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RESUMO

Máquinas rotativas são necessárias para a geração de energia, pois desempenham papéis vi-

tais que se estendem desde a extração de recursos, como combustíveis, até a conversão de

energia cinética da água e do fluxo de ar em eletricidade para consumo. No entanto, essas

máquinas enfrentam diferentes tipos de falhas mecânicas que alteram a resposta de vibração

do sistema, criando padrões conhecidos como assinaturas de falhas. Portanto, interpretar essas

marcas de vibração com algoritmos de aprendizado de máquina leva à identificação adequada

de falhas, melhorando o agendamento de manutenção e reduzindo o tempo de reparo e a quebra

de maquinário. Esta pesquisa utiliza o modelo Light Gradient Boosting Machine (LightGBM)

para identificar defeitos em rolamentos de esferas por meio de sinais de vibração. Os dados

são extraídos do Repositório da Universidade de Paderborn e contêm amostras de uma máquina

rotativa sujeita a três condições operacionais: saudável, com uma falha na pista interna e uma

falha na pista externa. Uma técnica de reamostragem de dados baseada em frequências especí-

ficas de rolamentos é proposta para aprimorar as capacidades preditivas do LightGBM. Além

disso, o algoritmo de otimização Bayesiana é usado para ajustar os hiperparâmetros do modelo

e maximizar a acurácia e o recall.

Palavras–chave: Dinâmica de Rotores, Otimização Bayesiana, Light Gradient Boosting Ma-

chine, Reamostragem de Dados, Identificação de Falhas



ABSTRACT

Rotating machines are necessary for power generation since they perform vital roles that extend

from extracting resources, such as fuels, to converting kinetic energy from water and airflow

into electricity for consumption. These machines, however, face different types of mechani-

cal faults that alter the system vibration response, creating patterns known as fault signatures.

Therefore, interpreting these vibration marks with machine learning algorithms leads to proper

fault identification, improving maintenance scheduling, and reducing repair time and machin-

ery breakage. This research uses the Light Gradient Boosting Machine (LightGBM) model to

identify ball-bearing defects through vibration signals. The data is extracted from the Paderborn

University Repository and contains samples of a rotating machine subject to three operational

conditions: healthy, with an inner race, and an outer race fault. A data resampling technique

based on specific rolling bearing frequencies is proposed to enhance LightGBM’s predictive

capabilities. Furthermore, the Bayesian optimization algorithm is used to fine-tune the model

hyperparameters and maximize accuracy and recall.

Keywords: Rotordynamics, Bayesian optimization, Light Gradient Boosting Machine, Data

Resampling, Fault Identification
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1 INTRODUCTION

In the National Energy Balance of 2019 (Brasil, 2019a), it was observed that the

Brazilian energy matrix has 153 GW of installed capacity. This value is distributed across

various forms of generation, as shown in Figure 1.1.

Figure 1.1 – Distribution of the Brazilian Energy Matrix (Brasil, 2019a)

However, as illustrated in Figure 1.2, the Ten-Year Energy Expansion Plan (Brasil,

2019b) predicts an expansion of the system by 68 GW, representing an investment of R$ 2.3

trillion over 10 years, with R$ 1.9 trillion in oil, natural gas, and biofuels and R$ 456 billion in

electricity generation and transmission.

Figure 1.2 – Projected Expansion of the Brazilian Energy Matrix by 2029 (Brasil, 2019b)
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The extraction of these resources and their transformation into energy for the end

consumer depend directly on rotating machinery, such as hydraulic turbines, compressors, and

reducers. Therefore, system failures can result in significant economic losses and undesirable

societal disruptions, and they must be identified and repaired promptly. One of the tools that

can be used for this identification is machine learning.

Machine learning is the field of study that enables computers to perform tasks with-

out being explicitly programmed. This definition was proposed by the American computer

scientist Arthur Lee Samuel in 1959 after developing an algorithm capable of learning to play

checkers and beating a human opponent (Samuel, 1959).

In classical programming, the programmer can describe rules to the computer through

lines of code, where for each input, an output is obtained based on what the machine has been

programmed to interpret. On the other hand, with machine learning, the programmer knows

the inputs and outputs but not the rules that perform this translation. A practical example is an

autonomous car, with specifications including the origin, route, and destination that the vehicle

should follow. However, programming all the necessary rules to guide the car during its op-

eration, considering adverse and unforeseen conditions, surpasses the capabilities of classical

programming.

This limitation can be overcome by creating algorithms that analyze a significant

amount of data with the help of mathematical and statistical methods. Thus, when the model

becomes capable of providing reliable results, it can be said that the algorithm has learned,

through mathematical methods, to transform input data into output, similar to intelligence, giv-

ing rise to the field known as Artificial Intelligence, which, according to Harvard Business

School (Wellers et al., 2017), will be worth $100 billion by 2025.

The justification for this value is that Machine Learning can be applied in various

areas, such as fraud detection, facial recognition, and, related to energy generation and of greater

importance for this project, the detection of mechanical failures.

Rotating components are subject to various defects that alter the system’s vibration,

causing characteristic patterns known as fault signatures. Consequently, the study of these

marks allows extracting information that identifies the fault present in the machinery. Thus,

Machine Learning becomes a promising tool for system condition diagnosis.

This research trains the Light Gradient Boosting Machine or LightGBM (Ke et

al., 2017b) machine learning algorithm on experimental data from an accelerated lifetime test
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rig that created realistic faults on ball bearings. The data was extracted from the Paderborn

University Repository (Lessmeier et al., 2016a), and it contains samples of rotating machines

with ball bearings mapped to three operational conditions: healthy, with an inner race, or with

an outer race fault.

However, achieving perfect accuracy in fault detection with machine learning is

highly unlikely since the data in this field is scarce and costly. As an alternative, this work

proposes a data resampling technique based on knowledge from the field of bearing research to

improve LightGBM’s performance.

Another factor that affects accuracy in machine learning for fault detection is that

the algorithms essentially work as mathematical approximations of complex physical phenom-

ena. Because of that, handling misclassifications is fundamental, and specifically for this re-

search, minimizing false negatives is crucial since they can lead to catastrophic failure. Con-

sequently, this research uses Bayesian optimization to maximize LightGBM’s accuracy and

recall.

Rotating machines play a vital role in society, which makes identifying system

failure fundamental. This research’s main contribution to the area of mechanical fault detec-

tion in rotating machines is a methodology that combines LightGBM predictive capabilities, a

knowledge-based resampling technique, and the Bayesian optimization to build a robust and re-

liable classifier capable of improving maintenance strategies and enhancing rotating machines’

performance and longevity. It should be noted, however, that this project does not aim to imple-

ment the algorithms but rather to use open-source packages such as Scikit-Learn (Pedregosa et

al., 2011a), LightGBM (LightGBM, 2023), and BayesianOptimization (Nogueira, 2014), avail-

able in the Python programming language (Rossum; Drake, 2009).

The present study is divided into five chapters. Chapter 2 addresses the literature

review, establishing the context for fault diagnosis in rolling bearings and the application of

machine learning algorithms. Chapter 3 describes the theoretical modeling and machine learn-

ing algorithms employed, emphasizing LightGBM, the proposed resampling technique, and

the Bayesian optimizer. The experimental results are presented in Chapter 4, where the effec-

tiveness of the LightGBM model in identifying the operating conditions of rotating machinery

is discussed. Finally, Chapter 5 synthesizes the conclusions and recommendations for future

research, highlighting the practical and theoretical implications of the findings.
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2 LITERATURE REVIEW

As mentioned in the Introduction Chapter of this work, machine learning can sur-

pass the boundaries of classical programming with mathematical and statistical methods. Ac-

cording to Igual and Seguí (2017), most of these methods originated in the 18th and 19th cen-

turies with statistical pioneers like Thomas Bayes, who discovered Bayes’ Theorem in 1763,

and Simon Laplace, who published the Analytical Theory of Probabilities in 1812.

Still in the 19th century, with the aid of the theories of Bayes and Laplace, Cramer

(2002) states that the logistic function was created to describe the behavior of population growth

and chemical reactions of autocatalysis. This model arose from the need to limit exponential

growths since extrapolations with these models often result in impossible values.

Because of this, Pierre-François Verhulst, proposed adding a term to the exponential

model responsible for denoting a saturation limit. Verhulst named the new model the logistic

function, and the results of his research were published between 1838 and 1847 in three articles:

Notice sur la loi que la population poursuit dans son accroissement, translated by Vogels et

al. (1975); Recherches mathématiques sur la loi d’accroissement de la population (Verhulst,

1845); and Deuxième mémoire sur la loi d’accroissement de la population (Verhulst, 1847).

However, Cramer (2002) argues that Verhulst’s publications took almost a century to be used as

a statistical regression model, which was possible thanks to the contributions of the American

statistician Joseph Berkson, who popularized logistic regression in 1944 (Berkson, 1944).

