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Resumo
O principal foco deste trabalho consiste na modelagem de dados (in)dependentes no
intervalo [0,1], e respectivos casos particulares. Nesse sentido desenvolvemos duas aborda-
gens, sob o enfoque frequentista. A primeira corresponde a uma nova classe de modelos
baseados nas distribuições beta, simplex e beta retangular e, em suas respectivas versões
aumentadas em zeros e/ou uns. Consideramos preditores, com uma parte paramétrica e
outra não paramétrica, para a média, e preditores paramétricos para a dispersão/precisão
e probabilidades de ocorrência de zeros e uns (no caso das distribuições aumentadas). Uma
das vantagens dessa estrutura é poder modelar de forma satisfatória fenômenos lineares e
não lineares. Na segunda abordagem, o foco são dados dependentes. De modo análogo
ao caso anterior, foram desenvolvidos modelos de regressão baseados nas supracitadas
distribuições, também sob o enfoque semi-paramétrico para a média (uma parte paramé-
trica e outra não paramétrica para o preditor) e paramétrica para as demais quantidades,
considerando estruturas de correlação via Equações de Estimação Generalizadas (EEG).
As duas abordagens foram desenvolvidas utilizando funções de ligação, para a média,
simétricas e assimétricas, o que corresponde a generalizações de metodologias existentes.
Além das novas classes de modelos, técnicas de seleção estrutural e diagnóstico, medidas
de influência global e local, foram desenvolvidas para todos os modelos, em ambas as
abordagens. Além disso, foram conduzidos estudos de simulação apropriados e análise de
dados reais para ilustrar o potencial das metodologias desenvolvidas.

Palavras-chave: Dados de proporção; Modelos aditivos generalizados; Análise de regres-
são; Inferência estatística.



Abstract
The main focus of this work consists on the modeling of (in)dependent data in the interval
[0,1], and the respective particular cases. In this sense, we developed two approaches, under
the frequentist paradigm. The first one corresponds to a new class of models based on the
beta, simplex and beta rectangular distributions and, in their respective augmented zero
and/or one versions. We consider predictors, with a parametric and a nonparametric part,
for the mean, and parametric predictors for the dispersion / precision and probabilities of
occurrences of zeros and ones (for the augmented distributions). One of the advantages
of this structure is to model linear and non-linear phenomena, properly. In the second
approach, we focus on dependent data. In a similar way to the previous case, regression
models were developed based on the aforementioned distributions, also under the semi-
parametric approach for the mean (a parametric part and a nonparametric part for the
predictor) and parametric for the other quantities, considering correlation structures via
Generalized Estimation Equations (GEE). The two approaches were developed considering
symmetric and asymmetric link functions, which correspond to generalizations of existing
methodologies. In addition to the new model classes, structural selection, model fit
assessment tools, measures of global and local influence, were developed for all models, for
both approaches. In addition, appropriate simulation studies and real data analysis were
conducted to illustrate the potential of the developed methodologies.

Keywords: Proportion data; Generalized additive models; Regression analysis; Statistical
inference.
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1 Introduction

In several fields of knowledge, as Biology, Chemistry, Physics, Psychometric
among others, it is very common to deal with limited (bounded) response variable. That
is, variables assuming values on the interval [a,b], as well as the respective particular cases:
(a,b], [a,b), (a,b), −∞ < a < b <∞. These intervals can be translated to the respective
[0,1] type intervals (including the respective particular cases). In the past, it was common
to transform the response to the real interval (see Atkinson (1985)), allowing the use of
the usual normal homoscedastic regression model. However, this approach tends to present
some problems. One of them is the fact that the parameters can not be easily interpreted
in terms of the original response. Another drawback is that even after transforming,
asymmetry and/or heavy tails may still remain in the response distribution. A third
problem is that the parameter estimates tend to be biased. Therefore, such approach is not
recommended. Other models, commonly used, as the Generalized Linear Model (GLM),
proposed by Nelder and Wedderburn (1972), establish some assumptions that limits their
application in such situations, as the assumption of the response distribution belongs to
the linear exponential family.

To overcome these limitations, several approaches, considering the original
response, have been proposed. Among others, we can cite: the Simplex regression model
(Barndorff-Nielsen and Jørgensen, 1991), which belongs to the class of Dispersion Models
defined by Jørgensen (1987), the Beta regression model (Ferrari and Cribari-Neto, 2004),
which is based on the class of GLM and the Beta Rectangular regression model (Bayes
et al., 2012), proposed as a robust alternative, that is, to properly accommodate outliers
(extreme observations).

Other interesting approaches are: the regression model based on the class of
Johnson SB distributions, proposed by Lemonte and Bazán (2015), the Unit Gamma
regression model proposed by Mousa et al. (2016), the log-weighted Exponential regression
model introduced by Altun (2019) and the class of regression models based on the unit-
Lindley distribution proposed by Mazucheli et al. (2019). Furthermore, Altun and Cordeiro
(2020) proposed a regression model based on the unit-improved second-degree Lindley
distribution, Barreto-Souza et al. (2020) developed the Bessel regression model and Altun
et al. (2021) introduced the log-Bilal regression model.

On the other hand, within the context of bounded response modeling, several
model diagnostic tools and information criteria for model selection, have been developed
over the years. We can cite: Espinheira et al. (2008) who proposed residuals for the beta
regression model with non-varying dispersion, Ferrari et al. (2011) who proposed diagnostic
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tools for beta regression models with varying dispersion, Zhao et al. (2014) and Bayer and
Cribari-Neto (2017), who proposed variable selection for varying dispersion beta regression
models, Rocha and Simas (2011) and Espinheira and Silva (2019) that developed residual
and influence analysis to a general class of beta and simplex regression models, respectively.

All the above works are suitable for data on the (0,1) intervals. That is, they are
not suitable for modeling data in the interval [0, 1] (since they do not deal with the values
0 and/or 1). In this work, we will use the term “augmented” to refer to data/models that
consider 0 and/or 1 values. Therefore, we will name as “augmented” the works that use
the term “inflated”, under the above meaning. To handle this situation, some works have
been developed as: the Zero-or-One Inflated Beta regression models (Ospina and Ferrari,
2012), the Zero-and-One Augmented Simplex regression model (Liu et al., 2020) and
Zero-and-One Augmented Beta Rectangular regression model (Silva et al., 2020; Nogarotto
et al., 2020), which allow zero and/or one observations.

Besides the regression for response mean, quantile regression models for bounded
data has been developed. Some works are: the L-Logistic regression models (da Paz et al.,
2019), median regression model using the generalized Johnson-SB distributions (Rodrigues
et al., 2019), Johnson-t quantile regression model (Lemonte and Moreno-Arenas, 2019),
the Kumaraswamy regression model (Mitnik and Baek, 2013), the logit skew Student-t
and generalized Tobit regression models (Hossain et al., 2016).

All the above works deal with bounded independent data. However, the interest
on properly modeling bounded longitudinal data has been growing (see Galvis et al. (2014)
and Wang and Luo (2014) for more details). In this case, besides the peculiar nature of the
response, it is also expected to observe within-units dependence. Therefore it is necessary
to consider both features, in order to obtain reliable inference.

For longitudinal (dependent) data restrict to interval (0, 1), different approaches
have been proposed, mainly based on random effects regression models and Generalized
Estimating Equations (GEE). For example, Song and Tan (2000) and X.-K. Song et al.
(2004) proposed Simplex regression models with non-varying and varying dispersion, via
GEE, respectively. Venezuela (2008) proposed a Beta Regression model via GEE, whereas,
Qiu et al. (2008) introduced a random effects Simplex Model. On the other hand, Verkuilen
and Smithson (2012) proposed a random effects Beta Regression model. Petterle et al.
(2019) proposed a Quasi-Beta Longitudinal Regression Model which does not require
distributional assumptions for the response vector, within an approach similar to the GEE
one. Freitas et al. (2021) proposed a class of regression models based on the Simplex, Beta
and Unit Gamma, with varying dispersion/precision parameter, via GEE.

Also, for longitudinal (dependent) bounded augmented ([0,1]) data some works
have been developed. We can cite the Zero-or-One Augmented Beta Rectangular Regression
with random effects (Wang and Luo, 2014) and Galvis et al. (2014), who developed a
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random effects Zero-and-One Augmented Beta and Simplex regression models.

For dependent (longitudinal) data the GEE based models have some advantages
over the random effect models. Indeed, the former allows us: to properly model population
average behavior over covariates of interest; to explicitly model the marginal distributions
and to consider different types of within-subject correlation matrices.

Another issue is that, very often, the response and some covariates present
an unclear or a non-linear relation. In this case, under independence assumption, the
use of the Generalized Additive Partial Linear Models (GAPLM) or Semi-parametric
Additive Models (SPAM) (Hastie and Tibshirani, 1990) can be quite useful. For dependent
(longitudinal) data, the use of GAPLM based on GEE (Generalized Estimation Equations)
is a useful approach (see, for example, Lian et al. (2014), Wang et al. (2014), Manghi
et al.( 2017,2019)). These models assume that the response distribution belongs to Linear
Exponential Family, considering both linear and non-linear relations, between the response
and the covariates, through parametric and non-parametric components, respectively.
These models are extensions of the Generalized Additive Models (GAM), which consider a
full non-parametric linear predictor. In this area of GAM and GAPLM models, we can
cite some works as: Green and Yandell (1985), Hastie and Tibshirani (1990), Rigby and
Stasinopoulos (1996), Rigby and Stasinopoulos (2005),Yu and Ruppert (2002), Wang et al.
(2011), Hernando Vanegas and Paula (2016) and Yang et al. (2019).

Although the growning literature in this field, there are few works, under the
frequentist approach, with semi-parametric predictors, for independent-bounded data.
Within this context, we can cite: Rigby and Stasinopoulos (2005), who proposed a family
of models which includes a semi-parametric beta regression model and Ibacache-Pulgar
and Figueroa-Zuniga (2019), who proposed a semi-parametric additive Beta regression
model considering non-varying precision. Under the Bayesian approach, Duan et al. (2019)
proposed a semi-parametric additive Simplex regression model with heterogeneous disper-
sion. For correlated-bounded data under the frequentist approach with semi-parametric
predictors, to the best of our knowledge, no works are available in the literature. Also,
there are few works under the frequentist approach that handle with link function mis-
specification, see, for example, Pereira and Cribari-Neto (2014) and Canterle and Bayer
(2019).

The main goal of this work is to develop two flexible class of semi-parametric
models for bounded (augmented) data (and the respective particular cases). One for
independent data and another for longitudinal (dependent) data. We considered the
frequentist paradigm for developing all inferential tools. We consider the beta, the simplex
and the beta rectangular distributions, as well as their zeros and/or ones augmented
versions.

In Table 1, are presented a summary of all models that are proposal of our
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Table 1 – Proposal models

Regression
model

Linear
predictor

Link function
for mean Data type

beta, simplex semi-parametric (µ) logit independent
and BR parametric (φ) probit correlated

ZOAB, ZOAS semi-parametric (µ) cauchit
parametric (φ) cloglog

and ZOABR parametric (p0 and p1) loglog
*µ is the response mean, φ is the dispersion/precision parameter, p0 and p1
probabilities of occurrences of zeros and ones, respectively.

work. We will propose twelve new models and considering five link functions for mean
parameter, developing all inferential tools for them. Specifically, the goals of this work are:

1. To developed a general class of models for independent bounded (augmented) obser-
vations with a semi-parametric predictor for the mean, considering symmetric and
asymmetric link functions (including the logit and probit ones), with parametric
predictors for the dispersion/precision and probabilities of occurrences of zeros and
ones (for the models based on the augmented distributions);

2. To propose a similar approach of the point 1, for longitudinal (dependent) data);

3. For the two above classes, to develop model fit assessment tools, model comparison
statistics (information criteria) and influence analysis tools;

4. To perform appropriate simulation studies in order to study the performance of all
developed tools, under different scenarios of practical interest, also comparing them
with alternative approaches.

5. To present the modeling of real problems, based on our developments, where it is
shown the advantages of them over usual approaches.

1.1 Distributions
In this section, we present a short review of the distributions here considered

for the developed regression models.

1.1.1 Beta distribution

A random variable Y follows a beta distribution if its density is given by:

fY (y;α, β) = Γ(α + β)
Γ(α)Γ(β)y

α−1(1− y)β−1I(0,1)(y),
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where α, β > 0 and Γ(.) is the gamma function Γ(θ) =
∫ ∞

0
yθ−1e−y. Ferrari and Cribari-

Neto (2004) proposed a reparametrization of the beta distribution, that is µ = α/(α + β)
and φ = α + β, i.e, α = µφ and β = (1− µ)φ. Thus, the respective density is given by

bY (y;µ, φ) = Γ(φ)
Γ(µφ)Γ((1− µ)φ)y

µφ−1(1− y)(1−µ)φ−1I(0,1)(y), (1.1)

where 0 < µ < 1 and φ > 0, with the notation Y ∼ beta(µ, φ). Also, the mean and the

variance are given, respectively, by E(Y ) = µ and Var(Y ) = V (µ)
1 + φ

, where V (µ) =
µ(1−µ) and φ is a precision parameter. As shown in Figure 1, the beta distribution is very
flexible. That is, the respective density can assumes different behaviors, as asymmetric,
symmetric and U-shaped. Also, in Figure 2 are illustrated the behavior of the skewness
and the kurtosis, as functions µ and φ, which are given, respectively, by

Skewness = E[(Y − E(Y ))3]
E[(Y − E(Y ))2]3/2 and Kurtosis = E[(Y − E(Y ))4]

E[(Y − E(Y ))2]2 ,

in particular, for beta distribution,

Skewness = 2(φ− 2µφ)
√
φ+ 1

(φ+ 2)
√
µ(1− µ)φ2

Kurtosis = 6(φ+ 1)(2µφ− φ)2

µ(1− µ)φ2(φ+ 2)(φ+ 3) −
6

(φ+ 3) .

It is possible to notice that as φ increases for µ > 0.5, the skewness increases as well. On
the other hand, when µ < 0.5, as φ decreases, the skewness increases. Furthermore, for
the kurtosis, as φ decreases and µ < 0.25 or µ > 0.75, the kurtosis increases, whereas the
opposite behaviour is observed when 0.25 < µ < 0.75.
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Figure 1 – Beta density for different values of µ, with φ = 10 (a) and φ = 80 (b).

1.1.2 Beta Rectangular distribution

Despite the beta distribution be very flexible, as pointed out by Hahn (2008),
it presents light-tails. That is, it may not accommodate extreme values (outliers), properly.
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Figure 2 – Skewness (a) and Kurtosis (b) of the beta distribution versus the average (µ),
for different values of φ.

This can be a limitation for data modeling, since it is not uncommon to observe extreme
observation (outliers). To circumvent this limitation, Hahn (2008) proposed the beta
rectangular distribution (BR), which is a mixture between a beta distribution and the
standard rectangular (uniform) distribution. The respective density is given by

fY (y; δ, φ, ε) = εI(0,1)(y) + (1− ε)bY (y; δ, φ),

where 0 ≤ ε ≤ 1 is a mixture parameter and bY (y; ., .) is the beta density, given in Equation
(1.1). It is possible to notice that when ε = 0 the beta distribution is recovered, as well as
when ε = 1 the standard rectangular distribution is obtained. Due to its mixture structure,
the BR distribution can accommodate more properly, extreme observations.

Usually, for regression purposes, the response mean is modeled, which is the
case of this work. However, according to Bayes et al. (2012) if E(Y ) = ε

2 + (1− ε)δ = µ

is considered, we have that 0 < ε < 1− |2µ− 1|, which makes more difficulty to define
suitable regression models.

In order to obtain a more adequate regression structure, Bayes and Bazán
(2014) define

µ = ε

2 + (1− ε)δ and α =
ε
2

(
1− ε

2

)
ε
2

(
1− ε

2

)
+ (1− ε)2δ(1− δ)

,

such that the parameter space of µ and α is now the rectangle given by {0 ≤ µ ≤ 1, 0 ≤
α ≤ 1}. Under this parametrization, we have that

ε = 1−
√

1− 4αµ(1− µ) and δ =
µ− 1

2 + 1
2

√
1− 4αµ(1− µ)√

1− 4αµ(1− µ)
, (1.2)
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and the implied density is given by

hY (y;µ, φ, α) =
(

1−
√

1− 4αµ(1− µ)
)
I(0,1)(y) +

√
1− 4αµ(1− µ)×

× bY

µ− 1
2 + 1

2

√
1− 4αµ(1− µ)√

1− 4αµ(1− µ)
, φ

 . (1.3)

In this case, we define Y ∼ BR(µ, φ, α), where the quantity α is a shape parameter,
which is associated with the behavior of the tails of the distribution and φ is a precision
parameter. The associated mean and variance are given, respectively, by

E(Y ) = µ (1.4)

Var(Y ) = V (δ)
1 + φ

(1− ε)[1− ε(1 + φ)] + ε

12(4− 3ε), (1.5)

where V (δ) = δ(1− δ).

From Figure 3, it can be noticed that the BR distribution is as flexible as the
beta model; However the behavior of the respective tails are more flexible, presenting an
equal or smaller kurtosis, compared with the beta distribution. As α increases, the tails
become heavier, that is, the outliers can be more properly accommodate. In Figure 4, it is
possible to see the behavior of the skewness and kurtosis for different parameter values. The
skewness, for µ < 0.5, increases as α decreases, whereas, for µ > 0.5, the skewness increases
as α increases. On the other hand, the kurtosis increases, as α decreases. Compared with
the beta distribution, despite the φ values, for most values of µ, the kurtosis of the BR is
lower than the respective value for the beta distribution. In general, the BR distribution
can present heavier tails as well higher (absolute) values, for the skewness than the beta
distribution.
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Figure 3 – Beta rectangular density for different values of α (indicated in the graphs),
with φ = 10 and µ = 0, 5 (a) and φ = 80 and µ = 0, 2 (b).
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Figure 4 – Skewness (a) and (c) and Kurtosis (b) and (d) of beta rectangular distribution
versus µ for different values of α (indicated in the graphs) considering φ = 5
((a) and (b)) and φ = 50 ((c) and (d)).

1.1.3 Simplex distribution

The simplex distribution is a member of a broader class, proposed by Barndorff-
Nielsen and Jørgensen (1991), defined on the interval (0, 1). A random variable Y following
a simplex distribution, with mean µ ∈ (0, 1) and dispersion parameter φ > 0, denoted by
Y ∼ simplex(µ, φ), has a density given by

py(y;µ, φ) = 1√
2πφ[y(1− y)]3

exp
{
− 1

2φd(y;µ)
}
I(0,1)(y), (1.6)

where

d(y;µ) = (y − µ)2

y(1− y)µ2(1− µ)2 . (1.7)
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Jorgensen (1997) showed that the mean and the variance of distribution are given, respec-
tively, by

E(Y ) = µ and

Var(Y ) = µ(1− µ)− 1√
2φ exp

(
1

2φµ2(1− µ)2

)
Γ
(

1
2 ,

1
2φµ2(1− µ)2

)
,

(1.8)

where Γ(., .) represents an incomplete gamma function, that is, Γ(a, b) =
∫ ∞
b

ya−1e−ydy.

In Figure 5 we show different curves for the simplex density, under different
values of the parameters. Notice that the smaller φ, the more symmetric is the density. Bonat
et al. (2018) made a comparison study between the simplex and the beta distributions,
concluding that, usually, the beta’s tails are heavier than those of the simplex distribution.

Figure 6 focus on the skewness and kurtosis of the simplex distribution, in
terms of µ and φ. We can see that as phi increases, the density becomes more skewed. In
addition, as φ increases and µ moves away from 0.5, the kurtosis increases.

Comparing to the two previous distributions, the simplex and beta have similar
shapes for kurtosis and skewness, whereas BR proved have heavier tails under certain
conditions and higher (absolute) values, for the skewness, which can implies more robustness
and flexibility in some cases.

1.1.4 Zero-and/or-one Augmented distributions

The Zero-and/or-One Augmented distributions were developed for dealing with
[0, 1] data. That is, besides the continuous values within the interval (0,1), the observations
0 and 1 are considered. It is obtained from the mixing between some continuous distribution
with support in (0, 1) and the Bernoulli distributions. The continuous distribution is used
to model the continuous component, whereas the Bernoulli distribution accounts for the
discrete part, that is, the probabilities related to zeros and ones.

It is said that Y has a Zero-and-One Augmented distribution, if its density is
given by

rY (y; υ, %,$) = [υ(1− %)1−y%y]I{0,1}(y) + (1− υ)b∗Y (y;$)I(0,1)(y), (1.9)

where, (υ, %) ∈ (0, 1)2, υ = P(Y = 0) +P(Y = 1), i.e, υ is the probability of an observation
be zero or/and one and % = (P(Y ) = 1|I{0,1}(y)), that is % is the probability of the
observation be equals to one given that it belongs to the discrete part. We can notice
that P(Y = 1) = υ%, P(Y = 0) = υ(1 − %) and, for 0 < a < b < 1, P(Y ∈ (a, b)) =
(1 − υ)

∫ b

a
b∗Y (y;$)dy. Furthermore, b∗Y (y;$) can be, for example, the density of beta,

simplex and BR distributions, which are the distributions adopted in this work. Below is
described the generated distribution for each choice for b∗Y (yi;$):
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Figure 5 – Simplex densities for different values of µ, with φ = 0, 6 (a), φ = 1 (b), φ = 4
(c).
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Figure 6 – Skewness (a) and Kurtosis (b) of the simplex distribution versus the average
(µ), for different values of φ.
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• When b∗Y (yi;$) is the beta density given in Equation (1.1), it implies that Y follows a
Zero-and-One Augmented Beta distribution (Y ∼ ZOAB(υ, %, µ, φ)) and $ = (µ, φ);

• When b∗Y (yi;$) is the BR density given in Equation (1.3), it implies that Y follows a
Zero-and-One Augmented Beta Rectangular distribution (Y ∼ ZOABR(υ, %, µ, φ, α))
and $ = (µ, φ);

• When b∗Y (yi;$) is the simplex density given in Equation (1.6), it implies that Y
follows a Zero-and-One Augmented Simplex distribution (Y ∼ ZOAS(υ, %, µ, φ)) and
$ = (µ, φ, α).

The respective mean for all distribution is E(Y ) = υ%+ (1− υ)µ, whereas the
variance, for each case, is given by:

• For ZOAB:

Var(Y ) = υ%(1− %) + (1− υ)
[
µ(1− µ)

1 + φ

]
+ υ(1− υ)(%− µ)2.

• For ZOABR:

Var(Y ) = υV1 + (1− υ)V2 + υ(1− υ)(%− µ)2,

where V1 = %(1− %) and V2 = ε

3 + (1− ε)
[
δ(1− δ)

1 + φ
+ δ2

]
− µ2.

• For ZOAS:

Var(Y ) = υ%(1− %) + (1− υ)V3 + υ(1− υ)(%− µ)2,

where V3 is the variance of the simplex distribution as shown in Equation (1.8).

Following the proposal of Ospina (2008); Galvis (2014), it is possible to consider
a reparameterization where the probabilities of occurrence of the discrete values are
explicitly modeled. This is useful for building regression models. It consists on to define
% = p1/υ and υ = p0 + p1. Thus, we have that

rY (y; p0, p1, µ, φ) = p1−y
0 py1I{0,1}(y) + (1− p0 − p1)by(y;µ, φ)I(0,1)(y), (1.10)

where 0 < p0 + p1 ≤ 1 and b∗y(y;$) can be either the density of beta, simplex and BR
distributions.

It is possible to see, from Figures 7, 8 and 9 depend on the values that φ takes,
the dispersion may become smaller or higher, while µ are responsible for symmetry or
asymmetry of the distributions. In addition, for ZOABR distribution (Figure 9), the higher
is α, the heavier are the tails. Still observing Figure 9, we notice that in (0,1) when µ < 1/2
and φ ≤ 2 the density presents a "J"-inverted shape, whereas, when µ > 1/2 and φ ≤ 2
the density presents a "J" shape.
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Figure 7 – Zero-and/or-One Augmented Beta density for different values of µ, for p0 =
p1 = 0, 3 and φ = 10 (a), φ = 80 (b).
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Figure 8 – Zero-and/or-One Augmented Simplex density for different values of µ (indicated
in the graphs), with p0 = p1 = 0, 3 for both graphs, besides φ = 0, 6 (a), φ = 4
(b).

1.2 Basic concepts of Semi-parametric Additive Models
In this section we present some concepts of Semi-parametric Additive Models

(SPAM), which will be necessary for the next sections. The SPAM (also called Generalized
Additive Partial Linear Models, GAPLM) are an extension of the Generalized Additive
Models (GAM), both proposed by Hastie and Tibshirani (1990). While the GAM has only
a non-parametric regression structure, the SPAM is a mixing between the parametric and
non-parametric approaches. These models and their extensions have been explored over
the years by several authors as, among others, Buja et al. (1989), Hastie and Tibshirani
(1987), Hastie and Tibshirani (1990), Linton and Härdle (1996), Guisan et al. (2002),
Rigby and Stasinopoulos (2005), Wood (2008), Wang et al. (2011), Wood (2017).
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Figure 9 – Augmented Beta Rectangular in zero and one density for different values of
α (indicated in the graphs), with p0 = p1 = 0, 3 for all graphs, besides φ = 10
and µ = 0, 5 (a) and φ = 50 and µ = 0, 3 (b).

The SPAM has some advantages compared to models with fully parametric
predictors, since they allow to model a more diversity of relations between the response
and each covariate. Furthermore, they have two particular cases, namely, parametric and
non-parametric models.

Within the methodology of additive models, it is usual to approximate the non-
linear component(s) by a linear combination of basis functions, such as: Fourier expansion,
wavelets, splines as B-splines and natural cubic splines, see, for example, Hastie and
Tibshirani (1990), Kooperberg and Stone (1991), Vidakovic (2009), Silverman (2018). In
this work we focus on the use of splines due to its simple structure and good approximation
properties, which definition is presented in next section.

1.2.1 Splines

Wegman and Wright (1983) published a review article about the use of splines
in Statistics. Specifically, they present them as a non-parametric estimation technique
for regression analysis. Under this methodology, some functions can be approximated
by a sum of basis functions, which present great flexibility and are able to capture local
behavior changes. These basis functions will be chosen, here, as the splines, where the
main underlying idea is an approximation by polynomial functions.

Then, let us suppose a function of interest, say f, limited by the interval [a, b], i.e.,
f: R→ [a, b]. This interval is, then partitioned in k∗ subintervals, say, [εt−1, εt], 1 ≤ t ≤ k∗,
where a < ε0 < · · · < εk∗ < b. Then, a polynomial, say pt, is used to approximate the
function over each (sub)interval [εt−1, εt], t = 1, . . . , k∗. This procedure leads to a piecewise
polynomial approximation function s(.), i.e., s(x) = pt(x) in [εt−1, εt], t = 1, . . . , k∗. The



Chapter 1. Introduction 27

values ε0, . . . , εk∗ are called knots, being ε0 and εk∗ the external knots, whereas the others,
ε1, . . . , εk∗−1, are the so-called interval knots.

In the general case, the parts of polynomial pt(x) are chosen independently of
each other and, then, they do not form a continuous function, say s(x), in [a, b]. Therefore,
to obtain a smooth approximation for a function, it is necessary that the parts of the
polynomial be joined smoothly in the internal knots ε1, . . . , εk∗−1 and to have all derivatives
up to a certain order, coincide at knots. Thus, to obtain a smooth piecewise polynomial
function, called spline, some restrictions should be imposed in the general definition of
spline (Cunha, 2003).

Definition 1. The function s is called an d−order (order=degree+1) spline, with knots
{εt}k

∗

t=1, associated with a partition of [a, b], if s:

• is a polynomial with d− 1 degree in each subinterval [εt−1, εt];

• has d− 2 continuous derivatives in each εt and, thus, in [a, b];

• has the following form:

s(x) =
d−1∑
l1=0

cl1x
l1 +

k∗−1∑
l2=1

al2(x− εl2)d−1
+ ,

where c0, . . . , cd−1 ∈ R, a1, . . . , ak−1 ∈ R and, (x− εl2)d−1
+ is a d− 1 degree truncated

power function, which is defined as,

(x− εl2)d−1
+ =

(x− εl2)d−1, if (x− εl2) ≥ 0,
0, if u < 0.

Therefore, it can be concluded that any spline function is a linear combination
of d + k basis functions. For more details about splines, see Wahba (1990) and Wood
(2017).

In the next subsections, the B-splines and the P-splines, which will be used in
our regression models, are presented.

B-splines

The B-splines proposed by De Boor (1978), are built using the so-called B-
splines basis. To define q B-spline basis, following Wood (2017), first let us assume a total

of k∗ = q+ d+ 1 knots. Then the d-th order spline can be represented as s(x) =
q∑
l=1

Bl,dγl,

where, γl is an (unknown) parameter and the B-spline basis functions are recursively
defined as follows:

Bl,d = Bl,d(x) = x− εl
εl+d−1(x)− εt(x)Bl,d−1(x) + εl+d − x

εl+d − εl+1
Bl+1,d−1(x),
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where

Bl,d(x) =
1, if εl ≤ x ≤ εl+1,

0, otherwise

d ≤ 1 is the order of the B-spline, x ∈ [a, b], a < ε1, . . . , εk∗ < b and the knots are mutually
equidistant.

P-splines

The P-splines were proposed by Eilers and Marx (1996) and they are a combi-
nation of B-splines and a difference penalty function of order d, namely ∆d, applied to
adjacent estimated coefficients γj of B-splines. The differences ∆dγj are defined as

∆γj = γj − γj−1; ∆2γj = γj − 2γj−1 + γj−2; ∆dγj = ∆
(
∆d−1γj

)
, with j = 1, . . . , k,

where d is the difference orders. For details about the choice of the number and the position
of knots, see for example Eilers and Marx (1996) and Ruppert (2002)

1.2.2 Penalization criterion

As seen in the previous section, each P-spline s(x) depend on some parameters
γ. In order to obtain the fit of s(x), these parameters have to be estimated through some
estimation process with the addition of a penalty function and an associated parameter,
say λ, called smoothness parameter, in order to enables a higher control over the spline
smoothing, avoiding both an overfitting and a high smoothness of the fitted function
(Green, 1987; Pulgar, 2009). For example, if s(x) is an approximation for a regression
function and the estimation process considering is the maximum likelihood method, the
penalty function is adding in the log-likelihood to control the smoothness of the fitted
regression function.

Then, the penalty function related to a given P-spline is given by

γΛdγ, (1.11)

where γ are the coefficients of the related B-splines, Λd = (∆d)>(∆d) and ∆d is the d
order difference operator, for d = 1, 2, . . . . For example, for d = 1, the penalized function
is defined as

γ>∆>∆γ = (γ2 − γ1)2 + (γ3 − γ2)2 + · · ·+ (γk − γk−1)2,

where the difference operator of dimension k × k is given by

∆ =


−1 1 0 . . .

0 −1 1 . . .

0 0 −1 . . .
... ... ... . . .

 and γ>∆>∆γ = γ>


1 −1 0 0 . . .

−1 2 −1 0 . . .

0 −1 2 −1 . . .
... ... ... ... . . .

γ.
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Adopting d = 2, the penalization is given by

γ>(∆2)>(∆2)γ = (γ1 − 2γ2 − γ3)2 + (γ2 − 2γ3 − γ4)2 + · · ·+ (γk−2 − 2γk−1 − γk)2,

and the difference operator, ∆2, can be written as

∆2 =


1 −2 1 0 . . .

0 1 −2 1 . . .

0 0 1 −2 . . .
... ... ... ... . . .

 .

For more details about penalties criterion, see for example Eilers and Marx
(2010) and Eilers et al. (2015).
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2 Semi-parametric Additive Models for inde-
pendent and limited data

In this Chapter we develop the Semi-parametric Additive Models for indepen-
dent and bounded data. The proposal models will be the Semi-parametric Additive Beta
(Beta-SPAM), Semi-parametric Additive Simplex (Simplex-SPAM) and Semi-parametric
Additive Beta Rectangular (BR-SPAM) models.

2.1 Models
Let us consider a set of random independent variables, Y1, . . . , Yn, such that

Yi
ind∼ beta(µi, φi), simplex(µi, φi) or BR(µi, φi, α), i = 1, . . . , n. For any of these distribu-

tions, the regression models Beta-SPAM, Simplex-SPAM and BR-SPAM have the following
systematic component

η1 = g1(µ) = Xβ +
k∑
j=1

hj(zj), η2 = g2(φ) = Eκ, (2.1)

where µ = (µ1, . . . , µn)>, φ = (φ1, . . . , φn)>, g1(.) and g2(.) are strictly monotone and
twice differentiable link functions, such that, g1 : (0, 1) → R, g2 : R+ → R, η1 =
(g1(µ1), . . . , g1(µn))>, η2 = (g2(φ1), . . . , g2(φn))>. Also, β = (β1, . . . , βp)> ∈ Rp and κ =
(κ1, . . . , κs)> ∈ Rs are, respectively, a p- and a s-vectors of unknown parameters, X(n×p) =
(x1, . . . ,xn)> and E(n×s) = (e1, . . . , en)> are (known) design matrices, respectively, where
xi = (xi1, . . . , xip)>, ei = (ei1, . . . , eis)> for i = 1, . . . , n, zj = (z1j, . . . , znj), j = 1, . . . , k
is a vector (known) of continuous explanatory variables associated with non-parametric
components and h1, . . . , hk are an unknown smooth functions.

Additionally, as discussed in Section 1.2.1, we have that

hj(zj) =
qj∑
l=1

γljblj(zj), (2.2)

where γlj are the coefficients to be estimated, blj are the l-th cubic B-spline related to
the j-th P-spline, evaluated at zj, j = 1, . . . , k and l = 1, . . . , qj. Since we adopted cubic
B-splines, we set blj = Bl,dl

with dl = 4, as defined in Section 1.2.1, kj = dl + qj is the
number of knots. Furthermore, it is possible to rewrite Equation (2.1), for i = 1, . . . , n, as
follows,

η1i = g1(µi) = x>i β + b>i1γ1 + · · ·+ b>ikγk,
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where bij = (b1j(zij), . . . , bqjj(zij))> and γj = (γj1, . . . , γjqj
)>. Therefore, in a vectorial

form, we have that

η1 = g1(µ) = Xβ +
k∑
j=1
Bjγj, η2 = g2(φ) = Eκ, (2.3)

where Bj is a n× qj matrix, defined as Bj = (b1j, . . . , bnj)> j = 1, . . . , k.

2.2 Penalized log-likelihood function
The respective log-likelihood, with systematic components given in Equation

(2.3), and defining θ = (β>,γ>1 , . . . ,γ>k ,κ>)> for the Simplex-SPAM and the Beta-SPAM

and θ = (β>,γ>1 , . . . ,γ>k ,κ>, α)> for the BR-SPAM is given by l(θ) =
n∑
i=1

li(θ), where,

li(θ), for each one the three models, is defined as:

• Beta-SPAM,

li(θ) = log(Γ(φi))− log(Γ(µiφi))− log(Γ([1− µi]φi)) + [µiφi − 1] log(yi)
+ ([1− µi]φi − 1) log[1− yi],

• Simplex-SPAM,

li(θ) = −1
2 {log(2πφi) + 3 log[yi(1− yi)]} −

1
2φi

d(yi;µi),

with d(yi;µi) (see Equation (1.7)), in this case, defined as,

d(yi;µi) = (yi − µi)2

2φiyi(1− yi)µ2
i (1− µi)2 .

• BR-SPAM,

li(θ) = log[εi + (1− εi)bYi
(yi; δi, φi)], (2.4)

with εi = 1−
√

1− 4αµi(1− µi), bY (y; ., .) is the beta density defined in Equation

(1.1), δi =
µi − 1

2 + 1
2

√
1− 4αµi(1− µi)√

1− 4αµi(1− µi)
,

and for all of them, µi = g−1
1 (η1i), η1i = x>i β +

k∑
j=1
b>ijγj, φi = g−1

2 (η2i) and η2i = e>i κ.

As discussed in the Section 1.2.2, a penalty function has to be added to the
log-likelihood to guarantee, in the estimation process, the smoothness of the fitted (non-
parametric) curve (see Wood (2017) and Vanegas and Paula (2016), for example). Since we
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adopted the P-splines, the penalty function based on differences, defined in the Equation
(1.11), will be used. Hence, the penalized log-likelihood is given by

lp(θ,λ) = l(θ)−
k∑
j=1

λj
2 γ

>
j Λd

jγj, (2.5)

where λ = (λ1, . . . , λk)> is the vector of smooth parameters and λj > 0, ∀j, j = 1, . . . , k.
These parameters control the smoothness of the P-splines that will approximate the
non-parametric component hj(.), such that, the larger the value of λj, the smoother the
fitted curve will be. For ease of the notation, we will drop the superscript d of Λd

j in the
follow sections, however, we emphasize that this penalty continues depending on the order
d.

2.2.1 Complete log-likelihood the for BR-SPAM

From Equation (2.4) we can see that the log-likelihood of the BR-SPAM is
not easily tractable (see also, Silva et al. (2020)). In order to make calculations simpler it
will be used the EM algorithm (Dempster et al., 1977) to obtain the maximum likelihood
estimates.

In Section 2.1, we have that if Yi ∼ BR(µi, φi, α), then, the following structure
is valid:

vi =
0, if Yi ∼ beta(δi, φi), with probability 1− εi

1, if Yi ∼ uniform(0, 1), with probability εi.

where, given that the beta rectangular distribution is a mixing of a beta and a stan-
dard uniform distributions, then Vi is a non-observed variable that works as an indi-
cator function of which distribution the data comes from. That is, Vi ind∼ Bernoulli(εi),
where εi = 1 −

√
1− 4αµi(1− µi). The jointly distribution of Y c

i = (Yi, Vi)> given
θ = (β>,γ>1 , . . . ,γ>k ,κ>, α)>, is given by

f(yci |θ) = εvi
i (1− εi)1−vib(yi; δi, φi)1−viI(0,1)(yi)I{0,1}(vi), (2.6)

where εi, δi, µi and φi are defined in Equation (2.4).

For the BR-SPAM, the complete likelihood is given by Lc(θ;yc) =
n∏
i=1

f(yci |θ),

where f(yci |θ) is defined in Equation (2.6). Also, the complete associated log-likelihood is
given by

lc(θ;yc) =
n∑
i=1

l∗i (θ), (2.7)

where l∗i (θ) = vi log εi + (1− vi) log(1− εi) + (1− vi)[log(Γ(φi))− log(Γ(δiφi))− log(Γ((1−
δi)φi)) + (δiφi− 1) log yi + ((1− δi)φi− 1) log(1− yi)]. Finally, adding a penalty term with
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respect to the non-parametric component, to control the smoothness, we have that

lcp(θ) = lc(θ;yc)−
k∑
j=1

λj
2 γ

>
j Λd

jγj. (2.8)

Then, each iteration of EM algorithm involves two steps, an E step (expectation)
and a M step (maximization), as follows:

• E step: To compute Q(θ|θ(m)) = E[lcp(θ|yc)|y,θ(m)], where the expectation is taken
with respect to the conditional distribution: f(y|v,θ(m));

• M step: To obtain θ(m+1) = arg maxθ∈ΘQ(θ|θ(m)).

Then, let θ>(m) = (β̂>(m), γ̂
>(m)
1 , . . . , γ̂

>(m)
k , κ̂>(m), α̂(m)) be the estimate of θ in the m-th

iteration of the EM algorithm. The conditional expectation with respect to v given y, of
the penalized complete log-likelihood defined in Equation (2.8) is given by

Q(θ|θ̂(m)) = E[lcp(θ)|y, θ̂(m)] =
n∑
i=1
{v̂(m)

i log εi + (1− v̂(m)
i ) log(1− εi)

+ (1− v̂(m)
i )[log(Γ(φi))− log(Γ(δiφi))− log(Γ((1− δi)φi))

+ (δiφi − 1) log yi + ((1− δi)φi − 1) log(1− yi)]} −
k∑
j=1

λj
2 γ

>
j Λd

jγj

=
n∑
i=1

Qi(θ|θ̂(m)),

(2.9)

where

v̂i = E(Vi|yi, θ̂(m)) = P(Vi = 1|yi, θ̂(m)) =
(

εi
εi + (1− εi)b(yi; δi, φi)

)
, (2.10)

εi = 1−
√

1− 4αµi(1− µi) and δi =
µi − 1

2 + 1
2

√
1− 4αµi(1− µi)√

1− 4αµi(1− µi)
.

2.3 Penalized score and gradient functions
Under Equation (2.5) for the Beta-SPAM and Simplex-SPAM, the penalized

score function, say U̇ θ
p (θ), for β,γ1, . . . ,γk and κ is given by U̇ θ

p (θ) = (U̇β
p (θ)>, U̇γ1

p (θ)>,
. . . , U̇γk

p (θ)>, U̇κ
p (θ)>)>. On the other hand, for BR-SPAM, the conditional expectation

of lcp(θ) (Equation (2.8)) will be used to obtain the penalized gradient function for θ =
(β>,γ>1 , . . . ,γ>k ,κ>, α)>, defined as U̇ θ

p (θ) = (U̇β
p (θ)>, U̇γ1

p (θ)>, . . . , U̇γk
p (θ)>, U̇κ

p (θ)>,
U̇α
p (θ))>.
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2.3.1 Beta-SPAM

For the Beta-SPAM, we have that

U̇β
p (θ) = ∂lp(θ,λ)

∂β
= X>T1f

∗, U̇γj
p (θ) = ∂lp(θ,λ)

∂γj
= B>j T1f

∗ − λjΛjγj,

U̇κ
p (θ) = ∂lp(θ,λ)

∂κ
= E>T2a,

(2.11)

where j = 1, . . . , k, T1 = diag{(∂g1(µ1)/∂µ1)−1, . . . , (∂g1(µn)/∂µn)−1}, f ∗ = (f ∗i , . . . , f ∗n),
f ∗i = φi(y∗i − µ∗i ), µ∗i = Ψ(µiφi) − Ψ[(1 − µi)φi], y∗i = log[yi/(1 − yi)], i = 1, . . . , n,
with Ψ(.) is the digamma function, Ψ(z) = ∂ log Γ(z)/∂z, z > 0, Φ = diag{φ1, . . . , φn},
a = (a1, . . . , an)>, ai = µi(y∗i − µ∗i ) + log(1 − yi) − Ψ[(1 − µi)φi] + Ψ(φi), and T2 =
diag{(∂g2(φ1)/∂φ1)−1, . . . , (∂g2(φn)/∂φn)−1}. The related demonstrations can be found in
Appendix A.1.1.

2.3.2 Simplex-SPAM

The respective elements of the score vector for the Simplex-SPAM are given by
(see the Appendix A.2.1 for the demonstration):

U̇β
p (θ) = ∂lp(θ,λ)

∂β
= X>T1f

∗, U̇γj
p (θ) = ∂lp(θ,λ)

∂γj
= B>j T1f

∗ − λjΛjγj,

U̇κ
p (θ) = ∂lp(θ,λ)

∂κ
= E>T2a,

(2.12)

where j = 1, . . . , k, T1 = diag{(∂g1(µ1)/∂µ1)−1, . . . , (∂g1(µn)/∂µn)−1}, a = (a1, . . . , an)>,
ai = − 1

2φi
+ 1

2φ2
i

d(yi;µi), d(y;µ) is defined in Equation (1.7),

T2 = diag{(∂g2(φ1)/∂φ1)−1, . . . , (∂g2(φn)/∂φn)−1}, f ∗ = (f ∗1 , . . . , f ∗n), f ∗i = (1/φi)ui(yi −

µi) and ui = 1
µi(1− µi)

[
d(yi;µi) + 1

µ2
i (1− µi)2

]
, i = 1, . . . , n.

2.3.3 BR-SPAM

Based on Equation (2.8), Q(θ|θ(m)) = E[lcp(θ)|y,θ(m)] will be used to obtain
the respective penalized gradient vector. Furthermore, the penalized gradient vector is
given by

U̇ θ
p (θ) = ∂Q(θ|θ(m))

∂θ
=
(
U̇β
p (θ)>, U̇γ1

p (θ)>, . . . , U̇γk
p (θ)>, U̇κ

p (θ)>, U̇α
p (θ)

)>
,

where

U̇β
p (θ) = X>T1f

∗, U̇γj
p (θ) = B>j T1f

∗ − λjΛjγj,

U̇κ
p (θ) = E>T2a, U̇

α
p (θ) = trace(D),

(2.13)
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j = 1, . . . , k, T1 = diag{(∂g1(µ1)/∂µ1)−1, . . . , (∂g1(µn)/∂µn)−1}, a = (a1, . . . , an)>, with
pi = (1− v̂i){δi(y∗i − δ∗i ) + log(1− yi)−Ψ[(1− δi)φi] + Ψ(φi)}, δ∗i = Ψ(δiφi)−Ψ[(1− δi)φi],
y∗i = log[yi/(1− yi)], for i = 1, . . . , n. Also, f ∗ = (f ∗1 , . . . , f ∗n)>, where

f ∗i = 2α(1− 2µi)
1− εi

[
v̂i
εi
− (1− v̂i)

(1− εi)

]
+ (1− v̂i)(1− α) φi

(1− εi)3 (y∗i − δ∗i ),

D = diag{d1, . . . , dn},

di = 2µi(1− µi)
(1− εi)

[
v̂i
εi
− (1− v̂i)

(1− εi)

]
− (1− v̂i)

[
φiµi(1− µi)(1− 2µi)

(1− εi)3

]
(y∗i − δ∗i ),

i = 1, . . . , n and T2 = diag{(∂g2(φ1)/∂φ1)−1, . . . , (∂g2(φn)/∂φn)−1}. The related demon-
stration can be found in Appendix A.3.1.

2.4 Penalized Hessian and Fisher information matrices
The necessary matrices of second derivatives realted to lp(θ,λ), for Beta-SPAM

and Simplex-SPAM, and related to Q(θ|θ̂(m)) for Beta-SPAM, with respect to θ, are
discussed in this section. For the two first models, we have that

Ü θθ
p (θ) = ∂2lp(θ,λ)

∂θ∂θ>
=



Üββ
p (θ) Üβγ1

p (θ) . . . Üβγk
p (θ) Üβκ

p (θ)
Üγ1β
p (θ) Üγ1γ1

p (θ) . . . Üγ1γk
p (θ) Üγ1κ

p (θ)
... ... . . . ... ...

Üγkβ
p (θ) Üγkγ1

p (θ) . . . Üγkγk
p (θ) Üγkκ

p (θ)
Üκβ
p (θ) Üκγ1

p (θ) . . . Üκγk
p (θ) Üκκ

p (θ)


, (2.14)

where Üβγj
p (θ) = Üγjβ

p (θ)>, Üβκ
p (θ) = Üκβ

p (θ)>, Üγjκ
p (θ) = Üκγj

p (θ)> and Üγjγj′
p (θ) =

Ü
γj′γj
p (θ)>, j = 1, . . . , k. On the other hand, for the third model we have

Ü θθ
p (θ) = ∂2Q(θ|θ̂(m))

∂θ∂θ>
=



Üββ
p (θ) Üβγ1

p (θ) . . . Üβγk
p (θ) Üβκ

p (θ) Üβα
p (θ)

Üγ1β
p (θ) Üγ1γ1

p (θ) . . . Üγ1γk
p (θ) Üγ1κ

p (θ) Üγ1α
p (θ)

... ... . . . ... ...
Üγkβ
p (θ) Üγkγ1

p (θ) . . . Üγkγk
p (θ) Üγkκ

p (θ) Üγkα
p (θ)

Üκβ
p (θ) Üκγ1

p (θ) . . . Üκγk
p (θ) Üκκ

p (θ) Üκα
p (θ)

Üαβ
p (θ) Üαγ1

p (θ) . . . Üαγk
p (θ) Üακ

p (θ) Üαα
p (θ)


,

(2.15)

where Üβγj
p (θ) = Üγjβ

p (θ)>, Üβκ
p (θ) = Üκβ

p (θ)>, Üγjκ
p (θ) = Üκγj

p (θ)>, Üγjγj′
p (θ) =

Ü
γj′γj
p (θ)>, Üβα

p (θ) = Üαβ
p (θ)>, Üγjα

p (θ) = Üαγj
p (θ)> and Üκα

p (θ) = Üακ
p (θ)>, j =

1, . . . , k.
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Finally, the Fisher information for the Beta-SPAM and the Simplex-SPAM is
given by

Kθθ
p (θ) = E

[
−∂

2lp(θ,λ)
∂θ∂θ>

]
=



Kββ
p (θ) Kβγ1

p (θ) . . . Kβγk
p (θ) Kβκ

p (θ)
Kγ1β

p (θ) Kγ1γ1
p (θ) . . . Kγ1γk

p (θ) Kγ1κ
p (θ)

... ... . . . ... ...
Kγkβ

p (θ) Kγkγ1
p (θ) . . . Kγkγk

p (θ) Kγkκ
p (θ)

Kκβ
p (θ) Kκγ1

p (θ) . . . Kκγk
p (θ) Kκκ

p (θ)


,

(2.16)

whereKβγj
p (θ) = Kγjβ

p (θ)>,Kβκ
p (θ) = Kκβ

p (θ)>,Kγjγj′
p (θ) = K

γj′γj
p (θ)> andKγjκ

p (θ) =
Kκγj

p (θ)>, j = 1, . . . , k.

2.4.1 Beta-SPAM

The elements of the Hessian matrix (Equation 2.14), are given by (see Appendix
A.1.2 for the demonstration of the results),

Üββ
p (θ) = ∂2lp(θ,λ)

∂β∂β>
= −X>QX, Üγjγj

p (θ) = ∂2lp(θ,λ)
∂γj∂γ>j

= −B>j QBj − λjΛj,

Üκκ
p (θ) = ∂2lp(θ,λ)

∂κ∂κ>
= −E>SE, Üβκ

p (θ) = ∂2lp(θ,λ)
∂β∂κ>

= −X>Q∗E,

Üγjκ
p (θ) = ∂2lp(θ,λ)

∂γj∂κ>
= −B>j Q∗E, Ü

γjγj′
p (θ) = ∂2lp(θ,λ)

∂γj∂γ>j′
= −B>j QBj′ ,

Üβγj
p (θ) = ∂2lp(θ,λ)

∂β∂γ>j
= −X>QBj,

(2.17)

j = 1, . . . , k, Q = diag{q1, . . . , qn},

qi = φi

φi{Ψ′(µiφi) + Ψ′((1− µi)φi)}+ (y∗i − µ∗i )
(
∂g1(µi)
∂µi

)−1 (
∂2g1(µi)
∂µ2

i

)(∂g1(µi)
∂µi

)−2

,

Q∗ = diag{q∗1, . . . , q∗n},

q∗i = {φi[Ψ′(µiφi)µi −Ψ′((1− µi)φi)(1− µi)]− (y∗i − µ∗i )}
(
∂g1(µi)
∂µi

)−1 (
∂g2(φi)
∂φi

)−1

,

S = diag{s1, . . . , sn}, and

si =
Ψ′(µiφi)µ2

i + Ψ′((1− µi)φi)(1− µi)2 −Ψ′(φi) + ai

(
∂g2(µi)
∂µi

)−1 (
∂2g2(µi)
∂µ2

i

)
×
(
∂g2(µi)
∂µi

)−2

,
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where Ψ′(.) is the trigamma function, Ψ′(z) = ∂2 log Γ(z)/∂z2, for z > 0 and ai =
µi(y∗i − µ∗i ) + log(1− yi)−Ψ[(1− µi)φi] + Ψ(φi), i = 1, . . . , n.

On the other hand, the elements of the Fisher information (Equation (2.16))
are given by (see Appendix A.1.2 for the demonstration of the results).

Kββ
p (θ) = E

[
−∂

2lp(θ,λ)
∂β∂β>

]
= X>WX, Kβγj

p (θ) = E
[
−∂

2lp(θ,λ)
∂β∂γ>j

]
= X>WBj,

Kκκ
p (θ) = E

[
−∂

2lp(θ,λ)
∂κ∂κ>

]
= E>PE, Kβκ

p (θ) = E
[
−∂

2lp(θ,λ)
∂β∂κ>

]
= X>W ∗E,

Kγjκ
p (θ) = E

[
−∂

2lp(θ,λ)
∂γj∂κ>

]
= B>j W

∗E, K
γjγj′
p (θ) = E

[
−∂

2lp(θ,λ)
∂γj∂γ>j′

]
= B>j WBj′ ,

Kγjγj
p (θ) = E

[
−∂

2lp(θ,λ)
∂γj∂γ>j

]
= B>j WBj + λjΛj,

(2.18)

where W = diag{w1, . . . , wn},

wi = φ2
i [Ψ′(µiφi) + Ψ′((1− µi)φi)]

(
∂g1(µi)
∂µi

)−2

,

P = (p1, . . . , pn)>, and

pi =
[
Ψ′(µiφi)µ2

i + Ψ′((1− µi)φi)(1− µi)2 −Ψ′(φi)
] (∂g2(µi)

∂µi

)−2

, i = 1, . . . , n.

