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RESUMO

Este trabalho apresenta uma formulação de termoelasticidade do Método dos Elementos de

Contorno (MEC) aplicável a materiais isotrópicos e anisotrópicos em problemas tridimension-

ais. A solução fundamental do problema de elasticidade utiliza o tensor de Barnett-Lothe

representado por série Dupla de Fourier, permitindo generalidade de aplicação no que concerne

ao tipo de material elástico. A formulação termoelástica introduz uma integral de domínio na

Equação Integral de Contorno (EIC) do problema de elasticidade que é resolvida utilizando

o Método da Dupla Reciprocidade (MDR), de modo que apenas o campo de temperaturas é

necessário, dispensando o uso dos valores de derivadas do problema de potencial, especialmente

no domínio. Considerações sobre o uso de pontos internos e subregiões para melhorar a

interpolação de temperaturas pelo MDR são apresentadas por meio da solução de alguns

exemplos, bem como o efeito de diferentes funções de base radial empregadas no MDR. Rotinas

de solução do campo de temperaturas para materiais iso e anisotrópicos são apresentadas bem

como adaptações para a solução de problemas bidimensionais em formulação tridimensional.

O cálculo de tensões e deformações no contorno é feito pelo uso das funções de forma e

dos valores dos deslocamentos e tractions dos nós. Os resultados demonstram que o bom

funcionamento pode exigir o uso de pontos internos em alguns casos e que a precisão deles

pode ser menor quando são utilizadas subregiões.

Palavras–chave: Termoelasticidade, Método dos Elementos de Contorno, Método da Dupla

Reciprocidade, Anisotropia.



ABSTRACT

This work presents a thermoelasticity formulation of the Boundary Element Method (BEM)

applicable to isotropic and anisotropic materials in three-dimensional problems. The funda-

mental solution of the elasticity problem uses the Barnett-Lothe tensor represented by the

Double Fourier series, allowing generality of application concerning the type of elastic material.

The thermoelastic formulation introduces a domain integral in the Boundary Integral Equation

(BIE) of the elasticity problem which is solved using the Dual Reciprocity Method (DRM),

so that only the temperature field is necessary, dismissing the use of derivative values of the

potential problem, especially inside the domain. Considerations on the use of internal points

and subregions to improve temperature interpolation by DRM are presented by solving some

examples, as well as the effect of different radial basis functions used by DRM. Temperature

field solution routines for iso- and anisotropic materials are presented as well as adaptations

for solving two-dimensional problems in three-dimensional formulation. The calculation of

stresses and deformations at the boundary uses the shape functions and the values of the

displacements and tractions of the nodes. The results demonstrate that proper functioning

may require the use of internal points in some cases and that the accuracy may be lower when

subregions are used.

Keywords: Thermoelasticity, Boundary Element Method, Dual Reciprocity Method, Anisotropy.
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1 INTRODUCTION

1.1 Overview

The Boundary Elements Method (BEM) is an attractive technique to solve boundary

value problems since it is only necessary to discretize the boundary, reducing the dimensionality

of the problem by one, making the mesh generation problem easier than the domain methods

(Brebbia; Dominguez, 1992). This also makes BEM very suitable to solve problems of infinite

or semi-infinite domains, like acoustic problems, and those with moving boundaries, like

fracture propagation (Gaul et al., 2003).

Boundary Elements make use of the fundamental solution which consists of an

analytical solution of a pontual action in an infinite domain concerning the governing equation,

improving the accuracy of the method, especially at problems with high gradients like stress

concentration. BEM also calculates the variable solution together with its derivative being

particularly strong on the accuracy of the second one (Katsikadelis, 2002).

If a problem does not have a fundamental solution, interpolation methods are used

to approximate it which can reduce the accuracy of the BEM. The singular nature of the

fundamental solutions requires special formulations for thin geometries, like plates and shell

theories (Aliabadi, 2002).

The matrices generated by FEM are banded and symmetrical allowing it to take

advantage of optimized linear system solvers, while BEM matrices are fully populated and

non-symmetrical. To overcome this drawback, techniques like Adaptative Cross Approximation

(Bebendorf, 2000) and Fast Multipole (Liu, 2009) were developed to reduce the size of the linear

system generated by BEM. Another strategy consists of speeding up the calculations by using

parallelization with distributed memory, allowing the code to be used at supercomputers, by

means of the Message Passage Interface (MPI).

Fundamental solutions for isotropic 2D and 3D elasticity problems are simple and

well established and can be found in many books, for example in Kane (1994). Different

formulations were developed for anisotropic materials. Concerning bidimensional domains,

Rizzo and Shippy (1970) developed a fundamental solution based on Green (1943) using

real variables while Cruse and Swedlow (1971) used complex variables. Green and Zerna

(1968) presented Airy’s stress functions, and Dumir and Mehta (1987) used them to develop
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another fundamental solution. Airy’s functions combined with Lekhnitskii (1963) formalism

generates a complex fundamental solution used by Sollero and Aliabadi (1993) to analyze

fracture mechanics of anisotropic plates.

Vogel and Rizzo (1973) were the first to present a fully anisotropic fundamental so-

lution for tridimensional domains and Wilson and Cruse (1978) optimized it using interpolation

and storing some calculated matrices in this procedure to be reused. But this solution is not in

a closed form like isotropic expressions, being expressed by means of an integral to be solved,

which is very time-consuming. This has driven researchers to develop many different solutions,

some of them limited to particular cases. For example, Pan and Chou (1976) presented a

closed form to transversely isotropic materials that was expanded by Pan and Amadei (1995) to

conditions of transverse isotropy at any direction. Loloi (2000) revised the formulation on Pan

and Chou (1976) to adjust bad conditioning that could happen to some points at integration, and

Noritomi (2005) applied it to analyze superficial bone remodeling.

To avoid integration of Vogel and Rizzo (1973) solution for fully anisotropic

materials, Brebbia and Dominguez (1992) proposed but did not implement the use of the

isotropic fundamental solution with an iterative procedure to solve the displacements, and

Schclar and Partridge (1993) used the DRM to solve the derivatives of displacements with no

need of iteration procedure.

Based on a residue calculation, Sales and Gray (1998) proposed a technique that

proved to be faster than Wilson and Cruse (1978) but had instabilities solved by Phan et

al. (2004) adjustments. Another procedure based on residue and integral representation was

proposed by Wang (1997) and implemented by Tonon et al. (2001), but the derivatives are

difficult to obtain, and degenerated cases need to be treated carefully.

Gaul et al. (2003) presented a fundamental solution developed using Radon trans-

formation that was used by Cravo (2008) to develop a multi-region analysis, and by Souza

(2009) on bonded joints of composite material. Wang and Denda (2007) also used Radon

transform but first expressed Green’s functions as a line integral over a semicircle, allowing

analytical integration.

An explicit form of displacements fundamental solution was presented by Ting and

Lee (1997), in terms of Stroh’s eigenvalues. Its derivatives were obtained by Lee (2003) and

Lee (2009), but Shiah et al. (2010) showed explicit expressions for them, while Shiah et al.

(2008) calculated the Stroh’s eigenvalues using real coefficients, avoiding the complex values.
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The solution of Ting and Lee (1997) was implemented for transversely isotropic

materials by Távara et al. (2007) and for full anisotropy by Tan et al. (2009). However, this

solution needs considerable programming efforts overcome by Shiah et al. (2012) proposal,

who approximated the Stroh’s eigenvalues by double Fourier series. This proposal was revised

by Tan et al. (2013) to reduce the terms and to become numerically more efficient. Moreover,

the derivatives can be easily obtained since it is expressed in terms of the double Fourier series.

Another advantage is that the terms of the Fourier series depend only on the material, so they are

calculated only once. Galvis et al. (2021) implemented the formulation adjusted by Tan et al.

(2013) and built a parallel open-source Fortran code using Message Passage Interface (MPI) for

3D elastostatic and elastodynamic problems, named BESLE. It can deal with heterogeneous

materials employing subregions divisions, iso- or anisotropic, since the formulation of this

fundamental solution does not degenerate for the various symmetries.

In engineering, the specimens are subjected to temperature variation inducing

dilation that may cause considerable stresses and strains. Most machines generate heat when

working like automotive engines, airplane turbines, electronic chips, and electrical engines.

Other materials are cooled, like aircraft fuselage, 3D printed parts, and tempered steel. In

these cases, the state of stress and strains can only be accurately calculated by thermoelasticity

formulation. For the general case, equations related to thermal and displacement fields are

coupled and need to be solved together. Some simplifications may apply depending on the

problem conditions, and for the simplest cases, the elastic displacements do not affect the

thermal field. Then, the temperature field can be calculated first and its effect is added to the

elastic governing equation which is solved next. The type of problems that can be solved in this

way are the stationary thermoelasticity and the uncoupled quasi-static thermoelasticity (UQT)

(Gaul et al., 2003).

The first 3D work to analyze thermoelastic problems with Boundary Elements is

credited to Rizzo and Shippy (1977) who showed that the thermal effects appear at Somigliana’s

boundary identity as a volume integral and can be interpreted as a body force. In their work,

known functions for temperature distributions with their Laplacian being a constant value

were used. So, the volume integrals were easily transformed into surface integrals. Henry

and Banerjee (1988) used the particular integrals technique to evaluate the domain integral,

although they also used only known distribution temperature. Deb and Henry (1991) extended

this technique and calculated stresses using a multi-region approach.
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The DRM was used by Matsumoto et al. (2005) to analyze isotropic material

with properties varying with temperature. A few years before, Gaul et al. (2003) used DRM

as a general technique able to solve coupled and uncoupled thermoelasticity cases, for iso-

or anisotropic materials. Alternatively, Gao (2003) solved stationary thermoelasticity using

the Radial Integration Method (RIM), applying the formulation to isotropic materials and

temperature fields described by known functions.

Using a transverse isotropic material, Shiah and Tan (2012) proposed an analytical

transformation of the volume integral using the Direct Domain Mapping (DDM) technique

developed by themselves (Shiah; Tan, 2004), but a numerical procedure is necessary to evaluate

additional terms used in this formulation. Shiah and Tan (2014) extended this technique to

general anisotropic elasticity using the fundamental solution expressed by double Fourier series

of Tan et al. (2013) , although they only presented the evaluation of the domain integral. The

expressions for stresses at points inside the boundary would appear later, (Shiah; Tan, 2016a) as

well as an application of this procedure to an anisotropic thermoelastic problem with variable

temperature (Shiah; Tan, 2016b).

Another UQT application using BEM was done by Ubero-Martínez et al. (2022)

on studying an orthotropic friction condition considering a non-linear thermal interface and the

frictional thermal effects, but the bodies in contact are isotropic.

The use of the anisotropic elasticity fundamental solution with double Fourier series

on thermoelasticity is still a problem to be exploited. This thesis uses it together with the Dual

Reciprocity Method to solve the thermal body force, investigating the behavior of the solutions

at isotropic and anisotropic problems under different conditions.

1.2 Objectives

The main objective of this thesis is to use the Boundary Element Method to solve

uncoupled thermoelasticity problems by means of the general elasticity anisotropy functions

expressed in terms of a double Fourier series, along with the Dual Reciprocity Method to com-

pute the volume integral of thermals effects. The fundamental solution is already implemented

at BESLE, then, adding the thermoelasticity formulation with modules at the BESLE code will

also increase the capacities of this free and open-source software available to the scientific

community. Secondary objectives are listed:

• Evaluation of thermoelastic stresses and strains as a secondary response, based on dis-
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placements and tractions results, using the element shape functions;

• Implementation of a generic potential Boundary Element solver in BESLE for isotropic

and anisotropic materials to compute the temperature field as input for the thermoelastic

problem, as well as a tool to enter a known function for the potential field;

• Investigate the performance of different particular solutions on thermal field interpolation

for DRM in an attempt to find a function that can be reliable to be used for all problems.

1.3 Thesis organization

Chapter One presented the most relevant advancements concerning anisotropic

fundamental solutions applied to the Boundary Element Method, along with some formulations

developed for thermoelasticity problems.

Chapter Two presents the thermoelasticity formulation to general anisotropic ma-

terial, the elasticity fundamental solution used, the discretization used by BESLE, the Dual

Reciprocity Method formulation to solve domain integral generated by thermoelasticity, the

Radial Basis Functions used, and the calculations of boundary stresses and strains using the

shape functions and the primary response (displacements and tractions).

Chapter Three shows the formulation of the BEM for potential problems and the

Direct Domain Mapping technique applied to anisotropic potential problems.

Chapter Four is reserved for the numerical tests, with validation and convergence

tests, variation of interpolation functions for temperature, and division of problems into subre-

gions.

The final Chapter Five presents the conclusions based on the results obtained in

Chapter Four, as well as proposals for future works.



22

2 THERMOELASTIC BOUNDARY ELEMENT METHOD

2.1 Thermoelastic Boundary Integral Equation

The Hooke’s law considering the thermal effects (Equation 2.1) and equilibrium

equation (Equation 2.2) may be written as (Gaul et al., 2003):

σij = Cijklϵkl − γijθ (2.1)

σji,j + ρbi = 0 (2.2)

Repeated subscripts mean summation. Equation 2.1 is valid for isotropic and

anisotropic material and two or three-dimensional problems. In these Equations, Cijkl is the

material elasticity tensor, γij is the thermoelastic tensor given by the product of elasticity tensor

and thermal expansion tensor αij , θ is the temperature difference of temperature analysis T and

reference temperature T0, σij are the stresses, ϵkl are the strains, ρ is the density of the body and

bi is the body force. In mathematical language:

γij = Cijklαkl (2.3)

θ = T − T0 (2.4)

From elasticity:

ϵkl =
1

2
(uk,l + ul,k) (2.5)

Applying Equations 2.5 and 2.1 into 2.2:

Cijkluk,lj = γijθ,j − ρbi (2.6)

A differential operator is defined as:

Lik = Cijkl
∂2

∂xl∂xj
(2.7)

It can be used to rewrite Equation 2.6, to obtain:

Likuk = f el
i (2.8)

where

f el
i = −ρbi + γijθ,j (2.9)
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Using an interpolation function u∗mi, commonly known in BEM as the fundamental

solution, and integrating over the domain, Equation 2.8 can be written as:∫
Ω

(
Likuk − f el

i

)
u∗midΩ = 0 (2.10)

To obtain an inverse statement, the last equation is integrated by parts followed by

the application of the Betti’s reciprocal theorem. This sequence is well detailed in books (Gaul

et al., 2003; Brebbia; Dominguez, 1992; Banerjee, 1994), where one obtains:∫
Γ

Cijklu
∗
miuk,lnjdΓ−

∫
Γ

Cijklu
∗
mi,jnlukdΓ +

∫
Ω

Cijkluku
∗
mi,jldΩ =

∫
Ω

f el
i u

∗
midΩ (2.11)

Some definitions can be applied to the previous Equation. First, tractions at the

boundary are given by:

ti = σijnj = Cijkluk,lnj − γijθnj (2.12)

which can be rearranged as:

Cijkluk,lnj = ti + γijθnj (2.13)

Similar consideration can be done for derivatives of fundamental solution (subscript

k is changed with i for convenience, without loss of formality, given the symmetry of the Cijkl

tensor):

Cijklu
∗
mi,jnl = Cijklu

∗
mk,jnl = t∗mi (2.14)

As the fundamental solution is the effect of a pontual action at a source point, it can

be written as:

Cijklu
∗
mi,jl = Liku

∗
mk = −δmiD(ξ, x) (2.15)

where δmi means the Kronecker delta, D(ξ, x) is the Dirac delta, ξ is the source point and x is

any point in the domain problem. So, the domain integral on the left-hand side of Equation 2.11

can be evaluated under the sense of Cauchy Principal Value, resulting in:∫
Ω

Cijkluku
∗
mi,jldΩ =

∫
Ω

−δmiD(ξ, x)ukdΩ = −δmic(ξ)ui(ξ) (2.16)

with c(ξ) = 0.5 for source points at smooth boundary and c(ξ) = 1.0 for points inside the

domain. Combining Equations 2.16, 2.14 and 2.13 into 2.11, the Boundary Integral Equation

for stationary thermoelasticity comes out:

δmic(ξ)ui(ξ) +

∫
Γ

t∗miuidΓ =

∫
Γ

u∗mitidΓ +

∫
Γ

u∗miγijnjθdΓ−
∫
Ω

f el
i u

∗
midΩ (2.17)
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The left-hand side of Equation 2.17 plus the first integral on its right-hand side

compose the BIE of elasticity problems in the absence of body forces. The second boundary

integral on the right side is a coupling term of thermal effects over displacements, easily solved

by BEM since it is a boundary integral.

