx, tqpu ¨∇qηpx, tqdxdt. (6.2.19)

Case 2: 1 ď p ă 2.
Here, we proceed with the proof of the local Lp inequality (6.2.1), as outlined for

the range 1 ď p ă 2. Caution is necessary when multiplying (6.2.4) by θε|θε|p´2, as the
mollified function θε might have real roots. Therefore, it is crucial to adjust the proof to
accommodate this specific aspect of this case.

Fix t1, t2 P r0, T q. Let η P C8c pR2 ˆ r0, T qq and define the set K as follows:

K “ tpx, tq R2 ˆ r0, T q { ηpx, tq ‰ 0u :“ supp η,

since η is a continuous function, it follows that ηpyq ” 0, @ y P BK.
Now, for each δ ě 0, we define

Kε,δ :“ tpx, tq P K X supp θε : distppx, tq, BpK X supp θεqq ě δu, (6.2.20)

and

ψε,δ “

#

1, if px, tq P Kε,δ;
0, if px, tq P pK X supp θεqc.

(6.2.21)
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Let us extend ψε,δ to all of R2ˆr0, T q as a continuous and affine function. Namely, for each
px, tq P Kc

ε,δXpKXsupp θq, take px1, t1q P Kε,δ such that px1, t1q “ infpy,sqPKε,δ |py, sq´px, tq|,
which is guaranteed by the fact that Kε,δ is a compact set. Now take the line passing
through the points px1, t1q and px, tq, and let px2, t2q be the first point where it intersects
the boundary of K X supp θε, denoted as BpK X supp θεq.

Note that px2, t2q “ infpy,sqPBpKXsupp θεq |py, sq ´ px
1, t1q|. Indeed, suppose that there is

another point px0, t0q P BpK X supp θεq such that

distppx0, t0q, px
1, t1qq ă distppx2, t2q, px1, t1qq “ δ,

then it implies based on the characterization of BKε,δ that px0, t0q P intpKε,δq, which is a
contradiction.

Now, let λpx,tq P r0, 1s be such that

px, tq “ px1, t1q ` λpx,tqrpx
2, t2q ´ px1, t1qs,

i.e.

λpx,tq “
ppx, tq ´ px1, t1qq ¨ ppx2, t2q ´ px1, t1qq

|px2, t2q ´ px1, t1q|2
“
ppx, tq ´ px1, t1qq ¨ ppx2, t2q ´ px1, t1qq

δ2 ,

where we utilized the fact that since px2, t2q P BpKX supp θεq and px1, t1q P BKε,δ, it follows
that |px2, t2q ´ px1, t1q| “ δ. Therefore, for each px, tq P Kc

ε,δ X pK X supp θq, we can define

ψε,δpx, tq :“ ψε,δpx
1, t1q ` λpx,tqrψε,δpx

2, t2q ´ ψε,δpx
1, t1qs

“ 1´ λpx,tq, for all x P Kc
ε,δ X pK X supp θq,

Note that, since px, tq ÞÑ λpx,tq is an injective function, this ensures that ψε,δpx, tq is a
well-defined function for all px, tq P Kc

ε,δ X pK X supp θεq. Therefore, we can extend ψε,δ to
all of R2 ˆ r0, T q as follows:

ψε,δ “

$

’

&

’

%

1, if px, tq P Kε,δ

1´ λpx,tq, if px, tq P Kc
ε,δ X pK X supp θεq

0, if px, tq P pK X supp θεqc.
(6.2.22)

Additionally, based on straightforward calculations, we can deduce that

|Dpx,tqψε,δpx, tq| “
1
δ
, for all px, tq P Kc

ε,δ X pK X supp θεq, (6.2.23)

and

ψε,δpx, tq Ñ 1KXsupp θεpx, tq as δ Ñ 0, for all px, tq P R2
ˆ r0, T q. (6.2.24)

Let us recall that θε satisfies

Btθε ` ruε ¨∇sθε “ puε ¨∇qθε ´ ρε ˚ rpu ¨∇qθs. (6.2.25)
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Thus, we multiply (6.2.25) by θε|θε|p´2ηψε,δ, which is well-defined since suppψε,δ Ă supp θε,
integrate over x in R2 and later, apply integration by parts.