Also, W ∗ = diag{w∗1, . . . , w∗n}, where

w∗i = {φi[Ψ′(µiφi)µi −Ψ′((1− µi)φi)(1− µi)]}
(
∂g1(µi)
∂µi

)−1 (
∂g2(φi)
∂φi

)−1

, i = 1, . . . , n.

2.4.2 Simplex-SPAM

The elements of the respective Hessian matrix (Equation 2.14) are given by
(see Appendix A.2.2 for the respective demonstration),

Üββ
p (θ) = ∂2lp(θ,λ)

∂β∂β>
= −X>QX, Üβγj

p (θ) = ∂2lp(θ,λ)
∂β∂γ>j

= −X>QBj,

Üκκ
p (θ) = ∂2lp(θ,λ)

∂κ∂κ>
= −E>SE, Üβκ

p (θ) = ∂2lp(θ,λ)
∂β∂κ>

= −X>Q∗E,

Üγjκ
p (θ) = ∂2lp(θ,λ)

∂γj∂κ>
= −B>j Q∗E, Ü

γjγj′
p (θ) = ∂2lp(θ,λ)

∂γj∂γ>j′
= −B>j QBj′ ,

Üγjγj
p (θ) = ∂2lp(θ,λ)

∂γj∂γ>j
= −B>j QBj − λjΛj,

(2.19)
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where j = 1, . . . , k, Q∗ = (q∗1, . . . , q∗n)>,

q∗i = [(1/φ2
i )ui(yi − µi)]

(
∂g1(µi)
∂µi

)−1 (
∂g2(φi)
∂φi

)−1

and ui is defined in Equation (2.12). Also, S = diag{s1, . . . , sn}, where

si =
[

1
2φ2

i

− 1
φ3
i

d(yi;µi) + ai

(
∂2g2(φi)
∂φ2

i

)(
∂g2(φi)
∂φi

)−1 ](
∂g2(φi)
∂φi

)−2

, i = 1, . . . , n,

d(y;µ) is defined in Equation (1.7) and ai is defined in Equation (2.12). Furthermore,
Q = diag{q1, . . . , qn}, where

qi = 1
φi

{
ui + (yi − µi)

[
2(yi − µi)ui
µi(1− µi)

+ 3(1− 2µi)
µ4
i (1− µi)4 + (1− 2µi)d(yi;µi)

µ2
i (1− µi)2

]
+ui(yi − µi)

×
(
∂2g1(µi)
∂µ2

i

)(
∂g1(µi)
∂µi

)−1 }(
∂g1(µi)
∂µi

)−2

.

On the other hand, the elements of the Fisher information (Equation (2.16))
are given by (see Appendix A.2.2 for the respective demonstrations).

Kββ
p (θ) = E

[
−∂

2lp(θ,λ)
∂β∂β>

]
= X>WX, Kβγj

p (θ) = E
[
−∂

2lp(θ,λ)
∂β∂γ>j

]
= X>WBj,

Kκκ
p (θ) = E

[
−∂

2lp(θ,λ)
∂κ∂κ>

]
= E>PE, Kβφ

p (θ) = E
[
−∂

2lp(θ,λ)
∂β∂φ

]
= 0,

Kγjφ
p (θ) = E

[
−∂

2lp(θ,λ)
∂γj∂φ

]
= 0, K

γjγj′
p (θ) = E

[
−∂

2lp(θ,λ)
∂γj∂γ>j′

]
= B>j WBj′ ,

Kγjγj
p (θ) = E

[
−∂

2lp(θ,λ)
∂γj∂γ>j

]
= B>j WBj + λjΛj,

(2.20)

j = 1, . . . , k, P = diag{p1, . . . , pn}, pi = 1/(2φ2
i ), i = 1, . . . , n, W = diag{w1, . . . , wn},

where

wi = 1
φi

[
3φi

µi(1− µi)
+ 1
µ3
i (1− µi)3

](
∂g(µi)
∂µi

)−2

, i = 1, . . . , n.

2.4.3 BR-SPAM

The main diagonal elements of the Hessian matrix (Equation (2.15)) related to
the BR-SPAM, are defined below (see Appendix A.3.2 for the respective demonstration),

Üββ
p (θ) = ∂2Q(θ|θ̂(m))

∂β∂β>
= X>RX, Üγjγj

p (θ) = ∂2Q(θ|θ̂(m))
∂γj∂γ>j

= B>j RBj − λjΛj,

Üκκ
p (θ) = ∂2Q(θ|θ̂(m))

∂κ∂κ>
= E>SE, Üαα

p (θ) = ∂2Q(θ|θ̂(m))
∂α2 = trace(J),

(2.21)
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j = 1, . . . , k, R = diag{r1, . . . , rn},

ri =
{[

4α2(1− 2µi)2

(1− εi)2

] [
− v̂i
ε2
i

− (1− v̂i)
(1− εi)2

]
+
[
v̂i
εi
− (1− v̂i)

(1− εi)

] [
− 4α

(1− εi)
+ 4α2(1− 2µi)2

(1− εi)3

]

+ (1− α)(1− v̂i)
[
−(1− α)φ2

i

(1− εi)6 w∗i + 6αφi(1− 2µi)
(1− εi)5 (y∗i − δ∗i )

]
− f ∗i

(
∂g1(µi)
∂µi

)−1

×
(
∂2g1(µi)
∂µ2

i

)}(
∂g1(µi)
∂µi

)−2

, i = 1, . . . , n,

where f ∗i is defined in Equation (2.13), w∗i = Ψ′(δiφi)+Ψ′((1−δi)φi), S = diag{s1, . . . , sn},

si =
[
−(1− v̂i)[(1− δi)2Ψ′((1− δi)φi) + δ2Ψ′(δiφi)−Ψ′(φi)]− ai

(
∂g2(φi)
∂φi

)−1

×
(
∂2g2(φi)
∂φ2

i

)](
∂g2(φi)
∂φi

)−2

,

ai is given in Equation (2.13), i = 1, . . . , n. Also, J = diag{j1, . . . , jn}, where

ji =
{[

4µ2
i (1− µi)2

(1− εi)2

] [
− v̂i
ε2
i

− (1− v̂i)
(1− εi)2

]
+
[
v̂i
εi
− (1− v̂i)

(1− εi)

] [
4µ2

i (1− µi)2

(1− εi)3

]

− (1− v̂i)
[
φµ2

i (1− µi)2(1− 2µi)
(1− εi)5

] [
φi(1− 2µi)

(1− εi)
w∗i + 6(y∗i − δ∗i )

]
, i = 1, . . . , n.

The elements outside the main diagonal of the Hessian matrix, related to
Equation (2.15), are given by (see Appendix A.3.2 for the respective demonstration),

Üβκ
p (θ) = ∂2Q(θ|θ̂(m))

∂β∂κ>
= −X>R∗E, Üγjκ

p (θ) = ∂2Q(θ|θ̂(m))
∂γj∂κ>

= −B>j R∗E,

Ü
γjγj′
p (θ) = ∂2Q(θ|θ̂(m))

∂γj∂γ>j′
= B>j RBj′ , Üβγj

p (θ) = ∂2Q(θ|θ̂(m))
∂β∂γ>j

= X>RBj,

Üβα
p (θ) = ∂2Q(θ|θ̂(m))

∂β∂α
= X>T1s

∗, Üγjα
p (θ) = ∂2Q(θ|θ̂(m))

∂γj∂α
= B>j T1s

∗,

Üκα
p (θ) = ∂2Q(θ|θ̂(m))

∂κ∂α
= −E>T2c

∗,

(2.22)

where T1 = diag{(∂g1(µ1)/∂µ1)−1, . . . , (∂g1(µn)/∂µn)−1}, R∗ = diag{r∗1, . . . , r∗n},

r∗i = −(1− v̂i)
{

(1− α)
(1− εi)3 [φi(δiw∗i −Ψ′((1− δi)φi))− (y∗i − δ∗i )]

}

×
(
∂g2(φi)
∂φi

)−1 (
∂g1(µi)
∂µi

)−1

.
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Furthermore, T2 = diag{(∂g2(φ1)/∂φ1)−1, . . . , (∂g2(φn)/∂φn)−1}, s∗ = (s∗1, . . . , s∗n)>, where

s∗i =
[

4αµi(1− µi)(1− 2µi)
(1− εi)2

] [
− v̂i
ε2
i

− (1− v̂i)
(1− εi)2

]

+
[
v̂i
εi
− (1− v̂i)

(1− εi)

]{
2(1− 2µi)

[
1

(1− εi)
+ 2αµi(1− µi)

(1− εi)3

]}

+ (1− v̂i)
{[

(1− α)φ2
iµi(1− µi)(1− 2µi)

(1− εi)6 w∗i

]
+ (y∗i − δ∗i )

×
{
−φi

[
1

(1− εi)3 −
6(1− α)µi(1− µi)

(1− εi)5

]}}
i = 1, . . . , n,

c∗ = (c∗1, . . . , c∗n)>, and

c∗i = (1− v̂i)
{[
µi(1− µi)(1− 2µi)

(1− εi)3

]
[φi(δiw∗i −Ψ′((1− δi)φi))− (y∗i − δ∗i )]

}
,

for i = 1, . . . , n.

2.5 Parameter estimation

Beta-SPAM and Simplex-SPAM

For estimation of β and γj, j = 1, . . . , k in Beta-SPAM and Simplex-SPAM
we consider the Fisher scoring and backfitting algorithms. For estimation of β and
γj, j = 1, . . . , k in Beta-SPAM and Simplex-SPAM we consider the Fisher scoring and
backfitting algorithms. Given that, under certain regularity conditions (Green and Silver-
man, 1993), the penalized maximum likelihood estimator (PMLE) (θ̂) exists and is unique
and considering λ fixed, is obtained as solution of U̇β

p = U̇γ1
p = · · · = U̇γ1

p = U̇κ
p = 0.

Since the respective solution have no-closed form, some optimization algorithm
should be employed to find the respective PMLE estimates, then we adopted the Fisher
scoring algorithm. Indeed, the estimates of β and γj , j = 1, . . . , k at the (u+ 1)-th step of
iterative process to maximization the penalized likelihood function is defined as

Kββ
p Kβγ1

p . . . Kβγk
p

Kγ1β
p Kγ1γ1

p . . . Kγ1γk
p

... ... . . . ...
Kγkβ

p Kγkγ1
p . . . Kγkγk

p



(u)
β(u+1) − β(u)

γ
(u+1)
1 − γ(u)

1
...

γ
(u+1)
k − γ(u)

k

 =


U̇β
p

U̇γ1
p
...
U̇γk
p



(u)

Then, the backfitting (Gauss–Seidel) (Breiman and Friedman, 1985) iterations, that are
used to solve the equations of above system, take the form:

β(u+1) = (X>W (u)X)−1X>W (u)
[
z(u) −

k∑
i=1
Bjγ

(u)
j

]
(2.23a)

γ
(u+1)
j = (B>j W (u)Bj + λjΛj)−1B>j W

(u)

z(u) −Xβ(u+1) −
∑
j∗ 6=j

Bj∗γ
(u+1)
j∗

 , (2.23b)
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u = 0, 1, 2, . . . , j = 1, . . . , k, where, z = Xβ+
k∑
j=1
Bjγj + (W (u))−1T1f

∗. For more details

about backfitting see, for example, Hastie and Tibshirani (1990), Rigby and Stasinopoulos
(2005) and Ibacache-Pulgar and Reyes (2017).

On the other hand, the PMLE of κ, says κ̂, can be obtained, following
Ibacache-Pulgar and Reyes (2017), using the Fisher scoring algorithm. Then, given
β(u+1),γ

(u+1)
1 , . . . ,γ

(u+1)
k , in the (u + 1)-th step of estimation algorithm, κ̂ estimates

is obtained by the following equation,

κ(u+1) = κ(u) − (Kκκ
p )−1U̇κ

p

∣∣∣
(β(u+1),γ

(u+1)
1 ,...,γ

(u+1)
k

,κ(u))
. (2.24)

In summary, the PMLE of θ = (β>,γ>1 , . . . ,γ>k ,κ>)> can be obtained by
iterating between the backfitting and the Fisher score algorithms to obtain PMLE of κ,
which is equivalent to the following iterative process,

(i) To choose suitable starting values, say β(0),γ
(0)
1 ,γ

(0)
2 , . . . ,γ

(0)
k and κ(0);

(ii) To obtain β(u+1) and γ(u+1)
j , j = 1, . . . , k using the backfitting algorithm (Equa-

tions (2.23a) and (2.23b)), considering κ(u);

(iii) Then, for current values β(u+1),γ
(u+1)
1 ,γ

(u+1)
2 , . . . ,γ

(u+1)
k , to obtain κ(u+1) through

Equation (2.24);

(iv) Iterating between (ii) and (iii) until reach some convergence criterion, that is until
||θ(u+1) − θ(u)|| > ε, ε > 0.

BR-SPAM

As presented in Section 2.3.3, the EM algorithm iterates between the E step,
which consist in to compute Q(θ|θ(u)) (see Equation (2.9)), and the M step, which will be
presented here. The penalized maximum likelihood estimator (PMLE) of θ̂ is obtained as
the solution of U̇β

p = U̇γ1
p = · · · = U̇γ1

p = U̇κ
p = 0. Since such equations do not lead to an

analytical solution, it is necessary to use some numerical optimization algorithm. Among
others, the L-BFGS-B algorithm (Byrd et al., 1995), optimization using PORT routines
(Gay, 1990), the Nelder-Mead algorithm (Nelder and Mead, 1965), are interesting options.

Then, we subdivided the M step into two other steps: in the first one, the
parameters related to the non-parametric part were estimated using one of the aforemen-
tioned algorithms, whereas, in the second one, given the estimates already obtained, the
parameters related to the parametric part were estimated using the same former approach.

The numerical optimization procedures require to provide initial values. For
β,γ1 . . . ,γk and κ, based on penalized least squares estimates, we choose β(0) = (X>X)−1
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X>y, γ(0)
j = (B>j Bj + λjΛj)−1B>j (y −Xβ(0)), j = 1, . . . , k and κ(0) = (E>E)−1E>y.

For α, we follow Silva et al. (2020), considering that it controls the tails of the beta
rectangular distribution. Therefore we use the method of the moments estimator of the
degrees of freedom, says ν, of the Student t distribution. Specifically, we have that ν̂MM =

−2
n∑
i=1

y2
i /

(
n∑
i=1

y2
i − n

)
, n <

n∑
i=1

y2
i . Then, we consider the following reparameterization

(since α ∈ [0, 1]) ν̂R = ν̂MM/(ν̂MM + 1), such that α(0) = 2
n∑
i=1

y2
i /

(
n∑
i=1

y2
i + n

)
.

The joint iterative process, in order to find the PMLE of θ, is given by

(i) To choose suitable starting values, say β(0),γ
(0)
1 ,γ

(0)
2 , . . . ,γ

(0)
k ,κ(0) and α(0);

(ii) To compute v̂ (E step in Equation (2.10));

(iii) To use some optimization algorithm to maximize Q(θ|θ(u)) in relation to γ(u) to find
γ

(u+1)
j , j = 1, . . . , k;

(iv) For current values γ(u+1)
j , j = 1, . . . , k, to obtain β(u+1), κ(u+1) and α(u+1), through

some optimization algorithm to maximize Q(θ|θ(u)), concerning those parameters;

(v) Iterating between (ii) and (iii) until reach some convergence criterion, that is until
||θ(u+1) − θ(u)|| > ε, ε > 0.

2.6 Effective degrees of freedom
In additive linear models, the degrees of freedom correspond to approximately

the number of effective parameters related to the non-parametric components. Then,
following Hastie and Tibshirani (1990) and Eilers and Marx (1996) the effective degrees
of freedom corresponding to the j-th non-parametric component is given by: dfγj

=
trace{B>j ŴBj(B>j ŴBj+λjΛj)−1}, for the Beta-SPAM and the Simplex-SPAM, whereas,
for the BR-SPAM, it is given by: dfγj

= trace{B>j R̂Bj(B>j R̂Bj +λjΛj)−1}, ∀j = 1, . . . , k
(for more details about the development for the degrees of freedom of the BR-SPAM, see
Appendix A.5). In this case, the total effective degrees of freedom are approximately given

by df(λ) ∼= p+
k∑
j=1

dfγj
(λ).

2.7 Model selection criteria
The Information Criteria (IC) adopted in this work are: the Akaike Information

Criterion (Akaike, 1974), AIC = −2lp(θ̂,λ) + 2[s∗ + df(λ)], the Bayesian Information
Criterion (Schwarz et al., 1978), BIC = −2lp(θ̂,λ) + log(n)[s∗+df(λ)], the Hannan-Quinn
Information (Hannan and Quinn, 1979), HQIC = −2lp(θ̂,λ) + 2[s∗ + df(λ)] log(log(n)),
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the corrected AIC, AICc = AIC + (2k∗∗(k∗∗ + 1))/(n− k∗∗ − 1), the sample adjusted BIC,
SABIC = −2lp(θ̂,λ)+[s∗+df(λ)] log((n+2)/24), and the Generalized Akaike Information
Criterion GAIC = −2lp(θ̂,λ) +k∗[s∗+df(λ)], where k∗ = 1, . . . , log(n), k∗∗ = [s∗+df(λ)],
s∗ is s∗ = s, for the Beta-SPAM and the Simplex-SPAM, whereas s∗ = s + 1 for the
BR-SPAM, where s is the number of precision/dispersion parameters.

2.8 Estimation of smoother parameters
For selecting the smooth parameter, it can be considered the generalized cross-

validation method (see Wahba and Wold (1975) and Wood (2017), for example). Indeed,
for the Beta-SPAM and the Simplex-SPAM, λ is chosen such

λ̂ = argminλGCV(λ) = argminλ
n∑
i=1

ŵi(ẑ∗∗i − x>i β̂)2

[1− n−1trace{Ĥ(λ)}]2
,

where wi is the i-th component of the diagonal of the respective Fisher information, z∗∗i
is the i-th component of the vector z∗∗ = Xβ +

k∑
j=1
Bjγj + (W )−1T1f

∗, and, for the

BR-SPAM,

λ̂ = argminλGCV(λ) = argminλ
n∑
i=1

r̂i(ẑ∗∗i − x>i β̂)2

[1− n−1trace{Ĥ(λ)}]2
,

where ri is the i-th component of the diagonal of the respective Hessian matrix, and

z∗∗i is the i-th component of the vector z∗∗ = Xβ +
k∑
j=1
Bjγj − (R)−1T1f

∗ and H(λ) is

defined as H(λ) = N ∗
[
N ∗>ẆN ∗ −Λ(λ)

]−1
N ∗>Ẇ , where Λ(λ) = ⊕nj=1λjΛd

j , N ∗ξ =
[X,B1, . . . ,Bk]ξ, ξ = (β>,γ>)>, γ = (γ>1 , . . . ,γ>k )> and Ẇ is the respective Fisher
information for Simplex-SPAM and Beta-SPAM, whereas, for BR-SPAM is the respective
Hessian matrix. Another possibility is to select λ through Information Criteria, which was
described in Section 2.7, for example doing λ̂ = argminλAIC.

2.9 Obtaining the standard errors

Beta-SPAM and Simplex-SPAM

Following Wood (2017), we consider, as the estimator of the covariance matrix,
(Kθθ

p (θ))−1 and for standard error, diag{(Kθθ
p (θ))−1/2}, whereKθθ

p (θ) defined in Equation
(2.16).

BR-SPAM

Since we employed the EM algorithm, the standard errors will be obtained
from the empirical information matrix. The Louis’ principle (Louis, 1982) relates the score
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function of the incomplete data log-likelihood with the score function of the complete data
log-likelihood, through the 5o(θ) = Eθ[5c(θ;Yc|Yobs)], where 5o(θ) = ∂lo(θ;Yobs)/∂θ
and 5c(θ) = ∂lc(θ;Yc)/∂θ are the score function of incomplete and complete data,
respectively. As defined in Meilijson (1989), the empirical information matrix, can be
calculated as:

Ie(θ|y) =
n∑
i=1
s(yi|θ)s(yi|θ)> − 1

n
S(y|θ)S(y|θ)>, (2.25)

where S(y|θ) =
n∑
i=1
s(yi|θ), where s(yi|θ), i = 1, . . . , n is the score function for the i-th

observation, given by:

s(yi|θ) = E
[
∂lcp(θ; yi, vi)

∂θ
|yi,θ

]
,

and lcp(θ|yi, vi) is the penalized complete log-likelihood given in Equation (2.8).

Replacing in Equation (2.25) θ by its maximum likelihood estimator, says θ̂
and considering 5o(θ) = 0, Equation (2.25) can be rewritten as

Ie(θ|y) =
n∑
i=1
s(yi|θ)s(yi|θ)>.

Specifically, the score vector for the i-th observation can be decomposed into:

s(yi|θ) = (sβ(yi|θ), sγ1(yi|θ), . . . , sγk
(yi|θ), sκ(yi|θ), sα(yi|θ))> ,

where

sβ(yi|θ) =
{

2α(1− 2µi)
1− εi

[
v̂i
εi
− (1− v̂i)

(1− εi)

]

+ (1− v̂i)(1− α) φi
(1− εi)3 (y∗i − δ∗i )

}(
∂g1(µi)
∂µi

)−1

xi, (2.26a)

sγj
(yi|θ) =

{
2α(1− 2µi)

1− εi

[
v̂i
εi
− (1− v̂i)

(1− εi)

]

+ (1− v̂i)(1− α) φi
(1− εi)3 (y∗i − δ∗i )

}(
∂g1(µi)
∂µi

)−1

bij

− λjΛjγj, (2.26b)
sκ(yi|θ) = (1− v̂i){δi(y∗i − δ∗i ) + log(1− yi)

−Ψ[(1− δi)φi] + Ψ(φi)}
(
∂g2(φi)
∂φi

)−1

ei, (2.26c)

sα(yi|θ) = 2µi(1− µi)
(1− εi)

[
v̂i
εi
− (1− v̂i)

(1− εi)

]
−
[
φiµi(1− µi)(1− 2µi)

(1− εi)3

]
(y∗i − δ∗i ), (2.26d)

j = 1, . . . , k and v̂i is given by Equation (2.10). Thus, the empirical information matrix
can be calculated through Equations (2.26a) to (2.26d). Therefore, Cov(θ̂) and SE(θ̂) are
estimated by (Ie(θ̂|y))−1 and diag{(Ie(θ̂|y))−1/2}, respectively.
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2.10 Hypothesis testing
For testing linear statistical hypothesis, that is, Cς = d, where rank(C) = l,

l ≥ p or l ≥ q, it can be used the following Wald-type statistic

ξW = (Cς̂ − d)>(CVςC>)−1(Cς̂ − d).

Under H0, ξW D−→
n→∞

χ2
l , where

D−→
n→∞

means convergence in distribution when the
sample size tends to infinity. Also, ς can be either a subvector of β or a subvector of κ, Vς
is the matrix of variance-covariance related to ς, obtainable from Ĉov(θ̂) = (Kθθ

p (θ))−1.

2.11 Model fit diagnostic tools
Statistical models, in a general way, are sensitive to the lack of the underlying

assumptions. Also, influential observations can lead to misleading conclusions. Therefore
it is important to check the goodness of model fit, at an overall level and for each specific
assumption, as well as to check the presence of influential observations. Here we developed
residual and influence analysis tools.

2.11.1 Leverage

The main idea underlying leverage analysis consists on measuring the variation
of predicted values, under some perturbation scheme of respective observed values. Within
this framework, one of the most usual approach is the generalized leverage, introduced by
Wei et al. (1998), defined as

GL(θ) =
{
Dθ

(
−Ü θθ

p

)−1
Ü θy
p

} ∣∣∣∣∣
θ=θ̂

,

where, for all three models, Dµ
θ = ∂µ/∂θ> = [T1X,T1B1, . . . ,T1Bk,0(n×s)] , 0(n×s) is a

matrix of zeros. Also, Ü θθ
p and Ü θy

p assume the following structure, for each one of the
developed models:

• Beta-SPAM: The elements of Ü θθ
p = ∂2lp(θ)/∂θ∂θ> are defined in Equation (2.17)

and

Ü θy
p = ∂2lp(θ)

∂θ∂y>
= [X>T1ΦM ,B>1 T1ΦM , . . . ,B>k T1ΦM ,E>T2B

∗]>,

where B∗ = diag{b∗1, . . . , b∗n}, b∗i = −(yi − µi)/[yi(1− y1)], M = diag{m1, . . . ,

mn} and mi = 1/[yi(1− yi)] for i = 1, . . . , n.

• Simplex-SPAM: The elements of Ü θθ
p = ∂2lp(θ)/∂θ∂θ> are defined in Equation

(2.19) and

Ü θy
p = ∂2lp(θ)

∂θ∂y>
= [X>Φ∗T1M ,B>1 Φ∗T1M , . . . ,B>k Φ∗T1M ,E>T2B

∗]>,
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where B∗ = diag{b∗1, . . . , b∗n},

b∗i = 1
2φiyi(1− yi)

[
2(yi − µi)
µ2
i (1− µi)2 − d(yi;µi)(1− 2yi)

]
, (2.27)

d(y;µ) is given in Equation (1.7), M = diag{m1, . . . ,mn} and

mi = 1
φiµ3

i (1− µi)3

[
3(yi − µi)2

yi(1− yi)
− (1− 2y)(yi − µi)3

y2
i (1− yi)2 + 1

]
. (2.28)

• BR-SPAM: The elements of Ü θθ
p = ∂2Q(θ|θ̂)/∂θ∂θ> are defined in Equations (2.21)

and (2.22) and

Ü θy
p = ∂2Q(θ|θ̂)

∂θ∂y>
= [X>T1M ,B>1 T1M , . . . ,B>k T1M ,E>T2B

∗,h>]>,

where B∗ = diag{b∗1, . . . , b∗n}, b∗i = (1 − v̂i)[(δi − yi)/(yi(1 − yi))], i = 1, . . . , n,
M = diag{m1, . . . ,mn},

mi = (1− v̂i)(1− α) φi
(1− εi)3

1
yi(1− yi)

, i = 1, . . . , n, (2.29)

h = (h1, . . . , hn)>, and

hi = −(1− v̂i)
[
φiµi(1− µi)(1− 2µi)

(1− εi)3

]
1

yi(1− yi)
, i = 1, . . . , n. (2.30)

The index plot of GL(θ̂)ii and GL(θ̂)ii against the fitted values can be used to
detect observations with high leverage values.

2.11.2 Residual analysis

Residual analysis aims to check the validity of model assumptions and/or the
goodness of model fit at an overall level and for specific model assumptions. A useful
approach is to so-called the quantile residuals (see Stasinopoulos et al. (2007)). Given
a continuous probability density, says f(yi|θ), i = 1, . . . , n, the associated cumulative
distribution function, says F (Yi;θ), are uniformly distributed on the unit interval, if the
model is well fitted to the data. Indeed, the quantile residuals are defined as

ri = Φ−1(F (Yi|θ̂)) = Φ−1
(∫ Yi

0
fY (y|θ̂)dy

)
,

where Φ(.) is the cumulative distribution function of the standard normal distribution
and fY (y) is defined in Equations (1.1), (1.6) and (1.3) for the Beta-SPAM, Simplex-
SPAM and BR-SPAM, respectively. Thus, if θ̂ are consistent estimators, the distribution
of ri converges to the standard normal. Therefore, we can build appropriate quantile
quantile plots with envelopes, as well as other usual plots as the residuals against the
index observations and the fitted values.
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2.11.3 Cook’s Distance

Case deletion diagnostics is commonly employed for measuring the influence of
each observation in the fitted model and is built considering the model without the i-th
observation, i. e., t = 1, . . . , n, with t 6= i being the new index of variables, the penalized
log-likelihood, lp(i)(θ), is given by

lp(i)(θ, λ) = l(i)(θ)−
k∑
j=1

λj
2 γ

>
j(i)Λd

jγj(i) =
n∑
t=1

lt(θ)−
k∑
j=1

λj
2 γ

>
j(i)Λd

jγj(i).

Let θ̂(i) = (β>(i), γ̂>1(i), . . . , γ̂
>
k(i),κ

>
(i))> be the MPLE of θ, says θ based on

lp(i)(θ, λ). To evaluate the influence of i-th observation on the MPLE estimate of θ̂ =
(β̂>, γ̂>1 , . . . , γ̂>k , κ̂>)>, we may compare θ̂(i) with θ̂. The higher is the influence of a given
observation, the more attention it is necessary. If the distance between these two sets of
estimates are sufficiently large, such observation is considered as influential.

It is possible to see that it is necessary to obtain θ̂(i) for all observations, which
can demand a large amount of time, mainly when the number of observations is large. For
this reason, it is usual to consider instead of θ̂(i), θ̂∗(i) = θ̂ + [−Ü θθ

p (θ̂)]−1U̇ θ
p(i)(θ̂), where

U̇ θ
p(i)(θ̂) = ∂lp(i)(θ, λ)

∂θ

∣∣∣∣∣
θ=θ̂

and Ü θθ
p (θ̂) = ∂2lp(θ, λ)

∂θ∂θ>

∣∣∣∣∣
θ=θ̂

,

which was proposed by Cook and Weisberg (1982). The generalized Cook’s distance is
then defined as the Euclidean norm of (θ̂(i) − θ̂), which is given by

GCD = (θ̂(i) − θ̂)>Ü θθ
p (θ̂)(θ̂(i) − θ̂), (2.31)

where Ü θθ
p (θ̂) is the observed information matrix. Then, replacing θ̂(i) by θ̂∗(i) in Equation

(2.31), we have that

GCD = {[−Ü θθ
p (θ̂)]−1U̇ θ

p(i)(θ̂)}>[−Ü θθ
p (θ̂)]{[−Ü θθ

p (θ̂)]−1U̇ θ
p(i)(θ̂)}

= [U̇ θ
p(i)]>{[−Ü θθ

p (θ̂)]−1}>U̇ θ
p(i)

= [U̇ θ
p(i)]>[−Ü θθ

p (θ̂)]−1U̇ θ
p(i) = [U̇ θ

p(i)]>θ̂∗(i),

where U̇ θ
p(i) is the gradient vector without the i-th observation, i.e., it is defined for

t = 1, . . . , n with t 6= i. To identify influential observations through the Cook’s distance,
the index plot of GCDi is recommend.

For the Beta-SPAM and the Simplex-SPAM, U̇ θ
p(i) is defined as in Equations

(2.11) and (2.12), respectively, and the components of the vector θ̂∗(i) = (β̂∗>(i) , γ̂∗>1(i), . . . , γ̂
∗>
k(i),
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κ̂∗>(i) )>, are given by,

β̂∗(i) = β̂ + (X>QX)−1X>(i)T1(i)f
∗
(i),

γ̂∗1(i) = γ̂1 + (B>1 QB1 + λ1Λ1)−1[B>1(i)T1(i)f
∗
(i) − λ1Λ1γ̂1],

...
γ̂∗k(i) = γ̂k + (B>k QBk + λkΛk)−1[B>k(i)T1(i)f

∗
(i) − λkΛkγ̂k],

κ̂∗(i) = κ̂+ (E>SE)−1E>(i)T2(i)a(i),

where Bj(i) for j = 1, . . . , k, E(i), X(i), T1(i), T2(i), f ∗(i), a(i) are given in Equations (2.1)
for Beta-SPAM and (2.11) for Simplex-SPAM, without the i-th observation.

For the BR-SPAM, instead of the log-likelihood, we do the development based
on Q(θ|θ̂), then, let Q(i)(θ|θ̂) = E[lcp(i)(θ)|y(i), θ̂], with lcp(i)(θ) =

n∑
t=1

l∗t (θ) − γ>Λγ, and

l∗t (θ) defined in Equation (2.7). Additionally U̇ θ
p(i)(θ̂) and Ü θθ

p (θ̂) are defined, respectively,
as,

U̇ θ
p(i)(θ̂) = ∂Q(i)(θ|θ̂)

∂θ

∣∣∣∣∣
θ=θ̂

and Ü θθ
p (θ̂) = ∂2Q(θ|θ̂)

∂θ∂θ>

∣∣∣∣∣
θ=θ̂

.

Finally, the components of the vector θ̂∗(i) = (β̂∗>(i) , γ̂∗>1(i), . . . , γ̂
∗>
k(i), κ̂

∗>
(i) , α̂

∗
(i))>,

are given by

β̂∗(i) = β̂ +
(
−X>RX

)−1
X>(i)T(i)f

∗
(i),

γ̂∗1(i) = γ̂1 +
(
−B>1 RB1 + λ1Λ1

)−1 [
B>1(i)T(i)f

∗
(i) − λ1Λ1γ̂1

]
,

...

γ̂∗k(i) = γ̂k +
(
−B>k RBk + λkΛk

)−1 [
B>k(i)T(i)f

∗
(i) − λkΛkγ̂k

]
,

κ̂∗(i) = κ̂+ (E>SE)−1E>(i)T2(i)a(i),

α̂∗(i) = α̂ + [trace(J)]−1trace(D(i)),

where X(i), f ∗(i), T1(i), T2(i), D(i), a(i), Bj(i), for j = 1, . . . , k are given in Equations (2.1)
and (2.13), without the i-th observation.

2.11.4 Local influence analysis

The likelihood displacement for Simplex-SPAM and Beta-SPAM, which defined
as LD(ω) = 2[lp(θ̂,λ) − lp(θ̂ω,λ)] ≥ 0, can be used to assess the influence of some
perturbation scheme on the MPLE estimates (θ̂). Here, θ̂ω is the MPLE estimate under
a perturbed model, and the perturbed penalized log-likelihood function is denoted by
lp(θ,λ|ω), where ω = (ω1, . . . , ωn)> is an n-dimensional vector of perturbations restricted
to some open subset Ω ∈ Rn. Furthermore, it is assumed that exists ω0 ∈ Ω, a vector of
no perturbation, such that lp(θ,λ|ω0) = lp(θ,λ).
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When the complete log-likelihood, namely lcp(θ|yc), is used as in BR-SPAM,
it is possible to define lcp(θ,ω|yc) as the complete log-likelihood of the perturbed model
and to use the Q-displacement function defined as QD(ω) = 2[Q(θ̂|θ̂) − Q(θ̂ω|θ̂)] for
local influence analysis, where θ̂ω is the maximum of Q(θ,ω|θ̂) = E[lcp(θ|y, θ̂)] and it is
assumed that exists ω0 ∈ Ω, a vector of no perturbation, such that Q(θ,ω0|yc) = Q(θ|ω0).

The idea of local influence consists on to study the behavior of LD(ω)(QD(ω))
around ω0. The procedure seeks to select an arbitrary direction l of norm 1 (‖ l ‖= 1),
and inspecting the plot of LD(ω + al)(QD(ω + al)) against a, where a ∈ R, which is
known as projected line. In particular, when LD(ω0) = 0(QD(ω0) = 0), we have that
LD(ω0 + al)(QD(ω0 + al)) has a local minimum at a = 0. Each projected line can be
characterized by a normal curvature Cl(θ) around a = 0. This curvature is interpreted
as the the inverse of the radius of the best adjusted circle at a = 0. Then, instead of
study all possibles for l, a suggestion is to consider the direction lmax that corresponds
to the highest curvature, denoted by Clmax . Cook (1986) used the concepts of differential
geometry to show that the normal curvature in the l direction assumes the form Cl(θ), and
based on that, Zhu and Lee (2001) proposed a normal curvature using QD(ω), showing
that the normal curvature in the l direction is given by

Cl(θ) = 2|l>∆>[−Ü θθ
p (θ)]−1∆l|,

where −Ü θθ
p (θ) is the observed Fisher information matrix, and Ü θθ

p (θ) is defined in the
Equation (2.15). For the curvature based on LD(θ) and QD(θ), ∆, is given, respectively,
by:

∆ = ∂2lp(θ,λ|ω)
∂θ∂ω>

∣∣∣∣∣
θ=θ̂,ω=ω0

and ∆ = ∂Q(θ|θ̂)
∂θ∂ω>

∣∣∣∣∣
θ=θ̂,ω=ω0

.

The maximum of l>Zl, where Z = ∆>[−Ü θθ
p (θ)]−1∆, corresponds to the

highest eigenvalue (in absolute value) of Z. Thus, Clmax corresponds to the highest
eigenvalue of the Z matrix and lmax denotes the corresponding eigenvector.

The index plot of |lmax| may reveal the observations with the highest influence at
the neighborhood of LD(ω0)(QD(ω0)). Those observations may lead to substantial changes
in the estimates of parameters under little perturbations in the model and/or the data. If
the interest lies on studying the local influence on a subvector θ1 of θ = (θ>1 ,θ>2 )>, the
respective normal curvature at the direction l is given by Cl(θ1) = 2|l>∆>([Ü θθ

p (θ)]−1 −
Z1)∆l|, where

Z1 =
 0 0

0 [Ü θ2θ2
p (θ)]−1

 ,
and −Ü θ2θ2

p (θ) denoting the observed penalized Fisher information matrix for θ2. The
index plot of the eigenvector l = lmax, which corresponds to the largest absolute eigenvalue
of the matrix ∆>([Ü θθ

p (θ)]−1 −Z1)∆, may indicate the points with large influence on θ̂1.
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In this section, three different perturbation schemes are considered, namely:
case-weight, response perturbation and covariate perturbation. To obtain local influence
measures it is necessary to obtain Ü θθ

p and ∆, which are presented, for each perturbation
schemes, below.

Case-weight perturbation

In this case the perturbed penalized log-likelihood function is given by

lp(θ,λ|ω) = l(θ|ω)−
k∑
j=1

λj
2 γ

>
j Λd

jγj,

where lp(θ,λ|ω) =
n∑
i=1

ωili(θ), with 0 ≤ ωi ≤ 1. Hence, considering ω0 = (1, . . . , 1)>, the

elements of the vector ∆, for the Beta-SPAM and Simplex-SPAM, are expressed as
∂2lp(θ,λ|ω)
∂β∂ω>

∣∣∣∣∣
θ=θ̂,ω=ω0

= X>T̂1diag{f̂ ∗},

∂2lp(θ,λ|ω)
∂γj∂ω>

∣∣∣∣∣
θ=θ̂,ω=ω0

= B>j T̂1diag{f̂ ∗} − µ̂∗}, j = 1, . . . , k,

∂2lp(θ,λ|ω)
∂κ∂ω>

∣∣∣∣∣
θ=θ̂,ω=ω0

= E>T̂2diag{â},

where a, T1, T2, f ∗ are all defined in the Equation (2.11) for Beta-SPAM and in Equation
(2.12) for Simplex-SPAM.

For the BR-SPAM, the perturbed Q-function is given by

Q(θ,ω|θ̂) =
n∑
i=1

ωiQi(θ|θ̂),

with 0 ≤ ωi ≤ 1 and ω0 = (1, . . . , 1)>. Hence, the elements of the vector ∆ are expressed
as

∂2Q(θ,ω|θ̂)
∂β∂ω>

∣∣∣∣∣
θ=θ̂,ω=ω0

= X>T̂1diag{f̂ ∗},

∂2Q(θ,ω|θ̂)
∂γj∂ω>

∣∣∣∣∣
θ=θ̂,ω=ω0

= B>j T̂1diag{f̂ ∗}, j = 1, . . . , k,

∂2Q(θ,ω|θ̂)
∂κ∂ω>

∣∣∣∣∣
θ=θ̂,ω=ω0

= E>T̂2diag{â},

∂2Q(θ,ω|θ̂)
∂α∂ω>

∣∣∣∣∣
θ=θ̂,ω=ω0

= d̂∗,

where T , a and f ∗ are defined in the Equation (2.13). Additionally, d∗ = (d∗1, . . . , d∗n)>,
with

d∗i = 2µi(1− µi)
(1− εi)

[
v̂i
εi
− (1− v̂i)

(1− εi)

]
−
[
φµi(1− µi)(1− 2µi)

(1− εi)3

]
(y∗i − δ∗i ), (2.32)

for i = 1, . . . , n.
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Response variable perturbation

Let us consider an additive perturbation on the i-th response by making
yiω = yi + ωi. Then, the perturbed penalized log-likelihood is given by Equation (2.5) with
yi replaced by yiω. Then, considering ω0 = (0, . . . , 0)>, the elements of the vector ∆, for
Beta-SPAM and for Simplex-SPAM, are expressed as

∂2lp(θ,λ|ω)
∂β∂ω>

∣∣∣∣∣
θ=θ̂,ω=ω0

= X>T̂1M̂ ,

∂2lp(θ,λ|ω)
∂γj∂ω>

∣∣∣∣∣
θ=θ̂,ω=ω0

= B>j T̂1M̂ , j = 1, . . . , k,

∂2lp(θ,λ|ω)
∂κ∂ω>

∣∣∣∣∣
θ=θ̂,ω=ω0

= E>T̂2B̂
∗,

where, for Beta-SPAM, M = diag{m1, . . . ,mn} and B∗ = (b∗1, . . . , b∗n)>, mi = φi/[yi(1−
yi)] and b∗i = −[yi − µi]/[yi(1 − yi)], i = 1, . . . , n, whereas, for Simplex-SPAM, M =
diag{φim1, . . . , φimn}, mi, i = 1, . . . , n defined in Equation (2.28) and B∗ = diag{b∗1, . . . ,
b∗n}> and b∗i , i = 1, . . . , n defined in Equation (2.27).

For the BR-SPAM, the perturbed Q-function, under the same additive pertur-
bation on the i-th response, is constructed from Equation (2.9) with yi replaced by yiω.
The elements of the vector ∆ are expressed as

∂2Q(θ,ω|θ̂)
∂β∂ω>

∣∣∣∣∣
θ=θ̂,ω=ω0

= X>T̂1M̂ ,

∂2Q(θ,ω|θ̂)
∂γj∂ω>

∣∣∣∣∣
θ=θ̂,ω=ω0

= B>j T̂1M̂ , j = 1, . . . , k,

∂2Q(θ,ω|θ̂)
∂κ∂ω>

∣∣∣∣∣
θ=θ̂,ω=ω0

= E>T̂2B̂
∗

∂2Q(θ,ω|θ̂)
∂α∂ω>

∣∣∣∣∣
θ=θ̂,ω=ω0

= ĥ>,

where M = diag{m1, . . . ,mn}, mi, i = 1, . . . , n, B∗ and h are all defined in Equation
(2.29). Also T1 and T2 are presented in Equation (2.13).

Continuous covariate perturbation

Consider an additive perturbation on a continuous covariate by making xd +
ωsxd

, where ω ∈ R is a vector of small perturbations and sxd
is the standard deviation of

xd (Thomas and Cook, 1990). For the linear predictor related to the mean, the perturbation
will be adding only on the covariates related to the parametric components. Then, under
the scheme of covariate perturbation, we have that η1iω = β1 +β2xi2 + · · ·+βd(xid+ωisxd

)+

· · · + βpxip +
k∑
j=1
bijγj and g(µiω) = η1iω. Then, based on this new linear predictor, all
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the process to obtain the perturbed penalized log-likelihood function and the Q-function
remains the same as discussed for each model in the Section 2.2.

As the dispersion/precision parameter has also a linear predictor related to
it, the design matrices X (related with mean) and E (related with dispersion/precision)
could be functionally dependents. Then, there are some cases to be considered when we
add some perturbation on X that could interfere with E also. These cases are described
below with the implications related to each one of them.

Case: X and E are functionally independent

In this case, φi,ω = φi. Hence, considering ω0 = (0, . . . , 0)>, the elements of ∆
for the Beta-SPAM and the Simplex-SPAM, are given by

∂2lp(θ,λ|ω)
∂β∂ω>

∣∣∣∣∣
θ=θ̂,ω=ω0

= −sxd
[β̂dX>Q̂− J T̂1diag{f̂ ∗}],

∂2lp(θ,λ|ω)
∂γj∂ω>

∣∣∣∣∣
θ=θ̂,ω=ω0

= −sxd
β̂dB

>
j Q̂, j = 1, . . . , k,

∂2lp(θ,λ|ω)
∂φ∂ω>

∣∣∣∣∣
θ=θ̂,ω=ω0

= −β̂dsxd
Ê>Q̂∗,

where βd is the estimator of the parameter related to the d-th covariate, J is a p × n
matrix of zeros except for the d-th line, which contains ones. For the BR-SPAM, the above
elements are given by

∂2Q(θ,ω|θ̂)
∂β∂ω>

∣∣∣∣∣
θ=θ̂,ω=ω0

= sxd
[β̂dX>R̂+ J T̂1diag{f̂ ∗}],

∂2Q(θ,ω|θ̂)
∂γj∂ω>

∣∣∣∣∣
θ=θ̂,ω=ω0

= β̂dsxd
B>j R̂, j = 1, . . . , k,

∂2Q(θ,ω|θ̂)
∂κ∂ω>

∣∣∣∣∣
θ=θ̂,ω=ω0

= −β̂dsxd
Ê>R̂∗,

∂2Q(θ,ω|θ̂)
∂α∂ω>

∣∣∣∣∣
θ=θ̂,ω=ω0

= β̂dsxd
T̂1diag{d̂∗}.

Case: X and E are equal

WhenX = E, we have that η2iω = κ1 +κ2xi2 + · · ·+κd(xid+ωisxd
)+ · · ·+κpxip,

the i-th precision parameter, φiω, is such that g2(φiω) = η2iω, Additionally, for the Beta-
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SPAM and the Simplex-SPAM, we have that

∂2lp(θ,λ|ω)
∂β∂ω>

∣∣∣∣∣
θ=θ̂,ω=ω0

= −sxd
[X>(β̂dQ̂+ Q̂∗κ̂d)− J T̂1diag{f̂ ∗}],

∂2lp(θ,λ|ω)
∂γj∂ω>

∣∣∣∣∣
θ=θ̂,ω=ω0

= −sxd
[B>j (β̂dQ̂+ Q̂∗κ̂d)− J T̂1diag{f̂ ∗}], j = 1, . . . , k,

∂2lp(θ,λ|ω)
∂κ∂ω>

∣∣∣∣∣
θ=θ̂,ω=ω0

= −sxd
[E>(κ̂dŜ +Q∗β̂d)− J T̂2diag{a}],

where κd is the estimator of the parameter related to the d-th covariate, and for the
BR-SPAM, we have that

∂2Q(θ,ω|θ̂)
∂β∂ω>

∣∣∣∣∣
θ=θ̂,ω=ω0

= sxd
[X>(β̂dR̂− R̂∗κ̂d) + J T̂1diag{f̂ ∗}],

∂2Q(θ,ω|θ̂)
∂γj∂ω>

∣∣∣∣∣
θ=θ̂,ω=ω0

= sxd
[B>j (β̂dR̂− R̂∗κ̂d) + J T̂1diag{f̂ ∗}], j = 1, . . . , k,

∂2Q(θ,ω|θ̂)
∂κ∂ω>

∣∣∣∣∣
θ=θ̂,ω=ω0

= sxd
[E>(κ̂dŜ − R̂∗β̂d) + J T̂2diag{a}],

∂2Q(θ,ω|θ̂)
∂α∂ω>

∣∣∣∣∣
θ=θ̂,ω=ω0

= sxd
[β̂dT̂1diag{ŝ∗} − κ̂dT̂2diag{ĉ∗}].

Case: X and E share some covariate

When some perturbed covariates in X are also present in E two approaches
can be considered. First, it can be considered that eid′ = xid, for some pair (d, d′) with d =
2, . . . , p and d′ = 2, . . . , s. In this case, η2iω = κ1 +κ2ni2 + · · ·+κd′(xid+ωisxd

)+ · · ·+κpnip

and, for the Beta-SPAM and the Simplex-SPAM, we have that

∂2lp(θ,λ|ω)
∂β∂ω>

∣∣∣∣∣
θ=θ̂,ω=ω0

= −sxd
[X>(β̂dQ̂+ Q̂∗κ̂d′)− J T̂1diag{f̂ ∗}],

∂2lp(θ,λ|ω)
∂γj∂ω>

∣∣∣∣∣
θ=θ̂,ω=ω0

= −sxd
[B>j (β̂dQ̂+ Q̂∗κ̂d′)− J T̂1diag{f̂ ∗}], j = 1, . . . , k,

∂2lp(θ,λ|ω)
∂κ∂ω>

∣∣∣∣∣
θ=θ̂,ω=ω0

= −sxd
[E>(κ̂d′Ŝ +Q∗β̂d)− PT̂2diag{â}],

where P is a s× n matrix of zeros except for the d′-th line, which corresponds to a unity
vector, for d′ = 1, . . . , s. Furthermore, for the BR-SPAM, we have that

∂2Q(θ,ω|θ̂)
∂β∂ω>

∣∣∣∣∣
θ=θ̂,ω=ω0

= sxd
[X>(β̂dR̂− R̂∗κ̂d′) + J T̂1diag{f̂ ∗}],

∂2Q(θ,ω|θ̂)
∂γj∂ω>

∣∣∣∣∣
θ=θ̂,ω=ω0

= sxd
[B>j (β̂dR̂− R̂∗κ̂d′) + J T̂1diag{f̂ ∗}], j = 1, . . . , k,
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∂2Q(θ,ω|θ̂)
∂κ∂ω>

∣∣∣∣∣
θ=θ̂,ω=ω0

= sxd
[E>(κ̂d′Ŝ − R̂∗β̂d) + PT̂2diag{â}],

∂2Q(θ,ω|θ̂)
∂α∂ω>

∣∣∣∣∣
θ=θ̂,ω=ω0

= sxd
[β̂dT̂1diag{ŝ∗} − κ̂d′T̂2diag{ĉ∗}],

In the second approach, let eid′ = G(xid), where d = 2, . . . , p and d′ = 2, . . . , s,
such that G is twice differentiable. In this case, η2iω = κ1 +κ2ni2 + · · ·+κd′G(xid +ωisxd

) +
· · ·+ κpnip and for the Beta-SPAM and the Simplex-SPAM, we have that

∂2lp(θ,λ|ω)
∂β∂ω>

∣∣∣∣∣
θ=θ̂,ω=ω0

= −sxd
[X>(β̂dQ̂+ Q̂∗Ġκ̂d′)− J T̂1diag{f̂ ∗}],

∂2lp(θ,λ|ω)
∂γj∂ω>

∣∣∣∣∣
θ=θ̂,ω=ω0

= −sxd
[B>j (β̂dQ̂+ Q̂∗Ġκ̂d′)− J T̂1diag{f̂ ∗}], j = 1, . . . , k,

∂2lp(θ,λ|ω)
∂κ∂ω>

∣∣∣∣∣
θ=θ̂,ω=ω0

= −sxd
[E>(κ̂d′ĠŜ +Q∗β̂d)− PT̂2Ġdiag{a}],

where Ġ = diag{∂G(x1d)/∂x1d, . . . , ∂G(xnd)/∂xnd}. Additionally, for the BR-SPAM, we
have that

∂2Q(θ,ω|θ̂)
∂β∂ω>

∣∣∣∣∣
θ=θ̂,ω=ω0

= sxd
[X>(β̂dR̂− R̂∗Ġκ̂d′) + JT̂1diag{µ̂}],

∂2Q(θ,ω|θ̂)
∂γj∂ω>

∣∣∣∣∣
θ=θ̂,ω=ω0

= sxd
[B>j (β̂dR̂− R̂∗Ġκ̂d′) + JT̂1diag{f̂ ∗}], j = 1, . . . , k,

∂2Q(θ,ω|θ̂)
∂κ∂ω>

∣∣∣∣∣
θ=θ̂,ω=ω0

= sxd
[E>(κ̂d′ĠŜ − R̂∗β̂d) + PT̂2Ġdiag{a}],

∂2Q(θ,ω|θ̂)
∂α∂ω>

∣∣∣∣∣
θ=θ̂,ω=ω0

= sxd
[β̂dT̂1diag{ŝ∗} − κ̂d′ĠT̂2diag{ĉ∗}].

2.12 Link functions choice
In this section we present the link functions considered for each parameter.

For the dispersion (φ) and probabilities of augmented data (p0 and p1) we considered the
log/sqrt and logit links, respectively, following the McCullagh and Nelder (1989). For the
mean we considered: the logit, probit, c-log-clog, loglog and cauchit links. The first two
are symmetric, the third and fourth are, respectively, negative and positive skewed and
the last one is symmetric with heavy tails. See McCullagh and Nelder (1989) and Koenker
and Yoon (2009), for example. In Figure 10 we can see the behavior of these links. The
probit goes to zero and one at the same rate. The same occurs with the logit and cauchit,
but the respective rates are smaller than those of probit link, being even smaller for the
cauchit link. On the other hand, for the cloglog and loglog, those rates are not the same,
where for the cloglog the rate of convergence to one is higher than to the zero, occurring
the opposite to the loglog.
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Figure 10 – Comparison among probit, cauchit, logit and cloglog link functions: Plot of
their cumulative probability function vs the linear predictor η.