The domain integral has the term f el
i , which contains body forces from elasticity

and temperature gradient effect. Many techniques involving domain integrals were developed

to avoid solving it by discretizing the domain. When the Laplacian of domain actions is null,

the Galerkin Vector Approach may be applied (Partridge et al., 1992), but it can be quite a

complicated expression depending on the fundamental solution used since it is integrated twice.

The Radial Integration Method (RIM) (Gao, 2002; Gao, 2003) is quite interesting when the

temperature field can be expressed as a function of spatial coordinates, with a more general

application than the Galerkin Vector. However, if the temperature field is unknown, it will have

to be interpolated, increasing the complexity of RIM. The Dual Reciprocity Method (Partridge

et al., 1992) or the Direct Integration Method (Loeffler et al., 2015) are considered general

techniques since they approximate any kernel of the integration using the Radial Basis Functions

(RBF). Considering the possibility of generalizing the application on different problems and that

DRM is already implemented in BESLE, DRM was chosen for this work.

2.2 Elasticity Fundamental Solution

Different fundamental solutions for anisotropic medium were developed for BEM,

especially the ones based on the analytical evaluation of u∗mi by Lifshitz and Rozenzweig

(1947). It uses the Barnett-Lothe tensor H [x] shown in Equation 2.18, which depends only

on the spherical coordinates and can deal with degenerated cases (works for isotropic and any

anisotropic material). Later, it allowed the fundamental solution to be explicitly expressed in a

full algebraic expression (Ting; Lee, 1997).

U(x) =
1

4πr
H [x] (2.18)

where U(x) is the fundamental solution u∗mi written on a tensor form. The computer code

uses the fundamental solution as proposed by Tan et al. (2013), representing U(x) by Double

Fourier series which can be directly differentiated to obtain the derivative of the fundamental

solution. Equation 2.18 can be rewritten in terms of a spherical coordinate system as:

U(r, θ, ϕ) =
1

4πr
H(θ, ϕ) (2.19)
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where r is the cartesian distance from source point ξ and field point x, while spherical

coordinates are shown in Figure 2.1. A unit vector n∗ = x/r and two tangent vectors n

and m form a right-hand triad [n,m,n∗], expressed by:

x1

x2

x3

ξ

x

r

m

n

θ

ϕ

Figure 2.1 – The unit circle on an oblique plane at the field point.

n = (cosϕ cos θ, cosϕ sin θ,− sinϕ) (2.20)

m = (− sin θ, cos θ, 0) (2.21)

n∗ = x/r (2.22)

with 0 ≤ θ < 2π and 0 ≤ ϕ ≤ π. First, it is necessary to write down the Barnett-Lothe tensor

as done by Ting and Lee (1997):

H(θ, ϕ) =
1

|κκκ|

4∑
n=0

qnΓ̂ΓΓ
(n)

(2.23)

where qn is calculated through Equations 2.24 and 2.25. It is given in terms of Stroh’s

eigenvalues which are three pairs of complex conjugates pt = αt + iβt, with t = 1, 2, 3, p̄t

meaning the conjugate eigenvalue, βt > 0 and i =
√
−1. For n = 0, 1, 2:

qn =
−1

2β1β2β3

[
Re

{
3∑

t=1

pnt
(pt − p̄t+1)(pt − p̄t+2)

}
− δn2

]
(2.24)

and for n = 3, 4:

qn =
−1

2β1β2β3

[
Re

{
3∑

t=1

pn−2
t p̄t+1p̄t+2

(pt − p̄t+1)(pt − p̄t+2)

}]
(2.25)
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Tensor Γ̂ΓΓ
(n)

, with (i, j = 1, 2, 3), is given by:

Γ̂
(n)
ij = Γ̃

(n)
(i+1)(j+1)(i+2)(j+2) − Γ̃

(n)
(i+1)(j+2)(i+2)(j+1) (2.26)

The adjoint of matrix ΓΓΓ(p) is defined as:

ΓΓΓ(p) = QQQ+ pVVV + p2κκκ (2.27)

with

VVV = (RRR +RRRT ) (2.28)

and

κκκ = κik = Cijklmjml (2.29)

QQQ = Qik = Cijklnjnl (2.30)

RRR = Rik = Cijklnjml (2.31)

The eigenvalues pt are calculated by making |ΓΓΓ(p)|= 0. With algebraic manipula-

tion, tensor Γ̃ΓΓ
(n)

can be written in a reduced form:

Γ̃ΓΓ
(0)

pqrs = QpqQrs (2.32)

Γ̃ΓΓ
(1)

pqrs = VpqQrs + VrsQpq (2.33)

Γ̃ΓΓ
(2)

pqrs = κpqQrs + κrsQpq + VpqVrs (2.34)

Γ̃ΓΓ
(3)

pqrs = Vpqκrs + κpqVrs (2.35)

Γ̃ΓΓ
(4)

pqrs = κpqκrs (2.36)

Now, there are enough elements to write the Barnett-Lothe tensor in Equation 2.23.

The displacement fundamental solution is obtained expressing H(θ, ϕ) as a double Fourier

series:

Huv(θ, ϕ) =
α∑

m=−α

α∑
n=−α

λ(m,n)
uv ei(mθ+nϕ) (2.37)

with (u, v) = 1, 2, 3, α is an integer large enough to make the Fourier series converge, and

λ
(m,n)
uv are the unknown Fourier coefficients evaluated by:

λ(m,n)
uv =

1

4π2

∫ π

−π

∫ π

−π

Huv(θ, ϕ)e
−i(mθ+nϕ)dθdϕ (2.38)

The calculated coefficients can be written with their real R(m,n)
uv and imaginary part

I
(m,n)
uv , as:

λ(m,n)
uv = R(m,n)

uv + iI(m,n)
uv (2.39)
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To get rid of the imaginary part of Equation 2.37, it is rewritten as:

Huv(θ, ϕ) =
α∑

m=−α

α∑
n=−α

h(m,n)
uv (θ, ϕ) (2.40)

Using Equation 2.39 and Euler formula, it is possible to define h(m,n)
uv (θ, ϕ) as:

h(m,n)
uv (θ, ϕ) = R(m,n)

uv cos(mθ + nϕ)− I(m,n)
uv sin(mθ + nϕ) (2.41)

As λ(m,n)
uv and λ(−m,−n)

uv are conjugated, Equation 2.40 becomes:

(2.42)
Huv(θ, ϕ) = 2

α∑
m=1

{
α∑

n=1

h(m,n)
uv (θ, ϕ) +

−1∑
n=−α

h(m,n)
uv (θ, ϕ)

}

+ 2
α∑

n=1

h(0,n)uv (θ, ϕ) + 2
α∑

m=1

h(m,0)
uv (θ, ϕ) +R(0,0)

uv

Substituting Equation 2.41 into 2.42, and then into 2.19, the displacement funda-

mental solution appears:

Uuv =
1

2πr

{
α∑

m=1

α∑
n=1

[
(R̃(m,n)

uv cosmθ − Ĩ(m,n)
uv sinmθ) cosnϕ

− (R̂(m,n)
uv sinmθ + Î(m,n)

uv cosmθ) sinnϕ
]

+
α∑

m=1

[
R(0,m)

uv cosmϕ− I(0,m)
uv sinmϕ+R(m,0)

uv cosmϕ− I(m,0)
uv sinmϕ

]
+
R

(0,0)
uv

2

}
(2.43)

where

R̃(m,n)
uv = R(m,n)

uv +R(m,−n)
uv (2.44)

R̂(m,n)
uv = R(m,n)

uv −R(m,−n)
uv (2.45)

Ĩ(m,n)
uv = I(m,n)

uv + I(m,−n)
uv (2.46)

Î(m,n)
uv = I(m,n)

uv − I(m,−n)
uv (2.47)

The first-order derivatives are obtained employing the chain rule as follows:

U ′ = Uuv,l =
∂Uuv

∂r

∂r

∂xl
+
∂Uuv

∂θ

∂θ

∂xl
+
∂Uuv

∂ϕ

∂ϕ

∂xl
(2.48)



28

The differentiation with respect to the spherical coordinates reintroduces complex

numbers. To avoid that, the spatial differentiations are represented by:

ωl(θ, ϕ) = r
∂r

∂xl
(2.49)

ω′
l(θ, ϕ) = r

∂θ

∂xl
(2.50)

ω′′
l (θ, ϕ) = r

∂ϕ

∂xl
(2.51)

For l = 1, one have:

ω1(θ, ϕ) = sinϕ cos θ (2.52)

ω′
1(θ, ϕ) = − sin θ/sinϕ (2.53)

ω′′
1(θ, ϕ) = cosϕ cos θ (2.54)

For l = 2:

ω2(θ, ϕ) = sinϕ sin θ (2.55)

ω′
2(θ, ϕ) = cos θ/sinϕ (2.56)

ω′′
2(θ, ϕ) = cosϕ sin θ (2.57)

For l = 3:

ω3(θ, ϕ) = cosϕ (2.58)

ω′
3(θ, ϕ) = 0 (2.59)

ω′′
3(θ, ϕ) = − sinϕ (2.60)

This allows the derivative to be written as:

(2.61)Uuv,l

=
1

2πr2

{
−ωl(θ, ϕ)

[
α∑

m=1

α∑
n=1

((ÛΓ(m,n)
uv (θ) cosnϕ−Γ̆(m,n)

uv (θ) sinnϕ)+
α∑

m=1

(Ûγmuv(θ)+γ̆muv(ϕ))+R(0,0)
uv

2

]

− ω′
l(θ, ϕ)

[
α∑

m=1

α∑
n=1

m(Γ̃(m,n)
uv (θ) cosnϕ− Γ̂(m,n)

uv (θ) sinnϕ) +
α∑

m=1

mγ̃muv(θ)

]

− ω′′
l (θ, ϕ)

[
α∑

m=1

α∑
n=1

n(ÛΓ(m,n)
uv (θ) sinnϕ+ Γ̆(m,n)

uv (θ) cosnϕ) +
α∑

m=1

mγ̂muv(ϕ)

]}
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where ÛΓ(m,n)
uv (θ) = R̃(m,n)

uv cosmθ − Ĩ(m,n)
uv sinmθ (2.62)

Γ̆(m,n)
uv (θ) = R̂(m,n)

uv sinmθ + Î(m,n)
uv cosmθ (2.63)

Γ̃(m,n)
uv (θ) = R̃(m,n)

uv sinmθ + Ĩ(m,n)
uv cosmθ (2.64)

Γ̂(m,n)
uv (θ) = R̂(m,n)

uv cosmθ − Î(m,n)
uv sinmθ (2.65)Ûγmuv(θ) = R(m,0)

uv cosmθ − I(m,0)
uv sinmθ (2.66)

γ̆muv(ϕ) = R(0,m)
uv cosmϕ− I(0,m)

uv sinmϕ (2.67)

γ̃muv(θ) = R(m,0)
uv sinmθ + I(m,0)

uv cosmθ (2.68)

γ̂muv(ϕ) = R(0,m)
uv sinmϕ+ I(0,m)

uv cosmϕ (2.69)

Now, the traction fundamental solution can be evaluated by:

t∗mi = (σmknk)i (2.70)

with σmk being the generalized stresses and nk the outward surface normal vector at the field

point. Generalized Hooke’s law allows writing stresses employing the Double Fourier series

first-order derivative as:

(σmk)i = Cmkjn
(Uji,n + Uni,j)

2
(2.71)

A singularity occurs when source and field points are on the x3 axis (ϕ = 0 or

ϕ = π) for l = 1 and l = 2 because angle θ becomes ill-conditioned. To remove this singularity,

Tan et al. (2013) suggestion is applied, introducing a small perturbation for ϕ, such as ϕ = 10−6,

and θ = 0 for l = 1, while θ = π/2 for l = 2.

Resuming, Equation 2.43 is the displacement fundamental solution u∗mi (only with

different indexes) and Equation 2.70, with the help of Equations 2.71 and 2.61, is the traction

fundamental solutions.

2.3 Dual Reciprocity Method for Thermoelasticity

The Dual Reciprocity Method is well exposed in Partridge et al. (1992) and its

application in fully coupled thermoelasticity is shown in Gaul et al. (2003). In this thesis, these

presentations are combined and simplified to uncoupled thermoelasticity. Domain integral of

Equation 2.17 can be solved with classical DRM formulation. First, f el
i is approximated with a
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summation of functions:

f el
i ≈

N+L∑
q=1

f q
inα

q
n (2.72)

with N being the number of boundary nodes and L being the number of internal points used for

interpolation, as shown in Figure 2.2. For simplicity, they generally coincide with source points

on the boundary and, if chosen, internal points of interest.

Ω

Γ

N boundary nodes

L internal nodes

Figure 2.2 – Boundary and internal interpolation nodes for DRM.

The interpolation functions f q
in are calculated from interpolation point n to field

point i, while αq
n are the coefficients of interpolation associated with each interpolation point.