Shortly after, Alan Turing, considered the father of theoretical computer science

and artificial intelligence, published the article Computing Machinery and Intelligence (Turing,

1950) in the academic journal Mind at the University of Oxford, where he proposed the Turing

Test, which aims to evaluate if a machine can replicate human behavior.

The test involves two players: a person and a machine designed to mimic human

behaviors. Both communicate with a human judge responsible for asking questions. Based

on the responses obtained, if the mediator cannot confidently distinguish which player is the

machine, it is considered to have passed the Turing Test.

Although Alan Turing presented the theoretical foundation for a learning machine,

the first practical demonstration occurred in 1952 with computer scientist Arthur Samuel. Ac-

cording to McCarthy and Feigenbaum (1990), Samuel joined the IBM Poughkeepsie Laboratory
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in 1949 and began his research on self-learning machines.

Three years after his arrival, Samuel presented the first checkers game in which

the opponent was a machine. The result attracted so much attention from the scientific and

academic communities that IBM’s stock price increased by $15 in just one day. Consequently,

this event marks the beginning of machine learning as it is known today. However, the term

“machine learning” was only popularized by Samuel in 1959 (Samuel, 1959).

Just before the popularization of the field, Rosenblatt (1958) created the Perceptron

while working at the Cornell Aeronautical Laboratory. The algorithm, which currently serves as

the basis for artificial neural networks, as described by Rosenblatt, is based on a connectionist

brain theory. The researcher believed that information storage and pattern recognition happen

through a network of activity centers in the central nervous system.

Mathematically, the Perceptron consists of a binary classifier built from the dot

product between input values and their corresponding weights. Thus, if an input has a low

weight, its contribution to the final output will be less significant, and the same logic applies

in the opposite case. The final response is then evaluated based on a threshold value. If the

obtained dot product exceeds the threshold, the inputs are classified as “1” and otherwise, as

“0”. In this algorithm, machine learning is understood as the process of iteratively updating

one weight at a time, minimizing a loss function. Finally, once the loss function has been mini-

mized, it is known that the inputs will be classified with the algorithm’s maximum performance.

However, this does not mean they will be correctly classified.

Although Rosenblatt’s Perceptron was booming in the media, its development into

modern Artificial Neural Networks (ANNs) was hindered due to the release of Minsky and

Papert (1969)’s book, Perceptrons: An Introduction to Computational Geometry, in which var-

ious mathematical limitations of the model were presented. The most significant limitation was

the inability of a single-layer Perceptron to reproduce the “exclusive or” or “XOR” function,

a fundamental computing operation. As a result, Rosenblatt’s model lost the attention of the

technology community, and research in the field gradually diminished.

The impact of Minsky and Papert’s book was so significant that seventeen years

passed before Artificial Neural Networks regained media attention. This was made possible

thanks to the article by Rumelhart et al. (1986) published in Nature, in which the backpropaga-

tion method was introduced.

The backpropagation algorithm consists of calculating the gradients of the loss func-
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tion for a single-layer Perceptron based on the weights and updating them all at once, as op-

posed to the model initially proposed by Rosenblatt. This method is so efficient that it allows

the construction of Perceptrons with more than one layer, known as Multi-layer Perceptrons,

which can overcome all the limitations presented in Minsky and Papert’s book. This marked

the emergence of the first artificial neural networks (ANNs) as they are known today.

Due to the presentation of backpropagation, the evolution of ANNs, and the devel-

opment of computers, the technology community at the end of the 20th century felt motivated to

develop the field of machine learning further. Consequently, new algorithms began to emerge,

such as Classification and Regression Trees (CARTs) (Breiman et al., 1984), Recurrent Neural

Networks (Hochreiter; Schmidhuber, 1997), and, of greater importance for this work, Support

Vector Machines (SVMs) (Cortes; Vapnik, 1995) and Gradient Boosting Machines (Friedman,

2000; Mason et al., 1999).

According to Cortes and Vapnik (1995), the Support Vector Machine (SVM) corre-

sponds to a classifier that performs a nonlinear transformation of an input vector into a higher-

dimensional space. The algorithm then creates a hyperplane constructed from support vectors.

Next, an iterative process is initiated over the dataset in which, at each step, the components

of the support vectors are updated until the best-separating hyperplane between the classes is

obtained.

Boosting is understood as a technique for building robust regression or classification

algorithms (referred to as “strong” algorithms) from sets of high-bias, high-variance algorithms

(referred to as “weak” algorithms), such as decision trees and linear and logistic regressions.

The method was introduced by Freund and Schapire (1997) through an algorithm called Ad-

aBoost (Adaptive Boosting) and further refined by Mason et al. (1999) and Friedman (2000),

who generalized the Boosting idea to optimize any differentiable loss function using the Gra-

dient Descent method, giving rise to the family of algorithms known as Gradient Boosting

Machines (GBMs), which contains popular algorithms such as the XGBoost (Chen; Guestrin,

2016), the CatBoost (Prokhorenkova et al., 2019) and, most importantly for this research, the

LightGBM (Ke et al., 2017b).

LightGBM (Ke et al., 2017b) was chosen since it has become one of the most used

machine learning methods (Kaggle, 2022) for its efficient processing speed and high accuracy

and has already been successfully used on bearing fault detection (Jia et al., 2021; Xu et al.,

2021). It is a gradient-boosting framework that successively fits decision trees trained to cor-
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rect the mistakes of the previous ones. However, LightGBM is unique due to two techniques

that reduce training time and memory consumption without affecting accuracy: Gradient-based

One-Side Sampling (GOSS) and Exclusive Feature Bundling (EFB).

According to Ke et al. (2017b), while gradient-boosting decision tree algorithms

usually scan all the data to estimate the information gain of all possible split points for each

feature, the GOSS method in LightGBM maintains only the ones with more significant gradients

and randomly drops the smaller ones. EFB, on the other hand, is a technique that attempts

to merge highly similar features. The authors state that combining these methods speeds up

training without affecting the algorithm’s accuracy.

Regardless of the machine learning algorithm chosen to solve a specific task, hyper-

parameter tuning will be necessary. Hyperparameters are the algorithm settings defined before

the training phase. For example, in a Support Vector Machine (SVM), the regularization param-

eter “C” controls the balance between maximizing the margin and minimizing classification er-

rors (Géron, 2019). Similarly, in gradient boosting algorithms like LightGBM, hyperparameters

like the learning rate and number of trees significantly impact the model’s predictive abilities

(LightGBM, 2023). One of the tools that stand out for hyperparameter tuning is Bayesian opti-

mization.

Bayesian optimization (Frazier, 2018; Nogueira, 2014) is an efficient optimization

technique widely used in machine learning problems since it searches for the best hyperparam-

eters statistically rather than exhaustively, as done in a grid or random search. This method has

already been used to enhance the identification of mechanical faults in rotating machines (Kolar

et al., 2021). It consists of optimizing “black-box” functions that cannot be maximized through

standard techniques such as gradient descent, Newton’s, or quasi-Newton methods due to their

unknown properties, such as concavity, linearity, or first or second-order derivatives.

The Bayesian optimizer (Frazier, 2018; Nogueira, 2014) builds a probabilistic model

of the original function based on initial observed points. This statistical approximation allows

the construction of an acquisition function that balances exploration and exploitation of the ob-

servation space. The point that maximizes the acquisition function is chosen as the subsequent

evaluation of the original function, and the new information updates the probabilistic model.

This process is repeated until a global optimum is achieved.

The success of the techniques and algorithms created in the late 20th century can

be seen in a wide range of applications in the 21st century, extending from medicine, with the
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automation of diagnoses and drug development (JCU, 2019), to recommendation systems in

streaming services, such as Netflix’s movie recommendation algorithm (Chong, 2020), and,

most notably for this work, fault diagnosis in rotating machines.

According to Liu et al. (2018), fault diagnosis is a pattern recognition problem

regarding the rotating machinery condition, aiming to solve three tasks: determining whether

the equipment is normal, finding the incipient failure and its reason, and predicting the trend of

fault development. This work focuses on solving the first two and the fault detection process

is made using statistical techniques and machine learning models capable of identifying trends,

correlations, and characteristic behaviors of mechanical failures through measured signals, such

as the wear (Gecgel et al., 2020) and the ovalization of hydrodynamic bearings (Alves et al.,

2020), and, most notably for this work, the inner and outer race faults in ball-bearings.

According to Randall and Antoni (2011), when a rolling element within a bearing

encounters a local fault on the inner or outer race, it produces an impact signal at one of the

bearing fault frequencies, such as the Ball Pass Frequency Outer race (BPFO) or Ball Pass

Frequency Inner race (BPFI). This behavior of generating specific fault-related frequencies in

the impact signal allows fault identification through machine learning algorithms.