2.13 Computational tools
All methods proposed in this work were implemented in the R program (R

Core Team, 2020). The Beta-SPAM and Simplex-SPAM were implemented within the R
package, gamlss (Stasinopoulos et al., 2007), which handles with the Generalized Additive
Models for Location, Scale and Shape. The framework of the gamlss accommodates the
developed methodology for these two models. In such package it is available the so-called
RS algorithm, which allows for fitting models similar to these two, under the presented
estimation process.

For the BR-SPAM, the maximization process was done by using the function
optim of the software R, which considers the L-BFGS-B algorithm (Byrd et al., 1995) to
obtain the maximum of Q(θ|θ(m)), since the Hessian matrix extracted from the optim
is a good approximation for the one obtained analytically in the previous section. And
the function nlminb (Gay, 1990) that uses, which they call as optimization using PORT
routines. The last function, present same performance of optim, but in some cases, is
faster than optim. We intend to let all routines available in a R package within a near
future.

2.14 Simulation Studies
In this section, we present the results of four simulation studies. Section

2.14.1 is related to the a parameter recovery study. In Section 2.14.2, we perform a
link misspecification study. In Section 2.14.3, we evaluate the response distribution



Chapter 2. SPAM for independent data 56

misspecification. Finally, in Section 2.14.4 is presented a study of the performance
of the proposed quantile residuals and the local influence measures. The results for
the first study are presented in Appendix, whereas the other studies are available
at https://github.com/aureaflg/Simulations-study.git, where we present repro-
ducible codes as well as related plots and tables.

2.14.1 Study 1: Parameter recovery

We considered several scenarios of interest defined by the combination of the
levels of some important factors. They are (with the respective levels within parenthesis):
sample size (n) (50, 100, 500), regression model (beta, simplex, BR), link function (probit,
logit, cauchit, cloglog, loglog) and modeled parameter(s) (mean and dispersion). For each
scenario, R = 300 replicates of Monte Carlo were generated, using a given model (as we
explain ahead). The general scenarios are described in Table 2.

Table 2 – Scenarios of simulation study 1

Regression model
(modelling mean and dispersion) n Link functions

betabeta(µi, φi)
50
100 probit, logit, cauchit, cloglog and loglog.
500

simplexsimplex(µi, φi)
50
100 probit, logit, cauchit, cloglog and loglog.
500

BR(µi, φi, α)
50
100 probit, logit, cauchit, cloglog and loglog.
500

In all scenarios the following structure for linear predictors was considered to
both simulated and fit the data sets: g(µi) = β1Xi + cos(Zi), log(φi) = κ0 + κ1Ei for
i = 1, . . . , n, where Xi

iid∼ uniform(0, 1), Ei iid∼ uniform(0, 1) and Zi iid∼ uniform(0, 3π), g(.)
is either the probit, logit, cauchit, cloglog. The actual values for the parameters were:
loglog link (β1 = 1, κ0 = 1, κ1 = 2, α = 0.7) and other links (β1 = −1, κ0 = 2, κ1 = −3,
α = 0.7). This change to the loglog link function is justified by the fact that, depending on
the parameters chosen, generating from the models using this link function can generate
values very close to one or zero, which could compromise the fit of the models to the
simulated data even for the BR-SPAM model. For all models, the knots number and the
smoothing parameter λ were set on 40 and 100, respectively, because these assigned values
were efficient in making the fitted curves smooth enough.

The related results are presented in Appendix B.1, where Figures 34 to 38 are
related to Beta-SPAM, Figures 39 to 43 are related to Simplex-SPAM, and, Figures 44
to 48 concern to BR-SPAM. Generally, for all models, the parameters were properly

https://github.com/aureaflg/Simulations-study.git
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recovered, even under small sample sizes. Also, as the sample size increases, the estimates
become more accurate. For the BR-SPAM under the cloglog and loglog links, the results
were less accurate, compared with the other scenarios. Indeed, the associated bias tend to
slightly increase, as the sample size increases, despite of the their low magnitude. However,
such issue does not compromise the overall accuracy of the estimates.

2.14.2 Study 2: Link function misspecification

Only the scenarios varying the regression models (beta, simplex, BR) and the
link functions (probit, logit, cauchit, cloglog,loglog) are considered. We set the sample size
in 500, modeling the mean and the dispersion. We generate only one replica from each
model, setting a distribution and a link function for it, and fit the simulated data using a
model with the same distribution but varying the link function, using all the different ones
from the one used to generate the simulated data. In Table 8 we present the 60 scenarios
of interest.

Table 3 – Scenarios of simulation study 2

Distribution that will generate
and fit the simulated data Actual link function Link function considered in

fitted model
beta(µi, φi), logit probit, cauchit, cloglog and loglog

simplex(µi, φi)
probit logit, cauchit, cloglog and loglog
cauchit logit, probit, cloglog and loglog

or BR(µi, φi, α) cloglog logit, probit, cauchit and loglog
loglog logit, probit, cloglog and cauchit

The considered linear predictors and link functions for related scenarios are given
by: g(µi) = β1xi + cos(zi), log(φi) = κ0 + κ1ei, for i = 1, . . . , n, where Xi

iid∼ uniform(0, 1),
Ei

iid∼ uniform(0, 1) and Zi iid∼ uniform(0, 3π), is either the probit, logit, cauchit, cloglog.
The actual parameter values considered loglog link were β1 = 1, κ0 = 1, κ1 = 2 and
α = 0.7, whereas for the other cases were β1 = −1, κ0 = 2, κ1 = −3 and α = 0.7. This
change considered for loglog link is done, because depend on the actual parameter values,
to simulate and adjust considering this link function may be difficult, given that the
simulated data are too close of one and zero some times. We considered the accuracy in
terms of model prediction and parameter recovery.

In general, for the Beta-SPAM and the Simplex-SPAM the actual mean was
properly recovered. The BR-SPAM presented more problems with the misspecification of
link function, mainly for the cases in which the cauchit were the link of the fitted model,
also in the cases where the model was generated from the cloglog and was fitted with
loglog, the points presented a great dispersion. The parameter recovery, in general, was
good, when the link function that generating was symmetric, the adjust with loglog and
cloglog, which are asymmetric link, did not recovery so well the parameter related with
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mean. While, that for parameters related with dispersion/precision, they were all well
estimated.

2.14.3 Study 3: Response distribution misspecification

In this section we vary only the response distribution, setting the sample size
in 100 and the link function as the logit. We modeled only the mean and we generated
only R = 1 replica.

Table 4 – Scenarios of simulation study 3

Generating data model
(n = 100) Fitted model

beta(µi, φ) simplex
BR

simplex(µi, φ) beta
BR

BR(µi, φ, α) beta
simplex

The considered linear predictor for related scenarios presented in Table 4, have
the following structure g(µi) = β1xi + cos(zi) for i = 1, . . . , n, where Xi

iid∼ uniform(0, 1)
and Zi iid∼ uniform(0, 3π), g(.) is the logit. The real values considered for the parameters
were β1 = −1, φ = 20, α = 0.1.

The parameters were well recovered for all model, in general. The difference
can be seen, when it is compared the estimated curve for them, in general, the curve is
better estimated for the model whose generating it. Note that for this study the value of
parameter α of BR was considering very small to the generating data could be adjust for
the others models, because when the α increasing, the adjust of others models become poor
and for Simplex-SPAM, it is impossible the adjust in same cases. Thus, the conclusion is
that when data presents values too close to the limits of the interval (0, 1), the BR-SPAM
is the best model, in contrast to when the data is distributed further away from the limits,
the models present a similar behaviour.

2.14.4 Study 4: Performance of residuals tools and local influence

To evaluate the performance of the model fit assessment tools, we considered
scenarios where we generating data from two regression models (Simplex/Beta SPAM),
fixing the link function as the cauchit and the sample size in 100 and, then, we fitting all
models (Simplex/Beta/BR SPAM) under the same conditions. For the residual analysis
we aim to check if the residuals are able to detect any depart from the model assumptions,
mainly the distribution assumption for response variable distribution.



Chapter 2. SPAM for independent data 59

For the local influence analysis, first we generating from on of the three regres-
sion model (Simplex/Beta/BR SPAM) and one selected observation was "contaminated"
among those that were generated as the response. Then, we fit using the same model
that the data came from. For the covariate perturbation scheme, the same process was
made, except that now the "contamination" is done in a covariate of a selected observation
related with the mean, of the parametric part of the predictor. The "contamination" was
done by adding 10 times of the standard deviation of this covariate.

The related models of the scenarios concerning the model fit assessment tools,
have this following structure Yi ind∼ beta(µi, φi) or simplex(µi, φi), g(µi) = β1Xi + cos(Zi),
log(φi) = κ0 + κ1Ei, for i = 1, . . . , n, where Xi

iid∼ uniform(0, 1), Ei iid∼ uniform(1, 2),
Zi

iid∼ uniform(0, 3π) and g(.) is the cauchit. The real values considered for the parameters
were β1 = −2, κ0 = −1 and κ1 = 2.

The related models of the scenarios concerns the local influence analysis,
is given by: Yi ind∼ beta(µi, φi),BR(µi, φi, α) or simplex(µi, φi), g(µi) = β1Xi + cos(Zi),
log(φi) = κ0 + κ1Ei, for i = 1, . . . , n, where Xi

iid∼ uniform(0, 1), Ei iid∼ uniform(0, 1) and
Zi

iid∼ uniform(0, 3π), besides that, for each scenario, g(.) is logit. The real values considered
for the parameters were β1 = −2 κ0 = 1 and κ1 = −4.

The residuals behave as expected. Indeed when the true underlying and fitted
models match, the points are well within the confidence bands, for the QQ plots, and
present a random behavior with no outliers, in the index plot. On the other hand, when
these two models do not match, the points are no longer well within the confidence bands
(QQ-plot) and a systematic behavior can be seen (index plot). Therefore, we have evidence
that the developed tools work properly.

For the influence analysis, in both perturbation schemes, the contaminated ob-
servations where properly flagged through the lmax measure. Therefore, we have indications
that the influence analysis tools are useful for such purpose.

2.15 Real data analysis
This data set is related to reading skills of 44 individuals recruited from primary

schools in the Australian Capital Territory. They were presented in Smithson and Verkuilen
(2006). The response variable is the score on a test of reading accuracy, measured in the
(0,1) interval and the higher the score, the better the performance. The covariates are
Dyslexia versus Non-dyslexia status (a factor with two levels) and non-verbal IQ converted
to z-scores (continuous). This data was previously analyzed by Espinheira et al. (2008) and
Ferrari et al. (2011) using beta regression models considering, respectively, with constant
and varying dispersion. The data set can be obtained in the betareg package available in
R program (R Core Team, 2020) under the name ReadingSkills.
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Figure 11 – Explanatory analysis plots of reading skills data set: (1) Histogram of Reading
score (2) Boxplot of Reading score by categories of Dyslexia covariate (3)
Scatter plot of Reading score versus IQ with two non-parametric curve fitted
by LOESS for categories of variable Dyslexia.

In Figure 11, the third plot, which was built by fitting two non-parametric
curves for categories of Dyslexia using the method LOESS as an explanatory analysis,
suggests a non-linear relation between Reading score and IQ, for both categories of variable
Dyslexia. Also, we have that the response variability is related to the Dyslexia, since the
boxplot of this covariate suggests a different variability through the categories. We fitted
the three following models to the data:

Yil
ind∼ beta(µil, φil)or simplex(µil, φil) or BR(µil, φil, α),

g1(µil) = β0 + (β1)l + h1(zi),
g2(φil) = κ0 + (κ1)l, i = 1, . . . , 44,

where, l = 1, 2 and (β1)1 = (κ1)1 = 0. The parameters (β1) and (κ1) are related with
Dyslexia ((β1)1 and (κ1)1 related with the kid does not have dyslexia) and z is the variable
QI. Also, h1(.) is an unknown function, which will be approximated by P-splines with
cubic B-splines and considering quadratic differences for the penalty function with 40
knots. The choice for g1(.) will be made by comparing the information criteria for the
models. For g2(.) was adopted the log-link for the Beta-SPAM and BR-SPAM, and the
square root for the Simplex-SPAM, because this last model presented better results using
this link function. For the Beta-SPAM and Simplex-SPAM all covariates were significant
to 5% level, while under the BR-SPAM, we reduce the original structure to the:

Yil
ind∼ BR(µil, φil, α),

g1(µil) = h1(zi),
g2(φil) = κ0 + (κ1)l, i = 1, . . . , 44,

where, l = 1, 2 and (κ1)1 = 0.

All information criteria (IC), except SABIC, see Table 5 indicate, for each
distribution, that the cauchit link is the best one. Therefore we compared the three
respective models (Beta-SPAM, Simplex-SPAM and BR-SPAM), using the model fit
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assessment tools. Even though the IC indicates the BR-SPAM as the best model, the
related QQ plot with envelope for the quantile residuals indicates the Beta-SPAM as the
one with the best fit (see Figure 12). We decided to select the model based on the QQ
plot, then, the model selected were Beta-SPAM

Table 5 – Information Criteria for the three models.

Model Link function AIC AICC SABIC HQIC BIC

BR-SPAM

cauchit -190.19 -175.24 -216.31 -180.81 -164.88
logit -43.15 -29.85 -68.02 -34.21 -19.04
probit -41.41 -22.96 -69.85 -31.19 -13.84
cloglog -78.39 -57.09 -108.49 -67.57 -49.21
loglog 10.57 20.74 -11.62 18.55 32.08

Beta-SPAM

cauchit -109.58 -96.47 -127.71 -100.69 -85.61
logit -108.19 -94.41 -126.70 -99.12 -83.72
probit -106.57 -86.80 -128.00 -96.06 -78.23
cloglog -105.38 -84.64 -127.22 -94.67 -76.51
loglog -108.21 -92.57 -127.71 -98.65 -82.43

Simplex-SPAM

cauchit -125.78 -72.64 -156.44 -110.75 -85.25
logit -120.03 -24.93 -156.53 -102.14 -71.78
probit -118.25 4.37 -157.26 -99.13 -66.69
cloglog -117.33 15.61 -157.11 -97.82 -64.73
loglog -120.03 -49.71 -153.49 -103.62 -75.78
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Figure 12 – Quantile-quantile plot with 99% envelopes for all models.
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Table 6 – Inferential results for the Beta-SPAM.

Parameters Estimate SE p-value IC95%
β0 2.94 0.73 0.0001 [1.52;4.36]

(β1)2 -2.61 0.72 0.0003 [-4.02;-1.21]
κ0 1.76 0.31 <0.0001 [1.15;2.38]

(κ1)2 3.19 0.45 <0.0001 [2.31;4.07]
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Figure 13 – Estimated curve for Beta-SPAM.

Figure 13 shows the fitted curve for non-parametric part. The effective degrees of
freedom were 10.43382 Beta-SPAM, with the smooth parameter, λ = 10. Some adjustment
results can be seen in Figure 14. First, the adjusted mean for model Beta-SPAM is shown
in the plot 14a with the variables Reading score and IQ by Dyslexia. All the residuals are
well within the the confidence bands of the QQ plot, even though there is some no random
pattern. The other residuals plots show no tendency (Figure 14b) as well the normality
seems to be reasonable according to the histogram (Figures 14d).

The results of Cook’s distance and Generalized Leverage are presented in Figure
15. We can see that the observations #31,#32 and #33 were flagged as high leverage, while
the observations #14,#18,#20 and #25 , were flagged as high Cook’s distance. Concerning
the local influence analysis, from Figure 16, for the response variable perturbation scheme,
no observations were flagged. However, for the case-weight perturbation scheme, the
observations #38 e #39 were flagged.

After removing the observations #31,#32 and #33, no one of the following
quantities change: significance of the parameters, Cook’s distance and the generalized
leverage. Also, the behavior of the residuals remained the same. Removing the observations
#14,#18,#20 and #25, the significance of the parameters did not change as well as
the behavior of the residuals. However, the Cook’s distance and the generalized leverage
flagged some observations that had not been flagged before. Finally, the exclusion of the
observations #38 e #39, did not affect neither the significance of the regression parameters,
neither the behavior of the residuals. However, according to the local influence analysis, a
new observations appeared as influential. That is, the first set of influential observations,
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(b) Index plot of quantile residuals.

−2

−1

0

1

2

0.6 0.7 0.8 0.9
Fitted Values

Q
ua

nt
ile

 R
es

id
ua

ls

(c) Fitted values versus quantile residuals.

0.0

0.2

0.4

−1 0 1 2
Quantile residual

de
ns

ity

(d) Histogram of quantile residuals.

Figure 14 – Results of fitted Beta-SPAM.
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Figure 15 – Cook’s Distance and Generalized Leverage measure for the Beta-SPAM.
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Figure 16 – Index plot of lmax under case-weight perturbation (left plot) and under response
perturbation (right plot) for Beta-SPAM.

somehow, was probably masking the behavior of this new set. In conclusion, once that the
exclusion of the flagged observations did not lead to significant changes on the model fit,
no further changes are necessary.

From the selected model we infer that the kids with dyslexia have lower Reading
scores than the kid without this condition. Also, it indicates that the Dyslexia variable, is
significantly different between the categories for the dispersion parameter.
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3 Semi-parametric Additive Models for inde-
pendent and augmented data

In this Chapter we present extensions of the models developed in Chapter 2,
allowing the response belongs to the [0,1] interval (as well as the respective particular
cases). The regression structures and probability distributions are those presented before.
Therefore, the model class developed in the previous Chapter is a particular case of this
developed in this Chapter.

3.1 Models
Let us consider, Y1, . . . , Yn, such that Yi ind∼ ZOAB(p0i, p1i, µi, φi), or ZOAS(p0i,

p1i, µi, φi) or ZOABR(p0i, p1i, µi, φi, α), i = 1, . . . , n. In addition, we assume that

η1i = g1(µi) = x>i β +
k∑
j=1

hj(zj),

η2i = g2(φi) = e>i κ,

(ζ0i, ζ1i) = H(p0i, p1i) = (h0(p0i, p1i), h1(p0i, p1i)),

(3.1)

where µi = E(Yi|Yi ∈ (0, 1)), p0i = P(Yi = 0), p1i = P(Yi = 1) and 1 − p0i − p1i =
P(Yi ∈ (0, 1)). Also, η1i = x>i β, η2i = e>i κ, ζ0i = f>i ρ, ζ1i = m>i τ are linear pre-
dictors, β = (β1, . . . , βp)> ∈ Rp, κ = (κ1, . . . , κs)> ∈ Rs, ρ = (ρ1, . . . , ρs0)> ∈ Rs0

and τ = (τ1, . . . , τs1)> ∈ Rs1 are vectors of unknown (regression) parameters. Also,
X(n×p) = (x1, . . . ,xn)>, E(n×s) = (e1, . . . , en)>, F(n×s0) = (f1, . . . ,fn)> and M(n×s1) =
(m1, . . . ,mn)> are known design matrix, where xi = (xi1, . . . , xip)>, ei = (ni1, . . . , nis)>,
fi = (fi1, . . . , fis0)>, mi = (mi1, . . . ,mis1)>, i = 1, . . . , n. Finally zj = (z1j, . . . , znj), j =
1, . . . , k is a specification vector associated with non-parametric components and h1, . . . , hk

are unknown smooth functions.

We also assume that g1(.) and g2(.) are strictly monotone and twice differentiable
link functions, such that, g1 : (0, 1) → R and g2 : R+ → R. While H is a bijective
transformation of the set C = {(p0i, p1i) : 0 < p0i < 1, 0 < p1i < 1 − p0i} onto R2, twice
differentiable in each component. Under the related assumptions to H, it follows that
the partial derivatives of p0i = h∗0(ζ0i, ζ1i) and p1i = h∗1(ζ0i, ζ1i) are continuous in R2 and
p0i, p1i can be written in terms of ζ0i and ζ1i, uniquely (Rudin, 1976). Following Ospina
(2008), we can consider H such that

H(p0i, p1i) = (h0(p0i, p1i), h1(p0i, p1i)) =
(
h

(
p0i

1− p0i − p1i

)
, h

(
p1i

1− p0i − p1i

))
,
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where h : R+ → R is strictly monotone and twice differentiable. Notice also that h0 and h1

are functions such that, R2 → R. Hence, following Ospina (2008) and setting h = log(.), it
results that

P(Yi = 0)
P(Yt ∈ (0, 1)) = p0i

1− p0i − p1i
= exp(ζ0i),

P(Yi = 1)
P(Yt ∈ (0, 1)) = p1i

1− p0i − p1i
= exp(ζ1i),

leading to,

p0i = P(Yi = 0) = eζ0i

1 + eζ0i + eζ1i
, p1i = P(Yi = 1) = eζ1i

1 + eζ0i + eζ1i
,

1− p0i − p1i = P(Yi ∈ (0, 1)) = 1
1 + eζ0i + eζ1i

.

(3.2)

Furthermore, we have

hj(zj) =
qj∑
l=1

γljblj(zj), (3.3)

where γlj are the coefficients to be estimated, blj are the l-th cubic B-spline related to the
j-th P-spline, evaluated at zj, j = 1, . . . , k and l = 1, . . . , qj. Since we adopted cubic B-
splines, we set blj = Bl,dl

with dl = 4, as defined in Section 1.2.1, kj = dl + qj is the number
of knots. Furthermore, it is possible to rewrite Equation (3.3) to simplify the notation,
for the i-th observation, i = 1, . . . , n, such that η1i = g1(µi) = x>i β + b>i1γ1 + · · ·+ b>ikγk,
where bij = (b1j(zij), . . . , bqjj(zij))> and γj = (γj1, . . . , γjqj

)>. Also, we have that

η1 = g1(µ) = Xβ +
k∑
j=1
Bjγj, (3.4)

where Bj(n×qj) has elements blj(zij), i = 1, . . . , n, j = 1, . . . , k and l = 1, . . . , qj.

The adopted augmented distributions admit a finite mixture framework in
terms of the respective non-augmented and the Bernoulli distributions. Indeed assuming
Yi, which is the response variable for the i-th subject, we have that

z∗i =
0, if yi ∈ (0, 1)

1, if yi ∈ {0, 1}
(3.5)

Thus, when Z∗i = 0, Yi ∼ beta(µi, φi)/simplex(µi, φi)/BR (µi, φi, α), while,
when Z∗i = 1, Yi ∼ Bernoulli(ηi), where ηi = p1i/(p0i + p1i). Additionally P (Z∗i = 1) =
P(Yi = 0 or Yi = 1) = p0i+p1i, and P(Z∗i = 0) = 1−p0i−p1i. Thus, Z∗i ∼ Bernoulli(p0i+p1i).
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3.2 Penalized log-likelihood function
The jointly distribution of (yi, z∗i )> assuming θ = (ρ>, τ>,β>,γ>1 , . . . ,γ>k ,κ>)>

for ZOAB-SPAM and ZOAS-SPAM and θ = (ρ>, τ>,β>,γ>1 , . . . ,γ>k ,κ>, α)> for ZOABR-
SPAM, considering the three distributions, can be written as

f(yi, z∗i ; p0i, p1i, p0i, $i) = f1(yi; %i)z
∗
i f2(yi;$i)1−z∗i (p0i + p1i)z

∗
i

× (1− p0i − p1i)1−z∗i I{yi,z∗i },
(3.6)

where I{yi,z∗i } = I(0,1)(yi)I{0}(z∗i ) + I{0,1}(yi)I{1}(z∗i ) and f1(yi; ηi) is the probability function
of Bernoulli distribution with parameter %i = p1i/(p0i + p1i). Besides that, the $i and
f2(yi;$i) are, for each distribution, defined below:

• For the ZOAB-SPAM: $i = (µi, φi) and f2(yi;$i) is the beta density as defined in
the Equation (1.1);

• For the ZOAS-SPAM: $i = (µi, φi) and f2(yi;$i) is the simplex density as defined
in the Equation (1.6);

• For: ZOABR-SPAM: $i = (µi, φi, α) and f2(yi;$i) is the beta rectangular (BR)
density as defined in the Equation (1.3);

Thus, the likelihood is given by

L(θ) =
n∏
i=1

f(yi, z∗i ; p0i, p1i, p0i, µi, φi) = L1(ϑ)L2(ϕ), (3.7)

where f(yi, z∗i ; p0i, p1i, p0i, $i) is given in the Equation (3.6), θ = (ϑ>,ϕ>)>, where ϑ =
(ρ>, τ>)> and ϕ = (β>,γ>1 , . . . ,γ>k ,κ>)> are related to the discrete and continuous part
of the model, respectively. Also,

L1(ϑ) =
n∏
i=1

(p1−yi
0i pyi

1i)z
∗
i (1− p0i − p1i)1−z∗i , L2(ϕ) =

n∏
i=1

b∗Yi
(yi;$i)1−z∗i , (3.8)

where b∗Y (y; ., .) is either defined: in Equation (1.1) for the ZOAB-SPAM; in Equation (1.6)
for the ZOAS-SPAM; in Equation (1.3) for the ZOABR-SPAM. Also, µi and (φi, p0i, p1i)
are defined in Equations (3.4) and (3.1), respectively.

From Equation (3.7) the likelihood is separable, in terms of ϑ and ϕ (Pace and
Salvan, 1997). Then, the inference about these parameters can be made independently
from each other.

The respective log-likelihood is given by: l(θ) = l1(ϑ) + l2(ϕ), where l1(ϑ) =
n∑
i=1

li(p0i, p1i) and l2(ϕ) =
n∑
i=1

li($i). For each model we have that
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• For the ZOAB-SPAM:

li(p0i, p1i) = z∗i [(1− yi) log(p0i) + yi log(p1i)] + (1− z∗i ) log(1− p0i − p1i),
li(µi, φi) = (1− z∗i ){log(Γ(φi))− log(Γ(µiφi))− log(Γ([1− µi]φi))

+ [µiφi − 1] log(yi) + ([1− µi]φi − 1) log[1− yi]};

• For the ZOAS-SPAM:

li(p0i, p1i) = z∗i [(1− yi) log(p0i) + yi log(p1i)] + (1− z∗i ) log(1− p0i − p1i),

li(µi, φi) = (1− z∗i )
{
−1

2 {log(2πφi) + 3 log[yi(1− yi)]} −
1

2φi
d(yi;µi)

}
,

with d(y;µ) defined in Equation (1.7);

• For the ZOABR-SPAM:

li(p0i, p1i) = z∗i [(1− yi) log(p0i) + yi log(p1i)] + (1− z∗i ) log(1− p0i − p1i),

li(µi, φi, α) = (1− z∗i ) log
{
εi + (1− εi)bYi

(yi; δi, φi)
}
,

(3.9)

εi = 1−
√

1− 4αµi(1− µi), δi =
µi − 1

2 + 1
2

√
1− 4αµi(1− µi)√

1− 4αµi(1− µi)
;

where µi = g−1
1 (η1i), η1i = x>i β +

k∑
j=1
b>ijγj, φi = g−1

2 (η2i), η2i = e>i κ, and (p0i, p1i) is

defined in the Equation (3.2). As discussed in the Section 2.2, a penalty function has
to be adding in the log-likelihood to guarantee the smoothness of the P-spline that will
approximate the non-parametric component h1(.). The penalized log-likelihood considering
the differences penalty (see Equation (1.11)) is given by

lp(θ,λ) = l(θ)−
k∑
j=1

λj
2 γ

>
j Λd

jγj = l1(ϑ) + l2(ϕ)−
k∑
j=1

λj
2 γ

>
j Λd

jγj = l1(ϑ) + l2p(ϕ,λ),

(3.10)

where λ = (λ1, . . . , λk)> is the vector of smooth parameters, λj > 0, ∀j, j = 1, . . . , k, and

l2p(ϕ,λ) = l2(ϕ) −
k∑
j=1

λj
2 γ

>
j Λd

jγj. Since the semi-parametric predictor appears only in

the continuous part, the penalization is not necessary for the discrete part. For ease of
notation we define Λj = Λd

j , j = 1, . . . , k.

3.2.1 Complete log-likelihood for ZOABR-SPAM

In order to make calculations simpler it will be used the EM algorithm (Demp-
ster et al., 1977) to obtain the maximum likelihood estimates, as made in the Section
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2.2.1, given that ZOABR-SPAM is an extension of the model BR-SPAM. All the calcu-
lations made there (Section 2.2.1) will be repeated here particularizing for the case of
ZOABR-SPAM.

Hence, given the model defined in Section 3.1, in which Yi ∼ ZOABR(p0i, p1i,

µi, φi, α) for i = 1, . . . , n and from definition of variable Z∗ in Equation (3.5), if Z∗i = 0, Yi
following a BR(µi, φi, α), which density mixture of beta distribution and standard uniform
distribution. Thus, let Vi be a non-observed variable for i = 1, . . . , n, such that

vi =
0, if Yi ∼ beta(δi, φi), with probability 1− εi

1, if Yi ∼ uniform(0, 1), with probability εi.

Thus, Vi ∼ Bernoulli(εi), where εi = 1 −
√

1− 4αµi(1− µi). The jointly distribution of
Y c
i = (Yi, Vi, Z∗i ) conditional on θ = (ϑ>,ϕ>)>, where ϑ = (ρ>, τ>)> the subvector of θ

related to the discrete part of the model and ϕ = (β>,γ>1 , . . . ,γ>k ,κ>, α)>, related to the
continuous part,

f(yci |θ) = (p1−yi
0i pyi

1i)z
∗
i (1− p0i − p1i)1−z∗i [εvi

i (1− εi)1−vib(yi; δi, φi)1−vi ]1−z∗i I{yi,vi,z∗i },

(3.11)

where, I{yi,vi,z∗i } = I(0,1)(yi)I{0,1}(vi)I{0}(z∗i ) + I{1}(z∗i )I{0,1}(yi).

The complete likelihood is given by

Lc(θ;yc) =
n∏
i=1

f(yi, vi, z∗i |θ) = L1(ϑ)Lc2(ϕ),

with f(yi, vi, z∗i |θ) is the jointly distribution defined in Equation (3.11), besides that L1(ϑ)
is defined in Equation (3.8) and Lc2(ϕ) is defined below:

Lc2(ϕ) =
n∏
i=1

[εvi
i (1− εi)1−vibYi

(yi;µi, φi)]1−z
∗
i ,

the complete log-likelihood associated is lc(θ;yc) = l1(ϑ) + lc2(ϕ), where l1(ϑ) defined in

Equation (3.9) and lc2(ϕ) =
n∑
i=1

l∗i (θ), with l∗i (θ) = (1−z∗i ){vi log εi+(1−vi) log(1−εi)+(1−

vi)[log(Γ(φi))−log(Γ(δiφi))−log(Γ((1−δi)φi))+(δiφi−1) log yi+((1−δi)φi−1) log(1−yi)]}.
Now, adding a likelihood penalty with respect to non-parametric component to control
the smoothness in complete log-likelihood, it leads to

lcp(θ,λ) = l(θ)−
k∑
j=1

λj
2 γ

>
j Λd

jγj = l1(ϑ) + lc2(ϕ)−
k∑
j=1

λj
2 γ

>
j Λd

jγj = l1(ϑ) + lc2p(ϕ,λ),

(3.12)

where lc2p(ϕ,λ) is the logarithm of complete likelihood related to continuous part of the
model already with the penalty.
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3.3 Penalized score and gradient functions
Since the likelihood is separable we can get, independently, the score and

Hessian components for the discrete and continuous parts, as we show below.

3.3.1 Penalized score function for discrete part

Since the discrete part for the three models is the same, the respective score and
Hessian are the same as well. Indeed, from Equation (3.10), we have that the score vector is
given by U̇ϑ

p (θ) =
(
U̇ρ
p (θ)>, U̇ τ

p (θ)>
)>

, where (see the Appendix A.4.1 for demonstration
of results related to the discrete part):

U̇ρ
p (θ) = ∂l1(ϑ)

∂ρ
= F>d1 U̇ τ

p (θ) = ∂l1(ϑ)
∂τ

= M>d2, (3.13)

j = 1, . . . , k, d1 = (d11, . . . , d1n), d2 = (d21, . . . , d2n), where, respectively, d1i = z∗i (1 −
yi)− p0i and d2i = z∗i yi − p1i, for i = 1, . . . , n.

3.3.2 Penalized score function for continuous part of models

From Equation (3.10) we have, for the ZOAB-SPAM and ZOAS-SPAM, that
U̇ϕ
p (θ) = (U̇β

p (θ)>, U̇γ1
p (θ)>, . . . , U̇γk

p (θ)>, U̇κ
p (θ)>)>. On the other hand, for the ZOABR-

SPAM, from Equation (3.12), we have that, U̇ϕ
p (θ) = (U̇β

p (θ)>, U̇γ1
p (θ)>, . . . , U̇γk

p (θ)>,
U̇κ
p (θ)>, U̇α

p (θ))>. The model-specific components are presented in the following subsec-
tions.

3.3.2.1 ZOAB-SPAM

The respective elements of the score function for the ZOAB-SPAM are given
by,

U̇β
p (θ) = ∂lp(θ,λ)

∂β
= X>T1f

∗,

U̇γj
p (θ) = ∂lp(θ,λ)

∂γj
= B>j T

∗
1 f
∗ − λjΛjγj,

U̇κ
p (θ) = ∂lp(θ,λ)

∂κ
= E>T2a,

(3.14)

where j = 1, . . . , k, T1 = diag{(∂g1(µ1)/∂µ1)−1, . . . , (∂g1(µn)/∂µn)−1}, f ∗ = (f ∗1 , . . . , f ∗n)>,
f ∗i = (1− z∗i )φi(y∗i − µ∗i ), µ∗i = [Ψ(µiφi)−Ψ[(1− µi)φi], y∗i = log[yi/(1− yi)], i = 1, . . . , n.
Also, a = (a1, . . . , an)>,

ai = (1− z∗i ){µi(y∗i − µ∗i ) + log(1− yi)−Ψ[(1− µi)φi] + Ψ(φi)}, i = 1, . . . , n,

and T2 = diag{(∂g2(φ1)/∂φ1)−1, . . . , (∂g2(φn)/∂φn)−1}.
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3.3.2.2 ZOAS-SPAM

For the ZOAS-SPAM, we have that

U̇β
p (θ) = ∂lp(θ,λ)

∂β
= X>T1f

∗, U̇γj
p (θ) = ∂lp(θ,λ)

∂γj
= B>j T1f

∗ − λjΛjγj,

U̇κ
p (θ) = ∂lp(θ,λ)

∂κ
= E>T2a,

(3.15)

j = 1, . . . , k, where T1 = diag{(∂g1(µ1)/∂µ1)−1, . . . , (∂g1(µn)/∂µn)−1}, a = (a1, . . . , an)>,

ai = (1− z∗i )
[
− 1

2φi
+ 1

2φ2
i

d(yi;µi)
]
, i = 1, . . . , n,

d(y;µ) is defined in Equation (1.7), T2 = diag{(∂g2(φ1)/∂φ1)−1, . . . , (∂g2(φn)/∂φn)−1}
and f ∗ = (f ∗1 , . . . , f ∗n}, f ∗i = φ−1

i ui(yi − µi), where

ui = (1− z∗i )
µi(1− µi)

[
d(yi;µi) + 1

µ2
i (1− µi)2

]
, i = 1, . . . , n.

3.3.2.3 ZOABR-SPAM

Let ϕ>(m) = (β̂>(m), γ̂
>(m)
1 , . . . , γ̂

>(m)
k , κ̂>(m), α̂(m)) be the estimate of ϕ in the

m-th iteration. The conditional expectation with respect to v conditional on y, of Equation
(3.12) is given by

Q(ϕ|ϕ̂(m)) = E[lc2p(ϕ)|y, z∗, ϕ̂(m)] =
n∑
i=1
{(1− z∗i ){v̂

(m)
i log εi + (1− v̂(m)

i ) log(1− εi)

+ (1− v̂(m)
i )[log(Γ(φi))− log(Γ(δiφi))− log(Γ((1− δi)φi))

+ (δiφi − 1) log yi + ((1− δi)φi − 1) log(1− yi)]}} −
k∑
j=1

λj
2 γ

>
j Λd

jγj

=
n∑
i=1

Qi(ϕ|ϕ̂(m)),

(3.16)

where

v̂i = E(Vi|yi, z∗i , ϕ̂(m)) = P(Vi = 1|yi, z∗i , ϕ̂(m)) =
(

εi
εi + (1− εi)b(yi; δi, φi)

)1−z∗i
, (3.17)

εi = 1 −
√

1− 4αµi(1− µi), δi =
µi − 1

2 + 1
2

√
1− 4αµi(1− µi)√

1− 4αµi(1− µi)
and b(yi; ., .) is given in

Equation (1.1).

The penalized gradient vector, U̇ϕ
p (θ) is, the, given by

U̇ϕ
p (θ) = ∂Q(ϕ|ϕ(m))

∂ϕ
=
(
U̇β
p (θ)>, U̇γ1

p (θ)>, . . . , U̇γk
p (θ)>, U̇κ

p (θ)>, U̇α
p (θ)

)>
,
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where

U̇β
p (θ) = X>T1f

∗, U̇γj
p (θ) = B>j T1f

∗ − λjΛjγj,

U̇κ
p (θ) = E>T2a, U̇α

p (θ) = trace(D),
(3.18)

j = 1, . . . , k, where T1 = diag{(∂g1(µ1)/∂µ1)−1, . . . , (∂g1(µn)/∂µn)−1}, a = (a1, . . . , an)>,
ai = (1−z∗i )(1−v̂i){δi(y∗i−δ∗i )+log(1−yi)−Ψ[(1−δi)φi]+Ψ(φi)}, δ∗i = Ψ(δiφi)−Ψ[(1−δi)φi]
and y∗i = log[yi/(1− yi)], for i = 1, . . . , n. Also, f ∗ = (f ∗1 , . . . , f ∗n)>,

f ∗i = (1− z∗i )
{

2α(1− 2µi)
1− εi

[
v̂i
εi
− (1− v̂i)

(1− εi)

]

+ (1− v̂i)(1− α) φi
(1− εi)3 (y∗i − δ∗i )

}
,

D = diag{d1, . . . , dn},

di = (1− z∗i )
{

2µi(1− µi)
(1− εi)

[
v̂i
εi
− (1− v̂i)

(1− εi)

]
− (1− v̂i)

[
φiµi(1− µi)(1− 2µi)

(1− εi)3

]
(y∗i − δ∗i )

}
,

and T2 = diag{(∂g2(φ1)/∂φ1)−1, . . . , (∂g2(φn)/∂φn)−1}. The related demonstration can be
found in Appendix A.3.1.

3.4 Penalized Hessian and Fisher information matrices

3.4.1 Penalized Fisher information matrix for discrete part

In order to obtain the Fisher information matrix for ϑ = (ρ>, τ>)>, (related
to the discrete part) we first obtain the second derivatives of l1(ϑ), that is

Üϑϑ
p (θ) = ∂2l1(ϑ)

∂ϑ∂ϑ>
=
 Üρρ

p (θ) Kρτ
p (θ)

Ü τρ
p (θ) Ü ττ

p (θ)

 , (3.19)

where Üρτ
p (θ) = Ü τρ

p (θ)>. The respective elements are given by

Üρρ
p (θ) = ∂2l1(ϑ)

∂ρ∂ρ>
= −F>D∗1F , Ü ττ

p (θ) = ∂2l1(ϑ)
∂τ∂τ>

= −M>D∗2M ,

Üρτ
p (θ) = ∂2l1(ϑ)

∂ρ∂τ>
= −F>D∗3M ,

where D∗1 = diag{d∗11, . . . , d
∗
1n}, D∗2 = diag{d∗21, . . . , d

∗
2n} and D∗3 = diag{d∗31, . . . , d

∗
3n},

where, respectively, d∗1i = p0i(1 − p0i), d∗2i = p1i(1 − p1i), d∗3i = −p0ip1i, for i = 1, . . . , n.
The, the Fisher information matrix is given by

Kϑϑ
p (θ) = E

[
−∂

2l1(ϑ)
∂ϑ∂ϑ>

]
=
 Kρρ

p (θ) Kρτ
p (θ)

Kτρ
p (θ) Kττ

p (θ)

 , (3.20)
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where Kρτ
p (θ) = Kτρ

p (θ)>. The respective elements are given below (see Appendix A.4.2
for the related demonstrations).

Kρρ
p (θ) = E

[
−∂

2l1(ϑ)
∂ρ∂ρ>

]
= F>D∗1F , Kττ

p (θ) = E
[
−∂

2l1(ϑ)
∂τ∂τ>

]
= M>D∗2M ,

Kρτ
p (θ) = E

[
−∂

2l1(ϑ)
∂ρ∂τ>

]
= F>D∗3M .

3.4.2 Penalized Hessian and Fisher information matrices for the continuous
part

The general form for the respective Hessian matrix for the ZOAB-SPAM and
ZOAS-SPAM,

Üϕϕ
p (θ) = ∂2l2p(ϕ,λ)

∂ϕ∂ϕ>
=



Üββ
p (θ) Üβγ1

p (θ) . . . Üβγk
p (θ) Üβκ

p (θ)
Üγ1β
p (θ) Üγ1γ1

p (θ) . . . Üγ1γk
p (θ) Üγ1κ

p (θ)
... ... . . . ... ...

Üγkβ
p (θ) Üγkγ1

p (θ) . . . Üγkγk
p (θ) Üγkκ

p (θ)
Üκβ
p (θ) Üκγ1

p (θ) . . . Üκγk
p (θ) Üκκ

p (θ)


, (3.21)

where Üβγj
p (θ) = Üγjβ

p (θ)>, Üβκ
p (θ) = Üκβ

p (θ)>, Üγjκ
p (θ) = Üκγj

p (θ)> and Üγjγj′
p (θ) =

Ü
γj′γj
p (θ)>, for j = 1, . . . , k. On the other hand, the respective Hessian matrix for the

ZOABR-SPAM, is given by

Üϕϕ
p (θ) = ∂2Q(ϕ|ϕ̂(m))

∂ϕ∂ϕ>
=



Üββ
p (θ) Üβγ1

p (θ) . . . Üβγk
p (θ) Üβκ

p (θ) Üβα
p (θ)

Üγ1β
p (θ) Üγ1γ1

p (θ) . . . Üγ1γk
p (θ) Üγ1κ

p (θ) Üγ1α
p (θ)

... ... . . . ... ...
Üγkβ
p (θ) Üγkγ1

p (θ) . . . Üγkγk
p (θ) Üγkκ

p (θ) Üγkα
p (θ)

Üκβ
p (θ) Üκγ1

p (θ) . . . Üκγk
p (θ) Üκκ

p (θ) Üκα
p (θ)

Üαβ
p (θ) Üαγ1

p (θ) . . . Üαγk
p (θ) Üακ

p (θ) Üαα
p (θ)


,

(3.22)

where Üβγj
p (θ) = Üγjβ

p (θ)>, Üβκ
p (θ) = Üκβ

p (θ)>, Üγjκ
p (θ) = Üκγj

p (θ)>, Üγjγj′
p (θ) =

Ü
γj′γj
p (θ)>, Üβα

p (θ) = Üαβ
p (θ)>, Üγjα

p (θ) = Üαγj
p (θ)> and Üκα

p (θ) = Üακ
p (θ)> for j =

1, . . . , k.

Then, the respective Fisher information matrix for the ZOAB-SPAM and
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ZOAS-SPAM is given by

Kϕϕ
p (θ) = E

[
−∂

2l2p(ϕ,λ)
∂ϕ∂ϕ>

]
=



Kββ
p (θ) Kβγ1

p (θ) . . . Kβγk
p (θ) Kβκ

p (θ)
Kγ1β

p (θ) Kγ1γ1
p (θ) . . . Kγ1γk

p (θ) Kγ1κ
p (θ)

... ... . . . ... ...
Kγkβ

p (θ) Kγkγ1
p (θ) . . . Kγkγk

p (θ) Kγkκ
p (θ)

Kκβ
p (θ) Kκγ1

p (θ) . . . Kκγk
p (θ) Kκκ

p (θ)


,

(3.23)

whereKβγj
p (θ) = Kγjβ

p (θ)>,Kβκ
p (θ) = Kκβ

p (θ)>,Kγjγj′
p (θ) = K

γj′γj
p (θ)> andKγjκ

p (θ) =
Kκγj

p (θ)>, for j = 1, . . . , k.

3.4.2.1 ZOAB-SPAM

The elements of the Hessian matrix (Equation (3.21)), are given by,

Üββ
p (θ) = ∂2l2p(ϕ,λ)

∂β∂β>
= −X>Q†X, Üβγj

p (θ) = ∂2l2p(ϕ,λ)
∂β∂γ>j

= −X>Q†Bj,

Üκκ
p (θ) = ∂2l2p(ϕ,λ)

∂κ∂κ>
= −E>S†E, Üβκ

p (θ) = ∂2l2p(ϕ,λ)
∂β∂κ>

= −X>Q††E,

Üγjκ
p (θ) = ∂2l2p(ϕ,λ)

∂γj∂κ>
= −B>j Q††E, Ü

γjγj′
p (θ) = ∂2l2p(ϕ,λ)

∂γj∂γ>j′
= −B>j Q†Bj′ ,

Üγjγj
p (θ) = ∂2l2p(ϕ,λ)

∂γj∂γ>j
= −B>j Q†Bj − λjΛj,

(3.24)

j = 1, . . . , k, Q† = K∗Q, where Q = diag{q1, . . . , qn},

qi = φi

φi{Ψ′(µiφi) + Ψ′((1− µi)φi)}+ (y∗i − µ∗i )
(
∂g1(µi)
∂µi

)−1 (
∂2g1(µi)
∂µ2

i

)
×
(
∂g1(µi)
∂µi

)−2

,

Q†† = K∗Q∗, Q∗ = diag{q∗1, . . . , q∗n},

q∗i = {φi[Ψ′(µiφi)µi −Ψ′((1− µi)φi)(1− µi)]− (y∗i − µ∗i )}
(
∂g1(µi)
∂µi

)−1 (
∂g2(φi)
∂φi

)−1

,

S† = K∗S, diag{s1, . . . , sn} and

si =
Ψ′(µiφi)µ2

i + Ψ′((1− µi)φi)(1− µi)2 −Ψ′(φi) + a∗i

(
∂g2(µi)
∂µi

)−1 (
∂2g2(µi)
∂µ2

i

)
×
(
∂g2(µi)
∂µi

)−2

.

Also, a∗i = µi(y∗i − µ∗i ) + log(1 − yi) − Ψ[(1 − µi)φi] + Ψ(φi), i = 1, . . . , n and K∗ =
diag{(1− z∗1), . . . , (1− z∗n)}.
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On the other hand, the elements of Fisher information, Equation (3.23), are
defined below

Kββ
p (θ) = E

[
−∂

2l2p(ϕ,λ)
∂β∂β>

]
= X>W †X, Kβγj

p (θ) = E
[
−∂

2l2p(ϕ,λ)
∂β∂γ>j

]
= X>W †Bj,

Kκκ
p (θ) = E

[
−∂

2l2p(ϕ,λ)
∂κ∂κ>

]
= E>P †E, Kβκ

p (θ) = E
[
−∂

2l2p(ϕ,λ)
∂β∂κ>

]
= X>W ††E,

Kγjκ
p (θ) = E

[
−∂

2l2p(ϕ,λ)
∂γj∂κ>

]
= B>j W

††E, K
γjγj′
p (θ) = E

[
−∂

2l2p(ϕ,λ)
∂γj∂γ>j′

]
= B>j W

†Bj′ ,

Kγjγj
p (θ) = E

[
−∂

2l2p(ϕ,λ)
∂γj∂γ>j

]
= B>j W

†Bj + λjΛj,

(3.25)

j = 1, . . . , k, W † = K∗W , W = diag{w1, . . . , wn} and

wi = φ2
i [Ψ′(µiφi) + Ψ′((1− µi)φi)]

(
∂g1(µi)
∂µi

)−2

.

Also, P † = K∗P , P = (p1, . . . , pn)>,

pi =
[
Ψ′(µiφi)µ2

i + Ψ′((1− µi)φi)(1− µi)2 −Ψ′(φi)
] (∂g2(µi)

∂µi

)−2

.

W †† = W ∗K∗, where W ∗ = diag{w∗1, . . . , w∗n}, and

w∗i = {φi[Ψ′(µiφi)µi −Ψ′((1− µi)φi)(1− µi)]}
(
∂g1(µi)
∂µi

)−1 (
∂g2(φi)
∂φi

)−1

,

i = 1, . . . , n.

3.4.2.2 ZOAS-SPAM

The elements of the Hessian matrix, Equation (3.21), are defined below.

Üββ
p (θ) = ∂2l2p(ϕ,λ)

∂β∂β>
= −X>QX, Üβγj

p (θ) = ∂2l2p(ϕ,λ)
∂β∂γ>j

= −X>QBj,

Üκκ
p (θ) = ∂2l2p(ϕ,λ)

∂κ∂κ>
= −E>S†E, Üβκ

p (θ) = ∂2l2p(ϕ,λ)
∂β∂κ>

= −X>Q∗E,

Üγjκ
p (θ) = ∂2l2p(ϕ,λ)

∂γj∂κ>
= −B>j Q∗E, Ü

γjγj′
p (θ) = ∂2l2p(ϕ,λ)

∂γj∂γ>j′
= −B>j QBj′ ,

Üγjγj
p (θ) = ∂2l2p(ϕ,λ)

∂γj∂γ>j
= −B>j QBj − λjΛj,

(3.26)

j = 1, . . . , k, Q∗ = (q∗1, . . . , q∗n)>,

q∗i = [(1/φ2
i )ui(yi − µi)]

(
∂g1(µi)
∂µi

)−1 (
∂g2(φi)
∂φi

)−1

,
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ui is defined in Equation (3.15), S† = K∗S, S = diag{s1, . . . , sn},

si =
[

1
2φ2

i

− 1
φ3
i

d(yi;µi) + ai(1− z∗i )−1
(
∂2g2(φi)
∂φ2

i

)(
∂g2(φi)
∂φi

)−1 ]

×
(
∂g2(φi)
∂φi

)−2

, i = 1, . . . , n,

d(y;µ) is defined in Equation (1.7) and ai is defined in Equation (3.15). Also, Q =
diag{q1, . . . , qn},

qi = 1
φi

{
ui + (1− z∗i )(yi − µi)

[
2(yi − µi)ui
µi(1− µi)

+ 3(1− 2µi)
µ4
i (1− µi)4 + (1− 2µi)d(yi;µi)

µ2
i (1− µi)2

]

+ ui(yi − µi)
(
∂2g1(µi)
∂µ2

i

)(
∂g1(µi)
∂µi

)−1 }(
∂g1(µi)
∂µi

)−2

,

and K∗ = diag{(1− z∗1), . . . , (1− z∗n)}.

The respective elements of the Fisher information, Equation (3.23), are given
by

Kββ
p (θ) = E

[
−∂

2l2p(ϕ,λ)
∂β∂β>

]
= X>W †X, Kβγj

p (θ) = E
[
−∂

2l2p(ϕ,λ)
∂β∂γ>j

]
= X>W †Bj,

Kκκ
p (θ) = E

[
−∂

2l2p(ϕ,λ)
∂κ∂κ>

]
= E>P †E, K

γjγj′
p (θ) = E

[
−∂

2l2p(ϕ,λ)
∂γj∂γ>j′

]
= B>j W

†Bj′ ,

Kγjφ
p (θ) = E

[
−∂

2l2p(ϕ,λ)
∂γj∂φ

]
= 0, Kβφ

p (θ) = E
[
−∂

2l2p(ϕ,λ)
∂β∂φ

]
= 0,

Kγjγj
p (θ) = E

[
−∂

2l2p(ϕ,λ)
∂γj∂γ>j

]
= B>j W

†Bj + λjΛj,

(3.27)

j = 1, . . . , k, P † = K∗P , P = diag{p1, . . . , pn}, pi = 1/(2φ2
i ), i = 1, . . . , n, W † = K∗W ,

W = diag{w1, . . . , wn}, and

wi = 1
φi

[
3φi

µi(1− µi)
+ 1
µ3
i (1− µi)3

](
∂g(µi)
∂µi

)−2

, i = 1, . . . , n.

3.4.2.3 ZOABR-SPAM

The elements of the diagonal of the Hessian matrix (Equation (2.15)) are
defined below.