Applying this approximation in the domain integral of Equation 2.17, one has:

I =

∫
Ω

f el
i u

∗
midΩ ≈

∫
Ω

u∗mi

N+L∑
q=1

f q
inα

q
ndΩ (2.73)

The interpolation coefficients are constants and leave the integral. To transform it

to Boundary Integrals, the differential operator of Equation 2.8 is applied:

Liku
q
kn = f q

in (2.74)

Resulting in:

I ≈
∫
Ω

{
u∗mi

N+L∑
q=1

Cijklu
q
kn,jldΩ

}
αq
n (2.75)

Integrating by parts and using the Divergence Theorem, the domain integrals vanish:

I ≈
N+L∑
q=1

{∫
Γ

u∗mit
q
indΓ−

∫
Γ

t∗miu
q
indΓ− δmic(ξ)u

q
in(ξ)

}
αq
n (2.76)

Applying Equation 2.76 into Equation 2.17, the Boundary Integral Equation for

thermoelasticity with DRM appears:

(2.77)

δmic(ξ)ui(ξ) +

∫
Γ

t∗miuidΓ =

∫
Γ

u∗mitidΓ +

∫
Γ

u∗miγijnjθdΓ

+
N+L∑
q=1

{
δmic(ξ)u

q
in(ξ)+

∫
Γ

t∗miu
q
indΓ−

∫
Γ

u∗mit
q
indΓ

}
αq
n
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where uqin is the particular solution of Equation 2.74. BESLE uses the following RBF (Ro-

dríguez, 2019):

uqin = δin(r
2 + r3) (2.78)

and its derivatives:

uqin,l = δin(2r + 3r2)r,l (2.79)

uqin,lm = δin[(2 + 3r)δlm + 3rr,lr,m] (2.80)

The other particular solution is calculated by:

tqin = Cijklu
q
kn,jnl (2.81)

The coefficients αq
n are evaluated based on the total body force f el

i . Remembering

Equation 2.9, the body force for thermoelasticity is composed of an elastic component and a

thermal effect. The first one is directly evaluated, but the thermal effect needs special treatment

as presented by Gaul et al. (2003): the temperature field is approximated by a series of given

functions ψq and unknown coefficients ζq, as:

θ ≈
N+L∑
q=1

ψqζq (2.82)

This approximation method is analogous to the DRM approach (Equation 2.72), but

functions f q
in and ψq are different, as coefficients αq

n and ζq. Equation 2.82 is solved to evaluate

coefficients ζq, and then, the gradient field can be interpolated by differentiation of the Equation

2.82 with respect to the cartesian coordinates:

θ,j ≈
N+L∑
q=1

ψq
,jζ

q (2.83)

The functions ψq and ψq
,j used by Gaul et al. (2003) are:

ψq = 1 + r2 + r3 (2.84)

ψq
,j = (2r + 3r2)r,j (2.85)

These are similar expressions used for f q
in. Since no study concerning their use in

thermoelastic applications was found, convergence analysis of different functions is an object

of study in this work.
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2.4 Radial Basis Functions

The main idea of the Dual Reciprocity Method is to use a function to approximate

the kernel of an integral, whatever the name is given to this function. When Brebbia and Nardini

(1983) proposed this technique, they used the function 1+r, with r being the Euclidean distance.

Over the decades, DRM was studied by many researchers, and several interpolation functions

were tested, using the r distance. This type of function was named Radial Basis Functions,

some of them listed in Table 2.1.

Table 2.1 – Common Radial Basis Functions types.

Type of function Radial function comments
Piecewise smooth RBF

Polyharmonic spline (PHS) rm m = 1, 3, 5, ...
rm ln(r) m = 2, 4, 6, ...

Linear r particular PHS case
Cubic r3 particular PHS case

Thin plate spline (TPS) r2 ln(r) particular PHS case
Infinitely smooth RBF

Gaussian (GA) e−(ϵr)2 ϵ > 0

Multiquadric (MQ)
√
1 + (ϵr)2 ϵ > 0

Inverse Quadratic (IQ) [1 + (ϵr)2]
−1

ϵ > 0

Inverse Multiquadric (IMQ)
[√

1 + (ϵr)2
]−1

ϵ > 0

The matrix generated by the RBF needs to be inverted to calculate the interpolation

coefficients and it may become ill-conditioned when the interpolation points become close to

each other. Karur and Ramachandran (1994) studied the convergence and the conditioning

of this matrix on bidimensional domains using a linear function, a TPS, and a linear with a

constant, but they could not find any relationship among them.

Considering Poisson problems, the TPS function should be preferred for bidimen-

sional domains and the polynomial function (first PHS of the Table 2.1) should be reserved for

tridimensional problems (Goldberg et al., 1998). Thin plate spline showed better interpolation

than cubic function despite both of them having linear convergence rate while the multiquadric

(MQ) has exponential convergence (Goldberg et al., 1996).

The infinitely smooth RBF are named this way because their derivatives always

exist. The parameter ϵ, increasing from zero, increases the accuracy of the interpolation until

an optimal value, and then, the accuracy decreases fast, together with the ill-conditioning of the

interpolation matrix. Searching for the optimal ϵ, Goldberg et al. (1996) used cross-validation,
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while a list of recent methodologies in this matter can be found in Pooladi and Larsson (2023),

some claiming to be computationally more efficient than others, but all of them mean extra

computational cost.

The Method of Fundamental Solutions (MFS) and other meshless methods make

great use of the interpolation functions and some important advancements were achieved. The

interpolation is generally done using all interpolation nodes, meaning that a global interpolation

is done, but Tolstykh and Shirobokov (2003) proposed a local interpolation by using a stencil

built by a few points around an interpolation node. This produces a sparse interpolation matrix

instead of a full matrix, taking advantage of the numerical techniques developed for sparse

matrices, and this technique was named RBF-FD.

Flyer et al. (2016a) augmented the thin plate spline RBF-FD with polynomials of

various orders and improved the accuracy to a certain level. A rule concerning the maximum

order of the augmented polynomial, the stencil size used, and the accuracy in interpolation was

presented by Flyer et al. (2016b). The augmented polynomials were used by BEM long before,

but until Goldberg et al. (1999), only the first-order polynomials were used obtaining the same

effect of increasing accuracy that was obtained in RBF-FD.

On using interpolation functions into thermoelasticity to interpolate the derivative

of the temperature field as proposed by Gaul et al. (2003), particular situations appear and

some care must be taken. Mai-Duy and Tran-Cong (2003) demonstrated that a good primitive

interpolant function may be not so good interpolant for the derivative. So, considering the PHS

of Table 2.1, its derivative can be calculated resulting in:

ψ,j = mrm−2rj (2.86)

with rj being the component of r vector in j-th direction. If m = 1, a singularity occurs when

r goes to 0. For m > 1, the literature recommends that only odd values should be used. The

singularity also appears in derivatives of the logarithmic function of Table 2.1 for any value of

m, as shown in Equation 2.87.

ψ,j = [m ln(r) + 1]rm−2rj (2.87)

To avoid this singularity, a small change in this function is proposed:

ψ = rm ln(r + 1) (2.88)
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which leads to the derivative

ψ,j =

[
mrm−2 ln(r + 1) +

rm−1

r + 1

]
rj (2.89)

With this function, the singularity is avoided for m > 1. Together with the

polynomial and the function of Equation 2.84, they will be explored in this work. The search

for an optimal shape parameter is not in the scope of this thesis and for this reason, the infinitely

smooth RBF of Table 2.1 will not be used.

2.5 BESLE notes

BESLE is a Boundary Elements software created by Galvis et al. (2021) composed

of a Mesh Generator module, a Material processing module, and the BESLE solver module that

uses as input the data generated from the first two modules.

The Mesh Generator module is divided into three submodules. Simple rectangular

prisms can be generated by the Box submodule, built in a MATLAB code, which also defines the

mesh refinement and it is able to split the geometry into subregions. Only the mesh is processed,

and boundary conditions are set in the configuration file of the BESLE solver module.

Another mesh submodule named General is built in a Fortran code which reads *.obj

files exported from 3DSMax Autodesk software. The advantage against the Box submodule is

the possibility to create any geometry, although the refinement mesh degree has to be defined at

the 3DSMax, as well as the elements with boundary conditions, which may be quite a difficult

task depending on the user’s skills on this software.

The General submodule reads the *.obj files and organizes the data in a format ready

for the BESLE solver module, including boundary conditions, so the last module only reads this

data. The BESLE solver module also considers that all elements without boundary conditions

set are free elements, or else, they are imposed null tractions. By doing this, only displacements

or non-zero tractions boundary conditions need to be defined at the General submodule.

There is another Mesh Generator submodule named Polycrystal developed in C++

language dedicated to generating materials with several crystals or grains with their own

crystalline orientation and planes, but it is not used in this work.

The Material module is a serial Fortran code responsible for evaluating the Fourier

coefficients used at the fundamental solution. The material is defined as iso- or anisotropic and

its properties are set in the configuration file for the Material module. The code is capable of
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evaluating properties by the rotation on the cartesian axes and it can deal with some lattices of

crystal morphologies. If multiple materials are used, the properties are set in separate files and

the configuration file only sets which files must be read. This early evaluation of the Fourier

coefficients saves time for the main code and also allows the creation of a materials library that

can be reused at any other simulation.

The BESLE solver module is the main code built in Fortran language with paral-

lelization using Message Passage Interface (MPI), a communication protocol for distributed

memory allowing its use at parallel computers or supercomputers (clusters). It has scalable

parallelism, and the user just needs to have more threads available and set them to be used at

the run start. In other words, BESLE aims to solve problems with a large degree of freedom.

The parallelization at BESLE is reserved for the high computational cost tasks.

If multiregions are defined, BESLE automatically identifies the interfaces by comparing the

coordinates of the geometric nodes of each element to all elements of different regions. This

task is divided among the total number of processes, reducing the necessary time to identify the

interfaces.

The evaluation of the boundary integrals is divided among the threads by the number

of the elements of the mesh, in a very balanced division, providing great speed up as the number

of processes is increased for a fixed number of elements.

The Dual Reciprocity Method computation is another parallelized task divided

among the threads by the total number of points used for interpolation (boundary plus domain

points). The interpolation matrix of the DRM is inverted by using the block matrix inversion, a

procedure that subdivides the matrix which needs to be inverted into four submatrices and using

the Schur complement of a block matrix. The implementation in BESLE recursively subdivides

the matrix into blocks three times to make better use of parallelization and memory use.

To solve the linear system, BESLE uses MUMPS, a parallel sparse direct solver for

large linear systems, which is able to deal with general unsymmetric or sparse matrices, with

parallel factorization using libraries such as BLAS, BLACS, and ScaLAPACK. There are some

different ways of sending the coefficients matrix of the linear system to MUMPS, and BESLE

sends only the non-zero values. By doing this, MUMPS reduces memory usage and also speeds

up the calculation of solutions by reducing the number of calculations done. This is particularly

strong for sparse matrices, as it happens for the subregion procedure, shown in Section 2.7.

The results calculated by the MUMPS are the displacements and tractions of the
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nodal points. The evaluation of stresses and strains is done by using the shape functions as

presented in Section 2.8.

All of these features were implemented by Galvis et al. (2021). The author of

this thesis implemented more tools to improve the capabilities of BESLE. The 3DSMax has

the drawbacks of not being available for Linux systems and its license is very expensive. For

this reason, the free and open-source Blender software was used instead of 3DSMax, and the

General module was updated to be able to read Blender *.obj exported files, since there are

small differences between the exported files of each software.

The thermoelastic formulation requires the evaluation of an extra boundary integral

and a volume integral. The boundary integral is evaluated together with the integration of the

ordinary boundary integrals of the elasticity problems. Some conditionals for thermoelastic

problems were included at many points of the code to make use of the elasticity results of

integration, speeding up the calculations.

The volume integral is evaluated using the Dual Reciprocity Method. Several

specific calculations are necessary for thermoelasticity, so many conditionals were added to

do them, as well as to use the particular interpolation functions for the thermperature. The use

of internal points was added to BESLE as a new feature, but the coordinates of the internal

points are not computed automatically: the user has to manually calculate them and put their

coordinates in a file that is read by BESLE.

The stresses and strains evaluation for thermoelasticity problems needs to consider

the thermal effects, so another conditional was added to compute them adequately.

The high computational cost tasks were kept parallelized, increasing the perfor-

mance of the thermoelastic implemented tools.

2.6 Discretization

To use Boundary Integral of Equation 2.77, the geometry must be split into elements

where integration applies. Then, boundary integral becomes the summation of the integration
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over all elements, given in Equation 2.90.

δmic(ξ)ui(ξ) +
NEL∑
EL =1

(∫
ΓEL

t∗mih
(k)u

(k)
i dΓ

)

=
NEL∑
EL=1

(∫
ΓEL

u∗mih
(k)t

(k)
i dΓ

)
+

NEL∑
EL=1

(∫
ΓEL

u∗miγijnjh
(k)θ(k)dΓ

)

+
N+L∑
q=1

{
δmic(ξ)u

q
in(ξ) +

NEL∑
EL=1

(∫
ΓEL

t∗mih
(k)uqindΓ

)
−

NEL∑
EL=1

(∫
ΓEL

u∗mih
(k)tqindΓ

)}
αq
n

(2.90)

where EL is the element index, NEL is the number of elements, h(k) are the shape functions for

the variable interpolation at the element, with the superscript (k) identifying the k-th node of

the element.

BESLE uses discontinuous linear three-node triangular boundary elements as shown

in Figure 2.3, with λ = 0.155 (Galvis et al., 2021), meaning that k = 1, 2, 3 in Equation

2.90. The discontinuous element simplifies the multidomain formulation, while the triangular

elements reproduce a general geometry better than the rectangular ones and can easily be

generated by the software mentioned in Section 2.5. Also, the linear interpolation implies a

reduction in the total degree of freedom compared to the high-order interpolation with the same

amount of elements.

η1

η2

(0,0)
3

(1,0)
1

(0,1)

2

η1

η2

(λ,λ) 3 (1− 2λ,λ)1

(λ,1− 2λ)
2

Figure 2.3 – Linear three-node continuous (left) and discontinuous (right) element. Values
between parenthesis mean intrinsic coordinates while the number alone means the
node sequence.

The integral over a surface element using two intrinsic coordinates (η1 and η2)
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means that a double integral must be solved, and for the triangular element it becomes:

δmic(ξ)ui(ξ) +
NEL∑
EL =1

(∫ 1

0

∫ 1−η2

0

t∗mih
(k)u

(k)
i Jdη1dη2

)

=
NEL∑
EL=1

(∫ 1

0

∫ 1−η2

0

u∗mih
(k)t

(k)
i Jdη1dη2

)
+

NEL∑
EL=1

(∫ 1

0

∫ 1−η2

0

u∗miγijnjh
(k)θ(k)Jdη1dη2

)

+
N+L∑
q=1

{
δmic(ξ)u

q
in(ξ) +

NEL∑
EL=1

(∫ 1

0

∫ 1−η2

0

t∗mih
(k)uqinJdη1dη2

)

−
NEL∑
EL=1

(∫ 1

0

∫ 1−η2

0

u∗mih
(k)tqinJdη1dη2

)}
αq
n

(2.91)

with J being the Jacobian of the transformation from global coordinates to intrinsic coordinates.

The evaluation of the integrals by standard Gaussian Quadrature would require double summa-

tion, but the combination of the intrinsic coordinate points and weights allows each integral to

be evaluated by a simple sum (see Kane (1994) for more details). Applying this concept to the

Equation 2.91, it is written as:

(2.92)

δmic(ξ)ui(ξ) +
NEL∑
EL =1

(
NGP∑
n=1

t
∗(n)
mi h

(kn)u
(k)
i Jω(n)

)

=
NEL∑
EL=1

(
NGP∑
n=1

u
∗(n)
mi h

(kn)t
(k)
i Jω(n)

)
+

NEL∑
EL=1

(
NGP∑
n=1

u
∗(n)
mi γijnjh

(kn)θ(k)Jω(n)

)

+
N+L∑
q=1

{
δmic(ξ)u

q
in(ξ) +

NEL∑
EL=1

(
NGP∑
n=1

t
∗(n)
mi h

(kn)uqinJω
(n)

)

−
NEL∑
EL=1

(
NGP∑
n=1

u
∗(n)
mi h

(kn)tqinJω
(n)

)}
αq
n

where the superscripts (n) indicates the values related to the n-th Gauss point.