However, data in the field of fault detection is scarce and costly. As an alternative,

various data augmentation techniques can be applied, extending from simply scaling the signal

to using generative models, such as Generative Adversarial Networks (GANs) (Iwana; Uchida,

2021; Iglesias et al., 2023). This work, on the other hand, proposes a data resampling technique

based on knowledge from the field of bearing research to improve the performance of Light-

GBM. Therefore, instead of training LightGBM with fully extracted signals, the algorithm is

trained and tested on random slices constructed based on the BPFO and the BPFI.

Finally, due to the growing use of machine learning techniques in various scien-

tific and technological fields and the undeniable importance of rotating machinery in energy

generation for society, this work’s contribution to developing the fault detection field is evident.
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3 METHODOLOGY

3.1 Problem Description

Rolling bearings are critical components in various industrial applications, and their

reliable operation is essential to prevent catastrophic failures and costly downtime. This re-

search addresses the fault detection problem in rolling bearings by employing machine learning

techniques, primarily focusing on LightGBM as the main algorithm and benchmarking the Sup-

port Vector Machine (SVM).

The methodology analyzes time signal datasets and uses a resampling technique

during training to enhance LightGBM’s performance in building decision trees. While SVM

is also evaluated as a benchmark, the methodology does not expect to improve its performance

since SVM has a computational complexity that scales quadratically with the number of training

samples, which is significantly increased with the proposed resampling method.

Using time-domain data offers several advantages. Firstly, time-domain data of-

ten requires less preprocessing, as it is the raw signal directly obtained from sensors like ac-

celerometers, making it more straightforward to work with and less computationally intensive.

Secondly, time-domain features such as peak-to-peak distance can be very effective at capturing

the characteristics of bearing faults, as they directly reflect the physical impacts and vibrations

caused by such faults. In addition, time-domain analysis can be more robust to variations in op-

erating conditions since frequency-domain features may be more sensitive to changes in speed

and load, which can alter the spectral distribution of the vibration signals. These advantages

make time-domain data a practical and powerful choice for developing machine learning mod-

els for bearing fault detection.

In addition, the model selection focuses on building a reliable and robust classifier

that achieves high accuracy and prevents false negatives in predicting healthy samples, which

can potentially lead to catastrophic failure.

A scoring mechanism that combines the overall accuracy with the recall of the

healthy samples is employed to achieve this goal. This scoring choice will be discussed later in

this chapter. The model selection process involves using a Bayesian optimizer for hyperparam-

eter tuning to maximize this composite score.

Therefore, the methodology combines a knowledge-based resampling technique
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with the Bayesian optimizer for hyperparameter tuning to enhance LightGBM’s predictive ca-

pabilities and training efficiency. Hence, this research aims to contribute to developing a fault

detection system that offers both high accuracy and a precaution against false negatives, ulti-

mately improving the reliability and safety of industrial machinery.

3.2 The Data

According to Lessmeier et al. (2016b), bearing damage is often monitored by ac-

celeration sensors that permit vibration analysis. To support technological development in this

area, researchers at Paderborn University made available a benchmark dataset for classifying

common ball-bearing faults: the inner and outer ring faults, shown in Figure 3.1.

Figure 3.1 – Schematics of a ball bearing with an inner ring (a) and an outer ring fault (b)

The experiment used an accelerated lifetime test rig to create realistic faults for the

bearing type 6203, whose geometry is shown in Table 3.1.

Table 3.1 – Geometry of the Bearing 6203 Used for Data Gathering (Lessmeier et al., 2016b)

Property Value Symbol

Pitch circle diameter 28.55 mm D
Number of rolling elements 8 pc. n
Contact angle 0 rad ϕ
Rolling element diameter 6.75 mm d
Length of rolling element 6.75 mm
Diameter of inner raceway 24.0 mm
Diameter of outer raceway 33.1 mm
Static load rating 4750 N
Dynamic load rating 9500 N
Speed limit 12000 rpm
Manufacturer FAG
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Note from Table 3.1 that only the pitch circle diameter, the number of rolling ele-

ments, the contact angle, and the rolling element diameter have mathematical symbols. That

was done purposely for clarity since they will be used in Section 3.5 to calculate the ball-

bearings fundamental frequencies.

Data generation was conducted on a modular test rig, collecting vibration data for

health, outer, and inner race faults, all available in (Lessmeier et al., 2016a).

Figure 3.2 – Modular Test Rig For Data Gathering (Lessmeier et al., 2016b)

The test rig in Figure 3.2 contains five modules: an electric motor (1), a torque-

measurement shaft (2), a rolling bearing test module (3), a flywheel (4), and a load motor (5).

The main characteristics of the electric motor (1) are shown in Table 3.2.

Table 3.2 – Motor and Inverter Specifications (Lessmeier et al., 2016b)

Parameter Specification
Motor Type Permanent Magnet Synchronous Motor (PMSM)

Motor Power 425 W
Nominal Torque (T) 1.35 Nm

Nominal Speed 3,000 rpm
Nominal Current (I) 2.3 A

Pole Pair Number (p) 4
Motor Model Type SD4CDu8S009
Motor Brand Hanning Elektro-Werke GmbH

Frequency Inverter Model KEB Combivert 07F5E 1D-2B0A
Inverter Switching Frequency 16 kHz

The speed and the torque are measured by the torque-measuring shaft (2) model

TM305 Magtrol Inc., which has a nominal torque of 2 Nm and an accuracy of ±0.1 % of the

nominal torque.
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The rolling bearing test module (3) measures the acceleration of the bearing housing

using a piezoelectric accelerometer (Model No. 336C04, PCB Piezotronics, Inc.) and a charge

amplifier (Type 5015A, Kistler Group) with a low-pass filter at 30 kHz.

Finally, the authors state that the flywheel (4) and the load machine (5) are used to

simulate the inertia and load of the driven equipment, respectively. The load motor is a PMSM

Siemens-Motor 1FT7062-1AF70-1DG1 with a nominal torque of 6 Nm.

The modular setup developed by Lessmeier et al. (2016b) allows varying multiple

operational parameters resulting in various experiments. This research merges datasets from

fifteen experiments labeled by the researchers as shown in Table 3.3.

Table 3.3 – Categorization of the datasets used (Lessmeier et al., 2016b)

Healthy Outer Ring Damage Inner Ring Damage

K001 KA04 KI04
K002 KA15 KI14
K003 KA16 KI16
K004 KA22 KI18
K005 KA30 KI21

Each dataset in Table 3.3 contains 80 measurements of approximately 4 seconds of

vibration signal with a sampling frequency of 64 kHz. The 80 measurements were collected

varying the rotor operational parameters according to Table 3.4 with 20 measurements each.

Table 3.4 – Rotor Operational Parameters

Rotational speed [rpm] Load Torque [Nm] Radial force [N] Name of Setting

1500 0.7 1000 N15_M07_F10
900 0.7 1000 N09_M07_F10
1500 0.1 1000 N15_M01_F10
1500 0.7 400 N15_M07_F04

Target labeling was done visually by the authors and two examples are shown in

Figure 3.3.

To build the complete dataset the samples are cropped to 250000 features. The

rotational speeds of 900 rpm (15 Hz) and 1500 rpm (25 Hz) were also available as a feature.

The individual samples were merged into one balanced dataset with 1200 rows and 250001

columns.

Figure 3.4 shows samples for the three operational conditions.
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Figure 3.3 – Indentation at the raceway of the outer ring (a); small pitting at the raceway of the
inner ring (b) (Lessmeier et al., 2016b)

Figure 3.4 – Data samples of the healthy (a), the outer ring fault (b), and the inner ring fault (c)
operational conditions

Smith and Randall (2015) define specific characteristics for benchmark datasets

based on their extensive experience with various diagnostic techniques applied to a vibration-

based condition monitoring dataset focused on bearings. According to the authors, a benchmark

dataset must have organized and comprehensive documentation, sampling rates higher than 40

kHz, and data validation with verified methods before data publication. The dataset published

by Lessmeier et al. (2016b) achieves all the criteria and is reliable for studying mechanical

faults in rolling bearings.

3.3 LightGBM Algorithm

LightGBM is a gradient-boosting decision tree (GBDT) algorithm designed to be

efficient and scalable. It can solve multiple machine learning tasks, such as multi-class clas-
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sification, regression, and ranking problems. These properties make LightGBM one of the

industry’s most used machine learning frameworks, according to the "State of Data Science and

Machine Learning 2022" survey made by (Kaggle, 2022).

LightGBM advantages, functionality, and hyperparameters are discussed in this sec-

tion.

3.3.1 Advantages

LightGBM’s primary advantages over its similars, such as XGBoost and AdaBoost,

are training time optimization and lower memory usage. This is due to two techniques called

Gradient-based One-Side Sampling (GOSS) and Exclusive Feature Bundling (EFB), according

to Ke et al. (2017a).

