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Resumo

Neste estudo, abordamos um paradigma fundamental e ainda relativamente pouco explo-
rado no campo das redes neurais artificiais para o desembaçamento não supervisionado
de imagens. Ao conceber uma imagem nebulosa pela superposição de várias camadas
“mais simples”, tais como uma camada de imagem livre de neblina, uma camada de mapa
de transmissão e uma camada de luz atmosférica, inspirada no modelo de espalhamento
atmosférico, propomos uma abordagem baseada no conceito de desentrelaçamento de
camadas. Nosso método, denominado XYZ, representa uma melhora substancial nas mé-
tricas de qualidade de imagem, como SSIM e PSNR, bem como BRISQUE, PIQE e NIQE.
Este avanço é alcançado por meio da combinação estratégica dos métodos XHOT, YOLY
e ZID, capitalizando os pontos fortes individuais de cada um. Um aspecto distintivo
e valioso da abordagem XYZ é a sua natureza não supervisionada, o que implica que
ela não depende de conjuntos de dados contendo pares de imagens nítidas e desfocadas
para treinamento. Isto contrasta com o paradigma tradicional de treinamento profundo,
marcando uma inovação no campo da remoção de névoa. Além disso, destacamos dois
benefícios fundamentais da abordagem XYZ proposta. Em primeiro lugar, por não ser
supervisionada, evita a necessidade de utilizar conjuntos de dados exaustivos que incluem
imagens nítidas e desfocadas como referência fundamental. Em segundo lugar, aborda-
mos a questão da neblina a partir de uma perspectiva multifacetada, reconhecendo e
desvendando as complexidades inerentes a este fenômeno atmosférico. Esta abordagem
em camadas permite uma representação mais precisa e detalhada da cena, melhorando
assim a qualidade das imagens sem neblina. Resultados experimentais obtidos para a
conjunto de dados RESIDE são comparados com outros métodos da literatura.



Abstract

In this study, we address a fundamental and still relatively less explored learning paradigm
in the field of neural networks for image dehazing: the unsupervised dehazing of an image.
By conceiving a hazy image as the superposition of several “simpler” layers, such as a
haze-free image layer, a transmission map layer, and an atmospheric light layer, inspired
by the atmospheric scattering model, we propose an approach based on the concept of
layer disentangling. Our method, called XYZ, represents a substantial improvement in
image quality metrics, such as SSIM and PSNR as well as BRISQUE, PIQE and NIQE.
This advancement is achieved through the strategic combination of the XHOT, YOLY
and ZID methods, capitalizing on the individual strengths of each. A distinctive and
valuable aspect of the XYZ approach is its unsupervised nature, which implies that it
does not rely on data sets containing pairs of clear and hazy images for training. This
contrasts with the traditional deep training paradigm, marking an innovation in the field
of dehazing. Furthermore, we highlight two fundamental benefits of the proposed XYZ
approach. Firstly, being unsupervised, it frees the process from the need to use exhaustive
datasets that include clear and hazy images as a fundamental reference. Secondly, we
approach the haze issue from a multi-layered perspective, recognizing and unraveling the
complexities inherent to this atmospheric phenomenon. This layered approach allows for
a more accurate and detailed representation of the scene, thereby improving the quality
of haze-free images. Experimental results obtained for the RESIDE dataset are compared
with other methods from the literature.
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Chapter 1

Introduction

In challenging weather situations, such as those affected by fog and haze, image quality
suffers significant degradation due to the influence of particles suspended in the atmo-
sphere. These particles scatter light, attenuating the intensity of the light reflected in
the scene. The scattered atmospheric light mixes with the light captured by the camera,
generating noticeable changes in the contrast and color of the image.

The absorption caused by particles suspended in the environment directly affects the
quality of the images captured. This phenomenon, evident on hazy days, has an adverse
impact on photographic practice. The contrast of the image decreases, and the colors
undergo perceptible alterations. Simultaneously, the textures and contours of objects in
the scene become blurred. Figure 1.1 illustrates the disparity in pixel histograms between
images with and without the presence of haze.

This degradation in image quality not only constitutes a visual hindrance, but also
negatively impacts fundamental computer vision tasks such as object detection and im-
age segmentation. In this context, low-quality inputs can significantly degrade the perfor-
mance of meticulously designed models, highlighting the urgent need for effective dehazing
solutions in image processing.

In the critical task of estimating global atmospheric light and per-pixel transmission
coefficients in atmospheric dispersion models, the haze removal community has developed
several methodologies. These can be classified into two main categories: assumption-based
prior methods and learning-based methods.

Previous methods, based on assumptions derived from images, have proven effective
in certain contexts. For example, Tan [48] proposed to maximize the local contrast of the
image to eliminate haze, based on the premise that clean images tend to exhibit higher
contrast. In a similar vein, Berman et al. [3] focused on dehazing, assuming that the
colors in a dehazed image can be approximated by a reduced set of colors. Despite the
notable achievements of these methods, the quality of haze removal largely depends on
the agreement between the data distribution used and reality.

To overcome the limitations imposed by prior assumptions, a promising approach
has been the application of deep neural networks. These methods not only detect and
remove haze, but also directly learn atmospheric dispersion parameters from training
data. A significant example is the work developed by Cai et al. [6], who proposed a
convolutional neural network designed for this purpose. However, it is crucial to note
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(a) Clear image (b) Haze image

(c) Histogram of clear image

(d) Histogram of haze image

Figure 1.1: Histograms for clear and haze images. This figure illustrates the difference in
pixel histograms between images with and without the presence of haze.

that such methods, by requiring an extensive set of clean and haze image pairs, fall into
the category of supervised learning.
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This shift toward deep neural network-based approaches presents considerable poten-
tial to improve the ability to remove haze more accurately and widely. As we evolve
toward more complex models and more advanced training techniques, the door opens to
solutions that can adapt more robustly to various atmospheric conditions and complex-
ities. The fusion of knowledge derived from previous methods and the expressive power
of neural networks offers a promising horizon to address significant challenges in the field
of haze removal.

1.1 Context and Motivation

The massive proliferation of digital cameras both in the consumer market and in spe-
cialized detection systems has accentuated the relevance of dehazing in outdoor images.
This process has evolved to become an essential component in various scientific fields and
cutting-edge applications, from astronomy and medical sciences to surveillance, agronomy,
archeology and environmental studies, as you can see some examples in Figure 1.2.

Figure 1.2: Applications with use of images. Applications range from astronomy and
medicine to autonomous vehicles and security cameras, among others.

Visual data, fundamental to the understanding and analysis of the human brain, oc-
cupy a central position in the hierarchy of perception. About one-third of the cortical
area of the human brain is dedicated exclusively to processing visual data [13]. Conse-
quently, the sharpness and clarity of images become crucial aspects for various tasks in
the field of image processing, exercising a direct influence on the quality of the interpreted
information.

In the specific context of vehicular systems, the ability of cameras to generate clear
images becomes of outstanding importance, especially in adverse weather conditions. Vis-
ibility affected by haze can seriously compromise the safety and effectiveness of these
systems, underscoring the urgency of advanced haze removal solutions to ensure optimal
performance in a wide range of challenging atmospheric conditions.
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In this scenario, research and development in haze removal techniques through the use
of artificial intelligence, specifically through unsupervised neural networks, is placed at
the vanguard. This approach not only seeks to improve the visual quality of images. In
this convergence between advanced technology and fundamental practical needs, a vast
field opens up to explore and refine methods that not only transform the way we interpret
and use visual data, but also set standards in haze removal in challenging environments.

The combination of artificial intelligence and unsupervised neural networks in this con-
text promises a significant advance in improving the quality of images and the adaptability
of vision systems in adverse atmospheric conditions.

1.2 Problem Characterization

Although supervised learning methods have achieved remarkable levels of performance
in haze removal, they face significant challenges, one of them being the need for large
pairs of haze and clean images for training. This requirement is usually met by artificially
synthesizing haze images through physical models with predetermined parameters and
the corresponding clean image. However, as Golts et al. [11] pointed out, synthesized
databases tend to lack the informational richness and consistency present in real datasets.
This gap raises the urgency of developing unsupervised approaches.

In practice, obtaining a large-scale dataset with the desired ground truth becomes a
formidable challenge due to variations in the scene and other factors such as lighting.
Consequently, most methods choose to initially collect clean images and then synthesize
the corresponding blurred images using an atmospheric dispersion model with predefined
parameters. However, when applying models trained on synthetic datasets to real-world
blurred photos, the challenge of domain switching arises, as synthetic blurred images may
lack the consistency and information needed to address real-world situations. Against
this backdrop, the creation of an deep neural network is presented as a key solution to
overcome the mentioned problems.

The development of a deep neural network capable of simultaneously addressing the
challenges of operating unsupervised and without the need for extensive training is en-
visioned. This direction, so far little explored, seeks not only to mitigate the limitations
derived from supervised methods, but also to address the specific problems of domain
switching and lack of coherence in synthetic data. Progress in this direction will not only
improve the effectiveness of haze removal, but will also significantly contribute to the
autonomy and adaptability of these models in real-world environments, marking a shift
in the convergence of unsupervised neural networks and haze removal in images.

1.3 Main Challenges

Haze removal using unsupervised neural networks presents several key challenges that
require careful attention to achieve effective results. Some of the main challenges include:

• Lack of Labeled Datasets: Unlike supervised approaches, where pairs of haze and
unhazed images are required for training, unsupervised neural networks must learn
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directly from unlabeled data. This poses a fundamental challenge of not having
ground truth to guide the training process.

• Varied Atmospheric Complexity: Atmospheric conditions can vary significantly,
from light haze to dense haze situations. The ability of an unsupervised neural
network to adapt and generalize effectively to these variations is a significant chal-
lenge, as haze features can be highly complex and contextual.

• Data Heterogeneity: Visual data can be highly heterogeneous in terms of settings,
lighting, and weather conditions. The network must be able to handle the diversity
of input data and learn relevant patterns that enable effective dehazing in a wide
range of environments.

• Unsupervised Learning Transfer: Achieving effective learning transfer in unsuper-
vised environments is a challenge. The network must learn useful features without
relying on explicit supervision, which requires strategies to capture relevant infor-
mation without a dataset specifically labeled for the dehazing task.

• Evaluate Removal Quality: Effectively measuring the quality of haze removal with-
out the existence of labeled pairs of clear and haze images can be difficult. Objective
and subjective metrics are needed that evaluate the visual fidelity and perceptual
improvement of the network without relying on ground truth.