At each element, displacements and tractions surface response are interpolated by

the discontinuous shape functions h(k). Let V (k) be a generalized field at the k-th element node.

The interpolated field v and first derivatives at a (η1, η2) point are given by:

v(η1, η2) =
3∑

k=1

h(k)(η1, η2)V
(k) (2.93)

∂v(η1, η2)

∂η1
=

3∑
k=1

∂h(k)(η1, η2)

∂η1
V (k) (2.94)

∂v(η1, η2)

∂η2
=

3∑
k=1

∂h(k)(η1, η2)

∂η2
V (k) (2.95)



39

The discontinuous shape functions h(k) are obtained numerically following the

generic matricial procedure presented by Kane (1994). Consider the continuous shape functions

below:

N (1) = η1 (2.96)

N (2) = η2 (2.97)

N (3) = 1− η1 − η2 (2.98)

The interpolated field in terms of continuous functions is:

v(η1, η2) =
3∑

k=1

N (k)(η1, η2)V
(k) (2.99)

Or in matrix form:

{v} = [N ]{V } (2.100)

Let {wj} be the nodal values at j-th node for the discontinuous element shown in

Figure 2.3:

{wj} =
3∑

k=1

N (k)(η1, η2)V
(k) (2.101)

Explicit matrices for this equation are:
w1

w2

w3

 =


N (1)(1− 2λ, λ) N (2)(1− 2λ, λ) N (3)(1− 2λ, λ)

N (1)(λ, 1− 2λ) N (2)(λ, 1− 2λ) N (3)(λ, 1− 2λ)

N (1)(λ, λ) N (2)(λ, λ) N (3)(λ, λ)




V (1)

V (2)

V (3)

 (2.102)

Or in a compact form:

{w} = [L]{V } (2.103)

where [L] has the values of the continuous shape functions at the discontinuous nodes. The in-

version of Equation 2.103 turns out an expression for the values on continuous nodes expressed

in terms of discontinuous nodes:

{V } = [L]−1{w} (2.104)

Applying Equation 2.104 into 2.100, values at any point within the element are

interpolated in terms of values of discontinuous elements.

{v} = [N ][L]−1{w} = [D]{w} (2.105)
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So, the discontinuous shape functions are evaluated by:

[D] = [N ][L]−1 (2.106)

where [D] = [h(1) h(2) h(3)] are the discontinuous shape function values calculated for each

node. Derivatives of the discontinuous shape functions with respect to η1 and η2 are obtained

by derivation of the Equation 2.105:

∂vj(η1, η2)

∂η1
=

3∑
k=1

∂N (k)(η1, η2)

∂η1
V

(k)
j = [N ],η1 [L]−1{w} = [D],η1{w} (2.107)

∂vv(η1, η2)

∂η2
=

3∑
k=1

∂N (k)(η1, η2)

∂η2
V

(k)
j = [N ],η2 [L]−1{w} = [D],η2{w} (2.108)

with [D],η1 and [D],η2 being the derivatives of discontinuous shape functions.

The Jacobian of Equation 2.91 is calculated by following the transformation of

differential surface area dΓ (Figure 2.4) at global coordinates to the differential surface area

dγ at intrinsic coordinates. The cross-product is used to evaluate dΓ:

x1

x2

x3
1

2

3

η1

η2

3 1

2

dR1

dR2

dΓ

dη1

dη2 dγ

Figure 2.4 – Mapping of the triangular element from global cartesian coordinates to intrinsic
coordinates for Gauss integration.

dΓ =
1

2

∥∥∥dR⃗1 × dR⃗2

∥∥∥ =
1

2

∥∥∥∥∥ ∂R⃗∂η1 × ∂R⃗

∂η2

∥∥∥∥∥ dη1dη2 (2.109)

where

R⃗ = xke⃗k (2.110)

This leads to:
∂R⃗

∂η1
=
∂xk
∂η1

e⃗k (2.111)
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∂R⃗

∂η2
=
∂xk
∂η2

e⃗k (2.112)

Applying Equations 2.111 and 2.112 into 2.109 produces

J1 =
∂x2
∂η1

∂x3
∂η2

− ∂x3
∂η1

∂x2
∂η2

(2.113)

J2 =
∂x3
∂η1

∂x1
∂η2

− ∂x1
∂η1

∂x3
∂η2

(2.114)

J3 =
∂x1
∂η1

∂x2
∂η2

− ∂x2
∂η1

∂x1
∂η2

(2.115)

The Jacobian can be calculated as:

J =
1

2

√
J2
1 + J2

2 + J2
3 (2.116)

Normal vectors are defined by:

nk = JkJ
−1 (2.117)

Applying the shape functions for the linear elements, the interpolation is given by:

xk = η1x
(1)
k + η2x

(2)
k + (1− η1 − η2)x

(3)
k (2.118)

with the superscripts meaning the element node. The derivatives are:

∂xk
∂η1

= x
(1)
k − x

(3)
k (2.119)

∂xk
∂η2

= x
(2)
k − x

(3)
k (2.120)

This means that the derivatives are constant along the entire element. Applying to

Equations 2.113 to 2.115:

J1 = (x
(2)
3 − x

(3)
3 )(x

(1)
2 − x

(3)
2 )− (x

(2)
2 − x

(3)
2 )(x

(1)
3 − x

(3)
3 ) (2.121)

J2 = (x
(2)
1 − x

(3)
1 )(x

(1)
3 − x

(3)
3 )− (x

(2)
3 − x

(3)
3 )(x

(1)
1 − x

(3)
1 ) (2.122)

J3 = (x
(2)
2 − x

(3)
2 )(x

(1)
1 − x

(3)
1 )− (x

(2)
1 − x

(3)
1 )(x

(1)
2 − x

(3)
2 ) (2.123)

Equations 2.121 to 2.123 are used in Equation 2.116 to calculate the Jacobian,

which depends only on the global coordinates of the vertices of the triangle element, being

a constant value along the element.
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Table 2.2 – Gauss points and respective weights used at BESLE.

I =
∫ 1

0

∫ 1−η2
0

f(η1, η2)dη1dη2 ≈
∑NGP

k=1 f(η
(k)
1 , η

(k)
2 )ω(k)

NGP η
(k)
1 η

(k)
2 ω(k)

7 0.3333333333 0.3333333333 0.2550000000
0.7974269853 0.1012865073 0.1259391805
0.1012865073 0.7974269853 0.1259391805
0.1012865073 0.1012865073 0.1259391805
0.0597158717 0.4701420641 0.1323941527
0.4701420641 0.0597158717 0.1323941527
0.4701420641 0.4701420641 0.1323941527

13 0.0651301029 0.0651301029 0.0533472356
0.8697297941 0.0651301029 0.0533472356
0.0651301029 0.8697297941 0.0533472356
0.3128654960 0.0486903154 0.0771137608
0.6384441885 0.3128654960 0.0771137608
0.0486903154 0.6384441885 0.0771137608
0.6384441885 0.0486903154 0.0771137608
0.3128654960 0.6384441885 0.0771137608
0.0486903154 0.3128654960 0.0771137608
0.2603459660 0.2603459660 0.1756152574
0.4793080678 0.2603459660 0.1756152574
0.2603459660 0.4793080678 0.1756152574
0.3333333333 0.3333333333 -0.1495700444

The number of Gauss points used in Equation 2.92 depends on the configurations

set at BESLE and on the location of the source point. BESLE is ready to use the rule of 7 or 13

Gauss points for a single triangle, as given by Table 2.2.

BESLE can increase this number of points by splitting the element into sub-triangles

and applying the Gauss points to each one. BESLE can split the element into 4, 8, or 16

subtriangles as shown in Figure 2.5. So, the 7 Gauss points rule becomes 28, 56, or 112 points,

and the 13 Gauss points rule becomes 52, 104, or 208 points.

When the source point lies outside the integrated element, the integration is regular

and it is evaluated using the configuration just explained. When the source point is inside

the integrated element, singularities of the fundamental solution appear. A special Gaussian

integral scheme for singular integration exists but BESLE solves the singular integration by

increasing the amount of Gauss points around the singularity. First, the element is split as

shown in Figure 2.6, depending on the location of the source point. Red quadrilaterals and

blue triangles use 16 Gauss points each, while green triangles use 13 points each. The blue

triangles are always around the source point and they are the closest to the singularity, being
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η1

η2

4 subtriangles
0

0.5

1

0.5 1 η1

η2

8 subtriangles
0

0.5

1

0.5 1 η1

η2

16 subtriangles
0

0.25

0.5

0.75

1

0.25 0.5 0.75 1

Figure 2.5 – Triangle element subdivision into subtriangles.

quadrilaterals degenerated into triangles, by forcing two nodes of the quadrilateral coincide at

the source point. In total, 109 Gauss points are used for cases (a) and (b), and 128 points for the

case (c). The subdivision into triangles does not apply to the singular integration.

η1

η2

0

1

1 η1

η2

0

1

1 η1

η2

0

1

1

Figure 2.6 – Triangle subdivision and distribution of Gauss points for the integration of singular
kernels for source points at coordinates: left (1 − 2λ, λ), center (λ, 1 − 2λ), and
right (λ, λ).

For each source point integrated over an element, the terms in Equations 2.92 can

be expressed by the following matricial form:

NGP∑
n=1

t
∗(n)
mi Jω

(n) = [T∗]T =


t11 t21 t31

t12 t22 t32

t13 t23 t33

 (2.124)
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NGP∑
n=1

u
∗(n)
mi Jω

(n) = [U∗]T =


u11 u21 u31

u12 u22 u32

u13 u23 u33

 (2.125)

h(kn) = [h] =


h(1) 0 0 h(2) 0 0 h(3) 0 0

0 h(1) 0 0 h(2) 0 0 h(3) 0

0 0 h(1) 0 0 h(2) 0 0 h(3)

 (2.126)

u
(k)
i = {u}el =

[
u
(1)
1 u

(1)
2 u

(1)
3 u

(2)
1 u

(2)
2 u

(2)
3 u

(3)
1 u

(3)
2 u

(3)
3

]T
(2.127)

t
(k)
i = {t}el =

[
t
(1)
1 t

(1)
2 t

(1)
3 t

(2)
1 t

(2)
2 t

(2)
3 t

(3)
1 t

(3)
2 t

(3)
3

]T
(2.128)

θ(k) = {θ}el =
[
θ(1) θ(1) θ(1) θ(2) θ(2) θ(2) θ(3) θ(3) θ(3)

]T
(2.129)

γij = [Γ]el =


γ11 γ12 γ13

γ21 γ22 γ23

γ31 γ32 γ33

 (2.130)

nj = [n]el =


n1 0 0

0 n2 0

0 0 n3

 (2.131)

δmic(ξ) = [δ] =


0.5 0 0

0 0.5 0

0 0 0.5

 = 0.5[I] (2.132)

The source points ξ are placed by using the collocation method, making them

coincide with the discontinuous nodes, producing a number of equations equal to the total

degree of freedom of the mesh. Then, the terms of the Equations 2.124 to 2.132 become

matrices as given by the Equations 2.133 to 2.137.

δmic(ξ)ui(ξ) +
NEL∑
EL=1

(
NGP∑
n=1

t
∗(n)
mi h

(kn)u
(k)
i Jω(n)

)
=
(
0.5[I] + [T∗]T [h]

)
{u} = [H ]{u}

(2.133)
NEL∑
EL=1

(
NGP∑
n=1

u
∗(n)
mi h

(kn)t
(k)
i Jω(n)

)
=
(
[U∗]T [h]

)
{t} = [G]{t} (2.134)

NEL∑
EL=1

(
NGP∑
n=1

u
∗(n)
mi γijnjh

(kn)θ(k)Jω(n)

)
= [U∗]T [Γ][n][h]{θ} = {bt1} (2.135)
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N+L∑
q=1

δmic(ξ)u
q
in(ξ) +

NEL∑
EL=1

(
NGP∑
n=1

t
∗(n)
mi h

(kn)uqinJω
(n)

)
=
(
0.5[I] + [T∗]T [h]

)
[Û ] = [H ][Û ]

(2.136)
N+L∑
q=1

NEL∑
EL=1

(
NGP∑
n=1

u
∗(n)
mi h

(kn)tqinJω
(n)

)
=
(
[U∗]T [h]

)
[T̂ ] = [G][T̂ ] (2.137)

where [Û ] and [T̂ ] are generated by the terms uqin and tqin. Also, αq
n generates the vector of

DRM coefficients of interpolation {α}. Then, the Boundary Integral Equation 2.77 takes the

matricial form

[H ]{u} = [G]{t}+ {bt1}+
(
[H ][Û ]− [G][T̂ ]

)
{α} (2.138)

The Equation 2.72 can be written in the matricial form:

{b̂} = [F ]{α} (2.139)

where [F ] is the matrix generated by f q
in and {b̂} is the body force f el

i . Coefficients {α} can be

calculated using the inverse matrix [F ]−1:

{α} = [F ]−1{b̂} (2.140)

As it was shown in Section 2.3, the total body force {b̂} consists of an elastic

component plus a thermal effect, given by Equation 2.9. Rewriting it into matricial form:

{b̂} = −{b̂el}+ {b̂t2}, (2.141)

The temperature field is interpolated by a sum of functions (Equation 2.82):

{θ} ≈ [E]{ζ} (2.142)

The coefficients of interpolation {ζ} are calculated by inverting matrix [E]:

{ζ} = [E]−1{θ} (2.143)

This allows the gradient thermal field to be evaluated (Equation 2.83):

{θ′} ≈ [E′]{ζ} = [E′][E]−1{θ} (2.144)

To calculate {b̂t2}, the tensor of γij must be added to the previous Equation:

{b̂t2} = [Γ][E′][E]−1{θ} (2.145)
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Combining Equations 2.145, 2.141, and 2.140 into 2.138, it can be fully explicited

as:

[H ]{u} = [G]{t}+ {bt1}+
(
[H ][Û ]− [G][T̂ ]

)
[F ]−1

(
−{b̂el}+ [Γ][E′][E]−1{θ}

)
(2.146)

Equation 2.146 is the matrix form of Equation 2.77, where [H ] and [G] are the

well-known matrices of coefficients related to the boundary values {u} and {t}. All other

values are known and will reduce to a single vector, as follows:

{b} = {bt1}+
(
[H ][Û ]− [G][T̂ ]

)
[F ]−1

(
−{b̂el}+ [Γ][E′][E]−1{θ}

)
(2.147)

This allows Equation 2.138 be written as

[H ]{u} = [G]{t}+ {b} (2.148)

Equation 2.146 also shows that uncoupled thermoelastic formulation with volume

integral being computed by DRM dismisses computation of temperature gradient field in

potential formulation since it is approximated by temperature field and derivatives of RBF.

