

UNIVERSIDADE ESTADUAL DE CAMPINAS Instituto de Geociências

LAURA SCARANO CORRÊA

PETROCRONOLOGIA DE PARAGNAISSES DO DOMÍNIO BACAJÁ, CRÁTON AMAZÔNICO

PETROCHRONOLOGY OF PARAGNEISSES OF BACAJÁ DOMAIN, AMAZON CRATON

CAMPINAS 2020

LAURA SCARANO CORRÊA

PETROCRONOLOGIA DE PARAGNAISSES DO DOMÍNIO BACAJÁ, CRÁTON AMAZÔNICO

PETROCHRONOLOGY OF PARAGNEISSES OF BACAJÁ DOMAIN, AMAZON CRATON

DISSERTAÇÃO APRESENTADA AO INSTITUTO DE GEOCIÊNCIAS DA UNIVERSIDADE ESTADUAL DE CAMPINAS PARA OBTENÇÃO DO TÍTULO DE MESTRE EM GEOCIÊNCIAS NA ÁREA DE GEOLOGIA E RECURSOS NATURAIS

DISSERTATION PRESENTED TO THE INSTITUTE OF GEOSCIENCES OF THE UNIVERSITY OF CAMPINAS TO OBTAIN THE DEGREE OF MASTER IN GEOSCIENCES IN SCIENCIAS IN AREA OF GEOLOGY AND NATURAL RESOURCES

ORIENTADOR: PROF. DR. VINÍCIUS TIEPPO MEIRA

ESTE EXEMPLAR CORRESPONDE À VERSÃO FINAL DA DISSERTAÇÃO DEFENDIDA PELA ALUNA LAURA SCARANO CORRÊA E ORIENTADA PELO PROF. DR. VINÍCIUS TIEPPO MEIRA

> CAMPINAS 2020

Ficha catalográfica Universidade Estadual de Campinas Biblioteca do Instituto de Geociências Marta dos Santos - CRB 8/5892

 Corrêa, Laura Scarano, 1993-Petrocronologia de paragnaisses do Domínio Bacajá, Cráton Amazônico / Laura Scarano Corrêa. – Campinas, SP : [s.n.], 2020.
 Orientador: Vinícius Tieppo Meira. Dissertação (mestrado) – Universidade Estadual de Campinas, Instituto de Geociências.
 Metamorfismo (Geologia). 2. Monazita. 3. Crátons – Amazônia. I. Meira, Vinícius Tieppo, 1983-. II. Universidade Estadual de Campinas. Instituto de Geociências. III. Título.

Informações para Biblioteca Digital

Título em outro idioma: Petrochronology of paragneisses of Bacajá Domain, Amazon Craton Palavras-chave em inglês: Metamorphism (Geology) Monazite Amazon Craton Área de concentração: Geologia e Recursos Naturais Titulação: Mestra em Geociências Banca examinadora: Vinícius Tieppo Meira [Orientador] Brenda Chung da Rocha Wagner da Silva Amaral Data de defesa: 12-03-2020 Programa de Pós-Graduação: Geociências

Identificação e informações acadêmicas do(a) aluno(a) - ORCID do autor: https://orcid.org/0000-0003-2379-0060

- Currículo Lattes do autor: http://lattes.cnpq.br/6608839804703361

AUTORA: Laura Scarano Corrêa

PETROCRONOLOGIA DE PARAGNAISSES DO DOMÍNIO BACAJÁ, CRÁTON AMAZÔNICO

PETROCHRONOLOGY OF PARAGNEISSES OF BACAJÁ DOMAIN, AMAZON CRATON

ORIENTADOR: Prof. Dr. Vinícius Tieppo Meira

Aprovado em: 12 / 03 / 2020

EXAMINADORES:

Prof. Dr. Vinícius Tieppo Meira – Presidente

Profa. Dra. Brenda Chung da Rocha

Prof. Dr. Wagner da Silva Amaral

A Ata de Defesa assinada pelos membros da Comissão Examinadora consta no processo de vida acadêmica do aluno.

Campinas, 12 de março de 2020.

SÚMULA/BIOGRAFIA

Laura Scarano Corrêa

Possui graduação em Geologia (2017) pela Universidade Federal do Oeste do Pará (UFOPA). Desenvolveu seu trabalho de conclusão de curso no Domínio Bacajá, Cráton Amazônico, na Região de Uruará, PA, caracterizando as rochas do Ortogranulito Máfico Rio Preto a partir de mapeamento geológico e petrografia microscópica.

Tem experiência na área de Geociências com ênfase em Evolução Crustal, Petrografia e Mapeamento Geológico. Atuou como monitora em diversas disciplinas da graduação em Geologia pela UFOPA, incluindo Petrologia e Petrografia Ígnea e metamórfica, Geologia Estrutural e Campo I. Durante o mestrado atuou como PED (Programa de Estágio Docente) na UNICAMP nas disciplinas Ciência do Sistema Terra I e Desenho Geológico.

Atualmente está finalizando a dissertação de mestrado em Geociências da UNICAMP, com ênfase no estudo da evolução metamórfica de rochas paraderivadas no Domínio Bacajá. O trabalho lhe rendeu até o presente momento uma publicação em simpósio nacional (Simpósio de Geologia da Amazônia – Manaus, AM, 2019).

AGRADECIMENTOS

Agradeço primeiramente aos meus pais, Lívia e Ruy, que são meus maiores incentivadores. Obrigada por me apoiar e não medir esforços para que eu atinja meus objetivos profissionais. Agradeço também aos meus irmãos, Marina e Túlio, por serem os melhores irmãos do mundo. Amo vocês!

Também agradeço ao professor Vinícius, por ter me recebido e me ensinado tanto nesses dois anos. Obrigada pela paciência, lições, por ter me apresentado o mundo da Petrocronologia, por ter despertado em mim o amor pela Petrologia Metamórfica e por ter sido, literalmente, um orientador!

Deixo aqui um agradecimento muito especial aos meus amigos da República Grão-Pará, Bruno, Simmon, Cleberson, Josué, Sanny, Thaissa e André (Panda), especialmente Simmon e Cleberson, por terem me socorrido toda vez que eu precisava de um mapa! Obrigada por terem me escutado enquanto eu me lamentava e me desesperava com os prazos. Obrigada por terem aguentado meus monólogos intermináveis sobre monazita, pelos churrascos, filmes, conversas e por terem sido minha família em Campinas.

Obrigada aos meus colegas de grupo de pesquisa Lucas e Gabriel (Biriba) por terem me ajudado tanto e por toda paciência me ensinando a usar os softwares. Vocês são parceiros!

Obrigada aos colegas da pós-graduação, Robert, Dan, Douglas, Mari, Bel, Kamila, professor Felipe, Ana Clara, Endel e, especialmente, Igor, Poli (mais especialmente ainda!), Zé, Gustavo, Raphinha e Thaizínea e todos os outros que conviveram comigo nesses dois anos. Vocês tornaram esse mestrado mais leve e divertido!

Ao Bruno, por todo apoio, companheirismo, dedicação, paciência e amor. Obrigada por me ajudar em exatamente todas as etapas, especialmente por criticar e refazer minhas figuras hahaha. E, principalmente, obrigada por amenizar meus momentos de desespero com suas piadas ridículas. Elas foram essenciais.

Ao professor George Luvizotto e Daniel Godoy pela disponibilidade e ajuda com as análises de EPMA na Unesp e a todos os técnicos que contribuíram com esta pesquisa me auxiliando com as análises de laboratório.

A todos os funcionários do IG Unicamp que me receberam e sempre se mostraram solícitos e dispostos a me ajudar quando necessário. Muito obrigada!

Agradeço também ao financiamento do projeto CNPq número 404767/2016-8.

E, finalmente, agradeço a todas as pessoas que contribuíram de alguma forma para que esta pesquisa fosse realizada!

RESUMO

Nas últimas décadas, a abordagem petrocronológica tem sido aplicada como uma ferramenta para reconstruir a história evolutiva de orógenos. No Domínio Bacajá, localizado na Província Transamazonas, essa abordagem ainda foi pouco explorada, embora esta seja uma região com grande potencial para o entendimento da evolução do Cráton Amazônico. Este trabalho tem como objetivo empregar as técnicas da petrocronologia para construir uma história evolutiva para as unidades metamórficas paraderivadas do Domínio Bacajá. Análises petrográficas foram realizadas a fim de caracterizar as assembleias minerais dos paragnaisses, suas texturas e reações. Essa caracterização serviu de base para análises de química mineral e datação U-Th-Pb em monazita por Microssonda Eletrônica (EPMA). Foram individualizados os litotipos silimanita-cordierita-granada-biotita gnaisse, cordieritagranada-biotita gnaisse, granada-biotita gnaisse, além de silimanita quartzito e granulito máfico. Dados de química mineral indicaram variação nos valores de X_{Alm}, X_{Prp} e X_{An} que foram usados para construir o diagrama de fases isoquímicas, que permitiu restringir o pico metamórfico entre 5.3 e 6.7 kbar 785°C a 795°C. Os cristais de monazita de duas amostras de gnaisses aluminosos foram descritos com base em mapas composicionais de Th, U e Y, e três domínios composicionais foram individualizados: Domínio 1 – núcleo rico em Y + ETR pesados; Domínio 2 – rico em Th e Domínio 3 – bordas ricas em Y + ETR pesados. As idades obtidas para o domínio 2 variam de 2266 ± 17 a 2205 ± 16 Ma (BCJ-10) e de 2253 \pm 20 a 2170 \pm 21 Ma (BCJ-11), com idade média ponderada (*weighted mean age*) calculadas em 2,23 \pm 7 (MSWD = 5,62) e 2,21 \pm 7 Ga (MSWD: 4,63) para as amostras BCJ-10 e BCJ-11, respectivamente. Para o domínio 3, as idades obtidas variam de 2206 ± 18 a 2099 + 35 Ma (BCJ-10) e de 2222 ± 21 a 2049 ± 43 (BCJ-11) com idade média ponderada calculada em 2,18 \pm 20 (MSWD = 2,69) e 2,14 \pm 13 Ga (MSWD: 5,55) para as amostras BCJ-10 e BCJ-11, respectivamente.

Palavras-chave: metamorfismo, monazita, Cráton Amazonas.

ABSTRACT

On the last decades Petrochronology has proved to be an excellent tool to constrain the evolution of metamorphic and igneous rocks. Nevertheless, this approach was not strongly applied in Bacajá Domain, a paleoproterozoic terrane located in Amazon Craton, specifically in Transamazon Province. Understanding its evolution would contribute to comprehend the geological evolution of the craton. This work aims to constrain the evolution of metamorphic rocks located in Bacajá Domain based on Petrochronology technics. Petrographic analysis allowed to identify different lithotypes based on mineral and textural description and, based on that, mineral chemistry analysis and U-Th-Pb in monazite dating were performed using Electron Probe Micro Analyzer (EPMA). The identified lithotypes were Sillimanite Cordierite Garnet Biotite gneiss, Cordierite Garnet Biotite gneiss, Garnet Biotite gneiss, Sillimanite quartzites, mafic granulite and Hornblend Biotite gneiss. Mineral chemistry data indicate variations in X_{Alm}, X_{Prp} and X_{An} contents that were used to calculate isochemical phases diagrams. Nearpeak metamorphic pressure and temperature constraints were, respectively, 5.3 to 6.7 kbar and 785°C to 795°C. Compositional Th, U and Pb x-ray maps were used to identify three compositional domains in monazite: Domain 1 – Y + HREE-rich core; Domain 2 – Th-rich and Domain 3 – Y-rich rims. Based on this, domain 2 ages calculations range from 2266 ± 17 to 2205 ± 16 Ma (BCJ-10) and from 2253 ± 20 to 2170 ± 21 Ma (BCJ-11), with a weighted mean ages of $2,23 \pm 7$ (MSWD = 5,62) for sample BCJ-10 and $2,21 \pm 7$ (MSWD: 4,63) for sample BCJ-11. Domain 3 ages range from 2206 ± 18 to 2099 + 35 Ma (BCJ-10) and from 2222 ± 21 to 2049 ± 43 (BCJ-11), and weighted mean ages for both samples were calculated at 2.18 \pm 20 (MSWD = 2.69) for sample BCJ-10 and 2.14 \pm 13 (MSWD: 5.55).

Keywords: metamorphism, monazite, Amazon Craton.

ÍNDICE DE ILUSTRAÇÕES DO CAPÍTULO 2

Figura 1. A) Províncias Geocronológicas do Cráton Amazonas (Santos et al.,	2000). B)
Unidades geológicas do Domínio Bacajá na área de estudo e localização das amostra	s estudadas
Modificado de Vasquez e Rosa-Costa (2008).	25

ÍNDICE DE ILUSTRAÇÕES DO CAPÍTULO 3

Figure 1. A) Geochronological provinces of Amazon Craton (Santos et al., 2000). B) Geological units of Bacajá Domain in study area with studied samples. Modified from Vasquez Figure 2. Photomicrography of sill-crd-grt-bt gneiss and crd-grt-bt gneiss. A) Biotite₂ replacing cordierite. B and C) Most of the garnet grains are xenoblastic and skeletal, surrounded by sillimanite and are being replaced by cordierite, biotite₂ and opaque minerals. D) A discrete foliation is marked by biotite₂ orientation. E) In crd-grt-bt gneiss the cordierite is pinitized and is also being replaced by biotite₂. F) Some garnet grains present subidioblastic shape with Figure 3. Grt compositional maps and A) Al2O3 (wt%) compositional map of the sil-crd-grtbt gneiss. B) XAlm enrichment variation towards rims. C) XPrp enriched core. D) XSps slight Figure 4. Grt compositional maps and A) Al2O3 (wt%) compositional map of the sil-crd-grtbt gneiss sample used to extract bulk composition for P-T constraints. B) XAlm enrichment variation towards rims. C) XPrp enriched core. D) XSps slight enrichment in outer rims......51 Figure 5. Images of grt-bt gneiss, sil quartzite and mafic granulite. A and B) The incipient Sn

foliation is marked by biotite₂ and recrystallized quartz ribbons. C) Garnet grains are being replaced by biotite that, in its turn, is being replaced by chlorite. D) Sil quartzite with lobate granoblastic texture and elongated sillimanite grains. E and F) Granoblastic texture in mafic granulite composed by idioblastic plagioclase, quartz and hornblende replacing orthopyroxene.

Figure 6. P-T isochemical diagrams for Sil-Crd-Grt-Bt gneiss (sample BCJ-11). A) Red lines in top diagram highlight the stability field of near-peak metamorphic assemblage. B) Bottom diagram show XAlm (in orange) and XAn (in pink) isopleths used to constrains P and T. Near-peak conditions are represented by grey polygon. Grey arrow indicates the decompression path.

Figure 8. Monazite crystals included in garnet. A and D) BSE images showing the textural context. B) Y compositional map displaying domains 1 and 2. C) Th compositional map

showing Th values valation. E) Y compositional map displaying homogeneous domain 2
monazite. F) Th compositional map57
Figure 9. Monazite grains included in cordierite and K-felspar matrix. A and D) BSE images
with textural context. B, E and I) Y compositional maps displaying domains 2 and 3. C, F and
J) Th compositional maps. G) Y compositional map showing complex zoning in domain 2
monazite with restricted Y-rich rim. H) Th compositional map indicating an uncoupled Th/Y
compositional variation within D ₂ compositional domain
Figure 10. Monazite grains included in biotite. A and D) BSE images showing textural context.
B and E) Y compositional maps displaying compositional domains 2 and 3. C and F) Th
compositional maps showing variations in Th contents from inner portions to rim
Figure 11. Age data plotted on Kernel density curves and weighted mean age diagrams for
compositional domains 2 and 3 (samples BCJ-10 and 11)61
Figure 12. Age data for Northwestern, Central and Northeastern sectors of Bacajá Domain
between 2300 and 1950 Ma based on Table 1 data. Orange and blue symbols represent,
respectively, Pb evaporation and U-Pb SHRIMP analyses in zircon obtained by other authors.
Yellow symbols represent the data obtained in this paper. Error bars are in grey

ÍNDICE DE TABELAS DO CAPÍTULO 1

Tabela 1	. Amostras	selecionadas	renomeadas e	classificadas.	
----------	------------	--------------	--------------	----------------	--

ÍNDICE DE TABELAS DO CAPÍTULO 3

 Table 1. Pb Pb evaporation, U-Pb-SHRIMP and Sm-Nd TDM age data for Bacajá Domain.44

1]	INJ	FRODUÇÃO	16
	1.1	l	APRESENTAÇÃO DO TEMA E JUSTIFICATIVA DO TRABALHO	16
2]	EST	TRUTURA DA DISSERTAÇÃO	
3	(OB	JETIVOS	19
4]	MA	ATERIAIS E MÉTODOS	20
	4.1	l	Levantamento bibliográfico	20
	4.2	2	Petrografia	20
	4.3	3	Microscopia Eletrônica de Varredura (MEV)	21
	4.4	ļ	Química Mineral	21
	4.5	5	Termobarometria	21
	4.6	5	Geocronologia	22
5	(GE	OLOGIA REGIONAL E LOCAL	23
	5.1	l	Cráton Amazonas	23
	5.2	2	Província Transamazonas	23
	5.3	3	Domínio Bacajá	26
		5.3	.1 Complexos Metamórficos	26
	-	5.3.	.2 Greenstone belts	
	-	5.3	.3 Suítes Plutônicas	
	-	5.3	.4 Rochas gabroicas	
	5.4	ł	Geologia Local	
6		SÍN	VTESE DOS RESULTADOS	31
R	EFF	ERÍ	ÊNCIAS	
I	NTR	ROI	DUCTION	
G	EO	LO	GICAL SETTING	41
A	NA	LY	TICAL PROCEDURES	46
	Pet	trog	graphy and mineral chemistry	46

SUMÁRIO

Thermobarometry4	16
U-Pb-Th monazite electron probe micro analyzer (EPMA) dating4	17
RESULTS4	18
Petrography and mineral chemistry	18
Sillimanite-cordierite-garnet-biotite gneiss (BCJ-03, 05, 06, 07 and 11)4	18
Cordierite-garnet-biotite gneiss (BCJ 10 and 12)5	51
Garnet-biotite gneiss (BCJ-01, 02, 04 and 14)5	52
Sillimanite quartzite and mafic granulite5	52
P – T conditions	53
Monazite Petrochronology	55
Textural context and mineral chemistry5	55
Th-U-Pb analyses5	59
DISCUSSION	52
CONCLUSIONS	55
REFERENCES	56
APPENDIX	73

CAPÍTULO 1

1 INTRODUÇÃO

1.1 APRESENTAÇÃO DO TEMA E JUSTIFICATIVA DO TRABALHO

A Petrocronologia é um ramo relativamente novo na Geologia, que se ocupa em relacionar idades e processos magmáticos e metamórficos específicos. Fraser et al. (1997) descrevem a petrocronologia como a união da petrologia e geocronologia, utilizada como ferramenta para caracterizar melhor a duração dos processos metamórficos e/ou magmáticos. Tendo a descrição de minerais e texturas do ponto de vista espacial e químico como critério básico para identificar assembleias em equilíbrio local, a petrocronologia utiliza estimativas P–T (pressão e temperatura) e datações pontuais para fornecer dados sobre a evolução termal e bárica no tempo de determinada rocha.

Estudos petrocronológicos têm sido desenvolvidos em diversos contextos geológicos no mundo (por ex., Rocha et al., 2017; Tedeschi et al., 2017; Larson et al., 2019) e mostram-se extremamente úteis na reconstituição da trajetória evolutiva de diferentes entidades tectônicas. Entretanto, diversas áreas ainda não foram estudadas a partir dessa ótica, como é o caso do Domínio Bacajá (DB). Este domínio é um dos três que compõem a Província Transamazonas (PT) (Santos et al., 2000), uma província geocronológica representada por terrenos gnáissicos-granulíticos, com protólitos arqueanos de terrenos do tipo granito-*greenstone* (Sato e Tassinari, 1997), cuja evolução está relacionada a ciclos orogenéticos com retrabalhamento de crosta continental (Tassinari & Macambira, 2004, Santos et al., 2000). O DB é caracterizado por *greenstone belts* e complexos metamórficos de média a alta temperatura, além de granitoides e charnockitos tardios, interpretados como resultado de retrabalhamento de rochas arqueanas durante o Ciclo Transamazônico, no Paleoproterozoico (Vasquez, 2006 e Vasquez et al., 2008).

Segundo Macambira et al. (2009), os primeiros trabalhos da região do DB iniciaram na década de 1970, com o projeto RADAM (Silva et al 1974; Issler et al 1974), quando foi elaborado o primeiro mapa geológico da região. Dados K-Ar e Rb-Sr foram produzidos durante essa campanha de mapeamento, os quais indicaram a influência do Ciclo Transamazônico nas unidades mais antigas daquela região. Na década seguinte, Santos et al. (1988) sugeriram que o DB havia se formado por retrabalhamento paleoproterozoico de gnaisses arqueanos e por acreção juvenil, baseado em dados Rb-Sr. Nas décadas seguintes, diversos trabalhos foram realizados no DB, principalmente no leste e no centro do domínio, além de pesquisas desenvolvidas na área Iriri-Xingu, na porção noroeste (Santos, 2003; Souza et al., 2003; Faraco et al., 2004; Souza e Kotschoubey, 2005; Faraco et al., 2005; Vasquez, 2006; Vasquez et al., 2008 e Macambira et al., 2009). Contudo, esses trabalhos têm como foco a geocronologia e geoquímica, além de análises estruturais em algumas regiões restritas.

Dados sobre o embasamento metamórfico do DB ainda são escassos e restritos a algumas porções (Santos, 2003, Macambira et al., 2004, Sousa, 2008, Vasquez et al., 2008). Considerando a importância do DB para a evolução do Cráton Amazônico, a compreensão da história metamórfica deste domínio é essencial para reconstituir a tectônica de formação do Cráton Amazônico. A abordagem petrocronológica permitirá a reconstrução da história geológica através da análise de texturas petrográficas, geoquímica, geotermobarometria e geocronologia, conectando idades a processos metamórficos.

O DB possui grande potencial para a expansão do conhecimento geotectônico e metalogenético regional, assim como dos processos tectônicos ocorridos na transição Arqueano-Paleoproterozoico. Por essa razão, a quantidade de estudos na região tem se intensificado nos últimos anos, principalmente no que diz respeito à caracterização tectônica e petrográfica. Este trabalho terá como foco a evolução metamórfica de rochas paraderivadas do oeste do DB, caracterizada a partir da abordagem petrocronológica.

A área de estudo engloba grande parte do norte do DB, compreendendo as áreas dos municípios de Uruará, Brasil Novo, Novo Repartimento, Pacajá e Altamira. O acesso se dá pela rodovia BR – 230, ou Transamazônica e por estradas secundárias na região de Uruará. Além disso, os rios Iriri e Xingu também serviram como vias de acesso para a coleta de amostras.

2 ESTRUTURA DA DISSERTAÇÃO

Esta dissertação está dividida em três capítulos. O **Capítulo 1** consiste em uma seção introdutória, com apresentação do tema e justificativa, objetivos, materiais e métodos. O **Capítulo 2** aborda o contexto geológico regional e local da área de estudo. O **Capítulo 3** consiste em um artigo em preparação em inglês com a descrição dos resultados, discussões e considerações finais desta pesquisa, que será submetido a periódico internacional especializado.

3 OBJETIVOS

O objetivo principal desta pesquisa consiste na caracterização petrocronológica do metamorfismo que ocorreu na porção oeste do Domínio Bacajá. Para isto, os objetivos específicos são:

✓ Caracterizar petrograficamente e quimicamente as amostras coletadas;

✓ Estimar as condições de pressão e temperatura em que as rochas se

formaram;

 \checkmark Datar o metamorfismo nas amostras estudadas.

4 MATERIAIS E MÉTODOS

4.1 LEVANTAMENTO BIBLIOGRÁFICO

Inicialmente foi realizada extensa pesquisa bibliográfica sobre os dados disponíveis para o Domínio Bacajá, incluindo artigos publicados em periódicos, relatórios de campo elaborados pelos cursos de Geologia da Universidade Federal do Oeste do Pará - UFOPA e relatórios técnicos realizados pelo Serviço Geológico do Brasil – CPRM. Posteriormente, a Petrologia Metamórfica tornou-se o objeto de estudo, especialmente seus conceitos fundamentais sobre grau e zonas metamórficas, evidências texturais e composicionais macro e microscópicas, sistemas químicos e paragêneses diagnósticas. A petrocronologia foi a última temática abordada, visando compreender seus fundamentos básicos, técnicas e aplicações práticas.

4.2 PETROGRAFIA

Doze amostras foram cedidas pela CPRM e descritas em microscópio óptico de luz transmitida Leica, modelo DM750P, do Laboratório de Microscopia da Universidade Estadual de Campinas (Unicamp). Foram considerados aspectos como forma e tamanho dos cristais, associações dos minerais, texturas, microestruturas e feições de alteração, a fim de estabelecer controle petrográfico sólido para seleção das amostras para análises de química mineral. Por fim, 15 amostras foram pré-selecionadas para os estudos de química mineral, geotermobarometria e geocronologia. As amostras foram renomeadas e classificadas de acordo com a **Tabela 1**.

CPRM	Laura	Classificação	Petrografia	Química Mineral	Petrocronologia	Termobarometria
2038-MV-R-37A	BCJ - 01	Grt Bt gnaisse	х			
2038-MV-R-37B	BCJ - 02	Grt Bt gnaisse	х			
2038-MV-R-38A	BCJ - 03	Sil Crd Grt Bt gnaisse	х			
2038-MV-R-38B	BCJ - 04	Grt Bt gnaisse	х			
2038-MV-R-98A	BCJ - 05	Sil Crd Grt Bt gnaisse	х	х		
2038-MV-R-98B	BCJ - 06	Sil Crd Grt Bt gnaisse	х	х		
2038-MV-R-116A	BCJ - 07	Sil Crd Grt Bt gnaisse	х			
2038-MV-R-146A	BCJ - 08	Sil quartzito	х			
2038-MV-R-146B	BCJ - 09	Ortogranulito máfico	х			
2038-MV-R-170A	BCJ - 10	Crd Grt Bt gnaisse	х	х	х	
2038-MV-R-170B	BCJ - 11	Sil Crd Grt Bt gnaisse	х	х	х	х
EQ - I - 9A	BCJ - 12	Crd Grt Bt gnaisse	x			

 Tabela 1. Amostras selecionadas renomeadas e classificadas.

4.3 MICROSCOPIA ELETRÔNICA DE VARREDURA (MEV)

A fim de identificar algumas fases minerais para refinar a descrição petrográfica e localizar cristais de Mnz para os estudos de geocronologia, foram realizadas análises de MEV em quatro amostras selecionadas durante a petrografia (BCJ-02 e 03 e BCJ-10 e 11). Foram realizadas análises por Detector de Energia Dispersiva - EDS e obtidas imagens de elétrons retroespalhados (BSE – *backscattered electron*). As análises foram realizadas no Instituto de Geociências da UNICAMP e no Instituto de Geociências e Ciências Exatas da Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), em Rio Claro/SP, em aparelho da marca JEOL, modelo JSM-6010LA.

4.4 QUÍMICA MINERAL

Após a caracterização petrográfica, 4 amostras foram selecionadas para os estudos de química mineral em microssonda eletrônica, visando classificar as fases minerais, calcular suas fórmulas estruturais, identificar variações composicionais e possíveis zoneamentos. Estes dados serviram de base para realizar os estudos de geotermobarometria.

As análises foram realizadas em microssonda eletrônica JEOL modelo JXA-8230 superprobe, por espectroscopia dispersiva de comprimento de onda (WDS) no Laboratório de Microssonda Eletrônica do Instituto de Geociências e Ciências Exatas da UNESP, operada a 15 kV, com diâmetro do feixe de elétrons de 6 µm. Foram feitos mapas composicionais de raios X sob as condições analíticas de 15 kV, 100 nA e 200 ms, de acordo com a metodologia proposta por De Andrade et al. (2016). As imagens composicionais de raios X foram processadas utilizando o software XMapTools (Lanari et al., 2014).

4.5 TERMOBAROMETRIA

Estimativas de pressão e temperatura foram obtidas a partir de diagramas de fases isoquímicas calculados com o software THERIAK- DOMINO, versão 04.02.2017 (de Capitani & Brown, 1987; de Capitani & Petrakakis, 2010). Os cálculos foram feitos no sistema MnNCKFMASHT utilizando o banco de dados internamente consistente de Holland e Powell (1998); (update 5.5, tcds55_p07) e os modelos de solução de Holland e Powell (1998) para cordierita.; Holland e Powell (2003) para feldspatos (plagioclásio e K-feldspato, PLC1); Coggon e Holland (2002) para mica branca (WM02); ilmenita ternária ideal; White et al. (2002) para ortopiroxênio; White et al. (2007) para Granada e (GT07W2) e biotita (BI07), em sistemas sem Mn e fundido silicático. Ferro férrico foi excluído. A estimativa da quantidade de H2O em

condições suprasolidus foi obtida pela interseção da curva do solidus e da saturação em H2O em digrama de equilíbrio T-XH2O.

4.6 GEOCRONOLOGIA

Essa etapa consiste na datação U-Th-Pb de domínios composicionais em cristais de monazita previamente selecionados no MEV. Os domínios foram individualizados com base em mapas composicionais de raios X em grãos de monazita obtidos em microssonda eletrônica JEOL modelo JXA-8230 superprobe, por espectroscopia dispersiva de comprimento de onda (WDS) no Laboratório de Microssonda Eletrônica do Instituto de Geociências e Ciências Exatas da UNESP. Para esse tipo de análise a microssonda eletrônica foi operada segundo as recomendações de Williams et al. (2006). Foram confeccionados mapas composicionais de raio – X para Y, Al, Th, U, Pb, Si e Ca sob as condições analíticas de 15 KeV, 100 nA, com tempo de aquisição de 100 ms e tamanho do feixe de 10 μ m. Os mapas foram processados usando a mesma escala de cor, com os mesmos valores de intensidade máximo e mínimo.

Utilizando os mapas composicionais como base, as análises pontuais foram realizadas nos diferentes domínios, considerando os valores de *background* medidos. As análises pontuais seguiram o método de Vlach (2010), com valores de corrente variando de 80 nA a 100 nA, monitoradas constantemente. As imagens foram interpretadas com base no contexto textural de cada grão, na química de cada domínio e nos dados geocronológicos obtidos.

CAPÍTULO 2

5 GEOLOGIA REGIONAL E LOCAL

5.1 CRÁTON AMAZONAS

O Cráton Amazonas é a maior unidade geológica da Plataforma Sul Americana e uma das regiões cratônicas mais antigas e estáveis do mundo (Almeida et al., 1976). Seu embasamento arqueano/proterozoico é exposto no Escudo das Guianas, a norte, e no Escudo Brasil Central ou Guaporé, ao sul da Bacia do Amazona-Solimões (Rosa-Costa, 2006). Com uma extensão de aproximadamente 4.500.000 km², esta unidade é limitada a norte pela margem atlântica, a oeste pelo Cinturão Orogênico Andino e a leste e sudeste pelo Cinturão Araguaia (Santos et al., 2000). De acordo com Brito Neves & Cordani (1991), o cráton é composto por províncias crustais arqueanas a proterozoicas e teria se estabilizado há aproximadamente 1,0 Ga.

Dois modelos tectônicos principais são propostos para o Cráton Amazônico (Santos, 2003; Tassinari & Macambira, 2004). Ambos modelos são baseados essencialmente em dados geocronológicos, estruturais e geoquímicos, subdividindo o cráton em províncias relacionadas a sucessivos episódios de acreção crustal durante o Proterozoico, em torno de um núcleo arqueano. No entanto, os dois modelos diferem nos limites das províncias geocronológicas e nos intervalos temporais dos episódios acrescionários e nomenclatura das províncias divergentes.

Tassinari & Macambira (2004) subdividem o cráton em seis províncias: Amazônia Central (2,5 Ga), Maroni-Itacaiúnas (2,2 – 1,95 Ga), Ventuari-Tapajós (1,95 – 1,8 Ga), Rio Negro-Juruena (1,8 – 1,55 Ga), Rondoniana-San Ignacio (1,55 – 1,3 Ga) e Sunsás (1,3 – 1,0 Ga). Por sua vez, Santos (2003) e Santos et al. (2006) organizam o cráton em sete províncias: Carajás (3,0 – 2,5 Ga), Amazônia Central (supostamente arqueana), Transamazonas, incluindo Faixa Imataca e Bakhuis (2,26 – 2,01 Ga), Tapajós-Parima (2,03 – 1,88 Ga), Rio Negro (1,82 – 1,52 Ga), Rondônia-Juruena (1,82 – 1,54 Ga) e Sunsás e K'Mudku (1,45 – 1,0 Ga) (**Figura 1A**). Além de dividir o cráton em sete províncias, Santos et al. (2000) ainda sugere a divisão das províncias em domínios tectônicos. Este trabalho adotará a divisão tectônica proposta por Santos et al. (2006).

5.2 PROVÍNCIA TRANSAMAZONAS

A Província Transamazonas estende-se das porções norte e nordeste do cráton, no Escudo das Guianas, até o sul da Bacia do Amazonas, no Escudo Brasil Central (Santos et al. 2000; Santos, 2003). A evolução da província está relacionada a domínios de crosta juvenil paleoproterozoica e blocos arqueanos retrabalhados no Paleoproterozoico (Teixeira et al. 1989), Tassinari, 1996), Tassinari & Macambira, 1999, 2004; Tassinari et al. 2000). Segundo Vasquez (2006), os domínios de crosta juvenil estão localizados no Escudo das Guianas e possuem um modelo geodinâmico dividido em quatro estágios principais: 1) Estágio Eo-Riaciano (2,26 – 2,20 Ga) que corresponde a formação de crosta oceânica juvenil; 2) Estágio Meso-Riaciano (2,18 - 2,13 Ga) caracterizado por magmatismo cálcio-alcalino e formação de arcos de ilhas; 3) Estágio Neo-Riaciano (2,11 - 2,08 Ga) que representa o final da fase convergente e início de regime transcorrente e 4) Estágio Neo-Riaciano (2,07 - 2,06 Ga) que corresponde a colocação de granitos metaluminosos em zonas de cisalhamento (Vanderhaeghe et al. (1998) e Delor et al. (2003a).

Cinco tipos básicos de unidades litoestratigráficas podem ser identificados na Província Transamazonas: (i) o Complexo Guianense, cuja geologia é ainda consideravelmente desconhecida; (ii) unidade com predomínio de rochas arqueanas de alto grau; (iii) unidades constituídas por rochas supracrustais do terreno granito-*greenstone*; (iv) granitoides riacianos que representam as fases orogenéticas transamazônicas; e (v) granitoides intraplaca gerados no final do Paleoproterozoico (Santos, 2003).

A evolução da Província Transamazonas está diretamente relacionada ao Ciclo Transamazônico (2,2 a 1,95 Ga). Os primeiros estágios orogenéticos são representados por uma crosta juvenil acrescida por volta de 2,22 e 2,24 Ga, com características de rochas de arco de ilhas (Santos, 2003). Estágios subsequentes também são dominados por acreção de crosta juvenil de idades entre 2,18 a 2,11 Ga, relacionadas à formação da associação granito*greenstone* e intrusão de granitoides cálcio-alcalinos interpretados como derivados de arcos magmáticos continentais (Santos, 2003). Os eventos mais tardios são representados por intrusões de granitoides tardi a pós-tectônicos e por granitoides peraluminosos tipo S com idades por volta de 2,09 e 2,05 Ga, e intrusões de granitoides cálcio-alcalinos a alcalinos pós-tectônicos concomitantes ao evento de metamorfismo de alto grau e geração de fluidos hidrotermais há cerca de 2,01 e 2,00 Ga (Santos, 2003).

No Brasil, a Província Transamazonas é dividida nos domínios Gurupi, Amapá e Bacajá, com o domínio Bacajá representando parte da província ao sul da Bacia do Amazonas (Santos et al., 2000). Grande parte dos dados geológicos da Província Transamazonas são provenientes do Escudo das Guianas (domínios Paru, Carecuru e Bloco Amapá). No entanto, as informações disponíveis para o Domínio Bacajá reconhecem episódios magmáticos de idade transamazônica com fontes juvenis e de contribuição crustal arqueana (Macambira et al. 2004), além de ocorrências de ortognaisses arqueanos (Santos, 2003; Macambira et al. 2004) e de rochas granulíticas e charnockíticas (Santos et al. 1988; Ricci, 2006 a,b).

Figura 1. A) Províncias Geocronológicas do Cráton Amazonas (Santos et al., 2000). B) Unidades geológicas do Domínio Bacajá na área de estudo e localização das amostras estudadas Modificado de Vasquez e Rosa-Costa (2008).

5.3 DOMÍNIO BACAJÁ

O Domínio Bacajá (DB) representa o prolongamento da Província Transamazonas ao sul da Bacia do Amazonas e é delimitado a oeste pelas rochas do Domínio Iriri-Xingu, a leste pelo Cinturão Araguaia e a sul pelo Domínio Carajás. É caracterizado por rochas arqueanas retrabalhadas durante o Paleoproterozoico, no Ciclo Transamazônico, e inclui granitoides de arcos magmáticos riacianos, charnockitos relacionados aos estágios finais de colisão continental, ortognaisses arqueanos, rochas granulíticas, além de *greenstone belts* de idade sideriana a arqueana (Santos, 2003).

De acordo com os dados geocronológicos e geoquímicos isotópicos existentes para as rochas do Domínio Bacajá, interpreta-se uma evolução tectônica paleoproterozoica, durante o Ciclo Transamazônico, com retrabalhamento de crosta com idades maiores que 2,3 Ga, e formação de crosta juvenil (Cordani et al. 1984). As rochas neoarqueanas identificadas foram datadas entre 2,5 e 2,67 Ga (Santos, 2003; Macambira et al. 2004), além de rochas com idadesmodelo de Nd siderianas (Avelar et al. 2003; Macambira et al. 2004; Faraco et al. 2005; Rosa– Costa, 2006).

Idades superiores a 2,1 Ga obtidas em zircão e monazita são frequentemente interpretadas como herança dos protólitos arqueanos e paleoproterozoicos no DB. Similarmente ao que ocorre no Escudo das Guianas, dois eventos metamórficos de alto grau teriam afetado as rochas da Província Tranzamazonas no Domínio Bacajá: o primeiro entre 2,07 e 2,05 Ga e o segundo em ca. 1,99 Ga. Dados de idades semelhantes foram encontrados em gnaisses do embasamento do Domínio Iriri-Xingu (Província Amazônia Central), interpretadas como pertencentes ao DB (Vasquez et al. 2019).

5.3.1 Complexos Metamórficos

Oito complexos metamórficos compõem o embasamento do DB. O Complexo Cajazeiras, composto por granulitos tonalíticos a graníticos reidratados registram migmatização e bandamento composicional espesso. Uma idade de cristalização de um gnaisse granodiorítico de 3009 ± 27 Ma e uma idade do metamorfismo de 2974 ± 8 Ma, ambas por U–Pb SHRIMP em zircão foram obtidas por Macambira et al. (2007). O Ortognaisse Pacajá também apresenta metamorfismo em fácies anfibolito e graus variados de migmatização. Os corpos de ortognaisses de composição predominantemente tonalítica estão orientados segundo WNW-ESE e envolvidos pelo embasamento granulítico. Macambira et al. (2004) dataram uma amostra de ortognaisse por evaporação de Pb em zircão em 2671 ± 3 Ma e interpretaram essa idade como cristalização do protólito. Por sua vez, Vasquez e Rosa-Costa (2008) obtiveram uma idade interpretada como de migmatização em um gnaisse tonalítico de 2195 ± 3 Ma pelo método de evaporação de Pb em zircão.

A unidade Ortogranulito Máfico Rio Preto consiste em ortognaisses migmatizados com bandas alternadas de granulitos máficos e leucossomas enderbíticos. Essa unidade ocorre em raras exposições, encravado no Complexo Cajazeiras, alongado segundo WNW-ESE. Foi obtida uma idade mínima de cristalização do protólito de 2628 ± 3 Ma e uma idade de metamorfismo de 2072 ± 3 Ma por evaporação de Pb em zircão em um granulito máfico migmatizado (Vasquez e Rosa-Costa, 2008). Idade de 2606 ± 4 Ma pelo método de evaporação de Pb em zircão em ortogranulitos félsicos tonalíticos a graníticos da Unidade Complexo Aruanã foi obtida por Vasquez e Rosa-Costa (2008) e interpretada como a idade mínima de cristalização do protólito.

O Ortognaisse Uruará foi observado nas proximidades do município homônimo e no rio Iriri. Ele consiste em metatonalitos e metagranodioritos metamorfizados em fácies anfibolito médio, com bandamento gnaissico de direção NE-SW, discordante do *trend* preferencial regional. Idades de cristalização de protólitos tonalíticos, granodioríticos e quartzo dioríticos variando de 2503 ± 10 Ma (U–Pb SHRIMP; Santos, 2003) a 2440 ± 7 Ma (evaporação de Pb em zircão; Vasquez et al. 2005) indicam um intervalo de aproximadamente 60 Ma para o magmatismo cálcio-alcalino que teria gerado os protólitos do Ortognaisse Uruará (Vasquez e Rosa-Costa, 2008).

Nas proximidades de Uruará, mais especificamente no interflúvio dos rios Iriri e Xingu ocorrem paragnaisses pelíticos a psamíticos migmatizados em fácies anfibolito superior a granulito, com lentes de silimanita quartzitos e granulitos máficos reconhecidos como a unidade Paragnaisse Ipiaçava. São paragnaisses migmatizados estromáticos a diatexíticos, alongados segundo NW-SE, associados aos granulitos do Complexo Cajazeiras e ao Ortogranulito Máfico Rio Preto, além de ocorrer como xenólitos no Granito Canaã. Vasquez (2006) obteve uma idade U–Pb SHRIMP em zircão de 2109 \pm 8 Ma e interpretou como recristalização durante metamorfismo de fácies granulito ou como um evento anatético discreto, e uma idade ²⁰⁷Pb/206Pb em monazita de 2071 \pm 3 Ma interpretada como evento metamórfico de alto grau.

Granitoides bandados a sul da Sequência Três Palmeiras, orientados segundo NW-SE compõem a unidade Metatonalito Rio Bacajá. Trata-se de metatonalitos a metamonzogranitos que hospedam lentes de rochas quartzo dioríticas a tonalíticas, além de xenólitos de supracrustais migmatizadas. As rochas apresentam deformação submagmática de alta temperatura, embora feições migmatíticas sejam observadas, indicando metamorfismo de grau médio a alto. Uma idade interpretada como de cristalização (2338 ± 5 Ma, U–Pb SHRIMP em zircão) foi obtida em um metatonalito (Vasquez et al. 2008).

Representando um metamorfismo granulítico de mais alta temperatura, o Granulito Novolândia é composto por gnaisses granulíticos bandados, paragnaisses potássicos com ortopiroxênio, granada, cordierita e biotita e paragnaisses quartzosos, com cordierita, biotita e granada. Vasquez e Rosa-Costa (2008) incluem nessa unidade as rochas metassedimentares de alto grau da Serra do Cinzento, que antes faziam parte do Grupo Salobo. Um paragnaisse datado por Macambira et al. (2004) pelo método U–Pb SHRIMP em monazita forneceu uma idade de 2064 ± 4 Ma, a qual foi interpretada como idade do metamorfismo regional.

5.3.2 Greenstone belts

Os *greenstone belts* são porções pouco estudadas do DB. O Grupo Vila União é composto por duas formações pouco conhecidas: Formação Tapirapé e Formação Buritirama. Ambas sustentam a Serra do Buritirama, sendo a Fm. Tapirapé a porção basal da mesma, composta por metabasaltos e talco-xistos em fácies xisto verde a anfibolito baixo. Por sua vez, a Formação Buritirama constitui a porção superior, formada por quartzitos micáceos e ferruginosos, além de mica xistos carbonatados, carbonatos, rochas calciossilicáticas e leitos de mármore. O metamorfismo é de fácies xisto verde a anfibolito e ocorrem depósitos de manganês na região (DOCEGEO, 1988).

A Sequência Rochas Supracrustais 1 foi individualizada a partir de sensores remotos e sua geologia ainda não é suficientemente caracterizada. Está orientada segundo o *trend* preferencial WNW-ESE e é composta por quartzitos puros e micáceos de baixo grau metamórfico e por formações ferríferas bandadas. Alguns dados geocronológicos posicionam essa unidade na transição entre o Arqueano e o Paleoproterozoico (Santos, 2003; Macambira et al. 2004, Vasquez et al. 2008).

A Sequência Três Palmeiras, representada por rochas metavulcanossedimentares, sustenta a serra homônima, estruturada segundo WNW-ESE. Ela é composta por actinolita xistos, metandesitos, metabasaltos, metatufos andesíticos e basálticos, anfibolitos, metadacitos, quartzitos, formações ferríferas bandadas, mica xistos e filitos grafitosos, com metamorfismo em fácies xisto verde a anfibolito e hospeda depósitos auríferos filonianos. Macambira et al.

(2004) dataram um metandesito por evaporação de Pb em zircão e obtiveram uma idade de 2359 ± 3 Ma, interpretada como idade de cristalização.