According to Ke et al. (2017a), while GBDT algorithms usually scan all the data in-

stances to estimate the information gain of all possible split points for each feature, the Gradient-

based One-Side Sampling (GOSS) method in LightGBM maintains only the ones with more

significant gradients and randomly drops the smaller ones. The authors have proven in their

research that this technique leads to more accurate predictions and lower training time since

fewer data points need to be evaluated at each iteration.

Exclusive Feature Bundling (EFB), on the other hand, is a technique that attempts

to merge highly similar features. Ke et al. (2017a) state that high-dimensional data are usually

sparse, and consequently, many features are mutually exclusive, i.e., they never take nonzero

values simultaneously. In the context of this research, where the data samples are time signals,

many features can be mostly related to higher or lower amplitudes. The authors propose that

these features are exclusive and can be bundled into a single one, significantly speeding up

training without affecting the algorithm’s accuracy.

3.3.2 Functioning

LightGBM functioning occurs according to the flowchart in Figure 3.5 (Friedman,

2000; Ke et al., 2017a) and can be summarized in three phases:

• Initialization: This step initializes some internal variables, such as the loss function and

the hyperparameters. In addition, the first decision tree is fitted to the training data. There

are three steps in this phase:
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Figure 3.5 – LightGBM Functioning Flowchart

– Regularization: Regularization techniques prevent overfitting and improve the model

generalization ability by adding penalty terms to the loss function. LightGBM uses

the L1 and the L2 regularizations, which are penalties proportional to the absolute

value and the square of the feature weights, respectively.

– Finding the Gradients: The regularized loss function is derived with respect to

the predictions, which gives the gradient function that will be used to calculate the
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pseudo-residuals during training.

– Building the First Tree: The first classifier of the model is a constant that mini-

mizes the loss function. Also, in this step, the tree counter parameter t is initialized

and set to one.

• Training Phase: This step iteratively builds new decision trees until the tree counter

parameter reaches a predefined value, shown in the diagram as #Trees. Training trees

that successively learn from the previous ones and have their predictions combined is

known as boosting. There are also three steps in this phase:

– Predict Training Samples: The training data is fed to all built trees, and the pre-

dictions are summed and weighted by the learning rate hyperparameter.

– Calculate Residuals: The predictions in the previous step and the actual values of

the target variable are input to the gradient function calculated in the initialization

phase, outputting the pseudo-residuals.

– Build New Decision Tree: A new decision tree is trained to predict the pseudo-

residuals calculated in the previous step. A decision tree model is built by recur-

sively splitting the leaf nodes until meeting a convergence criterion, i.e., achieving a

predefined number of leaves. LightGBM does leaf splitting distinctively from other

GBDT methods due to the GOSS and the EFB techniques, optimizing training time

without affecting accuracy.

• Output Phase: Once the tree counter parameter reaches the predefined number of trees,

the training phase stops, and all trained classifiers are returned.

As mentioned above, when LightGBM is initialized, the loss function is defined.

According to Géron (2019), a standard loss function in multi-class classification problems is

the cross-entropy, which can be modified by adding weights related to the predicted classes, as

shown in Equation 3.1.

L(y, p) = − 1

N

N∑
i=1

Cl∑
j=1

wjyij log(pij) (3.1)

Where N is the total number of samples, Cl is the number of classes, yij is the

actual label (encoded as a one-hot vector) for the i-th instance and j-th class, pij is the predicted

probability for the i-th instance and j-th class, and wj is the weight for the j-th class.
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Adding class weights allows the loss function to better deal with typical issues in

machine learning projects, such as imbalanced datasets, and, most notably for this research, the

minimization of false negatives, which will be discussed further in the Metrics section.

3.3.3 Hyperparameters

As mentioned previously, LightGBM is flexible toward various machine-learning

problems. One of the key features contributing to its versatility is the variety of hyperparameters

available to tune its performance.

In this research, five of the algorithm hyperparameters were explicitly chosen for

their effects on training time, model accuracy, and overfitting (LightGBM, 2023):

1. learning_rate: controls the step size at each iteration during the gradient descent opti-

mization process. A lower learning_rate leads to slower convergence but can help avoid

overfitting.

2. n_estimators: specifies the number of boosting iterations or the number of decision trees

in the model. Increasing n_estimators can improve the model accuracy and increase the

training time and the risk of overfitting.

3. num_leaves: controls the maximum number of leaves in each decision tree. A higher

num_leaves can increase the model complexity and accuracy, but it can also increase the

risk of overfitting and slow down the training time.

4. reg_alpha and reg_lambda: control the L1 and L2 regularization strength, respectively.

Both hyperparameters can help prevent overfitting by adding a penalty term to the objec-

tive function. A higher value of reg_alpha or reg_lambda can lead to a simpler model

and reduce accuracy.

3.4 SVM Algorithm

3.4.1 Binary Classification

The Support Vector Machine (SVM) is an algorithm that, as shown in Figure 3.6,

separates operational conditions into two different regions in the space through a kernel trick

(Géron, 2019). In this operation, each vector pair in the dataset is mapped to a higher dimension

using specific functions capable of quantifying similarities between observations.
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Figure 3.6 – Separation Hyperplane formed by SVM (Pedregosa et al., 2011c)

As shown in Figure 3.6, SVM would ideally be able to perfectly separate the dataset

into failure (1) and non-failure (0) regions bounded by dashed lines, known as margins. How-

ever, perfect separation between regions is practically impossible in real data due to interference

and noise in measurement equipment, among other factors. Therefore, optimizing the set of

weights w of this algorithm requires that some observations may be incorrectly classified by a

distance ζ from their appropriate decision margins, a condition known as “soft margin” (Géron,

2019), represented in Figure 3.7.

Figure 3.7 – Separation Hyperplane with Soft Margin (Géron, 2019)
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Unlike LightGBM, SVM finds the best set of weights w through a constrained

minimization problem. Additionally, incorrectly classified observations are penalized by a reg-

ularization factor C during the optimization process. Thus, the optimization problem can be

summarized as Equation 3.2:

minw,b,ζ
1
2
wTw + C

∑N
k=1 ζk

subject to sk(w
Tϕ(x) + b) ≥ 1− ζk

(3.2)

Where s is a component acting as a sign function, and ϕ is a mapping function

designed to transform vector x into a higher dimension.

According to Géron (2019), SVM is part of a particular group of methods known as

duality problems. The principle of Lagrangian duality applies to problems where the objective

function and its constraints are convex and differentiable, stating that the problem can be solved

equivalently from two perspectives, which in the case of SVM corresponds to Equation 3.3.



minα
1
2
αTQα− dTα

subject to sTα = 0

with 0 ≤ αk ≤ C, for k = 1, 2, 3, . . . , N

Qk,l ≡ skslK(xk, xl) = skslϕ(xk)
Tϕ(xl)

(3.3)

Where:

• αk: dual coefficients

• Q: positive-definite Matrix

• K: kernel function

• d: unit vector

• l: row index in the data matrix

In Equation 3.3, it can be observed that the kernel function K corresponds to the

product of the mapping functions ϕ mentioned earlier. According to Géron (2019), this rela-

tionship is guaranteed by Mercer’s Theorem, which states that the kernel function can be used

in place of the mapping functions, even without knowledge of their specific form, as long as ϕ

exists.
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In this project, the kernel function used is the Gaussian Radial Basis Function

(RBF), defined as:

K(xk, xl) = exp
(
−γ∥xk − xl∥2

)
(3.4)

Where γ represents the similarity normalization factor.

It can be observed that if xk and xl are distant points in space, K(xk, xl) ≈ 0, and

if they are close, K(xk, xl) ≈ 1.

Thus, prediction is made by determining if a given point x is more similar to points

indicating healthy operation (0) or failure (1), as mathematically represented by Equation 3.5.

ŷk(x) =
N∑
k=1

skαkK(xk, x) + b (3.5)

Similar to LightGBM, SVM is an algorithm that shows significant gains when

trained on a larger dataset. However, according to Géron (2019), due to the kernel function,

the method has a computational complexity that scales quadratically with the number of train-

ing samples. Therefore, SVM is suitable for medium-sized datasets, with approximately 30000

samples.

3.4.2 Multiclass Classification

The previous section clearly shows that Support Vector Machines are not naturally

designed for handling multiclass classification. However, by breaking down the problem into

several binary classification tasks, it is possible to turn SVM into a multiclass classifier using

two distinct approaches: One-vs-One and One-vs-Rest.

In the One-vs-One approach, one SVM is trained for each pair of classes in the

dataset. Therefore, two classes are selected at a time, and the remaining are ignored during the

training process. The total number of SVMs trained in this approach is represented by Equation

3.6.