• Robustness to Unusual Conditions: Unsupervised neural networks must be robust to
extreme or unusual atmospheric conditions. The ability to deal with unpredictable
situations, such as heavy haze or sudden changes in lighting, is an essential challenge
for practical applicability.

Addressing these challenges effectively is essential to advance the successful application
of unsupervised neural networks in dehazing and improving the visual quality of images
in challenging environments.

1.4 Objectives and Research Questions

The fundamental objectives of this work focus on proposing an approach based on unsu-
pervised learning, recognizing the intrinsic need for this approach due to the scarcity of
pairs of real images with and without haze. Additionally, a comprehensive comparative
analysis of a diverse set of haze removal methods is sought to be carried out. This analysis
will not only address the individual capabilities of each method, but will also explore the
advantages and disadvantages of their application both individually and in combination.

Specific Objectives

To achieve the main objectives of this work it is necessary to achieve some specific objec-
tives:
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1. Development of a Robust Unsupervised Method: Design and develop an unsuper-
vised learning-based dehazing method that can learn autonomously from unlabeled
data. This involves creating an unsupervised neural network model capable of cap-
turing the inherent complexities of haze images.

2. Comparative Analysis: Conduct a detailed comparative analysis between the pro-
posed method and a variety of existing approaches for haze removal. Evaluate
performance in terms of visual quality, effectiveness and computational efficiency,
considering relevant metrics for each aspect.

3. Combination of Methods: Investigate and analyze how the combination of different
methods can enhance or mitigate their respective limitations. Explore synergies and
possible improvements by applying multiple approaches together.

Ultimately, the success of this work will depend on the ability to comprehensively address
these specific objectives, thereby providing a valuable contribution to the field of haze
removal using unsupervised learning-based approaches.

Research Questions

In this section, we present some research questions that motivated our thesis proposal:

1. How can existing unsupervised dehazing models be improved and optimized using
advanced deep learning techniques?

2. What is the impact of neural network architecture on the performance of unsuper-
vised dehazing models?

3. How do accurate and relevant evaluation metrics influence the performance of un-
supervised haze removal models in real-world conditions?

1.5 Contributions

As fundamental contributions, we propose a deep learning model aimed at removing haze
in images, addressing both outdoor and indoor environments. Our approach is based on
the use of unsupervised neural networks, which is an approach to overcome the limitations
associated with the reliance on paired datasets. This strategic approach is based on the
need to address real-life conditions, where obtaining pairs of clear and haze images is
impractical and, in many cases, extremely tedious.

Additionally, we plan to conduct extensive experimental evaluation using challenging
dataset, captured in real-world environments. This evaluation will not only measure
the effectiveness of our approach in removing haze under diverse conditions, but will
also support the robustness and generalizability of the model to varied and challenging
scenarios. This experimental analysis will become an essential component to validate and
demonstrate the effectiveness of our model in real-world situations, thus consolidating its
contributions in the field of haze removal.
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1.6 Publications

The following papers have been published from the development of this research work:

• P. Maldonado-Quispe, H. Pedrini. Image Dehazing Using a Simple Convolutional
Autoencoder. 9th IEEE Latin American Conference on Computational Intelligence
(LA-CCI). Recife-PE, Brazil, pp. 1-6, October 29 - November 01, 2023.

• P. Maldonado-Quispe, H. Pedrini. XYZ Unsupervised Network: A Robust Image
Dehazing Approach. 19th International Conference on Computer Vision Theory and
Applications (VISAPP). Rome, Italy, pp. 500-507, February 27-29, 2024.

1.7 Text Organization

Chapter 2 presents the fundamental concepts that serve as the basis for our research.
Additionally, we address related work that is of relevance to our research and perform
a comparison in three areas of study linked to our work: (i) Assumptions, we examine
the existing literature on methods that employ prior information or assumptions for haze
removal; (ii) Supervised Learning, we review the literature related to methods using su-
pervised neural networks, which implies the need for paired images for haze removal; (iii)
Unsupervised Learning, we explore the literature related to dehazing methods that dis-
pense with paired images, that is, those that only require the image with the presence of
haze.

Chapter 3 describes in detail our proposed methodology, which is the XYZ unsuper-
vised approach [29]. This approach is distinguished by not requiring an extensive dataset
of paired data for subsequent training and evaluation. The XYZ methodology com-
prises the combination of three unsupervised neural networks (XHOT [29], YOLY [25]
and ZID [24]), capitalizing on the particular advantages of each of them. Furthermore,
we provide detailed information about the dataset used to evaluate our approach. In
this case, we use the RESIDE dataset, thus ensuring a reliable comparison with various
existing methods in the literature.

Chapter 4 presents the results obtained by applying our methodology to a widely
used dataset. We carry out a comprehensive evaluation that covers both quantitative and
qualitative aspects. For quantitative evaluation, we employ Full-Reference metrics such as
PSNR and SSIM, as well as Non-Reference metrics such as BRISQUE, NIQE, and PIQE,
given the unsupervised nature of the problem. Additionally, a detailed discussion on the
visual results for the qualitative evaluation is included. For a more rigorous quantitative
evaluation, metrics are presented that compare our results to leading state-of-the-art
methods.

Chapter 5 presents our contributions and conclusions from our research work. In
addition, we describe some directions for future studies. Finally, Appendix A includes
some relevant information about the RESIDE dataset.
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Chapter 2

Background

The purpose of this chapter is to provide the essential conceptual foundations and review
relevant related works in the context of this research, as well as the key methods used in
its development.

Section 2.1 describes the fundamental concepts in the haze removal process. Some
concepts present in this section are Atmospheric Scattering Model (ASM), Dark Channel
Prior (DCP), Color Attenuation Prior (CAP), among other.

Section 2.2 provides a comprehensive introduction to Machine Learning and Deep
Learning and their specific application in the field of haze removal. The unsupervised
approach is highlighted, where the need for paired or labeled data becomes unnecessary.
Likewise, we focus especially on Zero-Shot Learning, a Deep Learning paradigm that is
characterized by requiring a minimum amount of data and even just one piece of data for
the training of unsupervised neural networks.

Section 2.3 presents a classification of related works into three different categories: (i)
Assumption, (ii) Supervised Learning and (iii) Unsupervised Learning. Assumption-based
methods use prior information present in the image, such as color or saturation, among
other visible characteristics. Moreover, we perform a detailed analysis and comparison
of methods using supervised neural networks, which imperatively require paired images
(with hazy and without hazy). On the other hand, we explore unsupervised methods,
which dispense with paired data, alleviating the need for paired datasets, which in many
cases are impractical to obtain.

This section also introduces and analyzes the methods YOLY [25] and ZID [24]. The
essence of both approaches and how they are applied in the haze removal process is
explored. It is important to note that both YOLY and ZID are distinguished by not
depending on extensive datasets, since they are based on the philosophy of Zero-Shot
Learning.

Section 2.4 highlights the relevance of the REalistic Single Image DEhazing (RE-
SIDE) [23] dataset, widely recognized for its quality in evaluating large-scale haze removal
methods. This dataset is characterized by its diversity and is divided into two test sub-
sets to address different environments and challenges. The Synthetic Objective Testing
Set (SOTS) subset, consisting of 500 images with haze, focuses on indoor environments,
while the Hybrid Subjective Testing Set (HSTS) subset is designed for outdoor evaluation,
including 10 images of synthetic haze and 10 images that simulate a realistic approach.
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This diversification allows for a more thorough and robust assessment of haze removal
methods under a variety of conditions.

2.1 Fundamental Concepts

In this section, we describe fundamental concepts in the process of haze removal, as well
as the relevant characteristics present in it.

2.1.1 Dehazing Process

Haze is a natural phenomenon (Figure 2.1) that can be roughly explained by the ASM. Mc-
Cartney [30] proposed a basic ASM to explain the principle of haze formation. Narasimhan
and Nayar [34] and Nayar and Narasimhan [35] extended and developed ASM, which is
widely used today. ASM provides a solid theoretical foundation for imaging range studies.
The formula is:

I(x) = J(x) t(x) + A(1− t(x)) (2.1)

where x is the coordinate value and A stands for global atmospheric light. In various
documents, A is sometimes referred to as air light or ambient light. In this study, A is given
as atmospheric light. For ASM-based haze removal methods, A is generally unknown. I(x)
represents a haze image and J(x) represents a clean scene. For most common models,
I(x) is the input and J(x) is the desired output. Moreover, t(x) represents the average
transmission map.

Haze

Haze

Illumination sourceScattering

Environment illumination
Airlight

Sensor

Transmission

Figure 2.1: Atmospheric Scattering Model (ASM). Extracted from the work developed
by McCartney [30].

2.1.2 Haze Features

In the context of haze removal, it is essential to understand the key characteristics asso-
ciated with the haze phenomenon. Two pertinent features are outlined as follows:

1. Dark Channel Prior (DCP) is based on extensive study of haze-free outdoor images.
Most of the haze-free patches contain at least one color channel with some pixels



23

with very low, almost zero intensity values. The smallest color in a particular area
of pixels is called the dark channel [15]:

D(x) = min
y∈Ωr(x)

(
min

c∈{r,g,b}
Ic(y)

)
, (2.2)

where Ic is an RGB color channel of I and Ωr(x) is a local patch centered at x with
the size of r × r. The dark channel feature has a high correlation to the amount of
haze in the haze image, and is used to estimate the transmission map directly.

2. Color Attenuation Prior (CAP) arises from the observation pointed out by Zhu
et al. [60], where they infer that the effect of white light on the observed values is
additive. In the case of atmospheric light, an increase in image brightness is observed
at the expense of a decrease in saturation. This background information provides
an opportunity to use the difference between brightness and saturation to estimate
haze concentration. Since the concentration of the haze increases as the depth of
the scene changes, there is a positive correlation between the depth of the scene and
the concentration of the haze. This relationship can be expressed as follows:

d(x) = θ0 + θ1V (x) + θ2S(x) + ϵ(x), (2.3)

where x represents the position within the image, d corresponds to the depth of the
scene, V is the component of brightness of the image with haze, S is the component
of saturation, θ0, θ1 and θ2 are the unknown linear coefficients and finally ϵ(x)

represents a random error of the model.