5.3.3 Suítes Plutônicas

Vasquez et al. (2008) dividem as unidades litotectônicas do Domínio Bacajá em diferentes estágios orogenéticos do Ciclo Transamazônico, as quais incluem as *Suítes Plutônicas Pré-Colisionais, Suítes Plutônicas Sin- a Tardi-Colisionais, Suítes Plutônicas Tardi- a Pós-Colisionais*. A *Suíte Pré-Colisional* inclui o Tonalito Brasil Novo, os granodioritos Oca e Belo Monte, o Monzogranito Piranhaquara e o Metatonalito Tapiranga, com idades que variam de 2215 ± 2 a 2133 ± 10 Ma. A unidade *Suítes Plutônicas Sin- a Tardi-Colisionais* compreende os charnockitos do Complexo Bacajaí, os granitóides do Granodiorito Babaquara e o Granito Canaã, cuja idade de formação foi determinada em aproximadamente 2,1 Ga. Por sua vez, as *Suítes Plutônicas Tardi a Pós-Colisionais* são constituídas pelas unidades Suíte Intrusiva Arapari e João Jorge, nas quais os charnockitos e granitos apresentam controle estrutural transcorrente, concordantes às zonas de cisalhamento, e suas idades variam entre 2086 ± 5 a 2069 ± 6 Ma. Entretanto, uma unidade denominada Granodiorito Sant'Ana foi identificada no Domínio Bacajá e teve sua idade datada em 1986 ± 5 Ma, sendo, portanto, mais jovem que as rochas das *Suítes Plutônicas Tardi a Pós-colisionais* e classificada como *Suíte Plutônica Pós-Orogênica*.

5.3.4 Rochas gabroicas

A unidade *Rochas Gabroicas Toleiíticas Mesozoicas* está relacionada aos diques máficos de diabásio, que tem sua provável origem no magmatismo toleiítico jurássico (diabásios Penatecaua e Cururu) que ocorreu durante a reativação da Bacia do Amazonas no Mesozoico. Na região de Uruará, cada vez mais ocorrências de rochas gabroicas têm sido registradas em relatórios de mapeamento de campo II das turmas de Geologia da Universidade Federal do Oeste do Pará (UFOPA).

5.4 GEOLOGIA LOCAL

O embasamento da porção oeste do Domínio Bacajá é composto por orto e paragnaisses de alto grau, além de migmatitos, ocorrendo principalmente como enclaves nos granitoides (Vasquez et al. 2008). Foram descritos ortognaisses cinzentos com *boudins* de anfibolitos e estruturas migmatíticas locais, além de metatonalitos e metagranodioritos com hornblenda e biotita, com metamorfismo em fácies anfibolito médio (Vasquez et al. 2005; Vasquez et al. 2008).

Além dos ortognaisses ocorrem ainda rochas metassedimentares de alto grau, especialmente metapelitos com plagioclásio, K-feldspato, quartzo, biotita, granada, cordierita e silimanita, indicando metamorfismo em fácies anfibolito superior a granulito (Vasquez et al. 2008) (**Figura 1B**). Ortogranulitos com plagioclásio, K-feldspato, quartzo, hornblenda, biotita, ortopiroxênio e clinopiroxênio em fácies granulito com algum retrometamorfismo também ocorrem no oeste do Domínio Bacajá, geralmente associados a charnockitos e paragnaisses (Vasquez et al. 2008).

Também são observadas sequências supracrustais correlacionadas ao *greenstone belt* Três Palmeiras, representadas por formações ferríferas bandadas, quartzitos e filitos, embora sua ocorrência seja limitada na porção oeste do DB, especificamente nas proximidades de Uruará. Ainda segundo Vasquez et al. (2008), granitoides alongados paralelamente a zona de cisalhamento NW-SE cortam as unidades já mencionadas. São constituídos por granodioritos, tonalitos e monzogranitos porfiríticos marcados por foliação milonítica. Além disso, são descritos charnockitos e enderbitos, além de charnoenderbitos, mangeritos e jotunitos, que ocorrem em menor quantidade, orientados segundo direção aproximada E-W.

A porção leste e central do Domínio Bacajá é constituída por granitoides deformados, granulitos, gnaisses e *greenstone belts* e sua evolução foi dividida em três estágios: i) complexos metamórficos neoarqueanos, interpretados como remanescentes de TTGs ou arcos de ilha; ii) *greenstone belt* sideriano e iii) granitoides riacianos colocados em um intervalo de aproximadamente 140 Ma durante o Ciclo Transamazônico (Macambira et al. 2009).

6 SÍNTESE DOS RESULTADOS

Doze seções delgadas foram descritas em microscópio óptico e classificadas em *silimanita-cordierita-granada-biotita gnaisse, granada-biotita gnaisse, cordierita-granadabiotita gnaisse, silimanita quartzito* e *granulito máfico*. Dessas, quatro lâminas do *silimanitacordierita-granada-biotita gnaisse* e *cordierita-granada-biotita gnaisse* (BCJ-05, BCJ-06, BCJ-10 e BCJ-11) foram analisadas por Microscopia Eletrônica de Varredura (MEV) a fim de identificar cristais de monazita para datação e por Microssonda Eletrônica (EPMA) com o objetivo de obter a química mineral de fases silicáticas maiores (e.g. granada, biotita, plagioclásio) e identificar os domínios composicionais de monazita para datação.

A partir das análises de química mineral por EPMA, mapas composicionais em porcentagem de peso em óxidos foram elaborados a fim de observar variações composicionais em granada, biotita, plagioclásio e cordierita e extrair a *bulk* para os estudos de geotermobarometria. Os diagramas de pressão e temperatura foram elaborados no Theriak-Domino, variando de 600 a 900 °C e 3,5 a 9 Kbar, e forneceram condições de pressão e temperatura no pico metamórfico variando entre 5.3 a 6.7 kbar e 785°C a 795°C.

Os cristais de monazita foram classificados de acordo com o contexto textural, considerando grãos inclusos em granada, grãos inclusos em biotita e grãos na matriz de cordierita+quartzo+plagioclásio±K-feldspato, e zoneamento químico. Ao todo, 19 grãos de monazita foram analisados, 9 na amostra BCJ-10 e 10 na BCJ-11.

Os domínios composicionais foram divididos em: Domínio 1 (D₁) - núcleo com alto Y + ETR pesados; Domínio 2 (D₂) – alto Th e Domínio 3 (D₃) - borda com alto Y + ETR pesados. A datação das amostras por EPMA revelou idades que variam de 2,28 Ga a 2,16 Ga.

REFERÊNCIAS

- Almeida F.F., Hasui, Y., Brito Neves, B.B. 1976. The Upper Precambrian of South America. *Boletim IG*, Instituto de Geociências da USP, 7:45-80.
- Avelar V.G., Lafon, J.M., Delor, C., Guerrot, C., Lahondère, D. 2003. Archean crustal remnants in the easternmost part of the Guiana Shield: Pb-Pb and Sm-Nd geochronological evidence for Mesoarchean versus Neoarchean signatures. *Géologie de la France*, 2-3-4: 83-100.
- Brito Neves B.B. & Cordani, U.G. 1991. Tectonic evolution of South América during Late Proterozoic. *Precambrian Research*, **53**: 23-40.
- Cordani, U.G., Tassinari, C.C.G., Kawashita, K. 1984. A Serra dos Carajás como região limítrofe entre províncias tectônicas. *Ciências da Terra*, **9:** 6-11.
- De Andrade V., Vidal, O., Lewin, E., O'Brien, P., Agard, P., 2006. Quantification of electron microprobe compositional maps of rock thin sections: an optimized method and examples. *Journal of Metamorphic Geology*, **24**: 655–668.
- Delor C., Lahondère, D., Egal, E., Lafon, J.M., Cocherie, A., Guerrot, C., Rossi, P., Trufert, C., Theveniaut, H., Phillips, D., Avelar, V.G. 2003a. Transamazonian crustal growth and reworking as revealed by the 1:500,000-scale geological map of French Guiana (2nd edition). *Géologie de la France*, 2-3-4: 5-57.
- DOCEGEO. 1988. Lithostratigraphic review of the Carajás District and Southern Pará-Brazil. *In*: Final Meeting of the Working Group. Extended abstract... Carajás-PA: IUGS-UNESCO, p. 32- 39.
- Faraco M.T.L., Vale, A.G., Santos, J.O.S., Luzardo, R., Ferreira, A.L., Oliveira, M.A., Marinho, P.A.C. 2005. Levantamento Geológico da Região ao Norte da Província Carajás *In*: Souza, V. & Horbe, A.C. (eds.). *Contribuições a Geologia da Amazônia*, p.: 32-44.
- Faraco M.T.L., Marinho, P.A.C., Vale, A.G., Costa, E.J.S., Maia, R.G.N., Ferreira, A.L., Valente, C.R., Lacerda Filho, J.V., Moreton, L.C., Camargo, M.A., Vasconcelos, A.M., Oliveira, M., Oliveira, I.W.B., Abreu Filho, W.A., Gomes, I.P. 2004. Folha SB.22-Araguaia. In: Schobbenhaus, C., Gonçalves, J.H., Santos, J.O.S., Abram, M.B., Leão Neto, R., Matos, G.M.M., Vidotti, R.M., Ramos, M.A.B., Jesus, J.D.A. (eds.).

Carta Geológica do Brasil ao Milionésimo, Sistema de Informações Geográficas. Programa Geologia do Brasil. CPRM, Brasília. CD ROM.

- Fraser G., Ellis, D.J., Eggins, S. 1997. Zirconium abundance in granulite-facies minerals, with implications for zircon geochronology in high-grade rocks. *Geology*, **25**:607–610
- Issler R.S., Andrade, A.R.F., Montalvão, R.M.G., Guimarães, G., Silva, G.G., Lima, M.I.C. 1974. *Geologia. Folha SA.22 - Belém.* DNPM/Radam, v.5, p.1-71. (Relatório técnico).
- Lanari P., Vidal O., De Andrade V., Dubacq B., Lewin E., Grosch E. G., & Schwartz S. 2014. XMapTools: A MATLAB©-based program for electron microprobe X-ray image processing and geothermobarometry. *Computers & Geosciences*, 62:227-240.
- Larson K.P., Ali, A., Shrestha, S., Soret, M., Cottle, J.M. and Ahmad, R. 2019. Timing of metamorphism and deformation in the Swat valley, northern Pakistan: Insight into garnet-monazite HREE partitioning. *Geoscience Frontiers*, **10**:849-861.
- Macambira M.J.B., Silva, D.C.C da., Vasquez, M.L., Barros, C.E. de M. 2004. Investigação do limite Arqueano-Paleoproterozóico ao norte da Província de Carajás, Amazônia Oriental. *In*: 42 Congresso Brasileiro de Geologia. *Resumos*. Araxá, CD-ROM.
- Macambira M.J.B., Vasquez, M. L., da Silva, D. C. C., Galarza, M. A., de Mesquita Barros, C.
 E., & de Freitas Camelo, J. 2009. Crustal growth of the central-eastern Paleoproterozoic domain, SW Amazonian craton: Juvenile accretion vs. reworking. *Journal of South American Earth Sciences*, 27:235-246.
- Ricci P.S.F. 2006a. Mineralogically bizarre charnockitoids of the Bacajá High-Grade Block (Pará): discharnockitized and reemplaced plutons mistakenly confused with granitoids crystallized at shallower crustal levels. *In*: 9 Simpósio de Geologia da Amazônia. *Resumos Expandidos*, Belém, SBG. CD ROM.
- Rocha B.C.D., Moraes, R.D., Möller, A., Cioffi, C.R. and Jercinovic, M.J. 2017. Timing of anatexis and melt crystallization in the Socorro–Guaxupé Nappe, SE Brazil: Insights from trace element composition of zircon, monazite and garnet coupled to U-Pb geochronology. *Lithos*, 277:337-355.
- Rosa-Costa L.T. 2006. Geocronologia 207Pb/206Pb, Sm- Nd, U-Th-Pb e 40Ar-39Ar do segmento sudeste do Escudo das Guianas: evolução crustal e termocronologia do evento

Transamazônico. Tese de Doutorado, Centro de Geociências, Universidade Federal do Pará, Belém, 226 p.

- Sato K., Tassinari, C.C.G. 1997. Principais eventos de acreção continental no Cráton Amazônico baseados em idade modelo Sm-Nd, calculada em evoluções de estágio único e estágio duplo. In: *Contribuições à Geologia da Amazônia*. Belém, p.: 91-142.
- Santos J.O.S. 2003. Geotectônica do Escudo das Guianas e Brasil-Central. In: Bizzi L.A. et al. (Ed.). Geologia, tectônica e recursos minerais do Brasil: texto, mapas e SIG. Brasília, CPRM-Serviçco Geológico do Brasil, p.: 169-226.
- Santos J.S.O., Hartmann, L.A., Faria, M.S., Riker, S.R., Souza, M.M., Almeida, M.E., Mcnaughton, N.J. 2006. A compartimentação do Cráton Amazonas em províncias: avanços ocorridos no período 2000-2006. *In*: 9 Simpósio de Geologia da Amazônia. *Resumos Expandidos*, Belém, SBG. CD ROM.
- Santos M.V., Souza Filho, E.E., Tassinari, C.C.G., Teixeira, W., Ribeiro, A.C.O., Payolla, B.L., Vasconi, A.V. 1988. Litoestratigrafia das rochas pré-cambrianas na bacia do médio Rio Xingu – Altamira-PA. *In*: 7 Congresso Latinoamericano de Geologia. *Anais*. Belém, p. 363-377.
- Santos J.O.S., Hartman, L.A., Gaudette, H.E., Groves, D.I., Mcnaughton, N.J. e Fletcher, I.R. 2000. New understanding of the Amazon Craton provinces, based on field work and radiogenic isotope data. *Gondwana Research*, 3:453-488.
- Silva G.G., Lima, M.I.C., Andrade, A.R.F., Issler, R.S., Guimarães, G. 1974. Geologia. Folha SB.22 - Araguaia e parte da SC.22. Tocantins. DNPM/Radam. v.4, p.1-72. (Relatório técnico).
- Sousa C.S. 2008. Petrologia, geologia estrutural e aerogeofísica das rochas da porção leste do Domínio Bacajá, Província Maroni-Itacaiúnas. Dissertação de Mestrado, Instituto de Geociências, Universidade Federal do Pará, Belém, 163 p.
- Souza V.S. & Kotschoubey, B. 2005. Geologia e mineralizações auríferas do garimpo do Manelão, região do médio rio Bacajá (PA). *In*: Horbe, A.M.C., Souza, V.S. (Coord.). *Contribuições à geologia da Amazônia*. Manaus: SBG-Núcleo Norte, p.: 151-163.
- Souza V.S., Macambira, M.J.B., Koutchoubey, B. 2003. Idade de zircão do granito Felício Turvo, garimpo de ouro do Manelão, regão do Bacajá (PA): implicações tectônicas. *In*: 8 Simpósio de Geologia da Amazônia. *Resumos Expandidos*, Manaus. CD ROM.

- Tassinari C.C.G. 1996. O mapa geocronológico do Cráton Amazônico no Brasil: revisão dos dados isotópicos. Tese de Livre Docência, Instituto de Geociências, Universidade de São Paulo, São Paulo, 139 p.
- Tassinari C.C.G., Bettencourt, J.S., Geraldes, M.C., Macambira, M.J.B., Lafon, J.M. 2000. The Amazonian Craton. *In*: Cordani, U.G., Milani, E.J., Filho, A.T., Campos, D.A. (eds.) *Tectonic Evolution of South America*. Rio de Janeiro, p.: 41-95.
- Tassinari C.C.G., Macambira, M.J.B. 1999. Geochronological provinces of the Amazonian Craton. *Episodes*, **22**:174-182.
- Tassinari C.C.G. & Macambira, M.J.B. 2004. A evolução tectônica do Cráton Amazônico. In: Mantesso Neto V. et al. (Ed.). Geologia do continente Sul-americano: evolução da obra de Fernando Flávio Marques de Almeida. São Paulo, Beca, p. 471-485.
- Tedeschi M., Lanari, P., Rubatto, D., Hermann, J., Pedrosa-Soares, A.C., Dussin, I., Aurélio Pinheiro, M., Bouvier, A.S. and Baumgartner, L. 2017. Reconstruction of PTt metamorphic conditions from symplectites: insights from Pouso Alegre mafic rocks (Brasília Belt, Brazil). *In:* EGU General Assembly Conference. *Abstracts*, p. 7830.
- Teixeira W., Tassinari, C.C.G., Cordani, U.G., Kawashita, K. 1989. A review of the geochronology of the Amazonian Craton: tectonic implications. *Precambrian Research*, 42:213-227.
- Vanderhaeghe O., Ledru, P., Thiéblemont, D., Egal, E., Cocherie, A., Tegyey, M., Milesi, J-P. 1998. Contrasting mechanism of crustal growth: geodynamic evolution of the Paleoproterozoic granite-greenstone belts of French Guiana. *Precambrian Research*, 92: 165-193.
- Vasquez M.L. 2006. Geocronologia em Zircão, Monazita e Granada e isotópos de Nd das associações litológicas da porção Oeste do Domínio Bacajá: Evolução Crustal da porção Meridional da Província Maroni-Itacaiúnas – Sudeste do Cráton Amazônico. Tese de Doutorado, Universidade Federal do Pará, Centro de Geociências, Curso de Pós-Graduação em Geologia e Geoquímica, Belém, 212 p.
- Vasquez M.L., Cordani, U.G., Sato, K., Barbosa, J.D.P.D.O., Faraco, M.T.L. and Maurer, V.C. 2019. U-Pb SHRIMP dating of basement rocks of the Iriri-Xingu domain, Central Amazonian province, Amazonian craton, Brazil. *Brazilian Journal of Geology*, 49.

- Vasquez M.L., Macambira, M.J.B., Armstrong, R.A. 2008. Zircon geochronology of granitoids from the western Bacajá domain, southeastern Amazonian Craton, Brazil: Neoarchean to Orosirian evolution. *Precambrian Research*, 161:279-302.
- Vlach S.R.F. 2010. Th-U-PbT dating by electron probe microanalysis, part I. Monazite: analytical procedures and data treatment. *Geologia USP. Série Científica*, **10**:61-85.
- Williams I.S., 2001. Response of detrital zircon and monazite, and their U–Pb isotopic systems, to regional metamorphism and host-rock partial melting, Cooma Complex, southeastern Australia. *Australian Journal of Earth Sciences*, **48**:557-580.
- Williams M.L., Jercinovic, M.J., Goncalves, P. and Mahan, K. 2006. Format and philosophy for collecting, compiling, and reporting microprobe monazite ages. *Chemical Geology*, 225:1-15.
CAPÍTULO 3

A LONG-LIVED PALEOPROTEROZOIC OROGENY IN THE BACAJÁ DOMAIN, AMAZONIAN CRATON, BRAZIL

Abstract

On the last decades Petrochronology has proved to be an excellent tool to constrain the evolution of metamorphic and igneous rocks. Nevertheless, this innovative scientific approach has not been explored in paleoproterozoic orogens from Brazil, especially in the Bacajá Domain, part of the Transamazonas Province, Amazonian Craton, Brazil. The understanding of the P-T-t (pressure-temperature-time) history of metamorphic rocks from the Bacajá Domain would contribute to unravel part of the protracted and complex geological evolution of the Amazonian Craton and could shed light on orogenic processes during Paleoproterozoic era. This work aims to constrain the metamorphic evolution of the Bacajá Domain, based on petrochronological techniques. Petrographic analysis allowed the description of different lithotypes through mineral and textural characterization. These lithotypes include sillimanitecordierite-garnet-biotite gneiss, cordierite-garnet-biotite gneiss, garnet-biotite gneiss, sillimanite quartzites, mafic granulite and hornblende-biotite gneiss. Mineral chemistry analysis, including X-ray mapping, were performed to underpin P-T estimates of the studied paragneisses. Isochemical phase diagrams with XAlm and XAn isopleths indicate near-peak metamorphic conditions between 5.3 to 6.7 Kbar and 785°C to 795°C. X-ray compositional maps of monazite grains from these paragneisses display complex dissolution and reprecipitation textures. Three monazite generations were classified based on textural domain and chemical composition. Therefore, the U-Th-Pb EPMA dating were performed in those three monazite generations. However, due to low statistical significance of domain 1 age data, only domains 2 and 3 data were considered. Age data for D_2 range from 2266 ± 17 to 2205 ± 16 My for BCJ-10 and from 2253 \pm 20 to 2170 \pm 21 My for BCJ-11. Domain 3 ages range from 2206 \pm 18 to 2099 + 35 Ma for BCJ-10 sample and from 2222 ± 21 to 2049 ± 43 for BCJ-11.

INTRODUCTION

The orogenic studies are based mostly on the understanding of petrological processes recorded in igneous and metamorphic rocks, which is traditionally achieved by petrological and geochronological studies. Classic petrological studies highlight the understanding of thermodynamic reactions through mineralogical/chemical and textural evolution (e.g., Spear et al., 1999; Pattinson et al., 2003; White et al., 2007). On its turn, geochronology focus on obtaining single ages for individual rock samples in order to place their history in the geological time scale (e.g., Tassinari & Macambira, 1999; Vasquez et al., 2008).

In the last decades, however, petrochronology has emerged as a useful approach to constrain the rates for petrological and tectonic processes, such as burial, exhumation, heating and cooling rates, on individual samples. In this innovative approach, specific magmatic and metamorphic processes are linked with time (i.e., ages or duration), founded on the basis of petrology, geochemistry and geochronology (see Engi et al. 2017). In their pioneer work, Fraser et al. (1997) described petrochronology as the union of metamorphic petrology and geochronology. Despite petrochronology comprises a relatively new area in Geology, its broad application on worldwide and diverse geological terranes demonstrate its scientific relevance (e.g., Rocha et al., 2017, Tedeschi et al., 2018, Larson et al., 2019), especially on reconstructing orogenic evolution.

The Bacajá Domain (BD) is located at the Transamazonas Province, northern Amazonian Craton, and records reworking processes of archean rocks during a paleoproterozoic orogeny (e.g., Tassinari & Macambira, 1999, 2004). The BD comprises greenstone belts, medium- to high-temperature metamorphic complexes, granitoids and chanockitic rocks formed during the so-called Transamazonian Cycle, in the Rhyacian/Orosirian periods (Vasquez, 2006; Vasquez et al. 2008). Most of the information about this orogeny comes from classic petrological and geochronological studies on igneous rocks (Vasquez et al. 2006, Barros et al. 2007, Macambira et al. 2009, Perico et al. 2017,) and the data from the metamorphic rocks are rare (Vasquez et al. 2005, Vasquez, 2006, Vasquez et al. 2008, Macambira et al. 2009). Indeed, metamorphic and timing constraints are crucial to understand the evolution of the Transamazonas Province and may shed light on the understanding of paleoproterozoic orogenic processes.

In this work we present petrographic descriptions of high-grade metamorphic rocks and monazite petrochronological data for metapelitic samples from the western BD. The presented data suggest a much older metamorphic history for the studied rocks than previously reported for the area and indicate a long-lived low- to medium-pressure/high-temperature metamorphism in the hinterland of the Transamazonian Orogen.

GEOLOGICAL SETTING

The Amazonian Craton is composed of seven geochronological provinces, including archean to mesoproterozoic provinces subdivided into different domains (Santos et al., 2000) (**Figure 1A**). The study area is located at the Transamazonas Province, which evolution is strictly related to the Transamazonian Tectonic Cycle (2.2 a 1.95 Ga). The Transamazonas Province comprises archean rocks reworked during the Paleoproterozoic (Teixeira et al. 1989; Tassinari, 1996; Tassinari & Macambira, 1999, 2004 and Tassinari et al. 2000). Accretion of juvenile crust with island arc geochemical signatures during 2.22 and 2.24 Ga represent the first orogenic stages in the Transamazonas Province (Santos, 2003). The first orogenic stages are followed by subsequent formation of granite-greenstone domains and continental magmatic arcs from 2.18 to 2.11 Ga (Santos, 2003). Late orogenic stages in the Transamazonas Province are represented by late- to post-tectonic granitoid intrusions, including S-type granites, with ages between 2.09 and 2.05 Ga, and coeval post-tectonic intrusions of calc-alkaline granitoids, high-grade metamorphic event and hydrothermal metassomatism at around 2.01 and 2.0 Ga (Santos, 2003).

The Transamazonas Province is subdivided in Amapá Block, Carecuru Domain, Paru Domain and Bacajá Domain, considering the remarkable age contrasts and lithological variations between Paleoproterozoic units and Archean rocks reworked during Paleoproterozoic, although the tectonic significance of this division is not fully understood. The Bacajá Domain is characterized by an archean crust reworked during the Paleoproterozoic and includes archean orthogneisses, siderian to archean greenstone belts and rhyacian/orosirian granulitic rocks, granitoids and charnockites, (Santos, 2003).

The basement rocks from the Bacajá Domain include high-grade ortho- and paragneisses, and migmatites (**Figure 1B**). Amphibolite boudins occur intercalated on Neoarchean middle amphibolite facies Hbl-Bt metatonalites and metagranodiorites (Vasquez et al., 2008). Siderian and Rhyacian high-grade metasedimentary rocks, especially Pl-Kfs-Qz-Bt-Grt-Crd-Sil metapelites record upper amphibolite to granulite facies metamorphism. In the western Bacajá Domain, Pl-Kfs-Qz-Hbl-Bt-Opx-Cpx orthogranulites (Rio Preto mafic orthogranulite), associated with charnockites and paragneisses represent a high-grade metamorphic event ca. 2.0 Ga, that was also observed in Guiana Shield metamorphic rocks (Vasquez et al. 2008, 2019).

Based on geological and isotopic data from eastern and central Bacajá Domain, including Pb-evaporation dating method and SHRIMP U-Pb dating in zircon, and Sm-Nd T_{DM}

age (**Table 1**), Macambira et al. (2009) divided the tectonic evolution of the Bacajá Domain into three stages: i) Neoarchean metamorphic complexes interpreted as TTGs or island arc remnants; ii) Siderian greenstone belt and iii) an approximately 140 My-lasting Rhyacian magmatism.

Figure 1. A) Geochronological provinces of Amazon Craton (Santos et al., 2000). B) Geological units of Bacajá Domain in study area with studied samples. Modified from Vasquez and Rosa-Costa (2008).

In the study area (**Figure 1B**), the basement is represented by metamorphic complexes like Cajazeiras, Rio Petro, Uruará and Ipiaçava. The samples described in this paper are located in Ipiaçava paragneiss, along rivers Iriri and Xingu. Undifferentiated supracrustal sequences also occur, followed by pre-collisional magmatic units like Brasil Novo tonalite (2182 ± 6 Ma U-Pb SHRIMP) and Piranhaquara monzogranite (2147 ± 5 Ma U-Pb SHRIMP) presented in **Table 1**. The Rhyacian orogenic sin to late-magmatism is represented by Canaã granite (2104 ± 5 Ma Pb-Pb evaporation) and Bacajaí complex (2113 ± 9 Ma U-Pb SHRIMP) whilst the late to post-collisional magmatism is represented by João Jorge (2077 ± 2 Ma Pb-Pb evaporation) and Arapari (2086 ± 5 U-Pb SHRIMP and 2070 ± 3 Pb-Pb evaporation) intrusive suites. Finally, Santana granodiorite represents the Orosirian pos-collisional magmatism (Vasquez and Rosa-Costa, 2008).

The Ipiaçava Paragneiss was described as high-grade metamorphic unit oriented according to regional NW-SE trend. It consists of a migmatized pelitic gneiss, with sillimanite quartzites and mafic granulite lenses. The K feldspar + plagioclase + biotite + garnet + cordierite + sillimanite parageneses indicate low-pressure high-temperature conditions for the upper amphibolite to granulite metamorphism (Vasquez et al. 2005). Age data for monazite and zircon (SHRIMP) indicate an older migmatization event ca. 2109 \pm 18 Ma and a younger granulitic metamorphism at ca. 2.07 Ga (Vasquez, 2006). This second metamorphic event would be related to a high-grade metamorphic event between 2.07 and 2.05 Ga, described at Imataca Complex, in Guiana Shield (Vasquez et al. 2019). The older age, however, could be a metamorphic event not yet described for BD. Nevertheless, uncertainties regarding the ID-TIMS analysis in zircon suggest that an inheritance origin may also be considered (Vasquez, 2006).

Period	Area	Rock	Pb Pb evaporation on zircon (Ma)	U-Pb SHRIMP on zircon (Ma)	Sm-Nd(WR)TDM (Ga)/ENdt	Referen ce
Neoarchean (2.85 - 2.5 Ga)	Manelão	Tonalitic gneiss	2671 ± 3		2.67/+2.66	1
	Uruará			$2503 \pm 10/2581 \pm 6$		2
Siderian (2.5 - 2.3 Ga)	Maribel	Granodioritic gneiss		$2487 \pm 13 \; \text{Ma}$		8
	Ilha Grande	Dacitic metalapilli- tuff	2452 ± 3			8
	Brasil Novo	Tonalitic gneiss	2440 ± 7			3
	Belmonte village	Quartz-monzodioritic gneiss	2439 ± 4			9
	Uruará	Pelitic gneiss	2361-2076			3
	Três Palmeiras	Metandesite	2359 ± 3			1
		Metatonalite		2338 ± 5		8
Rhyacian (2.3 - 2.05 Ga)	Araras	Syenogranite	2209 ± 2			8
	Maribel	Migmatitic orthogneiss		2155 ± 8		10
	Maribel	Migmatitic orthogneiss		2149 ± 20		10
	Novo Repartimento	Metatonalite		2113 ± 9		4
	Brasil Novo	Granodiorite	2215 ± 2			3
	Belmonte village	Monzogranite		2191 ± 2		9
	Brasil Novo	Tonalite		2182 ± 6		2
	Três Palmeiras	Quartz-monzodiorite		2160 ± 3		8
	Maribel	Pelitic Paragneiss		2160 ± 8		10
	Belo Monte	Granodiorite	2154 ± 2		2.35/+0.21	5,9
	Xingu river	Monzogranite		2147 ± 5		8
	Brasil Novo	Metatonalite		2133 ± 10		8

 Table 1. Pb Pb evaporation, U-Pb-SHRIMP and Sm-Nd TDM age data for Bacajá Domain.

-	Novo Repartimento	Granodiorite		2114 +35/-33		4
	Uruará	Monzogranite	2104 ± 5			3
	Altamira	Granodiorite	2102 ± 3			8
	Volta Grande	Charnockite		2086 ± 5		2
	Manelão	Granite	2085 ± 4			9
	Brasil Novo	Monzogranite	2077 ± 2			3
	Novo Repartimento	Granodiorite	2076 ± 6			6
	Novo Repartimento	Granodiorite	2075 ± 3		2.57/-4.12 and 2.25-2.35/+0.83 to -0.60	5
	Maribel	Jotunite	2070 ± 3			8
	Manelão	Monzogranite	2069 ± 6			7
Orosirian (2.05 - 1.8 Ga)	Maribel	Muscovite gneiss		1990 ± 3		10
	Maribel	Migmatitic orthogneiss		1983 ± 5		10
	Uruará	Granodiorite	1986 ± 5			3
	Maribel	Migmatitic orthogneiss		1979 ± 8		10

References: 1) Macambira et al., (2004); 2) Santos (2003); 3) Vasquez et al., (2005); 4) Faraco et al., (2005); 5) Macambira et al., (2003); 6) Macambira et al., (2001), 7) Souza et al., (2003), 8) Vasquez et al., (2008), 9) Macambira et al., (2009) and 10) Vasquez et al., (2019). Modified from Vasquez et al., (2008).

ANALYTICAL PROCEDURES PETROGRAPHY AND MINERAL CHEMISTRY

Twelve samples gently provided by Brazil Geological Survey (CPRM) were described using an optical microscope Leica (model DM750P) at Microscopy Laboratory, State University of Campinas (UNICAMP). The petrographic description focused on characterization of shape and size of the crystals, mineral paragenesis, textures, microstructures and alteration features. Description of four samples (BCJ-05, 06, 10 and 11) were further detailed using a Scanning Electron Microscope (SEM) to obtain backscattered electron (BSE) images and semi-quantitative EDS analysis in order to identify minor phases and to map all monazite crystals in these samples. The analyses were carried out at both Institute of Geosciences (UNICAMP) and Institute of Geosciences and Exact Sciences (São Paulo State University - UNESP).

Those four samples were also analyzed for mineral chemistry using a Electron Probe Micro Analyzer (EPMA) in order to classify the mineral phases, calculate their structural formulae and identify compositional variation and zoning. The analyses were carried out in an electron probe JEOL (model JXA-8230 superprobe) by wavelength dispersive spectroscopy (WDS) at the Microprobe Laboratory from the Institute of Geosciences and Exact Sciences (UNESP). The analytical conditions were 15 kV, 100 nA and spot diameter of 6 µm. X-ray compositional maps were obtained under analytical conditions of 15 kV, 100 nA and 200 ms, following the suggestions of De Andrade et al. (2016). The X-ray compositional maps were processed on the XMapTools software in order to quantify the semi-quantitative data using internal standard methods (De Andrade et al., 2016; Lanari et al. 2014).

THERMOBAROMETRY

Pressure and temperature estimates were obtained from isochemical phase diagrams calculated with THERIAK- DOMINO software, Version 04.02.2017 (de Capitani & Brown, 1987; de Capitani & Petrakakis, 2010). These diagrams calculations were performed in the system MnNCKFMASHT using the internally consistent thermodynamic data set of Holland and Powell (1998); (update 5.5, tcds55_p07) and the solution models of Holland and Powell (1998) for cordierite, Holland and Powell (2003) for feldspar (plagioclase and K-feldspar; PLC1); Coggon and Holland (2002) for white mica (WM02); ideal ternary ilmenite; White et al. (2002) orthopyroxene; White et al. (2007) for garnet (GT07W2) and biotite (BI07), in systems without Mn, and silicate melt. Ferric iron was excluded. The intersection of solidus

and H2O-saturated curves in T-XH2O equilibrium diagram was used to estimate the amount of water component at supersolidus conditions.

U-PB-TH MONAZITE ELECTRON PROBE MICRO ANALYZER (EPMA) DATING

The monazite dating method consists of in situ mapping-based analysis. The analysis is based on thin-section studies, integrating petrology and microstructure with age and compositional data. Monazite crystals were first texturally and chemically characterized using BSE images and X-ray compositional mapping. Maps of the elements Y, Al, Th, U, Pb, Si and Ca were obtained by WDS under conditions of 15 KeV, 100 nA, with acquisition time of 100 ms and spot diameter of 10 μ m. The maps were processed using the same color scale, with the same maximum and minimum intensity counting values.

The punctual analyses for chemistry and, therefore, geochronology were based on textural characterization and X-ray compositional maps. Punctual analyses followed Vlach (2010), with current values ranging between 80 nA to 100 nA, constantly monitored. The images were interpreted based in each grain textural context, in the chemistry of the domains and in the geochronological data obtained. EPMA dating method does not provide isotopic information and is based on the assumption that U isotopes are present in their crustal abundances and most of the Pb in monazite is thorogenic (Williams et al., 2006).

RESULTS

PETROGRAPHY AND MINERAL CHEMISTRY

Twelve thin sections were described under the optical microscope and classified into five lithotypes: (i) sillimanite-cordierite-garnet-biotite gneiss; (ii) garnet-biotite gneiss; (iii) cordierite-garnet-biotite gneiss; (iv) sillimanite quartzite; and (v) mafic granulite. Then, two samples of sillimanite-cordierite-garnet-biotite gneiss and two samples of cordierite-garnet-biotite gneiss were selected for mineral chemistry analysis. Mineral abbreviations follow Whitney & Evans (2010).

Sillimanite-cordierite-garnet-biotite gneiss (BCJ-03, 05, 06, 07 and 11)

The sillimanite-cordierite-garnet-biotite gneiss is composed of circa 15% of fineto medium-grained garnet crystals (0,3 to 1,2 mm) involved in a granoblastic matrix composed by quartz (30%), plagioclase andesine (15%), cordierite (10%), biotite (~25%) and minor Kfeldspar (< 10%). Quartz grains are elongated and show chessboard and minor bulging microstructures. Xenoblastic plagioclase occur as sericitized grains and as mymerkite surrounding perthitic feldspar.

Biotite are abundant and can be divided in two types. Biotite₁ occur as inclusions in garnet and biotite₂ consists of fine- to medium-grained idioblastic grains (0.7 - 1 mm) with cuspate boundaries, associated with cordierite and garnet replacement. Biotite₂ presents slightly higher values of X_{Mg} (X_{Mg} 0.51 – 0.56) than biotite₁ (X_{Mg} 0.48 – 0.52). On the other hand, there is no significant variation in Ti contents in both types of biotite (0.22 – 0.35 a.p.f.u.).

Cordierite grains consist of fine- to medium-grained xenoblastic and pinitized crystals (0.4 to 1.4 mm). A small portion of non-altered idioblastic cordierite is being replaced by biotite₂+sillimanite (**Figure 2A**). Monazite, zircon and apatite are the accessory phases and occur mainly as inclusions in garnet, along with coarser and rounded inclusions of quartz and plagioclase. Garnet grains are rich in fractures and are being replaced by cordierite and biotite₂ (**Figures 2B** and **2C**). The Sn foliation is marked by fibrolite around garnet grains, although prismatic non-oriented sillimanite grains are also observed.

X-ray compositional maps (**Figures 3A** and **4A**) show a discrete zoning in garnet with almandine content increasing outwards ($X_{Alm 0.76-0.8}$) (**Figures 3B** and **4B**) and pyrope progressively decreases onto the outermost rims ($X_{Prp 0.13-0.17}$) (**Figures 3C** and **4C**). A slight spessartine enrichment can be observed in garnet rims ($X_{Sps 0.03}$) (**Figures 3D** and **4D**).

Figure 2. Photomicrography of sill-crd-grt-bt gneiss and crd-grt-bt gneiss. A) Biotite₂ replacing cordierite. B and C) Most of the garnet grains are xenoblastic and skeletal, surrounded by sillimanite and are being replaced by cordierite, biotite₂ and opaque minerals. D) A discrete foliation is marked by biotite₂ orientation. E) In crd-grt-bt gneiss the cordierite is pinitized and is also being replaced by biotite₂. F) Some garnet grains present subidioblastic shape with biotite₂ replacement in their rims and plagioclase+quartz inclusions.

Figure 3. Grt compositional maps and A) Al2O3 (wt%) compositional map of the sil-crd-grt-bt gneiss. B) XAlm enrichment variation towards rims. C) XPrp enriched core. D) XSps slight enrichment in outer rims.

Figure 4 Grt compositional maps and A) Al2O3 (wt%) compositional map of the sil-crd-grt-bt gneiss sample used to extract bulk composition for P-T constraints. B) XAlm enrichment variation towards rims. C) XPrp enriched core. D) XSps slight enrichment in outer rims.

Cordierite-garnet-biotite gneiss (BCJ 10 and 12)

Cordierite-garnet-biotite gneiss shows two different domains, one characterized by oriented lepidoblastic texture, and the second showing predominance of granoblastic textures. The lepidoblastic domains contain circa 25% of quartz, 15% of andesine and minor K-feldspar (<10%) forming a granoblastic matrix surrounding coarse plagioclase grains (2 mm) and skeletal fine-grained biotite (~20%) and quartz ribbons with chessboard pattern defining a metamorphic foliation (Sn). Medium- to coarse-grained skeletal garnet (1.6 – 2.6 mm) occupies 15% of the rock volume and is replaced by biotite, pinitized cordierite and opaque minerals.

Biotite occurs as two types of grains: biotite₁ is represented by inclusions in garnet and biotite₂ consists of fine-grained xenoblastic grains (~0.4 mm) associated with cordierite replacement (**Figure 2E**) and medium-grained subidioblastic grains (1.1 – 1.6 mm) related to garnet replacement. Locally, biotite₂ is being replaced by chlorite. It was only possible to perform EPMA analyses in biotite₂, that yielded similar X_{Mg} contents when compared to biotite₂ in sample BCJ-11 (X_{Mg} 0.51), and Ti contents around 0.35 a.p.f.u.

In the granoblastic domains, skeletal garnet crystals are rich in inclusions of quartz, plagioclase, biotite₁, zircon, spinel, monazite and opaque minerals, and show the rims being replaced by biotite₂ and pinitized cordierite (**Figures 2D** and **2F**). Inclusion-poor idioblastic garnet grains associated with coarse-grained quartz+plagioclase matrix were also observed. Chlorite replacement at garnet rims is observed locally. Xenoblastic fine- to medium-grained cordierite (1.2 - 2.6 mm) is common (~10%). Zircon and monazite occur as trace minerals. Garnet mineral chemistry points to slight compositional zoning with Alm contents increasing towards the outer rims (Alm₇₄₋₇₈) while Prp decreases from core to rim (Prp₂₁₋₁₆).

Garnet-biotite gneiss (BCJ-01, 02, 04 and 14)

Garnet-biotite gneiss contains approximately 30% of elongated quartz grains (2,6 mm) with chessboard microstructures, surrounded by fine-grained recrystallized quartz. Plagioclase (~20%) occur as coarse-grained sericitized grains (2 – 3 mm) and as mymerkite around perthitic feldspar. Biotite (~12%) occur as inclusions in K-feldspar (biotite₁) and as garnet replacement (biotite₂). Locally, there is biotite₂ being replaced by chlorite (**Figure 5C**). Circa of 25% of the rock volume is composed of medium- to coarse-grained K-feldspar (2 - 4 mm) displaying Carlsbad twinning and biotite₁, quartz and plagioclase inclusions. These quartz-feldspathic-rich granoblastic bands are interleaved with thin biotite₂-rich fine- to medium-grained (~1 mm) garnet-bearing lepidoblastic bands, defining the Sn metamorphic foliation (**Figures 5A** and **5B**). Biotite₂ replaces garnet at fractures and rims. Zircon, apatite, and allanite with epidote coronas are the accessory phases.

Sillimanite quartzite and mafic granulite

Sillimanite quartzites and mafic granulites lenses occur interleaved with the paragneisses throughout the Iriri river banks (Vasquez, 2006). The former contains xenoblastic quartz and K-feldspar with pinitized cordierite forming a lobate granoblastic texture (**Figure**

5D). Sillimanite grains are randomly spread, and zircon, tourmaline and rutile are the accessory phases.

The mafic granulite presents a hornblende+plagioclase+quartz+orthopyroxene granoblastic matrix (**Figure 5F**). Orthopyroxene is being replaced by abundant hornblende that is, in its turn, replaced by actinolite at the rims (**Figure 5E**). Quartz and opaque minerals inclusions are abundant in hornblende. Apatite and zircon constitute the accessory phases.

Figure 5. Images of grt-bt gneiss, sil quartzite and mafic granulite. A and B) The incipient Sn foliation is marked by biotite₂ and recrystallized quartz ribbons. C) Garnet grains are being replaced by biotite that, in its turn, is being replaced by chlorite. D) Sil quartzite with lobate granoblastic texture and elongated sillimanite grains. E and F) Granoblastic texture in mafic granulite composed by idioblastic plagioclase, quartz and hornblende replacing orthopyroxene.

P-T CONDITIONS

P-T (pressure-temperature) estimates were calculated for a sample of Sil-Crd-Grt-Bt gneiss (BCJ-11). The bulk composition used to construct the isochemical diagrams were extracted from X-ray compositional maps obtained by EPMA. The near-peak conditions were constrained by the calculated stability field of the mineral assemblages and the distribution of compositional garnet ad plagioclase isopleths in the phase diagrams. The peak assemblage Pl+Kfs+Grt+Bt+Ilm+melt stability field was constrained at pressure conditions between 3.5 and 9 kbar and temperature ranging from 775°C to 795°C (**Figure 6A**). X_{Alm} (0.78 ± 0.01) and X_{An} (0.31 ± 0.01) isopleths constrained the near-peak pressure conditions between 5.3 and 6.7 kbar and near-peak temperature conditions between 785°C to 795°C (**Figure 6B**). Retrograde

conditions might be achieved in pressures lower than 4.5 kbar and temperatures lower than 775°C, considering the cordierite-in reactions (**Figure 6B**).

Figure 6. P-T isochemical diagrams for *Sil-Crd-Grt-Bt gneiss* (sample BCJ-11). A) Red lines in top diagram highlight the stability field of near-peak metamorphic assemblage. B) Bottom diagram show XAlm (in orange) and XAn (in pink) isopleths used to constrains P and T. Near-peak conditions are represented by grey polygon. Grey arrow indicates the decompression path.

MONAZITE PETROCHRONOLOGY

Four samples including sillimanite-cordierite-garnet-biotite gneiss and cordieritegarnet-biotite gneiss were used for monazite petrochronological studies. The grains were classified according to their textural context and mineral chemistry, considering grains included in garnet and minerals from the matrix (included in biotite, cordierite and K-feldspar). Nineteen grains were analyzed, nine of them in sample BCJ-10 and ten in sample BCJ-11.