Üββ
p (θ) = ∂2Q(ϕ|ϕ̂(m))

∂β∂β>
= X>R†X, Üγjγj

p (θ) = ∂2Q(ϕ|ϕ̂(m))
∂γj∂γ>j

= B>j R
†Bj − λjΛj,

Üκκ
p (θ) = ∂2Q(ϕ|ϕ̂(m))

∂κ∂κ>
= E>S†E,

Üαα
p (θ) = ∂2Q(ϕ|ϕ̂(m))

∂α2 = −trace(J †),

(3.28)
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j = 1, . . . , k, R† = K∗R, R = diag{r1, . . . , rn},

ri =
{[

4α2(1− 2µi)2

(1− εi)2

] [
− v̂i
ε2
i

− (1− v̂i)
(1− εi)2

]
+
[
v̂i
εi
− (1− v̂i)

(1− εi)

] [
− 4α

(1− εi)
+ 4α2(1− 2µi)2

(1− εi)3

]

+ (1− α)(1− v̂i)
[
−(1− α)φ2

i

(1− εi)6 w∗i + 6αφi(1− 2µi)
(1− εi)5 (y∗i − δ∗i )

]
− (1− z∗i )−1f ∗i

(
∂g1(µi)
∂µi

)−1

×
(
∂2g1(µi)
∂µ2

i

)}(
∂g1(µi)
∂µi

)−2

, i = 1, . . . , n,

f ∗i is defined in Equation (2.13) and w∗i = Ψ′(δiφi) + Ψ′((1 − δi)φi). Also, S† = K∗S,
S = diag{s1, . . . , sn},

si =
[
−(1− v̂i)[(1− δi)2Ψ′((1− δi)φi) + δ2Ψ′(δiφi)−Ψ′(φi)]

− (1− z∗i )−1ai

(
∂g2(φi)
∂φi

)−1 (
∂2g2(φi)
∂φ2

i

)](
∂g2(φi)
∂φi

)−2

,

and ai is defined in Equation (2.13), for i = 1, . . . , n. In addition, J † = K∗J ,J =
diag{j1, . . . , jn},

ji =
{[

4µ2
i (1− µi)2

(1− εi)2

] [
− v̂i
ε2
i

− (1− v̂i)
(1− εi)2

]
+
[
v̂i
εi
− (1− v̂i)

(1− εi)

] [
4µ2

i (1− µi)2

(1− εi)3

]

− (1− v̂i)
[
φµ2

i (1− µi)2(1− 2µi)2

(1− εi)5

] [
φi(1− 2µi)

(1− εi)
w∗i − 6(y∗i − δ∗i )

]}
, i = 1, . . . , n,

and K∗ = diag{(1− z∗1), . . . , (1− z∗n)}.

The elements outside the main diagonal of the Hessian matrix (Equation (2.15))
are given by

Üβκ
p (θ) = ∂2Q(ϕ|ϕ̂(m))

∂β∂κ>
= −X>R††E, Üγjκ

p (θ) = ∂2Q(ϕ|ϕ̂(m))
∂γj∂κ>

= −B>j R††E,

Ü
γjγj′
p (θ) = ∂2Q(ϕ|ϕ̂(m))

∂γj∂γ>j′
= B>j R

†Bj′ , Üβγj
p (θ) = ∂2Q(ϕ|ϕ̂(m))

∂β∂γ>j
= X>R†Bj,

Üβα
p (θ) = ∂2Q(ϕ|ϕ̂(m))

∂β∂α
= X>T1s

†, Üγjα
p (θ) = ∂2Q(ϕ|ϕ̂(m))

∂γj∂α
= B>j T1s

†,

Üκα
p (θ) = ∂2Q(ϕ|ϕ̂(m))

∂κ∂α
= E>T2c

†,

(3.29)

T1 = diag{(∂g1(µ1)/∂µ1)−1, . . . , (∂g1(µn)/∂µn)−1}, R†† = K∗R∗, R∗ = diag{r∗1,
. . . , r∗n} and

r∗i = −(1− v̂i)
{

(1− α)
(1− εi)3 [φi(δiw∗i −Ψ′((1− δi)φi))− (y∗i − δ∗i )]

}

×
(
∂g2(φi)
∂φi

)−1 (
∂g1(µi)
∂µi

)−1

.
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Also, T2 = diag{(∂g2(φ1)/∂φ1)−1, . . . , (∂g2(φn)/∂φn)−1}, s† = K∗s∗, s∗ = (s∗1, . . . , s∗n)>,

s∗i =
{[

4αµi(1− µi)(1− 2δi)
(1− εi)2

] [
− v̂i
ε2
i

− (1− v̂i)
(1− εi)2

]

+
[
v̂i
εi
− (1− v̂i)

(1− εi)

]{
2(1− 2µi)

[
1

(1− εi)
+ 2αµi(1− µi)

(1− εi)3

]}

+ (1− v̂i)
{[

(1− α)φ2
iµi(1− µi)(1− 2µi)

(1− εi)6 w∗i

]
+ (y∗i − δ∗i )

×
{
−φ

[
1

(1− εi)4 −
6(1− α)µi(1− µi)

(1− εi)6

]}}}
i = 1, . . . , n,

c† = K∗c∗, c∗ = (c∗1, . . . , c∗n)>, and

c∗i = (1− v̂i)
{[
µi(1− µi)(1− 2µi)

(1− εi)3

]
[φi(δiw∗i −Ψ′((1− δi)φi))− (y∗i − δ∗i )]

}
,

for i = 1, . . . , n.

3.5 Parameter estimation
Here we present the estimation process for the three models, separated for each

part (discrete and continuous), provided that the likelihood is separable, as shown before.

3.5.1 Parameter estimation of discrete part

The maximum likelihood estimates of ρ and τ is obtained by solving U̇ρ
p =

U̇ τ
p = 0. Since such equations do not have analytical solution, some numerical method

should be employed. We adopt the Fisher scoring algorithm, that is

ϑ(u+1) = ϑ(u) + (Kϑϑ
p )−1U̇ϑ

p

∣∣∣
ϑ(u)

,

u = 0, 1, 2, ... where U̇ϑ
p and Kϑϑ

p are described in Equations (3.14) and (3.20), respec-
tively. These steps are repeated while ||ϕ(u+1) − ϕ(u)|| ≥ ε, ε > 0. As done in Silva
et al. (2020), the function gamlss of R package gamlss (see (Rigby and Stasinopoulos,
2005)) is used to obtain the starting values. Specifically, we use the following sintax:
fit=gamlss(y∼(-1+X),sigma.formula=(-1+E),nu.formula=(-1+F), tau.formula=
(-1+M), family=BEINF)

3.5.2 Parameter estimation of continuous part

ZOAB-SPAM and ZOAS-SPAM

Similarly to the approach presented in Section 2.5, for estimating β and
γj, j = 1, . . . , k, we apply a combination of the Fisher scoring with the backfitting



Chapter 3. SPAM for independent and augmented data 79

(Gauss–Seidel) (Breiman and Friedman, 1985) algorithms. This combined algorithm is
given by

β(u+1) = (X>W †(u)X)−1X>W †(u)
[
z∗∗(u) −

k∑
i=1
Bjγ

(u)
j

]
(3.30a)

γ
(u+1)
j = (B>j W †(u)Bj + λjΛj)−1B>j W

†(u)

z∗∗(u) −Xβ(u+1) −
∑
j∗ 6=j

Bj∗γ
(u+1)
j∗

 ,
(3.30b)

u = 0, 1, 2, . . . , j = 1, . . . , k, where, z∗∗ = Xβ +
k∑
j=1
Bjγj + (W †(u))−1T1f

∗. On the other

hand, the PMLE of κ, says κ̂, can be obtained, following Ibacache-Pulgar and Reyes
(2017), that is, using the Fisher scoring algorithm. Then, given β(u+1),γ

(u+1)
1 , . . . ,γ

(u+1)
k ,

the (u+ 1)-th step of this algorithm, is given by

κ(u+1) = κ(u) − (Kκκ
p )−1U̇κ

p

∣∣∣
(β(u+1),γ

(u+1)
1 ,...,γ

(u+1)
k

,κ(u))
. (3.31)

Then, the whole estimation process is presented below

(i) To choose suitable starting values, say β(0),γ
(0)
1 ,γ

(0)
2 , . . . ,γ

(0)
k and κ(0);

(ii) To obtain β(u+1) and γ(u+1)
j , j = 1, . . . , k using the backfitting iterations (Equa-

tions (3.30a) and (3.30b)), considering κ(u);

(iii) Given current values, say β(u+1),γ
(u+1)
1 ,γ

(u+1)
2 , . . . ,γ

(u+1)
k , to obtain κ(u+1) by using

Equation (3.31);

(iv) Iterating between (ii) and (iii) until reach some convergence criterion, that is until
||θ(u+1) − θ(u)|| > ε, ε > 0.

ZOABR-SPAM

Similarly to the developments presented in Section 2.5 the EM algorithm will be
employed. That is, we seek to maximize Q(ϕ|ϕ(m)), regarding ϕ = (β>,γ>1 , . . . ,γ>k , α>)>.
Since the M-step has no analytical solution, some numerical method should be used. The
respective details can be found in Section 2.5 for the BR-SPAM as well as the obtaining
the necessary initial values. The summary of this estimation process is given by:

(i) To choose suitable starting values, say β(0),γ
(0)
1 ,γ

(0)
2 , . . . ,γ

(0)
k ,κ(0) and α(0);

(ii) To compute v̂ (E step in Equation (3.17));

(iii) Use some optimization algorithm to maximize Q(ϕ|ϕ(u)) in relation to γ(u) to find
γ

(u+1)
j , j = 1, . . . , k;
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(iv) For current values γ(u+1)
j , j = 1, . . . , k, to obtain β(u+1), κ(u+1) and α(u+1) by using

some optimization algorithm to maximize Q(ϕ|ϕ(u)) concerning these parameters;

(v) Iterating among (ii), (iii) and (iv) until reach some convergence criterion, that is
until ||θ(u+1) − θ(u)|| > ε, ε > 0.

3.6 Effective degrees of freedom
In additive linear models, the degrees of freedom correspond to approximately

the number of effective parameters related to the non-parametric components. Then,
following Hastie and Tibshirani (1990) and Eilers and Marx (1996) the effective de-
grees of freedom corresponding to the j-th non-parametric component is given by:
dfγj

= trace{B>j Ŵ †Bj(B>j Ŵ †Bj + λjΛj)−1}, for the ZOAB-SPAM and the ZOAS-
SPAM, whereas, for the ZOABR-SPAM, it is given by: dfγj

= trace{B>j R̂†Bj(B>j R̂†Bj +
λjΛj)−1},∀j = 1, . . . , k (for more details about the development for the degrees of freedom
of the ZOABR-SPAM, see Appendix A.5). In this case, the total effective degrees of

freedom are approximately given by df(λ) ∼= p+
k∑
j=1

dfγj
(λ).

3.7 Model selection criteria
The Information Criteria will are those presented in Section 2.7, that is: AIC,

BIC, AICc, HQIC and SABIC. Since, for the augmented models, the degrees of freedom
are different from those for the non-agumented models, the quantity s∗ must be be replaced
by s∗∗ = s∗ + s0 + s1 and lp(θ̂,λ) is given in Equation (3.10).

3.8 Estimation of smoother parameters
We can consider the generalized cross-validation method (see Wahba and Wold

(1975) and Wood (2017), for example). Then, for the ZOAB-SPAM and ZOAS-SPAM, λ
is chosen such

λ̂ = argminλGCV(λ) = argminλ
n∑
i=1

ŵ†i (ẑ∗∗i − x>i β̂)2

[1− n−1trace{Ĥ(λ)}]2
,

where w†i is the i-th component of the diagonal of the respective Fisher information, z∗∗i
is the i-th component of the vector z∗∗ = Xβ +

k∑
j=1
Bjγj + (W †(u))−1T1f

∗ and, for the

ZOABR-SPAM,

λ̂ = argminλGCV(λ) = argminλ
n∑
i=1

r̂†i (ẑi − x>i β̂)2

[1− n−1trace{Ĥ(λ)}]2
,
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where r†i is the i-th component of the diagonal of the respective Hessian matrix, and z∗∗i
is the i-th component of the vector z∗∗ = Xβ +

k∑
j=1
Bjγj − (R†)−1T1f

∗ and H(λ) is

defined as H(λ) = N ∗
[
N ∗>ẆN ∗ −Λ(λ)

]−1
N ∗>Ẇ , where Λ(λ) = ⊕nj=1λjΛd

j , N ∗ξ =
[X,B1, . . . ,Bk]ξ, ξ = (β>,γ>)>, γ = (γ>1 , . . . ,γ>k )> and Ẇ is the respective Fisher
information for ZOAS-SPAM and ZOAB-SPAM, whereas, for ZOABR-SPAM is the
respective Hessian matrix.

Another possibility is to select λ through Information Criteria, which was
described in Section 3.7, for example doing λ̂ = argminλAIC.

3.9 Obtaining the standard errors

ZOAB-SPAM and ZOAS-SPAM

The respective variance-covariance matrices for the discrete part (Cov(ϑ̂)) and
continuous part (Cov(ϕ̂)) are obtained from Kϑϑ

p (θ) and Kϕϕ
p (θ), respectively. The are

defined, respectively, by Equations (3.20) and (3.23).

ZOABR-SPAM

For the discrete part, the variance-covariance matrix are obtained from the
Fisher information matrix (Kϑϑ

p (θ)) given in Equation (3.23).

For the parameters related to the continuous part, the EM algorithm is used to
estimate the parameters. Then, we considered the empirical information matrix to obtain
the standard errors, which is given (see the related discussion in Section

Ie(θ|y) =
n∑
i=1
s(yi|θ)s(yi|θ)>,

where s(yi|ϕ), i = 1, . . . , n is the score function for the i-th observation, which can be
calculated as:

s(yi|ϕ) = E
[
∂lc2p(ϕ; yi, z∗i , vi)

∂ϕ
|yi, z∗i ,ϕ

]
,

where lc2p(ϕ|yi, z∗i , vi) is the penalized complete log-likelihood related with the continuous
part of the model given in Equation (3.12) and

s(yi|θ) = (sβ(yi|θ), sγ1(yi|θ), . . . , sγk
(yi|θ), sκ(yi|θ), sα(yi|θ))> ,
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where

sβ(yi|θ) = (1− ẑ∗i )
{

2α(1− 2µi)
1− εi

[
v̂i
εi
− (1− v̂i)

(1− εi)

]

+ (1− v̂i)(1− α) φi
(1− εi)3 (y∗i − δ∗i )

}(
∂g1(µi)
∂µi

)−1

xi, (3.32a)

sγj
(yi|θ) = (1− ẑ∗i )

{
2α(1− 2µi)

1− εi

[
v̂i
εi
− (1− v̂i)

(1− εi)

]

+ (1− v̂i)(1− α) φi
(1− εi)3 (y∗i − δ∗i )

}(
∂g1(µi)
∂µi

)−1

bij

− λjΛjγj, (3.32b)
sκ(yi|θ) = (1− ẑ∗i )(1− v̂i){δi(y∗i − δ∗i ) + log(1− yi)

−Ψ[(1− δi)φi] + Ψ(φi)}
(
∂g2(φi)
∂φi

)−1

ei, (3.32c)

sα(yi|θ) = (1− ẑ∗i )
{

2µi(1− µi)
(1− εi)

[
v̂i
εi
− (1− v̂i)

(1− εi)

]
−
[
φiµi(1− µi)(1− 2µi)

(1− εi)3

]
(y∗i − δ∗i )

}
,

(3.32d)

where j = 1, . . . , k and v̂i is defined ind Equation (3.17). Thus, the empirical information
matrix can be calculated using Equations (3.32a) to (3.32d). Finally, Cov(θ̂) and SE(θ̂)
are estimated by (Ie(θ̂|y))−1 and diag{(Ie(θ̂|y))−1/2}, respectively.

3.10 Hypothesis testing
As in the Section 2.10, for testing the significance linear statistical hypothesis

Cς = d, where rank(C) = l, l ≥ p or l ≥ q, it can be used the Wald-type statistic, that is,

ξW = (Cς̂ − d)>(CVςC>)−1(Cς̂ − d),

Under H0, ξW D−→
n→∞

χ2
l , where

D−→
n→∞

means convergence in distribution when the sample
size tends to infinity and, besides that, ς can be either β, κ, ρ and τ , Vς is the matrix of
variance-covariance regards to ς extract from Ĉov(ϑ̂) or Ĉov(ϕ̂).

3.11 Model fit diagnostic tools
As done in Section 2.11, several model fit diagnostic tools are developed/adapted

for the proposed model class. Specifically, we consider: residual analysis, based on the
randomized quantile residual and local influence analysis, considering the likelihood-
displacement and Q-displacement.
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3.11.0.1 Residual analysis

Residual analysis is important the check the validity of the underlying as-
sumptions of models. The more complex the model the more sensitivity to the depart
of such assumptions. Since the the response distribution presents a mixture structure,
between a discrete and a continuous distributions, we considered the randomized quantile
residual (RQR), introduced by Dunn and Smyth (1996). Following Silva et al. (2020),
the RQR for our model class is given by ri = Φ(Gi), i = 1, . . . , n, where Φ(.) denotes the
cumulative distribution function of the standard Normal distribution, Gi ∼ U((ai, bi]),
where ai = lim

y↑yi

F (y; υ̂, %̂, µ̂, φ̂), bi = F (yi; υ̂, %̂, µ̂, φ̂), where %̂ = p̂1i/υ̂ and υ̂ = p̂0i + p̂1i and

F (y; υ, %, µ, φ) = υ Bernoulli(y; %) + (1− υ)
∫ y

0
f(z;$)dz,

where Bernoulli(y; %) is the cdf of a Bernoulli with parameter % and f(z;$) is the density
of the beta, simplex and BR distributions for the models ZOAB/ZOAS/ZOABR SPAM,
respectively. Then, we have that Silva et al. (2020), Gi ∼ U(0, υ̂(1 − %̂)] if yi = 0,
Gi ∼ U(1− υ̂%̂, 1] if yi = 1 and Gi = F (Yi; υ̂, %̂, µ̂, φ̂) if yi ∈ (0, 1). The authors mention
that since the response variable is no longer continuous, it is necessary simulate several sets
of values for ri. That is, the quantile residuals will vary from one realization to another, for
a given result from a model fitted to a given data set. Thus, in practice, it is important to
simulate four sets of values for the quantile residuals and any pattern that is not consistent
across these sets is then ignored, see Dunn and Smyth (1996) for more details.

Provided that the model is well fitted to the data and that the estimators are
consistent, the residuals converge to standard normal distribution. Then, plots of the
residuals against the index and/or the fitted values as well as quantile-quantile plot using
the theoretical N(0,1) quantiles are useful for checking the behavior of the residuals.

3.11.1 Local Influence

Again, we follow the work of Silva et al. (2020). Thus, for the ZOAB-SPAM
and ZOAS-SPAM, even though the developments (see Cook (1986)) are the same for the
parameters related to both discrete and continuous parts Cook (1986), they are made
separated from each other. For the discrete part of the ZOABR-SPAM, the method is
that used for the two other models. However, for the continuous part, we considered the
approach proposed by Zhu and Lee (2001) since the estimation process were done by using
the EM algorithm, separated from the discrete part.

3.11.1.1 Local influence for discrete part for all models

The likelihood displacement for discrete part of the models is defined by
LD(ω) = 2[l1(ϑ̂) − l1(ϑ̂ω)] ≥ 0 can be used to asses the influence of perturbations on
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MPLE estimates ϑ̂, where ϑ̂ω is the MPLE estimates of ϑ for a perturbed model, whose
perturbed penalized log-likelihood function is denoted by l1(θ|ω), and ω = (ω1, . . . , ωn)>

is an n-dimensional vector of perturbations restricted to some open subset Ω ∈ Rn. For
comparison, it is assumed that exists ω0 ∈ Ω, a vector of no perturbation, such that
l1(ϑ|ω0) = l1(ϑ)

We have that lmax denotes the corresponding eigenvector of the highest eigen-
value of the matrix Z = ∆>[−Ü θθ

p (θ)]−1∆, where −Ü θθ
p (θ) is the observed Fisher

information matrix, Ü θθ
p (θ) is defined in Equation (3.19) and

∆ = ∂2l1(ϑ|ω)
∂ϑ∂ω>

∣∣∣∣∣
ϑ=ϑ̂,ω=ω0

.

As discussed in Section 2.11.4, the index plot of |lmax| can reveal observations
with high influence in the neighborhood of the likelihood displacement, LD(ω0). Those
observations may be responsible for substantial changes in the estimates of parameters,
under little perturbations in the model and in the data.

Case-weight perturbation

Let ω = (ω1, . . . , ωn)> be a perturbed vector. In this case, perturbed log-
likelihood function related only with discrete part is given by

l1(ϑ|ω) =
n∑
i=1

ωili(p0i, p1i),

with 0 ≤ ωi ≤ 1, i = 1, . . . , n. Hence, considering ω0 = (1, . . . , 1)>, the elements of the
penalized perturbation matrix are expressed as

∂2l1(ϑ|ω)
∂ρ∂ω>

∣∣∣∣∣
ϑ=ϑ̂,ω=ω0

= F>diag{z∗(1n − y)− p̂0},

∂2l1(ϑ|ω)
∂τ∂ω>

∣∣∣∣∣
ϑ=ϑ̂,ω=ω0

= M>diag{z∗y − p̂1},

where 1n is a n-vector of 1’s.

3.11.1.2 Local influence for continuous part

For the ZOAB-SPAM and ZOAS-SPAM we have that LD(ω) = 2[l2p(ϕ̂,λ)−
l2p(ϕ̂ω,λ)] ≥ 0 can be used to asses the influence of perturbations on MPLE estimates ϕ̂,
where ϕ̂ω is the MPLE estimates of ϕ for a perturbed model. The perturbed penalized
log-likelihood function is denoted by l2p(ϕ,λ|ω) and ω = (ω1, . . . , ωn)> is an n-dimensional
vector of perturbations restricted to some open subset Ω ∈ Rn.

For the ZOABR-SPAM we used the complete log-likelihood for parameter
estimation. Then, we can use lc2p(ϕ,ω|yc) as the complete log-likelihood of the perturbed
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model as well as the Q-displacement function defined by QD(ω) = 2[Q(ϕ̂|ϕ̂)−Q(ϕ̂ω|ϕ̂)].
Then, the influence of perturbations on MPLE estimates ϕ, where ϕ̂ω is the maximum of
Q(ϕ,ω|ϕ̂) = E[lc2p(ϕ|y, ϕ̂)], can be properly assessed.

The lmax denotes the corresponding eigenvector of the highest eigenvalue of
Z matrix, which is defined as Z = ∆>[−Ü θθ

p (θ)]−1∆, where −Ü θθ
p (θ) is the observed

Fisher information matrix, and Ü θθ
p (θ) is defined in the Equation (3.24) for ZOAB-SPAM,

in (3.26) for ZOAS-SPAM and in (3.22) for ZOABR-SPAM and for curvature based on
LD(ϕ) and for the one based on QD(ϕ), the ∆, are respectively define as:

∆ = ∂2lp(ϕ,λ|ω)
∂ϕ∂ω>

∣∣∣∣∣
ϕ=ϕ̂,ω=ω0

and ∆ = ∂Q(ϕ|ϕ̂)
∂ϕ∂ω>

∣∣∣∣∣
ϕ=ϕ̂,ω=ω0

.

As discussed in Section 2.11.4, the index plot of |lmax| can reveal those observa-
tions with greater influence in the neighborhood of the likelihood displacement, LD(ω0),
or the Q-displacement, QD(ω0). Those observations may be responsible for substantial
changes in the estimates of parameters under little perturbations in the model and in the
data.

Case-Weight perturbation

Let ω = (ω1, . . . , ωn)> be a perturbation vector. In this case, the perturbed

penalized log-likelihood is given by lp(θ,λ|ω) = l(θ|ω)−
k∑
j=1

λj
2 γ

>
j Λd

jγj , where lp(θ,λ|ω) =
n∑
i=1

ωili(θ), and 0 ≤ ωi ≤ 1. Hence, considering ω0 = (1, . . . , 1)>, the elements of ∆, for

both the ZOAS-SPAM and ZOAB-SPAM, are given by

∂2lp(θ,λ|ω)
∂β∂ω>

∣∣∣∣∣
θ=θ̂,ω=ω0

= X>T̂1diag{f̂ ∗},

∂2lp(θ,λ|ω)
∂γj∂ω>

∣∣∣∣∣
θ=θ̂,ω=ω0

= B>j T̂1diag{f̂ ∗}, j = 1, . . . , k,

∂2lp(θ,λ|ω)
∂κ∂ω>

∣∣∣∣∣
θ=θ̂,ω=ω0

= E>T̂2diag{â},

where a, T1, T2 and f ∗ are defined in Equation (3.14) for the ZOAB-SPAM and in
Equation (3.15) for the ZOAS-SPAM.

For the ZOABR-SPAM, the perturbed Q-function is given by Q(θ,ω|θ̂) =
n∑
i=1

ωiQi(θ|θ̂), where 0 ≤ ωi ≤ 1 and ω0 = (1, . . . , 1)>. Hence, the elements of the
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perturbation matrix are expressed as
∂2Q(θ,ω|θ̂)
∂β∂ω>

∣∣∣∣∣
θ=θ̂,ω=ω0

= X>T̂1diag{f̂ ∗},

∂2Q(θ,ω|θ̂)
∂γj∂ω>

∣∣∣∣∣
θ=θ̂,ω=ω0

= B>j T̂1diag{f̂ ∗}, j = 1, . . . , k,

∂2Q(θ,ω|θ̂)
∂κ∂ω>

∣∣∣∣∣
θ=θ̂,ω=ω0

= E>T̂2diag{p̂},

∂2Q(θ,ω|θ̂)
∂α∂ω>

∣∣∣∣∣
θ=θ̂,ω=ω0

= d̂∗,

where T , p and f ∗ are defined in Equation (3.16). Furthermore, d∗∗ = (1n − z∗)d∗, where
d∗ is defined in Equation (2.32).

3.12 Computational tools
All methods proposed in this work were implemented in the R program (R

Core Team, 2020). The parameter estimation for the ZOAB-SPAM and ZOAS-SPAM were
implemented within the R package gamlss (Stasinopoulos et al., 2007). The framework of
the gamlss accommodates the developed methodology for either models and estimation
process of them for these two models.

For the ZOABR-SPAM, the maximization process for continuous part was done
using the function optim of the software R, which uses the L-BFGS-B (Byrd et al., 1995)
algorithm, for the maximization of Q(θ|θ(m)) and the function nlminb (Gay, 1990) that
uses, which they call as optimization using PORT routines.

3.13 Simulation Studies
In this section, the results of four simulation studies are presented. Section

3.13.1 is related to the analysis of parameter recovery. In Section 3.13.2, we perform
a link misspecification study. In Section 3.13.3, we evaluate the response distribution
misspecification. Finally, in Section 3.13.4 is presented a study related to the performance
of the proposed quantile residuals and the local influence measures. The results for
the first study are presented in Appendix, whereas the others are available at https:
//github.com/aureaflg/Simulations-study.git, where we made reproducible codes
that also show plot and tables of interest.

3.13.1 Study 1: Parameter recovery

Here we considered several relevant scenarios defined by the combination of the
levels of some factors of interest. The factors (with the respective levels within parenthesis)

https://github.com/aureaflg/Simulations-study.git
https://github.com/aureaflg/Simulations-study.git
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are sample size (n) (50, 100, 500), regression model (ZOAB, ZOAS, ZOABR), link function
(probit, logit, cauchit, cloglog, loglog) and modeled parameters (mean and dispersion).
For each scenario, R = 300 replicates of Monte Carlo were generated. Each scenario are
described in Table 7.

Table 7 – Scenarios of simulation study 1

Regression model
(modelling mean and dispersion) n Link functions

ZOAB(µi, φi, p0i, p1i)
50
100

probit, logit, cauchit,

500

ZOAS(µi, φi, p0i, p1i)
50
100

cloglog and loglog.500

ZOABR(µi, φi, p0i, p1i, α)
50
100
500

Furthermore, the considered linear predictors and link functions for related
scenarios presented in Table 7, are given by log(p0i/(1−p0i−p1i)) = ρ0 +ρ1Fi, log(p1i/(1−
p0i− p1i)) = τ0 + τ1Mi, g(µi) = β1Xi + cos(Zi), log(φi) = κ0 +κ1Ei for i = 1, . . . , n, where
Xi

iid∼ uniform(0, 1), Ei iid∼ uniform(0, 1) and Zi
iid∼ uniform(0, 3π), Fi iid∼ uniform(0, 1),

Mi
iid∼ uniform(0, 1) and g(.) is either the probit, logit, cauchit, cloglog.

The actual parameter values considered are: loglog link (β1 = −1, κ0 = 1,
κ1 = 2, α = 0.7, ρ0 = τ0 = −1.8 and ρ1 = τ1 = 1.5) and other links (β1 = −1, κ0 = 2,
κ1 = −3, α = 0.7, ρ0 = τ0 = −1.8 and ρ1 = τ1 = 1.5). This change to the loglog link
function is justified by the fact that, depending on the parameters chosen, generating from
the models using this link function can generate values very close to one or zero, which
could compromise the fit of the models to the simulated data even for the BR-SPAM
model.

For all models, when n = 50, 40 knots were used and the smoothing parameter
was fixed at λ = 10, whereas, when n = 100 or n = 500, 50 knots were used and the
smoothing parameter was fixed at λ = 50. These values lead to a smooth fitted curve for
non-parametric component.

The related results are presented in Appendix B.1: from Figures 49 to 53 for
the ZOAB-SPAM, from Figures 54 to 58 for the ZOAS-SPAM, and, from Figures 59 to 63
for the ZOABR-SPAM.

In a general way, for the three models, all the parameters were properly recovered
and as the sample size increases, the estimates become more accurate. The estimated
curves are for all sample size representing the behavior of the curves, in general well. For
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n = 100 and n = 500 the non-parametric curves are more accurately estimated, i.e, there
is less variability around the real curve than for n = 50.

3.13.2 Study 2: Link function misspecification

In this section, we considered only the scenarios varying the regression models
(ZOAB, ZOAS, ZOABR) and the link functions (probit, logit, cauchit, cloglog,loglog).
We set the sample size in 500, modeling the mean and the dispersion. We generate only
one replica from each model, setting a distribution and a link function for it, and fit the
simulated data using a model with the same distribution but varying the link function,
using all the different ones from the one used to generate the simulated data. In Table 8
we present the 60 scenarios of interest.

Table 8 – Scenarios of simulation study 2

Distribution that will generate
and fit the simulated data Actual link function Link function considered in

fitted model
ZOAB(µi, φi, p0i, p1i), logit probit, cauchit, cloglog and loglog

ZOAS(µi, φi, p0i, p1i)
probit logit, cauchit, cloglog and loglog
cauchit logit, probit, cloglog and loglog

or ZOABR(µi, φi, p0i, p1i, α) cloglog logit, probit, cauchit and loglog
loglog logit, probit, cloglog and cauchit

The considered linear predictors and link functions for related scenarios, are
given by log(p0i/(1−p0i−p1i)) = ρ0+ρ1Fi, log(p1i/(1−p0i−p1i)) = τ0+τ1Mi, g(µi) = β1Xi+
cos(Zi), log(φi) = κ0 +κ1Ei for i = 1, . . . , n, where Xi

iid∼ uniform(0, 1), Ei iid∼ uniform(0, 1)
and Zi

iid∼ uniform(0, 3π), Fi iid∼ uniform(0, 1), Mi
iid∼ uniform(0, 1) and g(.) is either the

probit, logit, cauchit, cloglog.

The actual parameter values considered loglog link were β1 = 1, κ0 = 1, κ1 = 2,
α = 0.7, ρ0 = τ0 = −1.8 and ρ1 = τ1 = 1.5, whereas for the other cases were β1 = −1,
κ0 = 2, κ1 = −3, α = 0.7, ρ0 = τ0 = −1.8 and ρ1 = τ1 = 1.5. We considered both the
comparison of the observed and predicted values as well as the parameter recovery.

The ZOAB-SPAM and ZOABR-SPAM presented bad recovery of real mean
when the actual link function was symmetric and the model that fitted the simulated data
was using loglog and cloglog as link function, (both are asymmetric link) and the same
behaviour were seen for the recovery of regression parameters related with mean. While,
for parameters related with dispersion/precision, they were all well estimated, except in
the case that the generating model was using loglog as link function because only model
using loglog fitted well the parameters. For the ZOAS-SPAM, the results for the mean
were better than ZOAB-SPAM and ZOABR-SPAM, because for all link function that
generating and fitting, it was properly recovered. Furthermore, for ZOAS-SPAM, the
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parameter related with mean and for parameters related with dispersion/precision, they
were all well estimated.

3.13.3 Study 3: Response distribution misspecification

In this section we vary only the response distribution. We set the sample size
in 100 and link function as the logit one. We model only the mean and considered only
one (R = 1) replica. We simulate from a model setting a the response distribution and,
then, fit using all the others different distribution from the one which simulated the data.
In Table 9 we present the 6 scenarios of interest.

Table 9 – Scenarios of simulation study 3

Actual model
(n = 100) Fitted model

ZOAB(µi, φ, p0i, p1i)
ZOAS
ZOABR

ZOAS(µi, φ, p0i, p1i)
ZOAB
ZOABR

ZOABR(µi, φ, p0i, p1i, α) ZOAB
ZOAS

Furthermore, the related linear predictors and link functions to scenarios
presented in Table 9 are given by log(p0i/(1− p0i − p1i)) = ρ0 + ρ1Fi, log(p1i/(1− p0i −
p1i)) = τ0 + τ1Mi, g(µi) = β1Xi + cos(Zi) for i = 1, . . . , n, where Xi

iid∼ uniform(0, 1),
Ei

iid∼ uniform(0, 1) and Zi
iid∼ uniform(0, 3π), Fi iid∼ uniform(0, 1), Mi

iid∼ uniform(0, 1),
besides that, for all scenarios, g(.) is logit. The actual values considered for the parameters
were β1 = −1, φ = 20, α = 0.1, ρ0 = τ0 = −1.8 and ρ1 = τ1 = 1.5.

The parameters, in a general way, were well recovered for all models, except
the non-parametric curve when the true underlying model and the fitted model do not
match. Note that for this study the value of parameter α of ZOABR was considering very
small to the generating data could be adjust for the others models, because when the α
increasing, the adjust of others models become poor and for ZOAS, it is impossible the
adjust in same cases. In summary, is that when data presents values too close to the limits
of the interval (0, 1), the ZOABR-SPAM is the best model, in contrast to when the data
is distributed further away from the limits, the models present a similar behaviour.

3.13.4 Study 4: Performance of residuals tools and local influence

It was generated two data sets, one from the ZOAS-SPAM and another from
the ZOAB-SPAM, considering the cauchit link and a sample size of 100. Then, we fit all
other distributions, with the same link. The purpose is to evaluate if the residuals plots
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properly indicate whether the model is well fit to the data. It was considered only one
replica for this study (R=1).

In the local influence analysis for the continuous part, under the case-weight
scheme, only one observation was “contaminated” from each one of the simulated data
set. These were generated from the ZOAS/ZOAB/ZOABR SPAM and fitting using the
respective actual model. Under the same scheme, another perturbation was added to
evaluate the developed measure, it was selected an observation from a covariate of the
parametric part of the linear predictor related with the mean, and was added to it 4 times
of the standard deviation of this covariate.

Furthermore, in the local influence analysis for the discrete part, an obser-
vation selected from a covariate related with the probability of occurrence of zero was
“contaminated” by adding 20 times of the standard deviation of this covariate.

The related models of the scenarios concerning the model fit assessment
tools, have this following structure Yi ind∼ ZOAB(µi, φi, p0i, p1i), or ZOAS(µi, φi, p0i, p1i),
log(p0i/(1−p0i−p1i)) = ρ0 +ρ1fi, log(p1i/(1−p0i−p1i)) = τ0 +τ1mi, g(µi) = β1xi+cos(zi),
log(φi) = κ0 + κ1ei, for i = 1, . . . , n, where X iid∼ uniform(0, 1), E iid∼ uniform(2, 3) and
Z

iid∼ uniform(0, 3π), F iid∼ uniform(0, 1), M iid∼ uniform(0, 1), g(.) is cauchit. The actual
values considered for the parameters were β1 = −2 κ0 = −1 and κ1 = 2, ρ0 = τ0 = −1.8
and ρ1 = τ1 = 1.5.

The related models of the scenarios concerns the local influence analysis,
is given by Yi

ind∼ ZOAB(µi, φi, p0i, p1i),ZOAS(µi, φi, p0i, p1i) or ZOAB(µi, φi, p0i, p1i, α),
log(p0i/(1 − p0i − p1i)) = ρ0 + ρ1fi, log(p1i/(1 − p0i − p1i)) = τ0 + τ1mi, g(µi) = β1xi +
cos(zi), log(φi) = κ0 + κ1ei, for i = 1, . . . , n. For continuous part, it was considered
Xi

iid∼ uniform(0, 1), Ei iid∼ uniform(2, 3) and Zi
iid∼ uniform(0, 3π), Fi iid∼ uniform(0, 1),

Mi
iid∼ uniform(0, 1), g(.) is cauchit and the real values of parameters as β1 = −2 κ0 = 1

and κ1 = −6, ρ0 = τ0 = −1.8 and ρ1 = τ1 = 1.5. And, for the discrete part, the
changes were to consider Xi

iid∼ uniform(0, 1), Ei iid∼ uniform(2, 3) and Zi iid∼ uniform(0, 3π),
Fi

iid∼ uniform(0, 1), Mi
iid∼ uniform(0, 0.1), g(.) is cauchit and to define the real values for

the parameters as β1 = −2 κ0 = 1 and κ1 = −6, ρ0 = −1.8, ρ1 = 1.5, τ0 = −3 and τ1 = 1.

The residual plots behave as expected when the actual and fitted models match.
In these cases the randomized quantile residuals are well within the confidence bands,
randomly distributed with no systematic behavior. A similar pattern is observed in the
respective index plot. When the models do not match we can observe some residuals out
of confidence bands (QQ plots) as well a systematic behavior. Therefore, we have evidence
the developed tools are useful for goodness of model fit assessment

For the influence analysis, in case-weight perturbation for both continuous
and discrete parts, the three contaminated observations where flagged through the lmax
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measure. Therefore, we have indications that the influence analysis tools are useful for
such purpose.

3.14 Real data analysis
The data set here analyzed is part of a psychometric study of risk perception

developed in Carlstrom et al. (2000), where the participants completed two forms of a
simplified CER (Conjoint Expected Risk) questionnaire: an objective part and a subjective
part. Each part described 16 health and 6 financial activities. The objective questionnaire
contained hypothetical values for the five risk model variables for each 22 activities. The
participants were instructed to suppose that the values were true and to provide a risk
judgment for each of the activities based on these values.

For the subjective questionnaire the participants were instructed to provide
their own subjective estimates of the model variables in addition to an overall judgment
of risk for each activity. All participants also answered to a worldview questionnaire.
The participants were recruited between 1997-1998 from five sources: UCLA psychology
undergraduate classes, campus and community organizations, community and college
newspaper advertisements, a paid consultant, and posted flyers.

We selected the subjective part, where each subject was asked to provide a
number in the [0,100] interval, such that the higher the value, the higher the perceived risk.
Hence, the response is the perceived risk (Risk) of the 588 subjects related to a screening
for genes that may predispose subjects to heart diseases (which is one of the 22 activities
of the questionnaire) transformed to the interval [0,1]. Furthermore, as the covariates we
consider: the gender (Gender), ethnic background (Ethnic), age (Age) and the worldview
obtained from a related questionnaire (Wvcat). The levels of each factor are presented
in Table 10. This data set was previously analyzed by Silva et al. (2020) who considered
a Zero-and-One Augmented Beta Rectangular Regression Model with only parametric
predictors.

Table 10 – Factor levels

Variables Levels

Ethnic Caucasian (1); African-American (2)
Mexican-American (3); Taiwanese-American (4)

Wvcat unclassifiable (0); individualist (1)
hierarchicalist (2); egalitarian (3)

Gender female (0); male (1)
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(a) Histogram of Risk by the frequency.
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(b) Boxplot of Risk by categories of Ethnic
covariate.
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(c) Boxplot of Risk by categories of Wvcat
covariate.
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(d) Boxplot of Risk by categories of Gender
covariate.
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(e) Scatter plot of Risk versus Age.

Figure 17 – Explanatory analysis plots of risk perception data set.

The Figure 17 shows explonatory analysis plots of the data set for the continuous
part, i.e. 0 < Risk < 1, except the first plot, which presents the histogram of the Risk
(Figure 17a). We can see that the Risk distribution seems to change over the levels of
Ethnic and Wcat, whereas only the median seems to be different between the levels of
Gender. That is, both Ethnic and Wcat may be affecting the location and variability of
the response, whereas Gender seems to be related only to the Risk mean. Finally, we can
see a nonlinear relation between Risk and Age, where a smooth function could be suitable
for modeling that.
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Figure 18 – Boxplots for Age by Risk=0 and Risk=1.

Table 11 – Number of discrete observa-
tions by the levels of Ethnic
variable

Risk
Ethnic 0 1 Total

1 17 1 18
2 28 15 43
3 18 5 23
4 23 0 23

Total 86 21 107

Table 12 – Number of discrete observa-
tions by the levels of Gender
variable

Risk
Gender 0 1 Total

0 46 15 61
1 40 6 46

Total 86 21 107

Table 13 – Number of observation by the levels of Wvcat variable

Risk
Wvcat 0 1 Total

0 65 16 81
1 4 2 6
2 9 2 11
3 8 1 9

Total 86 21 107

Considering, now the plot of the Figure 18 and the Tables 11, 12 and 13 related
with the discrete part, i.e. Risk = 0 and Risk = 1, it is possible to notice that the covariate
Wvcat is the one that seems to be the most influential for the response. Figure 18 related
to Age, presents different median and dispersion for Risk=0 and Risk=1, while for the
Risk equals to zero it is seen a positive skewness, for equals 1 it is seen a negative skewness,
which may indicates that this variable may influence the outcome.

Initially, we fitted three models, that is, the ZOAB-SPAM, ZOAS-SPAM and
ZOABR-SPAM with the following regression structures. For simplicity, we decided not to
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consider the possible interactions between the variables.

Yiljk
ind∼ ZOAB(µiljk, φiljk, p0iljk, p1iljk)
or ZOABR(µiljk, φiljk, p0iljk, p1iljk, α)
or ZOAS(µiljk, φiljk, p0iljk, p1iljk),

g1(µiljk) = β0 + (β1)l + (β2)j + (β3)k + h1(zi),
g2(φiljk) = κ0 + (κ1)l + (κ2)j + (κ3)k + κ4zi,

log(p0iljk/(1− p0iljk − p1iljk)) = ρ0 + (ρ1)l + (ρ2)j + (ρ3)k + ρ4zi

log(p1iljk/(1− p0iljk − p1iljk)) = τ0 + (τ1)l + (τ2)j + (τ3)k + τ4zi,

where, i = 1, . . . , 588, l = 1, 2, 3, 4, j = 0, 1, 2, 3, k = 0, 1, (β1)1 = (β2)0 = (β3)0 = 0,
(κ1)1 = (κ2)0 = (κ3)0 = 0, (ρ1)1 = (ρ2)0 = (ρ3)0 = 0, (τ1)1 = (τ2)0 = (τ3)0 = 0. Also, (β1),
(κ1), (ρ1) and (τ1) are related with Ethnic; (β2), (κ2), (ρ2) and (τ2) are related with Wvcat;
(β3), (κ3), (ρ3) and (τ3) are related with Gender. Finally, κ4, ρ4 and τ4 are associated with
the variable z standardize Age.

Also, h1(.) is the unknown function that will be approximated by P-splines
with cubic B-splines and quadratic differences with 50 knots for all models. The link
function g1(.) will vary in cauchit, logit, probit, cloglog and loglog, and the link g2(.) was
chosen the logarithm function for the ZOAB-SPAM and the ZOABR-SPAM, while for the
ZOAS-SPAM, the chosen function was the square root. The difference for the link g2(.)
among the models is justifying by the improvement of the fit for each model.

Therefore, we fitted all models with all possible link function for the mean and,
then, only the covariates statistically significant at the level of 5% were kept in the model.
Also, the equivalent levels of the categorical covariates were combined. The reduced models
for each distribution are presented below. Each link function present the same significance
for the covariates, then the reduced model is the same for each one of them.

ZOAB-SPAM:

Yil
ind∼ ZOAB(µil, φil, p0i, p1i),

g1(µi) = h1(zi),
g2(φil) = κ0 + (κ1)l,

log(p0i/(1− p0i − p1i)) = ρ0 + ρ4zi

log(p1i/(1− p0i − p1i)) = τ0 + τ4zi,

where l = 1, 2, 3, 4, (κ1)1 = (κ1)3 = (κ1)4 = 0.
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ZOAS-SPAM:

Yilj
ind∼ ZOAS(µilj, φi, p0i, p1i),

g1(µilj) = β0 + (β1)l + (β2)j + h1(zi),
g2(φi) = κ0 + κ4zi,

log(p0i/(1− p0i − p1i)) = ρ0 + ρ4zi

log(p1i/(1− p0i − p1i)) = τ0 + τ4zi,

where l = 1, 2, 3, 4, j = 0, 1, 2, 3, (β1)1 = (β1)3 = 0, (β2)0 = (β2)2 = (β2)3 = 0.

ZOABR-SPAM:

Yil
ind∼ ZOABR(µil, φil, p0i, p1i, α),

g1(µil) = β0 + (β1)l + h1(zi),
g2(φil) = κ0 + (κ1)l,

log(p0i/(1− p0i − p1i)) = ρ0 + ρ4zi

log(p1i/(1− p0i − p1i)) = τ0 + τ4zi,

(3.33)

where l = 1, 2, 3, 4, (β1)1 = (β1)3 = (β1)4 = 0, (κ1)1 = (κ1)3 = 0.

Given the reduced models presented, now, we choose the link function of the
models. The information criteria (IC), see Table 14, indicate, for ZOABR-SPAM, in general,
the loglog link is the best one. For the ZOAB-SPAM, that the cauchit link was the indicate
and for the ZOAS-SPAM, except for AIC and AICC, indicate the logit as the best link.
Then, the final three models are ZOABR-SPAM using loglog, ZOAS-SPAM using logit
and ZOAB-SPAM using cauchit as link function for mean. Therefore we compared the
three respective models, using the model fit assessment tools.

The QQ plots with envelope for the quantile residuals related to the three
models indicate that both ZOAS-SPAM an ZOABR-SPAM did not fit well to the data.
Also, seen the all the IC measures, regardless of the link function indicate the ZOABR-
SPAM. Hence, the ZOABR-SPAM was the model chosen to continue with the analysis,
because seems the one more appropriate for this the data set. Then, we continue with
the analysis of the reduced model Equation (3.33) using g1(.) as loglog, to verify the fit
quality.

Table 15 shows the estimates of parameters, the associated standard error (SE)
and the associated confidence interval (IC) with a confidence of 95%. Figure 20 shows
non-parametric curve. The effective degrees of freedom were 4.39 the estimated λ using
GCV was 15263. From Figure 21, it is possible to see that the residuals are well within
the the confidence bands of the QQ plot. The other residuals plots show no tendency as
well the normality seems to be reasonable according to the histogram.
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Figure 19 – Quantile-quantile plot with 95% envelopes for all models.
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Figure 20 – Estimated curves for ZOABR-SPAM.
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Table 14 – Information Criteria for the three models.

Models Link function AIC AICC SABIC HQIC BIC

ZOABR-SPAM

cauchit 284.96 285.62 261.92 307.62 343.11
logit 269.84 270.47 247.40 291.90 326.47
probit 274.81 275.52 250.97 298.27 335.00
cloglog 287.47 288.17 263.72 310.82 347.39
loglog 269.20 269.97 244.24 293.73 332.16

ZOAB-SPAM

cauchit 507.42 507.61 515.84 519.36 538.08
logit 507.42 507.61 515.84 519.37 538.08
probit 507.44 507.63 515.87 519.40 538.15
cloglog 507.42 507.62 515.85 519.37 538.10
loglog 507.44 507.64 515.88 519.41 538.15

ZOAS-SPAM

cauchit 607.29 607.86 622.09 628.28 661.17
logit 606.07 606.64 620.84 627.03 659.87
probit 606.49 607.12 622.06 628.57 663.16
cloglog 607.25 607.84 622.30 628.60 662.05
loglog 605.39 606.02 621.01 627.55 662.26

Table 15 – Inferential results for the ZOABR-SPAM.

Parameters Estimate SE p-value IC95%
ρ0 -1.75 0.12 <0.0001 [-1.98;-1.51]
ρ4 0.32 0.11 0.0021 [0.12;0.53]
τ0 -3.30 0.25 <0.0001 [-3.79;-2.80]
τ4 0.60 0.17 0.0003 [0.28;0.93]
β0 -0.15 0.09 0.12308 [-0.33;0.04]

(β1)2 0.34 0.12 0.0040 [0.11;0.57]
κ0 1.65 0.20 <0.0001 [1.26;2.04]

(κ1)2 -0.76 0.26 0.0032 [-1.28;-0.26]
(κ1)4 -0.42 0.19 0.0254 [-0.78;-0.05]
α 0.40 0.33 - [-0.24;1.05]

From Figure 22 (left plot), which presents the local influence analysis for the
discrete part, we see no flagged observations. On the other hand, from Figure 22 (right
plot), concerning the local influence analysis of the continuous part, under the case-weight
perturbation scheme, the observation #32 was flagged.
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(a) Index plot of quantile residuals.
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(b) Fitted values versus quantile residuals.
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Figure 21 – Results of fitted ZOABR-SPAM.
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Figure 22 – Index plot of lmax under case-weight perturbation for discrete part (left plot)
and for continuous part (right plot) for ZOABR-SPAM.

After removing such observation, the significance of the parameters did not
change, neither the Cook’s distance, neither the generalized leverage. Also, the behavior
of the residuals remained the same.

In conclusion, once that the exclusion of the flagged observation did not lead to
significant changes on the inference, no further changes are necessary. From the final model
it possible to notice that the age of participant has a positive influence on the discrete values
of the Risk (Risk=0 and Risk=1). The Ethnic in the categories African-American and
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Taiwanese-American is a significant covariate attributed to the heterogeneous dispersion.
From the fitted non-parametric curve, the Age variable presented a decreasing in risk for
the younger ages and, then, an increasing in risk perception from older ages.

In the analysis of this data made made by Silva et al. (2020), only parametric
components were included, and the BR distribution was considered. Their final model did
not include the covariate Age. Then, comparing with our approach, our gain is include a
component non-parametric in the linear predictor, which implies in more flexibility for
our approach. At our work, we could include the age in the fit of the mean, and made a
properly fit, given the non-linear behaviour of this covariate. The age after the analysis
indicates contributing significantly to the model.
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4 Semi-parametric additive models for depen-
dent and limited data

In many fields of knowledge is usual to observe several measurements in the same
experimental units, along different (so-called) evaluation conditions. These kind of data is
named repeated measurement data and, when these measurements can not be mutually
randomized along the evaluation conditions (as time) they are called longitudinal data.
Due to this structure is expected to observe within-correlation dependence (correlation).

It is well know that to ignore such structure can lead to the misleading inference
see, for example, Diggle et al. (2002). One of the most important ways to model this kind
of data is the so-called Generalized Estimating Equations (GEE). This approach is based
on the Estimating Equations (EE) (Godambe, 1991). The EE are function of the sample
and the parameters of interest. Within the (G)EE framework conditions are seeking to
guarantee that the estimators have good properties. Based on that, Liang and Zeger (1986)
proposed GEE for mean estimation in models where the response belongs to Exponential
Linear Family.

In this Chapter we developed a GEE approach as an extension of the Semi-
parametric Additive Models for correlated bounded data, considering the beta, the simplex
and the beta rectangular. Then, we will build a suitable framework that considers both
the bounded nature of the response variable and the within-subject dependence. The
proposal models will be the Semi-parametric Additive Beta (Beta-SPAM-GEE), the Semi-
parametric Additive Simplex (Simplex-SPAM-GEE), and the Semi-parametric Additive
BR (BR-SPAM-GEE) models via GEE.

4.1 Estimating functions
In this subsection, it will be reviewed some definitions and quantities related

with GEE methodology required for the next sections.

The quantity ψ is defined as an estimation function of the random variable Y
and the parameters of interest θ if, for each θ ∈ Θ, ψ(θ;Y ) = (ψ1, ..., ψp)> is a random
variable, where Θ ⊆ Rp is the parameter space. Only regular cases will be considered,
which means that Θ has a finite dimension p and the true parameter θ0 is an inner point
of Θ.

Assuming a random sample of n independent random vectors Yi = (Yi1, ..., Yiti)>,
i = 1, ..., n and each of them is related to an estimation function ψi, then a sample estimat-
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ing function Ψ(θ) is given by Ψ(θ) = Ψ(Y ;θ) =
n∑
i=1
ψi(Yi;θ), where Y = (Y >1 , ...,Y >n )>.

Besides that, only focusing on the estimation functions whose roots are estimators of the
parameters of interest, i.e., Ψ(Y ; θ̂) = 0.