2.2 Machine Learning

In the field of image processing, Machine Learning [4, 5, 33] represents a crucial discipline
that has revolutionized the way we approach the improvement and interpretation of visual
content. This approach stands as a powerful tool that allows algorithms to learn intrin-
sic patterns and complex relationships in large data sets, making it easier to automate
previously challenging tasks.

In essence, Machine Learning is a branch of artificial intelligence that enables machines
to learn without direct human intervention. Instead of being programmed with specific
rules, machines use algorithms that adjust and evolve, refining their performance as they
are exposed to more data. This paradigm is particularly relevant in image processing,
where visual complexity and variability of conditions require adaptive approaches.

Within the image processing, Machine Learning plays a crucial role in tackling chal-
lenging tasks such as dehazing. In contexts where the presence of haze significantly
degrades image quality, Machine Learning models can learn to discern specific patterns
associated with haze and apply corrections automatically.

There are two main approaches in applying Machine Learning to image processing [7,
43, 44]. The first, known as supervised learning, involves training models using labeled
datasets, which contain pairs of images with and without haze. This allows models to learn
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the relationship between visual characteristics and the presence of haze, extrapolating that
knowledge to new images.

On the other hand, unsupervised learning excels in situations where obtaining pairs of
images is difficult or impractical in real-world environments. Unsupervised learning mod-
els can learn directly from unlabeled data, capturing subtle patterns without relying on
ground truth. This approach is especially valuable in image processing under challenging
atmospheric conditions, such as haze.

Therefore, the integration of Machine Learning into image processing represents a
significant evolution, enabling notable advances in dehazing and other complex visual
tasks. The ability of models to learn and adapt to the variability of atmospheric conditions
contributes to a substantial improvement in the visual quality of images, making this
discipline a cornerstone in Haze Removal research.

2.2.1 Deep Learning

Deep Learning [12, 14, 16, 47] has significantly transformed the image processing land-
scape, standing out for its inherent ability to learn complex representations and perform
tasks automatically from raw data. This approach is based on deep neural network ar-
chitectures, such as Convolutional Neural Networks (CNN) and Generative Adversarial
Networks (GAN), which have proven effective in various applications, including haze re-
moval.

Deep neural networks are capable of learning high-level patterns and features in visual
data, allowing us to address the haze problem more effectively than traditional methods.
In the specific context of haze removal, deep learning offers a substantial advantage by
allowing models to automatically and hierarchically learn the complexities associated with
adverse atmospheric conditions.

In the words of Ren et al. [40], “deep learning models can automatically and efficiently
capture the intrinsic features of images affected by haze, thereby improving the detail
recovery ability under challenging atmospheric conditions”. The ability of these networks
to discern spatial patterns and discriminative features gives them the ability to decompose
image information, separating light transmission and atmospheric light.

It is essential to highlight that the unsupervised approach to deep learning is partic-
ularly valuable in the context of haze removal. Unlike supervised methods that require
pairs of clear and haze images for training, deep learning models can generalize to various
atmospheric conditions without relying on specific datasets.

Ren et al. [40] highlighted this advantage by noting that “deep learning’s ability to
generalize to various atmospheric conditions makes it particularly valuable in real-world
situations, where conditions can vary widely”.

In summary, Deep Learning is presented as an essential tool in haze removal, providing
a unique ability to automatically and efficiently learn the characteristics associated with
adverse atmospheric conditions. Its unsupervised approach and its ability to discern
complex visual patterns position it as a key technology for improving the visual quality
of images affected by haze.
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2.2.2 Unsupervised Learning

In the field of image processing [17, 37, 38, 41], Unsupervised Learning is emerging as an
innovative paradigm that revolutionizes the way algorithms can address visual complexity
without relying on explicit labeled data. As Bishop [4] and Goodfellow et al. [12] highlight,
this approach is distinguished by its ability to learn intrinsic patterns and underlying
structures directly from unlabeled datasets.

Unsupervised learning is presented as a valuable alternative in image processing, par-
ticularly in scenarios where obtaining labeled image pairs is challenging. Rather than
relying on ground truth, unsupervised learning models [2] have the ability to extract
subtle patterns from unlabeled data, which is essential for realistic situations where the
availability of annotated data is limited.

Neural networks, in particular, have proven to be effective tools in the application of
unsupervised learning in image processing. As LeCun et al. [21] highlighted, architectures
such as GANs have revolutionized the generation of realistic images without the need for
explicit labels. In the context of haze removal, this implies that models can directly learn
the complexities of atmospheric dispersion and apply corrections autonomously.

By avoiding the need for labels, unsupervised learning in image processing, as ad-
dressed by Goodfellow et al. [12], aligns perfectly with the challenging nature of atmo-
spheric phenomena such as haze. The ability of these models to capture relevant visual
features without reliance on previously labeled data opens new possibilities in improving
visual quality in real-world situations.

Unsupervised learning represents a revolutionary approach in image processing, es-
pecially dehazing. Its ability to learn autonomously and adaptively without requiring
annotated information offers a promising path to advance the visual quality of images
affected by challenging atmospheric conditions.

2.2.3 Zero-Shot Learning

Zero-Shot Learning (ZSL) [46, 51] in image processing represents an advanced paradigm
that challenges traditional machine learning conventions. This approach allows models
to generalize and recognize classes without requiring specific training examples, which is
essential in situations where the availability of annotated data is limited.

In essence, ZSL is based on the transfer of knowledge from previously known classes
to new classes during inference. This is achieved through techniques such as semantic
representation, where visual concepts are mapped to semantic vectors, allowing models
to generalize to classes not seen during training [36].

The applications of ZSL in image processing are diverse and promising. Lampert
et al. [20] highlighted its usefulness in scenarios where the identification of new classes is
essential, such as in challenging atmospheric conditions where the haze can introduce un-
expected visual phenomena. The ability of ZSL models to adapt to classes not considered
during training becomes a valuable resource in changing and challenging contexts.

In conclusion, ZSL emerges as a transformative approach in image processing, provid-
ing an innovative response to the need to generalize to new classes without specific training
data. Its ability to transfer knowledge, as evidenced by some research works [20, 36, 46],



26

offers a unique and adaptable perspective in solving complex visual challenges, such as
dehazing.

2.3 Related Work

Many researchers are trying to recover sharp, high-quality scenes from haze images. Table
2.1 presents a classification of the outstanding approaches in haze removal, according to
three main features: Assumptions, Supervised and Unsupervised Learning. Before the
widespread use of deep learning in computer vision tasks, haze removal algorithms were
mainly based on some previous assumptions [15] and the ASM [30]. The processing
sequences of these rule-based statistical methods are easy to interpret. However, they can
fail when faced with complex real-world scenarios. For example, the popular dark channel
before [15] (DCP, CVPR 2009 Best Paper) does not handle empty regions well.

The works [6, 27, 28, 58] are inspired by deep learning and combines ASM with CNN
to estimate physical parameters. Quantitative and qualitative experimental results show
that deep learning can help predict physical parameters in a supervised manner. Wang
et al. [50], on the other hand, propose the use of an attention-convolutional module.

Due to advancements in deep learning and convolutional neural networks, numerous
neural network methodologies have emerged for haze removal. A majority of these ap-
proaches rely on paired samples to facilitate supervised learning during network training.
For instance, DehazeNet[6] is an end-to-end haze removal model that estimates the trans-
mission map, estimating a clear image from a hazy input. AOD-Net [22] integrates the
ASM with deep learning, simplifying calculations and reducing the number of variables
for restoring clear images. MSBDN-DFF [9] adopts a U-Net architecture with dense fea-
ture fusion for multi-scale enhanced dehazing, addressing spatial information preservation
issues in U-Net. FFA [39] expands CNN capabilities by applying attention mechanisms to
different features and pixels. MAFFNet [56] leverages multi-scale attention feature fusion,
utilizing U-Net features to transmit shallow information to deep features while assigning
varying weights through pixel and channel attention modules.

MSAFF-Net [26] is a compact multi-scale attention feature fusion network designed
for end-to-end single image haze removal, considering regions with haze-related features
through channel and multi-scale spatial attention modules. TSDN [55] adopts a two-step
dehazing network with intra-domain and constrained inter-domain adaptations, subdi-
viding synthetic domain distributions into subsets and identifying optimal subsets via
loss-based supervision. DCNet [54] employs Net-U and Net-D sub-networks to progres-
sively obtain a haze-free image in a coarse-to-fine manner.

Following this, Liu et al. [27] and Zheng et al. [58] demonstrated that end-to-end
supervised dehazing networks can be implemented independently of the ASM. Thanks
to the powerful feature extraction capability of CNN, these non-ASM-based dehazing
algorithms can achieve similar accuracy as ASM-based algorithms.

ASM-based and non-ASM-based supervised algorithms have shown impressive perfor-
mance. However, they often require synthetic paired images that are inconsistent with
real-world haze images. While these supervised methods have shown competitive results
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Table 2.1: Haze removal methods available in the literature, categorized by the type of
approach employed.

Methods Main idea Type

Tan [48] Maximizing the local
contrast

AssumptionBerman et al. [3] Colors could approxi-
mate a few colors

He et al. [15] Estimating the ASM

Cai et al. [6] Learning of t(x)

Supervised Learning

Zhang and Patel [57] Learning t(x) and A
Zhu et al. [59] Generative Adversarial

Network
Yang et al. [53] Generative Adversarial

Network
Liu et al. [27] Convolutional Neural

Network
Zheng et al. [58] Convolutional Neural

Network
Maldonado-Quispe and Pedrini [28] Convolutional Neural

Network
Wang et al. [50] Attention Convolutional

Module
Zhang and Wu [56] Multi-scale Attention

Feature Fusion
Lin et al. [26] Multi-scale Attention

Feature Fusion
Ju et al. [18] Multiple Prior Con-

strain

Engin et al. [10] Unsupervised domain
transfer

Unsupervised Learning

Golts et al. [11] Learning without haze-
free images

Chen et al. [8] Generative Adversarial
Networks

Wang et al. [52] Generative Adversarial
Networks

Li et al. [24] Zero-Shot learning
Li et al. [25] Zero-Shot learning

on synthetic datasets based on objective metrics, a significant challenge arises when transi-
tioning these models to real-world scenarios. Acquiring paired hazy/clear image samples
in real-world conditions is nearly impossible, leading to suboptimal performance when
applied to actual haze images in practical applications. This limitation has fueled the ex-
ploration of unsupervised approaches [10, 11, 24, 25], aiming to enhance the adaptability
and effectiveness of dehazing models across diverse and challenging environments.
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A noteworthy approach involves introducing constraints at different algorithmic stages
using ASMs. Zhu et al. [59] pioneered the integration of GANs into a dehazing method
based on the ASM. This novel implementation introduces new constraints through a
discriminator, breaking away from the conventional reliance on paired samples. Disent-
GAN [53] generates cyclic images based on the ASM model, incorporating cycle losses
to achieve dehazing. Due to the asymmetry in features between hazy and clear images,
defining their relationship accurately using weak constraints alone poses challenges for
GAN-based methods.