Textural context and mineral chemistry

Monazite occur as inclusions in garnet rims and core. Monazite grains as inclusions in garnet rims are slightly rounded and present discrete compositional zoning, while inclusions in garnet core are xenoblastic and elongated. There is also matrix-type monazite, represented by clear, idioblastic and inclusion-free grains, included in plagioclase, biotite, K-feldspar and cordierite. Most of the monazite included in cordierite are clear and rounded, ranging from \sim 80 µm to 150 µm. Inclusions in K-feldspar are rare and xenoblastic, with sharp contacts, which is different from the more common rounded monazite inclusions in plagioclase. Matrix-type monazite are coarser, ranging from 150 µm to approximately 500 µm. Monazite included in garnet are fine-grained, ranging from < 50 µm to 100 µm.

X-ray compositional mapping and Y, Th, U and Light and Heavy Rare Earth Elements (LREE and HREE) contents were used to individualize different compositional domains (**Figure 7**). The analyzed monazite grains present variation controlled by the huttonite substitution trend ($P^{5+} + REE^{3+} \leftrightarrow Si^{4+} + Th^{4+}$) (Figure 9A). Y vs. Th (wt%) diagram shows a clear segregation of data into Th-rich/Y-poor and Y-rich groups (**Figure 7B**). Moreover, REE vc. Th (wt%) diagram indicates higher contents of REE for Y-rich monazite grains, with a negative correlation between Th and REE (**Figure 7C**). However, the LREE vs. Y (wt%) diagram does not display significant variations in LREE contents between Th-rich/Y-poor and Y-rich monazite groups.

The textural and chemical characteristics allowed the individualization of three compositional domains for the studied monazite grains. The first (D_1) is characterized by xenoblastic cores with sharp contacts and high Y contents (>1wt%) (orange symbols in **Figure 7**) in monazite crystals included in garnet (**Figures 8A-C**).

Figure 7. Y, Th, REE and LREE diagrams. A) Huttonite vs. Cheralite substitution diagram. B) Th vs. Y diagram displaying an evident segregation between Th-rich/Y-poor and Y-rich domains. C) Th vs. REE diagram showing a general trend of lower REE contents for the Th-

rich domains. D) Y vs. HREE diagram show little variation of LREE regarding Y or Th contents.

The D₁ domain was only described in two grains and both of them are rimmed by monazite from the second domain (D₂), represented by high Th (> 7 wt%) and low Y (< 1 wt%) content (blue symbols in **Figure 7**). Monazite grains from all textures show the D₂ compositional domain. Although most monazite grains display a strong compositional variation, the monazite grain (m2), included in garnet, is a homogeneous crystal composed only by D₂ compositional domain (**Figures 8D-F**). This domain is the most abundant in monazite grains from both BCJ-10 and BCJ-11.

Figure 8. Monazite crystals included in garnet. A and D) BSE images showing the textural context. B) Y compositional map displaying domains 1 and 2. C) Th compositional map showing Th values values values. E) Y compositional map displaying homogeneous domain 2 monazite. F) Th compositional map.

D₂ compositional domain shows a slight change in Th and Y contents, with gradual increase in Y values and decrease in Th contents towards the outer rims, indicating a range of intermediate values for both elements, as illustrated in the Th vs. Y (wt%) diagram (**Figure 7B**). In the X-ray compositional maps, the D₂ compositional domain shows heterogeneous and complex chemical variations with no clear coupling between Th and Y contents (**Figures 8, 9** and **10**).

Most of the analyzed grains present a sharp and abrupt Y increase towards the outer rims, coupled with a slight decrease in Th contents (**Figures 9B-C**, **9E-F** and **9I-J**). These Y-rich rims (1.5 - 3 wt%) were called D₃ and can only be observed in matrix-type monazite grains (**Figures 9A-F**, **9I-J** and **10**). The D3 compositional domain develops usually as a complete rim around the crystal but, in some cases, it is represented by small and isolated Y-rich domains along crystal contacts (**Figures 9G-H**).

Figure 9 Monazite grains included in cordierite and K-felspar matrix. A and D) BSE images with textural context. B, E and I) Y compositional maps displaying domains 2 and 3. C, F and J) Th compositional maps. G) Y compositional map showing complex zoning in domain 2 monazite with restricted Y-rich rim. H) Th compositional map indicating an uncoupled Th/Y compositional variation within D₂ compositional domain.

Complex chemical and textural patterns can be seen on individual monazite grains (**Figure 10**). These monazite crystals highlight the complexity of resorption and recrystallization processes, especially associated with the chemical variation within the D_2 compositional domain.

Figure 10. Monazite grains included in biotite. A and D) BSE images showing textural context. B and E) Y compositional maps displaying compositional domains 2 and 3. C and F) Th compositional maps showing variations in Th contents from inner portions to rim.

Th-U-Pb analyses

Punctual chemical analyses were performed on the three compositional domains in order to constrain the timing of these three phases of monazite crystallization (**Appendix III**). Only three chemical analyses were carried out on monazite from D₁ compositional domain. One of these analyses yielded the oldest age obtained in this study (2278 ± 14), however the other two provided much younger ages (2183 ± 14 and 2182 ± 13 Ma). The number of data is still insufficient to constrain the crystallization timing for this stage.

On the other hand, the acquired data for D_2 compositional domain are more expressive and yielded a continuous spreading of ages that range from 2266 ± 17 to 2205 ± 16 Ma (BCJ-10) and from 2253 ± 20 to 2170 ± 21 Ma (BCJ-11) (**Figure 11**). The data for D_3 compositional domain also show a spreading of ages but yielded younger ages ranging from 2206 ± 18 to 2099 + 35 Ma (BCJ-10) and from 2222 ± 21 to 2049 ± 43 (BCJ-11). Despite the large spreading of ages on both domains is unequivocal, major peaks in Kernel density curves can be assumed, with D₂ and D₃ compositional domains yielding 2.23-2.22 and 2.18-2.15 Ga, respectively (**Figure 11**). Weighted mean ages can be calculated for D₂ compositional domain at 2231 ± 7 My (MSWD = 5.62) and 2219 ± 7 Ma (MSWD = 4.63) for BCJ-10 and BCJ-11, respectively (**Figure 11**). Analyses from D₃ compositional domain yielded calculated mean ages at 2185 ± 20 My (MSWD = 2.69) and 2147 ± 13 (MSWD = 5.55) Ma for BCJ-10 and BCJ-11, respectively (Figure 13). The large MSWD values have to be considered and these ages must be seen with cautious.

Figure 11. Age data plotted on Kernel density curves and weighted mean age diagrams for compositional domains 2 and 3 (samples BCJ-10 and 11).

DISCUSSION

Metamorphic studies are scarce in the rocks from the Transamazonas Province, northern Amazonian Craton. Petrological and geochronological data for this tectonic entity encompass mostly igneous rocks, including granitoids with different geochemical signatures and migmatitic rocks (e.g., Santos, 2003; Vasquez et al., 2008; Rosa-Costa et al., 2008). In this study we present the first P-T estimates and EPMA monazite dating for paragneisses from the Bacajá Domain, the southern portion of the Transamazonas Province (**Figure 1**).

Thermodynamic modeling of a paragneiss sample (BCJ-11; **Figure 2**) provided P-T conditions of 6.7-5.3 kbar and 785-795°C for the near-peak metamorphic assemblage (Grt, Pl, Kfs ,Bt, Qz, Ilm and melt; **Figure 6**), indicating near-peak conditions in low- to mediumpressure granulite-facies metamorphism. Migmatitic and granulitic rocks have been reported by other authors (e.g., Vasquez et al., 2008; Rosa-Costa et al., 2008) but metamorphic constraints are new for the whole orogen. The retrograde path was not fully constrained but retrograde textures involving replacement of garnet by cordierite and biotite suggest nearisothermal decompression below 4.5 kbar (**Figure 6**).

Monazite petrochronology has been largely used to constrain the age and timing of metamorphic processes, based on chemical tracers that can be linked to silicate reactions, and therefore, P-T conditions (Pyle & Spear, 1999, 2003; Foster et al., 2004; Pyle et al., 2001; Wing et al., 2003; Gibson et al., 2004; Kohn & Malloy, 2004; Kohn et al., 2005; among many others). Three different compositional domains coupled with textural context were divided for the studied monazite crystals (**Figures 8-10**): D₁ compositional domain characterized by Y-rich cores in monazite grains included in garnet (m4 and m42; **Appendix III**); D₂ compositional domain comprising Y-poor and Th-rich inner mantle and cores of monazite grains included in garnet and matrix monazite grains, respectively (**Figures 9** and **10**; **Appendix III**); and D3 compositional domains characterized by Y-rich outer rims on matrix monazite grains.

Coupling the chemistry of the studied monazite grains with petrography and thermodynamic modeling on the studied samples, the D_1 compositional domain could be interpreted as a monazite growth stage during the prograde metamorphism, before garnet nucleation. This interpretation is based on high partition coefficient of garnet for Y and HREE (Zhu & O'Nions 1999). During prograde metamorphism, apatite consumption would release P and LREE to form monazite. Minor apatite inclusions in garnet may corroborate with this interpretation.

The D₁ compositional domain has sharp contacts with the subsequent D₂ compositional domain, indicating resorption of monazite during heating in the prograde path. D₂ monazite growth stage is characterized by lower Y (< 1 wt%) and higher Th (> 7 wt%) contents (**Figure 9B**). A melt crystallization origin is hypothesized for this compositional domain, considering that Th partitions preferably to the melt in melting reactions and Y would partition to the peritectic garnet (Keppler & Wyllie, 1990). The reaction Bt₁+Sil+Pl+Qz+Mnz_{D1} \rightarrow Grt+Pl+Kfs+Mnz_{D2}+melt is envisaged to explain the formation of the D₂ monazite growth. Some monazite grains from D2 compositional domain display patchy chemical zoning (**Appendix III** - m16, BCJ-10; see Spear & Pyle, 2002), which might be associated with incomplete dissolution-reprecipitation processes.

The last monazite growth domain (D_3 compositional domain) is represented by an overgrowth of Y-rich monazite grains in the rims of D_2 matrix monazite crystals. The reactions of garnet consumption to generate retrograde cordierite, would release HREE and Y into the reaction volume (Yakymchuk, 2017), and coupled with the dissolution of D_2 monazite, would promote the crystallization of D_3 monazite. These retrograde reactions might be related to near-isothermal decompression with P-T conditions below 4.5 kbar and circa 700-750°C (**Figure 6**).

Th-U-Pb EPMA dating reveal a protracted history of monazite growth in the studied samples. Insufficient data were obtained for the D1 compositional domain, however one analysis in this domain yielded the oldest age (~2.28 Ga). Although this data has to be seen with cautious, an older monazite grain included in garnet could define the timing of prograde metamorphism in the Bacajá Domain. The dates for the D₂ compositional domain yielded a large spread of ages, ranging from 2.26 to 2.17 Ga (**Figure 11**). The same spread of dates of tens of millions of years is observed for the D₃ compositional domain, however the ages are consistently younger than D₂ monazite grains, ranging from ~2.2 to 2.05 Ga (**Figure 11**). Calculated weighted mean ages corroborate with a younger timing for D3 compositional domain (D2 monazite – 2.231 ± 7 Ma (MSWD = 5.62) and 2.219 ± 7 Ma (MSWD = 4.63); D3 monazite – 2.185 ± 20 Ma (MSWD = 2.69) and 2.147 ± 13 Ma (MSWD = 5.55)), however the high MSWD values suggest an unlikely geological meaning for these dates.

Considering the large time span of more than 200 million years for the history of monazite growth, we envisage a long-lived evolution for the Transamazonas Orogen at the Bacajá Domain. Furthermore, these data suggest the maintenance of suprasolidus conditions (above at least ~700°C) for more than 100 million years, which is broadly known as long-lived

hot orogens (e.g., Smithies et al., 2015; Walsh et al., 2015; Johnson et al., 2015; Turlin et al., 2018).

In the regional context, our new data contribute to constrain P-T conditions for the metamorphic rocks from the Bacajá Domain and pointed out for a much older long-lived metamorphic event than previously reported. Santos (2003) proposes four magmatic accretionary events between ~2.26 and 2.01 Ga for the evolution of the Transamazonian Province. Most of these data is from igneous rocks in the northern Transamazonas Province. Moreover, the geochronological data available for the Bacajá Domain include a few ages older than 2.15 Ga and most of the ages is around 2.1 Ga (**Figure 12; Table 1**). Our data is much older than the crystallization ages of most Bacajá Domain (**Figure 12**) and suggest that the tectonic discrimination of the different Bacajá magmatic events (see Vasquez et al., 2008) must be re-evaluated.

Figure 12. Age data for Northwestern, Central and Northeastern sectors of Bacajá Domain between 2300 and 1950 Ma based on Table 1 data. Orange and blue symbols represent, respectively, Pb evaporation and U-Pb SHRIMP analyses in zircon obtained by other authors. Yellow symbols represent the data obtained in this paper. Error bars are in grey.

CONCLUSIONS

The main conclusions that comes out of this work are:

- ✓ The paragneisses from the unit Ipiaçava Paragneiss record low- to mediumpressure granulite facies metamorphism with near-peak conditions of 6.7-5.3 kbar and 785-795°C;
- ✓ Textural and compositional studies in monazite grains suggest three phases of monazite growth (D₁, D₂ and D₃);
- ✓ D₁ monazite is interpreted as a monazite growth stage during prograde metamorphism, earlier than 2.25 Ga;
- ✓ D₂ monazite grew from melt in near-peak conditions during a long time span, from circa 2.26 to 2.17 Ga;
- ✓ D3 monazite is interpreted to have grown during near-isothermal decompression associated with garnet consumption and growth of cordierite in the retrograde metamorphic path, from 2.2 to 2.05 Ga;
- ✓ The older metamorphic history revealed by the monazite petrochronological data for paragneiss from the Bacajá Domain opens a new frontier to interpret the tectonic evolution for the Transamazonas Province in the northern Amazonian Craton.

REFERENCES

- Barros C.E.M., Macambira, M.J.B., Santos, M.C.C., Silva, D.C.C., Palmeira, L.C.M., Sousa, M.M., 2007. Padrões de deformação sin-magmática e idade em zircão (evaporação de Pb) de granitos paleoproterozóicos da parte leste do domínio Bacajá, província Maroni-Itacaiúnas. *Revista Brasileira de Geociências*, 37:293– 304.
- Coggon R. and Holland, T.J.B., 2002. Mixing properties of phengitic micas and revised garnetphengite thermobarometers. *Journal of Metamorphic Geology*, **20**:683-696.
- De Andrade V., Vidal, O., Lewin, E., O'Brien, P., Agard, P. 2006. Quantification of electron microprobe compositional maps of rock thin sections: an optimized method and examples. *Journal of Metamorphic Geology*, 24:655–668.
- de Capitani C. and Brown, T.H. 1987. The computation of chemical equilibrium in complex systems containing non-ideal solutions. *Geochimica et Cosmochimica Acta*, **51**:2639-2652.
- de Capitani C. and Petrakakis, K. 2010. The computation of equilibrium assemblage diagrams with Theriak/Domino software. *American Mineralogist*, **95**:1006-1016.
- Engi M., Lanari, P., and Kohn, M.J. 2017. Significant Ages—An Introduction to Petrochronology. *Reviews in Mineralogy and Geochemistry*, **83**:1-12.
- Faraco M.T.L., Vale, A.G., Santos, J.O.S., Luzardo, R., Ferreira, A.L., Oliveira, M.A., Marinho, P.A.C. 2005. Levantamento Geológico da Região ao Norte da Província Carajás. *In*: Souza, V. & Horbe, A.C. (eds.). *Contribuições a Geologia da Amazônia*, p.: 32-44.
- Foster G, Parrish, R.R, Horstwood, M.S.A, Chenery, S., Pyle, J., Gibson, H.D. 2004. The generation of prograde P-T-t points and paths; a textural, compositional, and chronological study of metamorphic monazite. *Earth Planet. Sci. Lett.* 228:125–42.
- Fraser G., Ellis, D.J., Eggins, S. 1997. Zirconium abundance in granulite-facies minerals, with implications for zircon geochronology in high-grade rocks. *Geology*, **25**:607–610.
- Gibson H.D., Carr, S.D, Brown, R.L., Hamilton, M.A. 2004. Correlations between chemical and age domains in monazite, and metamorphic reactions involving major pelitic

phases: an integration of ID-TIMS and SHRIMP geochronology with Y-Th-U X-ray mapping. *Chem. Geol.* **211**:237–60.

- Holland T.J.B. and Powell, R.T.J.B. 1998. An internally consistent thermodynamic data set for phases of petrological interest. *Journal of metamorphic Geology*, **16**:309-343.
- Holland T. and Powell, R. 2003. Activity–composition relations for phases in petrological calculations: an asymmetric multicomponent formulation. *Contributions to Mineralogy and Petrology*, 145:492-501.
- Johnson T.E., Clark, C., Taylor, R.J., Santosh, M. and Collins, A.S. 2015. Prograde and retrograde growth of monazite in migmatites: An example from the Nagercoil Block, southern India. *Geoscience Frontiers*, **6**:373-387.
- Keppler H. & Wyllie, P.J. 1990. Role of fluids in transport and fractionation of uranium and thorium in magmatic processes. Nature, **348**:531–533.
- Kohn M.J., Malloy, M.A. 2004. Formation of monazite via prograde metamorphic reactions among common silicates; implications for age determinations. *Geochim. Cosmochim. Acta* 68:101–13.
- Kohn M.J., Wieland, M.S., Parkinson, C.D. and Upreti, B.N., 2005. Five generations of monazite in Langtang gneisses: implications for chronology of the Himalayan metamorphic core. *Journal of metamorphic Geology*, 23:399-406.
- Lanari P. Vidal O., De Andrade V., Dubacq B., Lewin E., Grosch E. G., & Schwartz S. 2014. XMapTools: A MATLAB©-based program for electron microprobe X-ray image processing and geothermobarometry. *Computers & Geosciences*, 62:227-240.
- Larson K.P., Ali, A., Shrestha, S., Soret, M., Cottle, J.M. and Ahmad, R. 2019. Timing of metamorphism and deformation in the Swat valley, northern Pakistan: Insight into garnet-monazite HREE partitioning. *Geoscience Frontiers*, **10**:849-861.
- Macambira M.J.B., Silva, D.C.C., Barros, C.E.M., Scheller, T. 2003. New isotope evidences confirming the existence of a Paleoproterozoic terrain in the region at north of the Carajas Mineral Province. *In*: Proceedings of the South American Symposium on Isotope Geology. *Short Papers*. Salvador, p. 205–208.
- Macambira M.J.B., Barros, C.E.M., Silva, D.C.C., Santos, M.C.C. 2001. Novos dados geológicos e geocronológicos para a região ao norte da Província de Carajás, evidências para o estabelecimento do limite Arqueano-Paleoproterozoico no sudeste

do Craton Amazônico. *In*: 7 Simpósio de Geologia da Amazonia. *Resumos Expandidos*, CD ROM.

- Macambira M.J.B., Silva, D.C.C da., Vasquez, M.L., Barros, C.E. de M. 2004. Investigação do limite Arqueano-Paleoproterozóico ao norte da Província de Carajás, Amazônia Oriental. *In*: 42 Congresso Brasileiro de Geologia. *Resumos*, CD-ROM.
- Macambira M.J.B., Vasquez, M. L., da Silva, D. C. C., Galarza, M. A., de Mesquita Barros, C.
 E., & de Freitas Camelo, J. 2009. Crustal growth of the central-eastern Paleoproterozoic domain, SW Amazonian craton: Juvenile accretion vs. reworking. *Journal of South American Earth Sciences*, 27:235-246.
- Perico E., Barros, C.E.D.M., Mancini, F. and Rostirolla, S.P. 2017. Protracted deformation during cooling of the Paleoproterozoic arc system as constrained by 40Ar/39Ar ages of muscovite from brittle faults: the Transamazonan Bacajá Terrane, Brazil. *Brazilian Journal of Geology*, **47**:427-440.
- Pyle J.M, Spear, F.S. 2003. Four generations of accessory-phase growth in low-pressure migmatites from SW New Hampshire. *Am. Mineral.* **88**:338–51.
- Pyle J.M. and Spear, F.S. 1999. Yttrium zoning in garnet: coupling of major and accessory phases during metamorphic reactions. *Geol. Mat. Res.* **1**:1-49.
- Pyle J.M., Spear, F.S., Rudnick, R.L., McDonough, W.F. 2001. Monazite-xenotime-garnet equilibrium in metapelites and a new monazite-garnet thermometer. J. Petrol. 42:2083–107.
- Rocha B.C.D., Moraes, R.D., Möller, A., Cioffi, C.R. and Jercinovic, M.J. 2017. Timing of anatexis and melt crystallization in the Socorro–Guaxupé Nappe, SE Brazil: Insights from trace element composition of zircon, monazite and garnet coupled to U-Pb geochronology. *Lithos*, 277:337-355.
- Rosa-Costa L.T., Lafon, J.M., Cocherie, A. and Delor, C., 2008. Electron microprobe U–Th– Pb monazite dating of the Transamazonian metamorphic overprint on Archean rocks from the Amapá Block, southeastern Guiana Shield, Northern Brazil. *Journal of South American Earth Sciences*, 26:445-462.
- Santos J.O.S. 2003. Geotectônica do Escudo das Guianas e Brasil-Central. In: Bizzi L.A. et al. (Ed.). Geologia, tectônica e recursos minerais do Brasil: texto, mapas e SIG. Brasília, CPRM-Serviço Geológico do Brasil, p. 169-226.

- Santos J.O.S., Hartman, L.A., Gaudette, H.E., Groves, D.I., Mcnaughton, N.J. e Fletcher, I.R. 2000. New understanding of the Amazon Craton provinces, based on field work and radiogenic isotope data. *Gondwana Research*, 3:453-488.
- Sawyer E.W. 1998. Formation and evolution of granite magmas during crustal reworking, the significance of diatexis. *Journal of Petrology*, **39**:1147–1167.
- Smithies R. H., Kirkland, C. L., Korhonen, F. J., Aitken, A. R. A., Howard, H. M., Maier, W. D., Gessner, K. 2015. The Mesoproterozoic thermal evolution of the Musgrave Province in central Australia Plume vs. the geological record. *Gondwana Research*, 27:1419–1429
- Sousa C.S. 2008. Petrologia, geologia estrutural e aerogeofísica das rochas da porção leste do Domínio Bacajá, Província Maroni-Itacaiúnas. Dissertação de Mestrado, Instituto de Geociências, Universidade Federal do Pará, Belém, 163 p.
- Souza V.S., Macambira, M.J.B., Koutchoubey, B. 2003. Idade de zircão do granito Felício Turvo, garimpo de ouro do Manelao, região do Bacajá (PA): implicações tectônicas. *In*: 8 Simpósio de Geologia da Amazônia. *Resumos Expandidos*, CD ROM.
- Spear F.S., Kohn, M.J. and Cheney, J.T. 1999. P-T paths from anatectic pelites. *Contributions* to Mineralogy and Petrology, **134**:17-32.
- Spear F.S. and Pyle, J.M. 2002. Apatite, monazite, and xenotime in metamorphic rocks. *Reviews in Mineralogy and Geochemistry*, **48**:293-335.
- Tassinari C.C.G. 1996. O mapa geocronológico do Cráton Amazônico no Brasil: revisão dos dados isotópicos. Tese de Livre Docência, Instituto de Geociências, Universidade de São Paulo, São Paulo, 139 p.
- Tassinari C.C.G., Bettencourt, J.S., Geraldes, M.C., Macambira, M.J.B., Lafon, J.M. 2000. The Amazonian Craton. *In*: Cordani, U.G., Milani, E.J., Filho, A.T., Campos, D.A. (eds.) *Tectonic Evolution of South America*. Rio de Janeiro, p.: 41-95.
- Tassinari C.C.G., Macambira, M.J.B. 1999. Geochronological provinces of the Amazonian Craton. *Episodes*, **22**:174-182.
- Tassinari C.C.G. & Macambira, M.J.B. 2004. A evolução tectônica do Cráton Amazônico. In: Mantesso Neto V. et al. (Ed.). Geologia do continente Sul-americano: evolução da obra de Fernando Flávio Marques de Almeida. São Paulo, Beca, p.: 471-485.

- Tedeschi M., Pedrosa-Soares, A., Dussin, I., Lanari, P., Novo, T., Pinheiro, M.A.P., Lana, C. and Peters, D. 2018. Protracted zircon geochronological record of UHT garnet-free granulites in the Southern Brasília orogen (SE Brazil): Petrochronological constraints on magmatism and metamorphism. *Precambrian research*, **316**:103-126.
- Teixeira W., Tassinari, C.C.G., Cordani, U.G., Kawashita, K. 1989. A review of the geochronology of the Amazonian Craton: tectonic implications. *Precambrian Research*, 42:213-227.
- Turlin F., Deruy, C., Eglinger, A., Vanderhaeghe, O., André-Mayer, A. S., Poujol, M., Moukhsil, A., & Solgadi, F. 2018. A 70 Ma record of suprasolidus conditions in the large, hot, long-duration Grenville Orogen. *Terra Nova*, **30**:233–243.
- Vasquez M.L. 2006. Geocronologia em Zircão, Monazita e Granada e isotópos de Nd das associações litológicas da porção Oeste do Domínio Bacajá: Evolução Crustal da porção Meridional da Província Maroni-Itacaiúnas – Sudeste do Cráton Amazônico. Tese de Doutorado, Universidade Federal do Pará, Centro de Geociências, Curso de Pós-Graduação em Geologia e Geoquímica, Belém, 212 p.
- Vasquez M.L., Cordani, U.G., Sato, K., Barbosa, J.D.P.D.O., Faraco, M.T.L. and Maurer, V.C. 2019. U-Pb SHRIMP dating of basement rocks of the Iriri-Xingu domain, Central Amazonian province, Amazonian craton, Brazil. *Brazilian Journal of Geology*, 49.
- Vasquez M.L., Macambira, M.J.B., Galarza, M.A. 2005. Granitoides Transamazônicos da Região Iriri-Xingu, Pará, Novos dados geológicos e geocronológicos. *In*: Souza, V.S., Horbe, A.M.C. (Eds.), *Contribuições à Geologia da Amazônia*, Sociedade Brasileira de Geologia. Belém, p.: 16–31.
- Vasquez M.L., Macambira, M.J.B., Armstrong, R.A. 2008. Zircon geochronology of granitoids from the western Bacajá domain, southeastern Amazonian Craton, Brazil: neoarchean to orosirian evolution. *Precambrian Research*, **161**:279-302.
- Vasquez M.L. and Rosa-Costa, L.T.D. 2008. Geologia e recursos minerais do Estado do Pará: texto explicativo do mapa geológico e de recursos minerais do estado do Pará: escala 1: 1.000. 000. CPRM.
- Vlach S.R.F. 2010. Th-U-Pb_T dating by electron probe microanalysis, part I. Monazite: analytical procedures and data treatment. *Geologia USP. Série Científica*, **10**:61-85.

- Walsh A. K., Kelsey, D. E., Kirkland, C. L., Hand, M., Smithies, R. H., Clark, C., & Howard,
 H. M. 2015. P-T-t evolution of a large, long-lived, ultrahigh-temperature Grenvillian belt in central Australia. *Gondwana Research*, 28:531–564.
- White R.W., Powell, R. and Clarke, G.L. 2002. The interpretation of reaction textures in Ferich metapelitic granulites of the Musgrave Block, central Australia: constraints from mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3. *Journal of metamorphic Geology*, **20**:41-55.
- White R.W., Powell, R. and Holland, T.J.B. 2007. Progress relating to calculation of partial melting equilibria for metapelites. *Journal of metamorphic Geology*, **25**:511-527.
- Whitney D.L. and Evans, B.W. 2010. Abbreviations for names of rock-forming minerals. *American mineralogist*, **95**:185-187.
- Williams M,L., Jercinovic, M.J. 2002. Microprobe monazite geochronology: putting absolute time into microstructural analysis. J. Struct. Geol. 24:1013–28
- Williams M.L., Jercinovic, M.J., Goncalves, P. and Mahan, K. 2006. Format and philosophy for collecting, compiling, and reporting microprobe monazite ages. *Chemical Geology*, 225:1-15.
- Williams M.L., Jercinovic, M.J. and Hetherington, C.J. 2007. Microprobe monazite geochronology: understanding geologic processes by integrating composition and chronology. *Annu. Rev. Earth Planet. Sci.*, **35**:137-175.
- Williams M.L, Jercinovic, M.J, Terry, M. 1999. High resolution "age" mapping, chemical analysis, and chemical dating of monazite using the electron microprobe: A new tool for tectonic analysis. *Geology*, 27:1023–26.
- Wing B.A, Ferry, J.M., Harrison, T.M. 2003. Prograde destruction and formation of monazite and allanite during contact and regional metamorphism of pelites: petrology and geochronology. *Contribut. Mineral. Petrol.* 145:228–50.
- White R.W. Powell, R. and Holland, T.J.B. 2007. Progress relating to calculation of partial melting equilibria for metapelites. *Journal of metamorphic Geology*, **25**:511-527.
- Yakymchuk C., Clark, C., White, R.W. 2017. Phase relations, reaction sequences and petrochronology. *Reviews in Mineralogy and Geochemistry*, **83**:13-53.

Zhu X.K, O'Nions, R.K. 1999. Monazite chemical composition; some implications for monazite geochronology. *Contribut. Mineral. Petrol.* 137:351–63.
APPENDIX

APPENDIX I

GRT, CRD, BT AND PL EPMA analyses

Major elements EPMA analysis in garnet.

SiO2	TiO2	Al2O3	Cr2O3	FeOt	MnO	MgO	CaO	Na2O	K2O	Sum	Si	Ti	Al	Cr	Fe3	Fe2	Mn	Mg	Ca	Na	К	Sum	XAlm	XPrp	XGrs	XSps
sample BCJ-05																										
37.014	0	20.814	0.036	35.752	1.291	3.428	1.188	0	0.003	99.525	2.992	0.000	1.983	0.002	0.000	2.417	0.088	0.413	0.103	0.000	0.000	8.000	0.798	0.138	0.034	0.03
37.126	0	20.54	0.037	35.159	1.141	3.924	1.249	0	0	99.176	3.002	0.000	1.958	0.002	0.000	2.378	0.078	0.473	0.108	0.000	0.000	8.000	0.78	0.158	0.036	0.026
37.498	0	20.975	0.034	34.61	1.154	4.247	1.247	0.007	0.006	99.778	3.004	0.000	1.980	0.002	0.000	2.319	0.078	0.507	0.107	0.001	0.001	8.000	0.769	0.169	0.036	0.026
37.405	0.016	20.952	0.036	34.606	1.026	4.441	1.282	0	0.006	99.768	2.994	0.001	1.976	0.002	0.000	2.316	0.070	0.530	0.110	0.000	0.001	8.000	0.763	0.177	0.037	0.023
37.423	0.007	21.034	0.022	34.64	1.126	4.429	1.206	0.013	0.003	99.901	2.991	0.000	1.982	0.001	0.000	2.316	0.076	0.528	0.103	0.002	0.000	8.000	0.763	0.177	0.035	0.026
37.033	0.109	20.83	0.041	34.888	1.092	3.992	1.248	0.01	0	99.243	2.989	0.007	1.982	0.003	0.000	2.355	0.075	0.480	0.108	0.002	0.000	8.000	0.778	0.16	0.036	0.025
37.274	0	20.784	0.027	35.009	1.086	4.085	1.201	0	0.005	99.471	3.001	0.000	1.972	0.002	0.000	2.357	0.074	0.490	0.104	0.000	0.000	8.000	0.777	0.163	0.035	0.025
37.242	0	20.736	0.047	35.742	1.147	3.836	1.213	0.011	0	99.974	2.991	0.000	1.963	0.003	0.000	2.400	0.078	0.459	0.104	0.002	0.000	8.000	0.785	0.154	0.035	0.026
36.936	0.002	20.8	0.029	35.91	1.373	3.401	1.18	0.021	0	99.652	2.983	0.000	1.980	0.002	0.000	2.426	0.094	0.410	0.102	0.003	0.000	8.000	0.797	0.138	0.034	0.032
37.312	0	20.914	0.027	35.688	1.268	3.468	1.145	0.007	0.001	99.831	3.006	0.000	1.985	0.002	0.000	2.404	0.087	0.416	0.099	0.001	0.000	8.000	0.8	0.139	0.033	0.029
37.46	0	21.034	0.02	35.196	1.154	3.92	1.203	0.007	0	99.994	3.002	0.000	1.987	0.001	0.000	2.359	0.078	0.468	0.103	0.001	0.000	8.000	0.783	0.156	0.034	0.026
37.53	0	21.088	0.044	34.513	1.115	4.298	1.183	0.023	0.001	99.794	3.004	0.000	1.989	0.003	0.000	2.310	0.076	0.513	0.101	0.004	0.000	8.000	0.77	0.171	0.034	0.025
37.425	0	21.045	0.033	34.478	1.115	4.432	1.226	0	0	99.753	2.995	0.000	1.985	0.002	0.000	2.308	0.076	0.529	0.105	0.000	0.000	8.000	0.763	0.177	0.035	0.025
37.19	0	20.903	0.023	34.501	1.089	4.418	1.165	0.003	0	99.292	2.991	0.000	1.982	0.001	0.000	2.321	0.074	0.530	0.100	0.001	0.000	8.000	0.764	0.177	0.034	0.025
37.452	0	21.098	0.037	34.803	1.124	4.373	1.244	0	0	100.13	2.989	0.000	1.984	0.002	0.000	2.323	0.076	0.520	0.106	0.000	0.000	8.000	0.765	0.174	0.036	0.025
37.127	0	20.733	0.03	35.44	1.219	3.821	1.27	0.019	0	99.66	2.990	0.000	1.968	0.002	0.000	2.387	0.083	0.459	0.110	0.003	0.000	8.000	0.782	0.154	0.037	0.028
36.976	0.016	20.819	0.03	35.685	1.288	3.468	1.196	0	0.007	99.484	2.990	0.001	1.984	0.002	0.000	2.413	0.088	0.418	0.104	0.000	0.001	8.000	0.796	0.14	0.035	0.03
36.898	0.001	20.819	0.034	35.837	1.231	3.418	1.173	0	0	99.411	2.987	0.000	1.986	0.002	0.000	2.426	0.084	0.412	0.102	0.000	0.000	8.000	0.8	0.138	0.034	0.028
36.992	0	20.726	0.053	35.707	1.35	3.315	1.202	0.01	0	99.354	2.998	0.000	1.980	0.003	0.000	2.420	0.093	0.400	0.104	0.002	0.000	8.000	0.801	0.134	0.035	0.031
37.603	0	20.719	0.065	35.970	1.340	3.338	1.249	0.005	0.000	100.289	3.020	0.000	1.961	0.004	0.000	2.416	0.091	0.400	0.108	0.001	0.000	8.000	0.802	0.133	0.036	0.030
37.209	0	20.573	0.053	36.087	1.299	3.219	1.179	0.007	0.008	99.634	3.011	0.000	1.962	0.003	0.000	2.442	0.089	0.388	0.102	0.001	0.001	8.000	0.807	0.129	0.034	0.030
37.573	0	20.913	0.042	35.932	1.225	3.481	1.196	0.000	0.000	100.362	3.011	0.000	1.975	0.003	0.000	2.409	0.083	0.416	0.103	0.000	0.000	8.000	0.800	0.138	0.034	0.028
37.490	0	20.741	0.028	35.734	1.252	3.538	1.166	0.000	0.003	99.952	3.016	0.000	1.967	0.002	0.000	2.404	0.085	0.424	0.101	0.000	0.000	8.000	0.798	0.141	0.033	0.028
37.481	0.012	20.694	0.020	36.554	1.315	2.938	1.189	0.018	0.000	100.219	3.021	0.001	1.966	0.001	0.000	2.464	0.090	0.353	0.103	0.003	0.000	8.000	0.819	0.117	0.034	0.030
37.791	0.007	20.781	0.018	34.554	1.135	4.261	1.204	0.002	0.000	99.752	3.029	0.000	1.963	0.001	0.000	2.316	0.077	0.509	0.103	0.000	0.000	8.000	0.771	0.169	0.034	0.026
37.892	0	20.897	0.036	34.320	1.144	4.374	1.252	0.009	0.004	99.929	3.028	0.000	1.968	0.002	0.000	2.294	0.077	0.521	0.107	0.001	0.000	8.000	0.765	0.174	0.036	0.026

SiO2	TiO2	Al2O3	Cr2O3	FeOt	MnO	MgO	CaO	Na2O	K2O	Sum	Si	Ti	Al	Cr	Fe3	Fe2	Mn	Mg	Ca	Na	K	Sum	XAlm	XPrp	XGrs	XSps
sample BCJ-05																						_	_			
37.552	0	20.716	0.040	34.610	1.112	4.446	1.223	0.001	0.004	99.704	3.009	0.000	1.956	0.003	0.000	2.320	0.075	0.531	0.105	0.000	0.000	8.000	0.763	0.177	0.035	0.025
37.320	0	20.723	0.032	34.839	1.153	4.151	1.200	0.003	0.005	99.425	3.005	0.000	1.966	0.002	0.000	2.346	0.079	0.498	0.103	0.000	0.001	8.000	0.773	0.166	0.034	0.026
37.141	0	20.825	0.038	35.413	1.217	3.607	1.225	0.014	0.006	99.486	2.999	0.000	1.982	0.002	0.000	2.391	0.083	0.434	0.106	0.002	0.001	8.000	0.792	0.145	0.035	0.028
37.530	0	20.683	0.044	35.922	1.406	3.256	1.170	0.001	0.000	100.010	3.024	0.000	1.964	0.003	0.000	2.421	0.096	0.391	0.101	0.000	0.000	8.000	0.805	0.130	0.034	0.032
37.629	0	20.837	0.047	36.090	1.283	3.464	1.241	0.024	0.000	100.616	3.009	0.000	1.964	0.003	0.000	2.414	0.087	0.413	0.106	0.004	0.000	8.000	0.798	0.138	0.035	0.029
37.303	0	20.928	0.036	36.144	1.305	3.298	1.166	0.032	0.008	100.218	2.997	0.000	1.982	0.002	0.000	2.429	0.089	0.395	0.100	0.005	0.001	8.000	0.804	0.132	0.034	0.030
37.224	0	20.507	0.022	35.580	1.250	3.269	1.188	0.012	0.000	99.052	3.027	0.000	1.965	0.001	0.000	2.419	0.086	0.396	0.103	0.002	0.000	8.000	0.805	0.132	0.034	0.029
37.679	0.001	20.667	0.026	35.870	1.273	3.230	1.200	0.000	0.010	99.955	3.037	0.000	1.963	0.002	0.000	2.418	0.087	0.388	0.104	0.000	0.001	8.000	0.807	0.130	0.035	0.029
37.451	0	20.783	0.018	35.500	1.222	3.700	1.217	0.016	0.000	99.907	3.010	0.000	1.969	0.001	0.000	2.386	0.083	0.443	0.105	0.003	0.000	8.000	0.790	0.148	0.035	0.028
37.491	0.002	20.579	0.039	35.598	1.186	3.564	1.199	0.000	0.000	99.657	3.025	0.000	1.957	0.003	0.000	2.402	0.081	0.429	0.104	0.000	0.000	8.000	0.797	0.142	0.034	0.027
37.380	0	20.608	0.024	36.046	1.203	3.499	1.158	0.020	0.000	99.936	3.010	0.000	1.956	0.002	0.000	2.428	0.082	0.420	0.100	0.003	0.000	8.000	0.800	0.140	0.033	0.027
37.453	0	20.922	0.040	35.607	1.263	3.621	1.180	0.014	0.000	100.099	3.006	0.000	1.979	0.003	0.000	2.390	0.086	0.433	0.101	0.002	0.000	8.000	0.793	0.144	0.034	0.029
37.239	0	20.762	0.040	35.167	1.278	3.557	1.265	0.008	0.000	99.316	3.012	0.000	1.979	0.003	0.000	2.379	0.088	0.429	0.110	0.001	0.000	8.000	0.792	0.143	0.036	0.029

SiO2	TiO2	Al2O3	Cr2O3	FeOt	MnO	MgO	CaO	Na2O	K2O	Sum	Si	Ti	Al	Cr	Fe2	Mn	Mg	Ca	Na	К	Sum	XAlm	XPrp	XGrs	XSps
sample BCJ-06																									
37.027	0.002	20.834	0.033	35.714	1.444	3.348	1.080	0.019	0.000	99.500	2.996	0.000	1.986	0.002	2.416	0.099	0.404	0.094	0.003	0.000	8.000	0.801	0.135	0.031	0.033
37.037	0.005	20.904	0.015	35.202	1.307	3.632	1.106	0.005	0.006	99.219	2.997	0.000	1.994	0.001	2.382	0.090	0.438	0.096	0.001	0.001	8.000	0.792	0.146	0.032	0.03
37.153	0.004	20.686	0.014	34.961	1.206	4.018	1.098	0.039	0.010	99.190	3.000	0.000	1.969	0.001	2.361	0.083	0.484	0.095	0.006	0.001	8.000	0.779	0.162	0.032	0.028
37.172	0.000	20.921	0.017	34.692	1.203	4.094	1.028	0.010	0.004	99.139	3.001	0.000	1.990	0.001	2.342	0.082	0.493	0.089	0.002	0.000	8.000	0.779	0.164	0.03	0.027
37.008	0.012	21.065	0.002	34.649	1.159	3.922	1.086	0.000	0.000	98.903	2.996	0.001	2.010	0.000	2.346	0.079	0.473	0.094	0.000	0.000	8.000	0.784	0.158	0.031	0.027
37.358	0.000	20.973	0.010	35.149	1.196	4.016	1.025	0.000	0.006	99.732	3.001	0.000	1.986	0.001	2.361	0.081	0.481	0.088	0.000	0.001	8.000	0.783	0.16	0.029	0.027
36.964	0.002	20.743	0.000	35.532	1.237	3.811	1.050	0.000	0.004	99.342	2.987	0.000	1.976	0.000	2.402	0.085	0.459	0.091	0.000	0.000	8.000	0.787	0.154	0.03	0.028
37.032	0.009	20.644	0.012	35.767	1.305	3.539	1.017	0.000	0.007	99.332	2.999	0.001	1.971	0.001	2.423	0.090	0.427	0.088	0.000	0.001	8.000	0.798	0.142	0.029	0.03
37.388	0.000	21.031	0.002	35.335	1.184	3.891	1.023	0.022	0.000	99.876	3.001	0.000	1.990	0.000	2.372	0.081	0.466	0.088	0.003	0.000	8.000	0.788	0.156	0.029	0.027
37.314	0.000	20.906	0.004	34.660	1.180	4.240	1.062	0.027	0.012	99.405	3.001	0.000	1.982	0.000	2.331	0.080	0.508	0.091	0.004	0.001	8.000	0.773	0.17	0.031	0.027
37.454	0.000	20.881	0.010	34.460	1.181	4.257	1.038	0.000	0.000	99.279	3.016	0.000	1.982	0.001	2.321	0.081	0.511	0.090	0.000	0.000	8.000	0.773	0.17	0.03	0.027
36.739	0.000	20.683	0.010	35.016	1.391	3.404	1.113	0.000	0.005	98.362	3.003	0.000	1.993	0.001	2.394	0.096	0.415	0.098	0.000	0.001	8.000	0.797	0.138	0.032	0.032
37.065	0.003	21.016	0.032	34.514	1.215	4.180	1.068	0.028	0.000	99.122	2.990	0.000	1.998	0.002	2.328	0.083	0.503	0.092	0.004	0.000	8.000	0.773	0.169	0.031	0.028
37.137	0.000	20.973	0.016	34.848	1.255	3.951	1.065	0.026	0.000	99.271	2.996	0.000	1.994	0.001	2.351	0.086	0.475	0.092	0.004	0.000	8.000	0.781	0.159	0.031	0.029
37.379	0.003	20.972	0.006	35.653	1.291	3.566	1.077	0.003	0.008	99.957	3.005	0.000	1.987	0.000	2.397	0.088	0.427	0.093	0.001	0.001	8.000	0.798	0.142	0.031	0.029
37.324	0.000	20.921	0.023	35.450	1.316	3.502	1.087	0.028	0.002	99.653	3.010	0.000	1.988	0.001	2.391	0.090	0.421	0.094	0.004	0.000	8.000	0.798	0.141	0.031	0.03
37.117	0.000	20.891	0.027	35.353	1.266	3.637	1.115	0.009	0.000	99.414	2.998	0.000	1.989	0.002	2.388	0.087	0.438	0.097	0.001	0.000	8.000	0.793	0.146	0.032	0.029
36.968	0.000	20.751	0.006	35.745	1.288	3.528	1.017	0.029	0.005	99.338	2.993	0.000	1.980	0.000	2.420	0.088	0.426	0.088	0.005	0.000	8.000	0.798	0.143	0.03	0.03
37.168	0.000	20.923	0.021	35.441	1.230	3.827	1.105	0.001	0.000	99.715	2.991	0.000	1.984	0.001	2.385	0.084	0.459	0.095	0.000	0.000	8.000	0.787	0.154	0.032	0.028
37.402	0.000	20.709	0.025	35.218	1.181	4.018	1.019	0.005	0.013	99.591	3.010	0.000	1.965	0.002	2.371	0.080	0.482	0.088	0.001	0.001	8.000	0.784	0.16	0.029	0.027
36.956	0.000	20.727	0.006	35.219	1.217	4.018	1.072	0.008	0.015	99.237	2.985	0.000	1.973	0.000	2.379	0.083	0.484	0.093	0.001	0.002	8.000	0.779	0.162	0.031	0.028
37.199	0.006	20.671	0.004	35.209	1.115	3.926	1.064	0.000	0.000	99.194	3.007	0.000	1.970	0.000	2.381	0.076	0.473	0.092	0.000	0.000	8.000	0.787	0.157	0.031	0.025
37.099	0.001	20.729	0.009	35.424	1.251	3.762	1.079	0.020	0.004	99.377	2.997	0.000	1.974	0.001	2.393	0.086	0.453	0.093	0.003	0.000	8.000	0.789	0.152	0.031	0.029
36.905	0.000	20.749	0.020	35.409	1.270	3.676	1.167	0.003	0.000	99.198	2.988	0.000	1.980	0.001	2.398	0.087	0.444	0.101	0.000	0.000	8.000	0.788	0.149	0.034	0.029
37.066	0.013	20.570	0.026	35.623	1.362	3.371	1.181	0.015	0.021	99.248	3.006	0.001	1.966	0.002	2.416	0.094	0.408	0.103	0.002	0.002	8.000	0.799	0.136	0.034	0.031