1
p

ż

R2
ηpx, tqψε,δpx, tqBt|θεpx, tq|

pdx´
1
p

ż

R2
|θεpx, tq|

p
puε ¨∇qpηpx, tqψε,δpx, tqqdx

“

ż

R2
θε|θε|

p´2ηψε,δpuε ¨∇qθεdx´
ż

R2
θε|θε|

p´2ηψε,δrρε ˚ pu ¨∇qθsdx,

where we used on the second term on the left-hand side, that ∇ ¨ u “ 0. Thus, by using
the product rule to the second term on the left-hand side1 , we obtain

1
p

ż

R2
ηψε,δBt|θε|

pdx´
1
p

ż

R2
ψε,δ|θε|

p
puε ¨∇qηdx´

1
p

ż

R2
η|θε|

p
puε ¨∇qψε,δdx

“

ż

R2
θε|θε|

p´2ηψε,δpuε ¨∇qθεdx´
ż

R2
θε|θε|

p´2ηψε,δrρε ˚ pu ¨∇qθsdx. (6.2.26)

where in the last expression we integrate over t P rt1, t2s and subsequently apply integration
by parts, together with the product rule to the first term on the left-hand side and obtain

ż

R2
ηpx, t2qψε,δpx, t2q|θpx, t2q|

pdx´

ż

R2
ηpx, t1qψε,δpx, t1q|θpx, t1q|

pdx

´

ż t2

t1

ż

R2
η|θε|

p
Btψε,δdxdt´

ż t2

t1

ż

R2
ψε,δ|θε|

p
Btηdxdt

´

ż t2

t1

ż

R2
ψε,δ|θε|

p
puε ¨∇qηdxdt´

ż t2

t1

ż

R2
η|θε|

p
puε ¨∇qψε,δdxdt

“ p

ż t2

t1

ż

R2
θε|θε|

p´2ηψε,δpuε ¨∇qθεdxdt´ p
ż t2

t1

ż

R2
θε|θε|

p´2ηψε,δrρε ˚ pu ¨∇qθsdxdt.

(6.2.27)

The next goal is to prove that both the third and sixth terms on the left-hand side
of (6.2.27) are null. Let us start by analyzing the third term. Remember that since
Kc
ε,δ X pK X supp θεq is a compact set, any cover of the set admits a finite subcover.

Hence, without loss of generality, we can assume there are a finite number of points
px1, t1q, . . . , pxn, tnq P BpK X supp θεq, n P N, such that

Kc
ε,δ X pK X supp θεq Ă Kc

ε,δ X pK X supp θεq Ă
n
ď

i“1
B2δpxi, tiq,

where Bδpxi, tiq, for i “ 1, . . . , n, is a ball centered at pxi, tiq with radius δ. We now recall
that the Lebesgue Differentiation Theorem (LDT) (see Theorem 2.2) holds for almost
everywhere px, tq P R2ˆr0, T q. Consequently, the set Ω :“ tpx, tq P R2ˆr0, T q | LDT holdsu
is a dense subset in R2 ˆ r0, T q. Therefore, for each i “ 1, . . . , n, we choose px̃i, t̃iq P
1 Note that the product ηψε,δ may not be derivable because ψε,δ is not a smooth function. Therefore, if

necessary, we take a sequence of mollifying functions ψζε,δ “ ρζ ˚ ψδ, where ρζ is a standard mollifier
and later, we take the limit as ζ Ñ 0, to obtain (6.2.26).
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ΩXB2δpxi, tiq, which implies that the union of the sets B3δpx̃i, t̃iq forms a new cover for
Kc
ε,δ X pK X supp θεq. Thus