Furthermore, Chen et al. [8] designed a method based on two stages, which eliminates
haze using DCP and subsequently optimizes the results using existing features between
the transmission and depth map. Wang et al. [52] proposed a method completely inde-
pendent of real haze-free images. However, GAN-based networks have great complexity.
Agrawal and Jalal [1] proposed a dehazing method that combines superpixel transforma-
tions with nonlinear transformations. Superpixels enhance the accuracy of transmission
map estimation, reducing artifacts and better preserving the image structure.

The authors of IDBP [18] developed a robust haze removal technique based on the
ASM model. This technique includes an atmospheric light estimation module and a multi-
prior constraint module that integrates non-local/local priors and global constraints. In
these methods, the parameters of the ASM model are reconstructed in the image domain,
reducing the convergence of different information. However, it is important to note that
the estimation error resulting from assumptions in the ASM model remains an inevitable
challenge in these approaches.

Data-driven unsupervised dehazing methods have achieved impressive performance.
Unlike models that require sufficient data to perform network training, Li et al. [24]
proposed a neural network dehazing process that only requires a single example. They
further reduced the dependence of the parameter learning process on data by combining
the advantages of unsupervised learning and zero-shot learning.

Methods for unsupervised dehazing that are data-driven have demonstrated outstand-
ing results. In the approaches ZID and YOLY developed by Li et al. [24] and Li et al.
[25] respectively, a dehazing based on neural networks uses a single example, in contrast
to methods that require sufficient data to perform network training. By combining the
benefits of unsupervised learning and zero-shot learning, the authors further decreased
the dependence of the parameter learning process on data.

Supervised haze removal methods have achieved excellent results. However, this re-
quires paired data, which is difficult to obtain in the real world. For outdoor scenes
with grass, water, or moving objects, it is difficult to guarantee that two images taken
on a clear, cloudy day have exactly the same content. That is the reason why the works
developed by Engin et al. [10], Golts et al. [11], Li et al. [24, 25] explored unsupervised
dehazing algorithms.

In the next subsections, we present the methods used in this work, which include
YOLY and ZID.
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2.3.1 YOLY

Considering a haze image, represented as I(x), the central purpose is to restore the image
without haze J(x) without making use of information beyond what is contained in the
image itself. The essence of this method is based on breaking down x into three sub-
networks, as illustrated in Figure 2.2.

Figure 2.2: The architecture of YOLY. Extracted from the work developed by Li et al.
[25].

To be more precise, YOLY simultaneously channels x through three main networks:
the first is designed to estimate J(x), the second to estimate the transmission map T (x),
and the third focuses on estimating atmospheric light A. Subsequently, the results of
these networks are further combined to reconstruct x in the upper layer, making use of
the atmospheric scattering model (Equation 2.1).

Loss Function: Therefore, the model as a whole learns in an unsupervised way. In
summary, the goal is to minimize the following loss function:

Lrec = ||I(x)− x|| (2.4)

The cleared image J(x) is obtained by combining the outputs generated by the three
sub-networks, as expressed in Equation 2.1. The loss function Lrec was designed to regulate
the performance of the system as a whole, encompassing both the individual sub-networks
and the reconstruction of the haze image I(x) after calculating its components. More
precisely, this loss function monitors and guides the disentangling process, and this is
achieved by incorporating the haze generation process.

In addition, YOLY proposes a new loss function taking into account the HSV color
space, which arises based on the observation made by Zhu et al. [60], which indicates that
the difference between brightness and saturation is close to zero in the haze-free zones.
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To make use of this previous information, they propose the following equation regarding
the prediction of J(x).

LJ = ||V (J(x))− S(J(x))|| (2.5)

In addition, YOLY proposes a set of loss functions for training the A-Net sub-network,
including a regularization function to avoid overfitting.

2.3.2 ZID

The approach followed by ZID is similar to YOLY [25], in terms of deinterlacing the
problem into capable simpler ones. However, ZID differs from YOLY in two fundamental
aspects. First, a distinction is made in terms of the loss function used. Specifically,
ZID proposes a loss similar to that used in DCP for J-Net training, while YOLY is
based on observing the HSV color space. In addition to this, ZID introduces a smooth
regularization in the outputs of T-Net and A-Net, as opposed to YOLY, which only
applies this regularization in A-Net. Second, network architectures vary. ZID adopts a
structure analogous to the U-Net architecture, in contrast to YOLY, which is based on
a non-degenerate architecture. Figure 2.3 shows in general the architecture adopted by
ZID.

Figure 2.3: The framework of ZID. Extracted from the work developed by Li et al. [24].

2.4 Dataset

We are set to conduct comprehensive experiments leveraging a dataset recognized for
its prowess in large-scale haze removal, namely the REalistic Single Image DEhazing
dataset, abbreviated as RESIDE1. This dataset, meticulously curated for its diverse and

1https://sites.google.com/view/reside-dehaze-datasets/reside-standard

https://sites.google.com/view/reside-dehaze-datasets/reside-standard


31

challenging nature, has proven instrumental in evaluating the efficacy of dehazing method-
ologies [23]. To provide a snapshot of the dataset’s characteristics, we present an overview
in Table 2.2, delineating two distinctive test subsets: SOTS and HSTS.

The SOTS subset encompasses 500 haze images captured in indoor settings. Notably,
these images are synthesized using a sophisticated physical model, incorporating meticu-
lously tuned parameters. This synthesis process ensures a diverse representation of hazing
scenarios, enriching the dataset with an abundance of indoor atmospheric conditions. On
the other hand, the HSTS subset is tailored for outdoor evaluation and comprises a cu-
rated collection. It consists of 10 synthetic haze images, intelligently generated to simulate
a spectrum of real-world outdoor hazing scenarios. Additionally, HSTS incorporates 10
real-world blur images, meticulously captured across diverse scenes, further enhancing the
dataset’s realism and relevance to practical dehazing scenarios. To evaluate our approach
to haze removal, it is important to note that we dispense with the training subset and
rely solely on the validation set to perform relevant evaluations.

Table 2.2: Overview of the RESIDE dataset.

RESIDE

Subset Images

Indoor Training Set 13,990
Synthetic Objective Testing Set 500
Hybrid Subjective Testing Set 20

Figures 2.4 and 2.5 illustrate some samples of the dataset, which are divided in terms of
haze inside of a closed environment (indoor: Figure 2.4) or outside (outdoor: Figure 2.5).
It is worth noting that the images on SOTS are manually generated by the physical model
to represent the haze effect. A more detailed description can be found in Appendix A.

2.5 Final Remarks

This chapter aimed to present the background context of our research, where we present
the fundamental concepts to understand our approach and the evaluations carried out and
review the research related to our study. After reviewing the state of the art, our focus will
be on applying Zero-Shot Learning and Unsupervised Learning, thus avoiding dependency
on paired data sets. Our strategy leverages the benefits of integrating different sources of
prior information, such as Dark Channel Prior and Color Attenuation Prior, together and
in a coordinated way. The chapter established a solid foundation for our research work.

The following chapter focuses on a detailed description of our proposed method, con-
sidering each module that composes it, as well as a description of the steps involved in
each of these modules, providing a complete description of our proposed method.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 2.4: SOTS indoor images: The first and third row of images, (a), (b), (c), (g),
(h) and (i), show haze-free samples in a closed environment, for example, inside a house.
The images in the second and fourth row, (d), (e), (f), (j), (k) and (l), show samples with
haze.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 2.5: SOTS outdoor images: The first and third row of images, (a), (b), (c), (g),
(h) and (i), show haze-free outdoor samples in a street or environment itself that reflect
the effects of nature. The images in the second and fourth row, (d), (e), (f), (j), (k) and
(l), show images with haze, fog, and other effects.



34

Chapter 3

Proposed Method

This chapter presents a detailed description of our main approach, named XYZ, to haze
removal. We propose a method based on supervised neural networks, thus addressing the
elimination of haze without relying on paired data, which is a distinctive advantage of
our approach. We further describe XHOT, which is our first approach to haze removal.

Section 3.1 details the design and evolution of two innovative unsupervised learning
methods for haze removal: (i) XHOT [29] and (ii) XYZ [29]. The XHOT method presents
a simplified strategy for haze removal, contrasting with the complexity of the ZID method.
In addition, it introduces our main approach, XYZ, which capitalizes on the strengths of
the XHOT, YOLY and ZID methods. XYZ, by amalgamating these techniques, achieves a
synergy that significantly enhances the model’s ability to address various challenges asso-
ciated with haze removal in images. This approach reflects the search for a comprehensive
and effective solution in the landscape of unsupervised learning for the improvement of
images affected by haze.

Section 3.2 addresses the comprehensive process of evaluating results obtained through
our approaches, XHOT and XYZ. This process involves an evaluation that will range
from Full-Reference metrics to Non-Reference metrics. Full-Reference metrics, such as
PSNR and SSIM, will provide a detailed quantitative assessment, allowing a rigorous
comparison with other approaches and revealing performance in terms of fidelity and
structural similarity. On the other hand, Non-Reference metrics, such as BRISQUE,
NIQE and PIQE, will offer an additional perspective by evaluating image quality more
closely to human perception, considering factors such as naturalness and visual perception.
This comprehensive approach to evaluation reflects our commitment to a complete and
accurate understanding of XYZ’s performance in the critical task of haze removal.

3.1 Unsupervised Approach

In this section, we delve into the evolution of our proposed methodologies, a fusion of
three unsupervised learning techniques. Firstly, we introduce XHOT (Subsection 3.1.1),
rooted in the foundational principles expounded in prior investigations, notably drawing
inspiration from the notable works of [25] and [11]. Subsequently, our exploration extends
to YOLY, influenced by the groundbreaking research articulated by Li et al. [25], and
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ZID, shaped by the insightful findings presented by Li et al. [24].
The remarkable efficacy of both YOLY and ZID is underscored by their performance

across key metrics such as SSIM and PSNR, firmly establishing them as benchmarks
within the challenging RESIDE dataset.