SiO2 TiO2 Al2O3 Cr2O3 FeOt MnO MgO CaO Na2O K2O Sum Si Ti Al Cr Fe2 Mn Mg Ca Na K Sum XAlm XPrp XGrs XSps

37.686	0.000	20.838	0.079	33.634	1.092	4.854	1.276	0.000	0.002	99.460	3.016	0.000	1.965	0.005	2.251	0.074	0.579	0.109	0.000	0.000	8.000	0.747	0.192	0.036	0.025
37.489	0.000	20.686	0.062	34.617	1.083	4.408	1.177	0.000	0.000	99.520	3.011	0.000	1.958	0.004	2.325	0.074	0.528	0.101	0.000	0.000	8.000	0.767	0.175	0.034	0.024
37.405	0.000	20.919	0.061	33.352	1.083	4.944	1.206	0.000	0.010	98.979	3.005	0.000	1.980	0.004	2.241	0.074	0.592	0.104	0.000	0.001	8.000	0.744	0.197	0.035	0.025
37.345	0.000	20.617	0.048	36.115	1.438	3.197	1.192	0.014	0.006	99.970	3.012	0.000	1.960	0.003	2.436	0.098	0.384	0.103	0.002	0.001	8.000	0.805	0.128	0.034	0.033
37.329	0.000	20.753	0.063	34.622	1.115	4.675	1.177	0.024	0.000	99.759	2.986	0.000	1.956	0.004	2.316	0.076	0.557	0.101	0.004	0.000	8.000	0.754	0.187	0.034	0.025
37.672	0.008	20.827	0.065	33.718	1.092	4.991	1.191	0.000	0.000	99.565	3.010	0.000	1.961	0.004	2.253	0.074	0.595	0.102	0.000	0.000	8.000	0.744	0.197	0.034	0.025
37.736	0.002	20.922	0.056	34.014	1.078	4.905	1.169	0.000	0.000	99.880	3.008	0.000	1.965	0.003	2.268	0.073	0.583	0.100	0.000	0.000	8.000	0.749	0.194	0.033	0.024
37.427	0.000	20.850	0.041	33.905	1.142	4.741	1.085	0.014	0.012	99.217	3.005	0.000	1.973	0.003	2.277	0.078	0.568	0.093	0.002	0.001	8.000	0.754	0.189	0.031	0.026
37.406	0.004	20.595	0.108	34.514	1.156	4.414	1.108	0.000	0.000	99.305	3.011	0.000	1.954	0.007	2.324	0.079	0.530	0.096	0.000	0.000	8.000	0.766	0.176	0.032	0.026
37.600	0.000	20.600	0.041	35.093	1.206	4.172	1.150	0.000	0.000	99.863	3.016	0.000	1.947	0.003	2.354	0.082	0.499	0.099	0.000	0.000	8.000	0.775	0.165	0.033	0.027
37.780	0.004	21.070	0.049	34.192	1.133	4.572	1.093	0.001	0.007	99.899	3.016	0.000	1.983	0.003	2.283	0.077	0.544	0.093	0.000	0.001	8.000	0.762	0.182	0.031	0.026
37.660	0.001	20.662	0.032	33.881	1.067	4.833	1.098	0.000	0.003	99.237	3.023	0.000	1.955	0.002	2.274	0.073	0.578	0.094	0.000	0.000	8.000	0.753	0.192	0.031	0.024
37.590	0.000	20.898	0.019	33.626	1.077	5.172	1.166	0.000	0.000	99.549	3.000	0.000	1.966	0.001	2.245	0.073	0.615	0.100	0.000	0.000	8.000	0.737	0.205	0.033	0.024
37.522	0.000	20.829	0.039	34.506	1.089	4.700	1.144	0.008	0.000	99.837	2.998	0.000	1.961	0.002	2.306	0.074	0.560	0.098	0.001	0.000	8.000	0.756	0.187	0.033	0.025
37.684	0.009	20.994	0.045	34.428	1.134	4.381	1.131	0.000	0.000	99.806	3.016	0.001	1.980	0.003	2.304	0.077	0.523	0.097	0.000	0.000	8.000	0.768	0.174	0.032	0.026
37.779	0.014	20.675	0.085	33.757	1.134	5.012	1.155	0.009	0.000	99.619	3.018	0.001	1.947	0.005	2.255	0.077	0.597	0.099	0.001	0.000	8.000	0.744	0.198	0.033	0.025
37.570	0.000	20.711	0.052	34.191	1.133	4.489	1.207	0.008	0.000	99.361	3.018	0.000	1.961	0.003	2.297	0.077	0.538	0.104	0.001	0.000	8.000	0.762	0.178	0.034	0.026
37.647	0.000	20.731	0.046	35.523	1.349	3.560	1.185	0.007	0.000	100.048	3.025	0.000	1.963	0.003	2.387	0.092	0.426	0.102	0.001	0.000	8.000	0.794	0.142	0.034	0.031
37.328	0.000	20.747	0.012	34.947	1.196	4.079	1.278	0.000	0.007	99.592	3.002	0.000	1.966	0.001	2.350	0.081	0.489	0.110	0.000	0.001	8.000	0.773	0.163	0.037	0.027
37.560	0.000	20.979	0.031	34.828	1.235	4.128	1.135	0.000	0.016	99.912	3.009	0.000	1.981	0.002	2.333	0.084	0.493	0.097	0.000	0.002	8.000	0.776	0.164	0.032	0.028
37.291	0.007	20.792	0.027	34.807	1.117	4.271	1.218	0.000	0.009	99.539	2.996	0.000	1.969	0.002	2.339	0.076	0.512	0.105	0.000	0.001	8.000	0.769	0.171	0.035	0.025
37.601	0.000	20.891	0.038	33.785	1.094	4.945	1.152	0.007	0.010	99.522	3.006	0.000	1.968	0.002	2.259	0.074	0.589	0.099	0.001	0.001	8.000	0.746	0.196	0.033	0.025
37.733	0.000	20.987	0.015	33.605	1.119	4.951	1.068	0.022	0.001	99.502	3.016	0.000	1.977	0.001	2.246	0.076	0.590	0.091	0.003	0.000	8.000	0.748	0.196	0.030	0.025
37.785	0.008	21.065	0.025	33.666	1.111	5.127	1.178	0.005	0.000	99.971	3.003	0.001	1.973	0.002	2.238	0.075	0.607	0.100	0.001	0.000	8.000	0.739	0.202	0.033	0.025
37.986	0.000	20.954	0.071	33.572	1.103	5.132	1.135	0.000	0.011	99.964	3.020	0.000	1.963	0.004	2.232	0.074	0.608	0.097	0.000	0.001	8.000	0.741	0.202	0.032	0.025
37.751	0.015	20.852	0.108	33.470	1.070	5.243	1.165	0.000	0.000	99.675	3.008	0.001	1.959	0.007	2.231	0.072	0.623	0.099	0.000	0.000	8.000	0.736	0.207	0.033	0.024
SiO2	TiO2	Al2O3	Cr2O3	FeOt	MnO	MgO	CaO	Na2O	K2O	Sum	Si	Ti	Al	Cr	Fe2	Mn	Mg	Ca	Na	К	Sum	XAlm	XPrp	XGrs	XSps
sample BCJ-10																									

37.735	0.004	20.778	0.107	33.615	1.093	4.944	1.174	0.014	0.000	99.464	3.019	0.000	1.959	0.007	2.249	0.074	0.590	0.101	0.002	0.000	8.000	0.746	0.196	0.033	0.025
37.473	0.006	20.722	0.093	34.614	1.220	4.082	1.173	0.021	0.000	99.406	3.018	0.000	1.967	0.006	2.331	0.083	0.490	0.101	0.003	0.000	8.000	0.776	0.163	0.034	0.028
37.721	0.000	21.104	0.054	34.077	1.123	4.711	1.213	0.001	0.007	100.010	3.005	0.000	1.982	0.003	2.270	0.076	0.559	0.104	0.000	0.001	8.000	0.754	0.186	0.034	0.025
38.082	0.007	21.031	0.042	34.052	1.076	5.022	1.213	0.000	0.000	100.525	3.014	0.000	1.962	0.003	2.254	0.072	0.593	0.103	0.000	0.000	8.000	0.745	0.197	0.034	0.024
37.886	0.006	21.064	0.023	33.724	1.094	5.050	1.107	0.013	0.000	99.965	3.013	0.000	1.974	0.001	2.243	0.074	0.599	0.094	0.002	0.000	8.000	0.745	0.199	0.031	0.024
37.869	0.000	20.904	0.020	33.540	1.039	5.058	1.107	0.007	0.006	99.550	3.024	0.000	1.967	0.001	2.240	0.070	0.602	0.095	0.001	0.001	8.000	0.745	0.200	0.031	0.023
37.801	0.007	20.893	0.025	33.640	1.089	5.190	1.093	0.003	0.000	99.742	3.011	0.000	1.962	0.002	2.241	0.073	0.616	0.093	0.001	0.000	8.000	0.740	0.205	0.031	0.024
37.901	0.000	21.154	0.026	33.259	1.048	5.128	1.099	0.007	0.000	99.621	3.020	0.000	1.987	0.002	2.217	0.071	0.609	0.094	0.001	0.000	8.000	0.741	0.204	0.031	0.024
37.835	0.000	20.992	0.043	33.418	1.076	5.214	1.134	0.000	0.000	99.712	3.013	0.000	1.970	0.003	2.226	0.073	0.619	0.097	0.000	0.000	8.000	0.738	0.205	0.032	0.024
37.924	0.000	21.184	0.040	34.480	1.111	4.236	1.154	0.010	0.000	100.140	3.026	0.000	1.992	0.002	2.301	0.075	0.504	0.099	0.002	0.000	8.000	0.772	0.169	0.033	0.025
37.656	0.000	20.846	0.037	34.333	1.179	4.578	1.076	0.009	0.004	99.717	3.014	0.000	1.966	0.002	2.298	0.080	0.546	0.092	0.001	0.000	8.000	0.761	0.181	0.031	0.027
37.617	0.000	20.884	0.073	34.615	1.141	4.265	1.184	0.019	0.008	99.806	3.013	0.000	1.972	0.005	2.319	0.077	0.509	0.102	0.003	0.001	8.000	0.771	0.169	0.034	0.026
38.245	0.003	20.919	0.126	32.700	0.976	5.633	1.165	0.005	0.000	99.771	3.034	0.000	1.956	0.008	2.170	0.066	0.666	0.099	0.001	0.000	8.000	0.723	0.222	0.033	0.022
38.003	0.012	21.108	0.071	32.882	0.950	5.665	1.128	0.018	0.007	99.843	3.012	0.001	1.972	0.004	2.179	0.064	0.669	0.096	0.003	0.001	8.000	0.724	0.223	0.032	0.021
37.857	0.000	20.842	0.014	33.948	1.078	4.820	1.048	0.000	0.007	99.613	3.027	0.000	1.964	0.001	2.270	0.073	0.575	0.090	0.000	0.001	8.000	0.755	0.191	0.030	0.024
38.042	0.000	21.121	0.000	32.595	1.013	5.776	1.103	0.018	0.000	99.667	3.017	0.000	1.974	0.000	2.162	0.068	0.683	0.094	0.003	0.000	8.000	0.719	0.227	0.031	0.023
37.988	0.007	21.078	0.016	32.739	0.994	5.798	1.102	0.011	0.000	99.733	3.011	0.000	1.969	0.001	2.171	0.067	0.685	0.094	0.002	0.000	8.000	0.719	0.228	0.031	0.022
37.754	0.036	21.187	0.099	32.789	0.992	5.593	1.234	0.000	0.000	99.684	2.998	0.002	1.983	0.006	2.177	0.067	0.662	0.105	0.000	0.000	8.000	0.722	0.221	0.035	0.022
37.820	0.005	21.121	0.100	33.232	0.980	5.420	1.200	0.003	0.011	99.891	3.001	0.000	1.976	0.006	2.206	0.066	0.641	0.102	0.001	0.001	8.000	0.730	0.214	0.034	0.022
37.853	0.000	20.688	0.079	33.769	1.047	5.006	1.181	0.007	0.009	99.638	3.023	0.000	1.947	0.005	2.255	0.071	0.596	0.101	0.001	0.001	8.000	0.746	0.197	0.033	0.023
37.485	0.000	20.794	0.050	34.010	1.104	4.693	1.219	0.000	0.000	99.353	3.008	0.000	1.966	0.003	2.282	0.075	0.561	0.105	0.000	0.000	8.000	0.754	0.187	0.035	0.025
38.195	0.012	21.050	0.087	33.141	0.994	5.473	1.220	0.006	0.000	100.178	3.022	0.001	1.963	0.005	2.193	0.067	0.646	0.103	0.001	0.000	8.000	0.729	0.215	0.034	0.022
38.319	0.011	20.982	0.106	32.917	1.019	5.583	1.202	0.013	0.000	100.154	3.030	0.001	1.955	0.007	2.177	0.068	0.658	0.102	0.002	0.000	8.000	0.724	0.219	0.034	0.023
38.203	0.016	21.001	0.036	32.742	0.965	5.668	1.126	0.008	0.000	99.765	3.030	0.001	1.963	0.002	2.172	0.065	0.670	0.096	0.001	0.000	8.000	0.723	0.223	0.032	0.022
37.678	0.009	21.203	0.016	33.154	0.997	5.711	1.113	0.000	0.005	99.887	2.985	0.001	1.980	0.001	2.197	0.067	0.674	0.094	0.000	0.001	8.000	0.720	0.226	0.032	0.022
38.003	0.005	21.022	0.023	32.658	0.965	5.661	1.060	0.017	0.000	99.413	3.024	0.000	1.971	0.001	2.173	0.065	0.672	0.090	0.003	0.000	8.000	0.724	0.224	0.030	0.022
SiO2	TiO2	Al2O3	Cr2O3	FeOt	MnO	MgO	CaO	Na2O	K2O	Sum	Si	Ti	Al	Cr	Fe2	Mn	Mg	Ca	Na	К	Sum	XAlm	XPrp	XGrs	XSps
sample BCJ-10																									
38.103	0.002	21.007	0.040	32.750	0.929	5.738	1.165	0.004	0.000	99.738	3.022	0.000	1.963	0.002	2.172	0.062	0.678	0.099	0.001	0.000	8.000	0.721	0.225	0.033	0.021
37.982	0.008	21.024	0.164	32.959	0.992	5.609	1.194	0.000	0.000	99.931	3.010	0.000	1.964	0.010	2.185	0.067	0.663	0.101	0.000	0.000	8.000	0.724	0.220	0.034	0.022

 38.240
 0.008
 20.834
 0.110
 32.958
 1.011
 5.479
 1.238
 0.000
 99.883
 3.035
 0.000
 1.949
 0.007
 2.187
 0.068
 0.648
 0.105
 0.000
 0.001
 8.000
 0.727
 0.215
 0.035
 0.023

 38.116
 0.000
 20.908
 0.052
 33.197
 1.061
 5.297
 1.191
 0.013
 0.000
 99.836
 3.029
 0.000
 1.958
 0.003
 2.207
 0.011
 0.002
 0.000
 0.734
 0.209
 0.034
 0.024

5102	1102	A1203	CI205	reor	Millo	MgO	CaO	11420	K20	Sum	51	11	71	CI	rez	IVIII	wig	Ca	144	N	Sum	ллш	лтр	AGIS	лорь
sample BCJ-11																									
36.359	0.000	20.821	0.051	35.423	1.775	3.192	1.006	0.000	0.000	98.627	2.971	0.000	2.005	0.003	2.421	0.123	0.389	0.088	0.000	0.000	8.000	0.798	0.131	0.030	0.041
36.319	0.013	20.401	0.039	35.955	1.689	3.024	0.943	0.011	0.006	98.399	2.982	0.001	1.974	0.003	2.468	0.117	0.370	0.083	0.002	0.001	8.000	0.808	0.124	0.028	0.039
36.508	0.000	20.578	0.016	35.051	1.636	3.367	0.951	0.000	0.000	98.106	2.995	0.000	1.990	0.001	2.405	0.114	0.412	0.084	0.000	0.000	8.000	0.797	0.137	0.028	0.038
36.541	0.000	20.534	0.014	35.350	1.608	3.405	1.005	0.000	0.000	98.457	2.988	0.000	1.979	0.001	2.417	0.111	0.415	0.088	0.000	0.000	8.000	0.794	0.139	0.029	0.037
36.712	0.000	20.751	0.036	35.755	1.647	3.284	0.939	0.010	0.000	99.134	2.984	0.000	1.988	0.002	2.431	0.113	0.398	0.082	0.002	0.000	8.000	0.801	0.133	0.027	0.038
36.624	0.009	20.557	0.027	36.753	1.844	2.413	0.999	0.000	0.000	99.224	2.994	0.001	1.981	0.002	2.513	0.128	0.294	0.087	0.000	0.000	8.000	0.830	0.098	0.029	0.043
37.012	0.000	20.451	0.021	36.221	1.840	3.136	0.917	0.013	0.001	99.612	3.001	0.000	1.954	0.001	2.456	0.126	0.379	0.080	0.002	0.000	8.000	0.805	0.126	0.027	0.042
37.018	0.000	20.507	0.023	35.893	1.918	3.078	1.004	0.000	0.000	99.441	3.006	0.000	1.963	0.001	2.438	0.132	0.373	0.087	0.000	0.000	8.000	0.803	0.124	0.029	0.044
36.947	0.003	20.597	0.011	35.920	2.220	2.817	1.019	0.011	0.000	99.544	3.002	0.000	1.972	0.001	2.441	0.153	0.341	0.089	0.002	0.000	8.000	0.806	0.114	0.030	0.051
36.947	0.005	20.499	0.028	36.790	2.468	2.178	0.965	0.010	0.007	99.896	3.007	0.000	1.966	0.002	2.504	0.170	0.264	0.084	0.002	0.001	8.000	0.827	0.088	0.028	0.057
37.351	0.000	20.897	0.031	36.165	2.484	2.526	1.026	0.020	0.003	100.502	3.010	0.000	1.985	0.002	2.438	0.170	0.303	0.089	0.003	0.000	8.000	0.813	0.101	0.030	0.057
36.928	0.000	20.606	0.026	36.175	1.963	3.002	0.958	0.009	0.000	99.668	2.994	0.000	1.969	0.002	2.453	0.135	0.363	0.083	0.001	0.000	8.000	0.806	0.121	0.028	0.045
37.108	0.000	20.892	0.011	36.191	1.926	3.044	1.007	0.005	0.000	100.185	2.991	0.000	1.984	0.001	2.439	0.131	0.366	0.087	0.001	0.000	8.000	0.805	0.122	0.029	0.044
36.798	0.000	20.753	0.007	36.131	2.309	2.710	1.017	0.003	0.000	99.728	2.987	0.000	1.985	0.000	2.452	0.159	0.328	0.088	0.000	0.000	8.000	0.807	0.110	0.030	0.053
36.288	0.008	20.897	0.026	36.274	2.381	2.461	0.985	0.020	0.015	99.354	2.960	0.000	2.009	0.002	2.474	0.165	0.299	0.086	0.003	0.002	8.000	0.814	0.101	0.029	0.056
36.699	0.000	20.465	0.008	36.503	1.848	2.645	0.976	0.006	0.010	99.161	2.998	0.000	1.970	0.001	2.494	0.128	0.322	0.085	0.001	0.001	8.000	0.821	0.108	0.029	0.043
37.173	0.000	20.812	0.040	35.572	1.672	3.247	0.955	0.016	0.006	99.494	3.010	0.000	1.986	0.003	2.409	0.115	0.392	0.083	0.003	0.001	8.000	0.803	0.131	0.028	0.038
36.827	0.001	20.737	0.005	35.605	1.682	3.350	1.021	0.003	0.000	99.231	2.989	0.000	1.984	0.000	2.417	0.116	0.405	0.089	0.000	0.000	8.000	0.796	0.136	0.030	0.039
36.948	0.000	20.715	0.016	35.621	1.725	3.200	1.005	0.006	0.000	99.236	3.001	0.000	1.983	0.001	2.420	0.119	0.388	0.087	0.001	0.000	8.000	0.802	0.129	0.029	0.040
37.088	0.000	20.852	0.077	36.080	2.031	2.878	1.030	0.000	0.009	100.045	2.996	0.000	1.985	0.005	2.438	0.139	0.347	0.089	0.000	0.001	8.000	0.808	0.116	0.030	0.046
36.820	0.005	20.753	0.048	35.841	2.359	2.770	1.013	0.014	0.000	99.622	2.989	0.000	1.986	0.003	2.434	0.162	0.335	0.088	0.002	0.000	8.000	0.804	0.112	0.030	0.054
37.138	0.000	20.957	0.040	35.918	1.812	3.259	1.004	0.000	0.006	100.133	2.989	0.000	1.988	0.003	2.418	0.124	0.391	0.087	0.000	0.001	8.000	0.799	0.131	0.029	0.041
37.234	0.000	20.784	0.023	35.936	1.688	3.414	1.020	0.025	0.000	100.123	2.995	0.000	1.970	0.001	2.417	0.115	0.409	0.088	0.004	0.000	8.000	0.795	0.137	0.029	0.038
37.203	0.000	20.790	0.027	35.578	1.674	3.512	1.059	0.000	0.000	99.843	2.998	0.000	1.975	0.002	2.398	0.114	0.422	0.091	0.000	0.000	8.000	0.791	0.141	0.031	0.038
37.103	0.001	20.714	0.018	35.692	1.539	3.594	1.017	0.010	0.001	99.688	2.994	0.000	1.970	0.001	2.408	0.105	0.432	0.088	0.001	0.000	8.000	0.791	0.145	0.029	0.035
37.449	0.000	20.859	0.030	35.706	1.589	3.506	1.065	0.001	0.000	100.205	3.007	0.000	1.974	0.002	2.398	0.108	0.420	0.092	0.000	0.000	8.000	0.794	0.140	0.030	0.036
SiO2	TiO2	Al2O3	Cr2O3	FeOt	MnO	MgO	CaO	Na2O	K2O	Sum	Si	Ti	Al	Cr	Fe2	Mn	Mg	Ca	Na	K	Sum	XAlm	XPrp	XGrs	XSps

SiO2 TiO2 Al2O3 Cr2O3 FeOt MnO MgO CaO Na2O K2O Sum Si Ti Al Cr Fe2 Mn Mg Ca Na K Sum XAlm XPrp XGrs XSps

37.214	0.017	20.734	0.022	35.650	1.678	3.585	1.040	0.020	0.003	99.963	2.995	0.001	1.966	0.001	2.399	0.114	0.430	0.090	0.003	0.000	8.000	0.788	0.144	0.030	0.038
36.919	0.004	20.627	0.010	36.106	1.743	2.909	0.989	0.017	0.000	99.324	3.003	0.000	1.978	0.001	2.456	0.120	0.353	0.086	0.003	0.000	8.000	0.814	0.118	0.029	0.040
37.063	0.003	20.617	0.016	35.723	1.833	3.207	1.052	0.000	0.000	99.515	3.004	0.000	1.969	0.001	2.421	0.126	0.387	0.091	0.000	0.000	8.000	0.799	0.129	0.030	0.042
36.711	0.000	20.574	0.024	36.239	1.995	2.998	0.993	0.002	0.009	99.545	2.981	0.000	1.969	0.002	2.461	0.137	0.363	0.086	0.000	0.001	8.000	0.803	0.122	0.029	0.046
36.438	0.024	20.603	0.033	36.201	2.732	2.411	1.017	0.011	0.003	99.472	2.973	0.001	1.981	0.002	2.470	0.189	0.293	0.089	0.002	0.000	8.000	0.808	0.099	0.030	0.064
37.165	0.000	20.835	0.025	36.513	1.940	3.127	0.973	0.006	0.002	100.586	2.984	0.000	1.972	0.002	2.452	0.132	0.374	0.084	0.001	0.000	8.000	0.802	0.126	0.028	0.044
37.434	0.012	20.662	0.008	36.071	1.737	3.301	1.007	0.007	0.000	100.238	3.011	0.001	1.959	0.000	2.427	0.118	0.396	0.087	0.001	0.000	8.000	0.800	0.132	0.029	0.039
37.280	0.000	20.606	0.007	35.583	1.659	3.514	1.035	0.010	0.007	99.700	3.009	0.000	1.960	0.000	2.402	0.113	0.423	0.089	0.002	0.001	8.000	0.792	0.141	0.030	0.038
37.533	0.000	20.798	0.011	35.542	1.583	3.577	1.034	0.003	0.000	100.081	3.016	0.000	1.970	0.001	2.388	0.108	0.428	0.089	0.000	0.000	8.000	0.793	0.142	0.030	0.036
37.293	0.000	20.690	0.018	35.882	1.615	3.581	1.008	0.007	0.000	100.093	2.998	0.000	1.961	0.001	2.413	0.110	0.429	0.087	0.001	0.000	8.000	0.791	0.143	0.029	0.037
37.128	0.006	20.819	0.013	35.518	1.586	3.482	1.004	0.012	0.000	99.570	3.000	0.000	1.982	0.001	2.400	0.109	0.419	0.087	0.002	0.000	8.000	0.795	0.140	0.029	0.036
37.155	0.000	20.598	0.012	35.755	1.642	3.453	1.003	0.031	0.000	99.648	3.002	0.000	1.961	0.001	2.416	0.112	0.416	0.087	0.005	0.000	8.000	0.794	0.139	0.029	0.038
37.038	0.000	20.581	0.023	35.931	1.896	3.160	1.023	0.003	0.001	99.656	3.000	0.000	1.964	0.001	2.434	0.130	0.382	0.089	0.000	0.000	8.000	0.800	0.127	0.030	0.043
37.416	0.009	20.747	0.038	36.083	2.344	2.791	1.026	0.012	0.002	100.466	3.013	0.001	1.969	0.002	2.430	0.160	0.335	0.089	0.002	0.000	8.000	0.806	0.111	0.029	0.053
36.799	0.023	20.662	0.049	36.257	2.403	2.642	1.031	0.002	0.000	99.869	2.985	0.001	1.976	0.003	2.460	0.165	0.319	0.090	0.000	0.000	8.000	0.808	0.107	0.030	0.055
36.901	0.019	20.622	0.040	35.716	1.801	3.143	1.083	0.000	0.003	99.326	2.997	0.001	1.974	0.003	2.426	0.124	0.381	0.094	0.000	0.000	8.000	0.800	0.127	0.031	0.041
37.066	0.015	20.648	0.023	35.839	1.715	3.346	1.078	0.011	0.008	99.749	2.994	0.001	1.966	0.001	2.421	0.117	0.403	0.093	0.002	0.001	8.000	0.795	0.135	0.031	0.039
37.053	0.007	20.817	0.035	35.933	1.653	3.349	1.010	0.002	0.012	99.871	2.989	0.000	1.979	0.002	2.424	0.113	0.403	0.087	0.000	0.001	8.000	0.798	0.135	0.029	0.038
37.147	0.000	20.602	0.022	35.699	1.643	3.433	1.021	0.008	0.005	99.580	3.004	0.000	1.964	0.001	2.414	0.113	0.414	0.089	0.001	0.001	8.000	0.795	0.138	0.029	0.038
37.022	0.000	20.903	0.003	35.873	1.636	3.491	1.012	0.001	0.000	99.942	2.981	0.000	1.984	0.000	2.416	0.112	0.419	0.087	0.000	0.000	8.000	0.793	0.141	0.029	0.037
37.129	0.009	20.882	0.021	35.976	1.608	3.455	1.019	0.003	0.004	100.105	2.986	0.001	1.979	0.001	2.420	0.110	0.414	0.088	0.001	0.000	8.000	0.795	0.139	0.029	0.037
36.869	0.000	20.563	0.022	35.990	1.631	3.364	1.046	0.005	0.001	99.491	2.987	0.000	1.963	0.001	2.438	0.112	0.406	0.091	0.001	0.000	8.000	0.796	0.136	0.030	0.038
37.160	0.000	20.632	0.023	36.118	1.729	3.144	0.990	0.000	0.000	99.796	3.006	0.000	1.967	0.001	2.443	0.118	0.379	0.086	0.000	0.000	8.000	0.806	0.126	0.029	0.039
36.963	0.000	20.342	0.019	35.862	2.018	2.946	0.951	0.007	0.005	99.112	3.015	0.000	1.955	0.001	2.446	0.139	0.358	0.083	0.001	0.001	8.000	0.807	0.119	0.028	0.046
37.145	0.015	20.472	0.043	36.118	2.743	2.241	0.993	0.010	0.000	99.780	3.024	0.001	1.964	0.003	2.459	0.189	0.272	0.087	0.002	0.000	8.000	0.818	0.090	0.029	0.063
37.069	0.010	20.919	0.035	36.735	2.498	2.421	1.014	0.000	0.015	100.716	2.986	0.001	1.986	0.002	2.475	0.170	0.291	0.088	0.000	0.002	8.000	0.816	0.097	0.029	0.057
SiO2	TiO2	Al2O3	Cr2O3	FeOt	MnO	MgO	CaO	Na2O	K2O	Sum	Si	Ti	Al	Cr	Fe2	Mn	Mg	Ca	Na	К	Sum	XAlm	XPrp	XGrs	XSps
sample BCJ-11																									

-

36.811 0.000 20.796 0.015 36.332 1.786 3.093 1.036 0.000 0.013 99.882 2.976 0.000 1.981 0.001 2.456 0.122 0.373 0.090 0.000 0.001 8.000 0.803 0.125 0.030 0.041 37.065 0.004 20.435 0.022 35.948 1.673 3.315 0.986 0.000 0.000 99.448 3.006 0.000 1.953 0.001 2.438 0.115 0.401 0.086 0.000 0.000 8.000 0.800 0.133 0.028 0.038 37.237 0.000 20.923 0.032 35.676 1.675 3.446 0.956 0.007 0.000 99.952 2.998 0.000 1.986 0.002 2.402 0.114 0.414 0.083 0.001 0.000 8.000 0.796 0.138 0.028 0.038 37.228 0.000 20.666 0.019 35.754 1.599 3.396 1.020 0.000 9.082 3.008 0.000 1.968 0.001 2.416 0.109 0.409 0.088 0.000 0.000 8.000 0.798 0.136 0.029 0.036 36.955 0.000 20.677 0.020 35.791 1.596 3.422 1.019 0.000 0.017 99.496 2.991 0.000 1.972 0.001 2.423 0.109 0.413 0.088 0.000 0.002 8.000 0.796 0.138 0.030 0.037 37.072 0.001 20.612 0.023 35.813 1.621 3.348 0.992 0.003 0.004 99.489 3.003 0.000 1.968 0.001 2.426 0.111 0.404 0.086 0.001 0.000 8.000 0.800 0.135 0.029 0.037 37.014 0.008 20.576 0.029 35.851 1.962 3.065 1.032 0.000 0.011 99.547 3.002 0.000 1.967 0.002 2.432 0.135 0.371 0.090 0.000 0.001 8.000 0.802 0.124 0.030 0.045 36.462 0.156 20.518 0.044 35.806 2.580 2.264 1.022 0.006 0.000 98.856 2.995 0.010 1.986 0.003 2.459 0.179 0.277 0.090 0.001 0.000 8.000 0.818 0.092 0.030 0.060

Major elements EPMA analysis in biotite.

SiO2	TiO2	Al2O3	FeOt	MnO	Zn	MgO	CaO	BaO	Na2O	K2O	Cl	Sum	Si	Ti	Al	Fe2	Mn	Zn	Mg	Ca	Ba	Na	К	Cl	Sum
sample BCJ-05																									
35,103	2,685	18,546	17,653	0,050	0,006	10,756	0,000	0,397	0,206	8,339	0,115	93,856	2,690	0,155	1,675	1,131	0,003	0,000	1,229	0,000	0,012	0,031	0,815	0,015	7,756
33,391	2,077	18,734	18,553	0,037	0,028	12,218	0,000	0,241	0,073	5,497	0,095	90,946	2,615	0,122	1,729	1,215	0,003	0,002	1,426	0,000	0,007	0,011	0,549	0,013	7,691
35,627	2,901	18,205	17,561	0,000	0,016	10,149	0,000	0,367	0,252	8,920	0,128	94,126	2,727	0,167	1,643	1,124	0,000	0,001	1,158	0,000	0,011	0,038	0,871	0,017	7,756
35,478	2,795	18,288	17,639	0,009	0,063	10,514	0,000	0,305	0,262	8,627	0,151	94,131	2,713	0,161	1,648	1,128	0,001	0,004	1,199	0,000	0,009	0,039	0,842	0,020	7,762
35,239	2,877	15,367	14,973	0,036	0,064	10,245	0,000	0,384	0,270	8,887	0,135	88,478	2,852	0,175	1,466	1,013	0,003	0,004	1,236	0,000	0,012	0,042	0,918	0,019	7,739
35,387	2,870	18,001	17,573	0,022	0,013	10,008	0,000	0,394	0,273	8,800	0,137	93,477	2,730	0,167	1,637	1,134	0,002	0,001	1,151	0,000	0,012	0,041	0,866	0,018	7,757
35,226	2,792	18,069	17,387	0,016	0,039	10,247	0,000	0,347	0,246	8,737	0,144	93,250	2,721	0,162	1,645	1,123	0,001	0,002	1,180	0,000	0,011	0,037	0,861	0,019	7,762
35,530	2,788	18,330	17,784	0,039	0,003	10,357	0,000	0,359	0,286	8,845	0,146	94,467	2,713	0,160	1,650	1,136	0,003	0,000	1,179	0,000	0,011	0,042	0,862	0,019	7,773
35,743	2,911	18,076	17,957	0,016	0,047	10,171	0,000	0,365	0,278	8,781	0,139	94,484	2,729	0,167	1,627	1,147	0,001	0,003	1,158	0,000	0,011	0,041	0,855	0,018	7,756
34,910	2,713	18,810	17,593	0,025	0,021	10,552	0,000	0,325	0,193	8,535	0,122	93,798	2,678	0,157	1,701	1,129	0,002	0,001	1,207	0,000	0,010	0,029	0,835	0,016	7,763
35,311	2,682	18,596	17,413	0,028	0,021	10,498	0,000	0,336	0,258	8,682	0,130	93,955	2,703	0,154	1,678	1,115	0,002	0,001	1,198	0,000	0,010	0,038	0,848	0,017	7,764
34,972	2,494	18,234	17,730	0,021	0,013	10,353	0,000	0,327	0,221	8,846	0,129	93,340	2,705	0,145	1,663	1,147	0,001	0,001	1,194	0,000	0,010	0,033	0,873	0,017	7,789
35,163	2,531	18,347	17,445	0,022	0,015	10,762	0,000	0,349	0,175	8,866	0,114	93,788	2,701	0,146	1,661	1,121	0,001	0,001	1,232	0,000	0,011	0,026	0,869	0,015	7,784
34,262	2,694	18,161	17,747	0,019	0,000	11,192	0,000	0,252	0,160	7,947	0,124	92,556	2,663	0,157	1,664	1,153	0,001	0,000	1,297	0,000	0,008	0,024	0,788	0,016	7,771
35,109	2,736	18,339	17,331	0,005	0,000	10,662	0,000	0,349	0,218	8,623	0,122	93,494	2,701	0,158	1,663	1,115	0,000	0,000	1,223	0,000	0,011	0,033	0,846	0,016	7,765
36,596	1,944	19,400	17,220	0,020	0,030	12,077	0,000	0,225	0,176	8,454	0,113	96,254	2,711	0,108	1,694	1,067	0,001	0,002	1,334	0,000	0,007	0,025	0,799	0,014	7,761
33,766	2,752	17,977	19,149	0,030	0,038	10,585	0,000	0,187	0,074	7,490	0,134	92,182	2,649	0,162	1,662	1,256	0,002	0,002	1,238	0,000	0,006	0,011	0,750	0,018	7,756
34,794	3,600	17,959	18,709	0,023	0,000	9,655	0,000	0,283	0,228	8,912	0,157	94,319	2,680	0,209	1,630	1,205	0,002	0,000	1,108	0,000	0,009	0,034	0,876	0,021	7,772
35,473	3,056	18,299	18,128	0,031	0,047	10,292	0,000	0,251	0,264	8,729	0,156	94,726	2,703	0,175	1,643	1,155	0,002	0,003	1,169	0,000	0,008	0,039	0,848	0,020	7,765
35,401	3,023	18,012	17,933	0,024	0,057	10,102	0,000	0,283	0,274	8,919	0,141	94,169	2,716	0,174	1,629	1,151	0,002	0,003	1,155	0,000	0,009	0,041	0,873	0,018	7,770
35,151	2,672	18,555	17,560	0,018	0,000	10,913	0,000	0,379	0,162	8,633	0,133	94,174	1,466	0,084	0,912	0,612	0,001	0,000	0,678	0,000	0,006	0,013	0,459	0,009	4,240
35,174	2,793	18,471	17,664	0,043	0,000	10,935	0,000	0,308	0,210	8,541	0,127	94,265	1,465	0,088	0,907	0,615	0,002	0,000	0,679	0,000	0,005	0,017	0,454	0,009	4,239
35,554	2,893	18,167	17,650	0,035	0,000	10,885	0,000	0,351	0,276	8,986	0,145	94,941	1,474	0,090	0,888	0,612	0,001	0,000	0,673	0,000	0,006	0,022	0,475	0,010	4,251
35,628	2,918	18,037	17,717	0,012	0,000	10,283	0,000	0,407	0,287	9,266	0,136	94,690	1,484	0,091	0,886	0,617	0,000	0,000	0,639	0,000	0,007	0,023	0,493	0,010	4,249
35,343	2,795	17,862	18,333	0,006	0,000	10,270	0,000	0,399	0,171	9,000	0,146	94,324	1,481	0,088	0,882	0,643	0,000	0,000	0,642	0,000	0,007	0,014	0,481	0,010	4,248
35,384	2,891	18,229	17,906	0,017	0,000	10,091	0,000	0,332	0,286	9,175	0,147	94,457	1,478	0,091	0,898	0,626	0,001	0,000	0,628	0,000	0,005	0,023	0,489	0,010	4,249

SiO2	TiO2	Al2O3	FeOt	MnO	Zn	MgO	CaO	BaO	Na2O	K2O	Cl	Sum	Si	Ti	Al	Fe2	Mn	Zn	Mg	Ca	Ba	Na	K	Cl	Sum
sample BCJ-05																									
35,453	2,869	18,058	17,667	0,033	0,000	10,217	0,000	0,331	0,262	9,181	0,139	94,209	1,483	0,090	0,890	0,618	0,001	0,000	0,637	0,000	0,005	0,021	0,490	0,010	4,247
35,407	2,719	18,512	17,782	0,037	0,000	10,533	0,000	0,434	0,227	8,826	0,145	94,622	1,473	0,085	0,908	0,619	0,001	0,000	0,653	0,000	0,007	0,018	0,468	0,010	4,242
35,000	2,571	18,553	17,480	0,031	0,000	10,536	0,000	0,340	0,230	8,675	0,137	93,552	1,469	0,081	0,918	0,614	0,001	0,000	0,659	0,000	0,006	0,019	0,465	0,010	4,242
34,103	2,637	18,419	18,271	0,048	0,000	10,711	0,000	0,248	0,150	7,926	0,131	92,644	1,448	0,084	0,922	0,649	0,002	0,000	0,678	0,000	0,004	0,012	0,429	0,009	4,237
35,051	2,803	18,254	18,221	0,029	0,000	10,381	0,000	0,365	0,236	8,564	0,135	94,038	1,469	0,088	0,902	0,639	0,001	0,000	0,649	0,000	0,006	0,019	0,458	0,010	4,240
35,540	2,854	18,252	18,064	0,050	0,000	10,258	0,000	0,445	0,265	8,940	0,142	94,809	1,479	0,089	0,895	0,629	0,002	0,000	0,636	0,000	0,007	0,021	0,475	0,010	4,243
35,566	2,891	18,076	18,163	0,012	0,000	10,272	0,000	0,382	0,267	9,187	0,135	94,949	1,480	0,091	0,886	0,632	0,000	0,000	0,637	0,000	0,006	0,022	0,488	0,010	4,251
35,605	2,857	17,998	17,748	0,038	0,000	10,274	0,000	0,365	0,261	9,204	0,145	94,494	1,486	0,090	0,885	0,619	0,001	0,000	0,639	0,000	0,006	0,021	0,490	0,010	4,248
35,399	2,489	17,874	17,535	0,033	0,000	11,484	0,000	0,296	0,171	6,881	0,114	92,277	1,489	0,079	0,886	0,617	0,001	0,000	0,720	0,000	0,005	0,014	0,369	0,008	4,189
33,014	1,843	19,524	18,131	0,053	0,000	12,057	0,000	0,235	0,113	7,224	0,108	92,302	1,402	0,059	0,977	0,644	0,002	0,000	0,763	0,000	0,004	0,009	0,391	0,008	4,259
34,530	2,280	18,945	17,847	0,025	0,000	11,655	0,000	0,261	0,135	8,249	0,119	94,046	1,441	0,072	0,932	0,623	0,001	0,000	0,725	0,000	0,004	0,011	0,439	0,008	4,255
34,523	2,620	18,189	18,076	0,041	0,000	11,180	0,000	0,337	0,166	8,112	0,129	93,373	1,454	0,083	0,903	0,637	0,002	0,000	0,702	0,000	0,006	0,014	0,436	0,009	4,245
34,207	2,612	18,488	18,372	0,038	0,000	10,975	0,000	0,307	0,153	8,048	0,121	93,321	1,443	0,083	0,920	0,648	0,001	0,000	0,690	0,000	0,005	0,013	0,433	0,009	4,245
35,242	2,723	18,377	17,336	0,034	0,000	10,642	0,000	0,418	0,273	8,942	0,126	94,112	1,473	0,086	0,905	0,606	0,001	0,000	0,663	0,000	0,007	0,022	0,477	0,009	4,248
35,122	2,611	18,299	17,851	0,024	0,000	10,778	0,000	0,291	0,209	8,677	0,131	93,994	1,470	0,082	0,903	0,625	0,001	0,000	0,672	0,000	0,005	0,017	0,463	0,009	4,247
35,147	2,607	18,467	17,045	0,042	0,000	10,575	0,000	0,371	0,255	8,981	0,138	93,629	1,474	0,082	0,913	0,598	0,002	0,000	0,661	0,000	0,006	0,021	0,481	0,010	4,248
31,700	1,626	18,969	18,922	0,053	0,000	13,537	0,000	0,096	0,056	5,406	0,106	90,472	1,369	0,053	0,965	0,683	0,002	0,000	0,871	0,000	0,002	0,005	0,298	0,008	4,255
33,562	1,281	20,677	17,540	0,043	0,000	13,321	0,000	0,085	0,091	6,723	0,105	93,428	1,393	0,040	1,011	0,609	0,002	0,000	0,824	0,000	0,001	0,007	0,356	0,007	4,251
34,023	2,608	18,054	18,320	0,065	0,000	10,534	0,000	0,294	0,093	8,082	0,138	92,211	1,455	0,084	0,910	0,655	0,002	0,000	0,671	0,000	0,005	0,008	0,441	0,010	4,241
35,146	2,652	18,283	17,512	0,041	0,000	10,709	0,000	0,325	0,242	8,891	0,128	93,928	1,472	0,084	0,902	0,613	0,001	0,000	0,669	0,000	0,005	0,020	0,475	0,009	4,250
35,442	2,609	18,223	18,021	0,000	0,000	10,261	0,000	0,367	0,236	9,210	0,122	94,490	1,480	0,082	0,897	0,630	0,000	0,000	0,639	0,000	0,006	0,019	0,491	0,009	4,253
35,306	2,729	18,471	17,639	0,024	0,000	10,515	0,000	0,323	0,274	9,125	0,133	94,538	1,471	0,086	0,907	0,615	0,001	0,000	0,653	0,000	0,005	0,022	0,485	0,009	4,253
34,597	2,686	18,769	17,850	0,027	0,000	10,604	0,000	0,363	0,220	8,607	0,129	93,854	1,451	0,085	0,928	0,626	0,001	0,000	0,663	0,000	0,006	0,018	0,461	0,009	4,248
34,940	3,476	17,462	18,861	0,019	0,000	9,834	0,000	0,300	0,207	9,039	0,159	94,290	1,471	0,110	0,867	0,664	0,001	0,000	0,617	0,000	0,005	0,017	0,486	0,011	4,248
35,059	3,592	17,766	18,212	0,010	0,000	9,791	0,000	0,282	0,246	9,346	0,153	93 346	1,470	0,113	0,878	0,639	0,000	0,000	0,612	0,000	0,005	0,020	0,500	0,011	4,248
34,885 SiO2	3,608 TiO2	17,834 Al2O3	18,800 FeOt	0,032 MnO	0,000 ZnO	10,159 MgO	CaO	0,297 BaO	0,131 Na2O	7,458 K2O	0,140 Cl	Sum	1,468 Si	0,114 Ti	0,884 Al	0,661 Fe2	0,001 Mn	0,000 Zn	0,637 Mg	0,000 Ca	0,005 Ba	0,011 Na	0,400 K	0,010 Cl	4,192 Sum