M1vs.1 =
Cl(Cl − 1)

2
(3.6)

Where Cl and M are the number of classes and SVMs trained, respectively.

In the One-vs-Rest approach, on the other hand, one SVM is trained for each class

in the dataset. Therefore, for each machine trained, one class becomes the positive (1) and the
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remaining classes become the negative (0). The total number of SVMs trained in this approach

is represented by Equation 3.7.

M1vs.R = Cl (3.7)

Note from Equations 3.6 and 3.7 that the One-vs-One method generally involves

training more SVMs, leading to extended training times compared to the One-vs-Rest approach.

Nevertheless, in this study where Cl = 3, both scenarios involve training an equal number of

SVMs. Hence, both cases will be evaluated.

3.4.3 Hyperpameters

SVM is not as flexible as LightGBM and its hyperparameter tuning generally hap-

pens by adjusting the C parameter.

According to Pedregosa et al. (2011b), the C parameter behaves as a regularization

factor trading off the correct classification of training examples against maximizing the decision

function’s margin. A smaller margin for larger values of C will be allowed if the decision

function is better at correctly classifying all training points. A lower C, on the other hand,

facilitates a more extensive margin and, therefore, a less complex decision function at the cost

of training accuracy.

3.5 Knowledge-based Resampling

Despite the EFB technique, an excess of features in a dataset can significantly in-

crease LightGBM’s training time as the algorithm constructs decision trees from the gradients

and distributions of feature values. As an alternative to improve LightGBM’s performance, this

work proposes a data resampling technique based on knowledge from the field of bearing re-

search, which is discussed in this section. The methodology is done in two steps: firstly, slicing,

indexing, and stacking, and lastly, testing and majority voting.

3.5.1 Slicing, Indexing, and Stacking

The technique takes s random slices with size s of an original time sample and

stacks them into multiple time samples mapped to the same index and working condition, as

shown in Figure 3.8.
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Figure 3.8 – Slicing, Indexing and Stacking Time Samples

3.5.2 Testing and Majority Voting

After the algorithm’s training phase, the resampled testing dataset is evaluated, and

each slice gets its own prediction. The index is then used to regroup the individual predictions,

and the final value is achieved by majority voting, as shown in Figure 3.9.

Figure 3.9 – Testing and Majority Voting

3.5.3 Choosing the Slice Size

Recognizing amplitude patterns is more important than knowing when they happen

in the original signal. That means specific signal regions are sufficient for classifying the work-

ing conditions of a rotating machine. Because of that, rolling bearings knowledge will be used

to decide the slice size s.

First, reshaping the dataset so that the number of features matches one bearing ro-

tation likely enhances the training process of LightGBM. This alignment facilitates the model’s

ability to capture patterns and variations in the data, preventing overfitting and improving its
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generalization ability. Additionally, resampling the data in this manner reduces the computa-

tional complexity of the model, resulting in faster and more efficient training. The number of

features to assure one bearing rotation is defined in Equation 3.8.

Mr =
fs
fr

(3.8)

Where fs and fr are the sampling frequency and the rotor rotational speed respec-

tively.

Another theoretical aspect that must be considered is that when a rolling element

within a bearing encounters a local fault on the inner or outer race, it produces an impact signal

at one of the bearing fault frequencies, such as the Ball Pass Frequency Outer race (BPFO) or

Ball Pass Frequency Inner race (BPFI), which are defined in Equations 3.9 and 3.10 (Randall;

Antoni, 2011):

BPFO =
nfr
2

(
1− d

D
cosϕ

)
(3.9)

BPFI =
nfr
2

(
1 +

d

D
cosϕ

)
(3.10)

Where D, d, ϕ, n are the pitch diameter, ball diameter, contact angle between the

ball and the cage, and the number of rolling elements, respectively.

Given the bearing’s geometry shown in Table 3.1 and the two rotor speeds of 15 and

25 Hz, the BPFI and the BPFO are shown in Table 3.5.

Table 3.5 – Ball Pass Frequencies in the Inner and Outer Race of the Bearing 6203

fr = 15 Hz fr = 25 Hz

BPFI 74.2 123.6
BPFO 45.8 76.4

The minimum number of features to assure at least one event of impact signal in the

outer or the inner race is defined in Equations 3.11 and 3.12:

Mo =
fs

BPFO
(3.11)

Mi =
fs

BPFI
(3.12)
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From Equations 3.8, 3.11, and 3.12, it is clear that the rotor speed affects the min-

imum amount of features required to represent a full rotation or an impact signal in case of a

bearing fault. Because of that, every training step of the LightGBM will be done exclusively on

one rotor speed. In addition, the seven distinct slice sizes for each rotor speed will be evaluated

to measure the algorithm’s sensitivity, as shown in Table 3.6.

Table 3.6 – Slice Sizes for Resampling the Dataset

fr = 15 Hz fr = 25 Hz

Half the BPFI Mi

2
431 259

Number of points due to BPFI Mi 863 518
Mid-point between BPFO and BPFI Mi+Mo

2
1130 678

Number of points due to BPFO Mo 1397 838
Mid-point between BPFO and Full Rotation Mr+Mo

2
2832 1699

Full Rotation Mr 4267 2560
Two Full Rotations 2Mr 8533 5120

The optimal results are likely achieved when employing a slice size between the

BPFO and one bearing rotation. This hypothesis is grounded in the expectation that a slice

size with fewer features than the BPFO might not provide sufficient information for detecting

outer race faults. In addition, a slice size with more features than a full rotation could introduce

confusion into the algorithm’s training, rendering it less effective in fault detection.

3.6 Measuring the Algorithms’ Performance

This work evaluates the accuracy and the recall for model selection. Once the al-

gorithms are built based on these performance indicators, the confusion matrix is plotted for

visualizing and quantifying the models’ capacity to distinguish between fault classes.

3.6.1 Accuracy

Accuracy in multi-class classification is calculated as the sum of the true positives

(TP) for each class divided by the total number of instances:

Accuracy =

∑Cl

c=1 TPc

n
(3.13)

Where Cl is the number of classes and n is the total number of testing samples.
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3.6.2 Recall

Achieving perfect accuracy in fault detection with machine learning is highly un-

likely since the data are scarce and costly and the algorithms work as mathematical approxi-

mations of complex physical phenomena based on the provided data. While these models can

capture specific patterns and features that may indicate faults, they cannot account for all fac-

tors contributing to fault occurrence. As a result, false positives and negatives are common in

machine learning-based fault detection systems. Consequently, handling misclassifications is a

crucial aspect of the fault detection process.

While false positives can disrupt operations and result in monetary losses, they are

not as critical as false negatives in the context of fault detection in rotating machines since

the inability to detect a fault can lead to machine breakdown, which could be potentially life-

threatening to workers. Therefore, while maximizing accuracy in machine learning models

for fault detection in rotating machines is preferable, the recall should also be evaluated and

maximized to ensure the misclassifications will be mainly false positives.

The recall for a given class is calculated as the ratio of the true positives (TP) to the

sum of true positives and false negatives (FN) for that class.

Recallc =
TPc

TPc + FNc

(3.14)

Even though it is possible to calculate an overall recall for a machine learning

model, only the recall for the healthy samples is considered in this work.

3.6.3 Scoring and Model Selection

That way, the LightGBM algorithm can be tuned to maximize accuracy while en-

suring no faulty condition is classified as healthy.

To do so, the Bayesian optimization will maximize the score on Equation 3.15.

Score = 2 · Accuracy +Recallhealthy (3.15)

Note that the score on Equation 3.15 gives twice the importance to the accuracy

than the recall. That way, the hyperparameters will be chosen to make fewer misclassifications,

while the mistakes will be primarily false positives. This can be achieved using the Bayesian

optimization algorithm for hyperparameter tuning.
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3.6.4 Confusion Matrix

By definition, the confusion matrix A is such that Ai,j equals the number of ob-

servations that belong to the i group and are predicted to belong to the j group (Pedregosa et

al., 2011a). For a multi-class classification problem with three classes (Healthy, Outer Ring

Fault, and Inner Ring Fault), the confusion matrix will be a 3x3 matrix that illustrates how well

a model distinguishes between different fault categories. It provides a comprehensive break-

down of true positives, true negatives, false positives, and false negatives, facilitating informed

decision-making in fault detection applications. Lastly, it is essential to clarify that the confu-

sion matrices in this work are exclusively built on the testing samples.

3.7 Bayesian Optimization

Bayesian optimization is a robust optimization algorithm widely used in machine

learning problems since it can efficiently find the best set of hyperparameters for a specific

situation. This is because this technique searches for the best hyperparameters statistically

rather than exhaustively, as done in Grid Search.

This project uses a Python package made available by Nogueira (2014) called bayesian-

optimization.