Furthermore, it is crucial to highlight a pivotal characteristic shared by all the method-
ologies detailed henceforth - the absence of a requirement for paired image datasets during
the training process. This unique attribute accentuates the adaptability of each method,
autonomously addressing the challenge of haze removal for individual images. Notably,
this not only underscores their practical utility in real-world scenarios but also positions
them as versatile solutions free from the constraints of paired image dependencies.

In the following subsections, we present and analyze our two developed approaches,
named XHOT and XYZ.

3.1.1 XHOT Approach

The conceptual genesis of the XHOT network [29] is rooted in the exigency to forge an
effective haze removal solution, deliberately deviating from the conventional dependence
on paired data inherent in unsupervised learning methodologies. Acknowledging the intri-
cate nature of haze removal and its decomposability into simpler constituent elements, our
strategic approach pivots on the synergy derived from the fusion of multiple elementary
layers.

This architectural decision, as elucidated in prior research [24], stems from the recogni-
tion that a hierarchical combination of these fundamental layers can significantly enhance
the efficacy and efficiency of haze removal processes.

In essence, our network’s architecture leverages the collaboration of these simple lay-
ers, each contributing to the overall task of haze removal. This modularized strategy
allows for adaptability to diverse atmospheric conditions and varying degrees of haziness.
By dissecting the complexity of haze removal into manageable components, the XHOT
network is designed to navigate the challenges posed by real-world scenarios, where paired
data may be scarce or unavailable.

Furthermore, the reliance on unsupervised learning principles aligns with the prag-
matic need to develop solutions that do not necessitate paired data for training. This
choice emphasizes the network’s capacity to autonomously learn and adapt to diverse
haze patterns, ensuring its versatility across a spectrum of environmental conditions. In
summary, the XHOT network represents a purposeful stride towards an effective and ef-
ficient unsupervised haze removal solution, leveraging the power of modular simplicity to
navigate the complexities of real-world atmospheric conditions.

In tackling this challenge, we have devised three neural networks, among which two
are convolutional neural networks meticulously crafted to ascertain the optimal values
for J(x) and T (x), as delineated in Figure 3.1. However, when it comes to computing
the atmospheric light, a distinctive component of the image content, we have elected to
adhere to the methodology put forth by earlier research, particularly by Li et al. [24]
and Li et al. [25]. Their work leveraged a Variational Autoencoder (VAE) to estimate the
atmospheric light A.
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This strategic decision stems from recognizing the demonstrated efficacy of these
methodologies in the specific task of atmospheric light estimation. By harnessing con-
volutional neural networks to discern the parameters J(x) and T (x), we aim to enhance
our model’s capacity to accurately and efficiently capture the fundamental features of
haze-affected images.

The utilization of a dedicated convolutional neural network for the estimation of each
component is pivotal in addressing the inherent complexity of the dehazing task. This
modular approach allows for a more precise and specialized focus on each aspect of the
process, thereby optimizing the overall performance of the XHOT network in haze removal
from images.

Figure 3.1: Architecture of our proposed XHOT, in which we have three sub-networks to
calculate the variables J(x), T (x) and A, respectively.

Architectures: Three sub-networks were constructed to estimate the values for J(x),
T (x) and A:

• J-Net: This sub-network is designed as a non-degenerative convolutional neural
network, meaning it preserves the dimensions of the input. Comprising three con-
volutional blocks, each conducts a convolution with a kernel size of 5, followed by
batch normalization, and finally, a LeakyReLU activation function with a slope of
0.01. At the conclusion of the third block, we apply a convolution along with a
Sigmoid activation function to normalize the output between 0 and 1. The resulting
output of this sub-network is a 3-channel image representing the haze-free image
J(x), which will play a crucial role in guiding the training process.
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The architectural choices for J-Net are grounded in principles aimed at maintaining
information integrity and effective feature extraction throughout the network. The
non-degenerative nature ensures that the spatial dimensions of the input are con-
served, preserving crucial details during the processing. The LeakyReLU activation
function contributes to introducing non-linearity, allowing the network to capture
complex relationships within the data.

Additionally, the use of batch normalization enhances training stability by normaliz-
ing the inputs at each layer. The final application of the Sigmoid activation function
ensures that the output is appropriately scaled between 0 and 1, aligning with the
characteristics of the haze-free image. This output, denoted as J(x), serves as a vital
reference for the training process, guiding the network towards generating dehazed
images that closely resemble the ground truth.

• T-Net: This sub-network adopts the identical neural network architecture as J-
Net, yet introduces a key distinction in the output. The output of this neural
network is a single-channel image, representing the transmission map T (x) within
the given image. The utilization of the same neural network structure for T-Net as
in J-Net is strategic, leveraging the network’s capacity to capture and understand
complex features related to haze removal. By focusing on the transmission map,
which signifies the attenuation of light due to haze, T-Net plays a critical role in
estimating the transmission properties across the image.

The decision to have a single-channel output for the transmission map aligns with the
inherent characteristics of the transmission map, which is a scalar value representing
the degree of haze in different regions of the image. This design choice ensures that
the output is tailored to the specific information content required for transmission
map estimation, streamlining the learning process.

In summary, while T-Net shares its architectural foundation with J-Net, its distinct
focus on generating a transmission map provides a complementary piece of informa-
tion necessary for the overall dehazing process. Together, J-Net and T-Net form a
framework, each contributing specialized outputs that collectively guide the XHOT
network in effectively removing haze from images.

• A-Net: This sub-network consists of a Variational Autoencoder, since the variable
A is not related to the content of the image, similar to the work by Li et al. [24], it is
assumed that A is sampled from a latent Gaussian distribution, and so the problem
becomes a variational inference [19].

Loss Function: In the training process of our unsupervised model, a pivotal aspect lies
in the careful design of an effective loss function that guides the neural network to learn
the underlying features of haze removal. For this purpose, we leverage a comprehensive
loss function, denoted as LXHOT, which combines the loss functions from both J-Net and
A-Net components. The formulation is depicted in Equation 3.1:

LXHOT = LJ + LA, (3.1)
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where LJ is the loss function between the input x and the result of generating haze I(x),
this value is calculated taking into account the 3 variables predicted following Equa-
tion 2.1. Then, we can define LJ as:

LJ = MSELoss(I(x), x). (3.2)

In addition, the loss function for the A-Net sub-network is expressed as:

LA = LH + LKL, (3.3)

where LH is the loss function MSELoss between A and AH , AH is the pre-calculated value
of the image with haze x using Dark Channel Prior [15]. Finally, the function LKL is given
following Equation 3.4, where KL() denotes the Kullback-Leibler divergence between two
distributions:

LKL = KL(N(µz, σ
2
z)||N(0, 1))

=
1

2m

∑
i

(
(µzi)

2 + (σzi)
2 − 1− log(σzi)

2
)
. (3.4)

3.1.2 XYZ Approach

In the subsequent sections, we delve into the intricacies of our second proposed ap-
proach, marked by the seamless integration of the strengths derived from the XHOT [29],
YOLY [25], and ZID [24] methods. The distinctiveness of this approach lies in its abil-
ity to harness the unique advantages presented by each unsupervised learning method,
fostering a synergy that elevates the overall performance of the dehazing model.

A noteworthy aspect is the preservation of the individual loss functions associated with
the XHOT, YOLY, and ZID methods. These loss functions serve as pivotal components
guiding the training process of our proposed robust model. By retaining these distinct
loss functions, we capitalize on the specialized capabilities encoded within each method,
ensuring that the model benefits from the subtle insights provided by XHOT, YOLY, and
ZID.

The integration of multiple unsupervised methods introduces a level of adaptability
and versatility to our proposed approach. Each method contributes a unique perspective
and set of features, collectively enhancing the model’s capacity to handle diverse atmo-
spheric conditions and image complexities. This synergistic fusion of methodologies is
poised to yield a dehazing model that not only surpasses individual benchmarks but also
exhibits a robustness essential for real-world deployment.

Architecture

Illustrated in Figure 3.2, our methodology leverages insights from the works developed Li
et al. [24] and Li et al. [25]. As described in Section 2.3, our devised methods are strate-
gically designed to disentangle the intricate effects of haze into more computationally
manageable layers.
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This deinterlacing process becomes feasible through the application of Equation 2.1.
The atmospheric dispersion model, comprising three unknown variables, forms the core of
many haze removal techniques, centering their efforts on elucidating these critical values.

In alignment with this principle, our approach capitalizes on the disentanglement
facilitated by XYZ [29] to compute the haze-free image. To achieve this, our methodology
features two sub-network groups alongside an unsupervised neural sub-network. The gJ-
Net group is dedicated to computing the clear image J(x) and, subsequently, training
our neural network with its attendant loss function. Concurrently, the gT-Net subgroup
is entrusted with computing the transmission map T (x). Lastly, the A-Net sub-network
takes on the responsibility of estimating the atmospheric light embedded within the image.

This strategic division into sub-network groups not only underscores the complexity
of haze removal but also highlights the multifaceted nature of our approach. By breaking
down the dehazing process into these specialized components, our methodology attains
a comprehensive understanding of the atmospheric conditions, enabling the model to
generate superior results. The coordinated efforts of these sub-networks collectively con-
tribute to the potency of our unsupervised neural network, setting the stage for enhanced
dehazing performance in diverse scenarios.

Figure 3.2: The architecture of our proposed XYZ approach. XYZ includes two groups
of sub-networks: gJ-Net group of sub-networks (XHOT, YOLY and ZID) for image esti-
mation clean J(x), gT-Net group of sub-networks for transmission map estimation T (x).
In addition, XYZ maintains layer disentanglement for the estimate of A, which is unique
for the two groups described previously.

• gJ-Net: The gJ-Net group (Figure 3.2 (a)) emerges as a synergistic integration of
the XHOT, YOLY, and ZID methods, strategically fusioning the strengths of each
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approach. Drawing inspiration from XHOT, which employs a non-degenerative
neural network akin to YOLY, this fusion serves a dual purpose. First, it aids in
the preservation of critical details essential for generating a high-quality haze-free
image. This includes the retention of intricate object shapes within the haze image
while maintaining the original dimensions. YOLY, in its contribution, leverages
the HSV color space to optimize the training of the unsupervised network. This
innovative approach is inspired by the findings of Zhu et al. [60], who observed that
in haze-free regions, the disparity between brightness and saturation tends to be
close to zero.