34,657	3,598	17,773	18,647	0,022	0,000	9,638	0,000	0,270	0,239	8,990	0,151	93,983	1,462	0,114	0,884	0,658	0,001	0,000	0,606	0,000	0,005	0,020	0,484	0,011	4,244
34,791	3,640	17,879	18,770	0,041	0,000	9,602	0,000	0,320	0,219	9,207	0,166	94,636	1,461	0,115	0,885	0,659	0,002	0,000	0,601	0,000	0,005	0,018	0,493	0,012	4,250
33,934	2,779	18,314	19,300	0,000	0,000	10,719	0,000	0,199	0,098	6,856	0,132	92,330	1,443	0,089	0,918	0,686	0,000	0,000	0,680	0,000	0,003	0,008	0,372	0,010	4,209
35,854	6,020	17,001	17,638	0,017	0,000	10,048	0,000	0,321	0,063	5,443	0,108	92,512	1,492	0,188	0,834	0,614	0,001	0,000	0,623	0,000	0,005	0,005	0,289	0,008	4,058
32,862	3,173	18,045	18,717	0,033	0,000	10,739	0,000	0,260	0,109	6,022	0,127	90,086	1,427	0,104	0,924	0,680	0,001	0,000	0,695	0,000	0,004	0,009	0,334	0,009	4,188
33,374	2,558	18,134	19,267	0,018	0,000	10,706	0,000	0,229	0,091	6,816	0,143	91,334	1,438	0,083	0,921	0,694	0,001	0,000	0,688	0,000	0,004	0,008	0,375	0,011	4,220
35,429	3,361	17,495	17,976	0,020	0,000	10,255	0,000	0,266	0,194	8,018	0,136	93,149	1,491	0,106	0,868	0,633	0,001	0,000	0,643	0,677	0,004	0,016	0,430	0,010	4,879
34,341	3,025	18,077	18,748	0,021	0,000	10,476	0,000	0,294	0,211	8,452	0,150	93,793	1,449	0,096	0,899	0,662	0,001	0,000	0,659	0,000	0,005	0,017	0,455	0,011	4,253
34,276	3,421	17,815	18,903	0,025	0,000	9,551	0,000	0,295	0,226	8,626	0,156	93,294	1,458	0,109	0,893	0,672	0,001	0,000	0,605	0,000	0,005	0,019	0,468	0,011	4,241
34,837	3,240	17,945	18,307	0,021	0,000	10,099	0,000	0,179	0,205	8,826	0,156	93,817	1,466	0,103	0,890	0,644	0,001	0,000	0,634	0,000	0,003	0,017	0,474	0,011	4,243
33,471	2,594	18,742	19,360	0,039	0,000	10,646	0,000	0,243	0,137	7,064	0,141	92,437	1,426	0,083	0,941	0,690	0,001	0,000	0,676	0,000	0,004	0,011	0,384	0,010	4,228
34,288	2,723	18,459	17,473	0,070	0,000	10,941	0,000	0,230	0,205	8,089	0,129	92,606	1,452	0,087	0,921	0,619	0,003	0,000	0,690	0,000	0,004	0,017	0,437	0,009	4,237
34,943	2,756	18,056	17,549	0,001	0,000	10,669	0,000	0,295	0,169	8,670	0,132	93,240	1,473	0,087	0,897	0,619	0,000	0,000	0,670	0,000	0,005	0,014	0,466	0,009	4,241
35,080	2,872	18,016	17,322	0,000	0,000	10,321	0,000	0,423	0,230	9,085	0,140	93,488	1,478	0,091	0,895	0,610	0,000	0,000	0,648	0,000	0,007	0,019	0,488	0,010	4,247
35,541	2,839	18,102	17,451	0,012	0,000	10,343	0,000	0,343	0,281	9,087	0,139	94,137	1,485	0,089	0,892	0,610	0,000	0,000	0,644	0,000	0,006	0,023	0,484	0,010	4,243
35,259	2,783	18,127	17,513	0,034	0,000	10,396	0,000	0,319	0,248	9,132	0,136	93,946	1,478	0,088	0,896	0,614	0,001	0,000	0,650	0,000	0,005	0,020	0,488	0,010	4,250
35,144	2,823	18,080	17,402	0,019	0,000	10,339	0,000	0,319	0,285	8,954	0,133	93,498	1,479	0,089	0,897	0,612	0,001	0,000	0,649	0,000	0,005	0,023	0,481	0,010	4,245
33,789	2,577	18,049	18,029	0,009	0,000	11,172	0,000	0,401	0,119	7,377	0,119	91,640	1,447	0,083	0,911	0,646	0,000	0,000	0,713	0,000	0,007	0,010	0,403	0,009	4,229
34,506	2,685	18,216	17,754	0,033	0,000	10,698	0,000	0,207	0,152	8,180	0,130	92,561	1,463	0,086	0,910	0,630	0,001	0,000	0,676	0,000	0,003	0,013	0,442	0,009	4,233
35,044	2,784	18,222	17,871	0,026	0,000	10,535	0,000	0,322	0,111	8,657	0,141	93,713	1,471	0,088	0,902	0,628	0,001	0,000	0,659	0,000	0,005	0,009	0,464	0,010	4,237
34,591	2,427	18,392	17,944	0,033	0,000	10,102	0,000	0,344	0,190	8,694	0,144	92,860	1,469	0,078	0,921	0,637	0,001	0,000	0,639	0,000	0,006	0,016	0,471	0,010	4,247
34,465	2,965	17,931	18,117	0,016	0,000	10,004	0,000	0,365	0,158	8,752	0,137	92,910	1,466	0,095	0,899	0,645	0,001	0,000	0,634	0,000	0,006	0,013	0,475	0,010	4,244
35,264	2,824	17,940	17,748	0,009	0,000	10,256	0,000	0,354	0,253	9,170	0,132	93,948	1,481	0,089	0,888	0,623	0,000	0,000	0,642	0,000	0,006	0,021	0,491	0,009	4,251
35,303	2,752	17,925	17,573	0,008	0,000	10,424	0,000	0,338	0,270	9,095	0,136	93,825	1,483	0,087	0,887	0,617	0,000	0,000	0,653	0,000	0,006	0,022	0,487	0,010	4,251
35,310	2,777	18,292	17,481	0,058	0,000	10,355	0,000	0,321	0,270	9,000	0,145	94,007	1,478	0,087	0,902	0,612	0,002	0,000	0,646	0,000	0,005	0,022	0,481	0,010	4,245
35,222	2,738	18,523	17,484	0,031	0,000	10,107	0,000	0,376	0,266	8,782	0,151	93,678	1,478	0,086	0,916	0,613	0,001	0,000	0,632	0,000	0,006	0,022	0,470	0,011	4,235
SiO2	TiO2	Al2O3	FeOt	MnO	ZnO	MgO	CaO	BaO	Na2O	K2O	Cl	Sum	Si	Ti	Al	Fe2	Mn	Zn	Mg	Ca	Ba	Na	K	Cl	Sum
sample BCJ-05																									

34,641	2,450	18,521	17,044	0,043	0,000	11,460	0,000	0,202	0,215	8,376	0,118	93,068	1,456	0,078	0,918	0,599	0,002	0,000	0,718	0,000	0,003	0,018	0,449	0,008	4,249
35,013	2,563	18,194	16,925	0,032	0,000	10,865	0,000	0,208	0,230	8,906	0,129	93,066	1,475	0,081	0,904	0,596	0,001	0,000	0,682	0,000	0,003	0,019	0,479	0,009	4,250
34,734	2,485	18,231	17,610	0,007	0,000	10,400	0,000	0,324	0,196	8,850	0,118	92,955	1,471	0,079	0,910	0,624	0,000	0,000	0,657	0,000	0,005	0,016	0,478	0,009	4,250
34,990	2,617	18,009	17,818	0,018	0,000	10,069	0,000	0,326	0,238	8,987	0,126	93,196	1,481	0,083	0,898	0,631	0,001	0,000	0,635	0,000	0,005	0,020	0,485	0,009	4,248
35,370	2,660	18,204	17,747	0,032	0,000	10,071	0,000	0,265	0,295	9,131	0,131	93,906	1,484	0,084	0,900	0,623	0,001	0,000	0,630	0,000	0,004	0,024	0,489	0,009	4,248
35,141	2,597	18,459	17,631	0,025	0,000	10,178	0,000	0,339	0,251	9,244	0,132	93,996	1,474	0,082	0,913	0,619	0,001	0,000	0,637	0,000	0,006	0,020	0,495	0,009	4,255
35,202	2,591	18,210	17,625	0,040	0,000	10,336	0,000	0,380	0,183	9,076	0,126	93,768	1,479	0,082	0,902	0,619	0,001	0,000	0,647	0,000	0,006	0,015	0,487	0,009	4,248
35,250	2,604	18,054	17,260	0,019	0,000	10,533	0,000	0,400	0,278	9,144	0,135	93,678	1,482	0,082	0,895	0,607	0,001	0,000	0,660	0,000	0,007	0,023	0,490	0,010	4,255
34,823	2,452	18,085	17,139	0,023	0,000	10,220	0,000	0,419	0,189	8,983	0,112	92,443	1,482	0,079	0,907	0,610	0,001	0,000	0,648	0,000	0,007	0,016	0,488	0,008	4,246
34,917	1,878	18,506	16,712	0,023	0,000	11,424	0,000	0,097	0,189	9,107	0,113	92,966	1,471	0,060	0,919	0,589	0,001	0,000	0,717	0,000	0,002	0,015	0,489	0,008	4,271
34,697	2,630	18,452	16,975	0,027	0,000	10,834	0,000	0,243	0,118	8,312	0,122	92,411	1,468	0,084	0,920	0,601	0,001	0,000	0,683	0,000	0,004	0,010	0,449	0,009	4,227
35,098	2,668	18,048	17,505	0,046	0,000	10,267	0,000	0,370	0,280	9,254	0,122	93,658	1,479	0,085	0,896	0,617	0,002	0,000	0,645	0,000	0,006	0,023	0,497	0,009	4,258
34,676	2,687	17,777	18,322	0,029	0,000	10,297	0,000	0,325	0,166	8,949	0,133	93,360	1,470	0,086	0,888	0,650	0,001	0,000	0,651	0,000	0,005	0,014	0,484	0,010	4,258
33,790	2,444	18,595	18,058	0,029	0,000	11,252	0,000	0,307	0,099	7,501	0,125	92,198	1,438	0,078	0,932	0,643	0,001	0,000	0,714	0,000	0,005	0,008	0,407	0,009	4,235
34,825	2,332	18,626	16,387	0,026	0,000	11,250	0,000	0,174	0,163	8,819	0,129	92,730	1,467	0,074	0,925	0,577	0,001	0,000	0,706	0,000	0,003	0,013	0,474	0,009	4,250

SiO2	TiO2	Al2O3	FeOt	MnO	ZnO	MgO	CaO	BaO	Na2O	K2O	Cl	Sum	Si	Ti	Al	Fe2	Mn	Zn	Mg	Ca	Ba	Na	K	Cl	Sum
sample BCJ-06																									
32,9289	2,2575	18,5118	18,5713	0,047	0,0272	11,4529	0,0759	0,2264	0,0759	6,795	0,1433	91,1131	2,603	0,134	1,725	1,228	0,003	0,002	1,350	0,000	0,007	0,012	0,685	0,019	7,768
33,5716	2,3809	18,0247	18,9263	0,0161	0,0177	11,1724	0,0934	0,3206	0,0934	7,3927	0,1629	92,1727	2,637	0,141	1,669	1,243	0,001	0,001	1,308	0,000	0,010	0,014	0,741	0,022	7,787
34,7541	2,5717	18,0097	17,7834	0,0292	0,0152	10,4487	0,1152	0,268	0,1152	8,0826	0,1673	92,3603	2,710	0,151	1,655	1,160	0,002	0,001	1,215	0,000	0,008	0,017	0,804	0,022	7,745
58,2728	0,0226	19,784	7,7257	0,0349	0,0591	5,7992	0,1567	0,1021	0,1567	3,5338	0,0229	95,6705	3,789	0,001	1,516	0,420	0,002	0,003	0,562	0,000	0,003	0,020	0,293	0,003	6,611
34,6384	2,1318	17,5751	18,3521	0,0596	0	10,2358	0,1982	0,2558	0,1982	7,7655	0,1637	91,5742	2,732	0,127	1,634	1,211	0,004	0,000	1,204	0,000	0,008	0,030	0,781	0,022	7,752
34,8247	2,5677	17,641	17,7195	0,0483	0,0303	9,635	0,2753	0,3107	0,2753	8,4948	0,1764	91,999	2,741	0,152	1,637	1,166	0,003	0,002	1,131	0,000	0,010	0,042	0,853	0,024	7,760
35,0464	2,6965	18,2769	18,1408	0,0235	0,0145	9,4666	0,2858	0,3378	0,2858	8,4342	0,1711	93,1799	2,723	0,158	1,674	1,179	0,002	0,001	1,097	0,000	0,010	0,043	0,836	0,023	7,744
34,384	2,2335	18,6401	18,9116	0,0587	0,0309	10,0635	0,1273	0,2393	0,1273	7,7281	0,1683	92,7126	2,680	0,131	1,713	1,233	0,004	0,002	1,169	0,000	0,007	0,019	0,769	0,022	7,749
34,1237	2,2779	18,5515	18,8971	0,06	0,000	10,1813	0,1303	0,2465	0,1303	7,57	0,1474	92,316	2,671	0,134	1,711	1,237	0,004	0,000	1,188	0,000	0,008	0,020	0,756	0,020	7,747
34,8169	2,4659	18,5407	18,3566	0,0622	0,029	9,8787	0,1548	0,286	0,1548	8,5217	0,1671	93,4344	2,698	0,144	1,693	1,190	0,004	0,002	1,141	0,000	0,009	0,023	0,842	0,022	7,767
34,9121	2,4418	18,4711	18,806	0,0357	0,0271	10,2753	0,1628	0,2629	0,1628	7,7965	0,1426	93,4967	2,695	0,142	1,681	1,214	0,002	0,002	1,183	0,000	0,008	0,024	0,768	0,019	7,737
34,522	2,3755	18,5051	18,2044	0,0383	0,0341	10,5322	0,123	0,228	0,123	8,3464	0,161	93,193	2,677	0,139	1,691	1,181	0,003	0,002	1,218	0,000	0,007	0,019	0,826	0,021	7,782
34,467	2,4586	18,1405	18,2059	0,0409	0,0088	10,4084	0,125	0,2633	0,125	8,3817	0,1678	92,7929	2,688	0,144	1,667	1,187	0,003	0,001	1,210	0,000	0,008	0,019	0,834	0,022	7,783
33,1706	2,159	19,3578	18,9711	0,06	0,0019	11,4341	0,0878	0,2218	0,0878	6,6869	0,1494	92,3882	2,584	0,127	1,777	1,236	0,004	0,000	1,328	0,000	0,007	0,013	0,665	0,020	7,760
34,2672	2,5023	18,549	18,3314	0,0565	0,0593	10,2792	0,1352	0,2777	0,1352	8,1303	0,1515	92,8748	2,668	0,147	1,703	1,194	0,004	0,003	1,193	0,000	0,009	0,020	0,808	0,020	7,768
35,02	2,3883	18,7707	18,0179	0,0361	0,0543	10,6423	0,1658	0,3045	0,1658	8,5546	0,1661	94,2864	2,683	0,138	1,695	1,155	0,002	0,003	1,216	0,000	0,009	0,025	0,836	0,022	7,783
34,6727	2,0508	18,9299	17,816	0,0605	0,000	10,928	0,1218	0,1955	0,1218	8,3524	0,1508	93,4002	2,673	0,119	1,720	1,149	0,004	0,000	1,256	0,000	0,006	0,018	0,822	0,020	7,787
33,3506	1,7846	20,0842	17,8854	0,0561	0,0297	11,6715	0,1303	0,1389	0,1303	7,0591	0,1209	92,4416	2,583	0,104	1,834	1,159	0,004	0,002	1,348	0,000	0,004	0,020	0,698	0,016	7,770
33,644	2,032	18,112	19,883	0,037	0,000	10,515	0,000	0,000	0,090	7,331	0,153	91,797	1,446	0,066	0,918	0,715	0,001	0,000	0,674	0,000	0,004	0,008	0,402	0,011	4,245
35,511	2,460	17,862	17,962	0,061	0,000	10,524	0,000	0,000	0,275	9,239	0,184	94,077	1,486	0,077	0,881	0,629	0,002	0,000	0,657	0,000	0,005	0,022	0,493	0,013	4,266
35,777	2,563	18,114	18,157	0,029	0,000	10,379	0,000	0,000	0,274	9,268	0,188	94,750	1,486	0,080	0,887	0,631	0,001	0,000	0,643	0,000	0,005	0,022	0,491	0,013	4,260
35,408	2,657	17,878	18,098	0,025	0,000	10,121	0,000	0,000	0,245	9,131	0,182	93,744	1,487	0,084	0,885	0,636	0,001	0,000	0,634	0,000	0,007	0,020	0,489	0,013	4,255
35,574	2,706	17,815	18,033	0,035	0,000	10,307	0,000	0,000	0,247	9,216	0,194	94,126	1,488	0,085	0,878	0,631	0,001	0,000	0,643	0,000	0,005	0,020	0,492	0,014	4,257
35,205	2,706	17,890	17,952	0,027	0,000	10,219	0,000	0,000	0,232	9,286	0,199	93,714	1,481	0,086	0,887	0,632	0,001	0,000	0,641	0,000	0,005	0,019	0,498	0,014	4,263
35,641	2,718	17,999	17,918	0,025	0,000	10,165	0,000	0,000	0,245	9,183	0,187	94,083	1,490	0,085	0,887	0,626	0,001	0,000	0,633	0,000	0,005	0,020	0,490	0,013	4,250
35,327	2,722	17,820	18,362	0,023	0,000	10,284	0,000	0,000	0,233	9,146	0,187	94,104	1,481	0,086	0,881	0,644	0,001	0,000	0,643	0,000	0,005	0,019	0,489	0,013	4,260
SiO2	TiO2	Al2O3	FeOt	MnO	ZnO	MgO	CaO	BaO	Na2O	K2O	Cl	Sum	Si	Ti	Al	Fe2	Mn	Zn	Mg	Ca	Ba	Na	K	Cl	Sum

samp	le	B	CJ	-(96
------	----	---	----	----	----

34,863 2,689 18,212 18,479 0,055 0,000 9,974 0,000 0,135 8,940 0,180 93,525 1,470 0,085 0,905 0,652 0,000 0,627 0,000 0, 35,329 2,538 18,120 17,951 0,027 0,000 10,548 0,000 0,167 8,715 0,174 93,569 1,482 0,080 0,896 0,630 0,001 0,000 0,659 0,000 0	0,006 0,011 0,481 0,013 4,251
35,329 2,538 18,120 17.951 0.027 0.000 10.548 0.000 0.000 0.167 8,715 0.174 93,569 1.482 0.080 0.896 0.630 0.001 0.000 0.659 0.000 0	
	0,004 0,014 0,466 0,012 4,243
35,424 2,740 17,974 17,776 0,031 0,000 10,090 0,000 0,269 9,273 0,178 93,754 1,487 0,087 0,889 0,624 0,001 0,000 0,631 0,000 0,	0,004 0,022 0,497 0,013 4,254
35,349 2,728 17,835 18,014 0,021 0,000 10,259 0,000 0,000 0,258 9,262 0,182 93,908 1,483 0,086 0,882 0,632 0,001 0,000 0,642 0,000 0,	0,005 0,021 0,496 0,013 4,261
35,457 2,707 18,074 17,970 0,042 0,000 10,377 0,000 0,000 0,261 9,184 0,195 94,266 1,480 0,085 0,890 0,628 0,002 0,000 0,646 0,000 0,	0,005 0,021 0,489 0,014 4,259
35,143 2,271 18,252 18,184 0,054 0,000 10,248 0,000 0,000 0,191 8,870 0,184 93,398 1,480 0,072 0,906 0,641 0,002 0,000 0,643 0,000 0,	0,005 0,016 0,477 0,013 4,254
34,516 2,660 17,799 17,911 0,060 0,000 10,182 0,000 0,000 0,228 8,866 0,195 92,417 1,472 0,085 0,894 0,639 0,002 0,000 0,647 0,000 0,	0,006 0,019 0,482 0,014 4,261
34,800 2,528 18,069 18,228 0,025 0,000 10,424 0,000 0,000 0,203 8,574 0,191 93,042 1,471 0,080 0,900 0,644 0,001 0,000 0,657 0,000 0,	0,006 0,017 0,462 0,014 4,252
35,510 2,667 18,355 17,795 0,020 0,000 10,204 0,000 0,000 0,247 8,916 0,189 93,903 1,483 0,084 0,904 0,622 0,001 0,000 0,635 0,000 0,	0,007 0,020 0,475 0,013 4,242
35,654 2,749 18,405 17,712 0,010 0,000 10,074 0,000 0,000 0,235 8,868 0,188 93,896 1,487 0,086 0,905 0,618 0,000 0,000 0,627 0,000 0.	0,005 0,019 0,472 0,013 4,233
34,955 2,637 18,102 18,105 0,022 0,000 10,280 0,000 0,000 0,212 8,659 0,182 93,155 1,475 0,084 0,900 0,639 0,001 0,000 0,647 0,000 0.	0,005 0,017 0,466 0,013 4,246
34,650 2,963 18,015 18,473 0,039 0,000 10,381 0,000 0,000 0,209 8,542 0,172 93,444 1,461 0,094 0,895 0,651 0,001 0,000 0,652 0,000 0.	0,005 0,017 0,459 0,012 4,248
35,033 2,731 18,001 17,834 0,025 0,000 10,091 0,000 0,000 0,223 8,824 0,178 92,940 1,481 0,087 0,897 0,631 0,001 0,000 0,636 0,000 0.	0,005 0,018 0,476 0,013 4,244
35,020 2,603 18,349 18,275 0,050 0,000 10,354 0,000 0,000 0,200 8,687 0,192 93,729 1,469 0,082 0,907 0,641 0,002 0,000 0,648 0,000 0.	0,006 0,016 0,465 0,014 4,249
33,805 2,305 18,332 18,873 0,029 0,000 10,579 0,000 0,000 0,101 7,731 0,164 91,918 1,447 0,074 0,925 0,675 0,001 0,000 0,675 0,000 0.	0,005 0,008 0,422 0,012 4,244
35,357 2,742 18,108 18,201 0,035 0,000 9,952 0,000 0,000 0,232 9,097 0,182 93,904 1,483 0,087 0,895 0,638 0,001 0,000 0,622 0,000 0.	0,005 0,019 0,487 0,013 4,249
34,790 2,700 18,039 18,694 0,026 0,000 10,184 0,000 0,000 0,188 8,546 0,179 93,346 1,469 0,086 0,898 0,660 0,001 0,000 0,641 0,000 0.	0,004 0,015 0,460 0,013 4,247
35,492 2,802 18,009 18,036 0,029 0,000 10,018 0,000 0,000 0,207 9,190 0,173 93,956 1,486 0,088 0,889 0,632 0,001 0,000 0,625 0,000 0.	0,006 0,017 0,491 0,012 4,247
35,197 2,639 18,104 18,257 0,017 0,000 10,448 0,000 0,000 0,210 8,709 0,192 93,772 1,476 0,083 0,895 0,640 0,001 0,000 0,653 0,000 0.),004 0,017 0,466 0,014 4,249
35,210 2,730 17,901 18,365 0,039 0,000 10,264 0,000 0,000 0,156 8,640 0,194 93,499 1,481 0,086 0,887 0,646 0,001 0,000 0,644 0,000 0.	0,006 0,013 0,464 0,014 4,241
34,626 2,717 18,180 18,833 0,035 0,000 10,236 0,000 0,000 0,178 7,826 0,158 92,788 1,465 0,087 0,907 0,667 0,001 0,000 0,646 0,000 0.	0,005 0,015 0,423 0,011 4,225
39,335 3,970 15,795 17,626 0,042 0,000 9,651 0,000 0,000 0,051 5,026 0,115 91,611 1,627 0,124 0,770 0,610 0,002 0,000 0,595 0,000 0.	0,004 0,004 0,265 0,008 4,007
39,053 3,526 15,858 17,669 0,053 0,000 10,799 0,000 0,000 0,062 4,345 0,093 91,457 1,613 0,110 0,772 0,610 0,002 0,000 0,665 0,000 0.	0,002 0,005 0,229 0,007 4,015
34,449 2,654 18,306 18,121 0,018 0,000 10,073 0,000 0,000 0,184 8,551 0,165 92,521 1,464 0,085 0,917 0,644 0,001 0,000 0,638 0,000 0.	0,003 0,015 0,464 0,012 4,244
33,242 2,397 18,430 19,489 0,081 0,000 10,594 0,000 0,000 0,120 7,470 0,142 91,964 1,427 0,077 0,932 0,700 0,003 0,000 0,678 0,000 0.	0,004 0,010 0,409 0,010 4,250
SiO2 TiO2 Al2O3 FeOt MnO ZnO MgO CaO BaO Na2O K2O Cl Sum Si Ti Al Fe2 Mn Zn Mg Ca	Ba Na K Cl Sum
sample BCJ-10	
35,160 2,809 17,974 17,913 0,034 0,000 10,913 0,000 0,189 0,208 8,484 0,167 93,850 1,472 0,089 0,887 0,627 0,001 0,000 0,681 0,000 0.	0,003 0,017 0,453 0,012 4,243

35,242	2,683	17,325	18,824	0,022	0,000	10,366	0,000	0,009	0,194	7,573	0,150	92,387	1,496	0,086	0,867	0,668	0,001	0,000	0,656	0,000	0,000	0,016	0,410	0,011	4,209
35,448	2,809	17,664	18,334	0,041	0,000	11,363	0,000	0,087	0,144	6,292	0,165	92,347	1,489	0,089	0,875	0,644	0,002	0,000	0,712	0,000	0,001	0,012	0,337	0,012	4,171
34,705	2,748	18,111	18,512	0,050	0,000	10,550	0,000	0,074	0,171	8,197	0,176	93,294	1,464	0,087	0,901	0,653	0,002	0,000	0,663	0,000	0,001	0,014	0,441	0,013	4,239
35,088	2,755	18,028	19,603	0,050	0,000	10,845	0,000	0,044	0,124	5,280	0,173	91,990	1,479	0,087	0,896	0,691	0,002	0,000	0,682	0,000	0,001	0,010	0,284	0,012	4,145
35,552	2,963	17,780	17,836	0,032	0,000	10,669	0,000	0,124	0,160	9,073	0,145	94,335	1,483	0,093	0,874	0,622	0,001	0,000	0,663	0,000	0,002	0,013	0,483	0,010	4,245
35,554	2,856	17,773	17,616	0,027	0,000	10,518	0,000	0,163	0,170	9,308	0,165	94,150	1,487	0,090	0,876	0,616	0,001	0,000	0,656	0,000	0,003	0,014	0,497	0,012	4,252
35,484	2,899	17,814	17,834	0,031	0,000	10,662	0,000	0,065	0,160	9,202	0,166	94,315	1,482	0,091	0,877	0,623	0,001	0,000	0,664	0,000	0,001	0,013	0,490	0,012	4,252
35,448	2,868	17,825	17,823	0,004	0,000	10,597	0,000	0,045	0,123	9,370	0,161	94,263	1,482	0,090	0,878	0,623	0,000	0,000	0,660	0,000	0,001	0,010	0,500	0,011	4,255
35,409	2,908	17,725	17,848	0,007	0,000	10,508	0,000	0,022	0,163	9,321	0,170	94,082	1,483	0,092	0,875	0,625	0,000	0,000	0,656	0,000	0,000	0,013	0,498	0,012	4,255
35,213	2,919	17,828	17,925	0,022	0,000	10,179	0,000	0,065	0,167	9,120	0,162	93,600	1,482	0,092	0,885	0,631	0,001	0,000	0,639	0,000	0,001	0,014	0,490	0,012	4,246
35,602	2,891	17,652	18,042	0,000	0,000	10,521	0,000	0,104	0,161	9,253	0,149	94,376	1,487	0,091	0,869	0,630	0,000	0,000	0,655	0,000	0,002	0,013	0,493	0,011	4,251
35,631	2,796	17,920	17,797	0,038	0,000	10,543	0,000	0,093	0,174	9,286	0,152	94,428	1,486	0,088	0,881	0,621	0,001	0,000	0,655	0,000	0,002	0,014	0,494	0,011	4,251
35,649	2,767	17,850	17,964	0,040	0,000	10,409	0,000	0,063	0,158	9,307	0,153	94,361	1,488	0,087	0,878	0,627	0,001	0,000	0,648	0,000	0,001	0,013	0,496	0,011	4,251
35,232	2,726	18,124	18,068	0,022	0,000	10,274	0,000	0,085	0,138	9,030	0,157	93,855	1,479	0,086	0,897	0,634	0,001	0,000	0,643	0,000	0,001	0,011	0,484	0,011	4,246
35,654	2,702	17,949	18,406	0,002	0,000	10,688	0,000	0,096	0,176	9,265	0,157	95,094	1,480	0,084	0,878	0,639	0,000	0,000	0,661	0,000	0,002	0,014	0,491	0,011	4,260
35,197	2,797	17,713	18,138	0,046	0,000	10,636	0,000	0,000	0,175	9,252	0,169	94,123	1,476	0,088	0,876	0,636	0,002	0,000	0,665	0,000	0,000	0,014	0,495	0,012	4,264
35,760	2,834	17,895	17,656	0,022	0,000	10,698	0,000	0,048	0,140	9,301	0,179	94,532	1,488	0,089	0,877	0,614	0,001	0,000	0,663	0,000	0,001	0,011	0,494	0,013	4,250
34,895	2,867	17,544	18,273	0,020	0,000	10,968	0,000	0,133	0,141	8,910	0,156	93,905	1,468	0,091	0,870	0,643	0,001	0,000	0,688	0,000	0,002	0,012	0,478	0,011	4,262
35,230	2,941	17,758	17,839	0,003	0,000	10,790	0,000	0,059	0,154	9,325	0,161	94,260	1,474	0,093	0,876	0,624	0,000	0,000	0,673	0,000	0,001	0,013	0,498	0,011	4,262
35,042	2,930	18,038	18,326	0,023	0,000	10,792	0,000	0,102	0,187	8,713	0,145	94,298	1,464	0,092	0,888	0,640	0,001	0,000	0,672	0,000	0,002	0,015	0,465	0,010	4,250
38,323	2,465	16,962	18,039	0,041	0,000	10,170	0,000	0,057	0,179	7,117	0,150	93,502	1,582	0,077	0,825	0,623	0,001	0,000	0,626	0,000	0,001	0,014	0,375	0,011	4,134
34,904	2,899	18,115	18,249	0,017	0,000	10,670	0,000	0,104	0,162	8,504	0,158	93,782	1,465	0,092	0,896	0,640	0,001	0,000	0,667	0,000	0,002	0,013	0,455	0,011	4,242
35,361	3,009	17,768	17,827	0,027	0,000	10,560	0,000	0,052	0,182	9,359	0,176	94,320	1,479	0,095	0,876	0,623	0,001	0,000	0,658	0,000	0,001	0,015	0,499	0,012	4,259
35,600	3,005	17,499	18,015	0,036	0,000	10,505	0,000	0,181	0,174	9,279	0,150	94,445	1,488	0,094	0,862	0,630	0,001	0,000	0,654	0,000	0,003	0,014	0,495	0,011	4,252
34,253	2,584	18,608	17,887	0,039	0,000	10,006	0,000	0,089	0,178	9,213	0,150	93,007	1,455	0,083	0,931	0,635	0,001	0,000	0,633	0,000	0,002	0,015	0,499	0,011	4,265
SiO2	TiO2	Al2O3	FeOt	MnO	ZnO	MgO	CaO	BaO	Na2O	K2O	Cl	Sum	Si	Ti	Al	Fe2	Mn	Zn	Mg	Ca	Ba	Na	K	Cl	Sum
sample BCJ-10																									
34,722	2,850	18,080	18,087	0,022	0,000	9,979	0,000	0,139	0,141	9,276	0,168	93,463	1,469	0,091	0,902	0,640	0,001	0,000	0,629	0,000	0,002	0,012	0,501	0,012	4,258
34,693	3,010	18,375	18,044	0,000	0,000	10,200	0,000	0,196	0,162	9,320	0,166	94,165	1,457	0,095	0,910	0,634	0,000	0,000	0,639	0,000	0,003	0,013	0,499	0,012	4,261
34,622	3,133	18,304	17,890	0,030	0,000	10,027	0,000	0,126	0,170	9,206	0,166	93,673	1,459	0,099	0,909	0,631	0,001	0,000	0,630	0,000	0,002	0,014	0,495	0,012	4,253

44 512	2 921	15 951	15 148	0.057	0.000	8 269	0.000	0.108	0.172	7 562	0.158	94 858	1 761	0.087	0 744	0 501	0.002	0.000	0.488	0.000	0.002	0.013	0.382	0.011	3 989
34 803	3 286	18 266	18 031	0.033	0,000	0,209	0,000	0.115	0.175	0.340	0.163	94,000	1,701	0.104	0.904	0,633	0.001	0,000	0,100	0,000	0.002	0.014	0,501	0.012	1 249
24.467	3,200	18,200	17 785	0,035	0,000	0.511	0,000	0,115	0,179	0.250	0,105	02 206	1,460	0,104	0,904	0,630	0,001	0,000	0,015	0,000	0,002	0,014	0,500	0,012	4,249
24,407	3,310	18,390	17,765	0,020	0,000	9,511	0,000	0,207	0,178	9,239	0,174	95,500	1,460	0,105	0,918	0,030	0,001	0,000	0,001	0,000	0,003	0,013	0,300	0,012	4,245
34,830	3,370	18,404	18,065	0,011	0,000	9,798	0,000	0,104	0,144	9,307	0,174	94,217	1,460	0,106	0,909	0,655	0,000	0,000	0,612	0,000	0,002	0,012	0,498	0,012	4,246
34,797	3,488	18,424	17,754	0,031	0,000	10,052	0,000	0,080	0,155	9,332	0,152	94,263	1,456	0,110	0,909	0,621	0,001	0,000	0,627	0,000	0,001	0,013	0,498	0,011	4,246
34,805	3,514	18,270	17,778	0,023	0,000	10,054	0,000	0,154	0,164	9,449	0,154	94,365	1,457	0,111	0,902	0,622	0,001	0,000	0,628	0,000	0,003	0,013	0,505	0,011	4,251
34,860	3,436	18,383	17,731	0,000	0,000	10,161	0,000	0,085	0,169	9,311	0,158	94,293	1,458	0,108	0,906	0,620	0,000	0,000	0,633	0,000	0,001	0,014	0,497	0,011	4,248
34,605	3,491	18,130	17,542	0,007	0,000	10,237	0,000	0,054	0,167	9,337	0,160	93,730	1,456	0,111	0,899	0,617	0,000	0,000	0,642	0,000	0,001	0,014	0,501	0,011	4,253
35,035	3,399	18,262	17,703	0,005	0,000	10,135	0,000	0,198	0,153	9,160	0,165	94,214	1,465	0,107	0,900	0,619	0,000	0,000	0,632	0,000	0,003	0,012	0,489	0,012	4,240
34,778	3,385	18,195	17,764	0,020	0,000	10,436	0,000	0,139	0,171	9,313	0,159	94,359	1,455	0,107	0,897	0,622	0,001	0,000	0,651	0,000	0,002	0,014	0,497	0,011	4,257
34,221	3,088	17,726	19,082	0,002	0,000	10,367	0,000	0,068	0,160	8,832	0,169	93,716	1,449	0,098	0,885	0,676	0,000	0,000	0,655	0,000	0,001	0,013	0,477	0,012	4,267
34,700	3,620	17,965	17,737	0,031	0,000	9,694	0,000	0,161	0,154	9,342	0,149	93,552	1,465	0,115	0,894	0,626	0,001	0,000	0,610	0,000	0,003	0,013	0,503	0,011	4,242
34,477	3,650	18,245	18,083	0,035	0,000	10,102	0,000	0,013	0,175	9,102	0,163	94,044	1,448	0,115	0,903	0,635	0,001	0,000	0,632	0,000	0,000	0,014	0,488	0,012	4,248
34,537	3,617	17,979	18,047	0,030	0,000	10,162	0,000	0,067	0,127	9,286	0,165	94,016	1,453	0,114	0,891	0,635	0,001	0,000	0,637	0,000	0,001	0,010	0,498	0,012	4,253
34,877	3,418	18,000	18,000	0,034	0,000	10,060	0,000	0,080	0,150	9,265	0,157	94,040	1,465	0,108	0,891	0,632	0,001	0,000	0,630	0,000	0,001	0,012	0,496	0,011	4,247
35,141	3,418	18,026	17,688	0,028	0,000	10,207	0,000	0,122	0,151	9,289	0,166	94,236	1,470	0,108	0,889	0,619	0,001	0,000	0,636	0,000	0,002	0,012	0,496	0,012	4,244
34,903	3,483	18,323	17,706	0,012	0,000	10,008	0,000	0,104	0,168	9,297	0,166	94,169	1,461	0,110	0,904	0,620	0,000	0,000	0,625	0,000	0,002	0,014	0,497	0,012	4,244
34,711	3,431	18,038	18,081	0,013	0,000	9,959	0,000	0,050	0,172	9,308	0,157	93,920	1,461	0,109	0,895	0,636	0,001	0,000	0,625	0,000	0,001	0,014	0,500	0,011	4,251
34,799	3,404	18,010	18,061	0,031	0,000	10,056	0,000	0,091	0,181	9,284	0,161	94,078	1,462	0,108	0,892	0,635	0,001	0,000	0,630	0,000	0,002	0,015	0,498	0,012	4,252
34,884	3,518	18,133	18,136	0,000	0,000	9,843	0,000	0,122	0,162	9,438	0,164	94,400	1,462	0,111	0,896	0,636	0,000	0,000	0,615	0,000	0,002	0,013	0,505	0,012	4,250
34,698	4,380	17,667	17,872	0,074	0,000	9,728	0,000	0,183	0,174	9,188	0,170	94,134	1,458	0,138	0,875	0,628	0,003	0,000	0,609	0,000	0,003	0,014	0,492	0,012	4,232
36,008	3,770	17,398	18,129	0,020	0,000	10,519	0,000	0,122	0,206	8,943	0,193	95,308	1,487	0,117	0,847	0,626	0,001	0,000	0,648	0,000	0,002	0,017	0,471	0,014	4,229
35,442	2,840	17,893	17,830	0,052	0,000	10,911	0,000	0,020	0,252	8,773	0,188	94,201	1,478	0,089	0,880	0,622	0,002	0,000	0,678	0,000	0,000	0,020	0,467	0,013	4,250
SiO2	TiO2	Al2O3	FeOt	MnO	ZnO	MgO	CaO	BaO	Na2O	K2O	Cl	Sum	Si	Ti	Al	Fe2	Mn	Zn	Mg	Ca	Ba	Na	K	Cl	Sum
sample BCJ-10																									
35,558	2,925	17,840	17,569	0,019	0,000	10,953	0,000	0,093	0,229	8,887	0,198	94,269	1,481	0,092	0,876	0,612	0,001	0,000	0,680	0,000	0,002	0,019	0,472	0,014	4,248
35,817	2,821	17,931	18,145	0,048	0,000	10,525	0,000	0,089	0,196	9,190	0,175	94,937	1,487	0,088	0,877	0,630	0,002	0,000	0,651	0,000	0,001	0,016	0,487	0,012	4,251
35,718	2,673	17,974	18,131	0,051	0,000	10,787	0,000	0,050	0,151	9,384	0,177	95,095	1,481	0,083	0,879	0,629	0,002	0,000	0,667	0,000	0,001	0,012	0,497	0,012	4,263
35,695	2,609	17,943	17,693	0,031	0,000	10,829	0,000	0,118	0,155	7,950	0,143	93,167	1,495	0,082	0,886	0,620	0,001	0,000	0,676	0,000	0,002	0,013	0,425	0,010	4,209
35,853	2,668	18,143	17,745	0,029	0,000	10,539	0,000	0,059	0,169	9,311	0,156	94,672	1,489	0,083	0,888	0,616	0,001	0,000	0,652	0,000	0,001	0,014	0,493	0,011	4,248

35,765	2,677	18,268	17,901	0,029	0,000	10,614	0,000	0,219	0,157	9,306	0,184	95,119	1,482	0,083	0,892	0,620	0,001	0,000	0,655	0,000	0,004	0,013	0,492	0,013	4,254
36,001	2,716	18,125	17,901	0,031	0,000	10,483	0,000	0,161	0,151	9,222	0,180	94,969	1,491	0,085	0,885	0,620	0,001	0,000	0,647	0,000	0,003	0,012	0,487	0,013	4,244
35,510	2,808	17,615	18,240	0,042	0,000	10,172	0,000	0,109	0,165	9,040	0,163	93,864	1,492	0,089	0,872	0,641	0,002	0,000	0,637	0,000	0,002	0,013	0,485	0,012	4,244
34,980	3,223	17,564	17,858	0,043	0,000	10,902	0,000	0,098	0,207	8,683	0,190	93,748	1,469	0,102	0,870	0,627	0,002	0,000	0,683	0,000	0,002	0,017	0,465	0,014	4,249
35,486	3,046	17,583	17,725	0,013	0,000	10,824	0,000	0,102	0,184	9,022	0,183	94,168	1,483	0,096	0,866	0,619	0,001	0,000	0,674	0,000	0,002	0,015	0,481	0,013	4,249
35,801	2,870	17,791	17,631	0,040	0,000	10,612	0,000	0,065	0,167	9,308	0,193	94,479	1,491	0,090	0,873	0,614	0,001	0,000	0,659	0,000	0,001	0,013	0,495	0,014	4,251
35,579	2,830	17,771	17,806	0,022	0,000	10,820	0,000	0,128	0,209	8,737	0,196	94,098	1,486	0,089	0,875	0,622	0,001	0,000	0,674	0,000	0,002	0,017	0,465	0,014	4,244
36,060	2,797	17,948	17,894	0,050	0,000	10,871	0,000	0,111	0,173	9,196	0,180	95,278	1,489	0,087	0,873	0,618	0,002	0,000	0,669	0,000	0,002	0,014	0,484	0,013	4,250