Let Y1, ..., Yn be a random samples with E(Yi) = µi(θ), µi doubly differentiable
with relation to θ and Var(Yi) = σ2, then

Ψ(Y ;θ) =
n∑
i=1

∂µi(θ)
∂θ

[Yi − µi(θ)] = 0 (4.1)

is denoting by estimating equation.

Furthermore, if Eθ[Ψ(θ)] = 0, ∀θ ∈ Θ, the function Ψ(θ) is an unbiased. Thus,
if all estimating functions ψi are unbiased, then Ψ(θ) will also unbiased. Moreover, let
Ψ(θ) be an unbiased estimating function, then, the related variability and sensibility
matrices (both p× p), are given, respectively, by:

V (θ) = Eθ[Ψ(θ)Ψ>(θ)] and S(θ) = Eθ
[
∂

∂θ>
Ψ(θ)

]
. (4.2)

On the other hand, the Godambe Information Matrix of θ associated to a
regular estimating function Ψ is given by J(θ) = S>(θ)V −1(θ)S(θ). The Godambe
information matrix plays a similar role to the Fisher information matrix, i.e., the former
is related to the information about the variability of the estimators. It can be noticed
that if S(θ) = −V (θ), then the Godambe Information Matrix coincides with the Fisher
Information Matrix.

Let Qi(θ), i = 1, ..., n be non stochastic matrices and ui = ui(yi;θ) be a zero
mean vector mutually independents, an estimating function class is said to be additive or
linear if (Crowder, 1987):

`(u) =
{

Ψn ∈ < : Ψ(θ) =
n∑
i=1

Qi(θ)ui(yi;θ)
}
. (4.3)

A regular estimating function (see Artes (2005) for more details) is said to be
optimal if its roots have minimal asymptotic variance. The optimal element within the
class of linear estimating functions according to Crowder (1987), is given by:

Ψ∗(θ) =
n∑
i=1

Q∗i (θ)ui(yi;θ), (4.4)

where Q∗i (θ) = E
(
∂ui
∂θ>

)>
Cov(ui)−1 and

Cov(ui) = diag{Var(ui)1/2}Rv(ui)diag{Var(ui)1/2}, (4.5)

being Rv(ui) the actual correlation matrix of ui, for i = 1, . . . , n.
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It is important to notice that this previous definition also is applied to the
estimating function optimality. The following theorems establish conditions that guarantee
the asymptotic normality of the estimators obtained from the regular estimating functions.

According to Jørgensen and Labouriau (1995), let Ψ : Ω×Θ→ Rp be a regular
estimating function and {θ̂n}n≥1 a sequence of estimators satisfying Ψ(y; θ̂) = 0, and
suppose that ∃ θ ∈ Θ : θ̂n P−→ θ, where θ̂n is asymptotically Normal, then

√
n(θ̂ − θ) D−→

N (0,J−1(θ)), where
J(θ) = lim

n→∞

1
n
{S>(θ)V −1(θ)S(θ)},

which replaces the asymptotic Godambe information matrix. Here the symbol " D−→" stands
for the convergence in distribution (related to Pθ) and " P−→", the convergence in probability.

Under certain conditions (see Sen and Singer (1994) for more details), it possible
to show that θ̂n P−→ θ and

√
n(θ̂ − θ) D−→ N (0,J−1(θ)). A proof for this theorem can be

seen in Jørgensen and Labouriau (1995), for example. It is important to cite that these
conditions are generalizations of the Frechet-Cramer-Rao regularity conditions Sen et al.
(2010).

In practice, the actual correlation matrix Rv is unknown. Liang and Zeger
(1986) proposed to use a so-called working correlation matrix Ri(ξ), which depends on
ξ. Thus, as said previously, the following models will be developed based on this last
approach. Next sections will discuss more about the GEE and their extensions for the
purpose of this work.

4.2 Models
Let Y = (Y >1 , . . . ,Y >n )>, with Yi = (Yi1, . . . , Yin∗i )>, i = 1, . . . , n be the

response vector for all subjects in all time that they were collected, and considering
the marginal distribution of Yit as Yit ∼ beta(µit, φit), simplex(µit, φit) or BR(µit, φit, α) ,
for t = 1, . . . , n∗i , i = 1, . . . , n. The Semi-parametric Additive Model via GEE (SPAM-
GEE) for any of these three distributions, Beta-SPAM-GEE, Simplex-SPAM-GEE and
BR-SPAM-GEE, have the following systematic component:

η1 = g1(µ) = Xβ +
k∑
j=1

hj(zj),

η2 = g2(φ) = Eκ

(4.6)

where n∗∗ =
n∑
i=1

n∗in is the sample size, µ = (µ>1 , . . . ,µ>n )>, with µi = (µi1, . . . , µin∗i )>,

φ = (φ>1 , . . . ,φ>n )>, with φi = (φi1, . . . , φin∗i )>, g1(.) and g2(.) are strictly monotone
and twice differentiable link functions, such that, g1 : (0, 1) → R and g2 : R+ → R,
η1 = (g1(µ1)>, . . . , g1(µn)>)>, η2 = (g2(φ1)>, . . . , g2(φn)>)>, β = (β1, . . . , βp)> ∈ Rp
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and κ = (κ1, . . . , κs)> ∈ Rs are, respectively, a p-vector and a s-vector of unknown
parameters, X = (X>1 , . . . ,X>n )>, with Xi = (xi1, . . . ,xin∗i )> and E = (E>1 , . . . ,E>n )>,
with Ei = (ei1, . . . , ein∗i )> are design matrices of dimension, respectively, n∗∗ × p and
n∗∗ × s, in which xi = (xit1, . . . , xitp)> and ei = (eit1, . . . , eits)> for t = 1, . . . , n∗i and i =
1, . . . , n, zj = (z>1j, . . . ,z>nj)>, j = 1, . . . , k, where zij = (zi1j, . . . , zin∗i j) is a specification
vector associated with non-parametric components and h1, . . . , hk are an unknown smooth
functions.

The hj(zj) can be rewritten as discussed before in the Section 1.2.1 as

hj(zj) =
qj∑
l=1

γljblj(zj), (4.7)

with γlj being the coefficients to be estimated, blj’s being l-th cubic B-spline and qj is the
number of cubic B-splines both related to the j-th P-spline at the vector zj, j = 1, . . . , k
and l = 1, . . . , qj. As cubic B-splines are being adopted here, blj = Bl,dl

with dl = 4 as
defined in Section 1.2.1, kj = dl + qj is the number of knots. It is possible to rewrite
Equation (4.6) for the i-th observation, i = 1, . . . , n, as follows

η1i = g1(µi) = X>i β + b>i1γ1 + · · ·+ b>ikγk,

where bij = (b1j(zij), . . . , bqjj(zij))> and γj = (γj1, . . . , γjqj
)>, for j = 1, . . . , k. Return to

matrix form of η1, the predictors of the model can be rewritten as

η1 = g1(µ) = Xβ +
k∑
j=1
Bjγj, η2 = g2(φ) = Eκ, (4.8)

whereBj is a matrix of dimension n∗∗×qj composed by blj(zij), for i = 1, . . . , n, j = 1, . . . , k
and l = 1, . . . , qj.

4.3 Penalized GEE
Based on the proposal of Liang and Zeger (1986) described in Section 4.1, it will

be developed two distinct GEE for the mean and dispersion/precision parameters as made
by X.-K. Song et al. (2004) and Freitas et al. (2021), generating the (models): Simplex-
SPAM-GEE, Beta-SPAM-GEE and BR-SPAM-GEE. Indeed, given ν = (β>,γ>1 , . . . , γ>k )>

and κ, let us consider the vectors d∗i = (u>i , q>i )>, ui = ui(yi,ν,κ) = (ui1, . . . , uin∗i )> and
qi = qi(yi,ν,κ) = (qi1, . . . , qin∗i )> , i = 1, . . . , n, where ui and qi are the zero mean vectors
defined in Equation (4.3), related to µit and φit, respectively. They arel also mutually
independent, satisfying the properties of regular estimating functions (Crowder, 1987).

A common choice for ui is the score function, which will be done for the
Simplex-SPAM-GEE. However, for the Beta-SPAM-GEE and BR-SPAM-GEE we adopt
ui = yi − µi. This choice implies a better interpretability for the correlation matrix of ui,
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since it becomes the correlation of Y . Also, as we will show in the next sections, it implies
in the insensitivity property (Jørgensen and Knudsen, 2004), which allows the updating
the GEE of the mean and dispersion/precision parameters, in the estimation algorithm,
separately.

4.3.1 Components for Beta-SPAM-GEE

Assuming that the marginal distributions follow the beta distribution, the
log-likelihood of θ = (β>,γ>1 , . . . ,γ>k ,κ>)>, is given by:

l(θ) =
n∑
i=1

(
log(Γ(φi))− log(Γ(µiφi))− log(Γ([1− µi]φi)) + [µiφi − 1] log(yi)

+ ([1− µi]φi − 1) log[1− yi]
)
,

where, µi = g−1
1 (η1i), η1i = x>i β +

k∑
j=1
b>ijγj, φi = g−1

2 (η2i) and η2i = e>i κ. Also, we have

that qi corresponds to the score function. Hence, ui and qi are given by,

ui = yi − µi,

qi = µi(y∗i − µ∗i ) + log(1− yi)−Ψ((1− µi)φi) + Ψ(φi),
(4.9)

where µ∗ = (µ∗i1, . . . , µ∗in∗i )>, µ∗it = Ψ(µitφit) − Ψ[(1 − µit)φit], y∗ = (y∗i1, . . . , y∗in∗i )> and
y∗it = log[yit/(1−yit)], for i = 1, . . . , n and t = 1, . . . , n∗i , Ψ(.) denotes the digamma function,
that is, Ψ(z) = ∂ log Γ(z)/∂z, for z > 0. It can be noticed that E(uit) = 0 and, since qi is
the score function related to φi, E(qit) = 0⇔ E(log(1− yit)) = Ψ((1− µit)φit) + Ψ(φit).
Thus, the use of ui and qi generate an optimal class of estimating functions and they
present zero mean, are mutually independent and satisfying the properties of regular
estimating functions, see (Crowder, 1987). For the i-th subject, some quantities, which
will be used in the next sections are defined below,

T1i = −E
(
∂ui
∂η>1i

)>
= −E

(
∂ui
∂µi

∂µi
∂ηi

)>
= G1i,

T2i = −E
(
∂qi
∂η>2i

)>
= −E

(
∂qi
∂φi

∂φi
∂η2i

)>
= G2iCi,

T21i = −E
(
∂ui
∂η>2i

)>
= −E

(
∂ui
∂φi

∂φi
∂η2i

)>
= 0,

T12i = −E
(
∂qi
∂η>1i

)>
= −E

(
∂qi
∂µi

∂µi
∂η1i

)>
= G1iDi,

and Σi = Cov(ui) = A
1/2
i R(ξ)A1/2

i , where Ai = diag{ai1, . . . , ain∗i }, ait = V ar(Yit) =
[µit(1−µit)]/(1+φit),G1i = diag{(∂µi1/∂η1i1), . . . , (∂µin∗i /∂η1in∗i )},G2i = diag{(∂φi1/∂η2i1),
. . . , (∂φin∗i /∂η2in∗i )},Ci = diag{ci1, . . . , cin∗i }, cit = −Ψ′(φit)+µ2

itΨ′(µitφit)+(1−µit)2Ψ′((1−
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µit)φit), Di = diag{di1, . . . , din∗i }, and dit = φit[µitΨ′(µitφit) − (1 − µit)Ψ′((1 − µit)φit)],
t = 1, . . . , n∗i and i = 1, . . . , n. Furthermore, R(ξ)(n∗i×n

∗
i ) is symmetric matrix satisfying

the conditions for a working correlation matrix (Liang and Zeger, 1986), which depends
on a correlation parameter vector ξ that is the same for all subjects.

4.3.2 Components for Simplex-SPAM-GEE

For the model based (marginal distributions) on the simplex distribution, the
log-likelihood of θ = (β>,γ>1 , . . . ,γ>k ,κ>)>, is defined as:

l(θ) =
n∑
i=1

(
−1

2 {log(2πφi) + 3 log[yi(1− yi)]} −
1

2φi
d(yi;µi)

)
,

where, d(y;µ) is defined in Equation (1.7), µi = g−1
1 (η1i), η1i = x>i β +

k∑
j=1
b>ijγj, φi =

g−1
2 (η2i) and η2i = e>i κ. We have that ui and qi will be defined also as the score function.

They are given by,

ui = − 1
2φi

d′(yi,µi), qi = 1
2φi

[
1
φi
d(yi,µi)− 1

]
, (4.10)

where

d′(yi,µi) = ∂d(yi,µi)
∂µi

= − 2(yi − µi)
µi(1− µi)

[
d(yi,µi) + 1

µ2
i (1− µi)2

]
,

t = 1, . . . , n∗i and i = 1, . . . , n. It can be noticed that E(uit) = 0⇔ E(d′(yit, µit)) = 0 and
E(qit) = 0 ⇔ E(d(yit, µit)) = φit. Thus, the vectors ui and qi generate an optimal class
of functions and they are vector with zero mean, mutually independent and satisfying
the properties of regular estimating functions (Crowder, 1987). For the i-th subject, some
quantities, which will be used in the next sections, are defined below

T1i = −E
(
∂ui
∂η>1i

)>
= −E

(
∂ui
∂µi

∂µi
∂ηi

)>
= G1iAi

T2i = −E
(
∂qi
∂η>2i

)>
= −E

(
∂qi
∂φi

∂φi
∂η2i

)>
= G2iCi,

T21i = −E
(
∂ui
∂η>2i

)>
= T12i = −E

(
∂qi
∂η>1i

)>
= 0,

and Σi = Cov(ui) = A
1/2
i R(ξ)A1/2

i , where Ai = diag{ai1, . . . , ain∗i }, ait = φ−1
it [(3φit)/

(µit(1 − µit)) + 1/(µ3
it(1 − µit)3)], G1i = diag{(∂µi1/∂η1i1), . . . , (∂µin∗i /∂η1in∗i )}, G2i =

diag{(∂φi1/ ∂η2i1), . . . , (∂φin∗i /∂η2in∗i )},Ci = diag{ci1, . . . , cin∗i }, cij = (2φ2
it)−1, t = 1, . . . , n∗i

and i = 1, . . . , n. Furthermore, R(ξ) is a (n∗i × n∗i ) symmetric matrix satisfying the con-
ditions for a working correlation matrix (Liang and Zeger, 1986), which depends on a
correlation parameter vector ξ that is the same for all subjects.
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4.3.3 Components for BR-SPAM-GEE

Assuming marginal BR distribution, the log-likelihood of θ = (β>,γ>1 , . . . ,γ>k ,
κ>, α)>, is given by:

l(θ) =
n∑
i=1

log[εi + (1− εi)bYi
(yi; δi,φi)], (4.11)

where εi = 1−
√

1− 4αµi(1− µi), bY (y; ., .) is the beta density defined in Equation (1.1),

δi =
µi − 1

2 + 1
2

√
1− 4αµi(1− µi)√

1− 4αµi(1− µi)
, µi = g−1

1 (η1i), η1i = x>i β +
k∑
j=1
b>ijγj, φi = g−1

2 (η2i)

and η2i = e>i κ.

Here, the log-likelihood is not easily tractable, since the necessary derivatives
are not easy to obtain, see Section 2.2.1. Thus, instead of obtain ui and qi from the score
function, we will consider the proposal of X.-K. Song et al. (2004). They constructed the zero
mean vector for the estimating equation of the dispersion component of their distribution,
based on a quantity whose expectation was a function of the dispersion parameter. Since
we consider the precision parameter of the BR distribution, a useful approach is to consider
qi = (qi1, . . . , qin∗i ), where qit = (yit − µit)2 − Var(Yit), E[(Yit − µit)2] = Var(Yit), and
Var(Yit) = g(φit) is defined in Equation (1.4), r t = 1, . . . , n∗i . Therefore, we have not only
easier calculations, but also good properties of the related estimators. Hence, ui and qi
are given by

ui = yi − µi,

qi = (yi − µi)2 −
{
δi(1− δi)

1 + φi
(1− εi)[1− εi(1 + φi)] + εi

12(4− 3εi)
}
,

(4.12)

i = 1, . . . , n. It can be noticed that E(ui) = 0 and E(qi) = 0. Thus, the vectors ui and
qi generate an optimal class of functions and they are vector with zero mean, mutually
independent and satisfying the properties of regular estimating functions (Crowder, 1987).
For the i-th subject, some quantities, which will be used in the next sections, are defined
below

T1i = −E
(
∂ui
∂η>1i

)>
= −E

(
∂ui
∂µi

∂µi
∂ηi

)>
= G1i

T2i = −E
(
∂qi
∂η>2i

)>
= −E

(
∂qi
∂φi

∂φi
∂η2i

)>
= G2iCi,

T21i = −E
(
∂ui
∂η>2i

)>
= −E

(
∂ui
∂φi

∂φi
∂η2i

)>
= 0,

T12i = −E
(
∂qi
∂η>1i

)>
= −E

(
∂qi
∂µi

∂µi
∂η1i

)>
= G1iDi,
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where Σi = Cov(ui) = A
1/2
i R(ξ)A1/2

i , Ai = diag{ai1, . . . , ain∗i },

ait = δi(1− δi)
1 + φi

(1− εi)[1− ε(1 + φi)] + εi
12(4− 3εi),

G1i = diag{(∂µi1/∂η1i1), . . . , (∂µin∗i /∂η1in∗i )},G2i = diag{(∂φi1/∂η2i1), . . . , (∂φin∗i /∂η2in∗i )},
Ci = diag{ci1, . . . , cin∗i }, cij = [(δit(1− δit))/(1 + φit)2](εit − 1), Di = diag{di1, . . . , din∗i },

dit = (1− 2δit)
(1− α)[1− εit(1 + φit)]

(1 + φit)(1− εit)2 +
[
δit(1− δit)
(1 + φit)

(−2− φit + 2εit(1 + φit))

+ 2− 3εit
6

](
2α(1− 2µit)

1− εit

)
,

t = 1, . . . , n∗i and i = 1, . . . , n. Furthermore, R(ξ) is a (n∗i × n∗i ) symmetric matrix
satisfying the conditions for a working correlation matrix (Liang and Zeger, 1986), which
depends on a correlation parameter vector ξ that is the same for all subjects. Finally,
also following X.-K. Song et al. (2004) we adopt Υi = Cov(qi) = Ji = diag{ji1, . . . , jin∗i },
where jit = Var[(Yit − µit)2], t = 1, . . . , n∗i and i = 1, . . . , n. For ease, the Var[(Yit − µit)2],
in the estimation process, will be obtained numerically.

4.3.4 Penalized GEE approach

As discussed in Section 2.2 and following Manghi et al. (2019), it is necessary
adding a penalization in the GEE related with the non-parametric components. A penalty
function based on differences between adjacent B-splines, as defined in Section 1.2.2, will
be used here. Thus, considering the components related to each distribution as defined in
the previous sections, the generalized estimating equations for ν = (β>,γ>1 , . . . , γ>k )> and
κ, respectively are given by:

Ψ1p(ν,λ) =
n∑
i=1
−E

(
∂ui
∂ν>

)>
Cov(ui)−1ui −Λ = B∗>i T1iΣ−1

i ui −Λ

Ψ2(κ) =
n∑
i=1
−E

(
∂qi
∂κ>

)>
Cov(qi)−1qi = E>i T2iΥ−1

i qi,

(4.13)

whereB∗i = (Xi,Bij, . . . ,Bik), Λ = (0p, λ1γ
>
1 Λd

1, . . . , λkγ
>
k Λd

k)>, 0(p×1) is a vector of zeros
and λ = (λ1, . . . , λk)> is the vector of smooth parameters and λj > 0, ∀j, j = 1, . . . , k,
T1i = diag{T1i1, . . . , T1in∗i }, T2i = diag{T2i1, . . . , T2in∗i }, Σi = diag{Σi1, . . . ,Σin∗i

} and
Υi = diag{Υi1, . . . ,Υin∗i

}.

We can use a working correlation matrix instead of Υi = Cov(qi). However
this would lead to a large amount of parameters to be estimated. Then, following Freitas
et al. (2021) and X.-K. Song et al. (2004), we assume, for the Simplex-SPAM-GEE and
Beta-SPAM-GEE that Υi = Ci and for BR-SPAM-GEE, Υi = Ji. As cited by Freitas
et al. (2021), by assuming this (Υi = Ci or Ji), even though we no longer have optimal
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linear estimation functions, we reduce the number of assumptions to make about the
dependency structure of the data. We further assume that Cov(ui, qi) = 0, which leads to
a small number of parameters to be estimated, for more details see Prentice and Zhao
(1991). Then, the penalized GEE for ν and κ are given by Ψ1p(ν̂,λ) = 0 and Ψ2(κ̂) = 0,
where ν̂ and κ̂ denotes the respective estimates.

For the next sections, unless for parameter estimation developments, it will be
useful to rewrite the GEE’s as Ψ∗(ν,κ) = (Ψ1p(ν,λ)>,Ψ2(κ)>)>, that is

Ψ∗(ν,κ) = Q>WT−1d∗ −Λ2, (4.14)

where Λ = (0p, λ1γ
>
1 Λd

1, . . . , λkγ
>
k Λd

k,0q)>, 0(q×1) vector of zeros, d∗i = (u>i , q>i )>, W =
TiP

−1
i Ti,

Qi =
 B∗i 0

0 Ei

 , Ti =
 T11i T12i

T21i T22i

 ,Pi =
 Σi 0

0 Υi

 .
4.4 Parameter estimation

Before presenting the estimation process, it will be demonstrated that the
GEE’s for ν and κ can be updated separately for all models by using the insensitivity
property (Jørgensen and Knudsen, 2004). As defined in a generic way in Equation (4.2),
the sensibility matrix can be write as

Si(θ) =
 S11 S12

S21 S22

 ,
where S11 = E

[
∂

∂ν>
Ψ1p(ν)

]
, S22 = E

[
∂

∂κ>
Ψ2(κ)

]
, S12 = E

[
∂

∂ν>
Ψ2(κ)

]
and S21 =

E
[
∂

∂κ>
Ψ1p(ν)

]
. For all models, the quantity S21 is zero, as demonstrated below.

• For Beta-SPAM-GEE and BR-SPAM-GEE:

S21 = E
[
∂

∂κ>
Ψ1p(ν)

]
= E

[
∂

∂κ>
(B∗>i T1iΣ−1

i (y − µ))
]

= 0,

because none of this components is function of φ and as consequence of κ, thus the
derivative is zero;

• For Simplex-SPAM-GEE:

S21 = E
[
∂

∂κ>
Ψ1p(ν)

]
= E

[
∂

∂κ>
E>i T2iΥ−1

i

(
− 1

2φi
d′(yi,µi)

)]

= E
[
∂

∂κ>
E>i T2iΥ−1

i

1
2φ2d

′(yi,µi)
]

= 0;

when the expectation function is applied, all the matrix become zero because
E(d′(yi,µi)) = 0.
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Thus, the sensibility matrix can be rewritten for all models as

Si(θ) =
 S11 S12

0 S22

 , (4.15)

and according with Jørgensen and Knudsen (2004), this configuration of the sensibility
matrix implies in the insensitivity property, which allows us to separate ν and κ onto two
equations to be updated in each step of estimation algorithm, following Bonat et al. (2018)
proposal. The other entries of this matrix are defined as S11 = −B∗>i T1iΣ−1

i T1iB
∗
i −Λ∗,

where Λ∗ = blockdiag(0pp, λ1Λd
1, . . . , λkΛd

k)> and 0pp is a p × p matrix of zeros. Also,
S22 = −E>i T2iΥ−1

i T2iEi and S12 = −E>i T12iΥ−1
i T12iXi, for Beta-SPAM-GEE and BR-

SPAM-GEE and S12 = 0 for Simplex-SPAM-GEE.

Now, developing the estimation algorithm by applying a combination of Gauss-
Seidel method for vector ν and reweighed least squares for κ, the (u+ 1)-th step of the
iterative process for obtaining the maximum penalized likelihood estimates of β, γ1, . . . ,γk

and κ by fixing λ, may be expressed as

β(u+1) =
(

n∑
i=1
X>i W

(u)
1i Xi

)−1
 n∑
i=1
X>i W

(u)
1i

z(u)
1i −

k∑
j=1
Bijγ

(u+1)
j

 ,
γ

(u+1)
j =

(
n∑
i=1
B>ijW

(u)
1i Bij

)−1
 n∑
i=1
B>ijW

(u)
1i

z(u)
1i −Xiβ

(u+1) −
∑
j∗ 6=j

Bij∗γ
(u+1)
j∗

 ,
κ(u+1) =

(
n∑
i=1
E>i W

(u)
2i Ei

)−1 [ n∑
i=1
E>i W

(u)
2i z

(u)
2i

]
,

for j = 1, . . . , k and u = 0, 1, 2, . . . , where β̂(0), γ̂(0)
j and κ̂(0) are the initial estimates,

z1i = η1i + T−1
1i ui, z2i = η2i + T−1

2i qi, W1i = T1iΣ−1
i T1i and W2i = T2iΥ−1

i T2i.

For the model BR-SPAM-GEE, there is one extra parameter to be estimated,
which is α. Thus, only for this model one more parameter will be updating in each
iteration. The estimation process of it will be made through maximum likelihood, using
an optimization algorithm. The one chosen for maximization process was the optim of the
software R using the method L-BFGS-B (Byrd et al., 1995). The updating, in the step
(u+ 1) will happen using the current estimates of the other parameters, replacing them in
the log-likelihood function, l(θ), defined in Equation (4.11). The optimization happens
and the new estimate for α is used to updating the other parameters. It will occurs until
the converge is reached.

4.5 Correlation parameters estimation
The results shown here are based on Liang and Zeger (1986). First, considering

that Cov(ui) can be
√
n-consistently estimated by

∑
i

uiu
>
i /n (Liang and Zeger, 1986).
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Unstructured

In this case, we have n∗(n∗ − 1)/2, where n∗ = max{n∗i }ni=1, parameters to be
estimated. Let ξtt′ be the (t, t′) element of R(ξ), for t 6= t′, which may be estimated by

ξ̂tt′ =
∑n
i=1 uituit′√∑n

i=1 u
2
it

√∑n
i=1 u

2
it′

Exchangeable

Here the diagonal elements of R(ξ) are 1 and the others are ξ, i.e., it is assumed
that the correlation between any two observations of the same individual is always the
same. Thus, ξ can be estimated by

ξ̂ =
∑n
i=1

2
n∗i (n∗i−1)

∑
t>t′ uituit′∑n

i=1
1
n∗i

∑n∗i
t=1 u

2
it

.

First-order autoregressive (AR-1)

In this case, the diagonal elements of R(ξ) are 1 and for the t-th line and t′-th
column are ξ|t−t′|, for t 6= t′, that is, we admit that the correlation between two instants of
time decays exponentially according to the distance of the observations. In this case, ξ
can be estimated by

ξ̂ =
∑n
i=1

∑n∗i−1
t=1 uitui(t+1)√∑n

i=1
∑n∗i−1
t=1 u2

it

∑n
i=1

∑n∗i
t=2 u

2
it

.

4.6 Effective degrees of freedom
Following Manghi et al. (2019), the effective degrees of freedom will be derived

considering the solution for the linear predictor, only related with ν, because it contains the
non-parametric component. Hence, the solution for the linear predictor at the convergence
of the iterative process, namely η̂1i = B∗i ν̂ = Ĥ(λ)ẑ1i, where Ĥ(λ) = B∗i (B∗>Ŵ1iB

∗ +
Λ)−1B∗>i Ŵ1i may be interpreted as a projection matrix or smoother, for i = 1, . . . , n.

Therefore, based on Green and Silverman (1993), the effective degrees of
freedom can be defined as df(λ) = trace{Ĥ(λ)}. Notice that df(λ1) corresponds to the
sum of the principal diagonal elements of the matrix (B∗>W1iB

∗+ Λ)−1B∗>W1iB
∗ from

(p+ 1)-th position to the (p+ s1)-th position, and so on for df(λj), for j = 1, . . . , k.

4.7 Estimation of smoother parameters
Also, following Manghi et al. (2019), for the selection parameter they suggest

to consider the generalized cross-validation method (Craven and Wahba, 1978; Wood,
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2017), which consists in selecting the λ, such that

λ̂ = argminλGCV(λ) = argminλ
∑n
i=1 u

>
i Σ̂−1

i ui

[1− n∗∗−1trace{Ĥ(λ)}]2
,

where n∗∗ =
n∑
i=1

n∗i .

4.8 Model selection criteria
Among others, we can cite the following information criteria for correlated data

models and some extensions: AIC(λ) = −2Q(θ̂) + 2(df(λ) + s∗), BIC(λ) = −2Q(θ̂) +
log(n∗∗)(df(λ) + s∗), HQIC = −2lp(θ̂,λ) + 2[s∗ + df(λ)] log(log(n)), AICc = AIC +
(2k∗∗(k∗∗ + 1))/(n− k∗∗ − 1), SABIC = −2lp(θ̂,λ) + [s∗ + df(λ)] log((n+ 2)/24) GAIC =
−2lp(θ̂,λ) + k∗[s∗ + df(λ)], where k∗ = 1, . . . , log(n), k∗∗ = [s∗ + df(λ)], where s∗ = q + 1
if the model is BR-SPAM-GEE and s∗ = q if the model is Beta-SPAM-GEE or Simplex-
SPAM-GEE, and Q(., .) denotes the respective quasi-likelihood function.

4.9 Obtaining standard errors
To obtain the covariance matrix, Cov(θ̂), and standard errors, SE(θ̂), consid-

ering the sandwich covariance estimator Ĵ−1 of θ̂, which can be consistently estimated
(Liang and Zeger, 1986) by:

Ĵ−1 =
(

n∑
i=1
Si(θ̂)

)−1 ( n∑
i=1
Q>i T̂iP̂id̂

∗
i d̂
∗>
i P̂

−1
i T̂iQi

)(
n∑
i=1
Si(θ̂)

)−1

, (4.16)

where Si(θ) is defined in Equation (4.15). Another option, following Manghi et al. (2017)
proposal, is to obtain the so-called naive standard errors using the covariance matrix J∗−1,
given by

Ĵ∗−1 =
(

n∑
i=1
Si(θ̂)

)−1 ( n∑
i=1
Q>i T̂iP̂iT̂iQi

)(
n∑
i=1
Si(θ̂)

)−1

.

Thereby, Cov(θ̂) is equal to Ĵ−1 or Ĵ∗−1 and SE(θ̂), to Ĵ−1/2 or Ĵ∗−1/2.

4.10 Hypothesis testing
To test the significance of linear statistical hypothesisCς = d, where rank(C) =

l, l ≥ p or l ≥ q, it can be used the Wald-type statistic (see Hardin (2005), for example),
that is,

ξW = (Cς̂ − d)>(CVςC>)−1(Cς̂ − d),

where under H0, ξW D−→
n→∞

χ2
l and, furthermore, ς can be either β, κ, Vς is the matrix of

variance-covariance regards to ς extract from Ĉov(θ̂).
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4.11 Model fit diagnostic tools
As said in the Sections 2.11 and 3.11, performing diagnostics analysis are

important in order to check the goodness-of-fit of the estimated model and to evaluate the
model assumptions. Thereby, it will be introduced for the SPAM-GEE models graphical
tools for detecting departures from the postulated model, influential observations and
local influential analysis.

4.11.1 Residual analysis

Some proposals of residuals could be using in this cases to analysis to goodness
of the fit, as for example, the the ordinary residuals based on the proposal of Venezuela
(2008), and later modified by Freitas et al. (2021) to deal with a full parametric model,
in which the mean and dispersion/precision parameter had linear predictors related with
each of them. For the graphical analysis of this residuals, QQ plot with envelope can be
done by building appropriate a simulated normal plot, via gaussian copulas to simulate
the random variables. However, it could entail a computational cost depending on the size
of the sample under study.

To circumvent this disadvantage, another option of residuals is the quantile,
used by us in the models for independent data. We use in the same development presented
in Section 2.11.2, which is, for the i-th subject in the t-th repeated measure, the quantile
residuals are defined as rit = Φ−1(F (Yit|θ̂)).

Some tests were conducted for us to evaluate if this proposal could be used
in the case of correlated data. Then, 100 replicas were generated from models and we
analyzed the mean, variance, kurtosis and skewness for the 100 residuals sample. In average
the quantile residuals presented a mean and a variance close to 0 and 1, respectively,
and kurtosis equals to 2.9 and a skeness close to 0. Furthermore, from the histogram of
each samples, the normality supposition seems to be reasonable for these residuals, thus
pointwise envelopes could be constructed based on the standard normal distribution, as
made in the independent models.

Also, for the proposal residuals, usual plots as the index plot of residuals can
be done to evaluate goodness of the fit.

4.11.2 Local Influence

As made in the previous Sections 2.11.4 and 3.11.1, it will be developed
local influence tools for our approach via GEE. Cadigan and Farrell (2002) proposed
the generalized the local influence instead of likelihood displacement, which is given by
FD(ω) = 2[F(θ̂)− F(θ̂ω)], where F is a fit function, assumed doubly differentiable for
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θ, whose estimate θ̂ is the solution of (∂F(θ)/θ) = 0. The aim is to study the local
behaviour of FD(ω) for any value of ω in a neighborhood of ω0, which represented the
null perturbation vector, such that F(θ̂) = F(θ̂ω0) ⇒ FD(ω0) = 0. Venezuela et al.
(2011) proposed under the Cadigan and Farrell (2002) methodology, replace the likelihood
equations by the estimating equations and find the eigenvector lmax corresponding to the
largest eigenvalue of the matrix

B̂G = −∆S(θ)−1∆
∣∣∣
θ=θ̂,ω=ω̂

,

where ∆ = (∂Ψ1p(θ|ω)/∂ω>, ∂Ψ2(θ|ω)/∂ω>)> and S(θ) is the sensibility matrix. If the
interest is in a local influence relative to a partition of θ = (θ>1 ,θ>2 )>, for example θ1, the
lmax corresponding to the largest eigenvalue of the matrix −∆(S−1(θ)− S(θ)−1

c )∆ can
be used as a measure for this purpose, where

S(θ)c =
 0 0

0 S22

 , where S22 = ∂Ψ1(θ)
∂θ>2

.

As Freitas et al. (2021) said, this concept is important when we want to build measures of
local influence for ν and κ individually. Three perturbation schemes will be developed here
for the models: case-weight perturbation, response perturbation and working correlation
matrix perturbation.

Case-weight perturbation

Let ω = (ω>1 , . . . ,ω>n )>, where ωi = (ωi1,...,ωin∗
i
)>, i = 1, . . . , n, be a perturbed

vector. The GEE’s under this perturbation scheme are given by

Ψ∗(ν,κ|ω) = Q>WT−1diag{ω}d∗ −Λ2.

The non perturbation vector, ω0, assumes ωit = 1, i = 1, . . . , n, t = 1, . . . , n∗i . For this
scheme, the matrix B̂G is given by

diag{d∗}T−1W>Q(Q>WQ)−1Q>WT−1diag{d∗}
∣∣∣
θ=θ̂,ω=ω0

.

Response perturbation

Consider the additive perturbation scheme in yit given by yωit = yit+ωit, where
non perturbation vector assumes ωit = 0, i.e., ω0 = 0. Analyzing the the concatenation of
GEE’s defined in Equation (4.14), the only quantity that depends on y is the d∗. Therefore,
considering d∗ω the vector d∗ perturbed in the response variable. The perturbed estimating
equation is given by:

Ψ∗(ν,κ|ω) = Q>WT−1diag{ω}d∗ω −Λ2,
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where dω = (d∗>ω1 , . . . ,d
∗>
ωn)>, d∗ωi

= (d∗ωi1, . . . , d∗ωin∗i )>, i = 1, . . . , n. In this case, the matrix
∆ is given by Q>WT−1B, where B = ∂d∗ω/∂ω

> = diag{∂dω11/∂ω11, . . . , ∂dωnn∗i /∂ωnn∗i }.
The matrix B̂G under response perturbation is given by

BT−1W>Q(Q>WQ)−1Q>WT−1B
∣∣∣
θ=θ̂,ω=ω̂0

.

For the Beta-SPAM-GEE, we have that

∂uωit
∂ωit

= 1,

∂qωit
∂ωit

= µit

[
1

yit + ωit
+ 1

1− yit − ωit

]
− 1

1− yit − ωit
,

for the BR-SPAM-GEE,

∂uωit
∂ωit

= 1, ∂qωit
∂ωit

= 2(yit − µit),

and for the Simplex-SPAM-GEE,

∂uωit
∂ωit

= 1
φitµ3

it(1− µit)3

[
3(yωit − µit)2

yωit(1− yωit)
− (yωit − µit)3(1− 2yωit)

y2
ωit(1− yωit)2 + 1

]
,

∂qωit
∂ωit

= µit

[
1

yit + ωit
+ 1

1− yit − ωit

]
− 1

1− yit − ωit
,

therefore B = (∂uω/∂ω, ∂qω/∂ω)>.

Working correlation matrix perturbation

Let R(ξ) be a working correlation matrix characterized by a
(
n∗i
2

)
-vector

ξ =
(
ξ12, . . . , ξ(n∗

i
2 )
)>

. As each unit has its own working correlation matrix, a possible
perturbation scheme in the correlation vector ξ can be given by (Venezuela et al., 2011),
ξωi(jl) = ξjl

ωi(jl)
, where i = 1, . . . , n, j < l and j, l = 1, . . . , n∗i . For this perturbation scheme,

ω = (ω1(12), . . . , ω1((n∗i−1)n∗i ), . . . , ωn(12), . . . , ωn((n∗i−1)n∗i ))> is a perturbation vector and ω0

is a vector with ones. The perturbation estimating equation is given by:

Ψ1(β,ω) = X>T1Σ−1
ω u−Λ.

Then, each column of matrix ∆ can be expressed by:

∂Ψ1p(ν,ω)
∂ω>(jl)

= X>T1
∂Σ−1

ω

∂ω>(jl)
u,
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where the derivative of Σ−1
ω with respect to ω>(j,l) is given by ∂Σω/∂ω

> =
(
∂Σω1/∂ω

>
1 , . . . ,

∂Σωn/∂ω
>
n

)
. The i-th diagonal block of Σω is Σωi =

√
Var(ui)R(ξωi)

√
Var(ui), with

ξωi =
(
ξωi(12), . . . , ξωi((n∗i−1)n∗i )

)
and i = 1, . . . , n. We also have that:

∂Σωi

∂ωi(jl)
=
√
Var(ui)

∂R(ξωi)
∂ωi(jl)

√
Var(ui),

where ∂R(ξωi)/∂ωi(jl) is a (n∗i × n∗i ) symmetric matrix with null diagonal and jl and lj
elements are equal to −ξjl, with i = 1, . . . , n and j, l = 1, . . . , n∗i .

4.12 Simulation Studies
In this section, the results of four simulation studies. Section 4.12.1 is related to

the analysis of parameter recovery. In Section 4.12.2, we. In Section 4.12.3 is present a link
function misspecification study. The results for the first study is in Appendix, whereas the
other studies will be available at https://github.com/aureaflg/Simulations-study.
git, where we made reproducible codes for one can view the graphs and tables. The
correlated data has been generate for each scenario is using t-copulas based on Student-t
distribution considering a degree of freedom equal to 3.

4.12.1 Study 1: Parameters recovery

Here we considered some scenarios of interest defined by the combination of the
levels of some factors of interest. The factors (with the respective levels within parenthesis)
are number of subjects and their repetition number (10 subjects and 5 times, 10 subjects
and 10 times, 50 subjects and 10 times) which implies in a sample (n) (50,100,500),
regression model (Beta, Simplex, BR), link function (probit, logit, cauchit, cloglog, loglog),
modeled parameters (mean and dispersion) and considering the correlation matrix as
exchangeable. For each scenario, R = 100 replicates of Monte Carlo were generated. Each
scenario are described below.

Furthermore, the considered linear predictors and link functions for related
scenarios presented in Table 16, are given by g(µit) = β1Xit+cos(Zit), log(φit) = κ0 +κ1Eit,
for t = 1, . . . , n∗i i = 1, . . . , n∗∗, where Xit

iid∼ uniform(0, 1), Eit iid∼ uniform(0, 1) and
Zit

iid∼ uniform(0, 3π), Fit iid∼ uniform(0, 1), Mit
iid∼ uniform(0, 1), is either the probit, logit,

cauchit, cloglog. The actual parameter values considered loglog link were β1 = 1, κ0 = 1,
κ1 = 2, α = 0.7, ρ0 = τ0 = −1.8 and ρ1 = τ1 = 1.5, whereas for the other link were:
β1 = −1, κ0 = 2, κ1 = −3, α = 0.7, ρ0 = τ0 = −1.8 and ρ1 = τ1 = 1.5. This change to
the loglog link function is justified by the fact that, depending on the parameters chosen,
generating from the models using this link function can generate values very close to one

https://github.com/aureaflg/Simulations-study.git
https://github.com/aureaflg/Simulations-study.git
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Table 16 – Scenarios of simulation study 1

Regression model
(modelling mean and dispersion) n Link functions

betabeta(µit, φit)
50
100 probit, logit, cauchit, cloglog and loglog.
500

simplex(µit, φit)
50
100 probit, logit, cauchit, cloglog and loglog.
500

BR(µit, φit, α)
50
100 probit, logit, cauchit, cloglog and loglog.
500

or zero, which could compromise the fit of the models to the simulated data even for the
BR-SPAM-GEE model.

For all models, when n = 50, 40 knots were used and the smoothing parameter
was fixed at λ = 500, whereas, when n = 100 or n = 500, 50 knots were used and the
smoothing parameter was fixed at λ = 500. These values lead to a smooth fitted curve for
non-parametric component. As the correlation matrix considered was the exchangeable,
the only correlation parameter ξ was fixed as 0.8.

The related results are presented in Appendix B.3, where Figures 64 to 68
are related to Beta-SPAM-GEE, Figures 69 to 73 are related to Simplex-SPAM, and,
Figures 74 to 78 concern to BR-SPAM.

In a general way, for all models the regression parameters were properly
recovered, as the sample size increases, the estimates become more accurate. The estimated
curves are for all sample sizes representing the behavior of the actual curve, in general
well. Specifically for the BR-SPAM-GEE the parameter α under probit the recovery was
not good enough. In these cases, the sample size increases as well as the bias of estimates
under probit and under logit, the estimates are better for sample size 50 than sample
size 100. Furthermore, for all models the correlation parameter ξ was under estimated. A
possible reason for this is happening is that the copulas used to generate a dependency
structure, which is an approximation of the true correlation matrix, can generate bias in
the adjustment.

4.12.2 Study 2: Correlation matrix misspecification

In this section we considered only the scenarios varying the correlation matrix
(exchangeable,AR-1,unstructured), the regression models (Beta,Simplex,BR) and the
parameter related with correlation ξ (0.8,0.3). For generating model, we setting the sample
size in 100 (10 subjects and 10 repeated measure), choose the link function as cloglog with
R=1 replica, we setting the exchangeable as the structure of correlation matrix and one
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value for ξ (0.8 and 0.3) and then we fit the simulated data using the others correlation
structures. The same model defined in study 1 (see Section 4.12.1) were considered here,
except by the parameter ξ, which is either 0.8 and 0.3 and g1(.) is setting is cloglog.

Although the estimates were, in general, properly recovered under the three
correlation structure, it was possible to notice that fitted parameters with BR-SAM-GEE
under the AR-1 structure were closer to the actual value of parameters. In other cases,
the AR-1 and unstructured had the same or slightly worse performance of exchangeable.
It can be concluded that the recovery is reasonable even under misspecification.

4.12.3 Study 3: Link function misspecification

Only the scenarios varying the regression models (beta, simplex, BR) and the
link functions (probit, logit, cauchit, cloglog,loglog) are considered. We set the sample size
in 500 (50 subjects and 10 repeated measure), modeling the mean and the dispersion. We
generate only one replica from each model, setting a distribution and a link function for it,
and fit the simulated data using a model with the same distribution but varying the link
function, using all the different ones from the one used to generate the simulated data. In
Table 17 we present the 60 scenarios of interest.

Table 17 – Scenarios of simulation study 2

Distribution that will generate
and fit the simulated data Actual link function Link function considered in

fitted model
beta(µit, φit), logit probit, cauchit, cloglog and loglog

simplex(µit, φit)
probit logit, cauchit, cloglog and loglog
cauchit logit, probit, cloglog and loglog

or BR(µit, φit, α) cloglog logit, probit, cauchit and loglog
loglog logit, probit, cloglog and cauchit

The considered linear predictors and link functions for related scenarios pre-
sented in Table 17, are given by g(µit) = β1Xit + cos(Zit), log(φit) = κ0 + κ1Eit,
for i = 1, . . . , n, t = 1, . . . , n∗i , where Xit

iid∼ uniform(0, 1), Eit iid∼ uniform(0, 1) and
Zit

iid∼ uniform(0, 3π), is either the probit, logit, cauchit, cloglog. The actual parameter
values considered loglog link were β1 = 1, κ0 = 1, κ1 = 2, α = 0.7, ρ0 = τ0 = −1.8 and
ρ1 = τ1 = 1.5, whereas for the other cases were β1 = −1, κ0 = 2, κ1 = −3, α = 0.7,
ρ0 = τ0 = −1.8 and ρ1 = τ1 = 1.5. This change for actual values of parameters under
loglog link is justified for the same reason discussed in Section 4.12.1. We considered both
the comparison of the observed and predicted values as well as the parameter recovery.
The correlation structure used were exchangeable, with ξ = 0.8.

The Beta-SPAM-GEE and Simplex-SPAM-GEE presented better recovery of
real mean when the link function that generating was symmetric and the link of fitted
model was also symmetric. In general the parameters, in these cases, were properly
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recovered, even when the fitting model do not match with the one the fitted model. For the
BR-SPAM-GEE, in general, the well-recovery depends on if the generating and fitting link
function are both symmetric, when one of them are not, the parameter is bad recovery.

4.13 Real data analysis
The data set that will be analyzed in this section is related to an ophthalmology

study on the use of intraocular gas in retinal repair surgeries Meyers et al. (1992). The
response is the percent of gas left in the eye recorded as proportion (a percent), the
covariates are the Gas level concentration with levels equal to (-1, 0 and 1), corresponding
to the concentration levels 15%, 20% and 25%, respectively and the Time (days) after
the gas injection. This data was previously analyzed by Song and Tan (2000) and X.-
K. Song et al. (2004) considering the Simplex regression model under constant and varying
dispersion, respectively. Their models suggest the use of the logarithm of time and the
squared logarithm of time terms.

The number of subjects was 31, and they were collected in different amounts of
time. The subject 31, were the only one collected 15 times, the others were collected at most
11 times, because it is an unbalanced study. Then, to be possible estimate the correlation,
the last four observations of this subject were removed from fitting. Furthermore, Figure
23c indicates a non-linear relation between Gas concentration and Logarithm of time. Also,
Figure 23b indicates that the response variability may be related Gas levels covariate as
well. Figure 23f indicates that the correlation structure decay over lags.

Under our approach, the model Simplex-SPAM-GEE did not converge using all
available link functions and correlation matrix. One reason could be the vector scores (ui
and qi) chosen here, which were different from those chosen by X.-K. Song et al. (2004).
Another difference from their approach is a generalized estimating equation defined by
them to estimate the correlations parameters. Their approach available in the R package,
simplexreg, only works for just one combination of link function and correlation matrix,
also using exactly the same set of covariates, which may indicate a high sensitivity of
models based on Simplex for some cases.

Therefore, for the fit under our approach will considered only Beta-SPAM-GEE
and BR-SPAM-GEE using the combination of the link function for the mean and the
dispersion parameter and the correlation matrix that made the models converged, which are
presented in Table 18. For choose the correlation matrix, the decay saw in the explanatory
analysis indicates the AR-1 as the best choice, but we decided also compare with the
Exchangeable structure.
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(b) Boxplots of Gas concentration by cate-
gories of Levels concentration.
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(c) Scatter plot of Gas concentration versus
Logarithm of time.
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(d) Scatter plot of Gas concentration versus
Squared logarithm of time.
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(e) Individual profiles.

0.5

1.0

1.5

2.0

2.5 5.0 7.5 10.0
Lag

S
am

pl
e 

Va
rio

gr
am

Spline
Variance

(f) Variogram.

Figure 23 – Explanatory analysis plots of risk perception data set.

Table 18 – Structure for each model.

Models Link function for µ Link function for φ Correlation matrix

Beta-SPAM-GEE
cloglog, cauchit,

probit,logit sqrt Exchangeable and AR-1
loglog log

BR-SPAM-GEE cloglog, loglog,
cauchit,probit,logit sqrt Exchangeable and AR-1
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Initially, we fitted a general model for all combination in the Table 18:

Yitl ∼ beta(µitl, φitl) or BR(µitl, φitl, α),
g1(µitl) = β0 + (β1)l + h1(z∗ti) + h2(z∗∗ti ),
g2(φitl) = κ0 + (κ1)l + κ2(z∗it), i = 1, . . . , 31, t = 1, . . . , n∗i ,

where, l = −1, 0, 1, and (β1)−1 = (κ1)−1 = 0. The parameters (β1) and (κ1) are related
with Gas levels and κ2 are associated with the variable z∗, which is the logarithm of Time.
Also, z∗∗ is the Squared logarithm of time. Here the logarithm and the squared logarithm
function is being used following the proposal of Song and Tan (2000) and X.-K. Song et al.
(2004).

And then, for each model, we try some set of covariates for the fit. However,
the addition of some covariates made the estimation process does not converge. Therefore,
we considered only the covariates significant to 5% level and which that made possible the
estimation process convergence. Therefore, for Beta-SPAM-GEE, the final model was (for
all link functions for the mean and the dispersion parameter the selected covariates were
the same):

Yitl ∼ beta(µitl, φitl),
g1(µit) = β0 + h1(z∗i ),
g2(φitl) = κ0 + (κ1)l, i = 1, . . . , 31, t = 1, . . . , n∗i ,

(4.17)

l = −1, 0, 1, and (κ1)−1 = 0. Then, the covariate Gas levels remains in φ predictor in the
levels 20% and 25% concentration (levels 0 and 1) and other (level -1).

And, for BR-SPAM-GEE, the final model was (for all link functions for the
mean and the dispersion parameter the selected covariates were the same):

Yitl ∼ BR(µitl, φitl, α),
g1(µit) = β0 + h2(z∗∗i ),
g2(φitl) = κ0 + (κ1)l, i = 1, . . . , 31, t = 1, . . . , n∗i

l = −1, 0, 1, and (κ1)−1 = (κ1)0 = 0. The covariate Gas levels remains in φ predictor only
in the levels 25% concentration (level=1).

Then, based on the information criteria (IC), we chosen the final model, which
is the one selected as the best model among those that were proposed in this work for
this data. All IC, except SABIC, see Tables 20, indicate, the Exchangeable as the best
correlation structure for this data and the Beta-SPAM-GEE under logit (mean) and
sqrt (dispersion) link functions as the better choice. Therefore, the final model is the
one presented in Equation 4.17 where g1(.) is logit, g2(.) is the sqrt and the correlation
structure is Exchangeable.
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Now, we will check the goodness of fit of the selected model at the global and
local analysis. Figure 24b shows the fitted curve for non-parametric part and Figure 24a,
the adjusted mean for model Beta-SPAM-GEE. The effective degrees of freedom were 4.20
using 10 knots and a smooth parameter λ = 10, which was chosen by minimizing the AIC.
Some adjustment results can be seen in Figure 25. All the residuals are well within the
the confidence bands of the QQ plot (Figure 25a), even though there is some no random
pattern. The other residuals plots show no tendency (Figure 25b) as well the normality
seems to be reasonable according to the histogram (Figure 25d).

Table 19 – Inferential results for the Beta-SPAM-GEE.

Parameters Estimate SE p-value IC95%
β0 0.67 0.31 0.0294 [0.07;1.28]
κ0 1.69 0.15 <0.0001 [ 1.40;1.97]

(κ1)0 -3.26 0.16 <0.0001 [-3.58;-2.95]
(κ1)1 -3.66 0.19 <0.0001 [-4.03;-3.29]

Correlation
parameter ξ 0.60 - - -
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(b) Observed and predicted response mean
as a function of Logarithm of time.

Figure 24 – Estimated curves for Beta-SPAM-GEE.

Moreover, Figure 26 presents the the local influence analysis under case-weight
perturbation related to µ and φ (Figures 26a and 26b, respectively), response perturbation
scheme related to µ and φ (Figures 26c and 26d, respectively) and the correlation
perturbation scheme (Figure 26e).

From Figure 26, we see that the observations (with the respective scheme
and parameter) #72,#73,#82,#83 (Case-weight for µ),#144 (Case-weight for φ), #149
(Response for µ) and #144 (Response for φ) were flagged, whereas for the for correlation
perturbation scheme no observations were flagged.