Further enriching the gJ-Net group, ZID introduces a novel perspective by incor-
porating a loss function based on Dark Channel Prior Loss [11]. In tandem, ZID
adopts a degenerative neural network of the U-Net architecture, complete with skip
connections. The U-Net structure is particularly instrumental in capturing and re-
constructing intricate features from various scales of the input, aligning with the
subtle nature of haze removal. This strategic combination of architectures, along
with the incorporation of the HSV color space and Dark Channel Prior Loss, reflects
the improvement in our gJ-Net group. The fusion of these diverse methodologies
empowers the neural network to adeptly navigate the challenges posed by haze,
resulting in a holistic and robust haze removal mechanism.

• gT-Net: In parallel with the gJ-Net architecture, this group (Figure 3.2 (b)) mir-
rors the three previously introduced methods, differing solely in the output of each
method. Regardless of the specific method employed, the common output is the
transmission map associated with the image under processing. This design choice
enhances the flexibility and adaptability of the overall framework, allowing for seam-
less integration of diverse methodologies while maintaining a unified focus on the
transmission map, a pivotal element in the dehazing process.

The versatility embedded in this sub-network design not only streamlines the inte-
gration of distinct methodologies but also emphasizes the significance of the trans-
mission map as a shared representation across the methods. By maintaining consis-
tency in this crucial component, the group ensures a coherent and unified approach
to haze removal, capitalizing on the unique strengths of each method while preserv-
ing a common thread that unifies their contributions. This unified output, despite
methodological differences, lays the foundation for a more cohesive and robust de-
hazing mechanism within the overarching neural network architecture.

• A-Net: Within this critical sub-network, the primary objective is the computation
of the atmospheric light inherent in an image (Figure 3.2 (c)), irrespective of its
content. The presumption is made that this atmospheric light arises independently
and exists within a latent space shaped by a Gaussian distribution. To tackle
this subtle task, a strategic choice is made to employ a dedicated neural network,
specifically a VAE, as elucidated in Section 3.1.1.

The rationale behind opting for a VAE lies in its capacity to encapsulate the complex
characteristics of the atmospheric light within a probabilistic latent space. VAEs
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offer a principled approach to modeling this latent space, allowing for the extraction
of meaningful representations. By leveraging the probabilistic nature of the latent
space, the neural network within this sub-network becomes adept at capturing the
inherent variability associated with atmospheric light across diverse images.

This deliberate choice reflects a subtle understanding of the complexities involved in
estimating atmospheric light, acknowledging the need for a sophisticated model that
can navigate the inherent uncertainties in this crucial component of haze removal.

Loss Function

To train our model composed of three unsupervised methods, we use together a loss
function taking into account the output of each method as described in Equation 3.5:

LXYZ = LXHOT + LYOLY + LZID (3.5)

where LXHOT is the loss function for our XHOT method, LYOLY is the loss function for
YOLY and finally LZID is the loss function for ZID, we decided to give the same weight
to each loss function as the three guide our training, taking into account the assumptions
made, such as the case of the HSV color space, Dark Channel Prior Loss, in addition to
the XHOT loss function, which turns out to be an improvement of Golts et al. [11] and Li
et al. [25].

3.2 Evaluation

In the training phase of our model, consisting of three unsupervised methods, a critical
aspect lies in the formulation of an effective loss function that can adequately guide the
optimization process. The synergy of these three methods, namely XHOT [29], YOLY [25],
and ZID [24], necessitates a comprehensive loss formulation to capture the nuanced aspects
of haze removal. We introduce a unified loss function that strategically considers the
output contributions from each method, synthesizing them into a cohesive optimization
objective.

The loss function, as depicted in Equation 3.5, reflects a holistic approach that ac-
commodates the distinctive characteristics of each method. This formulation is designed
to strike a balance between preserving crucial details, such as object shapes and scene-
specific features, while enhancing overall image clarity and transmission map accuracy. It
is essential to underscore the significance of this unified loss function in training a model
that leverages the strengths of each method to collectively achieve superior dehazing per-
formance.

Equation 3.5 incorporates a multi-term structure that accounts for the contributions
of XHOT, YOLY, and ZID methods individually. This allows the model to discern the
relative importance of each method’s output in the overall optimization process. More-
over, the formulation considers factors such as spatial consistency, color preservation,
and contrast enhancement, ensuring a comprehensive evaluation of the dehazing model’s
performance.
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By unifying the loss function, we create a training framework that maximizes the ben-
efits of each unsupervised method. This approach not only facilitates efficient convergence
during training but also enhances the adaptability of the model to diverse environmental
conditions, contributing to the robustness and generalization capability of our proposed
haze removal solution.

3.2.1 Full-Reference Quality Metrics

In the area of haze removal, accurate evaluation of the quality of the algorithms’ outputs
plays a crucial role in measuring their effectiveness. Full References Quality Metrics con-
stitute an essential approach in this context. These metrics focus on the direct comparison
between processed images and dehazed reference images, thus providing a comprehensive
and objective evaluation of the fidelity and accuracy of dehazing. By considering the
totality of the information present in the reference image, allowing a detailed and precise
evaluation of the effectiveness of the algorithms in adverse atmospheric conditions. That
is the reason why the evaluation of our approach includes both PSNR and SSIM metrics.

1. Peak Signal to Noise Ratio (PSNR): Indicates the proportion of the image
signal’s maximum value to its noise. The higher the value, the less noise interferes
with the image and the better the image quality. It is a commonly used metric in the
field of image processing, including haze removal. It is used to evaluate the quality of
an image by measuring the relationship between the signal (image information) and
noise (any distortion or degradation present). The PSNR is expressed in decibels
(dB) and calculated by the formula 3.6:

MSE(X, Y ) =
1

H ×W

H∑
i=1

W∑
j=1

(X(i, j)− Y (i, j))2

PSNR = log

[
(2N − 1)2

MSE

]
, (3.6)

where MSE (Mean Squared Error) represents the average square difference between
the pixels of the original (X) and the degraded (Y ) image. H, W correspond to
height and width of the images, and N corresponds to bits per pixel (8).

In the context of haze removal, a higher PSNR indicates lower degradation and
higher fidelity in the processed image. However, it should be noted that the PSNR
only measures the difference pixel by pixel, as it does not consider more complex
perception characteristics.

2. Structural Similarity Index Measure (SSIM): It quantifies how closely two
images match up structurally, taking into account detail, edge, and contour infor-
mation. The more haze is eliminated, the less the restored image’s structure differs
from the original image, and the higher the SSIM value is because the comparison
and analysis are between the processed image and the original haze image. The
value of SSIM approaches one if the amount of haze eliminated is lower since it
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is more comparable to the original haze image and their structural similarities are
greater.

SSIM(X, Y ) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
, (3.7)

where µx and µy correspond to mean of X and Y , respectively, σx and σy correspond
to variance of X and Y , respectively, and σxy corresponds to covariance between X

and Y .

Unlike simple metrics such as PSNR, SSIM takes into account visual perception and
image structure. Evaluate the structural similarity between a reference image and
a processed image

3.2.2 Non-Reference Quality Metrics

Non-Reference Quality Metrics play an essential role in evaluating the effectiveness of
dehazing algorithms without relying on clear reference images. This approach is particu-
larly valuable in real-world situations, where obtaining haze-free images may be difficult
or even impossible.

These metrics focus on the intrinsic evaluation of the processed images, using internal
properties and specific image characteristics to determine the quality of dehazing. By
dispensing with reference images, Non-Reference Quality Metrics adjust to practical sce-
narios, offering an objective evaluation based on the intrinsic information of the cleared
images. This approach is crucial for measuring the effectiveness of algorithms in real-world
conditions, where the availability of reference images may be limited.

1. Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE): It is
an image quality metric that focuses on evaluating image quality distortion without
requiring a reference image. Developed by Mittal et al. [31], BRISQUE is based on
the analysis of natural image statistics to identify perceptual distortions.

BRISQUE’s approach is to extract statistical features from an image and compare
them to a reference model that has been built from a diverse set of natural images.
These characteristics include the magnitude and orientation of the gradients, high-
frequency energy, and pixel distribution.

The BRISQUE quality score is calculated by comparing the features extracted from
the image under test with those of the reference model. A lower score indicates a
better quality image, while a higher score suggests greater distortion.

2. Naturalness Image Quality Evaluator (NIQE): It is a metric designed to
evaluate the quality of images completely blindly Mittal et al. [32], that is, without
the need for a quality reference. The fundamental purpose of NIQE is to measure the
perceptual naturalness of an image, evaluating the statistical discrepancy between
the statistics of the original image and the statistics of an ideally natural image.
NIQE uses second-order statistics to evaluate image texture, seeking to capture how
the image deviates from natural statistical properties.
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The NIQE formula involves extracting features based on image quality statistics
and comparing them to a reference model. Its performance has proven effective in
evaluating the quality of natural images and has found applications in various fields,
including image enhancement and dehazing.

3. Perception-based Image Quality Evaluator (PIQE): PIQE stands as a non-
reference image quality evaluation method designed for real-world images, employing
a perception-based approach. The mean subtraction contrast normalization coeffi-
cient is utilized to derive the image quality score [49]. Unlike some methods that rely
on supervised learning for quality prediction, PIQE is an unsupervised approach,
eliminating the need for a learning model.

PIQE draws inspiration from key principles governing human perception of image
quality. First and foremost, human visual attention tends to focus strongly on salient
points and spatially active regions within an image. PIQE leverages this insight
by estimating distortion primarily in spatially prominent areas [49]. Additionally,
PIQE recognizes that local quality at the block/patch level significantly contributes
to overall human perception of image quality. To address this, the distortion level
is calculated at the local block level, typically with a size of n× n where n = 16.

3.3 Final Remarks

This chapter has delineated our innovative approaches, XHOT and XYZ, designed with
the specific purpose of addressing haze removal without relying on paired images. By
adopting an unsupervised approach, XYZ leverages the inherent information contained in
haze images to learn and improve autonomously.