To generate a linear system of equations to evaluate boundary values, columns of

[H ] and [G] are changed so that [G] remains only with coefficients related to nodal points with

prescribed boundary conditions, being renamed as [Ḡ], while [H ] remains with the coefficients

associated to unknown nodal values, and it is renamed as [A]. Vector {t} becomes {x̄} with

all boundary conditions values, {u} turns into {x} which are the unknown nodal values to be

calculated. Then, Equation 2.146 can be written as:

[A]{x} = [Ḡ]{x̄}+ {b} (2.149)

To simplify this Equation, let {B} be the vector of known values:

{B} = [Ḡ]{x̄}+ {b} (2.150)

Finally, the following linear system is solved for {x}:

[A]{x} = {B} (2.151)

2.7 Subregions

The Boundary Integral Equation 2.17 is evaluated through the entire domain. If

different materials are used in a single body, like in a bimetallic shell, the different properties
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produce different values for the fundamental solutions. There are formulations developed to

deal with variable properties along the domain, but they are outside the scope of this work. So,

in order to solve problems of this nature, the domain is divided into subregions, each one with

constant material properties values.

For simplicity, consider the 2D domain subdivided into three regions given in Figure

2.7 (the concepts exposed in this section are also valid for 3D domains). Each subregion

interfaces with the other two. The Equation 2.17 is valid inside each subdomain, and then,

the integration is solved for each of them. So, each subregion generates a matricial equation

like Equation 2.148, which can be given by the Equations 2.152 to 2.154:

subregion 1

subregion 2 subregion 3

Figure 2.7 – Domain divided into subregions and nodes at boundary and interfaces.

[H1]{u1} = [G1]{t1}+ {b1} (2.152)

[H2]{u2} = [G2]{t2}+ {b2} (2.153)

[H3]{u3} = [G3]{t3}+ {b3} (2.154)

where the superscript denotes the subregion index. These equations form a matrix system of

equations given by:
[H1] 0 0

0 [H2] 0

0 0 [H3]




{u1}

{u2}

{u3}

 =


[G1] 0 0

0 [G2] 0

0 0 [G3]




{t1}

{t2}

{t3}

+


{b1}

{b2}

{b3}


(2.155)

On a single region formulation, there is always a boundary condition known at each

portion of the boundary, either a Dirichlet or a Neumann condition. On the other hand, at the

interfaces, neither of them is known, increasing the amount of unknown values, and requiring
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more equations to solve the linear system. Moreover, Equation 2.155 shows that the regions are

decoupled, showing no interdependence, as if they were separate and independent bodies.

In order to solve these matters, it is necessary to recall the colored nodes of Figure

2.7, placed at the subregions interfaces, representing a pair of coincident nodes belonging to

two different regions. At these nodes, the continuity and the compatibility conditions apply.

For the elasticity, the first condition establishes that the displacement at the coincident nodes

must be equal (Kane, 1994):

{ua
ab} = {ub

ab} (2.156)

where the superscripts mean the region to which the node belongs, and the subscripts mean the

indexes of the two regions at the interface. This meaning will be followed until the end of this

Section.

The continuity condition guarantees the integrity of the body, while the compatibil-

ity condition is a consequence of Newton’s third law: each subregion can be seen as a single

body and the action from the region a over the region b is followed by a reaction of the region

b over the region a, of same intensity, and opposite direction. Mathematically:

{taab} = {−tbab} (2.157)

With the use of Equations 2.156 and 2.157, the subregions become now coupled.

Also, they are used to reorder Equation 2.155, by considering that the submatrix [H1] can be

written as:

[H1] =
[
[H1

11] [H1
12] [H1

13]
]

(2.158)

The submatrix [H1
11] has the coefficients related to the black nodes in Figure 2.7

(nodes at the boundary of the subregion 1), while [H1
12] are the coefficients related to the blue

nodes at the interface of regions 1 and 2, and [H1
13] concerns the coefficients of the red nodes

at the interface of the regions 1 and 3. In other words, the values related to the nodes at the

boundary and the same interface are placed together.

As a natural consequence, the subvector {u1} becomes:

{u1} =


{u1

11}

{u1
12}

{u1
13}

 (2.159)

The same organization is applied to regions 2 and 3:

[H2] =
[
[H2

12] [H2
22] [H2

23]
]

(2.160)
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{u2} =


{u2

12}

{u2
22}

{u2
23}

 (2.161)

[H3] =
[
[H3

13] [H3
23] [H3

33]
]

(2.162)

{u3} =


{u3

13}

{u3
23}

{u3
33}

 (2.163)

Analogous results are achieved applying this concept to the submatrices [G1], [G2],

and [G3], and subvectors {t1}, {t2}, {t3}, {b1}, {b2}, and {b3}:

[G1] =
[
[G1

11] [G1
12] [G1

13]
]

(2.164)

[G2] =
[
[G2

12] [G2
22] [G2

23]
]

(2.165)

[G3] =
[
[G3

13] [G3
23] [G3

33]
]

(2.166)

{t1} =


{t111}

{t112}

{t113}

 (2.167)

{t2} =


{t212}

{t222}

{t223}

 (2.168)

{t3} =


{t313}

{t323}

{t333}

 (2.169)

{b1} =


{b111}

{b112}

{b113}

 (2.170)

{b2} =


{b212}

{b222}

{b223}

 (2.171)
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{b3} =


{b313}

{b323}

{b333}

 (2.172)

Now, Equation 2.155 can be explicited as:


[H1

11] [H1
12] [H1

13] 0 0 0 0 0 0

0 0 0 [H2
12] [H2

22] [H2
23] 0 0 0

0 0 0 0 0 0 [H3
13] [H3

23] [H3
33]





{u1
11}

{u1
12}

{u1
13}

{u2
12}

{u2
22}

{u2
23}

{u3
13}

{u3
23}

{u3
33}


=


[G1

11] [G1
12] [G1

13] 0 0 0 0 0 0

0 0 0 [G2
12] [G2

22] [G2
23] 0 0 0

0 0 0 0 0 0 [G3
13] [G3

23] [G3
33]





{t111}

{t112}

{t113}

{t212}

{t222}

{t223}

{t313}

{t323}

{t333}



+



{b111}

{b112}

{b113}

{b212}

{b222}

{b223}

{b313}

{b323}

{b333}


(2.173)
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The Equations 2.156 and 2.157 allow to combine the unknown values at the inter-

faces, avoiding the increase of the order of the system of equations represented by Equation

2.173. For better organization, the traction values at the interfaces are all unknown and are

moved to the left-hand side of the Equation 2.173:


[H1

11] [H1
12] [H1

13] −[G1
12] 0 0 −[G1

13] 0 0

0 [H2
12] 0 [G2

12] [H2
22] [H2

23] [G3
13] −[G2

23] 0

0 0 [H3
13] 0 0 [H3

23] 0 −[G3
23] [H3

33]





{u1
11}

{u1
12}

{u1
13}

{t212}

{u2
22}

{u2
23}

{t313}

{t323}

{u3
33}


=


[G1

11] 0 0 0 0 0 0 0 0

0 0 0 0 [G2
22] 0 0 0 0

0 0 0 0 0 0 0 0 [G3
33]





{t111}

0

0

0

{t222}

0

0

0

{t333}



+



{b111}

{b112}

{b113}

{b212}

{b222}

{b223}

{b313}

{b323}

{b333}


(2.174)

Finally, applying the boundary conditions to the Equation 2.174, the columns of

submatrices [Ha
aa] and [Ga

aa] are changed in order to have only boundary known values at

the subvectors {taaa} and the coefficients related to them at the submatrices [Ga
aa]. Then,

the right-hand side of Equation 2.174 takes the form of Equation 2.149, being solved for the

unknown values of the variables.

The use of the subregions can be quite advantageous for the Boundary Elements

Method. The interfaces add elements to the mesh but reduce the number of elements of each

region. Considering meshes of the same refinement degree, the total time required to compute

the integral of the BIE (Equation 2.17) may reduce, depending on how the body is subdivided,
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since the fundamental solution for each source point is integrated over a smaller number of

elements.

Another consequence of the subregions is clearly shown in Equation 2.174: the

matrices become sparse. Then, the right-hand side can take advantage by multiplying less

amount of numbers, and the left-hand side can take advantage of the sparse linear system solver

methods. The MUMPS solver used at BESLE is particularly strong at this point, reducing the

time to solve the linear system by operating only with the non-zero values.

2.8 Boundary Stresses and Strains

Solution of Equation 2.149 results in displacements and tractions known at all

boundary nodes and constitute the set of primary response. Stresses and strains are the

secondary responses calculated using the primary response. Kane (1994) transforms the

global values of primary response calculated in global xi coordinates to a local normal and

tangential coordinate system for each node, and then, calculates stresses and strains in this local

system, finally transforming the results to the global system. But Kane (1994) also presents a

matricial formulation for 3D problems that dismiss coordinate transformations, and it is already

implemented in BESLE. Consider Hooke’s Law without thermal effects:

σij = Cijklϵkl (2.175)

With the aid of Equation 2.5, Hooke’s law is explicited as:

σij = Cijkl

[
1

2
(uk,l + ul,k)

]
(2.176)

It is important to note that tensor Cijkl is symmetrical, what means:

Cijkl = Cjikl = Cijlk = Cklji (2.177)

This allows the reduction of this fourth-order tensor to a simpler second-rank tensor

Cmn combining the pair of indices ij and kl using Voigt notation, as shown in Table 2.3. Then,

Equation 2.176 is written in matricial form:
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Table 2.3 – Combination of indices for Voigt notation.

ij or kl m or n
11 1
22 2
33 3
23 4
13 5
12 6



σ11

σ22

σ33

σ23

σ13

σ12


=



C11 C12 C13 0.5C14 0.5C14 0.5C15 0.5C15 0.5C16 0.5C16

C12 C22 C23 0.5C14 0.5C24 0.5C25 0.5C25 0.5C26 0.5C26

C13 C23 C33 0.5C14 0.5C34 0.5C35 0.5C35 0.5C36 0.5C36

C14 C24 C34 0.5C14 0.5C44 0.5C45 0.5C45 0.5C46 0.5C46

C15 C25 C35 0.5C14 0.5C54 0.5C55 0.5C55 0.5C56 0.5C56

C16 C26 C36 0.5C14 0.5C64 0.5C65 0.5C65 0.5C66 0.5C66





u1,1

u2,2

u3,3

u2,3

u3,2

u1,3

u3,1

u1,2

u2,1


(2.178)

Boundary tractions are given by ti = σijnj , or in matrix form:
t1

t2

t3

 =


σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33




n1

n2

n3

 (2.179)

And displacements derivatives of Equation 2.178 can be written in terms of intrinsic

element coordinates: 
u1,η1

u2,η1

u3,η1

 =


u1,1 u1,2 u1,3

u2,1 u2,2 u2,3

u3,1 u3,2 u3,3




x1,η1

x2,η1

x3,η1

 (2.180)


u1,η2

u2,η2

u3,η2

 =


u1,1 u1,2 u1,3

u2,1 u2,2 u2,3

u3,1 u3,2 u3,3




x1,η2

x2,η2

x3,η2

 (2.181)

with ui,η1 being calculated by:

ui,η1 =
3∑

m=1

∂N (m)

∂η1
u
(m)
i (2.182)
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where ∂N(m)

∂η1
are the derivatives of discontinuous shape functions with respect to η1 and u(m)

i are

the displacements at each element node, with index i meaning cartesian coordinate. Same idea

applies to calculate xi,η1:

xi,η1 =
3∑

m=1

∂N (m)

∂η1
x
(m)
i (2.183)

Derivatives ui,η2 and xi,η2 are obtained by repeating the derivatives just done, but

with respect to η2. By doing this, Equations 2.178, 2.179, 2.180, and 2.181 form a system of 15

equations with σij and ui,j as unknowns. This matricial system can be mounted with a series of

submatrices as: 
[I]6×6 [C]6×9

[N ]3×6 [0]3×9

[0]6×6 [D]6×9


 {σ}6×1

{∇ax}9×1

 =


{0}6×1

{t}3×1

{∇au}6×1

 (2.184)

where [I] is identity matrix, [0] are null matrices and {0} is a null vector. Also:

[C] =



−C11 −C12 −C13 −0.5C14 −0.5C14 −0.5C15 −0.5C15 −0.5C16 −0.5C16

−C12 −C22 −C23 −0.5C14 −0.5C24 −0.5C25 −0.5C25 −0.5C26 −0.5C26

−C13 −C23 −C33 −0.5C14 −0.5C34 −0.5C35 −0.5C35 −0.5C36 −0.5C36

−C14 −C24 −C34 −0.5C14 −0.5C44 −0.5C45 −0.5C45 −0.5C46 −0.5C46

−C15 −C25 −C35 −0.5C14 −0.5C54 −0.5C55 −0.5C55 −0.5C56 −0.5C56

−C16 −C26 −C36 −0.5C14 −0.5C64 −0.5C65 −0.5C65 −0.5C66 −0.5C66


(2.185)

[N ] =


n1 0 0 0 n3 n2

0 n2 0 n3 0 n1

0 0 n3 n2 n1 0

 (2.186)

[D] =



x1,ξ 0 0 0 0 x3,η1 0 x2,η1 0

0 x2,η1 0 x3,η1 0 0 0 0 x1,η1

0 0 x3,η1 0 x2,η1 0 x1,η1 0 0

x1,η2 0 0 0 0 x3,η2 0 x2,η2 0

0 x2,η2 0 x3,η2 0 0 0 0 x1,η2

0 0 x3,η2 0 x2,η2 0 x1,η2 0 0


(2.187)

{t} = { t1 t2 t3 }T (2.188)

{∇au} = { u1,η1 u2,η1 u3,η1 u1,η2 u2,η2 u3,η2 }T (2.189)
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{∇ax} = { u1,1 u2,2 u3,3 u2,3 u3,2 u1,3 u3,1 u1,2 u2,1 }T (2.190)

Stresses are obtained directly from Equation 2.184 while strains are calculated by

equation 2.5 using the derivatives calculated in equation 2.184.

To consider the thermal effect, one may observe that only Hooke’s law changes, as

given by Equation 2.1. So, the only change in Equation 2.184 would be the substitution of the

null vector on the right-hand side by a thermal vector effect:

{bt} = { −γ11θ −γ22θ −γ33θ −γ23θ −γ13θ −γ12θ }T (2.191)

and the system becomes:
[I]6×6 [C]6×9

[N ]3×6 [0]3×9

[0]6×6 [D]6×9


 {σ}6×1

{∇ax}9×1

 =


{bt}6×1

{t}3×1

{∇au}6×1

 (2.192)



56

3 POTENTIAL BOUNDARY ELEMENT METHOD

3.1 Introduction

As shown in Chapter 2, it is necessary to know the temperature at nodal points

to use thermoelastic formulation. In some situations, it may be a known value or known

function through the entire domain. This may be more useful in cases in which an analytical

solution is possible for validating codes (Gao, 2003) or some experiments with a controlled

environment. So, a routine was implemented in BESLE to calculate the potential field as a

function of cartesian coordinates.

Nevertheless, the temperature field may be unknown and it is necessary to solve

the potential problem. For this reason, the potential formulation of Boundary Elements for

tridimensional isotropic materials is described in this chapter. For anisotropic materials, it is

used the general technique named Direct Domain Mapping (DDM), developed by Shiah and

Tan (1997) for bidimensional problems, being extended for tridimensional domains (Shiah;

Tan, 2004) and multiregions (Shiah et al., 2006).