After removing each flagged observation one at a time, the significance of the
parameters are not modified. Also, the behavior of the residuals and QQ plot remained
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Figure 25 – Results of fitted Beta-SPAM-GEE.

the same. When #72,#73,#82,#83 were removed, some new observations were flagged
in the local influence analysis under the case-weight perturbation, which may indicate
that these observations could be covering up the behaviour of these others. In conclusion,
once that the exclusion of the flagged observations did not lead to significant changes on
the overall model fit, no further changes are necessary. From the final model, it possible
to notice that, Gas levels variable is significant factor attributed to the heterogeneous
dispersion. Also, the estimated non-parametric curve indicates that the Gas concentration
slowly until the logarithm of the time 2, and, after this point, its decay rate increases.
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Figure 26 – Index plot of lmax under perturbation schemes for Beta-SPAM-GEE.



Chapter 4. SPAM for dependent data 124

Ta
bl
e
20

–
In
fo
rm

at
io
n
C
rit

er
ia

fo
r
th
e
tw

o
m
od

el
s.

Ex
ch
an

ge
ab

le
A
R
-1

M
od

el
Li
nk

fu
nc
tio

ns
µ
an

d
φ

A
IC

A
IC

C
SA

BI
C

H
Q
IC

BI
C

A
IC

A
IC

C
SA

BI
C

H
Q
IC

BI
C

Be
ta
-S
PA

M
-G

EE

cl
og
lo
g
an

d
sq
rt

19
2.
04

19
3.
05

17
8.
27

20
1.
98

21
6.
55

19
2.
15

19
3.
41

17
6.
51

20
3.
44

22
0.
00

lo
gl
og

an
d
lo
g

19
0.
56

19
1.
51

17
7.
30

20
0.
14

21
4.
17

19
0.
10

19
1.
27

17
5.
11

20
0.
92

21
6.
78

pr
ob

it
an

d
sq
rt

19
1.
59

19
2.
63

17
7.
62

20
1.
68

21
6.
47

19
1.
32

19
2.
62

17
5.
48

20
2.
77

21
9.
54

lo
gi
t
an

d
sq
rt

19
0.
67

19
1.
50

17
8.
42

19
9.
51

21
2.
48

19
0.
47

19
1.
50

17
6.
55

20
0.
52

21
5.
24

BR
-S
PA

M
-G

EE

ca
uc
hi
t
an

d
sq
rt

32
7.
74

32
8.
67

31
4.
68

33
7.
17

35
0.
99

36
6.
23

36
7.
47

35
0.
72

37
7.
43

39
3.
84

lo
gi
t
an

d
sq
rt

21
2.
55

21
3.
64

19
8.
16

22
2.
94

23
8.
16

22
0.
49

22
1.
95

20
3.
60

23
2.
69

25
0.
57

pr
ob

it
an

d
sq
rt

21
7.
49

21
8.
93

20
0.
68

22
9.
62

24
7.
41

22
6.
69

22
8.
69

20
6.
50

24
1.
27

26
2.
64

cl
og
lo
g
an

d
sq
rt

22
7.
94

22
9.
28

21
1.
80

23
9.
60

25
6.
69

23
9.
66

24
1.
52

22
0.
25

25
3.
67

27
4.
21

lo
gl
og

an
d
sq
rt

25
2.
78

25
4.
10

23
6.
75

26
4.
35

28
1.
31

27
0.
47

27
2.
27

25
1.
47

28
4.
19

30
4.
30



125

5 Semi-parametric additive models for depen-
dent and limited augmented data

In this Chapter we present extensions of the models developed in Chapter 4,
allowing the response belongs to the [0,1] interval (as well as the respective particular
cases). The regression structures and probability distributions are those presented before.
Therefore, the model class developed in the previous Chapter is a particular case of this
developed in this Chapter. The proposal models will be the Semi-parametric Additive
ZOAB (ZOAB-SPAM-GEE), the Semi-parametric Additive ZOAS (ZOAS-SPAM-GEE),
and the Semi-parametric Additive ZOABR (ZOABR-SPAM-GEE) models via GEE.

5.1 Models
Let Y = (Y >1 , . . . ,Y >n )>, with Yi = (Yi1, . . . , Yin∗i )>, i = 1, . . . , n be the re-

sponse vector, and considering the marginal distribution of Yit as Yit ∼ ZOAB(µit, φit, p0it,

p1it), ZOAS(µit, φit, p0it, p1it) or ZOABR(µit, φit, p0it, p1it, α) , for t = 1, . . . , n∗i , i = 1, . . . , n.
the Semi-parametric Additive Model via GEE (SPAM-GEE) for any of the three dis-
tributions, ZOAB-SPAM-GEE, ZOAS-SPAM-GEE and ZOABR-SPAM-GEE, have the
following systematic component:

η1 = g1(µ) = Xβ +
k∑
j=1

hj(zj),

η2 = g2(φ) = Eκ,

(ζ0, ζ1) = H(p0,p1) = (h0(p0,p1), h1(p0,p1))

(5.1)

where n∗∗ =
n∑
i=1

n∗i is the sample size, µi = E(Yi|Yi ∈ (0, 1)), p0i = P(Yi = 0), p1i = P(Yi =

1) and 1− p0i − p1i = P(Yi ∈ (0, 1)). The functions η1i = X>i β, η2i = E>i κ, ζ0i = F>i ρ,
ζ1i = M>

i τ are linear predictors, β = (β1, . . . , βp)> ∈ Rp, κ = (κ1, . . . , κs)> ∈ Rs,
ρ = (ρ1, . . . , ρs0)> ∈ Rs0 and τ = (τ1, . . . , τs1)> ∈ Rs1 are vectors of unknown parameters.

Also, X = (X>1 , . . . ,X>n )>, Xi = (xi1, . . . ,xin∗i )>, E = (E>1 , . . . ,E>n )>, Ei =
(ei1, . . . , ein∗i )>, F = (F>1 , . . . ,F>n )>, Fi = (fi1, . . . ,fin∗i )>,M = (M>

1 , . . . ,M
>
n )>,Mi =

(mi1, . . . ,min∗i
)>, are design matrices of dimension, respectively, n∗∗ × p, n∗∗ × s, n∗∗ × s0

and n∗∗ × s1, in which xi = (xit1, . . . , xitp)>, ei = (eit1, . . . , eits)>, fi = (fit1, . . . , fits0)>,
mi = (mit1, . . . ,mits1)>, for t = 1, . . . , n∗i and i = 1, . . . , n, zj = (z>1j, . . . ,z>nj)>, j =
1, . . . , k, zij = (zi1j, . . . , zin∗i j) is a specification vector associated with non-parametric
components and h1, . . . , hk are an unknown smooth functions.
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In addition, µ = (µ>1 , . . . ,µ>n )>, µi = (µi1, . . . , µin∗i )>, φ = (φ>1 , . . . ,φ>n )>,
φi = (φi1, . . . , φin∗i )>, p0 = (p>01, . . . ,p

>
0n)>, p0i = (p0i1, . . . , p0in∗i )>, p1 = (p>11, . . . ,p

>
1n)>,

p1i = (p1i1, . . . , p1in∗i )>, g1(.) and g2(.) are strictly monotonic and twice differentiable link
functions, such that, g1 : (0, 1) → R and g2 : R+ → R, while H is admitted being a
bijective transformation of the set C = {(p0i, p1i) : 0 < p0i < 1, 0 < p1i < 1− p0i} to R2,
twice differentiable. As discussed in Section 3.1, it can define H as,

H(p0i,p1i) = (h0(p0i,p1i), h1(p0i,p1i)) =
(
h

(
p0i

1− p0i − p1i

)
, h

(
p1i

1− p0i − p1i

))
,

and following Ospina (2008), the h chosen was the logarithm function, it results that
p0i

1− p0i − p1i
= exp(ζ0i),

p1i

1− p0i − p1i
= exp(ζ1i),

and,

p0i = eζ0i

1 + eζ0i + eζ1i
, p1i = eζ1i

1 + eζ0i + eζ1i
,

1− p0i − p1i = 1
1 + eζ0i + eζ1i

.

(5.2)

The hj(zj) can be rewritten as discussed before in the Section 1.2.1 as

hj(zj) =
qj∑
l=1

γljblj(zj), (5.3)

with γlj being the coefficients to be estimated, blj ’s being l-th cubic B-spline that compounds
the j-th P-spline at the vector zj, j = 1, . . . , k and l = 1, . . . , qj. As cubic B-splines are
being adopted here, blj = Bl,dl

with dl = 4 as defined in Section 1.2.1, qj is the number
of cubic B-splines that compounds the j-th P-spline, kj = dl + qj is the number of knots.
Thus, it is possible to rewrite Equation (4.6) as follow for the i-th observation, i = 1, . . . , n

η1i = g1(µi) = X>i β + b>i1γ1 + · · ·+ b>ikγk,

where bij = (b1j(zij), . . . , bqjj(zij))> and γj = (γj1, . . . , γjqj
)>, for j = 1, . . . , k. Return to

matrix form of η1, this predictor of the model can be rewritten as

η1 = g1(µ) = Xβ +
k∑
j=1
Bjγj, (5.4)

whereBj is a matrix of dimension n∗∗×qj composed by blj(zij), for i = 1, . . . , n, j = 1, . . . , k
and l = 1, . . . , qj.

5.2 Penalized GEE
Based on the proposal of Liang and Zeger (1986), described in Section 4.1,

it will be developed four distinct GEE’s for the mean dispersion/precision, probability
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of occurrence of zero and one parameters, based on Section 4.3, for ZOAS-SPAM-GEE,
ZOAB-SPAM-GEE and ZOABR-SPAM-GEE.

To construct the GEE’s, given ν = (β>,γ>1 , . . . , γ>k )>, κ, σ = (ρ>, τ>)>, lets
consider the vectors d∗i = (u>i , q>i , c0i, c1i)>, ui = ui(yi,ν,κ) = (ui1, . . . , uin∗i )>, qi =
qi(yi,ν,κ) = (qi1, . . . , qin∗i )> , c0i = c0i(yi,ρ, τ ) = (c0i1, . . . , c0in∗i )>, c1i = c1i(yi,ρ, τ ) =
(c1i1, . . . , c1in∗i )>, i = 1, . . . , n, where ui, qi, c0i and c1i are the zero mean vectors as defined
in Equation (4.3) related to the µit, φit, p0it and p1it, respectively, mutually independent
and satisfying the properties of regular estimating functions (Crowder, 1987).

The choices for ui, qi, c0i and c1i for all models will be made as the same way
of Section 4.3. The choices will be made to bring advantages in the algorithm, as the
the insensitivity property (Jørgensen and Knudsen, 2004), which allows a way of update
the GEE’s for mean and dispersion/precision parameters, in the estimation algorithm,
separately.

Let us to define a quantity important for next subsections. Given that the
distributions considering here, ZOAB, ZOAS and ZOABR, are a mixing of two other
distributions (beta/simplex/beta rectangular with a Bernoulli), it is useful to define for
each Yit, the variable Z∗i as

z∗i =
0, if yi ∈ (0, 1)

1, if yi ∈ {0, 1}
(5.5)

It implies that when Z∗i = 0, Yi follows the beta(µit, φit)/simplex(µit, φit)/BR (µit, φit, α)
distributions, while, when Z∗i = 1, Yi follows the Bernoulli(%) distribution, where % =
p1it/(p0it + p1it). It is also known that the probability of Z∗i = 1, P(Yi = 0 or Yi = 1) =
P(Z∗i = 1) is equal to p0i + p1i, and, as consequence P(Z∗i = 0) = 1 − p0i − p1i. Thus,
Z∗i ∼ Bernoulli(p0i + p1i). Therefore, more details of the components that will compound
the GEE’s for each model, are described in the next subsections.

5.2.1 Components for ZOAB-SPAM-GEE

For the model based on the ZOAB distribution, the log-likelihood function
θ = (β>,γ>1 , . . . ,γ>k ,κ>,ρ>, τ>)>, considering ϕ = (β>,γ>1 , . . . ,γ>k ,κ>)> and ϑ =
(ρ>, τ>)>, is defined as l(θ) = l1(ϑ) + l2(ϕ), where,

l1(ϑ) =
n∑
i=1

z∗i [(1− yi) log(p0i) + yi log(p1i)] + (1− z∗i ) log(1− p0i − p1i),

l2(ϕ) =
n∑
i=1

(1− z∗i ){log(Γ(φi))− log(Γ(µiφi))− log(Γ([1− µi]φi))

+ [µiφi − 1] log(yi) + ([1− µi]φi − 1) log[1− yi]};
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µi = g−1
1 (η1i), η1i = x>i β +

k∑
j=1
b>ijγj, φi = g−1

2 (η2i), η2i = e>i κ, p0i and p1i defined in the

Equation (5.2).

For this model, the quantity qi, c0i and c1i will be defined as the score functions.
Hence, ui, qi, c0i and c1i are given by,

ui = (1− z∗i )(yi − µi),
qi = (1− z∗i )(µi(y∗i − µ∗i ) + log(1− yi)−Ψ((1− µi)φi) + Ψ(φi)),
c0i = z∗i (1− yi)− p0i,

c1i = z∗i yi − p1i

(5.6)

where µ∗ = (µ∗i1, . . . , µ∗in∗i )>, µ∗it = Ψ(µitφit) − Ψ[(1 − µit)φit], y∗ = (y∗i1, . . . , y∗in∗i )> and
y∗it = log[yit/(1 − yit)], for i = 1, . . . , n and t = 1, . . . , n∗i , with Ψ(.) denoting digamma
function, which is, Ψ(z) = ∂ log Γ(z)/∂z, for z > 0. It can be noticed that E(uit) = 0 and, as
qi, ci1 and ci1 are the score functions related to φi, p0i and p1i, respectively, which implies to
E(qit) = 0⇔ E(log(1− yit)) = Ψ((1−µit)φit) + Ψ(φit), E(c1it) = 0⇔ E(z∗it(1− yit)) = p0it

and E(c2it) = 0 ⇔ E(z∗ityit) = p1it, respectively. Thus, the vectors ui, qi, c1i and c2i

generate an optimal class of functions and they are vector with zero mean, mutually
independent and satisfying the properties of regular estimating functions (Crowder, 1987).
For the i-th subject, some quantities, which will be used in the next sections, are defined
below

T1i = −E
(
∂ui
∂η>1i

)>
= −E

(
∂ui
∂µi

∂µi
∂ηi

)>
= G1i,

T2i = −E
(
∂qi
∂η>2i

)>
= −E

(
∂qi
∂φi

∂φi
∂η2i

)>
= G2iCi,

T21i = −E
(
∂ui
∂η>2i

)>
= −E

(
∂ui
∂φi

∂φi
∂η2i

)>
= 0,

T12i = −E
(
∂qi
∂η>1i

)>
= −E

(
∂qi
∂µi

∂µi
∂η1i

)>
= G1iDi,

T3i = −E
(
∂c0i

∂ζ>0i

)>
= −E

(
∂c0i

∂p0i

∂p0i

∂ζ0i

)>
= G3i

T4i = −E
(
∂c1i

∂ζ>1i

)>
= −E

(
∂c1i

∂p1i

∂p1i

∂ζ1i

)>
= G4i

T34i = −E
(
∂c0i

∂ζ>1i

)>
= −E

(
∂c0i

∂p0i

∂p0i

∂ζ1i

)>
= −E

(
∂c1i

∂ζ>0i

)>
= −E

(
∂c1i

∂p1i

∂p1i

∂ζ0i

)>
= G5i

where, Σi = Cov(ui) = A
1/2
i R(ξ)A1/2

i , Ai = diag{ai1, . . . , ain∗i }, ait = V ar(Yit) = [µit(1−
µit)]/(1 + φit), G1i = diag{(∂µi1/∂η1i1), . . . , (∂µin∗i /∂η1in∗i )}, G2i = diag{(∂φi1/∂η2i1), . . . ,
(∂φin∗i /∂η2in∗i )}, Ci = diag{ci1, . . . , cin∗i }, cit = (1 − z∗it)(−Ψ′(φit) + µ2

itΨ′(µitφit) + (1 −
µit)2Ψ′((1 − µit)φit)), Di = diag{di1, . . . , din∗i }, dit = (1 − z∗it)φit[µitΨ′(µitφit) − (1 −
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µitΨ′(1−µit))], G3i = diag{g3i1, . . . , g3in∗i }, g3it = p0it(1−p0it), G4i = diag{g4i1, . . . , g4in∗i },
g4it = p1it(1 − p1it), G5i = diag{g5i1, . . . , g5in∗i }, g5it = −p0itp1it, t = 1, . . . , n∗i and i =
1, . . . , n. Also, R(ξ) is a (n∗i ×n∗i ) symmetric matrix satisfying the conditions for a working
correlation matrix (Liang and Zeger, 1986), which depends on a correlation parameter
vector ξ that is the same for all subjects.

5.2.2 Components for ZOAS-SPAM-GEE

For the model based on the ZOAS distribution, the log-likelihood function
for θ = (β>,γ>1 , . . . ,γ>k ,κ>,ρ>, τ>)>, considering ϕ = (β>,γ>1 , . . . ,γ>k ,κ>)> and ϑ =
(ρ>, τ>)>, is defined as l(θ) = l1(ϑ) + l2(ϕ), where,

l1(ϑ) =
n∑
i=1

z∗i [(1− yi) log(p0i) + yi log(p1i)] + (1− z∗i ) log(1− p0i − p1i),

l2(ϕ) =
n∑
i=1

(1− z∗i )
{
−1

2 {log(2πφi) + 3 log[yi(1− yi)]} −
1

2φi
d(yi;µi)

}
,

where, d(y;µ) is defined Equation (1.7), µi = g−1
1 (η1i), η1i = x>i β+

k∑
j=1
b>ijγj , φi = g−1

2 (η2i)

and η2i = e>i κ.

For this model, ui, qi, c0i and c1i will be defined as the score functions. They
are given by,

ui = −(1− z∗i )
1

2φi
d′(yi,µi), qi = (1− z∗i )

1
2φi

[
1
φi
d(yi,µi)− 1

]
,

c0i = z∗i (1− yi)− p0i, c1i = z∗i yi − p1i,

(5.7)

where

d′(yi,µi) = ∂d(yi,µi)
∂µi

= − 2(yi − µi)
µi(1− µi)

[
d(yi,µi) + 1

µ2
i (1− µi)2

]
,

t = 1, . . . , n∗i and i = 1, . . . , n.

It can be noticed that E(uit) = 0 ⇔ E(d′(yit, µit)) = 0 and E(qit) = 0 ⇔
E(d(yit, µit)) = φit, which is guaranteed since this quantities are the score functions. Thus,
the vectors ui and qi generate an optimal class of functions and they are vector with zero
mean, mutually independent and satisfying the properties of regular estimating functions
(Crowder, 1987). For the i-th subject, some quantities, which will be used in the next
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sections, are defined below

T1i = −E
(
∂ui
∂η>1i

)>
= −E

(
∂ui
∂µi

∂µi
∂ηi

)>
= G1iAi

T2i = −E
(
∂qi
∂η>2i

)>
= −E

(
∂qi
∂φi

∂φi
∂η2i

)>
= G2iCi,

T21i = −E
(
∂ui
∂η>2i

)>
= T12i = −E

(
∂qi
∂η>1i

)>
= 0,

T3i = −E
(
∂c0i

∂ζ>0i

)>
= −E

(
∂c0i

∂p0i

∂p0i

∂ζ0i

)>
= G3i

T4i = −E
(
∂c1i

∂ζ>1i

)>
= −E

(
∂c1i

∂p1i

∂p1i

∂ζ1i

)>
= G4i

T34i = −E
(
∂c0i

∂ζ>1i

)>
= −E

(
∂c0i

∂p0i

∂p0i

∂ζ1i

)>
= −E

(
∂c1i

∂ζ>0i

)>
= −E

(
∂c1i

∂p1i

∂p1i

∂ζ0i

)>
= G5i,

and Σi = Cov(ui) = A
1/2
i R(ξ)A1/2

i , where Ai = diag{ai1, . . . , ain∗i }, with

ait = (1− z∗it)
1
φit

[
3φit

µit(1− µit)
+ 1
µ3
it(1− µit)3

]
,

Ci = diag{ci1, . . . , cin∗i }, where cij = (1 − z∗it)
1

2φ2
it

, G1i = diag{(∂µi1/∂η1i1), . . . , (∂µin∗i /
∂η1in∗i )}, G2i = diag{(∂φi1/∂η2i1), . . . , (∂φin∗i /∂η2in∗i )}, G3i = diag{g3i1, . . . , g3in∗i }, g3it =
p0it(1 − p0it), G4i = diag{g4i1, . . . , g4in∗i }, g4it = p1it(1 − p1it), G5i = diag{g5i1, . . . , g5in∗i },
g5it = −p0itp1it, t = 1, . . . , n∗i and i = 1, . . . , n, t = 1, . . . , n∗i and i = 1, . . . , n. Also, R(ξ)
is a (n∗i × n∗i ) symmetric matrix satisfying the conditions for a working correlation matrix
(Liang and Zeger, 1986), which depends on a correlation parameter vector ξ that is the
same for all subjects.

5.2.3 Components for ZOABR-SPAM-GEE

For the model based on the ZOABR distribution, the log-likelihood function
for θ = (β>,γ>1 , . . . ,γ>k ,κ>, α,ρ>, τ>)>, considering ϕ = (β>,γ>1 , . . . ,γ>k ,κ>, α)> and
ϑ = (ρ>, τ>)>, is defined as l(θ) = l1(ϑ) + l2(ϕ), where,

l1(ϑ) =
n∑
i=1

z∗i [(1− yi) log(p0i) + yi log(p1i)] + (1− z∗i ) log(1− p0i − p1i), (5.8)

l2(ϕ) =
n∑
i=1

(1− z∗i ) log[εi + (1− εi)bYi
(yi; δi,φi)], (5.9)

with εi = 1 −
√

1− 4αµi(1− µi), bY (y; ., .) is the beta density defined in Equation

(1.1), δi =
µi − 1

2 + 1
2

√
1− 4αµi(1− µi)√

1− 4αµi(1− µi)
, where, µi = g−1

1 (η1i), η1i = x>i β +
k∑
j=1
b>ijγj,

φi = g−1
2 (η2i) and η2i = e>i κ.
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For this model, the log-likelihood related with the continuous part is not easily
tractable to obtain certain quantities derived from it as commented in the Section 2.2.1.
Thus, the vectors ui and qi will not be defined based on quantities as score functions, for
example. An alternative, in this case, can be the proposal of X.-K. Song et al. (2004),
who constructed the zero mean vector for the estimating equation of the dispersion
component of their distribution, based on a quantity whose expectation was a function
of the dispersion parameter. In our case, we are working with the precision parameter
of the beta rectangular distribution, thus a useful option is to define qi = (qi1, . . . , qin∗i ),
with qit = (yit − µit)2 − Var(Yit), where E[(Yit − µit)2] = Var(Yit), and Var(Yit), defined
in Equation (1.4), is a function of φit, for t = 1, . . . , n∗i . This proposal vector will make
calculations easier and still having good properties. For the c0i and c1i, it will be remained
the use of score functions, since the log-likelihood related with discrete part is tractable.
Hence, ui and qi for ZOABR-SPAM-GEE are defined below

ui = (1− z∗i )(yi − µi),

qi = (1− z∗i )
[
(yi − µi)2 −

{
δi(1− δi)

1 + φi
(1− εi)[1− εi(1 + φi)] + εi

12(4− 3εi)
}]

,

c0i = z∗i (1− yi)− p0i, c1i = z∗i yi − p1i,

(5.10)

i = 1, . . . , n. It can be noticed that E(ui) = 0 and E(qi) = 0. Thus, the vectors ui and
qi generate an optimal class of functions and they are vector with zero mean, mutually
independent and satisfying the properties of regular estimating functions (Crowder, 1987).
For the i-th subject, some quantities, which will be used in the next sections, are defined
below

T1i = −E
(
∂ui
∂η>1i

)>
= −E

(
∂ui
∂µi

∂µi
∂ηi

)>
= G1i

T2i = −E
(
∂qi
∂η>2i

)>
= −E

(
∂qi
∂φi

∂φi
∂η2i

)>
= G2iCi,

T21i = −E
(
∂ui
∂η>2i

)>
= −E

(
∂ui
∂φi

∂φi
∂η2i

)>
= 0,

T12i = −E
(
∂qi
∂η>1i

)>
= −E

(
∂qi
∂µi

∂µi
∂η1i

)>
= G1iDi,

T3i = −E
(
∂c0i

∂ζ>0i

)>
= −E

(
∂c0i

∂p0i

∂p0i

∂ζ0i

)>
= G3i

T4i = −E
(
∂c1i

∂ζ>1i

)>
= −E

(
∂c1i

∂p1i

∂p1i

∂ζ1i

)>
= G4i

T34i = −E
(
∂c0i

∂ζ>1i

)>
= −E

(
∂c0i

∂p0i

∂p0i

∂ζ1i

)>
= −E

(
∂c1i

∂ζ>0i

)>
= −E

(
∂c1i

∂p1i

∂p1i

∂ζ0i

)>
= G5i,
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and Σi = Cov(ui) = A
1/2
i R(ξ)A1/2

i , where Ai = diag{ai1, . . . , ain∗i },

ait = (1− z∗it)
{
δi(1− δi)

1 + φi
(1− εi)[1− ε(1 + φi)] + εi

12(4− 3εi)
}
,

G1i = diag{(∂µi1/∂η1i1), . . . , (∂µin∗i /∂η1in∗i )}, Ci = diag{ci1, . . . , cin∗i },

cij = (1− z∗it)
δit(1− δit)
(1 + φit)2 (εit − 1),

G2i = diag{(∂φi1/∂η2i1), . . . , (∂φin∗i /∂η2in∗i )}, Di = diag{di1, . . . , din∗i }, where

dit = (1− z∗it)
{

(1− 2δit)
(1− α)[1− εit(1 + φit)]

(1 + φit)(1− εit)2 +
[
δit(1− δit)
(1 + φit)

(−2− φit + 2εit(1 + φit))

+ 2− 3εit
6

](
2α(1− 2µit)

1− εit

)}
,

G3i = diag{g3i1, . . . , g3in∗i }, g3it = p0it(1− p0it), G4i = diag{g4i1, . . . , g4in∗i }, g4it = p1it(1−
p1it), G5i = diag{g5i1, . . . , g5in∗i }, g5it = −p0itp1it, t = 1, . . . , n∗i and i = 1, . . . , n. Also,
R(ξ) is a (n∗i × n∗i ) symmetric matrix satisfying the conditions for a working correlation
matrix (Liang and Zeger, 1986), which depends on a correlation parameter vector ξ that
is the same for all subjects. A last necessary quantity is the Υi = Cov(qi). Also, following
X.-K. Song et al. (2004) who suggest adopting Cov(qi) as the Ji = diag{ji1, . . . , jin∗i },
with jit = Var[(Yit − µit)2], t = 1, . . . , n∗i and i = 1, . . . , n. For ease, this quantity, in the
estimation process, will be obtained numerically.

5.2.4 Penalized GEE for all models

As discussed in Section 4.3.4, a penalty function based on differences will be
added on GEE related with the non-parametric components as defined in the Section
1.2.2. Moreover, Kong et al. (2015) discussed that an approach using only one GEE
to estimating the parameters related with the discrete and continuous part may not
be identifiable because those parts are typically confounded (e.g., share information).
Hence, they recommended to estimate the parameters related with those parts in separate
equations by introducing the variables Z∗it (i = 1, . . . , n; t = 1, . . . , n∗i ), which indicates
whether the random variable Yit is from a Bernoulli distribution or beta/simplex/BR
distribution.

Thus, considering the components related to each distribution, the generalized
estimating equations for repeated measures for ν = (β>,γ>1 , . . . , γ>k )>, κ, σ = (ρ>, τ>)>,
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respectively, are given by:

Ψ1p(ν,λ) =
n∑
i=1
−E

(
∂ui
∂ν>

)>
Cov(ui)−1Z∗∗ui −Λ = B∗>i T1iΣ−1

i Z
∗∗ui −Λ

Ψ2(κ) =
n∑
i=1
−E

(
∂qi
∂κ>

)>
Cov(qi)−1Z∗∗qi = E>i T2iΥ−1

i Z
∗∗qi,

Ψ3(σ) =
n∑
i=1


−E

(
∂c0i

∂ρ>

)>
−E

(
∂c1i

∂ρ>

)>

−E
(
∂c0i

∂τ>

)>
−E

(
∂c1i

∂τ>

)>
Cov(ci)ci

=
n∑
i=1

 F>i T3i F>i T34i

M>
i T34i M>

i T4i

 Cov(c0i) Cov(c0i, c1i)
Cov(c0i, c1i) Cov(c1i)

−1

ci

=
n∑
i=1
Q>2 T

∗
i Φ−1ci =

n∑
i=1
Q>2W3iT

∗−1
i ci

where ci = (c>0i, c>1i)>, B∗i = (Xi,Bij, . . . ,Bik), Λ = (0p, λ1γ
>
1 Λd

1, . . . , λkγ
>
k Λd

k)>, with 0p
being a p× 1 vector of zeros and λ = (λ1, . . . , λk) being the vector of smooth parameters
and λj > 0, ∀j, j = 1, . . . , k, T1i = diag{T1i1, . . . , T1in∗i }, T2i = diag{T2i1, . . . , T2in∗i },
Σi = diag{Σi1, . . . ,Σin∗i

} and Υi = diag{Υi1, . . . ,Υin∗i
}. Also, T3i = diag{T3i1, . . . , T3in∗i },

T4i = diag{T4i1, . . . , T4in∗i }, T34i = diag{T34i1, . . . , T34in∗i },

Q2i =
 Fi 0

0 Mi

 , W3i = T ∗i ∆−1
i T

∗
i , T ∗i =

 F>i T3i F>i T34i

M>
i T34i M>

i T4i


Φ =

 Cov(c0i) Cov(c0i, c1i)
Cov(c0i, c1i) Cov(c1i)

 .
In addition, Z∗∗i = diag{(1− z∗i1), . . . , (1− z∗in∗i )}, which is present in the GEE’s related to
the parameters of continuous part to indicates what observations come from beta/simplex
or BR distributions. On the other hand, the vectors c0i and c1i, contains a component Z∗i ,
which indicates observation that are from discrete part.

The matrix Υi = Cov(qi), Cov(c0i) and Cov(c1i), can be replace by a work
correlation matrices but, it would imply a high amount of disturbance parameters to be
estimated. In the sense, it will be assume, as made by Freitas et al. (2021) and X.-K. Song
et al. (2004), that for ZOAS-SPAM-GEE and ZOAB-SPAM-GEE that Υi = Ci and for
ZOABR-SPAM-GEE, Υi = Ji. Also, that Cov(ui, qi) = Cov(c0i, c1i) = 0 (Prentice and
Zhao, 1991). As Freitas et al. (2021) cited, by assuming this, we move away from an
optimal linear estimation function but reduce the amount of assumptions to be made
about the dependence structure of the data. Then, the penalized GEE for ν, κ, ρ and τ
are given by Ψ1p(ν̂,λ) = 0, Ψ2(κ̂) = 0 and Ψ3(σ̂) = 0, where ν̂, κ̂ and σ̂ denotes the
respective estimates.

For next sections, except for the parameter estimation, it is useful defined
the GEE’s concatenated, i.e. Ψ∗(ν,κ) = (Ψ1p(ν,λ)>,Ψ2(κ)>,Ψ3(σ)>)>, which can be
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rewritten as,

Ψ∗(ν,κ) =
n∑
i=1
Q>i WiT

−1
i d∗i −Λ2, (5.11)

where Λ = (0p, λ1γ
>
1 Λd

1, . . . , λkγ
>
k Λd

k,0q,0s0+s1)>, 0q being a q × 1 vector of zeros, 0s0+s1

being a (s0 + s1) × 1 vector of zeros, d∗i = (u>i , q>i , c>i )>, W = TiP
−1
i Z∗∗∗i Ti, Z∗∗∗i =

blockdiag{Z∗∗i ,Z∗∗i , Is∗}, Is∗ , being a (s0 + s1)× (s0 + s1) identity matrix,

Qi =


B∗i 0 0
0 Ei 0
0 0 Q2i

 , Ti =


T11i T12i 0
T21i T22i 0
0 0 T ∗i

 ,Pi =


Σi 0 0
0 Υi 0
0 0 Φi

 .

5.3 Parameter estimation
Before presenting the estimation process, it will be demonstrated that the

GEE’s for ν, κ and σ can be updated separately for all models by using the insensitivity
property (Jørgensen and Knudsen, 2004). As defined in a generic way in Equation (4.2),
the sensibility matrix can be write as

Si(θ) =


S11 S12 S13

S21 S22 S23

S31 S32 S33

 ,

where S11 = E
[
∂

∂ν>
Ψ1p(ν)

]
, S22 = E

[
∂

∂κ>
Ψ2(κ)

]
, S12 = E

[
∂

∂ν>
Ψ2(κ)

]
, S21 =

E
[
∂

∂κ>
Ψ1p(ν)

]
, S33 = E

[
∂

∂σ>
Ψ3(σ)

]
, S31 = E

[
∂

∂σ>
Ψ1p(ν)

]
, S32 = E

[
∂

∂σ>
Ψ2(κ)

]
,

S13 = E
[
∂

∂β>
Ψ3(σ)

]
and S23 = E

[
∂

∂κ>
Ψ3(σ)

]
For prove the insensitivity, it is enough to show that the quantities S21, S31

and S32 are zero. For S13 and S23 it a natural imply given that the discrete part and
continuous part are estimate without have component in common. The demonstration for
S21 can be seen in Section 4.4. Thus, the sensibility matrix can be rewritten for all models
as

Si(θ) =


S11 S12 S13

0 S22 S23

0 0 S33

 , (5.12)

and according with Jørgensen and Knudsen (2004), this configuration of the sensibility
matrix implies in the insensitivity property, which allows us to separate ν, κ, σ onto two
equations to be updated in each step of estimation algorithm, following Bonat et al. (2018)
proposal. The other entries of this matrix are defined as S11 = −B∗>i T1iZ

∗∗
i Σ−1

i T1iB
∗
i −Λ∗,
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with Λ∗ = (0p, λ1Λd
1, . . . , λkΛd

k)>, S22 = −E>i T2iZ
∗∗
i Υ−1

i T2iEi and S12 = −E>i T12iZ
∗∗
i Υ−1

i

T12iXi, for ZOAB-SPAM-GEE and ZOABR-SPAM-GEE and S12 = 0 for ZOAS-SPAM-
GEE. Also, S13 = S23 = 0 and S33 = −Q>2iT ∗i Φ−1

i T
∗
i Q2i

Now, developing the estimation algorithm by applying a combination of Gauss-
Seidel method for the vector ν and reweighed least squares for, κ and σ, the (u+ 1)-th
step of the iterative process for obtaining the maximum penalized likelihood estimates of
β, γ1, . . . ,γk, κ and σ by fixing λ, may be expressed as

β(u+1) =
(

n∑
i=1
X>i W

(u)
1i Xi

)−1
 n∑
i=1
X>i W

(u)
1i

z(u)
1i −

k∑
j=1
Bijγ

(u+1)
j

 ,
γ

(u+1)
j =

(
n∑
i=1
B>ijW

(u)
1i Bij

)−1
 n∑
i=1
B>ijW

(u)
1i

z(u)
1i −Xiβ

(u+1) −
∑
j∗ 6=j

Bij∗γ
(u+1)
j∗

 ,
κ(u+1) =

(
n∑
i=1
E>i W

(u)
2i Ei

)−1 [ n∑
i=1
E>i W

(u)
2i z

(u)
2i

]
,

σ(u+1) =
(

n∑
i=1
Q>2iW

(u)
3i Q2i

)−1 [ n∑
i=1
Q>2iW

(u)
3i z

(u)
3i

]

for j = 1, . . . , k and u = 0, 1, 2, . . . , where β̂(0), γ̂(0)
j and κ̂(0) are the initial estimates,

z1i = η1i+T−1
1i ui, z2i = η2i+T−1

2i qi, z3i = ζi+T ∗−1
i ci, ζi = (ζ0i, ζ1i),W1i = T1iZ

∗∗
i Σ−1

i T1i,
W2i = T2iZ

∗∗
i Υ−1

i T2i and W3i = T ∗i Φ−1
i T

∗
i .

For the model ZOABR-SPAM-GEE, there is one extra parameter to be esti-
mated, which is α. Thus, only for this model one more parameter will be updating in each
iteration. The estimation process of it will be made through maximum likelihood, using
an optimization algorithm. The one chosen for maximization process was the optim of the
software R using the method L-BFGS-B (Byrd et al., 1995). The updating, in the step
(u+ 1) will happen using the current estimates of the other parameters, replacing them in
the log-likelihood function, l(θ), defined in Equation (5.8). The optimization happens and
the new estimate for α is used to updating the other parameters. It will occurs until the
converge is reached.

The parameters related to the correlation matrix are estimated as described
in Section 4.5 depend on the dependence structure assumed (AR-1,Exchangeable and
Unstructured).

5.4 Effective degrees of freedom
Following Manghi et al. (2019), the effective degrees of freedom will be derived

considering the solution for the linear predictor, only related with ν, because it contains the
non-parametric component. Hence, the solution for the linear predictor at the convergence
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of the iterative process, namely η̂1i = B∗i ν̂ = Ĥ(λ)ẑ1i, where Ĥ(λ) = B∗i (B∗>Ŵ1iB
∗ +

Λ)−1B∗>i Ŵ1i may be interpreted as a projection matrix or smoother, for i = 1, . . . , n.

Therefore, based on Green and Silverman (1993), the effective degrees of
freedom can be defined as df(λ) = trace{Ĥ(λ)}. Notice that df(λ1) corresponds to the
sum of the principal diagonal elements of the matrix (B∗>W1iB

∗+ Λ)−1B∗>W1iB
∗ from

(p+ 1)-th position to the (p+ s1)-th position, and so on for df(λj), for j = 1, . . . , k.

5.5 Estimation of smoother parameters
Also, following Manghi et al. (2019), for the selection parameter they suggest

to consider the generalized cross-validation method (Craven and Wahba, 1978; Wood,
2017), which consists in selecting the λ, such that

λ̂ = argminλGCV(λ) = argminλ
∑n
i=1 u

>
i Σ̂−1

i ui

[1− n∗∗−1trace{Ĥ(λ)}]2
,

where n∗∗ =
n∑
i=1

n∗i .

5.6 Obtaining standard errors
To obtain the covariance matrix, Cov(θ̂), and standard errors, SE(θ̂), consid-

ering the sandwich covariance estimator Ĵ−1 of θ̂, which can be consistently estimated
(Liang and Zeger, 1986) by:

Ĵ−1 =
(

n∑
i=1
Si(θ̂)

)−1 ( n∑
i=1
Q>i T̂iP̂

−1
i d̂∗i d̂

∗>
i P̂

−1
i T̂iQi

)(
n∑
i=1
Si(θ̂)

)−1

, (5.13)

where Si(θ) is defined in Equation (5.12). Another option, following Manghi et al. (2017)
proposal, is to obtain the so-called naive standard errors using the covariance matrix J∗−1,
given by

Ĵ∗−1 =
(

n∑
i=1
Si(θ̂)

)−1 ( n∑
i=1
Q>i T̂iP̂

−1
i T̂iQi

)(
n∑
i=1
Si(θ̂)

)−1

.

Thereby, Cov(θ̂) is equal to Ĵ−1 or Ĵ∗−1 and SE(θ̂), to Ĵ−1/2 or Ĵ∗−1/2. Then, Cov(θ̂) = Ĵ

and SE(θ̂) = Ĵ−1/2.

5.7 Hypothesis testing
To test the significance of linear statistical hypothesisCς = d, where rank(C) =

l, l ≥ p or l ≥ q, it can be used the Wald-type statistic (see Hardin (2005), for example),
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that is,

ξW = (Cς̂ − d)>(CVςC>)−1(Cς̂ − d),

where under ξW D−→
n→∞

χ2
l and, furthermore, ς can be either β, κ, Vς is the matrix of

variance-covariance regards to ς extract from Ĉov(θ̂).

5.8 Model fit diagnostic tools
As said in the Sections 2.11 and 3.11, performing diagnostics analysis are

important in order to check the goodness-of-fit of the estimated model and to evaluate
the model assumptions. Thereby, it will be introduced for the augmented SPAM-GEE,
graphical tools for detecting departures from the postulated model, influential observations
and local influential analysis.

5.8.1 Residual analysis

A option of residual, used in the models for augmented independent data, is
based on Silva et al. (2020) proposal, the randomized quantile residuals. Then, the residuals
are defined as ri = Φ(Gi), i = 1, . . . , n, where Φ(.) denotes the cumulative distribution
function of a standard Normal distribution, Gi is a uniform random variable on the
interval (ai, bi], with ai = lim

y↑yi

F (y; υ̂, %̂, µ̂, φ̂), bi = F (yi; υ̂, %̂, µ̂, φ̂), where %̂ = p̂1i/υ̂ and
υ̂ = p̂0i + p̂1i.

Some tests were conducted for us to evaluate if this proposal could be used
in the case of correlated data. Then, 100 replicas were generated from models and we
analyzed the mean, variance, kurtosis and skewness for the 100 residuals sample. In average
the quantile residuals presented a mean and a variance close to 0 and 1, respectively,
and kurtosis equals to 3 and a skeness close to 0. Furthermore, from the histogram of
each samples, the normality supposition seems to be reasonable for these residuals, thus
pointwise envelopes could be constructed based on the standard normal distribution, as
made in the independent models.

5.8.2 Local Influence

As made in the previous Section 4.11.2 it will be developed local influence
tools for our approach via GEE based on the Cadigan and Farrell (2002) proposal, which
is assesses the possible influential observations using the generalized the local influence
instead of likelihood displacement, which is given by FD(ω) = 2[F(θ̂)−F(θ̂ω)], where F
is a fit function, assumed doubly differentiable for θ, whose estimate θ̂ is the solution of
(∂F(θ)/θ) = 0. Venezuela et al. (2011) proposed under the Cadigan and Farrell (2002)
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methodology, replace the likelihood equations by the estimating equations, to study the
local behaviour of FD(ω) for any value of ω in a neighborhood of ω0, which represented
the null perturbation vector, and find the eigenvector lmax corresponding to the largest
eigenvalue of the matrix

B̂G = −∆S(θ)−1∆
∣∣∣
θ=θ̂,ω=ω̂

,

where ∆ = (∂Ψ1p(θ|ω)/∂ω>, ∂Ψ2(θ|ω)/∂ω>)> and S(θ) is the sensibility matrix. If the
interest is in a local influence relative to a partition of θ = (θ>1 ,θ>2 )>, for example θ1, the
lmax corresponding to the largest eigenvalue of the matrix −∆(S−1(θ)− S(θ)−1

c )∆ can
be used as a measure for this purpose, where

S(θ)c =
 0 0

0 S22

 , where S22 = ∂Ψ1(θ)
∂θ>2

.

This concept is important, because here it will be built measures of local influence for ν κ
and σ individually.

Two perturbation schemes will be developed for the models: case-weight per-
turbation and working correlation matrix perturbation.

Case-weight perturbation

Let ω = (ω>1 , . . . ,ω>n )>, where ωi = (ωi1,...,ωin∗
i
)>, i = 1, . . . , n, be a perturbed

vector. The GEE’s under this perturbation scheme are given by

Ψ∗(ν,κ|ω) = Q>WT−1diag{ω}d∗ −Λ2.

The non perturbation vector, ω0, assumes ωit = 1, i = 1, . . . , n, t = 1, . . . , n∗i . For this
scheme, the matrix B̂G is given by

diag{d∗}T−1W>Q(Q>WQ)−1Q>WT−1diag{d∗}
∣∣∣
θ=θ̂,ω=ω0

.

Working correlation matrix perturbation

Let R(ξ) be a working correlation matrix characterized by a
(
n∗i
2

)
-vector

ξ =
(
ξ12, . . . , ξ(n∗

i
2 )
)>

. As each unit has its own working correlation matrix, a possible
perturbation scheme in the correlation vector ξ can be given by (Venezuela et al., 2011),
ξωi(jl) = ξjl

ωi(jl)
, where i = 1, . . . , n, j < l and j, l = 1, . . . , n∗i . For this perturbation scheme,

ω = (ω1(12), . . . , ω1((n∗i−1)n∗i ), . . . , ωn(12), . . . , ωn((n∗i−1)n∗i ))> is a perturbation vector and ω0

is a vector with ones. The perturbation estimating equation is given by:

Ψ1(β,ω) = X>T1Σ−1
ω u−Λ.
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Then, each column of matrix ∆ can be expressed by:

∂Ψ1p(ν,ω)
∂ω>(jl)

= X>T1
∂Σ−1

ω

∂ω>(jl)
u,

where the derivative of Σ−1
ω with respect to ω>(j,l) is given by ∂Σω/∂ω

> =
(
∂Σω1/∂ω

>
1 , . . . ,

∂Σωn/∂ω
>
n

)
. The i-th diagonal block of Σω is Σωi =

√
Var(ui)R(ξωi)

√
Var(ui), with

ξωi =
(
ξωi(12), . . . , ξωi((n∗i−1)n∗i )

)
and i = 1, . . . , n. We also have that:

∂Σωi

∂ωi(jl)
=
√
Var(ui)

∂R(ξωi)
∂ωi(jl)

√
Var(ui),

where ∂R(ξωi)/∂ωi(jl) is a (n∗i × n∗i ) symmetric matrix with null diagonal and jl and lj
elements are equal to −ξjl, with i = 1, . . . , n and j, l = 1, . . . , n∗i .

5.9 Simulation Studies
In this section, the results of four simulation studies. Section 5.9.1 is related

to the analysis of parameter recovery. In Section 5.9.2, we perform a correlation matrix
misspecification study. In Section 5.9.3 is present a link function misspecification study.
The results for the first study is in Appendix, whereas the other studies will be available at
https://github.com/aureaflg/Simulations-study.git, where we made reproducible
codes for one can view the graphs and tables.

Some observations about the estimation process for the next subsection are
necessary to be done. First, the way that data has been generate for each scenario is using
t-copulas based on Student-t distribution considering a degree of freedom equal to 3. This
generator process only approximates the correlation structure, therefore it is possible to
obtain bias estimates for parameters related to the correlation matrix. Also, the way that
the data is being generated considers a correlation between all subjects, hence the response
vector whether it comes from (0,1) interval or comes from {0, 1}, will have a dependence
structure. However, our proposal considering only a correlation matrix for data coming
from the (0, 1) interval. Then, to estimate the correlation parameters using simulated data,
we considered the vector u∗i = (1 − z∗i )−1ui for estimator presented in the Section 4.5,
which means, to estimate the correlation parameters using all the observations regardless
of where it was generated.

Furthermore, for the ZOABR-SPAM-GEE, the estimation of parameter α
presented some problems, then we put a restriction in the interval were the estimates could
be obtained based on the initial values α0. The interval where it could be estimate was
setting as [max(α0 − 0.3, 0.01);max(α0 + 0.3, 0.99)]. The value 0.3 was chosen arbitrarily
and tests was done so that the algorithm could run.

https://github.com/aureaflg/Simulations-study.git
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5.9.1 Study 1: Parameters recovery

Here we considered some scenarios of interest defined by the combination of the
levels of some factors of interest. The factors (with the respective levels within parenthesis)
are number of subjects and their repetition number (10 subjects and 5 times, 10 subjects
and 10 times, 50 subjects and 10 times) which implies in a sample (n) (50,100,500),
regression model (ZOAB, ZOAS, ZOABR), link function (probit, logit, cauchit, cloglog,
loglog), modeled parameters (mean and dispersion) and considering the correlation matrix
as exchangeable. For each scenario, R = 100 replicates of Monte Carlo were generated.
Each scenario are described below.

Table 21 – Scenarios of simulation study 1

Regression model
(modelling mean and dispersion) n Link functions

ZOAB(µit, φit, p0it, p1it)
50
100 probit, logit, cauchit, cloglog and loglog.
500

ZOAS(µit, φit, p0it, p1it)
50
100 probit, logit, cauchit, cloglog and loglog.
500

ZOABR(µit, φit, p0it, p1it, α)
50
100 probit, logit, cauchit, cloglog and loglog.
500

Furthermore, the considered models for related scenarios presented, are given
by log(p0it/(1− p0it − p1it)) = ρ0 + ρ1Fit, log(p1it/(1− p0it − p1it)) = τ0 + τ1Mit, g(µit) =
β1Xit + cos(Zit), log(φit) = κ0 + κ1Eit, for i = 1, . . . , n, t = 1, . . . , n∗i i = 1, . . . , n∗∗, where
Xit

iid∼ uniform(0, 1), Eit iid∼ uniform(0, 1), Fit iid∼ uniform(0, 1), Mit
iid∼ uniform(0, 1) and

Zit
iid∼ uniform(0, 3π), g(.) is either the probit, logit, cauchit, cloglog.

The actual parameter values considered loglog link were β1 = 1, κ0 = 1, κ1 = 2,
α = 0.7, ρ0 = τ0 = −1.8 and ρ1 = τ1 = 1.5, whereas for the other link were: β1 = −1,
κ0 = 2, κ1 = −3, α = 0.7, ρ0 = τ0 = −1.8 and ρ1 = τ1 = 1.5. This change to the loglog link
function is justified by the fact that, depending on the parameters chosen, generating from
the models using this link function can generate values very close to one or zero, which
could compromise the fit of the models to the simulated data even for the BR-SPAM-GEE
model.

For all models, when n = 50, 40 knots were used and the smoothing parameter
was fixed at λ = 500, whereas, when n = 100 or n = 500, 50 knots were used and the
smoothing parameter was fixed at λ = 500. These values lead to a smooth fitted curve for
non-parametric component. As the correlation matrix considered was the exchangeable,
the only correlation parameter ξ was fixed as 0.8.

The related results are presented in Appendix B.3, where Figures 79 to 83
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are related to ZOAB-SPAM-GEE, Figures 84 to 88 are related to ZOAS-SPAM, and,
Figures 89 to 93 concern to ZOABR-SPAM.

In a general way, for all models the regression parameters were properly
recovered, as the sample size increases, the estimates become more accurate. The estimated
curves are for sample size n = 50 representing the behavior of the curves, in general well,
but it presents great variability, in contrast to n = 100 and n = 500 where there is less
variability around the real curve. Specifically for the ZOABR-SPAM-GEE the parameter
α under all link functions the recovery was not good enough, the estimates were biased.
Furthermore, for all models the correlation parameter ξ was under estimated and for
ZOAS-SPAM-GEE present the most biased recovery. A possible reason, as said before, for
this is happening is that the copulas used generate a dependency structure that are an
approximation of the true correlation matrix, which can generate bias in the adjustment.

5.9.2 Study 2: Correlation matrix misspecification

In this section we considered only the scenarios varying the correlation matrix
(exchangeable,AR-1,unstructured), the regression models (ZOAB,ZOAS,ZOABR) and the
parameter related with correlation ξ (0.8,0.3). We setting the sample size in 100 and chose
the link function as cloglog with R=1 replica. The same model defined in were considered,
except by the parameter ξ, which is either 0.8 and 0.3.

Although the estimates were, in general, properly recovered under the three
correlation structure, it was possible to notice slightly differences among fitted parameters,
and in some cases AR-1 fitted better then the model under exchangeable. The unstructured
had the same or slightly worse performance of exchangeable. It can be concluded that the
recovery is reasonable even under misspecification.

5.9.3 Study 3: Link function misspecification

In this section, we considered only the scenarios varying the regression models
(ZOAB, ZOAS, ZOABR) and the link functions (probit, logit, cauchit, cloglog,loglog). We
set the sample size in 500 (50 subjects and 10 repeated measure), modeling the mean and
the dispersion. We generate only one replica from each model, setting a distribution and a
link function for it, and fit the simulated data using a model with the same distribution
but varying the link function, using all the different ones from the one used to generate
the simulated data. In Table 22 we present the 60 scenarios of interest.

The considered linear predictors and the link functions for related scenarios
presented, are given by log(p0it/(1− p0it − p1it)) = ρ0 + ρ1Fit, log(p1it/(1− p0it − p1it)) =
τ0 + τ1Mit, g(µit) = β1Xit + cos(Zit), log(φit) = κ0 + κ1Eit, for i = 1, . . . , n, t = 1, . . . , n∗i ,
where Xit

iid∼ uniform(0, 1), Eit iid∼ uniform(0, 1), Zit iid∼ uniform(0, 3π), Fit iid∼ uniform(0, 1)
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Table 22 – Scenarios of simulation study 2

Distribution that will generate
and fit the simulated data Actual link function Link function considered in

fitted model
ZOAB(µit, φit, p0it, p1it), logit probit, cauchit, cloglog and loglog

ZOAS(µit, φit, p0it, p1it)
probit logit, cauchit, cloglog and loglog
cauchit logit, probit, cloglog and loglog

or ZOABR(µit, φit, p0it, p1it, α) cloglog logit, probit, cauchit and loglog
loglog logit, probit, cloglog and cauchit

and Mit
iid∼ uniform(0, 1), g(.) is either the probit, logit, cauchit, cloglog.