3.7.1 Properties

According to Frazier (2018), the Bayesian optimization focuses on maximizing a

function f with the following properties:

• f is a "black-box", which means it lacks a particular known property like concavity or

linearity that would make it easy to optimize using techniques that leverage such structure

to improve efficiency.

• f may be expensive to evaluate, meaning each function evaluation may take significant

time or resources.

• When evaluating f , only f is observed, and no first- or second-order derivatives. This

prevents applying first- and second-order methods like gradient descent, Newton’s, or

quasi-Newton.
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3.7.2 Functioning

The first step to applying Bayesian optimization to a machine learning problem is

defining hyperparameters’ search space and their ranges.

Next, an objective function is defined. In this case, the training and the validation

of the LightGBM algorithm will occur inside the "black-box" function, and the predictions will

be used to compute a score to be maximized. As stated in the previous section, the goal is to

maximize the accuracy while forcing the misclassifications of the healthy sample to be mainly

false positives, which is equivalent to maximizing the score from Equation 3.15.

One evaluation of the "black-box" function can be seen in Figure 3.10.

Figure 3.10 – "Black-box" Function For The Bayesian optimization
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In Figure 3.10, only the training dataset is input in the "black-box" function, and

the hyperparameters are optimized for a validation set extracted from it. This is done so the

hyperparameters will not be chosen according to the testing set, preventing data leakage.

After the objective function is evaluated on the initial points, the Bayesian opti-

mizer will construct a posterior distribution of functions through Gaussian processes (Nogueira,

2014). That way, a probabilistic model that best describes the objective function is achieved.

Figure 3.11 shows the representation of a Gaussian Process applied to an objective function.

Figure 3.11 – Representation of a Gaussian Process of a Function (Pedregosa et al., 2011a)

Figure 3.11 shows a "black-box" function evaluated on nine initial points repre-

sented by the blue dots. In addition, the orange line is the probabilistic model constructed by

the Gaussian process based on the observed points of the original function. The light orange

areas, on the other hand, are the confidence intervals, which are smaller when closer to the

observed points and become more significant the further they get from them.

The next set of hyperparameters to evaluate will be chosen based on a trade-off

between exploration and exploitation of the search space.

According to El-Omari (2021), exploration is the activity through which the search

algorithm tries to explore as much broad search space as possible to evade falling into the

local optima traps, which means the function should be evaluated in the least known areas.

Whereas exploitation is the activity in which the searching algorithm tries to develop the finest
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discovered solutions through some targeted approaches, which means the function should be

evaluated closer to the best-known result so far.

This trade-off is achieved by the Expected Improvement acquisition function, which

according to Brochu et al. (2010), is mathematically represented by Equation 3.16.

EI(x) =

(µ(x)− f ∗)Φ(Z) + σ(x)ϕ(Z) if σ(x) > 0

0 if σ(x) = 0
(3.16)

Where x is the input to the function based on the search space, µ(x) is the function

being optimized at the proposed point, f ∗ is the best value of the function achieved so far, σ(x)

is the standard deviation of the function at x, Φ(Z) and ϕ(Z) are the cumulative distribution

function and probability density function of the standard normal distribution respectively, and

Z is the normalized distance between µ(x) and f ∗, shown in Equation 3.17.

Z(x) =


µ(x)−f∗

σ(x)
if σ(x) > 0

0 if σ(x) = 0
(3.17)

The x that maximizes the acquisition function from Equation 3.16 is the point with

the best trade-off between exploration and exploitation. Therefore, the following evaluation of

the "black-box" function will be at the xnext point, shown in Equation 3.18.

xnext = argmax
x

EI(x) (3.18)

With a new evaluation of the function, the probabilistic model constructed by the

Gaussian process is updated, allowing new regions of exploration and exploitation to be discov-

ered. This process is repeated until the global optimum is achieved.

According to Brochu et al. (2010), it is often unclear how to handle the trade-off

between exploration and exploitation in the acquisition function. In addition, unlike standard

optimization algorithms such as gradient descent, Newton’s, or quasi-Newton methods, the

Bayesian optimization technique will not necessarily output the global optimum in its last itera-

tion. Because of that, there is no general rule about how many initial points or the total number

of iterations Bayesian optimization should evaluate. The optimization will evaluate five initial

points and perform 45 iterations in this work.
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4 RESULTS AND DISCUSSION

In this work, three sequential experiments with LightGBM and SVM are presented.

4.1 Unprocessed Data

The first step was a regular machine learning pipeline where LightGBM and SVM

were trained on unprocessed data signals and their default hyperparameters (Ke et al., 2017a;

Pedregosa et al., 2011c).

The proposed experiment is shown in Figure 4.1.

Figure 4.1 – Regular Machine Learning Pipeline

4.1.1 SVM

First, as shown in Figure 4.2, two SVMs were trained on the unprocessed data using

the One-vs-One and the One-vs-Rest approaches.
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Figure 4.2 – Confusion Matrix of SVM’s Regular Machine Learning Pipeline using the One-
vs-One (a) and the One-vs-Rest (b) approaches

The confusion matrices in Figure 4.2 show the SVM yielding the same results de-

spite the different decision function. Because of that, the following experiments will use the

One-vs-Rest approach, which is the model’s default and recommended by Pedregosa et al.

(2011c).

Figure 4.2 also demonstrates that the model accurately predicts instances of the

healthy class, correctly identifying 97.5% of the samples. However, it misclassifies 2.5% of

healthy instances as outer race fault. Notably, there are no instances of healthy being misclas-

sified as inner race faults, indicating a clear distinction made by the model between these two

classes.

In contrast, the model’s performance on the outer race fault class is less satisfactory.

It correctly classifies only 45.0% of these instances while misclassifying an equal percentage

as inner race fault. A further 10.0% of outer race fault instances are incorrectly identified as

healthy, suggesting a significant degree of confusion between the outer race fault and inner race

fault classes.

The model’s performance on the inner race fault class is moderately better than on

the outer race fault class. It correctly identifies 77.5% of inner race fault instances but misclas-

sifies 22.5% as outer race fault. There are no instances of inner race fault being misclassified as

healthy, mirroring the pattern observed in the healthy class.

In addition, in this experiment, SVM took two minutes to train.
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4.1.2 LightGBM

Next, the results of the LightGBM model are shown in Figure 4.3.

Figure 4.3 – Confusion Matrix of LGBM’s Regular Machine Learning Pipeline

Figure 4.3 shows that while the model could accurately identify 92.5% of healthy

operational conditions, 7.5% were wrongly classified as outer race faults. However, just like

SVM, LightGBM predicted no healthy instances as having a defect in the inner race.

In contrast, the model shows unsatisfactory performance when identifying the inner

and the outer race faults, misclassifying 45% of the faulty samples. The 52.5% and 55% ac-

curacies show that the model performs slightly better than random chance when distinguishing

the defects.

Regarding false negatives, similar to SVM, LightGBM predicted no inner race faults

as being healthy. The model, however, misclassified 2.5% of the outer race samples as a normal

rotor operation.

Furthermore, in this setup, LightGBM took 571 minutes to train.

4.1.3 Comparing the Algorithms

The results of the first experiment are shown in Table 4.1.

In this experiment, SVM and LGBM were trained on the same dataset, consisting

of 1080 samples with 250,000 features each. However, the training time for the two algorithms
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SVM LGBM

Training Time 2m 571m
Training Samples 1080 1080
Number of Features 250000 250000
Correct Healthy 97.5% 92.5%
Correct Outer Ring 45.0% 52.5%
Correct Inner Ring 77.5% 55.0%
Outer Ring Predicted Healthy 10.0% 2.5%
Inner Ring Predicted Healthy 0.0% 0.0%

Table 4.1 – Results of the First Experiment

was significantly different. The SVM model was trained in just 2 minutes, while the LGBM

model required a much longer time, approximately 571 minutes. Support Vector Machine’s su-

perior computational efficiency in this setup is due to the vector-based training that deals better

with more features, using a kernel function to compare all the features between two samples.

LightGBM, on the other hand, uses a boosting approach that trains multiple decision trees, each

calculating feature gradients to decide the best splitting point, as discussed previously.

Regarding performance, SVM correctly classified 97.5% of the healthy samples,

which is higher than the 92.5% accuracy achieved by the LightGBM model. However, when

classifying samples with outer ring defects, the LightGBM model outperformed the SVM

model, correctly classifying 52.5% of the samples compared to SVM’s 45.0%. The SVM model

again outperformed the LightGBM model for inner ring defects, correctly classifying 77.5% of

the samples compared to LightGBM’s 55.0%.

Although neither model misclassified any inner ring defects as healthy, the SVM

and the LightGBM misclassified 10.0% and 2.5% of outer ring defects, respectively. This false

negative error was previously discussed as potentially life-threatening, and the following exper-

iments aim to enhance the models’ performance, eradicating these misclassifications.