Kc
ε,δ X pK X supp θεq Ă

n
ď

i“1
B3δpx̃i, t̃iq. (6.2.28)

Thus, recalling that suppψε,δ Ă Kc
ε,δ X pK X supp θεq, invoking (6.2.23) and (6.2.28), and

applying the Lebesgue Differentiation Theorem, we deduce that

lim
δÑ0

ˇ

ˇ

ˇ

ˇ

ż t2

t1

ż

R2
ηpx, tq|θεpx, tq|

p
Btψε,δpx, tqdxdt

ˇ

ˇ

ˇ

ˇ

ď lim
δÑ0

«

1
δ

ż

Kc
ε,δ
XpKXsupp θεq

ηpx, tq|θεpx, tq|
pdxdt

ff

ď C lim
δÑ0

«

δ2
n
ÿ

i“1

1
|B3δpx̃i, t̃iq|

ż

B3δpx̃i,t̃iq

ηpx, tq|θεpx, tq|
pdxdt

ff

“ C lim
δÑ0
pδ2
q

n
ÿ

i“1
ηpx̃i, t̃iq|θεpx̃i, t̃iq|

p

“ 0. (6.2.29)

Hence, we obtain

lim
δÑ0

ż t2

t1

ż

R2
ηpx, tq|θεpx, tq|

p
Btψε,δpx, tqdxdt “ 0.

The approach for the last term in the left-hand side of (6.2.27) is identical to the
approach previously applied. Then, we also can conclude that

lim
δÑ0

ż t2

t1

ż

R2
ηpx, tq|θεpx, tq|

p
puε ¨∇qψε,δpx, tqdxdt “ 0. (6.2.30)

Plugging (6.2.29) and (6.2.30) in (6.2.27) and taking the limit δ Ñ 0, we obtain
ż

KXsupp θε
ηpx, t2q|θεpx, t2q|

pdx´

ż

KXsupp θε
ηpx, t1q|θεpx, t1q|

pdx

´

ż t2

t1

ż

KXsupp θε
Btηpx, tq|θεpx, tq|

pdxdt´

ż

R2
|θεpx, tq|

p
puε ¨∇qηpx, tqdxdt

“ p

ż t2

t1

ż

KXsupp θε
θεpx, tq|θεpx, tq|

p´2ηpx, tqpuε ¨∇qθεpx, tqdxdt

´ p

ż t2

t1

ż

KXsupp θε
θεpx, tq|θεpx, tq|

p´2ηpx, tqrρε ˚ ppu ¨∇qθpx, tqqsdxdt (6.2.31)

It should be noted that (6.2.31) is analogous to (6.2.6) for the case where 2 ď p ă 8.
Consequently, this enables us to replicate the same argument, leading to the conclusion
that for all 1 ď p ă 2, it holds

ż

R2
|θpx, t2q|

pηpx, t2qdx´

ż

R2
|θpx, t1q|

pηpx, t1qdx

“

ż t2

t1

ż

R2
|θpx, tq|pBtηpx, tqdxdt`

ż t2

t1

ż

R2
|θpx, tq|ppu ¨∇qηpx, tqdxdt. (6.2.32)
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where t1, t2 P r0, T q and η P C8c pR2 ˆ r0, T qq. Therefore, we conclude the proof of (6.2.1)
for all 1 ď p ă 8.

We highlight that, choosing ηpx, tq “ hpxqψptq for all px, tq P R2 ˆ r0, T q, where
h P C8c pR2q and ψ P C8c pp0, T qq such that ψptq “ 1 for all t P rt1, t2s, we obtain from
(6.2.19) the equality (6.2.33) invoked in the proof of Theorem 3.1 and Theorem 3.2. More
precisely,
ż

R2
|θpx, t2q|

phpxqdx´

ż

R2
|θpx, t1q|

phpxqdxdt “

ż t2

t1

ż

R2
|θpx, tq|ppu ¨∇qhpxqdxdt, (6.2.33)

where p P r2,8q.
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