The next chapter will delve into the practical application of our XHOT and XYZ
method, highlighting the results obtained by implementing it in the RESIDE dataset.
Through this detailed application, XYZ capabilities and performance will be revealed in
real-world scenarios, providing a comprehensive view of its effectiveness in haze removal
under various conditions.
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Chapter 4

Experimental Results

This chapter describes and discusses the results obtained by applying our XYZ ap-
proach [29] to the RESIDE dataset, a widely recognized resource in the field of haze
removal.

Section 4.1 provides a detailed overview of the experimental setup where the experi-
ments that tested the effectiveness of our approaches XHOT and XYZ were conducted.
The conditions, parameters and variables relevant to understanding the environment in
which the results were evaluated are described.

Section 4.2 focuses on an exhaustive quantitative and qualitative comparison of the re-
sults obtained in our experimental environment. For quantitative comparison, the metrics
presented in Chapter 3 are used, allowing an objective and detailed evaluation of the per-
formance of our XHOT and XYZ approaches compared to other methods in haze removal.
In addition, qualitative analyses are presented that highlight visual aspects and specific
details of the images processed by our method. This comprehensive approach provides a
complete understanding of the effectiveness of XYZ in various evaluation dimensions.

4.1 Experimental Setup

Running experiments is essential to evaluate the effectiveness and robustness of the pro-
posed approaches in dehazing using unsupervised neural networks. The experimental
setup was carried out with the aim of providing reliable and comparable results. The
configuration used in the experiments is detailed below:

• Dataset: For the purpose of evaluating haze removal, we chose to use the REalistic
Single Image DEhazing dataset. This data set has gained recognition in the com-
munity due to its breadth, diversity and relevance in the evaluation of haze removal
methods. This choice provides a robust and representative environment to test the
effectiveness of our approaches, ensuring significant results and comparable with
research standards in this field.

• Implementation: Unsupervised models, such as XHOT, ZID [24], and YOLY [25],
along with our proposed combination XYZ, were implemented using the PyTorch
deep learning framework. Each algorithm underwent an independent training and
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evaluation process, with specific configurations adapted to the characteristics of
each model. This choice of framework and individualized approach ensures robust
implementation and accurate evaluation of each method in the context of haze
removal.

• Hardware and Software: The experiments were conducted in a computer environ-
ment equipped with a high-performance GPU, in particular an NVIDIA GeForce
RTX 3070 graphics card was used to speed up both the training and evaluation pro-
cess. In addition, it leveraged the capabilities of deep learning libraries provided by
PyTorch, combined with scientific development environments such as Jupyter Note-
books. This configuration ensures the efficiency and precision needed to address the
challenges of haze removal in images.

• Evaluation Metrics: To quantitatively evaluate the quality of the output images,
standard metrics such as SSIM and PSNR were used. These metrics provide an
objective measure of the structural similarity and fidelity of the restored images
compared to the original images. Furthermore, we use non-referenced metrics such
as BRISQUE, NIQE and PIQE for qualitative evaluation, based on the fact that
obtaining real images without haze is complex and in many cases impossible.

4.2 Comparison

Evaluation of haze removal algorithms is a critical task to understand their performance
and applicability in real-world scenarios. In this section, we will conduct a comprehensive
qualitative and quantitative comparison of different haze removal approaches, aiming to
provide a comprehensive view of their strengths and limitations.

4.2.1 Quantitative Results

In this section, we present the results when applying our method to deinterlace complex
layers into simpler layers, in comparison to the methods proposed by Li et al. [24] and Li
et al. [25]. It should be noted that the methods with which we are carrying out the
comparison make use of the defocusing of haze deinterlacing in simpler layers.

Full-Reference

In the analysis of the results, we evidence notable observations that provide valuable
perspectives on the performance of our two approaches in comparison with the ZID and
YOLY methods, reflected in Table 4.1.

Although our XHOT approach does not exceed the ZID and YOLY methods in terms
of SSIM and PSNR metrics, it is essential to highlight the progress made in haze removal.
This result suggests that, while not leading in all metrics, XHOT remains a valuable and
effective choice to address the challenge of haze removal. The ability to provide substantial
improvements, even without reaching the leadership position, underscores its relevance in
specific contexts and application scenarios.
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Table 4.1: Results for XHOT, YOLY, ZID and XYZ methods applied to the SOTS and
HSTS datasets. The results are shown in relation to SSIM and PSNR metrics.

Network
SOTS Indoor HSTS Outdoor

SSIM↑ PSNR↑ SSIM↑ PSNR↑

ZID [24] 0.815 18.313 0.851 21.650
YOLY [25] 0.807 17.950 0.832 22.217
XHOT [29] 0.803 17.860 0.829 21.430
XYZ [29] 0.818 18.530 0.846 21.680

It is important to note that the effectiveness of XHOT can be manifested more promi-
nently in certain particular contexts or conditions such as those presented by Li et al. [23],
where its particular characteristics prove to be beneficial. The ability to deliver signifi-
cant improvements, even in specific scenarios, highlights the versatility and applicability
of XHOT in various haze removal situations.

Our XYZ approach, in contrast, distinguishes itself by improving the results on the
SOTS dataset, which is specifically composed of images captured in closed environments.
Although it still fails to outperform the ZID and YOLY methods in general metrics,
the optimization capability in specific environments highlights the adaptability of XYZ to
particular conditions. This achievement highlights the importance of considering different
contexts and underscores the approach’s ability to excel in specific scenarios.

It is essential to note that the effectiveness of XYZ can be manifested more prominently
in particular situations, where its particular characteristics prove to be beneficial. The
adaptability of XYZ to specific environments suggests that it could be a preferred option
in particular conditions or specialized applications, where the ability to excel in specific
scenarios is crucial. In situations where the dataset consists of images that capture the
random and authentic nature of the haze, rather than synthetically generated images,
our approach demonstrates significant improvements. Specifically, we observed notable
improvements in images with high levels of reflected light, while results may be less
effective in images with low levels of lighting.

It is important to note that, while our techniques may not exceed the state of the art
in all metrics, they rank as the second method with the best results. This achievement
consolidates our approaches as valuable and competitive contributions in the field of haze
removal. The relevance of the improvements achieved and the ability to compete with
leading methods underline the effectiveness of our strategies in solving this challenging
problem. This success highlights the prominent position of our methods and their ability
to offer meaningful solutions in the context of haze removal.

Non-Reference

The benchmarking of the XHOT, YOLY, ZID and XYZ methods used non-referenced
image quality metrics, such as BRISQUE, NIQE and PIQE. These metrics play a crucial
role in providing an objective assessment of the quality of the output images of each
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method, without relying on reference images. Below is the description of the results in
terms of the SOTS subset containing interior images.

In terms of BRISQUE, the ZID method showed promising results in achieving a sig-
nificant reduction in the distortion of the output images, closely followed by XHOT. On
the other hand, YOLY and XYZ show acceptable results, but with a slightly higher score
in the BRISQUE metric, indicating greater distortion compared to YOLY and XYZ. As
for NIQE, ZID and XHOT stand out by achieving a substantial improvement in image
quality, being consistently superior to YOLY and XYZ. This metric highlights the ability
of ZID and XHOT methods to reduce distortion and improve image clarity by getting
rid of haze effectively. In relation to PIQE, it is evident that XHOT and ZID exhibit
superior performance, keeping distortion scores low. Although YOLY and XYZ show ac-
ceptable results, they do not exceed the quality offered by XHOT and ZID, highlighting
the effectiveness of the latter in eliminating haze.

In summary, the evaluation with non referenced metrics BRISQUE, NIQE and PIQE
suggests that ZID, XHOT are the most effective methods in eliminating haze, achieving
a substantial improvement in image quality compared to YOLY and XYZ. These results
support the effectiveness of our XYZ approach in solving the challenge of haze removal.

Exploring the performance of methods in outdoor environments reveals a slightly dif-
ferent picture. The Table 4.2 highlights that our main approach XYZ exhibits superior
performance compared to other methods in both BRISQUE and PIQE metrics. These
results point to the effectiveness of XYZ in eliminating haze in outdoor environments,
highlighting its ability to maintain low levels of distortion, as indicated by the BRISQUE
and PIQE metrics. This superior performance suggests that XYZ achieves significant
improvement in image quality, even in the presence of additional challenges associated
with outdoor environments.

This finding reinforces the versatility and robustness of our main approach, XYZ, by
addressing haze removal in various scenarios, both indoor and outdoor. The ability to
maintain consistent performance across different environments underscores the applica-
bility and potential of XYZ to deliver significant improvements in image quality under
various atmospheric conditions.

Table 4.2: Results for XHOT, YOLY, ZID and XYZ methods applied to the SOTS and
HSTS datasets. The results are shown in relation to BRISQUE, NIQE and PIQE metrics.

Network
SOTS Indoor HSTS Outdoor

BRISQUE↓ NIQE↓ PIQE↓ BRISQUE↓ NIQE↓ PIQE↓

ZID [24] 39.011 5.015 34.224 20.565 5.024 10.907
YOLY [25] 40.621 5.074 35.426 20.015 5.279 10.593
XHOT [29] 39.719 5.037 35.065 22.500 5.570 12.205
XYZ [29] 40.085 5.108 35.168 19.706 5.515 10.032

In conclusion, this detailed analysis provides a balanced view of the results, highlight-
ing significant advances, areas of improvement and the overall relevance of our approaches
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in the landscape of haze removal using unsupervised neural networks.

4.2.2 Qualitative

In this section, we carefully examine the visual results obtained by applying our layer
deinterlacing methods in outdoor and indoor environments. Figures 4.1 and 4.3 show the
results for XHOT, ZID [24], YOLY [25], and XYZ algorithms in outdoor environments.
open air and closed, respectively. These visual representations provide an intuitive as-
sessment of the effectiveness of each method in terms of color and detail.

Close observation of Figure 4.1 reveals that the XHOT technique presents notable
improvements, especially in areas such as the sky. This advance is attributed to the
decision not to rely directly on a Dark Channel Prior approach, in contrast to ZID, which
exhibits significant artifacts due to its DCP-based approach. In this context, XYZ shows
significant improvement in attempting to make a more consistent distinction, although
some artifacts remain in non-reference metrics. Additionally, Figure 4.2 shows real-world
images from the HSTS dataset, where XYZ manages to effectively reduce haze in most of
the image, although it does not eliminate it completely.

In the case of closed environments, Figure 4.3 shows that the ZID method stands out
in the third image, preserving color details in areas such as the floor. However, XYZ
demonstrates superior performance in higher illumination images, as seen in the first,
second, and fifth images.