The 3D isotropic potential solver was implemented in BESLE together with a tool

to make DDM calculations for any anisotropic material.

3.2 Potential Boundary Integral Equation

The temperature field problem is governed by Laplace equation (Brebbia; Dominguez,

1992) which may be written in indicial notation as:

u,ii = 0 (3.1)

Using the Weighted Residual Method, it is integrated with an interpolation function

u∗ also known as the fundamental solution:∫
Ω

u,iiu
∗dΩ = 0 (3.2)

Using the Divergence theorem and integrating by parts, the inverse integral state-

ment is obtained: ∫
Ω

uu∗,iidΩ +

∫
Γ

u,iu
∗nidΓ−

∫
Γ

uu∗,inidΓ = 0 (3.3)
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where derivatives u,i and u∗,i combined with ni (the normal vector at the boundary surface)

represent the potential derivative and derivative of the fundamental solution at the normal

direction, respectively. They can be rewritten as:

q = u,ini (3.4)

q∗ = u∗,ini (3.5)

The fundamental solution for potential problems is analog of elasticity problems: a

pontual thermal source action spreading its effects to the infinite. The fundamental solutions for

3D isotropic material presented by Brebbia and Dominguez (1992) are:

u∗ =
1

4πr
(3.6)

q∗ = − 1

4πr2
r,ini (3.7)

So, domain integral in Equation 3.3 is evaluated in the sense of Cauchy Principal

Value, as it was done for elasticity, and can be solved as:∫
Ω

uu∗,iidΩ = c(ξ)u(ξ) (3.8)

with c(ξ) = 0.5 for smooth boundaries and c(ξ) = 1.0 for points inside the domain. With these

considerations, Equation 3.3 can be rewritten as:

c(ξ)u(ξ) +

∫
Γ

uq∗dΓ =

∫
Γ

qu∗dΓ (3.9)

As it was done for elasticity, after discretization and integration the following

matricial equation is generated:

[H ]{u} = [G]{q} (3.10)

with [H ] being composed by integration over q∗ plus c(ξ) coefficients, and [G] contains results

of integration over u∗. Vectors {u} and {q} represent the values of temperature and normal

derivative at boundary nodes. After prescribing boundary conditions, columns of [H ] and [G]

are changed as it was explained for elasticity, generating the following system, solved for {x}

which will contain boundary unknown values a priori.

[A]{x} = {b} (3.11)

Once the values at the boundary are calculated, Equation 3.9 is reused to calculate

the temperature at points inside the domain region, just setting c(ξ) = 1.0. It turns into:

u(ξ) =

∫
Γ

qu∗dΓ−
∫
Γ

uq∗dΓ (3.12)
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No linear system is generated by Equation 3.12 since only u(ξ) is unknown for each

source point. For thermoelasticity, temperature evaluation is enough, so derivatives at internal

points are not considered in this work.

3.3 Direct Domain Mapping

Anisotropic fundamental solutions for bidimensional potential problems are pre-

sented in Partridge et al. (1992). They are quite simple expressions but need some considera-

tions for orthotropic cases since the Euclidean distance is weighted by conductivity properties,

leading to nondegenerated expressions, leaving some singularity.

For three-dimensional problems, fundamental solutions are generally expressed

employing transformations, like Fourier or Radon transforms (Marczak; Denda, 2011) or others

(Clements; Budhi, 1999). Another approach is possible by rotating axes, rewriting the Boundary

Integral Equation with respect to a rotated coordinate system, and transforming anisotropic

problems into orthotropic ones (Banerjee; Lejeune, 1981), in which fundamental solutions are

well established.

The technique proposed by Shiah and Tan (1997) applies a coordinate transfor-

mation over the geometry of an anisotropic problem, distorting it into an equivalent isotropic

geometry. The coordinate system of this newly mapped plane remains the same, making it

easy to adapt to isotropic existing codes. Figure 3.1 exemplifies DDM transformation for 2D

geometry.

x1

x2

A

BC

D

x̂1

x̂2

A

B
C

D

Domain Mapping

Figure 3.1 – Transforming real geometry (left) into mapped plane (right).

Once the mapped geometry is defined, it becomes an isotropic potential problem,

being easily solved by the isotropic fundamental solution defined in Equations 3.6 and 3.7.

All calculations are done considering the mapping domain and the results are returned to real
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geometry. Potential values are the same in both domains, but derivatives and fluxes need to be

adjusted. The matrix transformation for geometry is given by (Shiah; Tan, 1997; Shiah; Tan,

2004):

[FDDM ] =


√
∆/k11 0 0

−k12/k11 1 0

α β γ

 (3.13)

where

∆ = k11k22 − k212 (3.14)

α =
k12k13 − k11k23√

ω
(3.15)

β =
k12k23 − k22k13√

ω
(3.16)

γ =
∆√
ω

(3.17)

ω = k11k33∆− k11k22k
2
13 + 2k11k12k13k23 − k211k

2
23 (3.18)

and kij are the components of the conductivity tensor. The transformation is done by:
x̂1

x̂2

x̂3

 =


√
∆/k11 0 0

−k12/k11 1 0

α β γ




x1

x2

x3

 (3.19)

After transforming the geometry, it is necessary to review the boundary conditions.

Temperature is not affected, but the normal derivative has different values on the real and

mapped domains. They are calculated by Equation 3.20.

du

dn̂
=

(
k11√
∆

∂u

∂x1
+

k12√
∆

∂u

∂x2
− (k11α + k12β)

γ
√
∆

∂u

∂x3

)
n̂1 +

(
∂u

∂x2
− β

γ

∂u

∂x3

)
n̂2 +

(
1

γ

∂u

∂x3

)
n̂3

(3.20)

Expressions in parenthesis in Equation 3.20 are the coordinates of the normal vector

of boundary conditions for the mapped domain. It can be observed that null values of flux for

the real domain keep null values at the mapped domain.

To compute the potential values at internal nodes, Equation 3.12 is used with

calculations done in the mapped domain.

3.4 Direct Domain Mapping for Subregions

The subregions method in the Boundary Elements requires continuity and com-

patibility conditions. For the potential problem, it means that coincident nodes of different
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regions at the interface must have equal temperature and the sum of their flux must be null.

Mathematically,

u(1) = u(2) (3.21)

q(1) = −q(2) (3.22)

The superscripts indicate different regions. Remembering that the flux is calculated

from normal derivative and considering an isotropic material, Equation 3.22 is written as

k(1)
∂u(1)

∂n(1)
= −k(2) ∂u

(2)

∂n(2)
(3.23)

with k(i) being the conduction coefficient of the i-th region.

When DDM is applied to multiple region material, the geometry will be mapped

differently to each region and they will not coincide anymore, as shown in Figure 3.2. Then,

the interfaces must be identified before geometry transformation on the real domain.

x1

x2

Material 1

Material 2

Material 3

x̂1

x̂2

Material 1

Material 2

Material 3
Domain Mapping

Figure 3.2 – Direct domain mapping of multiple anisotropic materials.

Since DDM does not affect the potential values, Equation 3.21 is still valid. For

compatibility conditions, it is necessary to consider the mapping procedure using Equation 3.24

(Shiah et al., 2006). (
∆(1)

Ω(1)k
(1)
11

)
du(1)

dn̂(1)
= −

(
∆(2)

Ω(2)k
(2)
11

)
du(2)

dn̂(2)
(3.24)

with ∆(i) given by Equation 3.14 and:

Ω =

√√√√(n̂1

√
∆

k11
− n̂2

k12
k11

+ n̂3α

)2

+ (n̂2 + n̂3β)
2 + (n̂3γ)

2 (3.25)

Comparing Equations 3.23 and 3.24, the expression in parenthesis of the last one

may be seen as an effective conduction coefficient for that direction and material. In other
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words, they play the role of an "equivalent conductive coefficient" of the isotropic case, allowing

the calculation of the normal flux at a mapped domain using only mapped domain data.

Equation 3.24 is also valid for two-dimensional problems, by calculating the neces-

sary coefficients considering null the third component of the outward normal vector. Another

important consideration is that the third direction must be preserved, i.e., the mapping is not

applied to it. This is obtained by writing tensor of Equation 3.13 as:

[FDDM ] =


√
∆/k11 0 0

−k12/k11 1 0

0 0 1

 (3.26)

It seems obvious that conductive properties k13 and k23 should be set as 0 making

α = β = 0 (see Equations 3.15 and 3.16). To obtain γ = 1, one needs, from Equation 3.17:

∆ =
√
ω (3.27)

This results in:

k33 = k22 −
k212
k11

(3.28)

It means that it is necessary to use a non-obvious value of k33 which is dependent on

the properties at directions x1 and x2 to solve 2D anisotropic problems with a 3D formulation.
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4 NUMERICAL EXAMPLES

4.1 Preliminary Considerations

This section presents numerical results in order to validate the proposed formulation

developed throughout this work. Firstly, some potential problems are presented in order to

validate the temperature solver implemented. Finally, thermoelastic problems are analyzed and

the results are compared to the literature or with results obtained by the Finite Element Method.

For the problems with analytical solutions, the relative error for all nodes was

calculated but it is presented the average relative error for various nodes of the geometry without

boundary conditions prescribed (all nodes or selected ones). For the problems in which the

reference was the results of the Finite Element Method, the term "difference" is used instead of

"error". The difference in the nomenclature does not change the formulae of calculation.

Let y represent any physical variable of interest. Equation 4.1 is used to compute

the relative error for each node, and Equation 4.2 computes the average relative error for various

nodes. The value max|yref | is the maximum absolute value of the physical variable, and it is

used to avoid the division for numbers close to zero.

ϵ =
|yBESLE − yref |
max|yref |

(4.1)

ϵ̄ =
1

N

N∑
i=1

|yBESLE − yref |
max|yref |

(4.2)

where N is the number of points used in the analysis.

The BESLE results are exported to a *.vtk file, a format in which Paraview software

is able to read, plot, and manipulate the data. Paraview only plots the results at the geometrical

nodes. So, BESLE interpolates the results calculated at the discontinuous nodes (physical) to

the continuous nodes (geometrical).

Some BESLE results were compared with the Finite Element Method using the

software ANSYS, Student version. Because of its mesh size limitation, it was not possible to

create benchmark results with very refined meshes, being this the reason why the number of

elements used at ANSYS was similar to the ones used at BESLE.
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4.2 Potential validation

4.2.1 Isotropic cube

The first example is an isotropic cube with an edge of 1 unit length. The bottom face

in Figure 4.1 has the temperature set θ = 0 while its opposite face has temperature θ = 100. All

other faces are insulated, making this an unidimensional conduction problem with temperature

solution θ = 100x1.

x3

x1

x2

θ = 0

θ = 100

Figure 4.1 – Boundary conditions for the isotropic cube.

The average relative temperature error is calculated at each boundary node as well

as the 512 domain points regularly spaced. Eleven different boundary meshes were tested (48,

108, 192, 300, 432, 588, 468, 972, 1200, 1452, and 1728 elements) and the average relative

error of each mesh simulation was calculated and presented in Figure 4.2.
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Figure 4.2 – Average relative temperature error for the isotropic cube at boundary and internal
points.

Results show good agreement with the analytical solution and the accuracy in-

creases with mesh refinement. As expected, domain values are better than boundary ones due

to the reuse of integral formulation (Ramos, 2015).

4.2.2 Isotropic multiple region

Multiregion isotropic implementation is verified with the problem shown in Figure

4.3. Left region is composed of a material of conductivity k(1) = 1 while right region has

conductivity k(2) = 2 (superscripts denotes region). The regions have the same size, with the

temperature at the left face θ = 0 while the right face is set θ = 100. All other faces are

insulated.

x1

x2

x3

θ
=
0

θ
=
10
0

1 1

2

1

Region 1 Region 2

Figure 4.3 – The isotropic multiple region problem.
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The analytical solution to this problem is (Gao, 2003):

T =
200x1
3

, for 0 ≤ x1 ≤ 1 (4.3)

T =
100(x1 + 1)

3
, for 1 ≤ x1 ≤ 2 (4.4)

It was solved using 192 elements and 64 internal points regularly spaced for each

region. Figure 4.4 plots the results obtained for boundary nodes at line (x1, 0, 0) and internal

nodes at (x1, 0.25, 0.125). All results fit the analytical solution.
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x1

θ

analytical
boundary
domain

Figure 4.4 – Calculated temperature at boundary and domain nodes.

Considering all nodes of this problem, the maximum relative error for boundary

nodal and internal points are given in Table 4.1, demonstrating that isotropic multi-region

implementation is working correctly.

Table 4.1 – Maximum relative error for isotropic subregion solution.

Region Boundary Domain
1 0.293% 0.068%
2 0.106% 0.036%

4.2.3 Anisotropic material

An anisotropic thermal problem proposed and solved by Kögl and Gaul (2003) is

shown in Figure 4.5. Face 1 has temperature θ = 0 K, face 2 has θ = 100 K and the other

faces are insulated. The thermal conductivity tensor is given in Equation 4.5. This problem

was solved in ANSYS using 1400 quadratic rectangular elements of size 5 mm to become the

reference solution, as shown in Figure 4.6. ANSYS solution is also given at it.
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Figure 4.5 – Anisotropic potential problem.

Figure 4.6 – ANSYS mesh and temperature solution.

κ =


5.2 0 0

0 7.6 0

0 0 38.3

 (4.5)

The boundary conditions and the material properties make the temperature field
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independent of the x2 direction. Meshes with 28, 112, 448, 700, and 2800 boundary elements

were used with 224 internal points set equally spaced 10 mm from each other and from the

boundary, so the coordinates x1 and x3 match the boundary nodes. Relative differences to

ANSYS results for boundary and domain nodes are plotted in Figure 4.7.

0 500 1,000 1,500 2,000 2,500 3,000
0

5

10

15

number of elements

re
la

tiv
e

di
ff

er
en

ce
(%

)
boundary
domain

Figure 4.7 – Relative temperature difference from BESLE to ANSYS.

Figure 4.8 shows temperature results along line (50, 0, x3) for all meshes. The

subtitle shows the number of elements used, while reference values from ANSYS are plotted in

a continuous line. It is possible to see that only the values of the most coarse mesh are far off

ANSYS’ results. All other meshes converge to the reference.
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Figure 4.8 – Temperature along line (50, 0, x3) for different mesh sizes and ANSYS reference.
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4.2.4 Seepage flow in anisotropic multiple region

The bidimensional dam presented in Figure 4.9 was solved by Brebbia and Chang

(1979). It has two different regions, both with anisotropic permeability properties and subjected

to a hydraulic pressure of 20 m of column water upstream and 5 m downstream.

Figure 4.9 – Bidimensional anisotropic dam and potential at specific nodes. Extracted from:
Brebbia and Chang (1979).