The actual parameter values considered loglog link were β1 = 1, κ0 = 1, κ1 = 2,
α = 0.7, ρ0 = τ0 = −1.8 and ρ1 = τ1 = 1.5, whereas for the other cases were β1 = −1,
κ0 = 2, κ1 = −3, α = 0.7, ρ0 = τ0 = −1.8 and ρ1 = τ1 = 1.5. This change for actual values
of parameters under loglog link is justified for the same reason discussed in Section 5.9.1.
We considered both the comparison of the observed and predicted values as well as the
parameter recovery. The correlation structure used were exchangeable, with ξ = 0.8.

The all models presented bad recovery of real mean when the link function that
generating was symmetric and the adjuster model used loglog and cloglog as link function,
(both are asymmetric link). The recovery of regression parameters related to the mean
and to the dispersion/precision, they were all well estimated, if there is a bias, it is small.

5.10 Real data analysis
The data used to illustrate the augmented and correlated models is the same

used for Chapter 3 (Section 3.14), a psychometric study of risk perception obtained by
Carlstrom et al. (2000). As described there, we will use to analysis only the risk perception,
which comes from the subjective questionnaire.

In this section, we selected 3 of 22 activities, which results in a total of 588
subjects and each of them are evaluated in different frequencies generating repeated
measurements, which will generated a large sample size. Then, to circumvent this problem,
we selected a random sample of 200 subjects out of a total 588, which gave us a sample
size (subjects × their repetitions) of 577. As it is an unbalanced study, i.e., the number of
repeated measure, says n∗i , i = 1, . . . , 200, for each subject may be different. The n∗i for
this data only assumes 1, 2 or 3.

The risk perception of each subject is defined in the interval [0,100], such that
the higher the value, the higher the risk. Hence, the response will be the risk perception
(Risk) about the 3 risk related with health (tested for gene that predisposes to breast
cancer, (HRT), tested for gene that predisposes to heart disease, (BRCA), ride bicycle one
mile each day in an urban area, (BIKE)) transformed to the interval [0,1]. Furthermore,
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as the covariates we consider: the gender (Gender), ethnic background (Ethnic), age (Age)
and the worldview obtained from a related questionnaire (Wvcat). The levels of each factor
is presented in Table 23.

Table 23 – Levels of factors

Variables Levels

Ethnic Caucasian (1); African-American (2)
Mexican-American (3); Taiwanese-American (4)

Wvcat unclassifiable (0); individualist (1)
hierarchicalist (2); egalitarian (3)

Gender female (0); male (1)

Figure 27 indicates that the covariates Wvcat and Ethnic could influence the
responses variability, whereas Gender does not seem to influence variability. Also, this
Figure shows the frequency plot of Risk and plots related with covariate Age, which will
be treated by the non-parametric term. Considering, now Figure 18 and the Tables 24, 25
and 26 related with the discrete part, i.e. Risk = 0 and Risk = 1, it is possible to note that
the levels of variable Wvcat is the one that seems more different for Risk = 0, which may
indicate that this variable is more significant for the response, whereas for Risk = 1 the
covariates do not seem different within the categories. Figure 28 related to Age, presents
different median and dispersion for Risk=0 and Risk=1, while for the Risk equals to zero it
is seen a positive skewness, for equals 1 it is seen a negative skewness, which may indicates
that this variable may influence the response.

The choice of link function and the correlation structure, was made by compari-
son of diagnostic tools proposed. The better choices were: for the three models the logit for
mean and the sqrt for dispersion/precision, also the exchangeable seems to be reasonable
given that it is a multivariate study and the responses are not directly related. The initial
model fitted for ZOAB-SPAM-GEE, ZOAS-SPAM-GEE and ZOABR-SPAM-GEE was
defined including all covariates in all linear predictors, both in the discrete part and in the

Table 24 – Number of observation by the
levels of Ethnic variable

Risk
Ethnic 0 1 Total

1 12 0 12
2 25 9 34
3 8 4 12
4 21 0 21

Total 66 13 79

Table 25 – Number of observation by the
levels of Gender variable

Risk
Gender 0 1 Total

0 30 7 37
1 36 6 42

Total 66 13 79
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(a) Boxplot of Risk for each response by categories of Wvcat covari-
ate.
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(b) Scatter plot of Risk versus Age.
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(c) Boxplot of Risk for each response by categories of Ethnic covari-
ate.
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(d) Boxplot of Risk for each response by categories of Gender co-
variate.
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Figure 27 – Explanatory analysis plots of risk perception data set.
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Table 26 – Number of observation by the levels of Wvcat variable

Risk
Wvcat 0 1 Total

0 51 10 61
1 3 2 5
2 6 0 6
3 6 1 7

Total 66 13 79

20

40

60

80

0 1
Risk

A
ge

Figure 28 – Boxplots for Age by Risk=0 and Risk=1.

continuous part, as shown below:

Yitljk ∼ ZOAB(µitljk, φitljk, p0itljk, p1itljk)
or ZOABR(µitljk, φitljk, p0itljk, p1itljk, α)
or ZOAS(µitljk, φitljk, p0itljk, p1itljk),

g1(µiljk) = β0 + (β1)l + (β2)j + (β3)k + h1(zit),
g2(φiljk) = κ0 + (κ1)l + (κ2)j + (κ3)k + κ4zit,

log(p0iljk/(1− p0iljk − p1iljk)) = ρ0 + (ρ1)l + (ρ2)j + (ρ3)k + ρ4zit

log(p1iljk/(1− p0iljk − p1iljk)) = τ0 + (τ1)l + (τ2)j + (τ3)k + τ4zit,

where, i = 1, . . . , 577, t = 1, . . . , n∗i , l = 1, 2, 3, 4, j = 0, 1, 2, 3, k = 0, 1, (β1)1 = (β2)0 =
(β3)0 = 0, (κ1)1 = (κ2)0 = (κ3)0 = 0, (ρ1)1 = (ρ2)0 = (ρ3)0 = 0, (τ1)1 = (τ2)0 = (τ3)0 = 0.
The parameters (β1), (κ1), (ρ1) and (τ1) are related with Ethnic. The parameters (β2),
(κ2), (ρ2) and (τ2) are related with Wvcat. The (β3), (κ3), (ρ3) and (τ3) are related with
Gender. At last, the parameters κ4, ρ4 and τ4 are associated with the variable z Age
standard.

After we fitted the models, it was selected only the covariates that were under
a significance level of 10% for each model and excluded all non significant covariates,
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combining the equivalent levels within each significant covariate (according to the non-
significance of the respective parameters). The selected variables for each model are
presented below. The first model proposed is for ZOAB-SPAM-GEE:

Yitl ∼ ZOAB(µitl, φitl, p0itj, p1),
g1(µitl) = β0 + (β1)l + h1(zit),
g2(φitlj) = κ0 + (κ1)l + (κ2)j,

log(p0itj/(1− p0itj − p1)) = ρ0 + (ρ2)j + ρ4zit,

where l = 1, 2, 3, 4, j = 0, 1, 2, 3, (ρ2)0 = (ρ2)1 = (ρ2)2 = 0 and (β1)1 = 0 and (κ1)1 =
(κ2)0 = (κ2)2 = 0.

The second model proposed is for ZOAS-SPAM-GEE:

Yiljk ∼ ZOAS(µitljk, φitjk, p0it, p1),
g1(µitljk) = β0 + (β1)l + (β2)j + (β3)k + h1(zit),
g2(φitjk) = κ0 + (κ2)j + (κ3)k + κ4zi,

log(p0it/(1− p0it − p1)) = ρ0 + ρ4zi

where l = 1, 2, 3, 4, j = 0, 1, 2, 3, (β1)1 = (β2)0 = (β3)0 = 0 and (κ2)0 = (κ3)0 = 0.

At last, the third proposed model is for ZOABR-SPAM-GEE as follows:

Yitlk ∼ ZOABR(µitl, φitk, p0it, p1, α),
g1(µitl) = β0 + (β1)l + h1(zit),
g2(φitl) = κ0 + (κ3)k,

log(p0it/(1− p0it − p1)) = ρ0 + ρ4zit

where l = 1, 2, 3, 4, k = 1, 2, (β1)1 = (κ3)1 = 0.

The QQ plot with envelope for the quantile residuals related to the three
models, indicates a not good model fit (see Figure 29), for ZOAS-SPAM-GEE neither
for ZOABR-SPAM-GEE. The best fit was the ZOAB-SPAM-GEE, hence was the model
chosen to do the fit, because seems the one more appropriate for this the data set. Figure
30 shows the fitted curve for non-parametric part. The effective degrees of freedom were
4.2198 for ZOAB-SPAM-GEE, using 50 knots and for a smooth parameter λ = 500, which
was chosen by minimizing the AIC. From Figure 31, it is possible to see that the residuals
are well within the the confidence bands of the QQ plot, even though there is some no
random pattern. The other residuals plots show no tendency as well the normality seems
to be reasonable according to the histogram. And from Figure 32, we can see the QQ plot
for each repeated risk (HRT,BRCA and BIKE).

Furthermore, Figure 33 presents the the local influence analysis under case-
weight perturbation related to µ, φ and p0 (Figures 33a, 33b and 33c, respectively) and
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Figure 29 – Quantile-quantile plot with 99% envelopes for all models.

Table 27 – Inferential results for the ZOABR-SPAM-GEE.

Parameters Estimate SE p-value IC95%
ρ0 -1.96 0.14 <0.0001 [-2.24;-1.69]

(ρ2)3 -0.79 0.45 0.0838 [-1.68;0.10]
ρ4 0.30 0.12 0.0097 [0.07;0.53]
p1 0.022 0.28 - [-0.53;0.57]
β0 -1.07 0.13 <0.0001 [-1.33;-0.81]

(β1)2 0.44 0.24 0.0691 [-0.03;0.92]
(β1)3 0.41 0.20 0.0401 [0.02;0.81]
(β1)4 0.45 0.19 0.0208 [0.07;0.82]
κ0 2.18 0.12 <0.0001 [ 1.95;2.41]

(κ1)2 -0.38 0.15 0.0118 [-0.67;-0.08]
(κ1)3 -0.28 0.15 0.0601 [-0.57;0.01]
(κ1)4 -0.26 0.13 0.0472 [ -0.52;0]
(κ2)1 -0.45 0.17 0.0083 [-0.79;-0.12]
(κ2)3 -0.30 0.15 0.0537 [-0.60;0]

Correlation
parameter ξ 0.39 - - -
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−2

0

2

0 200 400 600
Index

Q
ua

nt
ile

 R
es

id
ua

ls

(a) Index plot of quantile residuals.

−2

0

2

0.25 0.30 0.35 0.40 0.45
Fitted Values

Q
ua

nt
ile

 R
es

id
ua

ls

(b) Fitted values versus quantile residuals.

0.0

0.1

0.2

0.3

0.4

−2 0 2
Quantile Residuals

de
ns

ity

(c) Histogram of quantile residuals.

Figure 31 – Results of fitted ZOAB-SPAM-GEE.
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XRAY).

the correlation perturbation scheme (Figure 33d). From these Figures, we see that the
observations (with the respective scheme and parameter) #100 (Case-weight for µ),#351
(Case-weight for φ), were and flagged, whereas for the plot related to p0 correlation
perturbation scheme no observations were flagged.
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Figure 33 – Index plot of lmax under perturbation schemes for ZOAB-SPAM-GEE.
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After removing each flagged observation one at a time, the significance of the
parameters are not modified. Also, the behavior of the residuals and QQ plot remained
the same. In conclusion, once that the exclusion of the flagged observations did not lead
to significant changes on the overall model fit, no further changes are necessary. From the
final model, it possible to notice that the Ethinic and the Wvcat are significant covariates
attributed to the heterogeneous dispersion. Also, the covariates Age and Wvcat influence
significantly in the probability of zero occurrence. From the estimated non-parametric
curve, it is possible to see a decay in the Risk as the Age decreasing.
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6 Conclusion

In this dissertation we developed Semi-parametric Regression Models for limited
(augmented) data ((0,1) and [0,1]) with independent or correlated response variables. We
rely on the classical beta and simplex distributions, and on the beta rectangular distribution
that is characterized as more robust by having heavier tails than the first two. We developed
estimation methods under the frequentist approach, for independent data using the
maximum penalized log-likelihood, and for correlated data using Generalized Estimation
Equations. We propose, for data lies on (0,1), modeling the mean and dispersion/precision
using semi-parametric linear predictors, and for data in [0,1], we additionally proposed to
model the probabilities of 0 or 1.

To validate the assumptions of the regression model proposed we develop tools
for global and local influence diagnostic analysis. We propose quantile residuals. We present
information criteria based on likelihood (for independent data) and quasi-likelihood (for
correlated data). Generalized leverage and Cook distance measures were obtained. In
addition, local influence perturbation schemes were developed for the cases: case-weight
perturbation, continuous covariate perturbation, response variable perturbation, and
working correlation matrix perturbation (for GEE).

We conducted simulation studies to evaluate parameter recovery, residual
analysis, and misspecification of the distribution and link functions. We fit the models
proposed here to real data sets, showing the advantages of using them.

6.1 Future works
As a focus for future work we suggest the following research topics:

1. Propose the use of these models with parametric link functions such as Aranda-Ordaz
and Skew-normal, for example.

2. Propose more robust models than those presented, for example, regression models
for the median based on the Kumaraswamy distribution.

3. Propose the methodology used here under the Bayesian approach.
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APPENDIX A – Results development for
SPAM

This appendix will presents the demonstration of results defined in Section 1.2,
such as penalized score function and penalized Fisher information.

A.1 Results related to Beta-SPAM

A.1.1 Penalized score function for Beta-SPAM

This section will presents the demonstration of results defined in Sections 2.3
and 2.4 for Beta-SPAM, such as penalized score function and penalized Fisher information.
As seen in Section 2.2, the penalized log-likelihood function for Semi-parametric Additive
Beta Regression Model is given by

l(θ,λ) = l(θ)−
k∑
j=1

λj
2 γ

>
j Λd

jγj,

and replacing l(θ) by its expression, the result is given by

l(θ,λ) =
n∑
i=1

{
log(Γ(φi))− log(Γ(µiφi))− log(Γ([1− µi]φi)) + [µiφi − 1] log(yi)

+ ([1− µi]φi − 1) log[1− yi]
}
−

k∑
j=1

λj
2 γ

>
j Λd

jγj,

with µi = g−1
1 (η1i), η1i = x>i β +

k∑
j=1
b>ijγj, φi = g−1

2 (η2i) and η2i = e>i κ.

The penalized score function for θ = (β>,γ>1 , . . . ,γ>k , κ>)> is given by U̇ θ
p (θ) =(

U̇β
p (θ)>, U̇γ1

p (θ)>, . . . , U̇γk
p (θ)>, U̇κ

p (θ)>
)>

. Initially, the penalized score function for β
will be calculated, U̇β

p (θ),

U̇β
p (θ) = ∂lp(θ,λ)

∂β
=

n∑
i=1

[
∂lp(θ,λ)
∂µi

∂µi
∂η1i

∂η1i

∂β

]

=
n∑
i=1

φi

[
log

(
yi

1− yi

)
+ Ψ((1− µi)φi)−Ψ(µiφi)

](
∂g1(µi)
∂µi

)−1

xi

=
n∑
i=1

φi(y∗i − µ∗i )
(
∂g1(µi)
∂µi

)−1

xi.

The above result can be write in matrix form, and this is given by,

U̇β
p (θ) = ∂lp(θ,λ)

∂β
= X>T1f

∗.
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For the parameter γj, j = 1, . . . , k, the penalized score function is,

U̇γj
p (θ) = ∂lp(θ,λ)

∂γj
=

n∑
i=1

[
∂lp(θ,λ)
∂µi

∂µi
∂η1i

∂η1i

∂γj

]
− λjΛjγj

=
n∑
i=1

φi

[
log

(
yi

1− yi

)
−Ψ(µiφi) + Ψ((1− µi)φi)

](
∂g1(µi)
∂µi

)−1

bij − λjΛjγj

=
n∑
i=1

φi(y∗i − µ∗i )
(
∂g1(µi)
∂µi

)−1

bij − λjΛjγj.

In matrix form, we have the below result,

U̇γj
p (θ) = ∂lp(θ,λ)

∂γj
= φB>j T1f

∗ − λjΛjγj.

And, at last, for parameter κ, its penalized score function is given by

U̇κ
p (θ) = ∂lp(θ,λ)

∂κ
=

n∑
i=1

[
∂lp(θ,λ)
∂φi

∂φi
∂η2i

∂η2i

∂κ

]

=
n∑
i=1

{
µi(y∗i − µ∗i ) + log(1− yi)

−Ψ[(1− µi)φi] + Ψ(φi)
}(

∂g2(φi)
∂φi

)−1

ei.

In matrix form,

U̇κ
p (θ) = ∂lp(θ,λ)

∂κ
= E>T2a.

A.1.2 Penalized Fisher’s Information Matrix for Beta-SPAM

In this section will be presented the calculations to obtain the second derivative
of lp(θ,λ) with respect to θ and the penalized Fisher’s information matrix for Beta-SPAM,
both as defined in the Section 2.4.

The second derivative of lp(θ,λ) with respect to θ is defined as

Ü θθ
p (θ) = ∂2lp(θ,λ)

∂θ∂θ>
,

which is equivalent to

Ü θθ
p (θ) =



Üββ
p (θ) Üβγ1

p (θ) . . . Üβγk
p (θ) Üβκ

p (θ)
Üγ1β
p (θ) Üγ1γ1

p (θ) . . . Üγ1γk
p (θ) Üγ1κ

p (θ)
... ... . . . ... ...

Üγkβ
p (θ) Üγkγ1

p (θ) . . . Üγkγk
p (θ) Üγkκ

p (θ)
Üκβ
p (θ) Üκγ1

p (θ) . . . Üκγk
p (θ) Üκκ

p (θ)


,
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and the penalized Fisher’s information matrix was defined as

Kθθ
p (θ) = E

[
−∂

2lp(θ,λ)
∂θ∂θ>

]
,

in which

Kθθ
p (θ) =



Kββ
p (θ) Kβγ1

p (θ) . . . Kβγk
p (θ) Kβκ

p (θ)
Kγ1β

p (θ) Kγ1γ1
p (θ) . . . Kγ1γk

p (θ) Kγ1κ
p (θ)

... ... . . . ... ...
Kγkβ

p (θ) Kγkγ1
p (θ) . . . Kγkγk

p (θ) Kγkκ
p (θ)

Kκβ
p (θ) Kκγ1

p (θ) . . . Kκγk
p (θ) Kκκ

p (θ)


.

Initially, the penalized Fisher’s information matrix Kββ
p (θ) will be calculated,

given that,

Kββ
p (θ) = E

[
−∂

2lp(θ,λ)
∂β∂β>

]
.

The second derivative of lp(θ,λ) with respect to the β is obtained as shown below,

Üββ
p (θ) = ∂2lp(θ,λ)

∂β∂β>
=

n∑
i=1

∂

∂µi

(
∂lp(θ,λ)
∂µi

∂µi
∂η1i

)
∂µi
∂η1i

∂η1i

∂β>
xi

=
n∑
i=1

(
∂2lp(θ,λ)

∂µ2
i

∂µi
∂η1i

+ ∂lp(θ,λ)
∂µi

∂2µi
∂µi∂η1i

)
∂µi
∂η1i

xix
>
i

= −
n∑
i=1

φi

{
φi[Ψ′(µiφi) + Ψ′((1− µi)φi)]

+ (y∗i − µ∗i )
(
∂2g1(µi)
∂µ2

i

)(
∂g1(µi)
∂µi

)−1 }(
∂g1(µi)
∂µi

)−2

xix
>
i

= −
n∑
i=1

qixix
>
i ,

which can be rewrite in matrix form as

Üββ
p (θ) = −X>QX.

Now, to obtain penalized Fisher’s information, we have that, since,

E
[
U̇β
p (θ)

]
= 0⇒ E(y∗i ) = µ∗i ⇒ E

[
lp(θ,λ)
∂µi

]
= E (y∗i − µ∗i ) = 0,

where y∗i and µ∗i are defined in Section 2.3.1, thus,

Kββ
p (θ) = E

[
−∂

2lp(θ,λ)
∂β∂β>

]
= −

n∑
i=1

E
(
∂2lp(θ,λ)

∂µ2
i

)(
∂µi
∂η1i

)2

xix
>
i

= −
n∑
i=1
−φ2

i [Ψ′(µiφi) + Ψ′((1− µi)φi)]
(
∂g1(µi)
∂µi

)−2

xix
>
i

=
n∑
i=1

wixix
>
i .
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In matrix form, the penalized Fisher’s information is rewrite as

Kββ
p (θ) = X>WX.

Second, the penalized Fisher’s information matrix Kγjγj
p (θ) will be calculated.

As in above development, it is known that

Kγjγj
p (θ) = E

[
−∂

2lp(θ,λ)
∂γj∂γ>j

]
,

so the second derivative of lp(θ,λ) with respect to γj is developed below,

Üγjγj
p (θ) = ∂2lp(θ,λ)

∂γj∂γ>j
=

n∑
i=1

∂

∂µi

(
∂lp(θ,λ)
∂µi

∂µi
∂η1i

)
∂µi
∂η1i

∂η1i

γ>j
bij − λjΛj

=
n∑
i=1

(
∂2lp(θ,λ)

∂µ2
i

∂µi
∂η1i

+ ∂lp(θ,λ)
∂µi

∂2µi
∂µi∂η1i

)
∂µi
∂η1i

bijb
>
ij − λjΛj

= −
n∑
i=1

φi

{
φi[Ψ′(µiφi) + Ψ′((1− µi)φi)]− (y∗i − µ∗i )

×
(
∂2g1(µi)
∂µ2

i

)(
∂g1(µi)
∂µi

)−1 }(
∂g1(µi)
∂µi

)−2

bijb
>
ij − λjΛj

= −
n∑
i=1

qibijb
>
ij − λjΛj,

which can be rewrite in matrix form as

Üγjγj
p (θ) = −B>j QBj − λjΛj.

As comment before, since,

E
[
U̇γj
p (θ)

]
= 0⇒ E(y∗i ) = µ∗i ⇒ E

[
lp(θ,λ)
∂µi

]
= E (y∗i − µ∗i ) = 0,

thereby, it is possible to obtain the penalized Fisher’s information as follows,

Kγjγj
p (θ) = E

[
−∂

2lp(θ,λ)
∂γj∂γ>j

]
= −

n∑
i=1

E
(
∂2lp(θ,λ)

∂µ2
i

)(
∂µi
∂η1i

)2

bijb
>
ij + λjΛj

= −
n∑
i=1
−φ2

i [Ψ′(µiφi) + Ψ′((1− µi)φi)]
(
∂g(µi)
∂µi

)−2

bijb
>
ij + λjΛj

=
n∑
i=1

wibijb
>
ij + λjΛj.

In the matrix form, the penalized Fisher’s information can be rewrite as

Kγjγj
p (θ) = B>j WBj + λjΛj.

And, at last, the penalized Fisher’s information matrix for κ will be calculated, being
known that

Kκκ
p (θ) = E

[
−∂

2lp(θ,λ)
∂κ∂κ>

]
.
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Therefore, the second derivative of lp(θ,λ) with respect to φ is shown below,

Üκκ
p (θ) = ∂2lp(θ,λ)

∂κ∂κ>
=

n∑
i=1

∂

∂φi

(
∂lp(θ,λ)
∂φi

∂φi
∂η2i

)
∂φi
∂η2i

∂η2i

κ>
ei

=
n∑
i=1

(
∂2lp(θ,λ)

∂φ2
i

∂φi
∂η2i

+ ∂lp(θ,λ)
∂φi

∂2φi
∂φi∂η2i

)
∂φi
∂η2i

eie
>
i

= −
n∑
i=1

[
Ψ′(µiφi)µ2

i + Ψ′((1− µi)φi)(1− µi)2 −Ψ′(φi)

− ui
(
∂g2(φi)
∂φi

)−1 (
∂2g2(φi)
∂φ2

i

)](
∂g2(φi)
∂φi

)−2

eie
>
i

= −
n∑
i=1

sieie
>
i ,

which can be rewrite in matrix form as

Üκκ
p (θ) = −E>SE.

Thus, the penalized Fisher’s information matrix is given by

Kκκ
p (θ) = E

[
−∂

2lp(θ,λ)
∂κ∂κ>

]
= −

n∑
i=1

E
(
∂2lp(θ,λ)

∂φ2
i

)(
∂φi
∂η2i

)2

eie
>
i

= −
n∑
i=1
−
[
Ψ′(µiφi)µ2

i + Ψ′((1− µi)φi)(1− µi)2 −Ψ′(φi)
] (∂g2(µi)

∂µi

)−2

eie
>
i

=
n∑
i=1

pieie
>
i ,

and, rewriting in matrix form, the result is,

Kκκ
p = E>PE.

For cross second derivative with respect to the β and κ, the penalized Fisher’s
information is given by,

Kβκ
p (θ) = E

[
−∂

2lp(θ,λ)
∂β∂κ>

]
.

The second derivative of lp(θ,λ) with respect to the β and κ is give by

Üβκ
p (θ) = ∂2lp(θ,λ)

∂β∂κ>
=

n∑
i=1

∂l2p(θ,λ)
∂µi∂φi

∂µi
∂η1i

∂φi
∂η2i

∂η2i

∂κ>
xi

=
n∑
i=1

∂l2p(θ,λ)
∂µi∂φi

∂µi
∂η1i

∂φi
∂η2i

xie
>
i

= −
n∑
i=1
{φi[Ψ′(µiφi)µi −Ψ′((1− µi)φi)(1− µi)]− (y∗i − µ∗i )}

×
(
∂g1(µi)
∂µi

)−1 (
∂g2(φi)
∂φi

)−1

xie
>
i

= −
n∑
i=1

q∗ixie
>
i .
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The last result can be rewrite in matrix form as

Üβκ
p (θ) = −X>Q∗E.

Since E(y∗i ) = µ∗i , it implies that,

Kβκ
p (θ) = E

[
−∂

2lp(θ,λ)
∂β∂κ>

]
= −

n∑
i=1

E
(
∂2lp(θ,λ)
∂β∂κ>

)(
∂µi
∂η1i

)(
∂φi
∂η2i

)
xie

>
i

= −
n∑
i=1
−{φi[Ψ′(µiφi)µi −Ψ′((1− µi)φi)(1− µi)]}

×
(
∂g1(µi)
∂µi

)−1 (
∂g2(φi)
∂φi

)−1

xie
>
i

=
n∑
i=1

w∗ixie
>
i .

In matrix notation, penalized Fisher’s information matrix is rewrite as

Kβκ
p (θ) = X>W ∗E.

Furthermore, for cross derivative with respect to the γj and κ, the penalized
Fisher’s information is obtained as shown below

Kγjκ
p (θ) = E

[
−∂

2lp(θ,λ)
∂γj∂κ>

]
.

The second derivative of lp(θ,λ) with respect to the γj and κ is given by

Üγjκ
p (θ) = ∂2lp(θ,λ)

∂β∂κ>
=

n∑
i=1

∂l2p(θ,λ)
∂µi∂φi

∂µi
∂η1i

∂φi
∂η2i

∂η2i

∂κ>
bij

=
n∑
i=1

∂l2p(θ,λ)
∂µi∂φi

∂µi
∂η1i

∂φi
∂η2i

bije
>
i

= −
n∑
i=1
{φi[Ψ′(µiφi)µi −Ψ′((1− µi)φi)(1− µi)]− (y∗i − µ∗i )}

×
(
∂g1(µi)
∂µi

)−1 (
∂g2(φi)
∂φi

)−1

bije
>
i

= −
n∑
i=1

q∗i bije
>
i

which can be rewrite in matrix form as

Üγjκ
p (θ) = −B>j Q∗E.
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Since E(y∗i ) = µ∗i , it implies at

Kγjκ
p (θ) = E

[
−∂

2lp(θ,λ)
∂γj∂κ>

]
= −

n∑
i=1

E
(
∂2lp(θ,λ)
∂γj∂κ>

)(
∂µi
∂η1i

)(
∂φi
∂η2i

)
bije

>
i

= −
n∑
i=1
−{φi[Ψ′(µiφi)µi −Ψ′((1− µi)φi)(1− µi)]}

×
(
∂g1(µi)
∂µi

)−1 (
∂g2(φi)
∂φi

)−1

bije
>
i

=
n∑
i=1

w∗i bije
>
i .

In matrix notation, penalized Fisher’s information matrix is rewrite as

Kγjκ
p (θ) = B>j W

∗E.

For cross derivative with respect to the γj and γj′ , the penalized Fisher’s
information is obtained as shown below

K
γjγj′
p (θ) = E

[
−∂

2lp(θ,λ)
∂γj∂γ>j′

]
.

The second derivative of lp(θ,λ) with respect to the γj and γ ′j is given by

Ü
γjγj′
p (θ) = ∂2lp(θ,λ)

∂γj∂γ>j′
=

n∑
i=1

∂

∂µi

(
∂lp(θ,λ)
∂µi

∂µi
∂η1i

)
∂µi
∂η1i

∂η1i

γ>j′
bij

=
n∑
i=1

(
∂2lp(θ,λ)

∂µ2
i

∂µi
∂η1i

+ ∂lp(θ,λ)
∂µi

∂2µi
∂µi∂η1i

)
∂µi
∂η1i

bijb
>
ij′

= −
n∑
i=1

φi

{
φi[Ψ′(µiφi) + Ψ′((1− µi)φi)] + (y∗i − µ∗i )

×
(
∂2g1(µi)
∂µ2

i

)(
∂g1(µi)
∂µi

)−1 }(
∂g1(µi)
∂µi

)−2

bijb
>
ij′

= −
n∑
i=1

qibijb
>
ij′ ,

which, in matrix form is,

Ü
γjγj′
p (θ) = −B>j QBj′

As comment before, since E(y∗i ) = µ∗i , it implies that,

K
γjγj′
p (θ) = E

[
−∂

2lp(θ,λ)
∂γj∂γj′

]
= −

n∑
i=1

E
(
∂2lp(θ,λ)

∂µ2
i

)(
∂µi
∂η1i

)2

bijb
>
ij′

= −
n∑
i=1
−φ2

i [Ψ′(µiφi) + Ψ′((1− µi)φi)]
(
∂g1(µi)
∂µi

)−2

bijb
>
ij′

=
n∑
i=1

wibijb
>
ij′ .
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In the matrix form, the penalized Fisher’s information matrix is rewrite as

K
γjγj′
p (θ) = B>j WBj′ .

And, at last, for cross derivative with respect to the β and γj, the penalized
Fisher’s information is obtained as shown below

Kβγj
p (θ) = E

[
−∂

2lp(θ,λ)
∂β∂γ>j

]
.

The second derivative of lp(θ,λ) with respect to the β and γj is given by,

Üβγj
p (θ) = ∂2lp(θ,λ)

∂β∂γ>j
=

n∑
i=1

∂

∂µi

(
∂lp(θ,λ)
∂µi

∂µi
∂η1i

)
∂µi
∂η1i

∂η1i

γ>j
xi

=
n∑
i=1

(
∂2lp(θ,λ)

∂µ2
i

∂µi
∂η1i

+ ∂lp(θ,λ)
∂µi

∂2µi
∂µi∂η1i

)
∂µi
∂η1i

xib
>
ij

= −
n∑
i=1

φi

{
φi[Ψ′(µiφi) + Ψ′((1− µi)φi)]

+ (y∗i − µ∗i )
(
∂2g1(µi)
∂µ2

i

)(
∂g1(µi)
∂µi

)−1 }(
∂g1(µi)
∂µi

)−2

xib
>
ij

= −
n∑
i=1

qixib
>
ij,

which can be rewrite in matrix form as,

Üβγj
p (θ) = −X>QBj.

Since E(y∗i ) = µ∗i , thus,

Kβγj
p (θ) = E

[
−∂

2lp(θ,λ)
∂β∂γ>j

]
= −

n∑
i=1

E
(
∂2lp(θ,λ)

∂µ2
i

)(
∂µi
∂η1i

)2

xib
>
ij

= −
n∑
i=1
−φ2

i [Ψ′(µiφi) + Ψ′((1− µi)φi)]
(
∂g1(µi)
∂µi

)−2

xib
>
ij

=
n∑
i=1

wixib
>
ij.

In the matrix form, the penalized Fisher’s information matrix is

Kβγj
p (θ) = X>WBj.

A.2 Results related to Simplex-SPAM

A.2.1 Penalized score function for Simplex-SPAM

This section will presents the demonstration of results defined in Sections 2.3 and
2.4 for Simplex-SPAM, such as penalized score function and penalized Fisher information.



APPENDIX A. Results development for SPAM 169

As seen in Section 2.2, the penalized log-likelihood function for Semi-parametric Additive
Simplex Regression Model is given by

l(θ,λ) = l(θ)−
k∑
j=1

λj
2 γ

>
j Λd

jγj,

and replacing l(θ) by its expression, the result is given by

l(θ,λ) =
n∑
i=1

{
−1

2 {log(2πφi) + 3 log[yi(1− yi)]}

− (y − µi)2

2φiyi(1− yi)µ2
i (1− µi)2

}
−

k∑
j=1

λj
2 γ

>
j Λd

jγj,

with µi = g−1
1 (η1i), η1i = x>i β +

k∑
j=1
b>ijγj, φi = g−1

2 (η2i) and η2i = e>i κ.

The penalized score function for θ = (β>,γ>1 , . . . ,γ>k , κ>)> is given by U̇ θ
p (θ) =(

U̇β
p (θ)>, U̇γ1

p (θ)>, . . . , U̇γk
p (θ)>, U̇κ

p (θ)>
)>

. Initially, penalized score function for β will
be calculated, U̇β

p (θ),

U̇β
p (θ) = ∂lp(θ,λ)

∂β
=

n∑
i=1

[
∂lp(θ,λ)
∂µi

∂µi
∂η1i

∂η1i

∂β

]

=
n∑
i=1

1
φi

{
(yi − µi)
µi(1− µi)

[
(yi − µi)2

yi(1− yi)µ2
i (1− µi)2 + 1

µ2
i (1− µi)2

]}(
∂g1(µi)
∂µi

)−1

xi

=
n∑
i=1

1
φi
ui(yi − µi)

(
∂g1(µi)
∂µi

)−1

xi.

(A.1)

The above result can be write in matrix form, and this is given by,

U̇β
p (θ) = X>T1f

∗.

For the parameter γj, j = 1, . . . , k, the penalized score function is given by

U̇γj
p (θ) = ∂lp(θ,λ)

∂γj
=

n∑
i=1

[
∂lp(θ,λ)
∂µi

∂µi
∂η1i

∂η1i

∂γj

]
− λjΛjγj

=
n∑
i=1

1
φi

{
(yi − µi)
µi(1− µi)

[
(yi − µi)2

yi(1− yi)µ2
i (1− µi)2 + 1

µ2
i (1− µi)2

]}(
∂g1(µi)
∂µi

)−1

bij

− λjΛjγj =
n∑
i=1

1
φi
ui(yi − µi)

(
∂g1(µi)
∂µi

)−1

bij − λjΛjγj.

In matrix form, we have the below result,

U̇γj
p (θ) = B>j T1f

∗ − λjΛjγj.
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And, at last, for parameter κ, the penalized score function is given by

U̇κ
p (θ) = ∂lp(θ,λ)

∂κ
=

n∑
i=1

[
∂lp(θ,λ)
∂φi

∂φi
∂η2i

∂η2i

∂κ

]

=
n∑
i=1

[
− 1

2φ + (yi − µi)2

2φ2yi(1− yi)µ2
i (1− µi)2

](
∂g2(φi)
∂φi

)−1

ei

=
n∑
i=1

aiT2ei,

which can be rewrite in matrix form as

U̇κ
p (θ) = E>T2a.

A.2.2 Penalized Fisher’s Information Matrix for Simplex-SPAM

In this section will be presented the calculations to obtain the second derivative
of lp(θ,λ) with respect to θ and the penalized Fisher’s information matrix for Simplex-
SPAM, both as defined in Section 2.4.

The second derivative of lp(θ,λ) with respect to θ is defined as

Ü θθ
p (θ) = ∂2lp(θ,λ)

∂θ∂θ>
,

which is equivalent to

Ü θθ
p (θ) =



Üββ
p (θ) Üβγ1

p (θ) . . . Üβγk
p (θ) Üβκ

p (θ)
Üγ1β
p (θ) Üγ1γ1

p (θ) . . . Üγ1γk
p (θ) Üγ1κ

p (θ)
... ... . . . ... ...

Üγkβ
p (θ) Üγkγ1

p (θ) . . . Üγkγk
p (θ) Üγkκ

p (θ)
Üκβ
p (θ) Üκγ1

p (θ) . . . Üκγk
p (θ) Üκκ

p (θ)


,

and the penalized Fisher’s information matrix was defined as

Kθθ
p (θ) = E

[
−∂

2lp(θ,λ)
∂θ∂θ>

]
,

in which

Kθθ
p (θ) =



Kββ
p (θ) Kβγ1

p (θ) . . . Kβγk
p (θ) Kβκ

p (θ)
Kγ1β

p (θ) Kγ1γ1
p (θ) . . . Kγ1γk

p (θ) Kγ1κ
p (θ)

... ... . . . ... ...
Kγkβ

p (θ) Kγkγ1
p (θ) . . . Kγkγk

p (θ) Kγkκ
p (θ)

Kκβ
p (θ) Kκγ1

p (θ) . . . Kκγk
p (θ) Kκκ

p (θ)


.

Initially, it will be defined some quantities that will be useful to the demon-
strations. Let d(y;µ) be defined as

d(y;µ) = (y − µ)2

y(1− y)µ2(1− µ)2 , (A.2)
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and

∂d(y;µ)
∂µ

= −2u(y − µ),

where ui is defined in Equation 2.12, this relation is obtained from result presented in
Equation A.1, because

∂lp(θ,λ)
∂µ

= −1
2
∂d(y;µ)
∂µ

= u(y − µ). (A.3)

Now, some properties will be shown, for more details and proofs, see Song and
Tan (2000).

Proposition 1. Let y ∼ Simplex−(µ, φ). Then,

(1) E[d(y;µ)] = φ;

(2) E[(y − µ)2u] = −2φ;

(3) E[(y − µ)d(y;µ)] = 0;

(4) E
[
∂2d(y;µ)
∂µ2

]
= 2

[
3φ

µ(1− µ) + 1
µ3(1− µ)3

]

Besides that, another result that is consequence of item (3) in Proposition 1
and will useful is

E[(y − µ)u] = 0. (A.4)

Proof: based on the relation shown in Equation A.3 and given that u is defined as

u = 1
µ(1− µ)

[
d(y;µ) + 1

µ2(1− µ)2

]
,

and considering E(y) = µ, it follows that

E
[
∂lp(θ,λ)

∂µ

]
= E[u(y − µ)] = E[(y − µ)d(y;µ)]

µ(1− µ) + E(y − µ)
µ3(1− µ)3 = 0.

The penalized Fisher’s information matrix Kββ
p (θ) will be calculated. It known

that

Kββ
p (θ) = E

[
−∂

2lp(θ,λ)
∂β∂β>

]
.
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The second derivative of lp(θ,λ) with respect to the β is obtained as shown below,

Üββ
p (θ) = ∂2lp(θ,λ)

∂β∂β>
=

n∑
i=1

∂

∂µi

(
∂lp(θ,λ)
∂µi

∂µi
∂η1i

)
∂µi
∂η1i

∂η1i

∂β>
xi

=
n∑
i=1

(
∂2lp(θ,λ)

∂µ2
i

∂µi
∂η1i

+ ∂lp(θ,λ)
∂µi

∂2µi
∂µi∂η1i

)
∂µi
∂η1i

xix
>
i

= −
n∑
i=1

1
φi

{
ui + (yi − µi)

[
2(yi − µi)ui
µi(1− µi)

+ 3(1− 2µi)
µ4
i (1− µi)4 + (1− 2µi)d(yi;µi)

µ2
i (1− µi)2

]

+ ui(yi − µi)
(
∂2g1(µi)
∂µ2

i

)(
∂g1(µi)
∂µi

)−1 }(
∂g1(µi)
∂µi

)−2

xix
>
i

= −
n∑
i=1

qixix
>
i .

In matrix form, it can be rewrite as

Üββ
p (θ) = −X>QX.

Thus, using the results given by Proposition 1, and given that ∂
2d(yi;µi)
∂µ2 =

(yi−µi)
[

2(yi − µi)ui
µi(1− µi)

+ 3(1− 2µi)
µ4
i (1− µi)4 + (1− 2µi)d(yi;µi)

µ2
i (1− µi)2

]
, the penalized Fisher’s information

matrix is obtained as shown below

Kββ
p (θ) = E

[
−∂

2lp(θ,λ)
∂β∂β>

]
= −

n∑
i=1

E
(
∂2lp(θ,λ)

∂µ2
i

)(
∂µi
∂η1i

)2

xix
>
i

=
n∑
i=1

1
φi

{
E(ui) + E

(
∂2d(yi;µi)

∂µ2

)}(
∂g1(µi)
∂µi

)−2

xix
>
i

=
n∑
i=1

1
φi

[
3φi

µi(1− µi)
+ 1
µ3
i (1− µi)3

]
xix

>
i

=
n∑
i=1

1
φi
wixix

>
i .

In matrix form, it can be rewrite as

Kββ
p (θ) = X>WX.

Now, the penalized Fisher’s information matrix Kγjγj
p (θ) will be calculated.

As in above development, it is known that

Kγjγj
p (θ) = E

[
−∂

2lp(θ,λ)
∂γj∂γ>j

]
,
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thereby, the second derivative of lp(θ,λ) with respect to γj is developed below,

Üγjγj
p (θ) = ∂2lp(θ,λ)

∂γj∂γ>j
=

n∑
i=1

∂

∂µi

(
∂lp(θ,λ)
∂µi

∂µi
∂η1i

)
∂µi
∂η1i

∂η1i

γ>j
bij − λjΛj

=
n∑
i=1

(
∂2lp(θ,λ)

∂µ2
i

∂µi
∂η1i

+ ∂lp(θ,λ)
∂µi

∂2µi
∂µi∂η1i

)
∂µi
∂η1i

bijb
>
ij − λjΛj

= −
n∑
i=1

1
φi

{
ui + (yi − µi)

[
2(yi − µi)ui
µi(1− µi)

+ 3(1− 2µi)
µ4
i (1− µi)4 + (1− 2µi)d(yi;µi)

µ2
i (1− µi)2

]

+ ui(yi − µi)
(
∂2g1(µi)
∂µ2

i

)(
∂g1(µi)
∂µi

)−1 }(
∂g1(µi)
∂µi

)−2

bijb
>
ij − λjΛj

= −
n∑
i=1

qibijb
>
ij − λjΛj.

In matrix form, it be shown that

Üγjγj
p (θ) = −B>j QBj − λjΛj.

Thus, using the results given by Proposition 1, and given that ∂
2d(yi;µi)
∂µ2 =

(yi−µi)
[

2(yi − µi)ui
µi(1− µi)

+ 3(1− 2µi)
µ4
i (1− µi)4 + (1− 2µi)d(yi;µi)

µ2
i (1− µi)2

]
, the penalized Fisher’s information

matrix is obtained as shown below

Kγjγj
p (θ) = E

[
−∂

2lp(θ,λ)
∂γj∂γ>j

]
= −

n∑
i=1

E
(
∂2lp(θ,λ)

∂µ2
i

)(
∂µi
∂η1i

)2

bijb
>
ij + λjΛj

=
n∑
i=1

1
φi

{
E(ui) + E

(
∂2d(yi;µi)

∂µ2

)}(
∂g1(µi)
∂µi

)−2

bijb
>
ij + λjΛj

=
n∑
i=1

1
φi

[
3φi

µi(1− µi)
+ 1
µ3
i (1− µi)3

]
bijb

>
ij + λjΛj

=
n∑
i=1

1
φi

[
3φi

µi(1− µi)
+ 1
µ3
i (1− µi)3

]
bijb

>
ij + λjΛj

=
n∑
i=1

wibijb
>
ij + λjΛj.

The penalized Fisher’s information matrix in matrix form is given by

Kγjγj
p (θ) = B>j WBj.

And, at last, the penalized Fisher’s information matrix for parameter κ will be
calculated, being known that

Kκκ
p (θ) = E

[
−∂

2lp(θ,λ)
∂κ∂κ>

]
.
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Therefore, the second derivative of lp(θ,λ) with respect to κ is shown below,

Üκκ
p (θ) = ∂2lp(θ,λ)

∂κ∂κ>
=

n∑
i=1

∂

∂φi

(
∂lp(θ,λ)
∂φi

∂φi
∂η2i

)
∂φi
∂η2i

∂η2i

κ>
ei

=
n∑
i=1

(
∂2lp(θ,λ)

∂φ2
i

∂φi
∂η2i

+ ∂lp(θ,λ)
∂φi

∂2φi
∂φi∂η2i

)
∂φi
∂η2i

eie
>
i

= −
n∑
i=1

[
− 1

2φ2
i

+ 1
φ3
i

d(yi;µi) + ai

(
∂g2(φi)
∂φi

)−1 (
∂2g2(φi)
∂φ2

i

)]

×
(
∂g2(φi)
∂φi

)−2

eie
>
i = −

n∑
i=1

sieie
>
i .

In matrix form, it can rewrite as

Üκκ
p (θ) = −E>SE>.

Thus, using the results given by Proposition 1, the penalized Fisher’s informa-
tion matrix is given by

Kκκ
p (θ) = E

[
−∂

2lp(θ,λ)
∂κ∂κ>

]
= −

n∑
i=1

E
(
∂2lp(θ,λ)

∂φ2
i

)(
∂φi
∂η2i

)2

eie
>
i

= −
n∑
i=1
−
[
− 1

2φ2
i

+ 1
φ3
i

E[d(yi;µi)]
](

∂φi
∂η2i

)2

eie
>
i

=
n∑
i=1

[
− 1

2φ2
i

+ 1
φ2
i

](
∂φi
∂η2i

)2

eie
>
i =

n∑
i=1

1
2φ2

i

(
∂φi
∂η2i

)2

eie
>
i ,

which can be rewrite in matrix form as

Kκκ
p (θ) = E>PE.

For cross second derivative with respect to the β and κ, the penalized Fisher’s
information is given by,

Kβκ
p (θ) = E

[
−∂

2lp(θ,λ)
∂β∂κ>

]
.

The second derivative of lp(θ,λ) with respect to the β and κ is give by

Üβκ
p (θ) = ∂2lp(θ,λ)

∂β∂κ>
=

n∑
i=1

∂l2p(θ,λ)
∂µi∂φi

∂µi
∂η1i

∂φi
∂η2i

∂η2i

∂κ>
xi

=
n∑
i=1

∂l2p(θ,λ)
∂µi∂φi

∂µi
∂η1i

∂φi
∂η2i

xie
>
i

= −
n∑
i=1

[
1
φ2
i

ui(yi − µi)
](
∂g1(µi)
∂µi

)−1 (
∂g2(φi)
∂φi

)−1

xie
>
i

= −
n∑
i=1

q∗i

(
∂g1(µi)
∂µi

)−1 (
∂g2(φi)
∂φi

)−1

xie
>
i .
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In matrix form, the quantity can be rewrite as

Üβκ
p (θ) = −X>Q∗E.

Thus, using the results given by Equation A.4, the penalized Fisher’s information
matrix is shown below,

Kβκ
p (θ) = E

[
−∂

2lp(θ,λ)
∂β∂κ>

]
= −

n∑
i=1

E
(
∂2lp(θ,λ)
∂β∂κ>

)(
∂µi
∂η1i

)(
∂φi
∂η2i

)
xie

>
i

=
n∑
i=1

1
φ2
i

E[ui(yi − µi)]
(
∂µi
∂η1i

)(
∂φi
∂η2i

)
xie

>
i = 0

For cross second derivative with respect to the γj and κ, the penalized Fisher’s
information is given by,

Kγjκ
p (θ) = E

[
−∂

2lp(θ,λ)
∂γj∂κ>

]
.

The second derivative of lp(θ,λ) with respect to the γj and κ is give by

Üγjκ
p (θ) = ∂2lp(θ,λ)

∂γj∂κ>
=

n∑
i=1

∂l2p(θ,λ)
∂µi∂φi

∂µi
∂η1i

∂φi
∂η2i

∂η2i

∂κ>
bij

=
n∑
i=1

∂l2p(θ,λ)
∂µi∂φi

∂µi
∂η1i

∂φi
∂η2i

bije
>
i

= −
n∑
i=1

[
1
φ2
i

ui(yi − µi)
](
∂g1(µi)
∂µi

)−1 (
∂g2(φi)
∂φi

)−1

bije
>
i

= −
n∑
i=1

q∗i

(
∂g1(µi)
∂µi

)−1 (
∂g2(φi)
∂φi

)−1

bije
>
i .

Rewrite in matrix form, we obtain that

Üγjκ
p (θ) = −B>j Q∗E.

Thus, using the results given by Equation A.4, the penalized Fisher’s information
matrix is shown below,

Kγjκ
p (θ) = E

[
−∂

2lp(θ,λ)
∂γj∂κ>

]
= −

n∑
i=1

E
(
∂2lp(θ,λ)
∂γj∂κ>

)(
∂µi
∂η1i

)(
∂φi
∂η2i

)
bije

>
i

=
n∑
i=1

1
φ2
i

E[ui(yi − µi)]
(
∂µi
∂η1i

)(
∂φi
∂η2i

)
bije

>
i = 0

The penalized Fisher’s information matrix Kγjγj′
p (θ) will be calculated. As in

above development, it is known that

K
γjγj′
p (θ) = E

[
−∂

2lp(θ,λ)
∂γj∂γ>j′

]
.
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The second derivative of lp(θ,λ) with respect to γj and γj′ is developed below,

Ü
γjγj′
p (θ) = ∂2lp(θ,λ)

∂γj∂γ>j′
=

n∑
i=1

∂

∂µi

(
∂lp(θ,λ)
∂µi

∂µi
∂η1i

)
∂µi
∂η1i

∂η1i

γ>j′
bij

=
n∑
i=1

(
∂2lp(θ,λ)

∂µ2
i

∂µi
∂η1i

+ ∂lp(θ,λ)
∂µi

∂2µi
∂µi∂η1i

)
∂µi
∂η1i

bijb
>
ij′

= −
n∑
i=1

1
φi

{
ui + (yi − µi)

[
2(yi − µi)ui
µi(1− µi)

+ 3(1− 2µi)
µ4
i (1− µi)4 + (1− 2µi)d(yi;µi)

µ2
i (1− µi)2

]

+ ui(yi − µi)
(
∂2g1(µi)
∂µ2

i

)(
∂g1(µi)
∂µi

)−1 }(
∂g1(µi)
∂µi

)−2

bijb
>
ij′

= −
n∑
i=1

qibijb
>
ij′ .

And in matrix form, we have that

Ü
γjγj′
p (θ) = −B>j QBj′ .

Thus, using the results given by Proposition 1, and given that ∂
2d(yi;µi)
∂µ2 =

(yi−µi)
[

2(yi − µi)ui
µi(1− µi)

+ 3(1− 2µi)
µ4
i (1− µi)4 + (1− 2µi)d(yi;µi)

µ2
i (1− µi)2

]
, the penalized Fisher’s information

matrix is obtained as shown below

K
γjγj′
p (θ) = E

[
−∂

2lp(θ,λ)
∂γj∂γ>j′

]
= −

n∑
i=1

E
(
∂2lp(θ,λ)

∂µ2
i

)(
∂µi
∂η1i

)2

bijb
>
ij′

=
n∑
i=1

1
φi

{
E(ui) + E

(
∂2d(yi;µi)

∂µ2

)}(
∂g1(µi)
∂µi

)−2

bijb
>
ij′

=
n∑
i=1

1
φi

[
3φi

µi(1− µi)
+ 1
µ3
i (1− µi)3

](
∂g1(µi)
∂µi

)−2

bijb
>
ij′

=
n∑
i=1

wibijb
>
ij′ .

The penalized Fisher’s information matrix in matrix form is given by

K
γjγj′
p (θ) = B>j WBj′ .