						8~													-8						
sample BCJ-11																									
34,600	3,863	16,671	19,361	0,036	0,000	8,450	0,000	0,144	0,122	9,165	0,489	92,901	1,490	0,125	0,846	0,697	0,001	0,000	0,543	0,000	0,002	0,010	0,504	0,036	4,254
35,055	3,879	16,942	19,757	0,037	0,000	8,583	0,000	0,149	0,121	9,174	0,479	94,175	1,489	0,124	0,848	0,702	0,001	0,000	0,543	0,000	0,003	0,010	0,497	0,034	4,251
35,287	3,945	17,054	20,144	0,014	0,000	8,491	0,000	0,109	0,141	9,190	0,485	94,858	1,489	0,125	0,848	0,711	0,001	0,000	0,534	0,000	0,002	0,012	0,495	0,035	4,250
35,355	3,995	17,380	19,654	0,044	0,000	8,561	0,000	0,135	0,133	8,985	0,468	94,710	1,488	0,126	0,862	0,692	0,002	0,000	0,537	0,000	0,002	0,011	0,482	0,033	4,235
35,585	3,975	17,423	20,072	0,046	0,000	8,600	0,000	0,129	0,127	9,232	0,477	95,665	1,486	0,125	0,858	0,701	0,002	0,000	0,535	0,000	0,002	0,010	0,492	0,034	4,245
35,463	3,924	17,108	20,093	0,015	0,000	8,601	0,000	0,157	0,143	9,182	0,481	95,166	1,490	0,124	0,847	0,706	0,001	0,000	0,539	0,000	0,003	0,012	0,492	0,034	4,248
35,337	3,750	16,922	19,387	0,026	0,000	8,522	0,000	0,181	0,149	9,049	0,460	93,782	1,502	0,120	0,848	0,689	0,001	0,000	0,540	0,000	0,003	0,012	0,491	0,033	4,239
34,562	3,538	16,766	18,767	0,064	0,000	8,475	0,000	0,210	0,128	8,831	0,458	91,798	1,499	0,115	0,857	0,681	0,002	0,000	0,548	0,000	0,004	0,011	0,489	0,034	4,240
34,271	3,679	16,731	18,906	0,012	0,000	8,257	0,000	0,090	0,125	8,819	0,458	91,347	1,495	0,121	0,860	0,690	0,000	0,000	0,537	0,000	0,002	0,011	0,491	0,034	4,239
34,327	3,647	17,430	20,496	0,059	0,000	8,160	0,000	0,133	0,116	9,245	0,493	94,106	1,467	0,117	0,878	0,733	0,002	0,000	0,520	0,000	0,002	0,010	0,504	0,036	4,269
34,818	3,986	17,354	20,438	0,024	0,000	8,087	0,000	0,173	0,145	9,242	0,494	94,761	1,476	0,127	0,867	0,724	0,001	0,000	0,511	0,000	0,003	0,012	0,500	0,035	4,255
33,400	3,773	16,628	18,971	0,024	0,000	8,004	0,000	0,116	0,135	8,755	0,487	90,293	1,480	0,126	0,868	0,703	0,001	0,000	0,529	0,000	0,002	0,012	0,495	0,036	4,250
35,254	3,894	16,865	19,332	0,026	0,000	8,665	0,000	0,120	0,141	9,063	0,492	93,852	1,498	0,124	0,844	0,687	0,001	0,000	0,549	0,000	0,002	0,012	0,491	0,035	4,243
34,523	3,069	16,218	18,734	0,049	0,000	8,626	0,000	0,242	0,156	8,197	0,275	90,088	1,519	0,102	0,841	0,689	0,002	0,000	0,566	0,000	0,004	0,013	0,460	0,020	4,216
35,043	4,118	18,978	20,667	0,034	0,000	6,525	0,000	0,127	0,086	9,651	0,483	95,712	1,469	0,130	0,938	0,724	0,001	0,000	0,408	0,000	0,002	0,007	0,516	0,034	4,228
34,714	3,792	18,108	21,165	0,065	0,000	7,164	0,000	0,217	0,087	9,324	0,478	95,113	1,470	0,121	0,904	0,750	0,002	0,000	0,452	0,000	0,004	0,007	0,504	0,034	4,247
34,941	3,869	17,806	21,485	0,036	0,000	7,359	0,000	0,178	0,081	9,345	0,468	95,567	1,474	0,123	0,885	0,758	0,001	0,000	0,463	0,000	0,003	0,007	0,503	0,033	4,249
36,270	3,439	20,425	19,165	0,044	0,000	6,363	0,000	0,098	0,080	8,413	0,414	94,710	1,502	0,107	0,997	0,664	0,002	0,000	0,393	0,000	0,002	0,006	0,445	0,029	4,146
35,115	3,839	18,223	20,964	0,071	0,000	7,258	0,000	0,132	0,109	9,454	0,469	95,635	1,475	0,121	0,902	0,737	0,003	0,000	0,455	0,000	0,002	0,009	0,507	0,033	4,243
35,296	3,813	18,051	21,100	0,050	0,000	7,518	0,000	0,099	0,092	9,425	0,485	95,927	1,478	0,120	0,891	0,739	0,002	0,000	0,469	0,000	0,002	0,008	0,504	0,034	4,246
45,948	3,290	15,618	17,816	0,035	0,000	5,858	0,000	0,100	0,072	8,181	0,462	97,381	1,797	0,097	0,720	0,583	0,001	0,000	0,342	0,000	0,002	0,005	0,408	0,031	3,984
35,787	3,386	19,957	19,382	0,042	0,000	7,000	0,000	0,085	0,069	8,608	0,461	94,777	1,489	0,106	0,979	0,674	0,002	0,000	0,434	0,000	0,001	0,006	0,457	0,032	4,180
34,753	3,401	18,484	20,687	0,042	0,000	7,612	0,000	0,109	0,103	9,410	0,465	95,064	1,467	0,108	0,920	0,730	0,002	0,000	0,479	0,000	0,002	0,008	0,507	0,033	4,256
34,887	3,349	18,667	20,904	0,048	0,000	7,547	0,000	0,042	0,082	9,498	0,419	95,442	1,466	0,106	0,925	0,735	0,002	0,000	0,473	0,000	0,001	0,007	0,509	0,030	4,253
34,728	3,687	17,764	21,079	0,066	0,000	7,609	0,000	0,066	0,111	9,395	0,488	94,994	1,472	0,118	0,888	0,747	0,002	0,000	0,481	0,000	0,001	0,009	0,508	0,035	4,260
34,606	3,710	17,885	21,275	0,066 MnO	0,000 7nO	7,411 McO	0,000	0,182	0,116 No20	9,342	0,484	95,077 Sum	1,468	0,118 Ti	0,894	0,755	0,002 Mp	0,000 7 n	0,469 Ma	0,000	0,003 P o	0,010 No	0,506 V	0,035	4,259
5102	1102	A12O3	reot	UIIIO	210	mgO	CaU	DaU	11020	R20	U U	Sum	31	11	AI	rez	1111	Z 11	TATA	Ua 🗸	Da	тяя	N	U.	Sum

SiO2 TiO2 Al2O3 FeOt MnO ZnO MgO CaO BaO Na2O K2O Cl Sum Si Ti Al Fe2 Mn Zn Mg Ca Ba Na K Cl Sum

34,663	3,764	17,865	21,261	0,021	0,000	7,486	0,000	0,147	0,090	9,396	0,494	95,188	1,468	0,120	0,892	0,753	0,001	0,000	0,473	0,000	0,002	0,007	0,508	0,035	4,259
34,861	3,827	17,896	21,364	0,038	0,000	7,530	0,000	0,098	0,082	9,457	0,508	95,660	1,469	0,121	0,889	0,753	0,001	0,000	0,473	0,000	0,002	0,007	0,508	0,036	4,259
34,668	3,865	18,194	20,969	0,059	0,000	7,207	0,000	0,092	0,082	9,391	0,539	95,064	1,467	0,123	0,908	0,742	0,002	0,000	0,455	0,000	0,002	0,007	0,507	0,038	4,251
48,263	5,239	14,378	16,606	0,041	0,000	5,179	0,000	0,169	0,066	7,417	0,477	97,835	1,852	0,151	0,650	0,533	0,001	0,000	0,296	0,000	0,003	0,005	0,363	0,031	3,886
35,260	3,718	18,957	20,452	0,045	0,000	7,128	0,000	0,162	0,077	9,327	0,461	95,588	1,474	0,117	0,934	0,715	0,002	0,000	0,444	0,000	0,003	0,006	0,498	0,033	4,226
35,178	3,201	18,779	20,734	0,040	0,000	7,691	0,000	0,030	0,090	9,406	0,462	95,609	1,473	0,101	0,927	0,726	0,001	0,000	0,480	0,000	0,001	0,007	0,502	0,033	4,251
34,713	3,266	18,245	21,073	0,053	0,000	7,770	0,000	0,166	0,067	9,292	0,495	95,139	1,468	0,104	0,909	0,745	0,002	0,000	0,490	0,000	0,003	0,006	0,501	0,035	4,262
34,965	3,083	18,412	20,945	0,047	0,000	7,898	0,000	0,037	0,110	9,358	0,418	95,272	1,472	0,098	0,914	0,737	0,002	0,000	0,496	0,000	0,001	0,009	0,503	0,030	4,259
35,288	3,333	19,095	18,935	0,049	0,000	8,206	0,000	0,102	0,081	9,468	0,373	94,931	1,474	0,105	0,940	0,662	0,002	0,000	0,511	0,000	0,002	0,007	0,505	0,026	4,233
34,794	3,778	17,820	20,753	0,084	0,000	7,505	0,000	0,076	0,052	9,601	0,458	94,921	1,474	0,120	0,890	0,736	0,003	0,000	0,474	0,000	0,001	0,004	0,519	0,033	4,255
34,744	3,749	18,025	20,732	0,068	0,000	7,559	0,000	0,085	0,054	9,340	0,449	94,804	1,471	0,119	0,900	0,734	0,002	0,000	0,477	0,000	0,001	0,005	0,505	0,032	4,246
34,704	3,663	18,154	21,124	0,051	0,000	7,590	0,000	0,116	0,074	9,426	0,458	95,359	1,465	0,116	0,903	0,746	0,002	0,000	0,478	0,000	0,002	0,006	0,508	0,033	4,257
34,523	3,635	18,267	20,693	0,045	0,000	7,475	0,000	0,168	0,086	9,457	0,453	94,802	1,464	0,116	0,913	0,734	0,002	0,000	0,473	0,000	0,003	0,007	0,512	0,032	4,255
34,674	3,585	18,301	20,855	0,094	0,000	7,503	0,000	0,118	0,065	9,517	0,470	95,182	1,465	0,114	0,912	0,737	0,003	0,000	0,473	0,000	0,002	0,005	0,513	0,034	4,258
34,086	3,618	18,279	20,650	0,067	0,000	7,375	0,000	0,136	0,088	9,379	0,464	94,141	1,457	0,116	0,921	0,738	0,002	0,000	0,470	0,000	0,002	0,007	0,511	0,033	4,259
35,349	3,531	18,887	20,092	0,059	0,000	7,141	0,000	0,098	0,094	9,298	0,439	94,987	1,484	0,111	0,934	0,705	0,002	0,000	0,447	0,000	0,002	0,008	0,498	0,031	4,222
35,047	3,665	18,300	20,848	0,095	0,000	7,449	0,000	0,052	0,075	9,493	0,453	95,476	1,473	0,116	0,907	0,733	0,003	0,000	0,467	0,000	0,001	0,006	0,509	0,032	4,247
34,308	3,583	18,226	20,657	0,063	0,000	7,440	0,000	0,182	0,085	9,481	0,469	94,493	1,462	0,115	0,915	0,736	0,002	0,000	0,472	0,000	0,003	0,007	0,515	0,034	4,261
34,902	3,577	18,595	20,296	0,051	0,000	7,459	0,000	0,135	0,093	9,436	0,440	94,986	1,471	0,113	0,924	0,715	0,002	0,000	0,469	0,000	0,002	0,008	0,507	0,031	4,243
35,309	3,498	18,727	20,159	0,048	0,000	7,810	0,000	0,236	0,069	9,425	0,401	95,682	1,474	0,110	0,922	0,704	0,002	0,000	0,486	0,000	0,004	0,006	0,502	0,028	4,237
34,720	3,483	18,509	20,418	0,061	0,000	7,657	0,000	0,101	0,092	9,555	0,447	95,043	1,465	0,111	0,921	0,721	0,002	0,000	0,482	0,000	0,002	0,008	0,515	0,032	4,257
34,835	3,568	18,300	20,369	0,066	0,000	7,741	0,000	0,151	0,088	9,513	0,435	95,065	1,470	0,113	0,910	0,719	0,002	0,000	0,487	0,000	0,003	0,007	0,512	0,031	4,253
34,572	3,422	18,552	20,413	0,064	0,000	7,937	0,000	0,129	0,061	9,498	0,410	95,058	1,459	0,109	0,923	0,720	0,002	0,000	0,499	0,000	0,002	0,005	0,511	0,029	4,259
34,985	3,711	19,017	19,459	0,056	0,000	7,423	0,000	0,089	0,085	9,528	0,413	94,765	1,470	0,117	0,942	0,684	0,002	0,000	0,465	0,000	0,002	0,007	0,511	0,029	4,230
34,715	3,705	18,954	20,442	0,081	0,000	7,339	0,000	0,124	0,074	9,529	0,418	95,382	1,458	0,117	0,939	0,718	0,003	0,000	0,460	0,000	0,002	0,006	0,511	0,030	4,243
34,902	3,627	18,364	20,657	0,060	0,000	7,480	0,000	0,077	0,103	9,588	0,427	95,286	1,470	0,115	0,912	0,728	0,002	0,000	0,470	0,000	0,001	0,008	0,515	0,030	4,251
SiO2	TiO2	Al2O3	FeOt	MnO	ZnO	MgO	CaO	BaO	Na2O	K2O	Cl	Sum	Si	Ti	Al	Fe2	Mn	Zn	Mg	Ca	Ba	Na	К	Cl	Sum
sample BCJ-11																									

-

sample BCJ-11																									
SiO2	TiO2	Al2O3	FeOt	MnO	ZnO	MgO	CaO	BaO	Na2O	K2O	Cl	Sum	Si	Ti	Al	Fe2	Mn	Zn	Mg	Ca	Ba	Na	К	Cl	Sum
42,388	2,709	16,398	18,467	0,063	0,000	7,011	0,000	0,132	0,084	7,969	0,427	95,646	1,707	0,082	0,778	0,622	0,002	0,000	0,421	0,000	0,002	0,007	0,409	0,029	4,059
34,847	3,006	18,647	20,406	0,061	0,000	8,202	0,000	0,116	0,126	9,421	0,486	95,318	1,465	0,095	0,924	0,718	0,002	0,000	0,514	0,000	0,002	0,010	0,505	0,035	4,270
34,836	3,014	18,496	20,108	0,085	0,000	8,060	0,000	0,050	0,136	9,419	0,475	94,679	1,472	0,096	0,921	0,711	0,003	0,000	0,508	0,000	0,001	0,011	0,508	0,034	4,265
34,752	2,845	18,783	19,994	0,046	0,000	8,280	0,000	0,185	0,131	9,278	0,477	94,772	1,466	0,090	0,934	0,706	0,002	0,000	0,521	0,000	0,003	0,011	0,499	0,034	4,266
35,030	2,975	18,873	20,161	0,051	0,000	8,291	0,000	0,194	0,108	9,265	0,444	95,392	1,467	0,094	0,932	0,706	0,002	0,000	0,518	0,000	0,003	0,009	0,495	0,031	4,257
35,214	2,805	18,795	20,170	0,051	0,000	8,272	0,000	0,129	0,097	9,342	0,454	95,329	1,475	0,088	0,928	0,707	0,002	0,000	0,517	0,000	0,002	0,008	0,499	0,032	4,258
35,127	2,816	18,609	20,189	0,073	0,000	8,152	0,000	0,177	0,118	9,306	0,476	95,043	1,478	0,089	0,923	0,710	0,003	0,000	0,511	0,000	0,003	0,010	0,500	0,034	4,260
34,762	2,861	18,559	20,332	0,054	0,000	8,082	0,000	0,116	0,088	9,340	0,460	94,653	1,471	0,091	0,926	0,719	0,002	0,000	0,510	0,000	0,002	0,007	0,504	0,033	4,264
35,051	2,879	18,900	20,101	0,041	0,000	8,103	0,000	0,107	0,148	9,407	0,478	95,216	1,471	0,091	0,935	0,706	0,001	0,000	0,507	0,000	0,002	0,012	0,504	0,034	4,262
35,150	2,891	18,580	20,030	0,026	0,000	8,111	0,000	0,135	0,120	9,263	0,472	94,776	1,481	0,092	0,923	0,706	0,001	0,000	0,509	0,000	0,002	0,010	0,498	0,034	4,254
35,120	2,969	18,626	19,849	0,079	0,000	8,025	0,000	0,146	0,136	9,210	0,471	94,632	1,481	0,094	0,926	0,700	0,003	0,000	0,504	0,000	0,002	0,011	0,495	0,034	4,249
35,081	3,094	18,863	19,894	0,077	0,000	7,975	0,000	0,142	0,145	9,369	0,485	95,123	1,473	0,098	0,933	0,698	0,003	0,000	0,499	0,000	0,002	0,012	0,502	0,034	4,254
35,180	3,038	18,691	20,213	0,064	0,000	7,967	0,000	0,129	0,141	9,385	0,493	95,300	1,476	0,096	0,925	0,709	0,002	0,000	0,498	0,000	0,002	0,011	0,502	0,035	4,257
35,513	3,137	18,105	19,760	0,075	0,000	7,702	0,000	0,066	0,110	9,207	0,491	94,166	1,502	0,100	0,903	0,699	0,003	0,000	0,486	0,000	0,001	0,009	0,497	0,035	4,235
44,530	2,679	16,138	17,304	0,070	0,000	6,471	0,000	0,111	0,105	7,919	0,440	95,767	1,769	0,080	0,756	0,575	0,002	0,000	0,383	0,000	0,002	0,008	0,401	0,030	4,007
35,146	2,942	18,992	20,036	0,081	0,000	7,984	0,000	0,081	0,110	9,362	0,441	95,175	1,473	0,093	0,938	0,702	0,003	0,000	0,499	0,000	0,001	0,009	0,501	0,031	4,251
35,130	2,732	18,850	20,051	0,055	0,000	8,054	0,000	0,138	0,145	9,321	0,466	94,941	1,478	0,086	0,935	0,705	0,002	0,000	0,505	0,000	0,002	0,012	0,500	0,033	4,258
34,966	2,490	19,043	19,852	0,048	0,000	8,432	0,000	0,105	0,125	9,382	0,449	94,893	1,470	0,079	0,944	0,698	0,002	0,000	0,529	0,000	0,002	0,010	0,503	0,032	4,268
34,643	1,925	19,620	19,688	0,088	0,000	8,600	0,000	0,096	0,091	9,422	0,363	94,535	1,460	0,061	0,975	0,694	0,003	0,000	0,540	0,000	0,002	0,007	0,507	0,026	4,274
34,862	4.081	18.357	20,319	0.072	0.000	7.283	0.000	0.026	0.059	9,485	0.419	94,963	1.469	0.129	0.912	0.716	0.003	0.000	0.458	0.000	0.000	0.005	0.510	0.030	4.232
34,649	3.928	18.286	20,181	0.054	0.000	7.340	0.000	0.114	0.076	9,605	0.431	94,665	1,468	0.125	0.913	0.715	0.002	0.000	0.464	0.000	0.002	0.006	0.519	0.031	4.244
34.675	3.830	18,484	20.323	0.059	0.000	7.295	0.000	0.147	0.068	9.543	0.444	94.866	1,466	0.122	0.921	0.719	0.002	0.000	0.460	0.000	0.002	0.006	0.515	0.032	4.244
34.588	3.568	18,455	20,204	0.043	0.000	7.317	0.000	0.155	0.088	9.351	0.433	94.201	1.471	0.114	0.925	0.718	0.002	0.000	0.464	0.000	0.003	0.007	0.507	0.031	4.241
34 567	3 552	18 349	20.913	0.070	0,000	7 623	0,000	0.070	0.107	9 476	0.457	95 185	1,461	0.113	0.914	0 739	0.003	0,000	0.480	0,000	0.001	0.009	0,507	0.033	4 262
34 799	3 604	18 340	21 116	0.061	0.000	7 466	0.000	0.142	0 104	9 4 2 8	0.487	95 546	1 466	0.114	0.911	0 744	0.002	0.000	0.469	0.000	0.002	0.009	0.507	0.035	4 257
34,668	3,660	18,262	20,870	0,073	0,000	7,439	0,000	0,162	0,102	9,485	0,471	95,192	1,465	0,116	0,910	0,738	0,003	0,000	0,469	0,000	0,003	0,008	0,512	0,034	4,257

34,864 3,312 18,680 20,224 0,090 0,000 7,356 0,000 0,129 0,126 9,343 0,489 94,613 1,475 0,105 0,932 0,716 0,003 0,000 0,464 0,000 0,002 0,010 0,504 0,035 4,246

95

Major elements EPMA analysis in feldspar.

SiO2	Al2O3	Fe2O3	CaO	BaO	Na2O	K2O	Sum	Si	Al	Fe3	Ca	Ba	Na	К	Sum	XAb	XAn	XOr
sample BCJ-05																		
59,752	25,646	0,193	7,003	0,008	7,372	0,097	100,051	2,666	1,349	0,006	0,335	0,000	0,638	0,006	5,000	0,652	0,342	0,006
59,837	25,152	0,118	6,398	0,011	7,541	0,375	99,420	2,683	1,329	0,004	0,307	0,000	0,655	0,021	5,000	0,666	0,312	0,022
58,476	24,572	0,159	6,099	0,005	7,581	1,156	98,032	2,652	1,313	0,005	0,296	0,000	0,667	0,067	5,000	0,647	0,288	0,065
57,656	26,853	0,275	4,861	0,069	6,365	1,894	97,944	2,633	1,445	0,009	0,238	0,001	0,563	0,110	5,000	0,618	0,261	0,121
59,943	25,562	0,104	6,613	0,003	7,567	0,298	100,079	2,669	1,342	0,003	0,316	0,000	0,653	0,017	5,000	0,663	0,320	0,017
54,932	25,427	8,060	6,425	0,000	6,277	0,116	100,438	2,493	1,360	0,276	0,312	0,000	0,552	0,007	5,000	0,634	0,359	0,008
56,533	18,319	0,796	8,970	0,127	5,252	2,277	92,193	2,786	1,064	0,030	0,474	0,002	0,502	0,143	5,000	0,449	0,423	0,128
59,919	25,373	0,140	7,019	0,000	7,485	0,041	99,964	2,675	1,335	0,005	0,336	0,000	0,648	0,002	5,000	0,657	0,341	0,002
60,149	25,504	0,170	6,878	0,000	7,642	0,067	100,392	2,671	1,335	0,006	0,327	0,000	0,658	0,004	5,000	0,665	0,331	0,004
58,748	25,997	0,180	7,691	0,000	7,120	0,057	99,774	2,631	1,372	0,006	0,369	0,000	0,618	0,003	5,000	0,624	0,373	0,003
59,429	25,967	0,172	5,996	0,004	7,250	0,661	99,461	2,665	1,373	0,006	0,288	0,000	0,630	0,038	5,000	0,659	0,301	0,040
59,675	25,369	0,066	6,838	0,000	7,627	0,087	99,656	2,668	1,337	0,002	0,328	0,000	0,661	0,005	5,000	0,665	0,330	0,005
59,721	25,491	0,044	7,059	0,011	7,436	0,114	99,871	2,668	1,342	0,001	0,338	0,000	0,644	0,007	5,000	0,652	0,342	0,007
59,915	25,558	0,014	6,616	0,000	7,710	0,067	99,879	2,671	1,343	0,000	0,316	0,000	0,666	0,004	5,000	0,676	0,320	0,004
58,900	25,538	0,120	6,866	0,000	7,368	0,342	99,122	2,649	1,354	0,004	0,331	0,000	0,643	0,020	5,000	0,647	0,333	0,020
60,043	25,602	0,037	6,976	0,000	7,512	0,147	100,313	2,669	1,341	0,001	0,332	0,000	0,647	0,008	5,000	0,655	0,336	0,008
58,512	24,899	0,053	6,740	0,009	7,259	0,115	97,581	2,676	1,342	0,002	0,330	0,000	0,644	0,007	5,000	0,656	0,337	0,007
59,521	25,697	0,014	6,935	0,000	7,446	0,169	99,780	2,660	1,353	0,000	0,332	0,000	0,645	0,010	5,000	0,654	0,336	0,010
59,464	25,617	0,095	6,950	0,000	7,509	0,130	99,756	2,657	1,349	0,003	0,333	0,000	0,651	0,007	5,000	0,657	0,336	0,008
59,454	25,577	0,001	7,147	0,000	7,415	0,084	99,678	2,660	1,349	0,000	0,343	0,000	0,643	0,005	5,000	0,649	0,346	0,005
56,564	27,168	0,318	4,776	0,093	5,641	2,687	97,215	2,610	1,478	0,011	0,236	0,002	0,505	0,158	5,000	0,561	0,263	0,176
59,758	25,210	0,021	6,922	0,021	7,430	0,161	99,521	2,679	1,332	0,001	0,333	0,000	0,646	0,009	5,000	0,654	0,337	0,009
59,776	25,578	0,038	6,837	0,028	7,568	0,174	99,995	2,664	1,344	0,001	0,327	0,000	0,654	0,010	5,000	0,660	0,330	0,010
58,888	25,055	0,017	6,855	0,000	7,345	0,135	98,293	2,672	1,340	0,001	0,333	0,000	0,646	0,008	5,000	0,655	0,338	0,008
59,737	25,615	0,036	6,778	0,006	7,289	0,152	99,609	2,678	1,353	0,001	0,326	0,000	0,633	0,009	5,000	0,655	0,336	0,009
59,628	25,522	0,035	6,911	0,000	7,395	0,156	99,643	2,670	1,347	0,001	0,332	0,000	0,642	0,009	5,000	0,653	0,337	0,009

59,865	25,163	0,069	6,918	0,022	7,470	0,158	99,657	2,680	1,328	0,002	0,332	0,000	0,648	0,009	5,000	0,655	0,335	0,009
59,565	25,591	0,102	6,922	0,032	7,410	0,134	99,745	2,665	1,349	0,003	0,332	0,001	0,643	0,008	5,000	0,654	0,338	0,008
SiO2	Al2O3	Fe2O3	CaO	BaO	Na2O	K2O	Sum	Si	Al	Fe3	Ca	Ba	Na	K	Sum	XAb	XAn	XOr
sample BCJ-05																		
58,921	26,059	0,182	7,201	0,035	7,314	0,091	99,785	2,635	1,374	0,006	0,345	0,001	0,634	0,005	5,000	0,644	0,351	0,005
56,949	27,002	0,296	8,746	0,007	6,480	0,104	99,554	2,564	1,433	0,010	0,422	0,000	0,566	0,006	5,000	0,569	0,425	0,006
57,425	26,807	0,214	8,549	0,000	6,472	0,094	99,540	2,587	1,423	0,007	0,413	0,000	0,565	0,005	5,000	0,575	0,420	0,005
57,996	26,533	0,188	8,008	0,006	6,922	0,121	99,755	2,599	1,401	0,006	0,385	0,000	0,601	0,007	5,000	0,606	0,387	0,007
57,712	26,956	0,274	8,561	0,000	6,591	0,122	100,188	2,581	1,421	0,009	0,410	0,000	0,572	0,007	5,000	0,578	0,415	0,007
57,101	26,984	0,292	8,811	0,012	6,434	0,115	99,719	2,568	1,430	0,010	0,425	0,000	0,561	0,007	5,000	0,565	0,428	0,007
59,218	25,807	0,078	7,257	0,016	7,247	0,080	99,695	2,653	1,362	0,003	0,348	0,000	0,629	0,005	5,000	0,641	0,355	0,005
54,217	24,769	1,462	6,131	0,066	6,227	1,971	94,698	2,565	1,381	0,052	0,311	0,001	0,571	0,119	5,000	0,571	0,310	0,119
57,860	25,780	0,132	6,007	0,048	7,478	0,940	98,231	2,618	1,375	0,005	0,291	0,001	0,656	0,054	5,000	0,655	0,291	0,054
59,776	25,757	0,033	7,051	0,000	7,444	0,051	100,109	2,664	1,353	0,001	0,337	0,000	0,643	0,003	5,000	0,654	0,343	0,003
60,918	24,595	0,504	3,665	0,002	7,886	1,276	98,796	2,741	1,304	0,017	0,177	0,000	0,688	0,073	5,000	0,733	0,188	0,078
59,613	25,064	0,061	5,856	0,025	7,531	0,579	98,721	2,690	1,333	0,002	0,283	0,000	0,659	0,033	5,000	0,676	0,290	0,034
60,243	25,251	0,054	6,268	0,000	7,649	0,307	99,766	2,690	1,329	0,002	0,300	0,000	0,662	0,017	5,000	0,676	0,306	0,018
58,762	25,436	0,052	7,114	0,000	7,368	0,308	99,034	2,645	1,349	0,002	0,343	0,000	0,643	0,018	5,000	0,641	0,342	0,018
60,221	25,099	0,362	5,950	0,003	7,882	0,269	99,749	2,687	1,320	0,012	0,284	0,000	0,682	0,015	5,000	0,695	0,290	0,016
59,845	25,485	0,027	6,738	0,013	7,756	0,236	100,097	2,661	1,335	0,001	0,321	0,000	0,669	0,013	5,000	0,667	0,320	0,013
58,809	25,629	0,226	5,282	0,053	6,922	1,582	98,481	2,666	1,369	0,008	0,257	0,001	0,608	0,092	5,000	0,636	0,268	0,096
57,450	24,702	0,172	8,101	0,004	7,269	0,106	97,788	2,621	1,328	0,006	0,396	0,000	0,643	0,006	5,000	0,615	0,379	0,006
59,662	24,895	0,177	6,268	0,012	7,427	0,488	98,911	2,690	1,323	0,006	0,303	0,000	0,649	0,028	5,000	0,662	0,309	0,029
58,450	23,569	2,045	4,108	0,000	7,746	0,642	96,358	2,706	1,286	0,071	0,204	0,000	0,695	0,038	5,000	0,742	0,217	0,040
59,035	25,318	0,565	5,412	0,000	7,220	0,930	98,424	2,677	1,353	0,019	0,263	0,000	0,635	0,054	5,000	0,667	0,276	0,057
58,352	26,003	0,052	6,718	0,013	7,273	0,569	98,975	2,627	1,380	0,002	0,324	0,000	0,635	0,033	5,000	0,640	0,327	0,033
58,131	25,994	0,119	5,178	0,034	6,903	1,349	97,696	2,654	1,399	0,004	0,253	0,001	0,611	0,079	5,000	0,648	0,269	0,083
59,250	25,436	0,036	6,859	0,006	7,611	0,201	99,394	2,654	1,343	0,001	0,329	0,000	0,661	0,011	5,000	0,660	0,329	0,011
59,940	25,403	0,010	6,871	0,013	7,623	0,090	99,949	2,672	1,335	0,000	0,328	0,000	0,659	0,005	5,000	0,664	0,331	0,005
60,162	25,326	0,026	6,708	0,024	7,576	0,169	99,988	2,683	1,331	0,001	0,321	0,000	0,655	0,010	5,000	0,665	0,325	0,010

56,426	23,777	0,027	6,353	0,000	6,974	0,185	93,739	2,686	1,334	0,001	0,324	0,000	0,644	0,011	5,000	0,658	0,331	0,011
59,943	25,536	0,012	6,773	0,014	7,452	0,120	99,850	2,678	1,345	0,000	0,324	0,000	0,646	0,007	5,000	0,661	0,332	0,007
SiO2	Al2O3	Fe2O3	CaO	BaO	Na2O	K2O	Sum	Si	Al	Fe3	Ca	Ba	Na	K	Sum	XAb	XAn	XOr
sample BCJ-05																		
59,693	25,280	0,012	6,889	0,008	7,635	0,174	99,689	2,667	1,331	0,000	0,330	0,000	0,661	0,010	5,000	0,661	0,329	0,010
59,679	25,426	0,000	6,809	0,017	7,662	0,177	99,771	2,664	1,337	0,000	0,326	0,000	0,663	0,010	5,000	0,664	0,326	0,010
59,438	25,236	0,015	6,831	0,000	7,493	0,194	99,206	2,671	1,336	0,000	0,329	0,000	0,653	0,011	5,000	0,658	0,331	0,011
59,756	25,072	0,007	6,787	0,000	7,413	0,182	99,218	2,687	1,329	0,000	0,327	0,000	0,646	0,010	5,000	0,657	0,332	0,011
59,656	25,311	0,013	6,722	0,003	7,484	0,169	99,357	2,677	1,339	0,000	0,323	0,000	0,651	0,010	5,000	0,662	0,328	0,010
59,518	25,214	0,050	6,831	0,007	7,386	0,165	99,165	2,678	1,337	0,002	0,329	0,000	0,644	0,009	5,000	0,655	0,335	0,010
58,530	25,447	0,069	7,171	0,002	7,273	0,155	98,639	2,647	1,356	0,002	0,347	0,000	0,638	0,009	5,000	0,641	0,350	0,009
59,805	24,958	0,056	6,747	0,020	7,625	0,098	99,303	2,684	1,320	0,002	0,324	0,000	0,664	0,006	5,000	0,668	0,327	0,006
59,367	24,985	0,035	6,800	0,011	7,534	0,101	98,828	2,677	1,328	0,001	0,329	0,000	0,659	0,006	5,000	0,663	0,331	0,006
58,892	23,258	0,019	5,500	0,018	7,969	0,329	95,983	2,724	1,268	0,001	0,273	0,000	0,715	0,019	5,000	0,710	0,271	0,019
59,946	25,237	0,013	6,674	0,000	7,558	0,139	99,565	2,684	1,332	0,000	0,320	0,000	0,656	0,008	5,000	0,667	0,325	0,008
59,264	24,905	0,014	6,725	0,029	7,343	0,164	98,442	2,687	1,331	0,000	0,327	0,001	0,645	0,009	5,000	0,658	0,333	0,010
59,780	25,230	0,027	6,750	0,017	7,506	0,181	99,488	2,679	1,333	0,001	0,324	0,000	0,652	0,010	5,000	0,661	0,329	0,011
59,668	25,311	0,000	6,760	0,022	7,425	0,191	99,377	2,678	1,339	0,000	0,325	0,000	0,646	0,011	5,000	0,658	0,331	0,011
59,630	25,372	0,000	6,687	0,000	7,531	0,166	99,385	2,674	1,341	0,000	0,321	0,000	0,655	0,009	5,000	0,664	0,326	0,010
59,880	25,066	0,028	6,711	0,000	7,431	0,155	99,268	2,692	1,328	0,001	0,323	0,000	0,648	0,009	5,000	0,661	0,330	0,009
59,824	25,230	0,006	6,883	0,000	7,545	0,142	99,629	2,677	1,330	0,000	0,330	0,000	0,655	0,008	5,000	0,659	0,332	0,008

5102	AI2O3	Fe203	CaO	BaO	Na2O	K20	Sum	51	AI	res	Ca	ва	Na	ĸ	Sum	AAD	XAN	AUr
ample BCJ-06																		
59,498	25,601	0,083	7,013	0,000	7,690	0,137	100,022	2,648	1,343	0,003	0,334	0,000	0,664	0,008	5,000	0,660	0,332	0,008
59,682	25,464	0,032	6,841	0,024	7,666	0,123	99,832	2,663	1,339	0,001	0,327	0,000	0,663	0,007	5,000	0,665	0,328	0,007
59,567	25,525	0,043	6,918	0,000	7,626	0,121	99,799	2,658	1,343	0,001	0,331	0,000	0,660	0,007	5,000	0,662	0,332	0,007
59,724	25,680	0,035	6,934	0,002	7,578	0,126	100,078	2,659	1,348	0,001	0,331	0,000	0,654	0,007	5,000	0,659	0,333	0,007
59,348	25,264	0,025	6,761	0,000	7,506	0,158	99,061	2,670	1,340	0,001	0,326	0,000	0,655	0,009	5,000	0,662	0,329	0,009
59,916	25,467	0,028	6,805	0,016	7,519	0,151	99,902	2,674	1,340	0,001	0,325	0,000	0,651	0,009	5,000	0,661	0,331	0,009
59,677	25,620	0,042	6,914	0,000	7,544	0,152	99,950	2,661	1,346	0,001	0,330	0,000	0,652	0,009	5,000	0,658	0,333	0,009
59,136	25,326	0,059	6,930	0,007	7,374	0,159	98,990	2,665	1,345	0,002	0,335	0,000	0,644	0,009	5,000	0,652	0,339	0,009
59,179	25,064	0,015	6,778	0,000	7,567	0,145	98,748	2,669	1,332	0,001	0,328	0,000	0,662	0,008	5,000	0,663	0,328	0,008
59,725	25,174	0,037	6,741	0,000	7,473	0,078	99,228	2,685	1,334	0,001	0,325	0,000	0,651	0,004	5,000	0,664	0,331	0,005
59,037	25,995	0,165	7,531	0,001	7,325	0,114	100,167	2,631	1,365	0,006	0,360	0,000	0,633	0,006	5,000	0,634	0,360	0,006
59,910	25,630	0,115	6,869	0,000	7,543	0,133	100,201	2,666	1,344	0,004	0,328	0,000	0,651	0,008	5,000	0,660	0,332	0,008
59,725	25,600	0,072	6,984	0,015	7,513	0,141	100,050	2,662	1,345	0,002	0,333	0,000	0,649	0,008	5,000	0,655	0,337	0,008
59,317	25,530	0,036	6,847	0,010	7,585	0,149	99,472	2,656	1,347	0,001	0,328	0,000	0,658	0,008	5,000	0,662	0,330	0,009
59,043	25,385	0,046	6,818	0,027	7,453	0,142	98,914	2,661	1,348	0,002	0,329	0,000	0,651	0,008	5,000	0,659	0,333	0,008
59,265	25,248	0,013	6,900	0,018	7,561	0,157	99,161	2,663	1,337	0,000	0,332	0,000	0,659	0,009	5,000	0,659	0,332	0,009
59,594	25,406	0,044	6,880	0,000	7,484	0,160	99,567	2,669	1,341	0,001	0,330	0,000	0,650	0,009	5,000	0,657	0,334	0,009
59,091	25,285	0,025	6,903	0,000	7,480	0,157	98,942	2,662	1,342	0,001	0,333	0,000	0,653	0,009	5,000	0,656	0,335	0,009
59,132	25,347	0,019	6,919	0,012	7,616	0,131	99,177	2,655	1,341	0,001	0,333	0,000	0,663	0,008	5,000	0,661	0,332	0,007
59,426	25,228	0,066	6,728	0,000	7,544	0,110	99,101	2,672	1,337	0,002	0,324	0,000	0,658	0,006	5,000	0,666	0,328	0,006
59,311	25,738	0,303	7,209	0,000	7,498	0,029	100,088	2,644	1,352	0,010	0,344	0,000	0,648	0,002	5,000	0,652	0,346	0,002
59,821	25,889	0,187	7,114	0,018	7,509	0,083	100,619	2,652	1,353	0,006	0,338	0,000	0,646	0,005	5,000	0,653	0,342	0,005
59,054	25,891	0,180	7,363	0,000	7,431	0,064	99,982	2,634	1,361	0,006	0,352	0,000	0,643	0,004	5,000	0,644	0,353	0,004
59,580	25,436	0,099	6,714	0,010	7,547	0,102	99,487	2,670	1,343	0,003	0,322	0,000	0,656	0,006	5,000	0,666	0,328	0,006
59,434	25,539	0,201	6,937	0,000	7,675	0,048	99,835	2,652	1,343	0,007	0,332	0,000	0,664	0,003	5,000	0,665	0,332	0,003
59,433	25,315	0,099	6,791	0,000	7,548	0,070	99,256	2,669	1,340	0,003	0,327	0,000	0,657	0,004	5,000	0,665	0,331	0,004
59,200	25,450	0,159	6,676	0,000	7,469	0,283	99,238	2,659	1,347	0,005	0,321	0,000	0,651	0,016	5,000	0,658	0,325	0,016
58,842	25,485	0,469	6,763	0,018	7,428	0,136	99,141	2,649	1,352	0,016	0,326	0,000	0,648	0,008	5,000	0,660	0,332	0,008

5102	AI203	re203	CaO	BaO	Na2O	K20	Sum	51	AI	res	Ca	ва	INa	N	Sum	AAD	ААП	AUr
ample BCJ-06																		
59,131	25,787	0,122	7,213	0,000	7,607	0,048	99,908	2,636	1,355	0,004	0,345	0,000	0,658	0,003	5,000	0,654	0,343	0,003
58,807	25,852	0,188	7,356	0,005	7,332	0,044	99,584	2,635	1,365	0,006	0,353	0,000	0,637	0,003	5,000	0,642	0,356	0,003
57,794	25,679	0,249	7,356	0,018	7,154	0,107	98,357	2,624	1,374	0,009	0,358	0,000	0,630	0,006	5,000	0,634	0,360	0,006
58,454	25,407	0,041	6,383	0,047	7,349	0,441	98,121	2,655	1,360	0,001	0,311	0,001	0,647	0,026	5,000	0,658	0,316	0,026
59,002	24,901	0,000	6,781	0,000	7,372	0,198	98,255	2,678	1,332	0,000	0,330	0,000	0,649	0,011	5,000	0,655	0,333	0,012
59,075	24,820	0,020	6,575	0,009	7,379	0,185	98,064	2,687	1,330	0,001	0,320	0,000	0,651	0,011	5,000	0,663	0,326	0,011
58,914	25,061	0,004	6,654	0,012	7,479	0,191	98,315	2,670	1,339	0,000	0,323	0,000	0,657	0,011	5,000	0,663	0,326	0,011
59,059	24,945	0,008	6,741	0,012	7,383	0,204	98,351	2,678	1,333	0,000	0,328	0,000	0,649	0,012	5,000	0,657	0,331	0,012
59,304	25,204	0,017	6,736	0,000	7,536	0,094	98,891	2,672	1,338	0,001	0,325	0,000	0,658	0,005	5,000	0,666	0,329	0,005
59,264	25,014	0,018	6,771	0,012	7,367	0,177	98,624	2,681	1,334	0,001	0,328	0,000	0,646	0,010	5,000	0,656	0,333	0,010
59,142	25,004	0,000	6,697	0,027	7,355	0,162	98,387	2,682	1,336	0,000	0,325	0,000	0,647	0,009	5,000	0,659	0,332	0,010
59,480	25,073	0,007	6,638	0,020	7,446	0,184	98,848	2,683	1,333	0,000	0,321	0,000	0,651	0,011	5,000	0,663	0,326	0,011
59,252	25,030	0,019	6,746	0,011	7,469	0,173	98,700	2,676	1,332	0,001	0,326	0,000	0,654	0,010	5,000	0,660	0,330	0,010
59,861	25,426	0,007	6,782	0,044	7,507	0,177	99,803	2,675	1,339	0,000	0,325	0,001	0,650	0,010	5,000	0,660	0,330	0,010
59,058	23,892	0,069	6,289	0,042	7,862	0,550	97,761	2,685	1,280	0,002	0,306	0,001	0,693	0,032	5,000	0,672	0,297	0,031
59,259	24,911	0,028	6,871	0,000	7,716	0,073	98,857	2,668	1,322	0,001	0,331	0,000	0,674	0,004	5,000	0,667	0,328	0,004
56,182	22,937	0,096	8,107	0,020	7,439	0,753	95,534	2,616	1,259	0,003	0,405	0,000	0,672	0,045	5,000	0,599	0,361	0,040
59,529	24,869	0,000	6,541	0,024	7,716	0,078	98,757	2,684	1,321	0,000	0,316	0,000	0,674	0,005	5,000	0,678	0,318	0,005
59,329	24,691	0,042	5,878	0,006	7,441	0,488	97,874	2,701	1,325	0,001	0,287	0,000	0,657	0,028	5,000	0,676	0,295	0,029
59,402	24,995	0,015	6,526	0,010	7,497	0,101	98,545	2,687	1,333	0,001	0,316	0,000	0,658	0,006	5,000	0,671	0,323	0,006
59,346	25,203	0,000	6,813	0,018	7,460	0,089	98,927	2,675	1,339	0,000	0,329	0,000	0,652	0,005	5,000	0,661	0,334	0,005
58,844	25,114	0,014	6,793	0,000	7,464	0,068	98,298	2,668	1,342	0,000	0,330	0,000	0,656	0,004	5,000	0,663	0,333	0,004
59,521	25,252	0,005	6,834	0,000	7,502	0,137	99,250	2,673	1,337	0,000	0,329	0,000	0,653	0,008	5,000	0,660	0,332	0,008
59,564	25,349	0,033	6,883	0,017	7,351	0,146	99,342	2,676	1,342	0,001	0,331	0,000	0,640	0,008	5,000	0,653	0,338	0,009
59,482	25,303	0,001	6,663	0,029	7,530	0,089	99,098	2,675	1,341	0,000	0,321	0,001	0,657	0,005	5,000	0,668	0,327	0,005
59,448	25,281	0,000	6,772	0,000	7,568	0,100	99,169	2,671	1,339	0,000	0,326	0,000	0,659	0,006	5,000	0,665	0,329	0,006
59,258	25,312	0,000	6,865	0,000	7,516	0,186	99,136	2,663	1,341	0,000	0,331	0,000	0,655	0,011	5,000	0,657	0,332	0,011
59,928	25,189	0,022	6,398	0,020	7,160	0,724	99,441	2,692	1,334	0,001	0,308	0,000	0,624	0,042	5,000	0,641	0,316	0,043