The above region has coefficients of permeability k11 = 4 × 10−5 m/s and k22 =

1×10−5 m/s rotated 45◦ counterclockwise. The bottom region has properties k11 = 0.25×10−5

m/s and k22 = 0.075 × 10−5 m/s aligned with principal axes. After rotating the properties of

the above region and applying the Equation 3.28, the permeability tensor used for the superior

region becomes:

κ(SUP ) =


2.5× 10−5 1.5× 10−5 0

1.5× 10−5 2.5× 10−5 0

0 0 1.6× 10−5

m/s (4.6)
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And for the inferior region:

κ(INF ) =


2.5× 10−6 0 0

0 7.5× 10−7 0

0 0 7.5× 10−7

m/s (4.7)

Brebbia and Chang (1979) obtained the results presented in Figure 4.9 using con-

stant Boundary Elements, so results are at the middle of the element. BESLE plots potential

results at geometrical nodes, then, for better boundary values comparison, BESLE results were

interpolated to match the nodal points position of the reference results, and calculated values

are given in Figure 4.10. The continuous lines represent the reference results while the triangles

are the values calculated by BESLE and colors differentiate the various boundaries and the

interface. For internal points, the comparison is given in Figure 4.11, with the different colored

lines representing the x2 coordinate of the nodes. Once again, continuous lines are the reference

solution while triangles mean the BESLE results. For boundary nodes and domain points,

calculated and reference values are close to each other, demonstrating the coherency of Equation

3.26 and validating the DDM code implemented.
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Figure 4.10 – BESLE pressure solution for nodes at the boundary and interface.
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Figure 4.11 – BESLE pressure solution for selected domain points.

4.3 Thermoelastic problems

4.3.1 Isothermal deformation

The first thermoelastic problem is an isotropic cube of unit dimensions and a

constant temperature of θ = 100 at the entire body. This uniform temperature dismisses the

use of the Dual Reciprocity Method since θ,j = 0, making null the volume integral. Figure 4.12

shows that face 1 is at the bottom and is normal to x1 direction, face 2 is behind the cube and

is normal to x2 direction, and face 3 is at the left of the cube and is normal to x3 direction. The

displacement at these faces is restricted only in their normal direction, allowing them to slip

over the plane each face lies within.
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Figure 4.12 – Isothermal cube and boundary conditions. Colored lines are used for displace-
ments values comparison.

These boundary conditions create a regular dilation problem, with the deformation

becoming equal in all directions. The displacement at the i-th direction of any point of the body

is given by:

ui = αθxi (4.8)

The expansion coefficient used for this problem is α = 2.0 × 10−5. Then, the

displacement is:

ui = 0.002xi (4.9)

The mesh of this problem was defined using 11x11 divisions at each face, generating

1452 elements equally sized. The displacement u1 for some nodes is given in Figure 4.13, and

the great accuracy of the results can be seen. The same can be observed in Figures 4.14 and

4.15, with the results of the displacements u2 and u3, respectively, for selected nodes.
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Figure 4.13 – Displacements u1 for the nodes located along the line (x1, 1.0, 0.5455).
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Figure 4.14 – Displacements u2 for the nodes located along the line (0.4546, x2, 1.0).
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Figure 4.15 – Displacements u3 for the nodes located along the line (1.0, 0.4546, x3).



73

4.3.2 Isothermal stresses

The cube of Section 4.3.1 is now under different boundary conditions: all the faces

have displacement restricted at the normal direction. This means that the expansion will not

deform the cube, but will only generate thermal stresses.

The thermal expansion coefficient is the same as the previous problem ( α = 2.0×

10−5), as well as the temperature (θ = 100) and the mesh refinement. The elasticity modulus

used is E = 210× 109 and the coefficient of Poisson is ν = 0.35.

Since there is no deformation, the stress can be calculated by the Equation 2.1, given

by:

σij = −γijθ = −Cijklαklθ (4.10)

Applying the isotropic material properties values, one has:

σij = −1.400× 106δij (4.11)

where δij is the Kroenecker delta, which means that there are only principal stresses. The

Figures 4.16 to 4.18 present the stress results obtained by BESLE from all nodes of the cube,

organized by their identification index (ID). The results are close to the Equation 4.11. It is noted

that the number of nodes is less than the number of elements because the results of Paraview

are placed at the geometrical nodes.
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Figure 4.16 – Stress σ11 for all nodes of the fully restricted cube

.
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Figure 4.17 – Stress σ22 for all nodes of the fully restricted cube.
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Figure 4.18 – Stress σ33 for all nodes of the fully restricted cube.

4.3.3 Isotropic thermal deformation

Figure 4.19 shows a 2D model of an isotropic beam under plane stress with material

properties and boundary conditions. It is subjected only to quadratic thermal loading given by

Equation 4.12. The beam has dimensions of 2 meters in the x1 direction and 1 meter in the x2

direction. For 3D simulation, a width of 1 meter was considered.

θ(x2) = 40x22 − 60x2 (4.12)
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Figure 4.19 – BEM model of a beam subjected to thermal loading.

Analytical solutions for displacements u2, deformations ϵ22 and stresses σ11 and σ33

are given in Equations 4.13 to 4.15 (Gao, 2003). The average relative error for displacements

u2 is calculated using meshes of 80, 180, 320, 500, 720, 980, 1280, 1620, and 2000 elements

combined with 0, 1, 3, 20, 63, 144, 275, 468, 735, 1088, 1539, 2100, and 2783 internal points

for temperature interpolation in Equation 2.145. Mesh size and distance between interpolation

points are regular, i.e., boundary elements are all of the same size, and the distance among

domain points is always the same.

u2(x2) =

(
1 + ν

1− ν

)
k

[
40

3
x32 − 30x22 +

55

6

]
(4.13)

ϵ22(x2) =

(
1 + ν

1− ν

)
k
[
40x22 − 60x2

]
(4.14)

σ11(x2) = σ33(x2) =

(
−Ek
1− ν

)
k
[
40x22 − 60x2

]
(4.15)

Figure 4.20 shows the average relative error for displacements u2. Each data series

is identified by the number of elements and the abscissa indicates the number of internal points

used at each simulation, with the first point meaning that no domain point was used.
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Figure 4.20 – Average relative error for displacement u2 of isotropic beam calculated by
BESLE.

Figure 4.20 shows that the accuracy of the results increased with the refinement of

the mesh without using internal points, but the three most refined meshes had similar results:

0.91%, 0.92%, and 0.94%, respectively. The use of internal points only improved the results

for the refined meshes, but continuously adding internal points reaches an optimal accuracy

and then it decreases. This phenomenon is called saturation, also known as stagnation error,

when the results fail to converge with increasing the number of points used for interpolation

(Pooladi; Larsson, 2023). Moreover, all meshes show asymptotic increasing error as the number

of internal points increases.

Stresses and strains only depend on the results of displacements and tractions. For

this reason, results of stresses and strains at Figures 4.21 and 4.22 were obtained with the mesh

of 2000 elements using 20 internal points, the simulation with the best accuracy. The procedure

of Section 2.8 produced results with small relative errors although they are a little above the

average at the edges. It is worth remembering that Equation 4.15 shows that analytical solutions

for σ11 and σ33 are the same.
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Figure 4.21 – Boundary strains ϵ22 (×10−6) calculated at (0.5, x2, 0.5).
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Figure 4.22 – Boundary stresses σ11 and σ33 calculated at (0.5, x2, 0.5).

4.3.4 Orthotropic thermal deformation

This example is similar to the one of Section 4.2.1, with the same geometry (cube

edge is 1 m) and thermal conditions are the same. As shown in Figure 4.23, the face with

null temperature is constrained in all directions while all the other faces are free. Orthotropic

conductivity, elasticity, and expansion tensors are given in Equations 4.16, 4.17, and 4.18,

respectively.
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Figure 4.23 – Orthotropic cube and boundary conditions. The orange line is used for stress
results.

κ =


1.0 0 0

0 2.0 0

0 0 3.0

W/mK (4.16)

C =



1334.5 738.8 619 0 0 0

738.8 1701.2 646.9 0 0 0

619 646.9 1147.4 0 0 0

0 0 0 800 0 0

0 0 0 0 1200 0

0 0 0 0 0 1000


Pa (4.17)

α =


2.0 0 0

0 2.5 0

0 0 3.0

× 10−5K−1 (4.18)

This problem was solved at ANSYS using 864 quadratic rectangular elements of size 0.8333 as

a basis for comparison. Figure 4.24 presents ANSYS’ mesh and u1 displacement results. As

for the problem in Section 4.3.3, many numerical experiments were done combining different

numbers of elements and internal points, and the relative difference of BESLE and ANSYS
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results for displacements at all free nodes for the three directions was used to verify the accuracy

of the solutions. Only the relative difference for displacements u1 is presented because the

results for u2 and u3 have no significative difference. BESLE results were obtained using regular

meshes of 48, 108, 192, 432, 768, 972, and 1758 elements combined with the use of 0, 1, 8,

27, 64, 125, 216, 343, 512, 729, 1000, 1331, 1728, and 2197 internal points for temperature

interpolation.

Figure 4.24 – ANSYS mesh and u1 displacement results for the orthotropic cube. Coordinates
X , Y and Z means u1, u2, and u3 respectively.

Figure 4.25 presents the average relative difference from ANSYS for displacements

u1 calculated by BESLE. As for the isotropic example, mesh refinement produced continuous

improvement in the results, but here, the use of internal points made the BESLE results converge

to the ANSYS values. An asymptotic behavior can be seen with increasing the amount of

internal points, demonstrating stability in the results.
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Figure 4.25 – Average relative difference from ANSYS for displacements u1 calculated by
BESLE.

Figures 4.26 to 4.28 present results of normal stresses obtained at line (x1, 1.0, 0.75),

which is the orange line of Figure 4.23. BESLE results have good agreement with ANSYS

presenting some differences at the edges. It can be seen that stresses σyy calculated by ANSYS

oscillate around zero for 0.833 < x1 < 0.333 while BESLE results fit exactly zero, and

stresses σzz calculated by BESLE are smoother than ANSYS solutions for 0.0 < x1 < 0.250.

Considering the regular surface and thermal conditions, it seems that BESLE solutions are more

representative than ANSYS in these regions.
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Figure 4.26 – Stresses σ11 at line (x1, 1.0, 0.75).
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Figure 4.27 – Stresses σ22 at line (x1, 1.0, 0.75).

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

−0.6

−0.4

−0.2

0

x1

σ
3
3

(P
a)

ANSYS
BESLE

Figure 4.28 – Stresses σ33 at line (x1, 1.0, 0.75).
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4.3.5 Anisotropic thermal deformation

This problem is the continuation of Section 4.2.3, with the geometry being repeated

in Figure 4.29 for convenience. Faces 1 and 2 are constrained in all directions and the others

are free. Elasticity tensor and mechanical temperature coefficient are given by Equations 4.19

and 4.20 respectively.
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face 1

fac
e 2

Figure 4.29 – Anisotropic thermoelasticity example. The orange line is used for displacement
results.

C =



430.1 130.4 18.2 0 0 201.3

130.4 116.7 21.0 0 0 70.1

18.2 21.0 73.6 0 0 2.4

0 0 0 19.8 −8.0 0

0 0 0 −8.0 29.1 0

201.3 70.1 2.4 0 0 147.3


GPa (4.19)

γ =


1.01 2.00 0

2.00 1.48 0

0 0 7.52

× 106N/Km2 (4.20)

Kögl and Gaul (2003) compared linear 4-node and quadratic 8-node BEM results

with 99 internal nodes against linear 8-node and quadratic 20-node FEM results generated with

ANSYS, presenting only displacements u3 along nodal points placed at coordinates (50, 0, x3).

For both methods, 350 elements of size 10 mm were used with 99 internal points for the BEM,
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shown in Figure 4.30. All the results they obtained are quite similar and quadratic FEM was

chosen as reference to compare the results obtained by BESLE. Once again, several simulations

were done with BESLE, using meshes of 28, 112, 448, 700, and 2800 elements of regular size,

combined with 0, 3, 32, 99, 224, 438, 720, 1127, 1664, 2474, 3200, 4235, 5472, and 6929

internal points. Figure 4.31 shows the relative difference for displacements u3 calculated by

BESLE at the points over the orange line (50, 0, x3) of Figure 4.29.

Figure 4.30 – Mesh and internal points used by Kögl and Gaul (2003). Extracted from: Kögl
and Gaul (2003).

This time, a very different behavior is noted. The simulation using 28 elements and

no internal points reached an average relative difference of 54%, completely nonrepresentative

of the solution. Moreover, the refining of the mesh made this difference increase, reaching the

value of 135% for the most refined mesh. As internal points were added, the results became

better for each mesh until it reached a minimum. The amount of internal points used to achieve

the stagnation error increases together with the number of elements of the mesh. Also, the

accuracy results obtained just before saturation are better as the mesh refinement increases.

The stagnation was not observed for the meshes of 700 and 2800 elements with the first one

presenting slightly better results with a huge amount of internal points.

In a few words, mesh refinement together with a great number of internal points

was necessary to achieve results representative of the real solution.
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Figure 4.31 – Average relative difference from ANSYS for displacements u3 calculated by
BESLE at the orange line (50, 0, x3).

The necessity of internal points to obtain good results in this example is in op-

position to the examples in Sections 4.3.3 and 4.3.4. A possible cause for that may be the

thermal field. Figure 4.32 shows equipotential lines for these three problems, with the smaller

temperatures of each one being represented by the blue color, while the higher temperatures are

represented by the red color. All of them are divided by isotermals that represent one-tenth of

the temperature range of each problem. It can be seen that the lines are regularly spaced for

the first two problems, while the third one presents an irregular distribution of the temperature:

the blue zone and the region delimited by the first isothermal are much bigger than the other

regions delimited by the other isothermals. In other words, a great portion of the domain has a

low gradient of the potential field, and another small portion has a high gradient. It seems that

this thermal field and its derivatives were not well represented by using only boundary nodes.
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Figure 4.32 – Temperature field and isothermals for the problems: left, isotropic beam; center,
orthotropic cube; right, anisotropic "L" shape.

4.4 Radial Basis Functions experiments

The examples solved in the previous section employed the interpolation function

for the temperature used by Gaul et al. (2003), given in Equation 2.84, but the authors did

not comment on the reasons for their choice. Also, the displacement results obtained for the

anisotropic problem encouraged to search for conditions that could lead to better results.

Considering the notes in Section 2.4, some piecewise smooth RBF were chosen to

verify the effect of the interpolation function in accuracy results for displacements and they

are listed in Table 4.2, along with their first derivative. All of them were added by one for

completeness (Karur; Ramachandran, 1994).

No infinitely smooth RBF was choosen to be experimented in this work because of

the strong influence that the ϵ parameter have. As it was explained at Section 2.4, to obtain good

interpolation it is necessary to use an optimal ϵ value or near it, meaning that an optimization

problem needs to be solved first, and then, continue to solve the thermoelasticity problem. The

search of this minimun is out of the scope of this thesis, so tests with these functions will not be

done here.

The numerical tests in this section only compare the results for displacements, since

stresses and strains are post-processing and dependent on the quality of displacement results.

The results obtained by function F1 are in Section 4.3 and are the basis of com-

parison. The graphical results obtained for the displacements of the orthotropic cube using

functions F2 and F4 are presented in Figure 4.33, showing a deformed geometry completely

incompatible with the real solution. Moreover, the displacements obtained using functions F2
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Table 4.2 – Selected RBFs for experimental tests.