4.2 Choosing the Slice Size

Next, the second experiment added the knowledge-based resampling technique to

the machine learning pipeline.

It is essential to clarify that this experiment was proposed to enhance LightGBM’s

predictive capabilities and not SVM’s. This is because resampling the dataset in this ap-

proach significantly augments the training samples and SVM’s computational complexity scales
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quadratically with the number of training samples. Therefore, only LightGBM is evaluated in

this step.

The proposed experiment is shown in Figure 4.4.

Figure 4.4 – Choosing the Slice Size Pipeline

As discussed previously and shown in Table 3.6, seven different slice sizes were

evaluated for each rotor speed in this experiment, making a total of 14 results. Every evaluation

was scored using Equation 3.15, allowing understanding of the model’s sensitivity to slice size,

as shown in Figure 4.5.
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Figure 4.5 – Score Sensitivity to Slice Size for Rotor Speed of 15 Hz (a) and 25 Hz (b)

As expected, Figure 4.5 shows the best scores when employing a slice size between

the BPFO and one bearing rotation, which consists of 2832 and 1699 samples for the 15 Hz and

the 25 Hz speeds respectively. This behavior is because a slice size with fewer features than the

BPFO does not provide sufficient information for detecting outer race faults, and more features

than a full rotation introduces confusion into the algorithm’s training, rendering it less effective

in fault detection.

Figure 4.6 shows the resulting confusion matrix after training LightGBM with the

knowledge-based resampled datasets.

Figure 4.6 – Resulting Confusion Matrix of LightGBM with Knowledge-based Resampling
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In comparison to the last experiment, Figure 4.6 shows that the knowledge-based

resampling had a positive effect on correctly identifying healthy samples and distinguishing the

faulty conditions. In this setup, the healthy samples are classified with 100% accuracy while

the inner and the outer race fault predictions improved by 7.5% and 25% respectively.

Figure 4.7 separates the confusion matrix from Figure 4.6 by rotor speed to allow a

better understanding of the model’s limitations.

Figure 4.7 – Resulting Confusion Matrix of LightGBM under knowledge-based Resampling at
Rotor Speed 15 Hz (a) and 25 Hz (b)

In Figure 4.7 it is clear that LightGBM in this setup only yields false negatives in

the outer race samples at 15 Hz. However, overall outer race fault identification was better at

15 Hz than at 25 Hz, with 80% and 53.3%, respectively.

For the inner race fault, on the other hand, the superior speed made it easier for the

algorithm to output accurate predictions, with 86.7% as opposed to the 60% achieved by the

machine learning method trained with the 15 Hz dataset.

From this experiment, it is clear that the knowledge-based resampling was beneficial

for LightGBM’s training process. Additionally, it was shown that different speeds affect the

algorithm’s predictive capabilities, which justifies using Bayesian optimization for individual

hyperparameter tuning to maximize the results.
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4.3 Optimizing Hyperparameters

According to (Hutter et al., 2019), it is widely acknowledged that hyperparameter

optimization can significantly improve machine learning models’ performance over the default

settings provided by their libraries. Because of that, this work uses Bayesian optimization to

find the best set of hyperparameters.

Figure 4.8 shows the whole proposed experiment.

Figure 4.8 – Optimizing Hyperparameters Machine Learning Pipeline
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4.3.1 Choosing the Observation Range

There is no general rule for choosing the observation range for hyperparameters,

but in this work, they were chosen as follows for SVM:

• Regularization Factor C: A wide range from one to one hundred was evaluated. A low

C leads to a permissive soft margin, while a high C leads to overfitting.

For LightGBM, on the other hand:

• Regularization Factors: There can be no negative values, and the upper bound was set

to two so that the regularizations would not have a higher effect on the loss function than

the class weights. This hyperparameter can be continuous.

• Learning Rate: It must be higher than zero and generally smaller than one. This hyper-

parameter can be continuous.

• Number of Estimators: LightGBM default value is one hundred, which was set as the

lower bound. The higher bound, on the other hand, should not be too high since the

optimizer could choose a value that would lead to model overfitting. Because of that, a

value of three hundred was chosen as the upper limit. This hyperparameter must be an

integer.

• Number of Leaves: LightGBM default value is thirty-two, and according to the docu-

mentation (LightGBM, 2023), setting the number of leaves to eighty, which is set as the

upper bound, generally gives a high accuracy without making the model too complex.

This hyperparameter must be an integer.

The algorithms’ class weights are also tuned, and they were chosen as:

• Class Weights: A wide range from one to ten was evaluated to allow the interpretation of

an operation condition’s importance compared to another, i.e., the inner ring fault being

twice more important than the outer ring one. Even though the class weights can be

continuous, they will be rounded to discrete values.

4.3.2 SVM

The observation ranges for SVM’s hyperparameters and the optimization results can

be seen in Table 4.2.
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Table 4.2 – SVM’s Optimized Hyperparameters

Parameter Observation Range fr = 15Hz fr = 25Hz
Slice Size - 2832 1699
Regularization Factor C (1, 100) 15 35
Healthy Class Weight (1, 10) 5 1
Outer Ring Class Weight (1, 10) 5 2
Inner Ring Class Weight (1, 10) 2 6

Score 2.113 2.684

Table 4.2 shows SVM could be better tuned for 25 Hz with a score of 2.684 in

contrast to the 2.113 achieved by the model trained with the 15 Hz data. The smaller score is

due to the higher false negative rate in the outer race, as shown in Figure 4.9. Additionally,

in the 25 Hz modeling, Bayesian optimization gave higher importance to the faults than to the

healthy samples, which allowed the algorithm to achieve higher accuracies resulting in a better

score.

Figure 4.9 – Resulting Confusion Matrix of SVM’s Complete Pipeline at Rotor Speeds 15 Hz
(a) and 25 Hz (b)

Compared to SVM’s original setup, shown in Figure 4.2, Figure 4.9 shows a sig-

nificant improvement of more than 20 pp in predicting the inner and the outer race faults. In

addition, all healthy samples were correctly classified. However, SVM’s limited hyperparame-

ter flexibility worsened the method’s false negative prediction, as 15% of the outer race faults

were predicted as healthy, as opposed to the starting 10%.

It is important to remember that SVM’s training samples were limited to 30000 due

to the quadratic computational complexity. In this setting, the training time tripled, with each

algorithm taking 6 minutes to train.
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4.3.3 LightGBM

The observation ranges for LightGBM’s hyperparameters and the optimization re-

sults can be seen in Table 4.3.

Table 4.3 – LightGBM’s Optimized Hyperparameters

Parameter Observation Range fr = 15Hz fr = 25Hz
Slice Size - 2832 1699
L1 Regularization (0, 2) 0.187 0.863
L2 Regularization (0, 2) 1.676 0.233
Learning Rate (0.01, 1) 0.45 0.70
Number of Estimators (100, 300) 202 195
Number of Leaves (20, 80) 20 57
Healthy Class Weight (1, 10) 2 3
Outer Ring Class Weight (1, 10) 1 6
Inner Ring Class Weight (1, 10) 1 6

Score 2.672 2.889

The results from the knowledge-based resampling along with hyperparameter opti-

mization are shown in Figure 4.10.

Figure 4.10 – Resulting Confusion Matrix of LightGBM’s Complete Pipeline at Rotor Speeds
15 Hz (a) and 25 Hz (b)

Compared to the last experiment, shown in Figure 4.6, Figure 4.10 shows a sig-

nificant predictive power improvement of more than 30 pp in predicting the outer race faults.

Additionally, although inner race accuracy only improved by 7.5 pp, it is notable that the hy-

perparameter tuning made the algorithm more capable of fault distinction.
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In addition, all healthy samples were correctly classified and there were no false

negatives, which was a fundamental goal of this work. Furthermore, in this setting, the training

time was reduced to 7 minutes, which corresponds to a 99.8% reduction from the original

experiment.

The major training time reduction is explained by the significant reduction in fea-

tures since LightGBM’s decision tree approach evaluates the gradient of each feature individu-

ally to find the best splitting point.

From this experiment, it is clear that combining the knowledge-based resampling

with the Bayesian optimization can significantly improve LightGBM predictive power and train-

ing time, making a robust and reliable classifier that mitigates the prediction of any false nega-

tives.

4.3.4 Comparing the Algorithms

The final confusion matrix of the algorithms can be seen in Figure 4.11.

Figure 4.11 – SVM’s (a) and LightGBM’s(b) Final Confusion Matrix

The results of the algorithms after the knowledge-based resampling and the opti-

mization process are summarized in Table 4.4.