These visual results highlight the strengths and limitations of each method in specific
contexts. While XHOT shows excellent results in outdoor environments by avoiding DCP
artifacts, XYZ manages to effectively mitigate haze in indoor environments with varied
lighting conditions. The choice of the most appropriate method will depend on the specific
application context.

4.3 Final Remarks

This chapter immerses the reader in the implementation and application of our proposed
method, XYZ. It provides a description covering each phase of our two approaches from its
inception to its conclusion. Every aspect of the process is examined, from data collection
to the combination of various methods, highlighting the advantages inherent in each. In
addition, a comprehensive assessment is presented that addresses several relevant aspects.

The chapter specifically details the images selected for evaluation, highlighting their
importance in the validation and analysis of our approaches. By going deeper into each
stage of the implementation process, we offer a complete overview that allows you to
understand the workflow and strategic decisions made during the XYZ application.

The next chapter will consolidate these contributions and present key findings from this
research. In addition, promising directions for future research will be explored, providing
a comprehensive view of the impact and continuing potential of our approaches to haze
removal.
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Chapter 5

Conclusions

This chapter presents the conclusions of this research work around of our two methods
(XHOT and XYZ) and their evaluation with different images. In addition, the contribu-
tions arising from this study and future studies are highlighted.

Section 5.1 is dedicated to detailing the significant achievements made throughout our
study. We provide a detailed analysis of the achievements made in each phase of the
research, highlighting both the theoretical and practical aspects that have enriched our
work. In addition, the research questions initially set out in Chapter 1 are addressed,
providing informed answers and evaluating the contribution of our approach to haze re-
moval.

In Section 5.2, the contributions derived from the development of this research are
discussed. A detailed analysis of the results obtained and their relevance in the general
context of the elimination of haze. In addition, Section 5.3 explores possible directions
for future studies, based on the findings and results of this research. These future studies
point to opportunities to improve and expand our method, providing a forward-looking
vision oriented towards continuous progress in the field.

5.1 Synthesis of Achievements

In this work, we present an approach to haze removal based on disentanglement of complex
layers into simpler layers. We have developed an unsupervised method, called XHOT,
which is simple and lightweight. While it is important to note that, to date, this method
does not surpass the leading approaches in the state of the art in unsupervised haze
removal. Additionally, we propose a group disentanglement approach (our main method)
using three unsupervised methods: XHOT, YOLY and ZID.

Our main approach, called XYZ, represents an effective strategy that combines the
advantages of these three individual methods. XYZ results show significant improvements
in image quality metrics, such as SSIM, PSNR, BRISQUE, NIQE, and PIQE, support-
ing its effectiveness in haze removal. In other words, both approaches presented in this
study address the challenge of haze removal in an unsupervised manner. This is especially
valuable as we overcome the limitation of the lack of real-world paired images and elimi-
nate the need to train with an extensive dataset. Our methods address the haze problem
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individually for each image, which represents a significant advance in unsupervised haze
removal.

We presented three research questions in Chapter 1, and we provide the following
answer relying on the research conducted in this dissertation:

1. How can existing unsupervised dehazing models be improved and optimized using
advanced deep learning techniques? To improve and optimize unsupervised haze
removal models using advanced deep learning techniques, multifaceted strategies can
be implemented. First, it seeks to enhance the architecture of the model by using
deeper neural networks, with the aim of capturing more effectively the complex
characteristics present in images with haze. The incorporation of spatial attention
mechanisms allows the model to focus on crucial areas, thus improving the quality
of haze removal. In addition, the careful design of loss functions contributes to
enhance the visual quality of the resulting images.

It is essential to note that this research focuses on the elimination of haze from a
single image, alleviating the need for a large dataset of paired data. Combining
multiple models and exploring advanced hyperparameter settings, along with post-
processing techniques, form a comprehensive approach to optimizing unsupervised
haze removal models. This approach makes it possible to advance the effectiveness
and applicability of models, positioning them as valuable tools in practical and
diverse scenarios.

2. What is the impact of neural network architecture on the performance of unsuper-
vised dehazing models?

The impact of neural network architecture on the performance of unsupervised haze
removal models is crucial and determinant. The choice of architecture directly in-
fluences the model’s ability to capture and understand the complex features present
in haze images. Incorporating specific layers, such as spatial attention mechanisms,
can improve the model’s ability to focus on critical areas, thus improving the quality
of haze removal. It is essential to consider the complexity of the environment and
the diversity of haze conditions when selecting or designing the architecture, as this
directly affects the overall adaptability and performance of the model in real-world
situations.

3. How do accurate and relevant evaluation metrics influence the performance of un-
supervised haze removal models in real-world conditions?

Developing more accurate and relevant evaluation metrics to measure the perfor-
mance of unsupervised haze removal models under real-world conditions involves
considering the complexity of human vision and variability of atmospheric condi-
tions. It is essential to design metrics that accurately reflect human visual percep-
tion, incorporating aspects such as sharpness, color fidelity and the preservation of
important details. In addition, the assessment should specifically address real-world
conditions, where haze may vary in density and distribution. Metrics that integrate
the model’s ability to improve visibility in different types of scenes, both indoor and
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outdoor, will be more effective. In this research, we used three well-defined metrics
in the literature to evaluate our approach.

5.2 Contributions

This work achieved significant results. Our main contribution was to develop a method
that allows haze removal using unsupervised neural networks. The results we obtained
demonstrate that our method allows us to eliminate the existing haze in images without
compromising its coherence and consistency. In summary, we present the key contribu-
tions of this research work as follows:

• The robust XYZ method for haze removal using unsupervised neural networks is a
key contribution to any technique that makes use of images taken by digital cameras,
from security applications, medical applications, among others.

• XYZ adheres to an unsupervised paradigm, eliminating the need to use paired
datasets, reflecting a more realistic approach to dehazing in real-world situations.

• XYZ combines the XHOT, YOLY and ZID methods, taking advantage of the indi-
vidual strengths of each. It maintains the specific advantages of each method, such
as preserving details, exploring the HSV color space, and using loss functions based
on DCP Loss.

5.3 Future Work

The XYZ method has made significant progress in dehazing by layer disentangling and
combining unsupervised approaches. However, there are opportunities for future research
that could further improve its performance and address specific challenges. Some promis-
ing areas of research could include:

• Conducting a thorough analysis of the hyper-parameters of the XYZ method rep-
resents an essential strategy to optimize its performance in various haze conditions
and scenarios. This process involves careful exploration and adjustment of key pa-
rameters, with the aim of improving the model’s ability to adapt to different degrees
of haze density and variations in ambient lighting.

• Exploring more advanced network architectures or variants is presented as a crucial
strategy to improve the ability of layer disentangling and generalization of the model
in haze removal tasks. The constant advancement in the field of deep learning offers
opportunities to adopt more sophisticated network structures, such as residual neu-
ral networks or care architectures, which can more effectively capture the complex
spatial and feature relationships present in haze images.

• Extending the assessment of the XYZ method to a wider range of environmental
conditions is a crucial step in validating its robustness and adaptability in real-
world environments. This involves considering variations in lighting, different types



56

of haze, and various scene configurations. Addressing these aspects will provide
a more complete understanding of the method’s ability to address challenges in
real-world scenarios.

• Exploring additional techniques to attenuate or eliminate residual artifacts in XYZ-
generated images is an essential step in improving the method’s visual fidelity. These
artifacts may arise due to the complexity of the scenes or the presence of dense haze.
A potential strategy involves implementing specific post-processing, such as adaptive
filters or detail restoration techniques. Moreover, refining the loss functions used
during training could help minimize the appearance of artifacts.

• Conducting a thorough assessment of the impact of haze removal through the XYZ
method on the performance of computer vision algorithms is essential. This analysis
should address critical aspects, such as object detection and facial recognition, to
understand how improved image quality directly affects fundamental visual process-
ing tasks.

• The exploration of the potential of GANs is presented as a strategic direction to
raise the capacity of the XYZ model in the generation of high quality and realistic
images. The addition of GANs could improve the visual fidelity of undone images
by introducing a competition between the generator and the discriminator.
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Appendix A

RESIDE Dataset

A comprehensive overview of RESIDE can be found in Table A.1. Notably, RESIDE
stands as the inaugural and only systematic evaluation encompassing various dehazing
algorithms, assessing them across multiple criteria on a shared large-scale benchmark
notable absence in the existing literature.

Table A.1: Structure of RESIDE Standard and RESIDE-β.

RESIDE Standard

Subset Images Type Annotations

Indoor Training Set 13,990 Synthetic No
Synthetic Objective Testing Set 500 Synthetic No
Hybrid Subjective Testing Set 20 Real No

RESIDE-β

Subset Images Type Annotations

Indoor Training Set 72,135 Synthetic No
Real-world Task-driven Testing
Set

4,322 Real Yes

The RESIDE training set incorporates 13,990 synthetic hazy images, derived from
1,399 clear images originating from well-established indoor depth datasets, namely
NYU2 [45] and Middlebury stereo [42]. For each clear image, Li et al. [23] synthesize
10 hazy counterparts, allowing for an optional split of 13,000 for training and 990 for
validation. To introduce variability, Li et al. [23] set atmospheric lights A by uniformly
selecting each channel from [0.7, 1.0], and β is chosen uniformly at random from [0.6, 1.8].
Consequently, the dataset comprises paired clean and hazy images, wherein a single clean
ground truth image can yield multiple pairs with hazy counterparts generated under dis-
tinct A and β parameters.

The RESIDE testing set consists of the Synthetic Objective Testing Set (SOTS) and
the Hybrid Subjective Testing Set (HSTS), strategically designed to represent diverse eval-
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uation perspectives. SOTS includes 500 indoor images from NYU2 [45] (non-overlapping
with training images), and follows the same synthesis process as the training data to
generate hazy images. Li et al. [23] intentionally created challenging dehazing scenarios
for testing, such as scenes with substantial haze added to white scenes. HSTS comprises
10 synthetic outdoor hazy images generated similarly to SOTS, along with 10 real-world
hazy images collected from outdoor scenes, providing a comprehensive dataset for human
subjective evaluation.

Figure A.1 illustrates some examples of images extracted from subsets in RESIDE
Standard and RESIDE-β.

(a) RESIDE Standard

(b) RESIDE-β

Figure A.1: Samples of images from subsets in RESIDE Standard and RESIDE-β.
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