The penalized Fisher’s information matrix Kβγj
p (θ) will be calculated. As in

above development, it is known that

Kβγj
p (θ) = E

[
−∂

2lp(θ,λ)
∂β>∂γ>j

]
.
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The second derivative of lp(θ,λ) with respect to β and γj is developed below,

Üβγj
p (θ) = ∂2lp(θ,λ)

∂β∂γ>j
=

n∑
i=1

∂

∂µi

(
∂lp(θ,λ)
∂µi

∂µi
∂η1i

)
∂µi
∂η1i

∂η1i

γ>j
xi

=
n∑
i=1

(
∂2lp(θ,λ)

∂µ2
i

∂µi
∂η1i

+ ∂lp(θ,λ)
∂µi

∂2µi
∂µi∂η1i

)
∂µi
∂η1i

xib
>
ij

= −
n∑
i=1

1
φi

{
ui + (yi − µi)

[
2(yi − µi)ui
µi(1− µi)

+ 3(1− 2µi)
µ4
i (1− µi)4 + (1− 2µi)d(yi;µi)

µ2
i (1− µi)2

]

+ ui(yi − µi)
(
∂2g1(µi)
∂µ2

i

)(
∂g1(µi)
∂µi

)−1 }(
∂g1(µi)
∂µi

)−2

xib
>
ij

= −
n∑
i=1

qixib
>
ij.

Rewrite in matrix form, we obtain that

Üβγj
p (θ) = −X>QBj

Thus, using the results given by Proposition 1, and given that ∂
2d(yi;µi)
∂µ2 =

(yi−µi)
[

2(yi − µi)ui
µi(1− µi)

+ 3(1− 2µi)
µ4
i (1− µi)4 + (1− 2µi)d(yi;µi)

µ2
i (1− µi)2

]
, the penalized Fisher’s information

matrix is obtained as shown below

Kβγj
p (θ) = E

[
−∂

2lp(θ,λ)
∂β∂γ>j

]
= −

n∑
i=1

E
(
∂2lp(θ,λ)

∂µ2
i

)(
∂µi
∂η1i

)2

xib
>
ij

=
n∑
i=1

1
φi

{
E(ui) + E

(
∂2d(yi;µi)

∂µ2

)}(
∂g1(µi)
∂µi

)−2

xib
>
ij

=
n∑
i=1

wixib
>
ij.

The penalized Fisher’s information matrix in matrix form is given by

Kβγj
p (θ) = X>WBj.

A.3 Results related to BR-SPAM

A.3.1 Penalized gradient vector for BR-SPAM

This section will presents the demonstration of results defined in Sections 2.3
and 2.4 for BR-SPAM, such as penalized gradient. As seen in Section 2.3.3, for Semi-
parametric Additive Beta Rectangular Regression Model, we will based the calculus on
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the quantity Q(θ|θ(m)), which is given by

Q(θ|θ(m)) = E[lcp(θ|y,θ(m)) =
n∑
i=1

v̂
(m)
i log εi + (1− v̂(m)

i ) log(1− εi)

+ (1− v̂(m)
i )[log(Γ(φi))− log(Γ(δiφi))− log(Γ((1− δi)φi))

+ (δiφi − 1) log yi + ((1− δi)φi − 1) log(1− yi)]− γ>Λγ,

where v̂i is defined in Equation 2.10, µi = g−1
1 (η1i), η1i = x>i β +

k∑
j=1
b>ijγj, φi = g−1

2 (η2i),

η2i = e>i κ, εi = 1−
√

1− 4αµi(1− µi) and δi =
µi − 1

2 + 1
2

√
1− 4αµi(1− µi)√

1− 4αµi(1− µi)
.

The penalized gradient vector for θ = (β>,γ>1 , . . . ,γ>k ,κ>, α)> is given by
U̇ θ
p (θ) =

(
U̇β
p (θ)>, U̇γ1

p (θ)>, . . . , U̇γk
p (θ)>, U̇κ

p (θ), U̇α
p (θ)

)>
. Initially, penalized gradient

vector for β will be calculated, U̇β
p (θ),

U̇β
p (θ) = ∂Q(θ|θ(m))

∂β
=

n∑
i=1

[
∂Q(θ|θ(m))

∂µi

∂µi
∂η1i

∂η1i

∂β

]

=
n∑
i=1

{
2α(1− 2µi)

1− εi

[
v̂i
εi
− (1− v̂i)

(1− εi)

]

+ (1− v̂i)(1− α) φi
(1− εi)3 (y∗i − δ∗i )

}(
∂g1(µi)
∂µi

)−1

xi

=
n∑
i=1

f ∗i

(
∂g1(µi)
∂µi

)−1

xi,

with δ∗i = Ψ(δiφi)−Ψ[(1− δi)φi], y∗i = log[yi/(1− yi)], for i = 1, . . . , n. The above result
can be write in matrix form, and this is given by,

U̇β
p (θ) = ∂Q(θ|θ(m))

∂β
= X>T1f

∗.

For the parameter γj, j = 1, . . . , k, the penalized gradient vector is given by

U̇γj
p (θ) = ∂Q(θ|θ(m))

∂γj
=

n∑
i=1

[
∂Q(θ|θ(m))

∂µi

∂µi
∂η1i

∂η1i

∂γj

]
− λjΛjγj

=
n∑
i=1

{
2α(1− 2µi)

1− εi

[
v̂i
εi
− (1− v̂i)

(1− εi)

]

+ (1− v̂i)(1− α) φi
(1− εi)3 (y∗i − δ∗i )

}(
∂g1(µi)
∂µi

)−1

bij

− λjΛjγj =
n∑
i=1

f ∗i

(
∂g1(µi)
∂µi

)−1

bij − λjΛjγj.

In matrix form, we have the below result,

U̇γj
p (θ) = ∂Q(θ|θ(m))

∂γj
= B>j T1f

∗ − λjΛjγj.
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For the parameter κ, the penalized gradient vector is given by

Uκ
p (θ) = ∂Q(θ|θ(m))

∂κ
=

n∑
i=1

[
∂Q(θ|θ(m))

∂φi

∂φi
∂η2i

∂η2i

∂κ

]

=
n∑
i=1

(1− v̂i){δi(y∗i − δ∗i ) + log(1− yi)

−Ψ[(1− δi)φi] + Ψ(φi)}
(
∂g2(φi)
∂φi

)−1

ei

=
n∑
i=1

ai

(
∂g2(φi)
∂φi

)−1

ei,

which in matrix form, can be rewrite as

Uκ
p (θ) = E>T2a.

At last, for the parameter α, the penalized gradient vector is given by

Uα
p (θ) = ∂Q(θ|θ(m))

∂α

=
n∑
i=1

2µi(1− µi)
(1− εi)

[
v̂i
εi
− (1− v̂i)

(1− εi)

]
− (1− v̂i)

[
φiµi(1− µi)(1− 2µi)

(1− εi)3

]
(y∗i − δ∗i )

=
n∑
i=1

di = trace(D).

A.3.2 Penalized Hessian matrix for BR-SPAM

In this section will be presented the calculations to obtain the second derivative
of Q(θ|θ(m)) with respect to θ defined in Section 2.4 for BR-SPAM.

The second derivative of Q(θ|θ(m)) with respect to θ is defined as

Ü θθ
p (θ) = ∂2Q(θ|θ(m))

∂θ∂θ>
,

which is equivalent to

Ü θθ
p (θ) =



Üββ
p (θ) Üβγ1

p (θ) . . . Üβγk
p (θ) Üβκ

p (θ)
Üγ1β
p (θ) Üγ1γ1

p (θ) . . . Üγ1γk
p (θ) Üγ1κ

p (θ)
... ... . . . ... ...

Üγkβ
p (θ) Üγkγ1

p (θ) . . . Üγkγk
p (θ) Üγkκ

p (θ)
Üκβ
p (θ) Üκγ1

p (θ) . . . Üκγk
p (θ) Üκκ

p (θ)


.

The second derivative of Q(θ|θ(m)) with respect to the β is obtained as shown
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below,

Üββ
p (θ) = ∂2Q(θ|θ(m))

∂β∂β>
=

n∑
i=1

∂

∂µi

(
∂Q(θ|θ(m))

∂µi

∂µi
∂η1i

)
∂µi
∂η1i

∂η1i

∂β>
xi

=
n∑
i=1

(
∂2Q(θ|θ(m))

∂µ2
i

∂µi
∂η1i

+ ∂Q(θ|θ(m))
∂µi

∂2µi
∂µi∂η1i

)
∂µi
∂η1i

xix
>
i

=
n∑
i=1

{[
4α2(1− 2µi)2

(1− εi)2

] [
− v̂i
ε2
i

− (1− v̂i)
(1− εi)2

]
+
[
v̂i
εi
− (1− v̂i)

(1− εi)

]

×
[
− 4α

(1− εi)
+ 4α2(1− 2µi)2

(1− εi)3

]
+ (1− α)(1− v̂i)

×
[
−(1− α)φ2

i

(1− εi)6 w∗i + 6αφi(1− 2µi)
(1− εi)5 (y∗i − δ∗i )

]
− f ∗i

(
∂g1(µi)
∂µi

)−1

×
(
∂2g1(µi)
∂µ2

i

)}(
∂g1(µi)
∂µi

)−2

xix
>
i

=
n∑
i=1

rixix
>
i .

In matrix form, it can be rewrite as

Üββ
p (θ) = X>RX.

The second derivative of Q(θ|θ(m)) with respect to γj is developed below,

Üγjγj
p (θ) = ∂2Q(θ|θ(m))

∂γj∂γ>j
=

n∑
i=1

∂

∂µi

(
∂Q(θ|θ(m))

∂µi

∂µi
∂η1i

)
∂µi
∂η1i

∂η1i

γ>j
bij − λjΛj

=
n∑
i=1

(
∂2Q(θ|θ(m))

∂µ2
i

∂µi
∂η1i

+ ∂Q(θ|θ(m))
∂µi

∂2µi
∂µi∂η1i

)
∂µi
∂η1i

bijb
>
ij − λjΛj

=
n∑
i=1

{[
4α2(1− 2µi)2

(1− εi)2

] [
− v̂i
ε2
i

− (1− v̂i)
(1− εi)2

]
+
[
v̂i
εi
− (1− v̂i)

(1− εi)

]

×
[
− 4α

(1− εi)
+ 4α2(1− 2µi)2

(1− εi)3

]
+ (1− α)(1− v̂i)

×
[
−(1− α)φ2

i

(1− εi)6 w∗i + 6αφi(1− 2µi)
(1− εi)5 (y∗i − δ∗i )

]
− f ∗i

(
∂g1(µi)
∂µi

)−1

×
(
∂2g1(µi)
∂µ2

i

)}(
∂g1(µi)
∂µi

)−2

bijb
>
ij − λjΛj

=
n∑
i=1

ribijb
>
ij − λjΛj.

In matrix form, it be shown that

Üγjγj
p (θ) = B>j RBj − λjΛj.
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Therefore, the second derivative of Q(θ|θ(m)) with respect to κ is shown below,

Üκκ
p (θ) = ∂2Q(θ|θ(m))

∂κ∂κ>
=

n∑
i=1

∂

∂φi

(
∂Q(θ|θ(m))

∂φi

∂φi
∂η2i

)
∂φi
∂η2i

∂η2i

κ>
ei

=
n∑
i=1

(
∂2Q(θ|θ(m))

∂φ2
i

∂φi
∂η2i

+ ∂Q(θ|θ(m))
∂φi

∂2φi
∂φi∂η2i

)
∂φi
∂η2i

eie
>
i

=
n∑
i=1

[
−(1− v̂i)[(1− δi)2Ψ′((1− δi)φi) + δ2Ψ′(δiφi)−Ψ′(φi)]

− pi
(
∂g2(φi)
∂φi

)−1 (
∂2g2(φi)
∂φ2

i

)]
×
(
∂g2(φi)
∂φi

)−2

eie
>
i

=
n∑
i=1

sieie
>
i .

In matrix form, it can rewrite as

Üκκ
p (θ) = E>SE.

The second derivative of Q(θ|θ(m)) with respect to α is shown below,

Üαα
p (θ) = ∂2Q(θ|θ̂(m))

∂α2 =
n∑
i=1

{[
4µ2

i (1− µi)2

(1− εi)2

] [
− v̂i
ε2
i

− (1− v̂i)
(1− εi)2

]
+
[
v̂i
εi
− (1− v̂i)

(1− εi)

]

×
[

4µ2
i (1− µi)2

(1− εi)3

]
− (1− v̂i)

[
φiµ

2
i (1− µi)2(1− 2µi)

(1− εi)5

]

×
[
φi(1− 2µi)

(1− εi)
w∗i − 6(y∗i − δ∗i )

]}
=

n∑
i=1

ji

In matrix form, it can rewrite as

Üαα
p (θ) = trace(J).

The second derivative of Q(θ|θ̂(m)) with respect to the β and κ is give by

Üβκ
p (θ) = ∂2Q(θ|θ̂(m))

∂β∂κ>
=

n∑
i=1

∂2Q(θ|θ̂(m))
∂µi∂φi

∂µi
∂η1i

∂φi
∂η2i

∂η2i

∂κ>
xi

=
n∑
i=1

∂2Q(θ|θ̂(m))
∂µi∂φi

∂µi
∂η1i

∂φi
∂η2i

xie
>
i

= −
n∑
i=1

(1− v̂i)
{

(1− α)
(1− εi)3 [φi(δiw∗i −Ψ′((1− δi)φi)) + (y∗i − δ∗i )]

}

×
(
∂g1(µi)
∂µi

)−1 (
∂g2(φi)
∂φi

)−1

xie
>
i

= −
n∑
i=1

r∗ixie
>
i .

In matrix form, the quantity can be rewrite as

Üβκ
p (θ) = −X>R∗E.
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The second derivative of Q(θ|θ̂(m)) with respect to the γj and κ is give by

Üγjκ
p (θ) = ∂2Q(θ|θ̂(m))

∂γj∂κ>
=

n∑
i=1

∂2Q(θ|θ̂(m))
∂µi∂φi

∂µi
∂η1i

∂φi
∂η2i

∂η2i

∂κ>
bij

=
n∑
i=1

∂2Q(θ|θ̂(m))
∂µi∂φi

∂µi
∂η1i

∂φi
∂η2i

bije
>
i

= −
n∑
i=1

(1− v̂i)
{

(1− α)
(1− εi)3 [φi(δiw∗i −Ψ′((1− δi)φi)) + (y∗i − δ∗i )]

}

×
(
∂g1(µi)
∂µi

)−1 (
∂g2(φi)
∂φi

)−1

bije
>
i

= −
n∑
i=1

r∗i bije
>
i .

In matrix form, the quantity can be rewrite as

Üγjκ
p (θ) = −B>j R∗E.

The second derivative of lp(θ,λ) with respect to γj and γj′ is developed below,

Ü
γjγj′
p (θ) = ∂2Q(θ|θ̂(m))

∂γj∂γ>j′
=

n∑
i=1

∂

∂µi

∂Q(θ|θ̂(m))
∂µi

∂µi
∂η1i

 ∂µi
∂η1i

∂η1i

γ>j′
bij

=
n∑
i=1

∂2Q(θ|θ̂(m))
∂µ2

i

∂µi
∂η1i

+ ∂Q(θ|θ̂(m))
∂µi

∂2µi
∂µi∂η1i

 ∂µi
∂η1i

bijb
>
ij′

=
n∑
i=1

{[
4α2(1− 2µi)2

(1− εi)2

] [
− v̂i
ε2
i

− (1− v̂i)
(1− εi)2

]
+
[
v̂i
εi
− (1− v̂i)

(1− εi)

]

×
[
− 4α

(1− εi)
+ 4α2(1− 2µi)2

(1− εi)3

]
+ (1− α)(1− v̂i)

×
[
−(1− α)φ2

i

(1− εi)6 w∗i + 6αφi(1− 2µi)
(1− εi)5 (y∗i − δ∗i )

]
+ f ∗i

(
∂g1(µi)
∂µi

)−1

×
(
∂2g1(µi)
∂µ2

i

)}(
∂g1(µi)
∂µi

)−2

bijb
>
ij′

=
n∑
i=1

ribijb
>
ij′ .

And in matrix form, we have that

Ü
γjγj′
p (θ) = B>j RBj′ .
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The second derivative of Q(θ|θ̂(m)) with respect to β and γj is developed below,

Üβγj
p (θ) = ∂2lp(θ,λ)

∂β∂γ>j
=

n∑
i=1

∂

∂µi

∂Q(θ|θ̂(m))
∂µi

∂µi
∂η1i

 ∂µi
∂η1i

∂η1i

γ>j
xi

=
n∑
i=1

∂2Q(θ|θ̂(m))
∂µ2

i

∂µi
∂η1i

+ ∂Q(θ|θ̂(m))
∂µi

∂2µi
∂µi∂η1i

 ∂µi
∂η1i

xib
>
ij

=
n∑
i=1

{[
4α2(1− 2µi)2

(1− εi)2

] [
− v̂i
ε2
i

− (1− v̂i)
(1− εi)2

]
+
[
v̂i
εi
− (1− v̂i)

(1− εi)

]

×
[
− 4α

(1− εi)
+ 4α2(1− 2µi)2

(1− εi)3

]
+ (1− α)(1− v̂i)

×
[
−(1− α)φ2

i

(1− εi)6 w∗i + 6αφi(1− 2µi)
(1− εi)5 (y∗i − δ∗i )

]
+ f ∗i

(
∂g1(µi)
∂µi

)−1

×
(
∂2g1(µi)
∂µ2

i

)}(
∂g1(µi)
∂µi

)−2

xib
>
ij

=
n∑
i=1

rixib
>
ij.

Rewrite in matrix form, we obtain that

Üβγj
p (θ) = X>RBj.

The second derivative of Q(θ|θ̂(m)) with respect to the β and α is give by

Üβα
p (θ) = ∂2Q(θ|θ̂(m))

∂β∂α
=

n∑
i=1

{[
4αµi(1− µi)(1− 2δi)

(1− εi)2

] [
− v̂i
ε2
i

− (1− v̂i)
(1− εi)2

]

+
[
v̂i
εi
− (1− v̂i)

(1− εi)

]{
2(1− 2µi)

[
1

(1− εi)
+ 2αµi(1− µi)

(1− εi)3

]}

+ (1− v̂i)
{[

(1− α)φ2
iµi(1− µi)(1− 2µi)

(1− εi)6 w∗i

]
+ (y∗i − δ∗i )

×
{
−φ

[
1

(1− εi)4 −
6(1− α)µi(1− µi)

(1− εi)6

]}}}(
∂g1(µi)
∂µi

)−1

xi

=
n∑
i=1

s∗i

(
∂g1(µi)
∂µi

)−1

xi.

In matrix form, the quantity can be rewrite as

Üβα
p (θ) = X>T1s

∗.
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The second derivative of Q(θ|θ̂(m)) with respect to the γj and α is give by

Üγjα
p (θ) = ∂2Q(θ|θ̂(m))

∂γj∂α
=

n∑
i=1

{[
4αµi(1− µi)(1− 2δi)

(1− εi)2

] [
− v̂i
ε2
i

− (1− v̂i)
(1− εi)2

]

+
[
v̂i
εi
− (1− v̂i)

(1− εi)

]{
2(1− 2µi)

[
1

(1− εi)
+ 2αµi(1− µi)

(1− εi)3

]}

+ (1− v̂i)
{[

(1− α)φ2
iµi(1− µi)(1− 2µi)

(1− εi)6 w∗i

]
+ (y∗i − δ∗i )

×
{
−φ

[
1

(1− εi)4 −
6(1− α)µi(1− µi)

(1− εi)6

]}}}(
∂g1(µi)
∂µi

)−1

bij

=
n∑
i=1

s∗i

(
∂g1(µi)
∂µi

)−1

bij.

In matrix form, the quantity can be rewrite as

Üγjα
p (θ) = B>j T1s

∗.

The second derivative of Q(θ|θ̂(m)) with respect to the κ and α is give by

Üκα
p (θ) = ∂2Q(θ|θ̂(m))

∂κ∂α
=

n∑
i=1

[
4αµi(1− µi)(1− 2δi)

(1− εi)2

] [
− v̂i
ε2
i

− (1− v̂i)
(1− εi)2

]

+
[
v̂i
εi
− (1− v̂i)

(1− εi)

]{
2(1− 2µi)

[
1

(1− εi)
+ 2αµi(1− µi)

(1− εi)3

]}

+ (1− v̂i)
{[

(1− α)φ2
iµi(1− µi)(1− 2µi)

(1− εi)6 w∗i

]
+ (y∗i − δ∗i )

×
{
−φi

[
1

(1− εi)4 −
6(1− α)µi(1− µi)

(1− εi)6

]}}(
∂g2(φi)
∂φi

)−1

=
n∑
i=1

c∗i

(
∂g2(φi)
∂φi

)−1

ei,

in matrix form,

Üκα
p (θ) = E>T2c

∗.

A.4 Results related to discrete part of Zero-and/or-One Augmented
Models

A.4.1 Penalized score function for Zero-and/or-One Augmented for discrete
part of the Models

As all models share the same structure for discrete part, all development of
calculations that involves these components, will be found in this and next section. Thus,
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given that is possible split the likelihood for θ, that is the vector containing all model
parameters, into two parts, one that is related with the parameter vector ϑ = (ρ>, τ>)>,
which regards the discrete components and the other that is related with ϕ, which regards
the continuous components, it will be discussed here only about the subvector ϑ. In general,
the penalized likehood is defined as

l(θ,λ) = l1(ϑ) + l2(ϕ)−
k∑
j=1

λj
2 γ

>
j Λd

jγj,

where, in particular,

l1(ϑ) =
n∑
i=1

li(p0i, p1i)

with

li(p0i, p1i) = z∗i [(1− yi) log(p0i) + yi log(p1i)] + (1− z∗i ) log(1− p0i − p1i),

with p0i and p1i defined, for example, in the Equation (3.2), because all models are using
the same definition for this parameters.

Given that equations system (ζ0i, ζ1i) = (h0(p0i, p1i), h1(p0i, p1i)) defines a
bijective transformation, it is possible solve in a unique way the equations ζ0i = h0(p0i, p1i)
and ζ1i = h0(p0i, p1i) in terms of p0i and p1i. Denoting this inverse transformation as
p0i = h∗0(ζ0i, ζ1i), p1i = h∗1(ζ0i, ζ1i), thus, it is possible to define

∂p0i

∂ζ0i
= ∂h∗0(ζ0i, ζ1i)

∂ζ0i
,

∂p0i

∂ζ1i
= ∂h∗0(ζ0i, ζ1i)

∂ζ1i
,

∂p1i

∂ζ0i
= ∂h∗1(ζ0i, ζ1i)

∂ζ0i
,

∂p1i

∂ζ1i
= ∂h∗1(ζ0i, ζ1i)

∂ζ1i
.

Particularly,

p0i = h∗0(ζ0i, ζ1i) = eζ0i

1 + eζ0i + eζ1i
,

p1i = h∗1(ζ0i, ζ1i) = eζ1i

1 + eζ0i + eζ1i
,

1− p0i − p1i = 1
1 + eζ0i + eζ1i

.
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Thus,

∂p0i

∂ζ0i
=
(

eζ0i

1 + eζ0i + eζ1i

)(
1 + eζ1i

1 + eζ0i + eζ1i

)
= p0i(1− p0i),

∂p0i

∂ζ1i
= −

(
eζ0i

1 + eζ0i + eζ1i

)(
eζ1i

1 + eζ0i + eζ1i

)
= −p0ip1i,

∂p1i

∂ζ0i
= −

(
eζ0i

1 + eζ0i + eζ1i

)(
eζ1i

1 + eζ0i + eζ1i

)
= −p0ip1i,

∂p1i

∂ζ1i
=
(

eζ1i

1 + eζ0i + eζ1i

)(
1 + eζ0i

1 + eζ0i + eζ1i

)
= p1i(1− p1i).

(A.5)

Thereby, based on the l1(ϑ), the penalized score function for ϑ = (ρ>, τ>)> is given by
U̇ϑ
p (θ) = (U̇ρ

p (θ)>, U̇ τ
p (θ)>)>, where U̇ρ

p (θ) is defined as

U̇ρ
p (θ) = ∂l1(ρ, τ )

∂ρ
=

n∑
i=1

[
∂li(p0i, p1i)

∂p0i

∂p0i

∂ζ0i

∂ζ0i

∂ρ
+ ∂li(p0i, p1i)

∂p1i

∂p1i

∂ζ0i

∂ζ0i

∂ρ

]

=
n∑
i=1

[(
z∗i (1− yi)

p0i
− (1− z∗i )

1− p0i − p1i

)
∂p0i

ζ0i
fi +

(
z∗i yi
p1i
− (1− z∗i )

1− p0i − p1i

)
∂p1i

ζ0i
fi

]
,

and replacing ∂p0i

ζ0i
and ∂p1i

ζ0i
by the quantities defined in the Equation (A.5) and making

some algebrics manipulations, it is possible to reduce the result to:

U̇ρ
p (θ) =

n∑
i=1

[z∗i (1− yi)− p0i]fi =
n∑
i=1

d1ifi,

which in matrix form, can be rewrite as

U̇ρ
p (θ) = F>d1,

and U̇ τ
p (θ) is defined as

U̇ τ
p (θ) = ∂l1(ρ, τ )

∂τ
=

n∑
i=1

[
∂li(p0i, p1i)

∂p0i

∂p0i

∂ζ1i

∂ζ1i

∂τ
+ ∂li(p0i, p1i)

∂p1i

∂p1i

∂ζ1i

∂ζ1i

∂τ

]

=
n∑
i=1

[(
z∗i (1− yi)

p0i
− (1− z∗i )

1− p0i − p1i

)
∂p0i

ζ1i
mi +

(
z∗i yi
p1i
− (1− z∗i )

1− p0i − p1i

)
∂p1i

ζ1i
mi

]
,

and replacing ∂p0i

ζ1i
and ∂p1i

ζ1i
by the quantities defined in the Equation (A.5) and making

some algebrics manipulations, it is possible to reduce the result to:

U̇ τ
p (θ) =

n∑
i=1

[z∗i yi − p1i]mi =
n∑
i=1

d2imi,

which in matrix form, can be rewrite as

U̇ τ
p (θ) = M>d2.
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A.4.2 Penalized Fisher’s Information Matrix for Zero-and/or-One Augmented
for discrete part of the Models

As the previously section, this one will also to approach about the discrete part
of all models in the Section 3. Here, it will be presented the development to obtain second
derivative of lp(θ,λ) with respect to ϑ and the Penalized Fisher’s Information Matrix for
discrete part of Zero-and/or-One Augmented models.

First, defining some important quantities that will be needed later, as

∂2li(p0i, p1i)
∂p2

0i
= −z

∗
i (1− yi)
p2

0i
− (1− z∗i )

(1− p0i − p1i)2

∂2li(p0i, p1i)
∂p2

1i
= −z

∗
i yi
p2

1i
− (1− z∗i )

(1− p0i − p1i)2

∂2li(p0i, p1i)
∂p0i∂p1i

= − (1− z∗i )
(1− p0i − p1i)2 .

(A.6)

And, under appropriate regularity conditions given in Lehmann and Casella (2002), it is
given that

E
(
∂li(p0i, p1i)

∂p0i

)
= 0

E
(
∂li(p0i, p1i)

∂p1i

)
= 0

E
(
−∂li(p0i, p1i)

∂p2
0i

)
= 1
p0i

+ 1
(1− p0i − p1i)

E
(
−∂li(p0i, p1i)

∂p2
1i

)
= 1
p1i

+ 1
(1− p0i − p1i)

E
(
−∂li(p0i, p1i)

∂p0i∂p1i

)
= 1

(1− p0i − p1i)

(A.7)

The second derivative of lp(θ,λ) with respect to ϑ = (ρ>, τ>)>, which is a
subvector of θ related only to discrete part, is defined as

Üϑϑ
p (θ) = ∂2lp(θ,λ)

∂ϑ∂ϑ>
= ∂2l1(ϑ)
∂ϑ∂ϑ>

,

which is equivalent to

Üϑϑ
p (θ) =

 Üρρ
p (θ) Uρτ

p (θ)
Ü τρ
p (θ) Ü ττ

p (θ)

 ,
and the penalized Fisher’s information matrix was defined as

Kϑϑ
p (θ) = E

[
−∂

2lp(θ,λ)
∂ϑ∂ϑ>

]
= E

[
−∂

2l1(ϑ)
∂ϑ∂ϑ>

]
,



APPENDIX A. Results development for SPAM 188

in which

Kϑϑ
p (θ) =

 Kρρ
p (θ) Kρτ

p (θ)
Kτρ

p (θ) Kττ
p (θ)

 .
It is known that the penalized Fisher’s information matrix Kρρ

p (θ),

Kρρ
p (θ) = E

[
−∂

2l1(ϑ)
∂ρ∂ρ>

]

thus, the second derivative of l1(ϑ) with respect to ρ is developed, using results of the
Equations (A.5) and (A.6), below

Üρρ
p (θ) = ∂2l1(ϑ)

∂ρ∂ρ>
=

n∑
i=1

{(
∂2li(p0i, p1i)

∂p2
0i

∂p0i

∂ζ0i
+ ∂2li(p0i, p1i)

∂p0i∂p1i

∂p1i

∂ζ0i

)
∂p0i

∂ζ0i

∂ζ0i

∂ρ>
fi

+ ∂li(p0i, p1i)
∂p0i

∂2p0i

∂ζ2
0i

∂ζ0i

∂ρ>
fi + ∂li(p0i, p1i)

∂p0i

∂p0i

∂ζ0i

∂2ζ0i

∂ρ∂ρ>

+
(
∂2li(p0i, p1i)

∂p2
1i

∂p1i

∂ζ0i
+ ∂2li(p0i, p1i)

∂p0i∂p1i

∂p0i

∂ζ0i

)
∂p1i

∂ζ0i

∂ζ0i

∂ρ>
fi

+ ∂li(p0i, p1i)
∂p1i

∂2p1i

∂ζ2
0i

∂ζ0i

∂ρ>
ρ+ ∂li(p0i, p1i)

∂p1i

∂p1i

∂ζ0i

∂2ζ0i

∂ρ∂ρ>

}

= −
n∑
i=1

p0i(1− p0i)fif>i = −
n∑
i=1

d∗1ifif
>
i .

In matrix form,

Üρρ
p (θ) = −F>D∗1F .

As the the quantity Üρρ
p (θ) do not depend on any random variable, the Kρρ

p (θ) is defined
as

Kρρ
p (θ) = F>D∗1F .

Now,the second derivative of l1(ϑ) with respect to τ is developed, using results
of the Equations (A.5) and (A.6), below

Ü ττ
p (θ) = ∂2l1(ϑ)

∂τ∂τ>
=

n∑
i=1

{(
∂2li(p0i, p1i)

∂p2
0i

∂p0i

∂ζ1i
+ ∂2li(p0i, p1i)

∂p0i∂p1i

∂p1i

∂ζ1i

)
∂p0i

∂ζ1i

∂ζ1i

∂τ>
mi

+ ∂li(p0i, p1i)
∂p0i

∂2p0i

∂ζ2
1i

∂ζ1i

∂τ>
mi + ∂li(p0i, p1i)

∂p0i

∂p0i

∂ζ1i

∂2ζ1i

∂τ∂τ>

+
(
∂2li(p0i, p1i)

∂p2
1i

∂p1i

∂ζ1i
+ ∂2li(p0i, p1i)

∂p0i∂p1i

∂p0i

∂ζ1i

)
∂p1i

∂ζ1i

∂ζ1i

∂τ>
mi

+ ∂li(p0i, p1i)
∂p1i

∂2p1i

∂ζ2
1i

∂ζ1i

∂τ>
τ + ∂li(p0i, p1i)

∂p1i

∂p1i

∂ζ1i

∂2ζ1i

∂τ∂τ>

}

= −
n∑
i=1

p1i(1− p1i)mim
>
i = −

n∑
i=1

d∗2imim
>
i .
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In matrix form,

Ü ττ
p (θ) = −M>D∗2M .

As the the quantity Ü ττ
p (θ) do not depend on any random variable, the Kττ

p (θ) is defined
as

Kττ
p (θ) = M>D∗2M .

The cross derivative of l1(ϑ) with respect to ρ and τ is presented, also using
results of the Equations (A.5) and (A.6), below below

Üρτ
p (θ) = ∂2l1(ϑ)

∂ρ∂τ>
=

n∑
i=1

{(
∂2li(p0i, p1i)

∂p2
0i

∂p0i

∂ζ1i
+ ∂2li(p0i, p1i)

∂p0i∂p1i

∂p1i

∂ζ1i

)
∂p0i

∂ζ0i

∂ζ1i

∂τ>
mi

+ ∂li(p0i, p1i)
∂p0i

∂2p0i

∂ζ1i∂ζ0i

∂ζ1i

∂τ>
fi + ∂li(p0i, p1i)

∂p1i

∂2p1i

∂ζ0i∂ζ1i

∂ζ1i

∂τ>
fi

+
(
∂2li(p0i, p1i)

∂p2
1i

∂p1i

∂ζ1i
+ ∂2li(p0i, p1i)

∂p0i∂p1i

∂p0i

∂ζ1i

)
∂p1i

∂ζ0i

∂ζ1i

∂τ>
mi

= −
n∑
i=1
−p0ip1imim

>
i = −

n∑
i=1

d∗3ifim
>
i .

In matrix form,

Üρτ
p (θ) = −F>D∗3M .

As the the quantity Üρτ
p (θ) do not depend on any random variable, the Kρτ

p (θ) is defined
as

Kρτ
p (θ) = F>D∗3M .

A.5 Effective degrees of freedom for BR-SPAM and ZOABR-SPAM
The expression for the effective degrees of freedom is based on the estimated

linear predictor (see Hastie and Tibshirani (1990) and Green and Silverman (1993)), then it
is necessary an analytical form for this quantity. Given that, for the parameter estimation
of the BR-SPAM (Chapter 2) and the continuous part of ZOABR-SPAM (Chapter 3),
we used the L-BFGS-B algorithm, which has only numerical results for the estimated
predictors. Then, we can approximate the linear predictor(s) of interest by using the
Newton-Raphson algorithm at the convergence step. That is, once we obtain the estimates
through the L-BFGS-B algorithm, we replaced the estimates on the expression of the
linear predictor given by the Newton-Raphson algorithm, which is defined below

η̂1 = Xβ̂ +
k∑
j=1
Bjγ̂j = Ĥ(λ)ẑ∗∗,
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where λ = (λ1, . . . , λk)>, z∗∗ = N ∗ξ − (Ṙ)−1T1f
∗, H(λ) = N ∗

[
N ∗>ṘN ∗ −Λ(λ)

]−1

N ∗>Ṙ, N ∗ξ = [X,B1, . . . ,Bk]ξ, ξ = (β>,γ>)>, γ = (γ>1 , . . . ,γ>k )>. Also, Ṙ = R for
the BR-SPAM and Ṙ = R† for the ZOABR-SPAM. Then, based on that the effective
degrees of freedom for γj, j = 1, . . . , k, following Eilers and Marx (1996), are obtained as
the trace of H(λ).
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APPENDIX B – Simulation results

B.1 Simulation results of Chapter 2: Study 1

Figure 34 – The first plots are the estimates of parameters β1, κ0 and κ1 for the Beta-
SPAM with logit as link function for mean by the sample size. The plots of
the last line are the estimated curves (grey lines) and real curve (black line)
for the same model versus the covariate Z varying the sample size (n).

Figure 35 – The first plots are the estimates of parameters β1, κ0 and κ1 for the Beta-
SPAM with probit as link function by the sample size. The plots of the last
line are the estimated curves (grey lines) and real curve (black line) for the
same model versus the covariate Z varying the sample size (n).
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Figure 36 – The first plots are the estimates of parameters β1, κ0 and κ1 for the Beta-
SPAM with cauchit as link function by the sample size. The plots of the last
line are the estimated curves (grey lines) and real curve (black line) for the
same model versus the covariate Z varying the sample size (n).

Figure 37 – The first plots are the estimates of parameters β1, κ0 and κ1 for the Beta-
SPAM with cloglog as link function by the sample size. The plots of the last
line are the estimated curves (grey lines) and real curve (black line) for the
same model versus the covariate Z varying the sample size (n).
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Figure 38 – The first plots are the estimates of parameters β1, κ0 and κ1 for the Beta-
SPAM with loglog as link function by the sample size. The plots of the last
line are the estimated curves (grey lines) and real curve (black line) for the
same model versus the covariate Z varying the sample size (n).

Figure 39 – The first plots are the estimates of parameters β1, κ0 and κ1 for the Simplex-
SPAM with logit as link function by the sample size. The plots of the last line
are the estimated curves (grey lines) and real curve (black line) for the same
model versus the covariate Z varying the sample size (n).
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Figure 40 – The first plots are the estimates of parameters β1, κ0 and κ1 for the Simplex-
SPAM with probit as link function by the sample size. The plots of the last
line are the estimated curves (grey lines) and real curve (black line) for the
same model versus the covariate Z varying the sample size (n).

Figure 41 – The first plots are the estimates of parameters β1, κ0 and κ1 for the Simplex-
SPAM with cauchit as link function by the sample size. The plots of the last
line are the estimated curves (grey lines) and real curve (black line) for the
same model versus the covariate Z varying the sample size (n).
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Figure 42 – The first plots are the estimates of parameters β1, κ0 and κ1 for the Simplex-
SPAM with cloglog as link function by the sample size. The plots of the last
line are the estimated curves (grey lines) and real curve (black line) for the
same model versus the covariate Z varying the sample size (n).

Figure 43 – The first plots are the estimates of parameters β1, κ0 and κ1 for the model
based on distribution Simplex with loglog as link function by the sample size.
The plots of the last line are the estimated curves (grey lines) and real curve
(black line) for the same model versus the covariate Z varying the sample size
(n).
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Figure 44 – The first plots are the estimates of parameters β1, κ0, κ1 and α for the BR-
SPAM with logit as link function by the sample size. The plots of the last line
are the estimated curves (grey lines) and real curve (black line) for the same
model versus the covariate Z varying the sample size (n).

Figure 45 – The first plots are the estimates of parameters β1, κ0, κ1 and α for the BR-
SPAM with probit as link function by the sample size. The plots of the last
line are the estimated curves (grey lines) and real curve (black line) for the
same model versus the covariate Z varying the sample size (n).
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Figure 46 – The first plots are the estimates of parameters β1, κ0, κ1 and α for the BR-
SPAM with cauchit as link function by the sample size. The plots of the last
line are the estimated curves (grey lines) and real curve (black line) for the
same model versus the covariate Z varying the sample size (n).

Figure 47 – The first plots are the estimates of parameters β1, κ0, κ1 and α for the BR-
SPAM with cloglog as link function by the sample size. The plots of the last
line are the estimated curves (grey lines) and real curve (black line) for the
same model versus the covariate Z varying the sample size (n).
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Figure 48 – The first plots are the estimates of parameters β1, κ0, κ1 and α for the BR-
SPAM with loglog as link function by the sample size. The plots of the last
line are the estimated curves (grey lines) and real curve (black line) for the
same model versus the covariate Z varying the sample size (n).



APPENDIX B. Simulation results 199

B.2 Simulation results of Chapter 3: Study 1

Figure 49 – The first plots are the estimates of parameters β1, κ0, κ1, ρ0, ρ1, τ0 and τ1 for
ZOAB-SPAM with logit as link function for mean by the sample size. The
plots of the last line are the estimated curves (grey lines) and real curve (black
line) for the same model versus the covariate Z varying the sample size (n).

Figure 50 – The first plots are the estimates of parameters β1, κ0, κ1, ρ0, ρ1, τ0 and τ1 for
ZOAB-SPAM with probit as link function by the sample size. The plots of
the last line are the estimated curves (grey lines) and real curve (black line)
for the same model versus the covariate Z varying the sample size (n).
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Figure 51 – The first plots are the estimates of parameters β1, κ0, κ1, ρ0, ρ1, τ0 and τ1 for
ZOAB-SPAM with cauchit as link function by the sample size. The plots of
the last line are the estimated curves (grey lines) and real curve (black line)
for the same model versus the covariate Z varying the sample size (n).

Figure 52 – The first plots are the estimates of parametersβ1, κ0, κ1, ρ0, ρ1, τ0 and τ1 for
ZOAB-SPAM with cloglog as link function by the sample size. The plots of
the last line are the estimated curves (grey lines) and real curve (black line)
for the same model versus the covariate Z varying the sample size (n).
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Figure 53 – The first plots are the estimates of parameters β1, κ0, κ1, ρ0, ρ1, τ0 and τ1 for
ZOAB-SPAM with loglog as link function by the sample size. The plots of the
last line are the estimated curves (grey lines) and real curve (black line) for
the same model versus the covariate Z varying the sample size (n).

Figure 54 – The first plots are the estimates of parameters β1, κ0 and κ1 β1, κ0, κ1, ρ0, ρ1,
τ0 and τ1 for ZOAS-SPAM with logit as link function by the sample size. The
plots of the last line are the estimated curves (grey lines) and real curve (black
line) for the same model versus the covariate Z varying the sample size (n).
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Figure 55 – The first plots are the estimates of parameters β1, κ0 and κ1 β1, κ0, κ1, ρ0, ρ1,
τ0 and τ1 for ZOAS-SPAM with probit as link function by the sample size.
The plots of the last line are the estimated curves (grey lines) and real curve
(black line) for the same model versus the covariate Z varying the sample size
(n).

Figure 56 – The first plots are the estimates of parameters β1, κ0 and κ1 β1, κ0, κ1, ρ0, ρ1,
τ0 and τ1 for ZOAS-SPAM with cauchit as link function by the sample size.
The plots of the last line are the estimated curves (grey lines) and real curve
(black line) for the same model versus the covariate Z varying the sample size
(n).
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Figure 57 – The first plots are the estimates of parameters β1, κ0 and κ1 β1, κ0, κ1, ρ0, ρ1,
τ0 and τ1 for ZOAS-SPAM with cloglog as link function by the sample size.
The plots of the last line are the estimated curves (grey lines) and real curve
(black line) for the same model versus the covariate Z varying the sample size
(n).

Figure 58 – The first plots are the estimates of parameters β1, κ0 and κ1 β1, κ0, κ1, ρ0, ρ1,
τ0 and τ1 for ZOAS-SPAM with loglog as link function by the sample size.
The plots of the last line are the estimated curves (grey lines) and real curve
(black line) for the same model versus the covariate Z varying the sample size
(n).
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Figure 59 – The first plots are the estimates of parameters β1, κ0, κ1, τ0, τ1,ρ0, ρ1 and α
for ZOABR-SPAM with logit as link function by the sample size. The plots of
the last line are the estimated curves (grey lines) and real curve (black line)
for the same model versus the covariate Z varying the sample size (n).

Figure 60 – The first plots are the estimates of parameters β1, κ0, κ1, τ0, τ1,ρ0, ρ1 and α
for ZOABR-SPAM with probit as link function by the sample size. The plots
of the last line are the estimated curves (grey lines) and real curve (black line)
for the same model versus the covariate Z varying the sample size (n).
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Figure 61 – The first plots are the estimates of parameters β1, κ0, κ1, τ0, τ1,ρ0, ρ1 and α
for ZOABR-SPAM with cauchit as link function by the sample size. The plots
of the last line are the estimated curves (grey lines) and real curve (black line)
for the same model versus the covariate Z varying the sample size (n).

Figure 62 – The first plots are the estimates of parameters β1, κ0, κ1, τ0, τ1,ρ0, ρ1 and α
for ZOABR-SPAM with cloglog as link function by the sample size. The plots
of the last line are the estimated curves (grey lines) and real curve (black line)
for the same model versus the covariate Z varying the sample size (n).



APPENDIX B. Simulation results 206

Figure 63 – The first plots are the estimates of parameters β1, κ0, κ1, τ0, τ1,ρ0, ρ1 and α
for ZOABR-SPAM with loglog as link function by the sample size. The plots
of the last line are the estimated curves (grey lines) and real curve (black line)
for the same model versus the covariate Z varying the sample size (n).

B.3 Simulation results of Chapter 4: Study 1

Figure 64 – The first plots are the estimates of parameters β1, κ0, κ1 and ξ for Beta-
SPAM-GEE with logit as link function for mean by the sample size. The plots
of the last line are the estimated curves (grey lines) and real curve (black line)
for the same model versus the covariate Z varying the sample size (n).
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Figure 65 – The first plots are the estimates of parameters β1, κ0, κ1 and ξ for Beta-
SPAM-GEE with probit as link function by the sample size. The plots of the
last line are the estimated curves (grey lines) and real curve (black line) for
the same model versus the covariate Z varying the sample size (n).

Figure 66 – The first plots are the estimates of parameters β1, κ0, κ1 and ξ for Beta-
SPAM-GEE with cauchit as link function by the sample size. The plots of the
last line are the estimated curves (grey lines) and real curve (black line) for
the same model versus the covariate Z varying the sample size (n).
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Figure 67 – The first plots are the estimates of parameters β1, κ0, κ1 and ξ for Beta-
SPAM-GEE with cloglog as link function by the sample size. The plots of the
last line are the estimated curves (grey lines) and real curve (black line) for
the same model versus the covariate Z varying the sample size (n).

Figure 68 – The first plots are the estimates of parameters β1, κ0, κ1 and ξ for Beta-
SPAM-GEE with loglog as link function by the sample size. The plots of the
last line are the estimated curves (grey lines) and real curve (black line) for
the same model versus the covariate Z varying the sample size (n).
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Figure 69 – The first plots are the estimates of parameters β1, κ0, κ1 and ξ for Simplex-
SPAM-GEE with logit as link function by the sample size. The plots of the
last line are the estimated curves (grey lines) and real curve (black line) for
the same model versus the covariate Z varying the sample size (n).

Figure 70 – The first plots are the estimates of parameters β1, κ0, κ1 and ξ for Simplex-
SPAM-GEE with probit as link function by the sample size. The plots of the
last line are the estimated curves (grey lines) and real curve (black line) for
the same model versus the covariate Z varying the sample size (n).
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Figure 71 – The first plots are the estimates of parameters β1, κ0, κ1 and ξ for Simplex-
SPAM-GEE with cauchit as link function by the sample size. The plots of the
last line are the estimated curves (grey lines) and real curve (black line) for
the same model versus the covariate Z varying the sample size (n).

Figure 72 – The first plots are the estimates of parameters β1, κ0, κ1 and ξ for Simplex-
SPAM-GEE with cloglog as link function by the sample size. The plots of the
last line are the estimated curves (grey lines) and real curve (black line) for
the same model versus the covariate Z varying the sample size (n).
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Figure 73 – The first plots are the estimates of parameters β1, κ0, κ1 and ξ for Simplex-
SPAM-GEE with loglog as link function by the sample size. The plots of the
last line are the estimated curves (grey lines) and real curve (black line) for
the same model versus the covariate Z varying the sample size (n).

Figure 74 – The first plots are the estimates of parameters β1, κ0, κ1, α and ξ for BR-
SPAM-GEE with logit as link function by the sample size. The plots of the
last line are the estimated curves (grey lines) and real curve (black line) for
the same model versus the covariate Z varying the sample size (n).
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Figure 75 – The first plots are the estimates of parameters β1, κ0, κ1, α and ξ for BR-
SPAM-GEE with probit as link function by the sample size. The plots of the
last line are the estimated curves (grey lines) and real curve (black line) for
the same model versus the covariate Z varying the sample size (n).

Figure 76 – The first plots are the estimates of parameters β1, κ0, κ1, α and ξ for BR-
SPAM-GEE with cauchit as link function by the sample size. The plots of the
last line are the estimated curves (grey lines) and real curve (black line) for
the same model versus the covariate Z varying the sample size (n).
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Figure 77 – The first plots are the estimates of parameters β1, κ0, κ1, α and ξ for BR-
SPAM-GEE with cloglog as link function by the sample size. The plots of the
last line are the estimated curves (grey lines) and real curve (black line) for
the same model versus the covariate Z varying the sample size (n).

Figure 78 – The first plots are the estimates of parameters β1, κ0, κ1, α and ξ for BR-
SPAM-GEE with loglog as link function by the sample size. The plots of the
last line are the estimated curves (grey lines) and real curve (black line) for
the same model versus the covariate Z varying the sample size (n).
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B.4 Simulation results of Chapter 5: Study 1

Figure 79 – The first plots are the estimates of parameters β1, κ0, κ1, ρ0, ρ1, τ0, τ1 and ξ
for ZOAB-SPAM-GEE with logit as link function for mean by the sample size.
The plots of the last line are the estimated curves (grey lines) and real curve
(black line) for the same model versus the covariate Z varying the sample size
(n).

Figure 80 – The first plots are the estimates of parameters β1, κ0, κ1, ρ0, ρ1, τ0, τ1 and ξ
for ZOAB-SPAM-GEE with probit as link function by the sample size. The
plots of the last line are the estimated curves (grey lines) and real curve (black
line) for the same model versus the covariate Z varying the sample size (n).
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Figure 81 – The first plots are the estimates of parameters β1, κ0, κ1, ρ0, ρ1, τ0, τ1 and ξ
for ZOAB-SPAM-GEE with cauchit as link function by the sample size. The
plots of the last line are the estimated curves (grey lines) and real curve (black
line) for the same model versus the covariate Z varying the sample size (n).

Figure 82 – The first plots are the estimates of parameters β1, κ0, κ1, ρ0, ρ1, τ0, τ1 and ξ
for ZOAB-SPAM-GEE with cloglog as link function by the sample size. The
plots of the last line are the estimated curves (grey lines) and real curve (black
line) for the same model versus the covariate Z varying the sample size (n).
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Figure 83 – The first plots are the estimates of parameters β1, κ0, κ1, ρ0, ρ1, τ0, τ1 and ξ
for ZOAB-SPAM-GEE with loglog as link function by the sample size. The
plots of the last line are the estimated curves (grey lines) and real curve (black
line) for the same model versus the covariate Z varying the sample size (n).

Figure 84 – The first plots are the estimates of parameters β1, κ0, κ1, ρ0, ρ1, τ0, τ1 and
ξ for ZOAS-SPAM-GEE with logit as link function by the sample size. The
plots of the last line are the estimated curves (grey lines) and real curve (black
line) for the same model versus the covariate Z varying the sample size (n).
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Figure 85 – The first plots are the estimates of parameters β1, κ0, κ1, ρ0, ρ1, τ0, τ1 and ξ
for ZOAS-SPAM-GEE with probit as link function by the sample size. The
plots of the last line are the estimated curves (grey lines) and real curve (black
line) for the same model versus the covariate Z varying the sample size (n).

Figure 86 – The first plots are the estimates of parameters β1, κ0, κ1, ρ0, ρ1, τ0, τ1 and ξ
for ZOAS-SPAM-GEE with cauchit as link function by the sample size. The
plots of the last line are the estimated curves (grey lines) and real curve (black
line) for the same model versus the covariate Z varying the sample size (n).
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Figure 87 – The first plots are the estimates of parameters β1, κ0, κ1, ρ0, ρ1, τ0, τ1 and ξ
for ZOAS-SPAM-GEE with cloglog as link function by the sample size. The
plots of the last line are the estimated curves (grey lines) and real curve (black
line) for the same model versus the covariate Z varying the sample size (n).

Figure 88 – The first plots are the estimates of parameters β1, κ0, κ1, ρ0, ρ1, τ0, τ1 and ξ
for ZOAS-SPAM-GEE with loglog as link function by the sample size. The
plots of the last line are the estimated curves (grey lines) and real curve (black
line) for the same model versus the covariate Z varying the sample size (n).
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Figure 89 – The first plots are the estimates of parameters β1, κ0, κ1, ρ0, ρ1, τ0, τ1, α and
ξ for ZOABR-SPAM-GEE with logit as link function by the sample size. The
plots of the last line are the estimated curves (grey lines) and real curve (black
line) for the same model versus the covariate Z varying the sample size (n).

Figure 90 – The first plots are the estimates of parameters β1, κ0, κ1, ρ0, ρ1, τ0, τ1, α and
ξ for ZOABR-SPAM-GEE with probit as link function by the sample size.
The plots of the last line are the estimated curves (grey lines) and real curve
(black line) for the same model versus the covariate Z varying the sample size
(n).
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Figure 91 – The first plots are the estimates of parameters β1, κ0, κ1, ρ0, ρ1, τ0, τ1, α and
ξ for ZOABR-SPAM-GEE with cauchit as link function by the sample size.
The plots of the last line are the estimated curves (grey lines) and real curve
(black line) for the same model versus the covariate Z varying the sample size
(n).

Figure 92 – The first plots are the estimates of parameters β1, κ0, κ1, ρ0, ρ1, τ0, τ1, α and
ξ for ZOABR-SPAM-GEE with cloglog as link function by the sample size.
The plots of the last line are the estimated curves (grey lines) and real curve
(black line) for the same model versus the covariate Z varying the sample size
(n).
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Figure 93 – The first plots are the estimates of parameters β1, κ0, κ1, ρ0, ρ1, τ0, τ1, α and
ξ for ZOABR-SPAM-GEE with loglog as link function by the sample size.
The plots of the last line are the estimated curves (grey lines) and real curve
(black line) for the same model versus the covariate Z varying the sample size
(n).
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