Despite being trained with 35 times more data, LightGBM took almost the same

time to train as SVM, clearly showing LGBM’s superiority when handling larger datasets. The

optimization score, which measures the algorithm’s tuning performance in relation to the goal
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Table 4.4 – Results of the Complete Pipeline

SVM LGBM

Training Time 6m 7m
Training Samples (15 Hz) 30000 764640
Training Samples (25 Hz) 30000 1376190
Optimization Score (15 Hz) 2.113 2.672
Optimization Score (25 Hz) 2.684 2.889
Correct Healthy 100.0% 100.0%
Correct Outer Ring 80.0% 90.0%
Correct Inner Ring 85.0% 87.5%
Outer Ring Predicted Healthy 15.0% 0.0%
Inner Ring Predicted Healthy 0.0% 0.0%

of this work, was higher for LGBM at both speeds, scoring 2.672 and 2.889 compared to SVM’s

2.113 and 2.684 at 15 Hz and 25 Hz, respectively.

The superior score is visible when the algorithm’s performance regarding the in-

dividual classes is discussed. Both algorithms had a perfect score of 100% when identifying

healthy samples. However, when identifying samples with outer and inner ring issues, LGBM

outperformed SVM. LGBM correctly identified 90% of outer ring issues and 87.5% of inner

ring issues, compared to SVM’s 80% and 85%, respectively. Furthermore, although neither

algorithm misclassified any inner ring defects as healthy, LGBM did not yield outer ring false

negatives, while SVM misclassified 15% of these instances as healthy, which lowered the score

significantly.

4.4 Consolidated Results

The results of all experiments can be seen in Table 4.5.

Table 4.5 – Results of All Experiments

Original Optimized

SVM LGBM SVM LGBM

Training Samples 1080 1080 60000 2140830
Training Time 2m 571m 6m 7m
Correct Healthy 97.5% 92.5% 100.0% 100.0%
Correct Outer Ring 45.0% 52.5% 80.0% 90.0%
Correct Inner Ring 77.5% 55.0% 85.0% 87.5%
Outer Ring Predicted Healthy 10.0% 2.5% 15.0% 0.0%
Inner Ring Predicted Healthy 0.0% 0.0% 0.0% 0.0%
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In the initial experiment, both LightGBM and SVM were tested on the original data.

While LightGBM classified healthy samples with 92.5% accuracy, SVM outperformed it by

correctly identifying 97.5% of the healthy samples. However, when it came to distinguishing

defects, SVM’s performance was not as robust as LightGBM’s. Specifically, 10.0% of the

Outer Ring faults were incorrectly classified as healthy by SVM, compared to only 2.5% by

LightGBM.

The SVM algorithm also showed a varied performance in correctly identifying

Outer and Inner Ring faults, with accuracies of 45.0% and 77.5% respectively. In compari-

son, LightGBM had a more balanced performance, but slightly higher than random chance,

correctly classifying 52.5% of Outer Ring faults and 55.0% of Inner Ring faults.

Next, a knowledge-based resampling technique was proposed to improve Light-

GBM’s predictive capabilities, and using a slice size between the BPFO and a full bearing

rotating, not only reduced LightGBM’s training time by 99.8% (from 571 to 7 minutes) but

slightly improved the algorithm’s overall accuracy.

The Bayesian optimization extended LightGBM’s predictive capabilities even fur-

ther. The combined techniques allowed LightGBM to predict healthy samples with 100% ac-

curacy, and SVM to match this performance. Furthermore, even though the methodology was

not developed for SVM, the accuracy of both algorithms in correctly classifying outer and in-

ner ring faults improved significantly, with SVM reaching 80.0% and 85.0% respectively, and

LightGBM achieving 90.0% and 87.5%.

In this optimized setting, both LightGBM and SVM predicted no false negatives

for Inner Ring faults, which was a fundamental goal of this work. However, SVM still had a

15.0% rate of false negatives for outer ring faults, due to the algorithm’s limited flexibility in

hyperparameter tuning and the absence of the boosting process.

In comparison to Paderborn’s benchmark research (Lessmeier et al., 2016b), the

last LightGBM setup achieved a total accuracy of 92.5%, which is higher than most machine

learning models tested by authors except for a Classification and Regression Tree (CART), a

Random Forest (RF), and ensemble model, which achieved 98.3% accuracy each. However, a

time-domain approach was evaluated in this work, while in the Paderborn study, a feature en-

gineering pipeline based on the frequency domain was proposed. Finally, the original research

showed that tree-based models performed better than other machine learning algorithms, so it

is likely that LightGBM can achieve similar or better results using the same methodology.
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5 CONCLUSION

This research combines LightGBM with the slicing of time series and the Bayesian

optimization to build a robust and reliable classifier of mechanical faults in rotating machines

that achieve high accuracy while minimizing false negative rates.

The data was extracted from the Paderborn University Repository and contained

experimental samples gathered on an accelerated lifetime test rig. The tested rotating machine

was subject to three operational conditions: healthy, with an inner race and an outer race fault.

The samples contained acceleration data that were measured for approximately 4 seconds at a

sampling frequency of 64 kHz. In addition, various rotor parameters could be adjusted, and

to build the complete dataset, the samples were cropped to 250000 features. The most critical

parameter for this research was the rotational speeds of 900 rpm (15 Hz) and 1500 rpm (25 Hz),

which were also available as a feature. The individual samples were merged into one balanced

dataset with 1200 rows and 250001 columns.

The first experiment consisted of a regular machine learning pipeline, splitting the

original data into training and testing sets. The training set was input to LightGBM and SVM

default settings. The first was this research’s primary goal, while the second was mainly used

as a benchmark since it is a widely used algorithm in fault detection with machine learning.

The initial results showed that SVM outperformed LightGBM in classifying healthy samples,

with 97.5% and 92.5% accuracy, respectively. However, although SVM could predict inner race

faults with 77.5% accuracy, the algorithm classified 10.0% of the outer race faults as healthy,

compared to only 2.5% by LightGBM. Therefore, the first experiment showed neither algorithm

was by this research’s goals.

A knowledge-based resampling technique was proposed as an alternative to enhance

LightGBM’s predictive capabilities. It consisted of randomly slicing and stacking the time

series, allowing overlapping, meaning a feature could appear multiple times on the dataset,

but necessarily in different positions. It is essential to remember that this methodology was

not developed for SVM due to the kernel function that causes the algorithm to quadratically

scale its complexity to the number of training samples, which is significantly increased in this

methodology.

Seven distinct slice sizes were evaluated based on the BPFI, the BPFO, and the
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bearing rotation to find the best slice size. A sensitivity plot showed an optimal result for a slice

size between the BPFO and one bearing rotation. That is because fewer features than one BPFO

impact signal event do not provide sufficient information for detecting outer race faults, while

more features than a full rotation introduce confusion into the algorithm’s training, rendering it

less effective in fault detection.

The knowledge-based resampling positively affected the correct identification of

healthy samples and the distinction of faulty conditions. In this setup, the healthy samples were

classified with 100% accuracy while the inner and the outer race fault predictions improved

by 7.5% and 25%, respectively. Additionally, LightGBM in this experiment only yielded false

negatives in the outer race samples at 15 Hz, which clarified that different speeds affect the

algorithm’s predictive capabilities. This justified using Bayesian optimization for individual

hyperparameter tuning to maximize the results.

The Bayesian optimizer was used to enhance the algorithms’ predictive capabilities.

While SVM has only one main hyperparameter, its regularization factor, LightGBM has five,

along with the boosting process, which trains multiple classifiers, showing superior flexibility

toward various machine learning problems. Both algorithm’s loss functions had their class

weights optimized. The Bayesian optimization and knowledge-based resampling allowed SVM

and LightGBM to predict healthy samples with 100% accuracy. Furthermore, even though

the methodology was not developed for SVM, the accuracy of both algorithms in correctly

classifying outer and inner ring faults improved significantly, with SVM reaching 80.0% and

85.0%, respectively, and LightGBM achieving 90.0% and 87.5%.

From the results obtained, it is clear that this research’s main contribution is the

development of a machine-learning pipeline that works on raw signal data. The resampling

technique focuses on critical data sequences without increasing computation complexity. An-

other advantage of using time instead of frequency-domain approaches is that the latter can be

less robust to variations in operating conditions since frequency-domain features may be more

sensitive to changes in speed and load, which can alter the spectral distribution of the vibration

signals.

In conclusion, the LightGBM algorithm trained with raw time-series data is promis-

ing for detecting and classifying mechanical faults in rotating machines. The proposed data

resampling technique has improved the model’s accuracy and recall. Lastly, the Bayesian op-

timization extended LightGBM’s predictive capabilities further, eradicating false negatives and
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building a robust and reliable fault classifier.

Future studies should investigate whether the methodology can also be applied to

correctly classify other types of mechanical faults. It could also be evaluated whether the pro-

posed time series slicing technique can enhance the predictive power of different machine

learning methods, such as various architectures of artificial neural networks. Furthermore,

whether other data augmentation techniques can achieve similar or even better results could

be researched.
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