SiO2 Al2O3 Fe2O3 CaO BaO Na2O K2O Sum Si Al Fe3 Ca Ba Na K Sum XAb XAn XOr

SiO2	Al2O3	Fe2O3	CaO	BaO	Na2O	K2O	Sum	Si	Al	Fe3	Ca	Ba	Na	К	Sum	XAb	XAn	XOr
sample BCJ-06																		
59,531	25,461	0,012	6,744	0,031	7,491	0,194	99,463	2,668	1,345	0,000	0,324	0,001	0,651	0,011	5,000	0,660	0,329	0,011
59,693	25,349	0,002	6,918	0,017	7,567	0,153	99,699	2,668	1,335	0,000	0,331	0,000	0,656	0,009	5,000	0,658	0,333	0,009
59,530	24,929	0,024	5,964	0,003	7,582	0,465	98,498	2,691	1,328	0,001	0,289	0,000	0,664	0,027	5,000	0,678	0,295	0,027
59,642	25,334	0,012	6,670	0,042	7,553	0,163	99,414	2,674	1,339	0,000	0,320	0,001	0,657	0,009	5,000	0,666	0,325	0,009
59,727	25,304	0,000	6,768	0,018	7,393	0,193	99,401	2,681	1,339	0,000	0,326	0,000	0,643	0,011	5,000	0,657	0,332	0,011
59,088	25,178	0,019	6,775	0,000	7,636	0,192	98,888	2,660	1,336	0,001	0,327	0,000	0,666	0,011	5,000	0,664	0,325	0,011
59,796	25,302	0,029	6,664	0,034	7,501	0,177	99,503	2,680	1,337	0,001	0,320	0,001	0,652	0,010	5,000	0,664	0,326	0,010
59,630	25,202	0,013	6,784	0,012	7,501	0,147	99,287	2,678	1,334	0,000	0,326	0,000	0,653	0,008	5,000	0,661	0,330	0,008
59,564	25,323	0,018	6,673	0,036	7,478	0,194	99,286	2,675	1,340	0,001	0,321	0,001	0,651	0,011	5,000	0,662	0,327	0,011
59,552	25,104	0,001	6,745	0,027	7,401	0,203	99,032	2,683	1,333	0,000	0,326	0,000	0,646	0,012	5,000	0,657	0,331	0,012
59,525	24,863	0,002	6,839	0,000	7,419	0,168	98,817	2,687	1,323	0,000	0,331	0,000	0,649	0,010	5,000	0,656	0,334	0,010
59,407	25,259	0,041	6,796	0,033	7,408	0,220	99,162	2,673	1,339	0,001	0,328	0,001	0,646	0,013	5,000	0,655	0,332	0,013
59,952	25,155	0,019	6,753	0,000	7,504	0,204	99,586	2,685	1,328	0,001	0,324	0,000	0,651	0,012	5,000	0,660	0,328	0,012
59,797	25,334	0,034	6,547	0,028	7,692	0,236	99,668	2,671	1,334	0,001	0,313	0,000	0,666	0,013	5,000	0,671	0,316	0,014
59,220	25,641	0,014	7,012	0,021	7,520	0,163	99,590	2,649	1,352	0,000	0,336	0,000	0,652	0,009	5,000	0,654	0,337	0,009

O2 A	Al2O3	Fe2O3	CaO	BaO	Na2O	K2O	Sum	Si	Al	Fe3	Ca	Ba	Na	K	Sum	XAb	XAn	XO
-------------	-------	-------	-----	-----	------	-----	-----	----	----	-----	----	----	----	---	-----	-----	-----	----

SiO2	Al2O3	Fe2O3	CaO	BaO	Na2O	K2O	Sum	Si	Al	Fe3	Ca	Ba	Na	K	Sum	XAb	XAn	XOr
ample BCJ-10																		
59,952	25,414	0,000	6,672	0,000	7,632	0,135	99,806	2,676	1,337	0,000	0,319	0,000	0,660	0,008	5,000	0,669	0,323	0,008
60,446	24,937	0,000	6,329	0,000	7,686	0,159	99,556	2,705	1,315	0,000	0,303	0,000	0,667	0,009	5,000	0,681	0,310	0,009
59,191	24,777	0,426	6,156	0,000	7,608	0,121	98,279	2,685	1,325	0,015	0,299	0,000	0,669	0,007	5,000	0,686	0,307	0,007
59,517	25,222	0,021	6,830	0,000	7,369	0,185	99,144	2,679	1,338	0,001	0,329	0,000	0,643	0,011	5,000	0,654	0,335	0,011
60,299	25,234	0,028	6,558	0,000	7,678	0,142	99,939	2,688	1,326	0,001	0,313	0,000	0,664	0,008	5,000	0,674	0,318	0,008
59,780	25,562	0,026	6,810	0,020	7,554	0,196	99,949	2,666	1,343	0,001	0,325	0,000	0,653	0,011	5,000	0,660	0,329	0,011
59,985	25,216	0,017	6,886	0,000	7,508	0,246	99,859	2,679	1,327	0,001	0,329	0,000	0,650	0,014	5,000	0,654	0,332	0,014
60,109	25,427	0,064	6,972	0,000	7,571	0,098	100,239	2,674	1,333	0,002	0,332	0,000	0,653	0,006	5,000	0,659	0,335	0,006
59,835	25,126	0,010	6,733	0,005	7,534	0,194	99,437	2,683	1,328	0,000	0,323	0,000	0,655	0,011	5,000	0,662	0,327	0,011
58,770	26,377	0,015	6,505	0,010	7,458	0,102	99,237	2,637	1,395	0,001	0,313	0,000	0,649	0,006	5,000	0,671	0,323	0,006
59,622	25,409	0,036	6,798	0,000	7,567	0,099	99,531	2,669	1,341	0,001	0,326	0,000	0,657	0,006	5,000	0,664	0,330	0,006
59,503	25,354	0,038	6,746	0,012	7,419	0,102	99,173	2,676	1,344	0,001	0,325	0,000	0,647	0,006	5,000	0,662	0,332	0,006
59,746	25,392	0,068	6,927	0,019	7,407	0,062	99,621	2,677	1,341	0,002	0,333	0,000	0,643	0,004	5,000	0,657	0,339	0,004
59,355	25,427	0,036	7,123	0,000	7,379	0,105	99,425	2,664	1,345	0,001	0,342	0,000	0,642	0,006	5,000	0,648	0,346	0,006
59,839	25,491	0,038	7,032	0,000	7,524	0,070	99,994	2,668	1,340	0,001	0,336	0,000	0,651	0,004	5,000	0,657	0,339	0,004
59,674	25,115	0,026	6,787	0,000	7,388	0,305	99,294	2,681	1,330	0,001	0,327	0,000	0,644	0,017	5,000	0,652	0,331	0,018
59,983	25,035	0,014	6,317	0,019	7,394	0,281	99,042	2,703	1,329	0,000	0,305	0,000	0,646	0,016	5,000	0,668	0,315	0,017
59,443	24,950	0,020	6,764	0,007	7,356	0,310	98,849	2,683	1,327	0,001	0,327	0,000	0,644	0,018	5,000	0,651	0,331	0,018
60,032	25,305	0,011	6,920	0,000	7,376	0,300	99,944	2,681	1,332	0,000	0,331	0,000	0,639	0,017	5,000	0,647	0,336	0,017
60,071	25,391	0,006	6,811	0,008	7,337	0,313	99,937	2,684	1,337	0,000	0,326	0,000	0,635	0,018	5,000	0,649	0,333	0,018
59,968	25,205	0,000	6,839	0,007	7,489	0,157	99,665	2,684	1,329	0,000	0,328	0,000	0,650	0,009	5,000	0,659	0,332	0,009
60,090	25,426	0,007	6,720	0,001	7,477	0,370	100,091	2,677	1,335	0,000	0,321	0,000	0,646	0,021	5,000	0,654	0,325	0,021
60,070	25,346	0,026	6,894	0,002	7,378	0,248	99,963	2,682	1,334	0,001	0,330	0,000	0,639	0,014	5,000	0,650	0,336	0,014
59,760	25,207	0,000	6,803	0,019	7,391	0,285	99,464	2,681	1,333	0,000	0,327	0,000	0,643	0,016	5,000	0,652	0,332	0,017
60,000	25,221	0,020	6,935	0,013	7,407	0,311	99,908	2,680	1,328	0,001	0,332	0,000	0,642	0,018	5,000	0,647	0,335	0,018
59,877	25,034	0,006	6,870	0,000	7,247	0,261	99,295	2,694	1,327	0,000	0,331	0,000	0,632	0,015	5,000	0,646	0,339	0,015
59,677	25,729	0,008	6,498	0,000	7,459	0,493	99,863	2,663	1,353	0,000	0,311	0,000	0,645	0,028	5,000	0,656	0,316	0,028
59,843	25,430	0,001	6,985	0.033	7,492	0,177	99,962	2,670	1,337	0,000	0,334	0,001	0,648	0,010	5,000	0,653	0,337	0,010

CLO A		F 404	a a	D 0	N 40	WAG	a	G!		F 4	a	P		•7	a		N 7 A	WO
SiO2	AI2O3	Fe2O3	CaO	BaO	Na2O	K2O	Sum	Si	Al	Fe3	Ca	Ва	Na	K	Sum	XAb	XAn	XOr
sample BCJ-10																		
60,167	25,425	0,015	6,404	0,004	7,529	0,362	99,906	2,684	1,337	0,001	0,306	0,000	0,651	0,021	5,000	0,666	0,313	0,021
59,781	25,061	0,021	6,823	0,000	6,925	0,725	99,336	2,693	1,331	0,001	0,329	0,000	0,605	0,042	5,000	0,620	0,337	0,043
59,866	24,882	0,006	6,767	0,000	7,542	0,147	99,210	2,690	1,318	0,000	0,326	0,000	0,657	0,008	5,000	0,663	0,329	0,008
59,794	25,139	0,000	6,771	0,000	7,690	0,078	99,471	2,677	1,326	0,000	0,325	0,000	0,667	0,004	5,000	0,670	0,326	0,004
60,067	25,150	0,004	6,849	0,000	7,433	0,118	99,621	2,691	1,328	0,000	0,329	0,000	0,646	0,007	5,000	0,658	0,335	0,007
60,039	24,999	0,036	6,819	0,000	7,567	0,092	99,551	2,689	1,320	0,001	0,327	0,000	0,657	0,005	5,000	0,664	0,331	0,005
60,028	25,443	0,011	6,897	0,006	7,698	0,052	100,135	2,670	1,334	0,000	0,329	0,000	0,664	0,003	5,000	0,667	0,330	0,003
58,115	25,339	0,000	7,505	0,000	7,596	0,076	98,631	2,621	1,347	0,000	0,363	0,000	0,664	0,004	5,000	0,644	0,352	0,004
60,000	25,376	0,028	6,598	0,000	7,700	0,093	99,796	2,677	1,335	0,001	0,315	0,000	0,666	0,005	5,000	0,675	0,320	0,005
60,417	25,405	0,026	6,723	0,000	7,646	0,069	100,286	2,685	1,331	0,001	0,320	0,000	0,659	0,004	5,000	0,670	0,326	0,004
60,077	25,066	0,035	5,890	0,000	7,730	0,327	99,126	2,697	1,326	0,001	0,283	0,000	0,673	0,019	5,000	0,690	0,291	0,019
59,007	25,634	0,156	4,775	0,000	7,200	1,358	98,129	2,679	1,371	0,005	0,232	0,000	0,634	0,079	5,000	0,671	0,246	0,083
59,638	25,233	0,000	6,156	0,012	7,737	0,086	98,863	2,684	1,339	0,000	0,297	0,000	0,675	0,005	5,000	0,691	0,304	0,005
59,722	25,638	0,000	7,092	0,000	7,413	0,068	99,934	2,666	1,349	0,000	0,339	0,000	0,642	0,004	5,000	0,652	0,344	0,004
59,577	25,332	0,029	6,860	0,002	7,484	0,277	99,559	2,668	1,337	0,001	0,329	0,000	0,650	0,016	5,000	0,653	0,331	0,016
59,750	25,032	0,001	6,396	0,010	7,700	0,097	98,986	2,687	1,327	0,000	0,308	0,000	0,672	0,006	5,000	0,682	0,313	0,006
59,586	25,798	0,001	6,391	0,000	7,406	0,586	99,766	2,661	1,358	0,000	0,306	0,000	0,641	0,033	5,000	0,654	0,312	0,034
60,148	25,244	0,008	6,773	0,000	7,335	0,251	99,758	2,692	1,332	0,000	0,325	0,000	0,637	0,014	5,000	0,652	0,333	0,015

SiO2	Al2O3	Fe2O3	CaO	BaO	Na2O	K2O	Sum	Si	Al	Fe3	Ca	Ba	Na	K	Sum	XAb	XAn	XOr
ample BCJ-11																		
61,092	24,696	0,144	6,181	0,000	7,909	0,115	100,137	2,717	1,295	0,005	0,295	0,000	0,682	0,007	5,000	0,694	0,300	0,007
61,419	24,739	0,031	5,969	0,000	8,001	0,172	100,330	2,724	1,293	0,001	0,284	0,000	0,688	0,010	5,000	0,701	0,289	0,010
59,484	25,793	0,041	5,153	0,000	7,101	1,215	98,786	2,685	1,372	0,001	0,249	0,000	0,622	0,070	5,000	0,661	0,265	0,074
61,409	24,738	0,028	6,010	0,000	8,084	0,082	100,351	2,722	1,292	0,001	0,285	0,000	0,695	0,005	5,000	0,705	0,290	0,005
61,352	24,658	0,077	6,025	0,009	7,937	0,110	100,166	2,728	1,292	0,003	0,287	0,000	0,684	0,006	5,000	0,700	0,294	0,006
61,250	24,793	0,034	6,144	0,017	7,846	0,127	100,212	2,723	1,299	0,001	0,293	0,000	0,676	0,007	5,000	0,693	0,300	0,007
61,073	24,826	0,045	6,292	0,001	7,839	0,198	100,275	2,713	1,300	0,002	0,299	0,000	0,675	0,011	5,000	0,685	0,304	0,011
58,887	23,528	0,091	5,918	0,007	7,303	0,189	95,922	2,741	1,291	0,003	0,295	0,000	0,659	0,011	5,000	0,683	0,306	0,012
61,071	24,797	0,032	6,061	0,000	7,841	0,121	99,923	2,722	1,303	0,001	0,289	0,000	0,678	0,007	5,000	0,696	0,297	0,007
59,037	24,598	0,045	5,923	0,000	7,339	1,114	98,055	2,682	1,317	0,002	0,288	0,000	0,646	0,065	5,000	0,647	0,289	0,065
61,409	24,942	0,052	6,139	0,000	7,958	0,107	100,608	2,717	1,301	0,002	0,291	0,000	0,683	0,006	5,000	0,697	0,297	0,006
60,151	25,104	0,155	5,731	0,000	7,419	0,661	99,221	2,704	1,330	0,005	0,276	0,000	0,647	0,038	5,000	0,673	0,287	0,039
61,006	25,055	0,840	5,573	0,014	8,001	0,171	100,660	2,702	1,308	0,028	0,264	0,000	0,687	0,010	5,000	0,715	0,275	0,010
61,267	25,085	0,069	6,249	0,000	7,778	0,098	100,546	2,716	1,311	0,002	0,297	0,000	0,669	0,006	5,000	0,689	0,306	0,006
60,129	24,819	0,131	6,204	0,000	7,761	0,100	99,143	2,701	1,314	0,004	0,299	0,000	0,676	0,006	5,000	0,690	0,305	0,006
60,802	25,702	0,084	6,054	0,000	7,824	0,090	100,556	2,692	1,341	0,003	0,287	0,000	0,672	0,005	5,000	0,697	0,298	0,005
61,395	24,612	0,047	6,234	0,000	7,813	0,231	100,332	2,727	1,289	0,002	0,297	0,000	0,673	0,013	5,000	0,685	0,302	0,013
61,473	24,678	0,035	6,105	0,000	7,770	0,263	100,324	2,732	1,292	0,001	0,291	0,000	0,669	0,015	5,000	0,687	0,298	0,015
60,656	25,289	0,031	6,524	0,000	7,763	0,119	100,382	2,692	1,323	0,001	0,310	0,000	0,668	0,007	5,000	0,678	0,315	0,007
60,556	25,186	0,042	6,781	0,000	7,462	0,449	100,477	2,690	1,318	0,001	0,323	0,000	0,643	0,025	5,000	0,649	0,326	0,026
60,723	25,183	0,005	6,667	0,000	7,629	0,180	100,386	2,697	1,318	0,000	0,317	0,000	0,657	0,010	5,000	0,667	0,322	0,010
60,554	25,299	0,015	6,656	0,000	7,599	0,270	100,393	2,689	1,324	0,001	0,317	0,000	0,654	0,015	5,000	0,663	0,321	0,016
60,651	25,103	0,004	6,601	0,000	7,632	0,199	100,190	2,699	1,317	0,000	0,315	0,000	0,658	0,011	5,000	0,669	0,320	0,011
60,291	25,158	0,039	6,651	0,009	7,546	0,184	99,878	2,692	1,324	0,001	0,318	0,000	0,653	0,010	5,000	0,665	0,324	0,011
61,635	24,770	0,068	6,021	0,000	8,294	0,200	100,987	2,711	1,284	0,002	0,284	0,000	0,707	0,011	5,000	0,706	0,283	0,011
61,138	24,561	0,016	5,823	0,000	7,749	0,318	99,604	2,735	1,295	0,001	0,279	0,000	0,672	0,018	5,000	0,693	0,288	0,019
61,184	24,836	0,029	6,207	0,000	7,712	0,157	100,125	2,725	1,303	0,001	0,296	0,000	0,666	0,009	5,000	0,686	0,305	0,009
58.293	24,059	0.353	6,085	0,004	7,027	0,267	96,088	2,714	1,320	0,012	0,304	0,000	0,634	0,016	5,000	0,665	0,318	0,017

SiO2	Al2O3	Fe2O3	CaO	BaO	Na2O	K2O	Sum	Si	Al	Fe3	Ca	Ba	Na	К	Sum	XAb	XAn	XOr
sample BCJ-11																_		
60,759	25,286	0,007	6,775	0,000	7,509	0,241	100,577	2,696	1,322	0,000	0,322	0,000	0,646	0,014	5,000	0,658	0,328	0,014
60,552	25,525	0,010	6,646	0,017	7,722	0,215	100,687	2,679	1,331	0,000	0,315	0,000	0,662	0,012	5,000	0,669	0,318	0,012
59,662	25,504	0,005	6,776	0,000	7,433	0,142	99,521	2,674	1,347	0,000	0,325	0,000	0,646	0,008	5,000	0,659	0,332	0,008
60,732	25,202	0,065	5,719	0,028	7,589	0,175	99,510	2,722	1,331	0,002	0,275	0,000	0,659	0,010	5,000	0,698	0,291	0,011
60,475	25,229	0,036	6,645	0,000	7,610	0,118	100,114	2,693	1,324	0,001	0,317	0,000	0,657	0,007	5,000	0,670	0,323	0,007
61,378	24,793	0,015	6,162	0,000	7,957	0,114	100,419	2,721	1,295	0,000	0,293	0,000	0,684	0,006	5,000	0,696	0,298	0,007

APPENDIX II

EPMA CHEMICAL ANALYSES AND AGE DATA IN MONAZITE

Point analysis in monazite crystals in weight % oxide.

Point analysis	Y2O4	SiO3	Al2O4	ThO3	CaO	La2O4	Ce2O4	Pr2O4	Nd2O4	Eu2O4	Sm2O4	FeO	Gd2O4	Er2O4	Tb2O4	Tm2O4	Dy2O4	Yb2O4	UO3	SO4	P2O6	РЬО	Total	Si+P	REE+P+Y	Th+U+Si	Ca+P
BCJ-10																											
MV170A_Mnz_1_1	0,405	0,991	0,006	9,562	1,455	12,630	29,534	3,304	11,665	0,000	1,973	0,000	1,203	0,000	0,102	0,000	0,277	0,049	0,263	0,017	27,607	1,019	102,061	1,012	1,823	0,255	1,058
MV170A_Mnz_1_2	0,406	1,012	0,005	9,638	1,487	12,673	28,989	3,065	11,420	0,000	1,962	0,028	1,313	0,002	0,005	0,000	0,162	0,000	0,256	0,020	27,533	1,046	101,023	1,018	1,815	0,260	1,065
MV170A_Mnz_1_3	0,385	0,894	0,012	8,526	1,272	13,118	30,472	2,862	11,329	0,000	1,543	0,016	1,063	0,008	0,133	0,000	0,216	0,069	0,236	0,009	27,810	0,908	100,881	1,016	1,839	0,229	1,053
MV170A_Mnz_1_4	0,424	1,055	0,009	10,136	1,565	11,923	28,508	2,848	11,192	0,000	1,900	0,010	1,064	0,000	0,000	0,000	0,050	0,124	0,275	0,026	27,423	1,085	99,616	1,027	1,799	0,275	1,077
MV170A_Mnz_1_5	0,384	1,025	0,000	9,265	1,397	12,401	29,164	2,847	11,610	0,000	1,806	0,046	1,150	0,000	0,044	0,000	0,231	0,000	0,252	0,051	27,691	1,011	100,374	1,025	1,816	0,254	1,063
MV170A_Mnz_1_6	1,661	0,121	0,000	3,207	0,726	16,279	31,798	2,859	10,300	0,000	1,928	0,040	1,888	0,092	0,257	0,000	0,684	0,042	0,191	0,012	29,124	0,383	101,591	0,979	1,949	0,069	1,031
MV170A_Mnz_1_7	1,248	0,087	0,000	1,891	0,740	14,722	31,060	2,999	11,439	0,000	2,903	0,008	2,198	0,235	0,163	0,000	0,576	0,069	1,211	0,000	28,886	0,642	101,078	0,978	1,952	0,052	1,034
MV170A_Mnz_1_8	1,569	0,105	0,000	3,346	0,875	14,365	30,337	2,546	10,762	0,000	2,441	0,000	2,741	0,000	0,168	0,000	0,735	0,016	0,558	0,032	29,080	0,548	100,226	0,986	1,932	0,074	1,052
MV170A_Mnz_1_9	2,519	0,129	0,004	4,259	1,008	14,623	29,211	2,998	10,254	0,000	2,203	0,041	2,044	0,182	0,360	0,000	0,709	0,017	0,276	0,002	29,383	0,542	100,764	0,987	1,921	0,089	1,062
MV170A_Mnz_1_10	2,396	0,090	0,003	2,986	0,705	15,530	30,115	2,808	9,771	0,000	2,359	0,000	2,610	0,138	0,331	0,000	0,785	0,000	0,738	0,001	29,051	0,428	100,845	0,980	1,946	0,067	1,032
MV170A_Mnz_2_1	0,001	1,044	0,004	8,870	1,191	13,398	30,541	3,198	12,286	0,000	1,675	0,411	0,698	0,000	0,000	0,000	0,045	0,000	0,255	0,037	27,617	0,951	102,221	1,015	1,828	0,246	1,033
MV170A_Mnz_2_2	0,005	1,079	0,004	8,300	1,033	13,603	31,120	3,264	12,343	0,000	1,642	0,302	0,647	0,000	0,067	0,000	0,000	0,000	0,235	0,003	27,328	0,887	101,862	1,015	1,843	0,240	1,017
MV170A_Mnz_2_5	0,010	0,817	0,013	8,251	1,235	13,102	30,258	3,017	11,811	0,000	1,678	0,481	0,706	0,000	0,000	0,000	0,000	0,000	0,315	0,008	27,769	0,914	100,384	1,012	1,834	0,220	1,053
MV170A_Mnz_8_1	1,003	0,199	0,000	5,785	1,739	14,635	28,466	2,640	10,589	0,000	1,806	0,000	1,599	0,144	0,142	0,000	0,395	0,000	1,725	0,007	29,035	1,246	101,155	0,988	1,860	0,135	1,119
MV170A_Mnz_8_2	0,421	0,146	0,010	5,484	1,474	14,626	30,070	3,048	11,691	0,000	2,006	0,007	1,417	0,000	0,068	0,000	0,254	0,000	0,612	0,004	28,734	0,760	100,830	0,980	1,892	0,116	1,094
MV170A_Mnz_8_3	0,410	0,118	0,001	5,547	1,389	14,333	29,929	2,802	11,392	0,000	1,963	0,026	1,436	0,000	0,159	0,000	0,320	0,000	0,655	0,016	28,930	0,789	100,213	0,986	1,888	0,116	1,095
MV170A_Mnz_8_4	0,413	0,119	0,005	5,470	1,381	14,654	29,851	3,029	11,491	0,000	1,888	0,026	1,513	0,030	0,126	0,000	0,244	0,041	0,617	0,032	28,778	0,770	100,477	0,981	1,891	0,114	1,090
MV170A_Mnz_8_5	0,430	0,143	0,000	5,775	1,393	14,489	28,572	2,916	10,919	0,000	1,858	0,042	1,215	0,030	0,000	0,000	0,149	0,000	0,784	0,024	28,956	0,858	98,551	0,997	1,874	0,124	1,105
MV170A_Mnz_8_6	0,934	0,593	0,000	9,055	1,646	12,512	27,830	3,034	10,896	0,000	1,901	0,060	1,781	0,000	0,277	0,000	0,371	0,016	0,366	0,020	28,825	1,044	101,159	1,011	1,824	0,213	1,103
MV170A_Mnz_8_7	0,374	0,953	0,005	8,800	1,312	12,853	29,665	3,175	11,452	0,000	1,912	0,064	1,056	0,000	0,035	0,000	0,194	0,009	0,231	0,013	27,915	0,952	100,970	1,021	1,830	0,238	1,057
MV170A_Mnz_8_8	0,416	0,997	0,001	9,884	1,527	12,434	29,131	3,004	11,459	0,000	1,878	0,080	1,077	0,000	0,060	0,000	0,126	0,000	0,275	0,020	27,749	1,075	101,192	1,020	1,809	0,262	1,071
MV170A_Mnz_3_1	0,677	0,489	0,006	8,175	1,555	12,849	28,524	2,846	11,207	0,000	2,200	0,015	1,379	0,067	0,000	0,000	0,204	0,006	0,734	0,012	28,662	1,073	100,679	1,004	1,836	0,193	1,098
MV170A_Mnz_3_2	0,646	0,508	0,006	8,332	1,740	13,383	29,317	2,979	11,183	0,000	2,165	0,007	1,470	0,000	0,012	0,000	0,229	0,038	0,670	0,011	28,656	1,062	102,413	0,995	1,838	0,195	1,102
MV170A_Mnz_3_3	0,993	0,203	0,001	5,890	1,666	13,886	27,985	2,796	10,566	0,000	1,702	0,009	1,679	0,171	0,028	0,000	0,227	0,174	1,753	0,010	28,908	1,246	99,893	0,993	1,855	0,139	1,119
MV170A_Mnz_3_4	0,975	0,180	0,001	5,694	1,662	13,840	28,026	2,862	10,658	0,000	1,906	0,060	1,337	0,019	0,065	0,000	0,438	0,000	1,738	0,004	22,746	1,238	93,447	0,901	1,896	0,153	1,049
MV170A_Mnz_3_5	1,039	0,207	0,001	5,701	1,668	14,338	29,345	2,872	10,778	0,000	1,847	0,014	1,549	0,027	0,000	0,000	0,305	0,055	1,796	0,015	29,016	1,253	101,825	0,984	1,864	0,134	1,109
MV170A_Mnz_3_6	2,475	0,196	0,000	6,253	1,439	13,156	28,276	2,854	10,591	0,000	2,196	0,031	2,325	0,070	0,117	0,000	0,746	0,045	0,591	0,009	29,751	0,848	101,966	0,993	1,877	0,131	1,097
MV170A_Mnz_3_7	2,638	0,205	0,008	6,521	1,582	13,155	28,317	2,478	10,663	0,000	2,225	0,044	2,053	0,117	0,298	0,000	0,963	0,000	1,056	0,007	29,741	0,877	102,945	0,988	1,868	0,139	1,103
MV170A_Mnz_3_8	2,638	0,222	0,004	6,596	1,541	12,678	27,721	2,433	10,597	0,000	2,419	0,078	2,012	0,000	0,411	0,000	0,787	0,110	0,593	0,018	29,791	0,892	101,540	0,997	1,866	0,139	1,108
MV170A_mnz_16_1	0,607	0,092	0,009	5,213	1,394	13,802	28,560	2,961	11,577	0,000	2,342	0,082	1,796	0,000	0,201	0,000	0,196	0,047	1,197	0,016	29,119	0,977	100,188	0,988	1,881	0,112	1,100
MV170A_mnz_16_2	0,507	0,332	0,002	6,245	1,562	13,864	28,772	2,883	10,917	0,000	2,244	0,136	1,658	0,000	0,014	0,000	0,000	0.014	1,104	0,026	29,123	1,051	101,021	0,999	1,857	0,148	1,105
MV170A_mnz_16_3	0,589	0,102	0,006	4,907	1,463	14,515	29,300	2,913	10,817	0,000	2,087	0,420	1,/12	0,000	0,012	0,000	0,341	0,014	1,189	0,023	29,041	0,927	100,376	0,984	1,8/8	0,107	1,101
MV170A_mmz_16_4	0,570	1,326	0,009	10,033	1,114	12,085	28,037	2,880	11,785	0,000	1,933	0,111	0,896	0,000	0,009	0,000	0,045	0,014	0,294	0,015	20,812	1,124	100,229	1,046	1,791	0,523	1,019
MV170A_mnz_16_5	0,708	0.877	0,004	9,017	1,547	12 831	29,213	2,862	11,050	0,000	2,249	0.145	1,134	0,000	0,132	0,000	0,400	0,000	0,284	0,012	21,700	0,979	100,439	1,015	1,828	0,238	1,061
MV170A_mnz_18_1	0,509	0.109	0,000	5 352	1,404	14 457	29,030	2 822	10.805	0,000	1,790	0,145	1 302	0.007	0.182	0,000	0,500	0.047	1 354	0,020	20,033	1.035	00 825	1,010	1,027	0,234	1,000
	0,799	0,196	0,003	5,555	1,342	14,437	20,704	2,023	10,093	0,000	1,912	0,079	1,393	0,007	0,102	0,000	0,100	0,047	1,004	0,023	20,790	1,055	22,000		1,072	0,123	1,104

MV170A_mnz_18_2	0,277	0,133	0,001	5,457	1,362	14,892	30,248	3,065	11,602	0,000	1,924	0,111	1,276	0,045	0,000	0,000	0,164	0,003	0,791	0,006	28,761	0,834	100,950	0,980	1,890	0,116	1,086
MV170A_mnz_18_3	0,114	0,347	0,008	5,729	1,146	15,721	30,269	3,133	10,847	0,000	1,501	0,029	0,625	0,000	0,131	0,000	0,177	0,069	0,631	0,018	28,466	0,799	99,760	0,996	1,884	0,138	1,067
Point analysis	Y2O4	SiO3	Al2O4	ThO3	CaO	La2O4	Ce2O4	Pr2O4	Nd2O4	Eu2O4	Sm2O4	FeO	Gd2O4	Er2O4	Tb2O4	Tm2O4	Dy2O4	Yb2O4	UO3	SO4	P2O6	PbO	Total	Si+P	REE+P+Y	Th+U+Si	Ca+P
BCJ-10																											
MV170A_mnz_18_4	0,113	0,334	0,000	5,471	1,145	15,650	30,408	3,161	11,015	0,000	1,668	0,026	0,582	0,000	0,005	0,000	0,073	0,002	0,615	0,000	28,587	0,779	99,633	0,998	1,888	0,132	1,070
MV170A_mnz_18_5	0,047	0,986	0,010	8,446	1,131	13,687	30,091	3,216	11,511	0,000	1,858	0,103	0,785	0,000	0,030	0,000	0,010	0,013	0,419	0,023	27,549	0,968	100,882	1,018	1,836	0,238	1,036
MV170A_mnz_18_6	0,057	1,118	0,005	9,423	1,340	12,696	28,788	3,178	12,467	0,000	1,767	0,120	0,627	0,000	0,167	0,000	0,222	0,000	0,469	0,022	27,745	1,093	101,304	1,028	1,811	0,265	1,054
BCJ-11																											
------------------	-------	-------	-------	--------	-------	--------	--------	-------	--------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	--------	-------	---------	-------			
MV170_B_Mnz4_1	2,842	0,248	0,001	5,288	1,525	13,313	28,394	2,939	10,652	0,000	1,848	0,226	1,747	0,095	0,188	0,000	0,801	0,104	1,304	0,042	29,723	1,079	102,359	0,991			
MV170_B_Mnz4_2	1,236	0,212	0,005	6,425	1,675	13,917	28,966	2,745	10,725	0,000	2,200	0,274	1,485	0,077	0,113	0,000	0,458	0,000	1,132	0,025	29,452	1,070	102,192	0,989			
MV170_B_Mnz4_3	0,820	0,403	0,000	5,965	1,613	14,449	29,991	2,860	11,261	0,000	2,056	0,458	1,273	0,000	0,000	0,000	0,407	0,075	0,991	0,330	28,523	0,964	102,439	0,978			
MV170_B_Mnz4_4	0,663	0,203	0,010	6,525	1,809	14,257	29,319	2,949	10,982	0,000	1,795	0,659	1,383	0,011	0,160	0,000	0,332	0,001	1,693	0,010	29,039	1,114	102,910	0,977			
MV170_B_Mnz9_1	2,428	0,289	0,000	5,372	1,167	15,042	31,401	2,894	10,177	0,000	1,425	0,000	1,078	0,004	0,313	0,000	0,361	0,125	0,306	0,008	29,083	0,641	102,113	0,985			
MV170_B_Mnz9_2	2,567	0,255	0,003	5,205	1,157	15,112	31,349	2,940	10,186	0,000	1,582	0,076	1,054	0,158	0,224	0,000	0,534	0,000	0,324	0,000	29,287	0,639	102,654	0,983			
MV170_B_Mnz9_3	2,448	0,374	0,001	6,024	1,263	14,321	30,835	2,833	10,486	0,000	1,499	0,088	1,096	0,129	0,000	0,000	0,472	0,112	0,329	0,034	29,296	0,740	102,379	0,992			
MV170_B_Mnz9_4	0,437	1,127	0,006	8,577	1,150	14,022	31,043	3,097	11,473	0,000	1,674	0,013	1,065	0,000	0,014	0,000	0,195	0,000	0,288	0,005	27,401	0,933	102,519	1,015			
MV170_B_Mnz9_5	0,401	1,008	0,000	8,754	1,325	13,319	30,152	2,736	11,304	0,000	1,775	0,003	1,011	0,000	0,115	0,000	0,212	0,048	0,324	0,016	27,634	0,967	101,102	1,019			
MV170_B_Mnz9_6	0,363	0,674	0,005	8,428	1,570	14,085	30,033	2,945	11,466	0,000	1,766	0,000	1,021	0,000	0,000	0,000	0,000	0,032	0,378	0,021	28,029	0,953	101,769	0,999			
MV170_B_Mnz6_1	0,654	1,172	0,005	7,519	0,736	13,516	31,765	2,889	11,383	0,000	1,748	0,108	1,097	0,000	0,000	0,000	0,172	0,073	0,199	0,014	27,245	0,797	101,092	1,023			
MV170_B_Mnz6_2	0,592	1,205	0,000	7,612	0,712	13,106	31,341	3,094	11,915	0,000	1,879	0,027	1,176	0,000	0,082	0,000	0,051	0,000	0,196	0,010	27,481	0,809	101,288	1,029			
MV170_B_Mnz6_3	2,846	0,297	0,000	5,822	1,166	14,350	29,425	2,847	9,851	0,000	1,555	0,115	1,099	0,219	0,219	0,000	0,358	0,000	0,306	0,010	28,472	0,684	99,640	0,987			
MV170_B_Mnz6_4	3,005	0,286	0,000	5,691	1,167	14,343	30,579	2,690	10,280	0,000	1,415	0,072	1,236	0,137	0,078	0,000	0,540	0,024	0,298	0,015	28,823	0,675	101,354	0,983			
MV170_B_Mnz6_5	2,523	0,222	0,004	3,686	0,798	15,500	32,219	2,987	10,492	0,000	1,555	0,122	0,965	0,099	0,068	0,000	0,654	0,000	0,371	0,014	28,660	0,508	101,445	0,976			
MV170B_Mnz_19_1	0,131	0,992	0,006	8,103	1,065	14,060	30,950	2,867	11,300	0,000	1,591	0,025	0,841	0,000	0,000	0,000	0,236	0,000	0,229	0,002	27,362	0,866	100,626	1,017			
MV170B_Mnz_19_2	0,070	0,851	0,000	7,645	1,112	13,969	31,200	3,062	11,735	0,000	1,561	0,024	0,760	0,000	0,047	0,000	0,102	0,000	0,249	0,009	27,772	0,842	101,011	1,012			
MV170B_Mnz_19_3	0,050	1,063	0,005	7,706	0,891	13,739	31,236	3,063	12,245	0,000	1,562	0,094	0,662	0,065	0,105	0,000	0,076	0,033	0,259	0,009	27,378	0,852	101,094	1,019			
MV170B_Mnz_19_4	2,286	0,414	0,001	7,050	1,341	13,417	29,675	2,924	10,012	0,000	1,367	0,049	1,086	0,129	0,000	0,000	0,485	0,112	0,716	0,015	28,369	0,798	100,245	0,992			
MV170B_Mnz_19_5	2,213	0,403	0,000	7,271	1,430	13,263	29,493	2,800	10,395	0,000	1,213	0,036	0,950	0,093	0,186	0,000	0,542	0,062	0,317	0,005	28,570	0,822	100,063	0,995			
MV170B_Mnz_19_6	2,076	0,428	0,000	7,260	1,421	12,990	29,517	2,963	10,538	0,000	1,332	0,063	0,954	0,171	0,068	0,000	0,478	0,000	0,771	0,007	28,845	0,811	100,694	0,999			
MV170B_Mnz_19_7	1,370	0,077	0,004	2,659	0,667	17,715	33,284	2,483	9,694	0,000	1,264	0,260	0,951	0,126	0,247	0,000	0,329	0,116	0,184	0,001	29,606	0,333	101,370	0,985			
MV170B_Mnz_19_8	1,209	0,059	0,000	2,240	0,546	18,391	33,798	2,813	9,686	0,000	1,161	0,301	0,931	0,000	0,243	0,000	0,394	0,059	0,152	0,012	29,411	0,286	101,690	0,979			
MV170B_Mnz_19_9	2,539	0,235	0,001	5,483	1,235	14,629	30,303	2,849	9,766	0,000	1,218	0,179	1,363	0,082	0,197	0,000	0,655	0,106	0,750	0,007	29,427	0,684	101,706	0,989			
MV170B_Mnz_19_10	0,375	0,053	0,003	3,232	1,229	15,107	32,500	2,978	11,819	0,000	1,930	0,045	1,367	0,024	0,000	0,000	0,243	0,000	0,922	0,025	28,953	0,655	101,459	0,974			
MV170B_Mnz_19_11	0,326	0,067	0,000	3,277	1,243	14,992	31,917	2,816	11,774	0,000	1,771	0,053	1,153	0,000	0,002	0,000	0,178	0,018	0,918	0,013	29,075	0,653	100,246	0,983			
MV170B_Mnz_33_1	0,821	0,155	0,006	4,353	1,399	11,632	29,504	3,146	11,816	0,000	3,022	1,332	1,902	0,000	0,000	0,000	0,417	0,002	1,385	0,004	28,613	0,935	100,444	0,977			
MV170B_Mnz_33_2	0,487	1,100	0,007	8,864	1,205	13,581	29,540	2,950	10,542	0,000	1,873	0,924	1,171	0,023	0,262	0,000	0,301	0,000	0,303	0,002	27,010	0,955	101,100	1,012			
MV170B_Mnz_33_3	0,361	0,277	0,008	6,623	1,504	11,700	31,029	3,357	12,914	0,000	1,373	1,100	0,581	0,000	0,075	0,000	0,129	0,000	0,506	0,018	28,267	0,800	100,621	0,979			
MV170B_37_1	0,684	0,221	0,000	4,704	1,417	14,824	29,924	2,860	10,792	0,000	1,751	0,054	1,425	0,093	0,007	0,000	0,369	0,023	1,494	0,002	28,658	1,028	100,330	0,987			
MV170B_37_2	0,302	0,360	0,003	5,933	1,461	15,240	30,019	2,793	10,999	0,000	2,046	0,081	1,145	0,000	0,000	0,000	0,337	0,144	1,310	0,007	28,567	1,074	101,821	0,988			
MV170B_37_3	0,673	0,196	0,003	4,353	1,310	15,487	30,950	2,983	10,626	0,000	1,622	0,051	1,250	0,000	0,237	0,000	0,396	0,000	1,501	0,000	28,742	1,001	101,381	0,981			
MV170B_37_4	0,232	1,313	0,001	10,937	1,399	11,959	29,208	3,020	11,456	0,000	1,724	0,118	1,027	0,000	0,126	0,000	0,000	0,071	0,262	0,029	27,315	1,156	101,352	1,034			
MV170B_37_5	0,052	1,111	0,001	7,752	0,819	14,002	30,805	3,101	11,887	0,000	1,808	0,000	0,793	0,000	0,124	0,000	0,000	0,000	0,253	0,004	27,174	0,841	100,526	1,023			
MV170B_37_6	0,066	1,120	0,001	7,805	0,931	13,804	31,461	3,151	12,124	0,000	1,764	0,041	0,657	0,000	0,000	0,000	0,000	0,000	0,673	0,025	27,302	0,853	101,776	1,018			
MV170B_37_7	2,143	0,299	0,000	4,995	0,969	15,630	31,528	2,717	9,572	0,000	1,103	0,186	0,851	0,176	0,000	0,000	0,497	0,118	0,124	0,022	29,164	0,546	100,640	0,995			
MV170B_37_8	2,314	0,152	0,004	4,180	0,898	15,948	31,580	2,856	10,031	0,000	1,465	0,066	1,250	0,106	0,000	0,000	0,704	0,000	0,770	0,010	29,452	0,529	102,312	0,982			
MV170B_37_9	2,858	0,188	0,000	3,935	0,821	15,076	30,847	2,906	9,613	0,000	1,594	0,141	1,475	0,037	0,162	0,000	0,816	0,003	0,783	0,024	29,310	0,512	101,101	0,987			

Point analysis Y2O4 SiO3 Al2O4 ThO3 CaO La2O4 Ce2O4 Pr2O4 Nd2O4 Eu2O4 Sm2O4 FeO Gd2O4 Er2O4 Tb2O4 Tm2O4 Dy2O4 Yb2O4 UO3 SO4 P2O6 PbO Total Si+P

BCJ-11																								
MV170B_34_1	0,134	1,581	0,000	7,801	0,358	14,190	32,329	3,107	11,791	0,000	1,464	0,061	0,520	0,100	0,175	0,000	0,121	0,000	0,147	0,017	27,264	0,817	101,975	1,049
MV170B_34_2	0,137	1,580	0,003	7,633	0,360	14,411	33,130	2,996	11,388	0,000	1,344	0,059	0,555	0,000	0,000	0,000	0,000	0,000	0,630	0,022	27,171	0,804	102,223	1,045
MV170B_34_3	0,180	1,442	0,000	10,583	1,226	12,889	29,644	3,064	11,380	0,000	1,658	0,048	0,786	0,000	0,244	0,000	0,187	0,019	0,243	0,009	27,130	1,118	101,854	1,037
MV170B_34_4	0,719	0,494	0,001	5,461	0,968	15,632	32,076	2,859	10,982	0,000	1,505	0,093	0,919	0,034	0,178	0,000	0,270	0,031	0,477	0,011	28,889	0,711	102,309	0,999
MV170B_34_5	0,746	0,447	0,005	5,201	0,946	15,430	32,066	2,992	10,474	0,000	1,461	0,179	0,953	0,048	0,012	0,000	0,268	0,000	0,930	0,015	29,496	0,697	102,366	1,006
MV170B_34_6	2,221	0,111	0,003	2,975	0,711	16,777	32,041	2,910	9,652	0,000	1,447	0,204	1,279	0,000	0,204	0,000	0,809	0,005	0,324	0,017	29,453	0,422	101,566	0,982
MV170B_34_7	2,044	0,156	0,006	3,833	0,830	15,991	31,992	2,841	9,973	0,000	1,400	0,145	1,360	0,053	0,418	0,000	0,615	0,000	0,353	0,032	29,789	0,530	102,361	0,988
MV170B_Mnz_29_1	0,242	0,130	0,002	6,178	1,562	13,657	29,530	2,957	11,659	0,000	2,223	0,065	1,302	0,000	0,000	0,000	0,073	0,000	0,762	0,008	29,113	0,893	100,353	0,990
MV170B_Mnz_29_2	0,164	1,268	0,006	10,652	1,443	12,326	29,319	3,098	11,525	0,000	1,765	0,070	0,760	0,084	0,163	0,000	0,112	0,033	0,256	0,000	27,097	1,125	101,264	1,028
MV170B_Mnz_29_3	0,201	1,359	0,003	10,415	1,190	12,678	29,862	2,891	11,507	0,000	1,594	0,057	0,980	0,000	0,000	0,000	0,108	0,064	0,243	0,021	26,833	1,107	101,112	1,030
MV170B_Mnz_29_4	0,163	1,125	0,000	9,005	1,201	13,193	29,803	2,905	11,292	0,000	1,694	0,080	0,640	0,000	0,000	0,000	0,207	0,084	0,655	0,013	27,200	0,953	100,211	1,025
MV170B_Mnz_29_5	2,213	0,322	0,000	6,297	1,266	14,944	30,377	2,958	9,605	0,000	1,398	0,128	1,038	0,137	0,000	0,000	0,442	0,055	0,236	0,007	28,257	0,698	100,378	0,982
MV170B_Mnz_29_6	0,838	0,789	0,012	6,718	1,148	14,925	31,806	2,985	10,746	0,000	1,512	0,053	0,945	0,000	0,073	0,000	0,231	0,093	0,424	0,013	29,513	0,832	103,654	1,021
MV170B_Mnz_22_1	1,936	0,678	0,003	7,368	1,230	12,689	29,581	2,922	10,588	0,000	1,324	0,023	1,189	0,202	0,121	0,000	0,464	0,022	0,502	0,019	27,986	0,904	99,752	1,007
MV170B_Mnz_22_2	1,997	0,599	0,000	6,918	1,231	13,187	29,588	2,928	10,675	0,000	1,438	0,009	1,078	0,088	0,000	0,000	0,583	0,000	0,511	0,028	28,286	0,870	100,013	1,005
MV170B_Mnz_22_3	2,023	0,587	0,000	6,880	1,180	13,166	29,831	2,965	10,838	0,000	1,711	0,002	1,239	0,077	0,175	0,000	0,589	0,054	0,507	0,017	28,380	0,865	101,085	1,000
MV170B_Mnz_22_4	1,227	0,905	0,000	7,165	0,935	13,343	30,803	2,970	10,470	0,000	1,371	0,038	1,220	0,109	0,000	0,000	0,498	0,000	1,140	0,014	27,813	0,795	100,816	1,016
MV170B_Mnz_22_5	1,150	0,956	0,002	7,346	0,893	13,412	31,556	2,900	10,881	0,000	1,582	0,000	1,181	0,000	0,112	0,000	0,353	0,000	0,221	0,035	27,880	0,800	101,259	1,017
MV170B_Mnz_22_6	1,100	0,545	0,003	5,662	1,002	14,609	31,396	2,992	10,903	0,000	1,591	0,029	1,220	0,000	0,000	0,000	0,373	0,021	0,490	0,002	27,945	0,721	100,602	0,994
MV170B_Mnz_22_7	2,811	0,261	0,005	5,016	1,024	14,608	30,006	2,838	9,914	0,000	1,338	0,092	1,178	0,119	0,000	0,000	0,792	0,014	0,378	0,011	28,333	0,615	99,353	0,983
MV170B_Mnz_22_8	2,664	0,260	0,009	5,034	1,080	14,935	30,233	2,640	9,864	0,000	1,702	0,036	1,158	0,023	0,246	0,000	0,762	0,018	0,406	0,012	28,590	0,643	100,315	0,983
MV170B_Mnz_22_9	2,650	0,244	0,007	5,030	1,095	14,561	29,411	2,622	9,753	0,000	1,432	0,055	1,125	0,214	0,225	0,000	0,650	0,064	0,384	0,003	29,013	0,639	99,177	0,996
MV170B_Mnz_42_1	1,696	0,214	0,000	5,295	1,480	12,766	27,199	2,822	10,974	0,000	2,106	0,386	1,627	0,000	0,154	0,000	0,508	0,000	1,599	0,017	28,774	1,123	98,740	0,995
MV170B_Mnz_42_2	1,807	0,130	0,000	5,041	1,635	13,052	28,268	2,924	11,097	0,000	2,137	0,390	1,704	0,144	0,196	0,000	0,519	0,011	1,711	0,029	28,907	1,141	100,844	0,979
MV170B_Mnz_42_3	0,120	0,699	0,002	8,409	1,452	13,597	29,695	2,987	11,423	0,000	1,992	0,509	1,100	0,000	0,047	0,000	0,068	0,058	0,348	0,000	27,852	0,941	101,300	1,000
MV170B_Mnz_42_4	0,446	0,849	0,008	7,982	1,204	13,633	30,151	3,070	11,524	0,000	1,986	0,431	1,281	0,033	0,019	0,000	0,135	0,017	0,720	0,002	27,803	0,888	102,179	1,005
MV170B_Mnz_42_5	0,462	0,845	0,001	7,674	1,159	14,040	30,815	3,031	10,824	0,000	1,848	0,491	1,160	0,000	0,084	0,000	0,166	0,000	0,287	0,029	27,860	0,856	101,631	1,007

Point analysis Y2O4 SiO3 Al2O4 ThO3 CaO La2O4 Ce2O4 Pr2O4 Nd2O4 Eu2O4 Sm2O4 FeO Gd2O4 Er2O4 Tb2O4 Tm2O4 Dy2O4 Yb2O4 UO3 SO4 P2O6 PbO Total Si+P

Point analysis in monazite crystals in cations on the basis of 4 oxygens with age data and error.

Point analysis	Y	Si	Al	Th	Ca	La	Ce	Pr	Nd	Eu	Sm	Fe	Gd	Er	Tb	Tm	Dy	Yb	U	S	Р	Pb	Total	Age (Ma)	Error 2sigma
BCJ-10																									
MV170A_Mnz_1_2	0,009	0,081	0,000	0,176	0,128	0,188	0,426	0,045	0,164	0,000	0,027	0,001	0,017	0,000	0,000	0,000	0,002	0,000	0,002	0,001	0,937	0,011	2,216	2211	18
MV170A_Mnz_1_3	0,008	0,072	0,001	0,156	0,109	0,194	0,447	0,042	0,162	0,000	0,021	0,001	0,014	0,000	0,002	0,000	0,003	0,001	0,002	0,000	0,944	0,010	2,188	2258	17
MV170A_Mnz_1_4	0,009	0,086	0,000	0,187	0,136	0,178	0,423	0,042	0,162	0,000	0,027	0,000	0,014	0,000	0,000	0,000	0,001	0,002	0,002	0,001	0,941	0,012	2,223	2206	19
MV170A_Mnz_1_5	0,008	0,082	0,000	0,170	0,120	0,184	0,429	0,042	0,167	0,000	0,025	0,002	0,015	0,000	0,001	0,000	0,003	0,000	0,002	0,002	0,942	0,011	2,205	2224	17
MV170A_Mnz_1_6	0,035	0,010	0,000	0,057	0,061	0,236	0,458	0,041	0,145	0,000	0,026	0,001	0,025	0,001	0,003	0,000	0,009	0,001	0,002	0,000	0,970	0,004	2,084	2263	18
MV170A_Mnz_1_7	0,026	0,007	0,000	0,034	0,063	0,216	0,452	0,043	0,162	0,000	0,040	0,000	0,029	0,003	0,002	0,000	0,007	0,001	0,011	0,000	0,971	0,007	2,074	2099	35
MV170A_Mnz_1_8	0,033	0,008	0,000	0,060	0,074	0,210	0,441	0,037	0,153	0,000	0,033	0,000	0,036	0,000	0,002	0,000	0,009	0,000	0,005	0,001	0,977	0,006	2,087	2162	20
MV170A_Mnz_1_9	0,053	0,010	0,000	0,076	0,085	0,212	0,420	0,043	0,144	0,000	0,030	0,001	0,027	0,002	0,005	0,000	0,009	0,000	0,002	0,000	0,977	0,006	2,102	2186	24
MV170A_Mnz_1_10	0,050	0,007	0,000	0,054	0,060	0,226	0,436	0,040	0,138	0,000	0,032	0,000	0,034	0,002	0,004	0,000	0,010	0,000	0,006	0,000	0,972	0,005	2,078	2183	26
MV170A_Mnz_2_1	0,000	0,083	0,000	0,161	0,102	0,197	0,445	0,046	0,175	0,000	0,023	0,014	0,009	0,000	0,000	0,000	0,001	0,000	0,002	0,001	0,931	0,010	2,201	1602	25
MV170A_Mnz_2_2	0,000	0,087	0,000	0,152	0,089	0,201	0,457	0,048	0,177	0,000	0,023	0,010	0,009	0,000	0,001	0,000	0,000	0,000	0,002	0,000	0,928	0,010	2,192	2226	18
MV170A_Mnz_2_5	0,000	0,066	0,001	0,151	0,107	0,195	0,446	0,044	0,170	0,000	0,023	0,016	0,009	0,000	0,000	0,000	0,000	0,000	0,003	0,000	0,946	0,010	2,187	2222	19
MV170A_Mnz_8_1	0,021	0,016	0,000	0,104	0,147	0,213	0,412	0,038	0,150	0,000	0,025	0,000	0,021	0,002	0,002	0,000	0,005	0,000	0,015	0,000	0,972	0,013	2,156	2226	18
MV170A_Mnz_8_2	0,009	0,012	0,000	0,099	0,126	0,215	0,438	0,044	0,166	0,000	0,028	0,000	0,019	0,000	0,001	0,000	0,003	0,000	0,005	0,000	0,969	0,008	2,143	2246	13
MV170A_Mnz_8_3	0,009	0,009	0,000	0,101	0,119	0,211	0,437	0,041	0,162	0,000	0,027	0,001	0,019	0,000	0,002	0,000	0,004	0,000	0,006	0,000	0,976	0,008	2,132	2205	20
MV170A_Mnz_8_4	0,009	0,009	0,000	0,099	0,118	0,216	0,436	0,044	0,164	0,000	0,026	0,001	0,020	0,000	0,002	0,000	0,003	0,000	0,005	0,001	0,972	0,008	2,134	2220	19
MV170A_Mnz_8_5	0,009	0,012	0,000	0,106	0,120	0,215	0,421	0,043	0,157	0,000	0,026	0,001	0,016	0,000	0,000	0,000	0,002	0,000	0,007	0,001	0,985	0,009	2,129	2229	20
MV170A_Mnz_8_6	0,020	0,047	0,000	0,163	0,139	0,182	0,403	0,044	0,154	0,000	0,026	0,002	0,023	0,000	0,004	0,000	0,005	0,000	0,003	0,001	0,964	0,011	2,189	2216	18
MV170A_Mnz_8_7	0,008	0,076	0,000	0,160	0,112	0,190	0,434	0,046	0,164	0,000	0,026	0,002	0,014	0,000	0,000	0,000	0,002	0,000	0,002	0,000	0,945	0,010	2,194	2266	17
MV170A_Mnz_8_8	0,009	0,080	0,000	0,180	0,131	0,183	0,427	0,044	0,164	0,000	0,026	0,003	0,014	0,000	0,001	0,000	0,002	0,000	0,002	0,001	0,940	0,012	2,217	2252	19
MV170A_Mnz_3_1	0,014	0,039	0,000	0,148	0,133	0,189	0,416	0,041	0,159	0,000	0,030	0,000	0,018	0,001	0,000	0,000	0,003	0,000	0,007	0,000	0,966	0,011	2,175	2252	17
MV170A_Mnz_3_2	0,014	0,040	0,000	0,149	0,147	0,194	0,423	0,043	0,157	0,000	0,029	0,000	0,019	0,000	0,000	0,000	0,003	0,000	0,006	0,000	0,955	0,011	2,192	2216	15
MV170A_Mnz_3_3	0,021	0,016	0,000	0,107	0,143	0,204	0,409	0,041	0,151	0,000	0,023	0,000	0,022	0,002	0,000	0,000	0,003	0,002	0,016	0,000	0,977	0,013	2,151	2214	16
MV170A_Mnz_3_4	0,024	0,017	0,000	0,119	0,164	0,235	0,472	0,048	0,175	0,000	0,030	0,002	0,020	0,000	0,001	0,000	0,006	0,000	0,018	0,000	0,885	0,015	2,231	2214	13
MV170A_Mnz_3_5	0,022	0,016	0,000	0,102	0,141	0,208	0,423	0,041	0,152	0,000	0,025	0,000	0,020	0,000	0,000	0,000	0,004	0,001	0,016	0,000	0,968	0,013	2,154	2240	13
MV170A_Mnz_3_6	0,051	0,015	0,000	0,110	0,120	0,188	0,402	0,040	0,147	0,000	0,029	0,001	0,030	0,001	0,001	0,000	0,009	0,001	0,005	0,000	0,978	0,009	2,138	2226	13
MV170A_Mnz_3_7	0,054	0,016	0,000	0,115	0,131	0,187	0,400	0,035	0,147	0,000	0,030	0,001	0,026	0,001	0,004	0,000	0,012	0,000	0,009	0,000	0,972	0,009	2,150	2185	18
MV170A_Mnz_3_8	0,055	0,017	0,000	0,117	0,128	0,182	0,394	0,034	0,147	0,000	0,032	0,003	0,026	0,000	0,005	0,000	0,010	0,001	0,005	0,001	0,979	0,009	2,146	1846	16
MV170A_mnz_16_1	0,013	0,007	0,000	0,094	0,119	0,203	0,416	0,043	0,164	0,000	0,032	0,003	0,024	0,000	0,003	0,000	0,003	0,001	0,011	0,000	0,981	0,010	2,126	2206	18
MV170A_mnz_16_2	0,011	0,026	0,000	0,112	0,132	0,202	0,416	0,041	0,161	0,000	0,031	0,004	0,022	0,000	0,000	0,000	0,000	0,001	0,010	0,001	0,973	0,011	2,153	2239	16
MV170A_mnz_16_3	0,012	0,008	0,000	0,089	0,124	0,213	0,426	0,042	0,153	0,000	0,029	0,014	0,023	0,000	0,000	0,000	0,004	0,000	0,011	0,001	0,976	0,010	2,135	2262	15
MV170A_mnz_16_4	0,008	0,124	0,000	0,197	0,097	0,181	0,426	0,043	0,171	0,000	0,027	0,004	0,012	0,000	0,000	0,000	0,001	0,000	0,002	0,000	0,922	0,012	2,228	2205	16
MV170A_mnz_16_5	0,015	0,070	0,000	0,165	0,116	0,175	0,431	0,042	0,167	0,000	0,031	0,003	0,015	0,000	0,002	0,000	0,005	0,000	0,003	0,000	0,944	0,011	2,196	2239	17
MV170A_mnz_16_6	0,011	0,070	0,000	0,161	0,120	0,189	0,433	0,045	0,162	0,000	0,025	0,005	0,013	0,000	0,000	0,000	0,004	0,000	0,002	0,001	0,946	0,011	2,197	2210	18
MV170A_mnz_18_1	0,017	0,016	0,000	0,097	0,130	0,213	0,421	0,041	0,155	0,000	0,026	0,003	0,018	0,000	0,002	0,000	0,002	0,001	0,012	0,001	0,974	0,011	2,142	2269	18
MV170A_mnz_18_2	0,006	0,011	0,000	0,099	0,116	0,219	0,441	0,044	0,165	0,000	0,026	0,004	0,017	0,001	0,000	0,000	0,002	0,000	0,007	0,000	0,970	0,009	2,136	2206	15

MV170A_mnz_18_3	0,002	0,028	0,000	0,105	0,099	0,233	0,445	0,046	0,156	0,000	0,021	0,001	0,008	0,000	0,002	0,000	0,002	0,001	0,006	0,001	0,968	0,009	2,132	2229	18
MV170A_mnz_18_4	0,002	0,027	0,000	0,100	0,098	0,232	0,447	0,046	0,158	0,000	0,023	0,001	0,008	0,000	0,000	0,000	0,001	0,000	0,005	0,000	0,971	0,008	2,128	2237	19
Point analysis	Y	Si	Al	Th	Ca	La	Ce	Pr	Nd	Eu	Sm	Fe	Gd	Er	Tb	Tm	Dy	Yb	U	S	Р	Pb	Total	Age (Ma)	Error 2sigma
BCJ-10																									
MV170A_mnz_18_5	0,001	0,079	0,000	0,155	0,098	0,203	0,443	0,047	0,165	0,000	0,026	0,003	0,010	0,000	0,000	0,000	0,000	0,000	0,004	0,001	0,939	0,010	2,187	2265	20
MV170A_mnz_18_6	0,001	0,089	0,000	0,171	0,115	0,187	0,421	0,046	0,178	0,000	0,024	0,004	0,008	0,000	0,002	0,000	0,003	0,000	0,004	0,001	0,939	0,012	2,207	2213	17
MV170A mnz 18 7	0.001	0.087	0.000	0.169	0.101	0.190	0.423	0.045	0 174	0.000	0.026	0.003	0.010	0.000	0.001	0.000	0.001	0.000	0.008	0.000	0.942	0.012	2 193	2237	16

,,,,,,,,	1	31	AI	111	Ca	La	Ce	Гľ	INU	Eu	эш	ге	Gu	Eľ	10	1111	Dy	10	U	3	r	FD	Total	Age (Ma)	Error 2sigma
BCJ-11																									
MV170_B_Mnz4_1	0,058	0,019	0,000	0,093	0,126	0,190	0,402	0,041	0,147	0,000	0,025	0,007	0,022	0,001	0,002	0,000	0,010	0,001	0,011	0,001	0,972	0,011	2,141	2278	14
MV170_B_Mnz4_2	0,026	0,017	0,000	0,114	0,140	0,200	0,413	0,039	0,149	0,000	0,030	0,009	0,019	0,001	0,001	0,000	0,006	0,000	0,010	0,001	0,972	0,011	2,158	2226	15
MV170_B_Mnz4_3	0,017	0,032	0,000	0,106	0,135	0,209	0,430	0,041	0,158	0,000	0,028	0,015	0,017	0,000	0,000	0,000	0,005	0,001	0,009	0,010	0,946	0,010	2,168	2222	16
MV170_B_Mnz4_4	0,014	0,016	0,000	0,116	0,152	0,206	0,420	0,042	0,153	0,000	0,024	0,022	0,018	0,000	0,002	0,000	0,004	0,000	0,015	0,000	0,961	0,012	2,177	1964	13
MV170_B_Mnz9_1	0,050	0,023	0,000	0,096	0,098	0,217	0,449	0,041	0,142	0,000	0,019	0,000	0,014	0,000	0,004	0,000	0,005	0,001	0,003	0,000	0,962	0,007	2,131	2130	23
MV170_B_Mnz9_2	0,053	0,020	0,000	0,092	0,096	0,217	0,446	0,042	0,141	0,000	0,021	0,002	0,014	0,002	0,003	0,000	0,007	0,000	0,003	0,000	0,963	0,007	2,128	2148	23
MV170_B_Mnz9_3	0,051	0,029	0,000	0,107	0,105	0,205	0,438	0,040	0,145	0,000	0,020	0,003	0,014	0,002	0,000	0,000	0,006	0,001	0,003	0,001	0,963	0,008	2,141	2222	21
MV170_B_Mnz9_4	0,009	0,090	0,000	0,156	0,098	0,206	0,453	0,045	0,163	0,000	0,023	0,000	0,014	0,000	0,000	0,000	0,003	0,000	0,003	0,000	0,925	0,010	2,200	2206	18
MV170_B_Mnz9_5	0,009	0,081	0,000	0,160	0,114	0,197	0,443	0,040	0,162	0,000	0,025	0,000	0,013	0,000	0,002	0,000	0,003	0,001	0,003	0,000	0,938	0,010	2,199	2216	18
MV170_B_Mnz9_6	0,008	0,054	0,000	0,153	0,134	0,207	0,438	0,043	0,163	0,000	0,024	0,000	0,013	0,000	0,000	0,000	0,000	0,000	0,003	0,001	0,945	0,010	2,196	2208	18
MV170_B_Mnz6_1	0,014	0,094	0,000	0,138	0,063	0,201	0,468	0,042	0,164	0,000	0,024	0,004	0,015	0,000	0,000	0,000	0,002	0,001	0,002	0,000	0,929	0,009	2,170	2194	21
MV170_B_Mnz6_2	0,013	0,097	0,000	0,139	0,061	0,194	0,460	0,045	0,171	0,000	0,026	0,001	0,016	0,000	0,001	0,000	0,001	0,000	0,002	0,000	0,933	0,009	2,167	2207	21
MV170_B_Mnz6_3	0,061	0,024	0,000	0,106	0,100	0,211	0,430	0,041	0,141	0,000	0,021	0,004	0,015	0,003	0,003	0,000	0,005	0,000	0,003	0,000	0,963	0,007	2,137	2117	22
MV170_B_Mnz6_4	0,063	0,023	0,000	0,102	0,098	0,208	0,441	0,039	0,144	0,000	0,019	0,002	0,016	0,002	0,001	0,000	0,007	0,000	0,003	0,000	0,960	0,007	2,135	2127	22
MV170_B_Mnz6_5	0,053	0,018	0,000	0,066	0,068	0,226	0,466	0,043	0,148	0,000	0,021	0,004	0,013	0,001	0,001	0,000	0,008	0,000	0,003	0,000	0,958	0,005	2,102	2120	26
MV170B_Mnz_19_1	0,003	0,080	0,000	0,149	0,092	0,210	0,458	0,042	0,163	0,000	0,022	0,001	0,011	0,000	0,000	0,000	0,003	0,000	0,002	0,000	0,936	0,009	2,183	2218	20
MV170B_Mnz_19_2	0,001	0,068	0,000	0,140	0,096	0,207	0,458	0,045	0,168	0,000	0,022	0,001	0,010	0,000	0,001	0,000	0,001	0,000	0,002	0,000	0,944	0,009	2,173	2252	20
MV170B_Mnz_19_3	0,001	0,086	0,000	0,141	0,077	0,204	0,461	0,045	0,176	0,000	0,022	0,003	0,009	0,001	0,001	0,000	0,001	0,000	0,002	0,000	0,934	0,009	2,174	2252	20
MV170B_Mnz_19_4	0,049	0,033	0,000	0,128	0,115	0,198	0,434	0,043	0,143	0,000	0,019	0,002	0,014	0,002	0,000	0,000	0,006	0,001	0,006	0,000	0,959	0,009	2,159	1816	17
MV170B_Mnz_19_5	0,047	0,032	0,000	0,132	0,122	0,195	0,430	0,041	0,148	0,000	0,017	0,001	0,013	0,001	0,002	0,000	0,007	0,001	0,003	0,000	0,963	0,009	2,163	2143	19
MV170B_Mnz_19_6	0,044	0,034	0,000	0,131	0,120	0,189	0,427	0,043	0,149	0,000	0,018	0,002	0,013	0,002	0,001	0,000	0,006	0,000	0,007	0,000	0,965	0,009	2,159	1782	17
MV170B_Mnz_19_7	0,028	0,006	0,000	0,047	0,056	0,255	0,476	0,035	0,135	0,000	0,017	0,008	0,012	0,002	0,003	0,000	0,004	0,001	0,002	0,000	0,979	0,003	2,072	2138	39
MV170B_Mnz_19_8	0,025	0,005	0,000	0,040	0,046	0,265	0,484	0,040	0,135	0,000	0,016	0,010	0,012	0,000	0,003	0,000	0,005	0,001	0,001	0,000	0,974	0,003	2,066	2187	46
MV170B_Mnz_19_9	0,053	0,018	0,000	0,097	0,103	0,210	0,432	0,040	0,136	0,000	0,016	0,006	0,018	0,001	0,003	0,000	0,008	0,001	0,007	0,000	0,971	0,007	2,128	1805	19
MV170B_Mnz_19_10	0,008	0,004	0,000	0,058	0,104	0,220	0,471	0,043	0,167	0,000	0,026	0,001	0,018	0,000	0,000	0,000	0,003	0,000	0,008	0,001	0,970	0,007	2,110	2184	21
MV170B_Mnz_19_11	0,007	0,005	0,000	0,059	0,106	0,220	0,464	0,041	0,167	0,000	0,024	0,002	0,015	0,000	0,000	0,000	0,002	0,000	0,008	0,000	0,978	0,007	2,107	2170	21
MV170B_Mnz_33_1	0,017	0,012	0,000	0,079	0,119	0,171	0,430	0,046	0,168	0,000	0,041	0,044	0,025	0,000	0,000	0,000	0,005	0,000	0,012	0,000	0,965	0,010	2,147	2172	15
MV170B_Mnz_33_2	0,010	0,089	0,000	0,163	0,104	0,202	0,437	0,043	0,152	0,000	0,026	0,031	0,016	0,000	0,003	0,000	0,004	0,000	0,003	0,000	0,923	0,010	2,218	2180	18
MV170B_Mnz_33_3	0,008	0,022	0,000	0,120	0,129	0,172	0,454	0,049	0,184	0,000	0,019	0,037	0,008	0,000	0,001	0,000	0,002	0,000	0,005	0,001	0,957	0,009	2,175	2135	19
MV170B_37_1	0,015	0,018	0,000	0,086	0,121	0,218	0,438	0,042	0,154	0,000	0,024	0,002	0,019	0,001	0,000	0,000	0,005	0,000	0,013	0,000	0,969	0,011	2,136	2212	15
MV170B_37_2	0,006	0,029	0,000	0,107	0,124	0,223	0,436	0,040	0,156	0,000	0,028	0,003	0,015	0,000	0,000	0,000	0,004	0,002	0,012	0,000	0,959	0,011	2,156	2219	15
MV170B_37_3	0,014	0,016	0,000	0,079	0,111	0,227	0,450	0,043	0,151	0,000	0,022	0,002	0,016	0,000	0,003	0,000	0,005	0,000	0,013	0,000	0,966	0,011	2,128	2220	15
MV170B_37_4	0,005	0,105	0,000	0,200	0,120	0,177	0,429	0,044	0,164	0,000	0,024	0,004	0,014	0,000	0,002	0,000	0,000	0,001	0,002	0,001	0,928	0,012	2,234	2227	16
MV170B_37_5	0,001	0,090	0,000	0,143	0,071	0,209	0,457	0,046	0,172	0,000	0,025	0,000	0,011	0,000	0,002	0,000	0,000	0,000	0,002	0,000	0,933	0,009	2,172	2220	20
MV170B_37_6	0,001	0,090	0,000	0,143	0,080	0,204	0,463	0,046	0,174	0,000	0,024	0,001	0,009	0,000	0,000	0,000	0,000	0,000	0,006	0,001	0,928	0,009	2,180	1904	17
MV170B_37_7	0,045	0,023	0,000	0,089	0,082	0,227	0,454	0,039	0,134	0,000	0,015	0,006	0,011	0,002	0,000	0,000	0,006	0,001	0,001	0,001	0,971	0,006	2,114	2173	28
MV170B_37_8	0,048	0,012	0,000	0,074	0,075	0,229	0,450	0,040	0,139	0,000	0,020	0,002	0,016	0,001	0,000	0,000	0,009	0,000	0,007	0,000	0,970	0,006	2,098	1634	22
MV170B_37_9	0,060	0,015	0,000	0,070	0,069	0,218	0,442	0,041	0,135	0,000	0,022	0,005	0,019	0,000	0,002	0,000	0,010	0,000	0,007	0,001	0,972	0,005	2,093	1601	22

Point analysis	Y	Si	Al	Th	Ca	La	Ce	Pr	Nd	Eu	Sm	Fe	Gd	Er	Tb	Tm	Dy	Yb	U	s	Р	Pb	Total	Age (Ma)	Error 2sigma
BCJ-11																									
MV170B_34_1	0,003	0,126	0,000	0,142	0,031	0,209	0,473	0,045	0,168	0,000	0,020	0,002	0,007	0,001	0,002	0,000	0,002	0,000	0,001	0,001	0,922	0,009	2,164	2248	22
MV170B_34_2	0,003	0,126	0,000	0,139	0,031	0,212	0,485	0,044	0,163	0,000	0,019	0,002	0,007	0,000	0,000	0,000	0,000	0,000	0,006	0,001	0,919	0,009	2,164	1854	18
MV170B_34_3	0,004	0,116	0,000	0,193	0,105	0,191	0,435	0,045	0,163	0,000	0,023	0,002	0,010	0,000	0,003	0,000	0,002	0,000	0,002	0,000	0,921	0,012	2,229	2235	17
MV170B_34_4	0,015	0,039	0,000	0,098	0,081	0,226	0,461	0,041	0,154	0,000	0,020	0,003	0,012	0,000	0,002	0,000	0,003	0,000	0,004	0,000	0,960	0,008	2,128	2204	21
MV170B_34_5	0,015	0,035	0,000	0,092	0,079	0,221	0,456	0,042	0,145	0,000	0,020	0,006	0,012	0,001	0,000	0,000	0,003	0,000	0,008	0,000	0,971	0,007	2,115	1826	19
MV170B_34_6	0,046	0,009	0,000	0,053	0,060	0,242	0,458	0,041	0,135	0,000	0,019	0,007	0,017	0,000	0,003	0,000	0,010	0,000	0,003	0,000	0,974	0,004	2,080	2121	31
MV170B_34_7	0,042	0,012	0,000	0,068	0,069	0,228	0,453	0,040	0,138	0,000	0,019	0,005	0,017	0,001	0,005	0,000	0,008	0,000	0,003	0,001	0,976	0,006	2,090	2211	26
MV170B_Mnz_29_1	0,005	0,010	0,000	0,112	0,133	0,200	0,430	0,043	0,165	0,000	0,030	0,002	0,017	0,000	0,000	0,000	0,001	0,000	0,007	0,000	0,979	0,010	2,145	2232	17
MV170B_Mnz_29_2	0,004	0,102	0,000	0,196	0,125	0,183	0,433	0,046	0,166	0,000	0,025	0,002	0,010	0,001	0,002	0,000	0,001	0,000	0,002	0,000	0,925	0,012	2,236	2226	16
MV170B_Mnz_29_3	0,004	0,110	0,000	0,192	0,103	0,189	0,443	0,043	0,166	0,000	0,022	0,002	0,013	0,000	0,000	0,000	0,001	0,001	0,002	0,001	0,920	0,012	2,226	2243	17
MV170B_Mnz_29_4	0,004	0,091	0,000	0,166	0,104	0,197	0,443	0,043	0,164	0,000	0,024	0,003	0,009	0,000	0,000	0,000	0,003	0,001	0,006	0,000	0,934	0,010	2,201	1915	16
MV170B_Mnz_29_5	0,047	0,026	0,000	0,115	0,108	0,220	0,444	0,043	0,137	0,000	0,019	0,004	0,014	0,002	0,000	0,000	0,006	0,001	0,002	0,000	0,956	0,008	2,151	2132	22
MV170B_Mnz_29_6	0,017	0,061	0,001	0,118	0,095	0,212	0,448	0,042	0,148	0,000	0,020	0,002	0,012	0,000	0,001	0,000	0,003	0,001	0,004	0,000	0,960	0,009	2,151	2253	20
MV170B_Mnz_22_1	0,041	0,054	0,000	0,135	0,106	0,188	0,435	0,043	0,152	0,000	0,018	0,001	0,016	0,003	0,002	0,000	0,006	0,000	0,004	0,001	0,952	0,010	2,167	2166	17
MV170B_Mnz_22_2	0,042	0,048	0,000	0,126	0,105	0,194	0,433	0,043	0,152	0,000	0,020	0,000	0,014	0,001	0,000	0,000	0,008	0,000	0,005	0,001	0,957	0,009	2,158	2176	18
MV170B_Mnz_22_3	0,043	0,047	0,000	0,124	0,100	0,193	0,434	0,043	0,154	0,000	0,023	0,000	0,016	0,001	0,002	0,000	0,008	0,001	0,004	0,001	0,954	0,009	2,156	2177	18
MV170B_Mnz_22_4	0,026	0,072	0,000	0,131	0,080	0,197	0,452	0,043	0,150	0,000	0,019	0,001	0,016	0,001	0,000	0,000	0,006	0,000	0,010	0,000	0,943	0,009	2,158	1588	16
MV170B_Mnz_22_5	0,024	0,076	0,000	0,133	0,076	0,197	0,461	0,042	0,155	0,000	0,022	0,000	0,016	0,000	0,001	0,000	0,005	0,000	0,002	0,001	0,941	0,009	2,161	2205	21
MV170B_Mnz_22_6	0,023	0,044	0,000	0,103	0,086	0,216	0,462	0,044	0,156	0,000	0,022	0,001	0,016	0,000	0,000	0,000	0,005	0,000	0,004	0,000	0,950	0,008	2,141	2150	21
MV170B_Mnz_22_7	0,060	0,021	0,000	0,092	0,088	0,216	0,441	0,041	0,142	0,000	0,018	0,003	0,016	0,001	0,000	0,000	0,010	0,000	0,003	0,000	0,962	0,007	2,123	2049	23
MV170B_Mnz_22_8	0,056	0,021	0,000	0,091	0,092	0,219	0,440	0,038	0,140	0,000	0,023	0,001	0,015	0,000	0,003	0,000	0,010	0,000	0,004	0,000	0,962	0,007	2,125	2110	22
MV170B_Mnz_22_9	0,056	0,019	0,000	0,091	0,093	0,214	0,428	0,038	0,138	0,000	0,020	0,002	0,015	0,003	0,003	0,000	0,008	0,001	0,003	0,000	0,977	0,007	2,116	2125	23
MV170B_Mnz_42_1	0,036	0,017	0,000	0,097	0,127	0,189	0,400	0,041	0,157	0,000	0,029	0,013	0,022	0,000	0,002	0,000	0,007	0,000	0,014	0,000	0,977	0,012	2,141	2183	14
MV170B_Mnz_42_2	0,038	0,010	0,000	0,091	0,139	0,191	0,410	0,042	0,157	0,000	0,029	0,013	0,022	0,002	0,003	0,000	0,007	0,000	0,015	0,001	0,969	0,012	2,149	2182	13
MV170B_Mnz_42_3	0,003	0,056	0,000	0,153	0,125	0,201	0,435	0,044	0,163	0,000	0,027	0,017	0,015	0,000	0,001	0,000	0,001	0,001	0,003	0,000	0,944	0,010	2,198	2220	18
MV170B_Mnz_42_4	0,009	0,068	0,000	0,145	0,103	0,200	0,439	0,045	0,164	0,000	0,027	0,014	0,017	0,000	0,000	0,000	0,002	0,000	0,006	0,000	0,937	0,010	2,187	1905	17
MV170B_Mnz_42_5	0,010	0,067	0,000	0,139	0,099	0,206	0,450	0,044	0,154	0,000	0,025	0,016	0,015	0,000	0,001	0,000	0,002	0,000	0,003	0,001	0,940	0,009	2,182	2230	20

Standards analysis in weight % oxide.

Standards	Y2O4	SiO3	Al2O4	ThO3	CaO	La2O4	Ce2O4	Pr2O4	Nd2O4	Sm2O4	FeO	Gd2O4	Er2O4	Tb2O4	Dy2O4	Yb2O4	UO3	SO4	P2O6	PbO	Total
Moacir1	0,745	1,371	0,008	7,491	0,434	13,549	30,673	3,093	11,055	2,246	0,008	1,051	0,000	0,135	0,345	0,046	0,225	0,018	26,876	0,199	99,568
Moacir2	0,741	1,367	0,003	7,569	0,426	13,792	30,088	3,356	11,285	2,087	0,012	1,020	0,070	0,000	0,216	0,000	0,229	0,047	26,894	0,205	99,406
Moacir3	0,727	1,378	0,000	7,487	0,382	13,631	30,623	3,016	11,167	2,255	0,015	0,923	0,101	0,000	0,243	0,000	0,231	0,035	27,049	0,203	99,466
Moacir4	0,758	1,368	0,000	7,484	0,443	13,695	31,448	2,948	10,821	2,182	0,009	1,110	0,000	0,000	0,174	0,000	0,233	0,045	26,745	0,198	99,657
Moacir5	0,751	1,361	0,000	7,505	0,421	13,954	30,940	2,989	10,912	2,058	0,000	1,087	0,058	0,143	0,274	0,058	0,234	0,037	26,852	0,203	99,836
Moacir6	0,756	1,370	0,000	7,495	0,413	13,661	30,461	3,202	11,381	2,300	0,001	1,012	0,040	0,171	0,252	0,080	0,235	0,056	27,002	0,198	100,087
Moacir7	0,753	1,373	0,000	7,498	0,388	14,003	30,930	3,012	10,563	2,228	0,014	0,704	0,002	0,009	0,299	0,000	0,232	0,059	26,912	0,210	99,189
Moacir8	0,762	1,378	0,000	7,565	0,396	13,898	30,642	2,985	10,704	2,055	0,015	0,999	0,000	0,183	0,281	0,011	0,227	0,031	27,067	0,203	99,400
Moacir9	0,760	1,381	0,000	7,568	0,437	13,941	31,582	3,213	11,227	2,199	0,000	0,844	0,000	0,126	0,298	0,036	0,237	0,028	26,940	0,202	101,018
Moacir10	0,750	1,387	0,001	7,567	0,421	13,690	30,697	3,235	10,757	2,090	0,021	0,940	0,114	0,233	0,212	0,030	0,655	0,045	26,876	0,198	99,918
Moacir11	0,760	1,398	0,000	7,609	0,401	13,410	30,809	3,050	10,684	2,151	0,000	1,056	0,000	0,007	0,292	0,025	0,236	0,044	26,884	0,204	99,020
Moacir12	0,751	1,387	0,000	7,538	0,404	13,524	30,638	3,022	10,676	2,266	0,000	1,004	0,046	0,177	0,256	0,000	0,236	0,048	26,938	0,211	99,122
Moacir13	0,750	1,385	0,000	7,543	0,408	13,762	30,274	3,212	10,638	2,273	0,027	0,977	0,171	0,000	0,306	0,000	0,230	0,049	26,605	0,199	98,809
Moacir14	0,751	1,381	0,000	7,546	0,345	13,951	29,969	3,027	10,736	2,251	0,004	1,049	0,000	0,000	0,226	0,077	0,232	0,050	26,809	0,205	98,607
Moacir15	0,756	1,386	0,000	7,518	0,385	13,781	31,154	3,179	10,913	2,468	0,000	1,033	0,060	0,026	0,240	0,000	0,236	0,038	26,833	0,204	100,208
Moacir16	0,767	1,372	0,000	7,585	0,360	13,919	30,472	2,759	10,685	1,991	0,032	1,007	0,073	0,000	0,268	0,118	0,225	0,045	26,667	0,201	98,543
Moacir17	0,766	1,389	0,001	7,578	0,399	13,311	30,367	3,277	10,469	2,221	0,020	0,948	0,000	0,209	0,239	0,067	0,237	0,045	26,807	0,205	98,556
Moacir18	0,738	1,382	0,004	7,592	0,362	14,226	30,615	3,011	10,509	2,139	0,000	1,185	0,000	0,056	0,328	0,061	0,235	0,037	26,444	0,207	99,131
Madmon1	0,957	2,801	0,004	11,133	0,113	7,480	26,665	3,591	14,833	4,354	0,009	1,996	0,007	0,172	0,088	0,000	0,522	0,035	24,678	0,322	99,758
Madmon2	0,955	2,796	0,002	11,132	0,120	7,486	26,757	3,623	14,875	4,551	0,004	2,228	0,000	0,000	0,355	0,042	0,514	0,029	24,627	0,330	100,427
Madmon3	1,049	2,758	0,004	11,022	0,136	7,487	26,175	3,487	15,192	4,441	0,035	2,113	0,080	0,221	0,245	0,000	0,531	0,019	24,702	0,320	100,017
Madmon4	1,062	2,736	0,000	10,916	0,174	7,170	25,619	3,370	14,797	4,395	0,015	2,418	0,000	0,009	0,257	0,000	1,019	0,052	24,881	0,315	99,206
Madmon5	1,081	2,696	0,002	10,926	0,138	7,438	25,816	3,217	15,063	4,626	0,023	2,243	0,000	0,158	0,187	0,000	0,529	0,053	24,962	0,318	99,473
Madmon6	1,095	2,818	0,000	11,580	0,143	7,189	25,285	3,443	14,983	4,520	0,024	2,121	0,083	0,340	0,276	0,022	0,559	0,041	24,730	0,333	99,583
Madmon7	1,114	2,707	0,000	10,977	0,107	7,317	25,521	3,632	15,391	4,723	0,012	2,144	0,028	0,252	0,347	0,029	0,528	0,046	24,679	0,318	99,870
Madmon8	1,110	2,685	0,003	10,821	0,100	7,171	25,513	3,398	15,549	4,839	0,000	2,386	0,000	0,046	0,057	0,010	1,005	0,034	24,694	0,319	99,739
Madmon9	1,102	2,675	0,006	10,754	0,140	7,544	26,117	3,546	14,945	4,597	0,010	2,066	0,000	0,289	0,340	0,015	0,510	0,021	24,802	0,310	99,786
Madmon10	1,109	2,690	0,001	11,028	0,120	7,256	25,320	3,339	14,633	4,715	0,004	2,310	0,000	0,000	0,338	0,000	1,020	0,040	24,463	0,318	98,703
Madmon11	0,995	2,702	0,000	10,952	0,130	7,485	26,553	3,550	15,169	4,111	0,021	2,052	0,000	0,134	0,274	0,000	0,512	0,029	24,468	0,314	99,451
Madmon12	0,997	2,702	0,000	10,986	0,135	7,584	26,112	3,569	14,814	4,490	0,049	1,775	0,061	0,157	0,089	0,013	0,516	0,031	24,650	0,318	99,047

Standards analysis in parts per million (ppm) and age data with error.

Standards Y	Y	Si	Al	Th	Ca	La	Ce	Pr	Nd	Sm	Fe	Gd	Er	Tb	Dy	Yb	U	S	Р	Pb	Age (Ma)	Error 2sigma
-------------	---	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	---	---	---	----	----------	--------------

Moacir1	5862	6409	42	65833	3102	115532	249706	26428	94779	19368	60	9118	0	1175	3003	401	1054	73	117293	1554	500	18
Moacir2	5833	6388	16	66515	3043	117599	244945	28679	96748	18000	93	8845	610	0	1886	0	1077	189	117372	1602	509	18
Moacir3	5722	6439	0	65796	2731	116232	249302	25771	95742	19448	119	8011	880	0	2117	0	1100	141	118045	1596	512	18
Moacir4	5967	6392	0	65767	3163	116770	256017	25186	92771	18814	70	9626	0	0	1512	0	1125	179	116720	1544	495	18
Moacir5	5914	6360	2	65955	3010	118979	251876	25543	93557	17745	0	9432	507	1240	2387	506	1125	149	117186	1589	508	18
Moacir6	5951	6406	0	65864	2955	116482	247980	27358	97579	19837	8	8781	352	1484	2194	704	1142	225	117844	1541	493	18
Moacir7	5933	6419	0	65894	2772	119397	251797	25736	90558	19211	108	6111	21	82	2603	0	1112	237	117448	1653	529	18
Moacir8	5998	6441	0	66479	2829	118506	249451	25502	91771	17726	120	8669	0	1586	2451	95	1055	123	118125	1586	505	18
Moacir9	5984	6456	0	66507	3120	118872	257109	27452	96254	18961	0	7323	0	1096	2599	317	1149	111	117571	1572	498	18
Moacir10	5908	6483	3	66496	3009	116728	249898	27642	92224	18024	166	8156	1000	2023	1848	259	4832	179	117294	1540	418	15
Moacir11	5983	6533	0	66867	2867	114348	250815	26060	91603	18551	0	9163	0	61	2544	217	1134	177	117326	1591	502	18
Moacir12	5911	6482	2	66243	2888	115319	249421	25823	91533	19540	0	8706	402	1538	2226	0	1142	193	117564	1662	528	18
Moacir13	5906	6474	0	66288	2918	117347	246458	27447	91203	19600	212	8475	1491	0	2666	0	1090	195	116108	1551	495	18
Moacir14	5912	6457	0	66312	2467	118961	243974	25862	92043	19412	29	9097	0	0	1973	675	1103	199	117001	1601	510	18
Moacir15	5956	6478	1	66069	2749	117507	253620	27164	93558	21283	0	8965	525	222	2089	0	1148	150	117103	1598	510	18
Moacir16	6038	6411	0	66660	2571	118683	248069	23571	91604	17171	246	8735	637	0	2337	1038	1035	181	116381	1563	497	18
Moacir17	6031	6494	6	66599	2850	113500	247218	27999	89757	19155	155	8226	0	1816	2081	590	1143	181	116992	1604	508	18
Moacir18	5814	6462	23	66716	2588	121302	249234	25725	90098	18449	0	10277	0	483	2859	533	1128	150	115408	1621	513	18
Madmon1	7537	13093	20	97836	808	63782	217074	30681	127171	37544	70	17319	61	1493	766	0	3212	140	107700	2571	528	12
Madmon2	7523	13070	10	97827	861	63835	217826	30958	127527	39248	29	19329	0	0	3097	372	3139	117	107477	2645	544	13
Madmon3	8259	12894	21	96866	973	63837	213089	29799	130252	38300	274	18329	699	1917	2130	0	3303	77	107804	2543	526	12
Madmon4	8365	12791	0	95929	1246	61135	208557	28797	126865	37902	118	20981	0	81	2237	0	7621	206	108588	2500	461	11
Madmon5	8509	12600	13	96019	988	63419	210166	27485	129139	39890	176	19456	0	1369	1633	0	3301	212	108938	2521	525	13
Madmon6	8621	13174	0	101765	1020	61296	205841	29418	128455	38977	187	18397	728	2956	2407	195	3484	163	107925	2640	519	12
Madmon7	8772	12655	0	96464	763	62386	207766	31038	131951	40733	91	18601	245	2185	3020	255	3286	185	107704	2513	522	12
Madmon8	8741	12548	14	95097	717	61145	207699	29035	133310	41728	0	20702	0	401	498	88	7513	135	107768	2530	472	11
Madmon9	8678	12503	29	94509	1000	64322	212614	30296	128134	39642	78	17920	0	2507	2960	135	3156	82	108240	2447	519	13
Madmon10	8734	12575	6	96917	861	61868	206126	28532	125452	40662	28	20042	0	0	2941	0	7616	161	106761	2514	460	11
Madmon11	7837	12628	0	96248	927	63827	216163	30331	130055	35450	159	17806	0	1161	2391	0	3151	115	106783	2500	522	13
Madmon12	7848	12632	0	96549	961	64671	212573	30493	127005	38717	383	15396	531	1362	776	114	3174	125	107577	2535	528	13

APPENDIX III

PUNCTUAL ANALYSES IN MONAZITE

Punctual analyses in monazite inclusions in garnet

Grt core m 2226 2222 **2226** 5 um i um m33 2172 - <mark>218</mark>0 2135 Th 🗕 - 5um 2205 <mark>∃</mark>m16 2239 < 226 2269 2210 2239 2278 2226 m4 1964 2222

Grt rim

Punctual analyses in monazite inclusions in cordierite

Crd matrix

Punctual analyses in monazite inclusions in biotite.

2186

2162

2099 2263

Bt matrix