Function identification RBF (ψq) First derivative (ψq
,j)

F1 1 + r2 + r3 (2 + 3r)rj
F2 1 + r2 2rj
F3 1 + r3 3rrj
F4 1 + r4 4r2rj
F5 1 + r5 5r3rj
F6 1 + r2 ln(r + 1)

[
2 ln(r + 1) + r

r+1

]
rj

F7 1 + r3 ln(r + 1)
[
3r ln(r + 1) + r2

r+1

]
rj

and F4 have order of 106 and 1028 respectively. Clearly, these functions are inappropriate to

thermoelasticity, which is in accordance with the literature concerning DRM applications that

only prescribe odd coefficients for this type of functions (Bayona, 2019), and for this reason,

the use of high order even coefficients was abandoned.

Figure 4.33 – Deformed geometry obtained for orthotropic cube using RBF F1 (left), F2
(center) and F4 (right).

4.4.1 Function F3

The function F3 is obtained from function F1 by extracting the r2 term in an

attempt to improve the accuracy. The results obtained for isotropic, orthotropic, and anisotropic

problems are given in Figures 4.34, 4.35 and 4.36, respectively. When these results are

compared with the ones obtained using the function F1, the results vary by only 0.01% for the

isotropic and the anisotropic examples, meaning no significative difference. For the orthotropic

problem, function F3 presented better performance with no internal points and, as they are

added, the results become of the same accuracy.

The inclusion of the term r2 in F1 to produce a more complete RBF neither benefits

nor harms the accuracy, but includes a little more calculations, so, function F3 can be used
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instead of function F1.
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Figure 4.34 – Average relative error for displacement u2 of the isotropic beam calculated by
BESLE using function F3.
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Figure 4.35 – Average relative difference from ANSYS for displacements u1 of the orthotropic
cube calculated by BESLE using function F3.
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Figure 4.36 – Average relative difference from ANSYS for displacements u3 at the orange line
(50, 0, x3) of the anisotropic example calculated by BESLE using function F3.

4.4.2 Function F5

This function is an attempt to use high-order functions for temperature interpolation.

Figure 4.37 shows the average relative error for displacement results calculated by BESLE

for the isotropic problem. The meshes from 80 to 980 elements had the same behavior as

the function F1. The mesh of 1280 elements had oscillatory accuracy that increased with the

number of internal points. The two most refined meshes presented bad accuracy and the use

of internal points did not guarantee good results. They are a consequence of the saturation that

appeared with the mesh refinement and the great number of internal points used for the mesh

with 1280 elements.
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Figure 4.37 – Average relative error for displacement u2 of the isotropic beam calculated by
BESLE using function F5.

The average relative difference from ANSYS displacement results for orthotropic

and anisotropic problems given in Figures 4.38 and 4.39 reiterate the isotropic results and

support that this function is more vulnerable to stagnation errors than function F1. For this

reason, this function should not be used in thermoelasticity.
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Figure 4.38 – Average relative difference from ANSYS for displacements u1 calculated by
BESLE using function F5.
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Figure 4.39 – Average relative difference from ANSYS for displacements u3 at the orange line
(50, 0, x3) of the anisotropic example calculated by BESLE using function F5.
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4.4.3 Function F6

The results of this proposed function presented some differences from the ones

obtained using function F1. Figure 4.40 shows the average relative error for the isotropic

problem. For the refined meshes without internal points, function F6 achieved the minimum

error of 0.61% against 0.92% for function F1. Both functions presented the same asymptotic

behavior with the increasing number of internal points used and their accuracy is similar to each

other with the use of a great number of internal points.
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Figure 4.40 – Average relative error for displacement u2 of the isotropic beam calculated by
BESLE using function F6.

Figure 4.41 shows the relative difference from ANSYS for displacements for the

orthotropic problem. It can be seen that the use of internal points did not produce significant

improvement in the results. As the refinement increases, the results of function F6 keep

improving with an average difference of 0.35% using 1758 elements with no internal points,

better than function F1 which obtained 0.76%.
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Figure 4.41 – Average relative difference from ANSYS for displacements u1 calculated by
BESLE using function F6.

For the anisotropic problem, the relative difference from ANSYS for displacements

presented in Figure 4.42 shows no relevant difference from function F1. Accuracy levels,

saturation, and stabilization of results are very similar to each other.
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Figure 4.42 – Average relative difference from ANSYS for displacements u3 at the orange line
(50, 0, x3) of the anisotropic example calculated by BESLE using function F6.
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4.4.4 Function F7

Function F7 is a higher order function than F6 and presented saturation like function

F5. For the isotropic problem, the saturation effect appears at the mesh of 1280 elements when

using 1088 internal points, as it can be seen by the average relative errors for displacements

plotted in Figure 4.43, although the function F5 had saturated using less internal points with the

same degree of mesh refinement (see Figure 4.37). Moreover, the mesh with 1620 elements was

able to produce satisfactory results until the use of 64 internal points, while function F5 never

demonstrated accuracy at this mesh. For the mesh of 2000 elements, both functions (F5 and F7)

obtained results far from the reference.
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Figure 4.43 – Average relative error for displacement u2 of the isotropic beam calculated by
BESLE using function F7.

The saturation effect for the orthotropic cube only appears at the most refined

mesh (1758 elements) for the function F7, demonstrated by the average relative difference for

displacements shown in Figure 4.44. For function F5, the meshes of 768 and 972 also saturated

(see Figure 4.38).
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Figure 4.44 – Average relative difference from ANSYS for displacements u1 calculated by
BESLE using function F7.

The average relative difference results for the anisotropic problem using function F7

(Figure 4.45) are quite similar to the results of the function F6, but the mesh of 2800 elements

saturated and lost accuracy when using 5472 internal points or more. It also performed better

than function F5, which never had satisfactory accuracy (see Figure 4.39).
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Figure 4.45 – Average relative difference from ANSYS for displacements u3 at the orange line
(50, 0, x3) of the anisotropic example calculated by BESLE using function F7.
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4.5 Discussion of RBF test results

The results of Section 4.4 clearly show that the temperature interpolation function

plays an important role in the final result. The combination of the mesh and the interpolation

function used may induce the saturation and consequently, loss of accuracy or stagnation of the

convergence of the solution, making the continuous mesh refinement inefficient to improve the

overall quality of the results.

Saturation may arise with mesh refinement, followed or not by a reduction of the

distance of the internal points used for temperature interpolation, depending on the problem.

The first explanation for this phenomenon could be the approximation of internal points to the

boundary, in a similar way that the calculation of values at internal points using the BIE tends

not to produce good results if the points are close to the boundary, due to the singularity or

quasi-singularity generated by the integral equations.

However, Figure 4.36 shows that the occurrence of saturation due to the increase

in the number of internal points (and consequently reduction in the distance between them) is

delayed at the anisotropic problem by the mesh refinement. Furthermore, Figure 4.43 shows

that, depending on the interpolation function chosen, saturation can occur without internal

points, simply by refining the mesh.

Some authors, like Karur and Ramachandran (1994), point out the poor condition-

ing of the interpolation matrix as a probable cause for the appearance of saturation, although

this is not a consensus. Studies about the causes of saturation are outside the scope of

this work, although the results allow us to affirm that the reduction of the distance of the

interpolation points (by mesh refinement or increasing the number of internal points) increases

the possibility of occurring the saturation, especially to high-order functions, which proved to

be more susceptible to it.

A possible explanation for that may be understood by Figure 4.46 which shows the

tested RBF F3 (red), F5 (blue), F6 (green), and F7 (orange). It can be seen that as r grows from

zero, red and green lines (lower order functions) detach from ϕ = 1 around r = 0.2, faster

than blue and orange lines (higher-order functions) that need values of r = 0.4. It means that

the calculated values of the interpolation function may be very similar for interpolation points

near each other, and consequently, the values of different lines of the matrix [E] of Equation

2.142 become similar, what can make its determinant become close to zero and create numerical

problems to calculate the inverse matrix used at Equation 2.146.
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Figure 4.46 – Anisotropic thin plate.

Another consequence is that the low-order functions F3 and F6 may also saturate,

but they require meshes much more refined. In other words, they are stronger against saturation,

which was verified through the numerical experiments done.

4.6 Anisotropic Thin Plate

The thin plate of Figure 4.47 is a problem analyzed in Shiah and Tan (2016b),

dimensioned with L = 8, and the origin of the cartesian coordinates placed at the center of the

plate.
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Figure 4.47 – Anisotropic thin plate.

Face 1 was set θ = 0 ºC while face 2 was set θ = 100 ºC, and both of them are fully

restricted for displacements. All of the other faces are insulated and free. The material used is
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alumina Al2O3, with elasticity stiffness tensor given by Equation 4.21.

C =



465 124 117 101 0 0

124 0 0 0 0 0

117 0 563 0 0 0

101 0 0 233 0 0

0 0 0 0 0 0

0 0 0 0 0 0


GPa (4.21)

The conductivity and the expansion tensors are given respectively by Equations 4.22

and 4.23.

κ =


18 0 0

0 10 0

0 0 25

W/moC (4.22)

α =


8.1 0 0

0 5.4 0

0 0 9.2

× 10−6 oC−1 (4.23)

The principal axes for the materials properties were rotated with respect to the

x3−, x1−, and x2− axis by 60º, 45º and 30º counterclockwise, respectively and in succession,

creating a generally anisotropic analysis. Then, the material properties are rotated to match the

cartesian coordinates, given by Equations 4.24 to 4.26.

C =



620.616 53.593 87.202 39.992 −18.414 −58.115

53.593 513.175 140.699 73.644 6.364 65.699

87.202 140.699 512.227 −106.569 55.535 1.423

39.992 73.644 −106.569 214.376 8.301 39.574

−18.414 6.364 55.535 8.301 202.085 45.390

−58.115 65.699 1.423 39.574 45.390 143.531


GPa (4.24)

κ =


19.262 2.425 6.809

2.425 17.113 −1.456

6.809 −1.456 16.625

W/moC (4.25)

α =


7.75731 0.69343 1.69477

0.69343 7.78019 −0.58957

1.69477 −0.58957 7.16250

× 10−6 oC−1 (4.26)
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Shiah and Tan (2016b) used the Finite Element Method results obtained by ANSYS

with 83,780 elements of SOLID226 type (quadratic 20-node cube element) as a reference for

the results. They also solved using 352 quadratic rectangular Boundary Elements (ANSYS

and BEM meshes are shown in Figure 4.48), and obtained good agreement between the two

methods. It is worth observing that Shiah and Tan (2016b) used the Direct Domain Mapping to

solve the volume integral of the Boundary Integral Equation, and the same fundamental solution

for elasticity used in this thesis.

Figure 4.48 – ANSYS FEM (left) and BEM (right) meshes used by Shiah and Tan (2016b).
Adapted from: (Shiah; Tan, 2016b).

The results compared were the normalized total displacements ū0 (Equation 4.27)

and the normalized von Mises stress σ̄0 (Equation 4.28) along the line (0, x2, 0.25), or else, the

top face.

ū0 =
u0

Lα11∆θ
(4.27)

σ̄0 =
σ0

C11α11∆θ
(4.28)

where L is the plate lenght at x2 direction, ∆θ = 100oC, and

uo =
√
u21 + u22 + u23 (4.29)

The analysis with BESLE was performed by using the same mesh size used by the

BEM code of Shiah and Tan (2016b), but linear triangle elements instead, which increased

the total number of elements to 704. It was analyzed the results obtained using Radial Basis

Functions F3 and F6, combined with some internal points. From Figures 4.49 to 4.52, the

continuous and the dashed lines are the reference results obtained by Shiah and Tan (2016b)
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using ANSYS FEM and BEM respectively, and they are almost indistinguishable. The other

entries in the legend indicate the RBF used (F3 or F6) and the number of internal points (IP)

used at each experiment.

Figure 4.49 shows that the normalized displacements obtained using the functions

F3 and F6 without internal points are close to the reference results, while the ones obtained using

internal points are detached from the reference. Moreover, increasing the number of internal

points increased the loss of accuracy, an indication that saturation appeared. Since boundary

nodes are interpolation points, any internal point at the thin plate is so close to boundary nodes

that induces saturation and loss of accuracy at displacement results.
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Figure 4.49 – Resultant normalized displacement along the orange line (0, x2, 0.25).

For the results without internal points, function F3 followed very well the reference

results, while function F6 stepped away from them. This can be better viewed in Figure 4.50.
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Figure 4.50 – Resultant normalized displacement along the orange line (0, x2, 0.25).

The normalized von Mises stresses are presented in Figure 4.51. Since the stresses

are dependent on the quality of the displacement results, the stresses calculated by BESLE at the

simulations using internal points were far off the reference, while the analysis without internal

points showed good agreement. It is worth noting that Shiah and Tan (2016b) did not present

results for the stresses at the fixed ends (x2/L = −0.5 and x2/L = 0.5) and no reason for this

was given.
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Figure 4.51 – Normalized von Mises stress along the orange line (0, x2, 0.25).

As it was done for the displacements, only the results obtained without using
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internal points are presented in Figure 4.52. It can be seen that the small difference in the

calculated displacements between the functions F3 and F6 produced a small difference in the

stresses, more favorable to the function F3.
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Figure 4.52 – Normalized von Mises stress along the orange line (0, x2, 0.25).

4.7 Subregions effect

The results of Section 4.3.5 demonstrated that the use of internal points may be

necessary in some cases to achieve good results. Nevertheless, BESLE does not have a tool

to compute internal points automatically for any geometry, so it is necessary to calculate them

manually, and then, BESLE only reads them.

The use of internal points allows better interpolation of the thermal field and the

interfaces of the subregions may do this rule. There are some advantages of doing this: first,

BESLE is ready to deal with subregions; second, despite of increasing the number of elements,

a source point is integrated only over the elements of its subregion, i.e, the integration is done

over a smaller number of elements, reducing the time to compute the matrices [H ] and [G];

third, the subregions formulation produces a sparse linear system to be solved, and BESLE

linear system solver takes advantage of this characteristic, speeding up the solution; fourth,

since null values are not stored, the usage of memory is also reduced, allowing to deal with very

refined meshes with the same hardware.

The dashed lines of Figure 4.53 demonstrate the different subregions created for

the problem of Section 4.3.5, and the names to identify them are on the same Figure. The size
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of the elements is the same as the simple region using 700 elements, used for time simulation

comparison.

x1

x3
x2

2regA 2regB 3reg

4reg 5reg

Figure 4.53 – The various subregions divisions of the anisotropic problem. Dashed lines mean
interfaces.

The Figure 4.54 presents the displacements u3 calculated at the line (50, 0, x3). The

blue line is the quadratic Finite Element reference, while the marked points are the results

obtained from the various subregions divisions plus the one region, all without internal points

and using the interpolation function F3 of Table 4.2. It can be seen that all results using

subregions are better than the simple regions, but the division using 3 regions was unable to

represent the solution. All other subregions divisions are close to the FEM solution.

The interpolation function F6 was also used, but since no significant difference was

obtained, the results are not presented.
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Figure 4.54 – Displacements u3 calculated at the line (50, 0, x3) for different subregions
divisions.

The simulations were performed at the Dell Workstation OptiPlex 7071 Tower,

equipped with an Intel@Core i9-9900 processor of 3.1 GHz, presenting 8 cores and 2 threads

by core in a total of 16 CPU, 128 GB of RAM memory, and NVIDIA GeForce RTX 2080.

Table 4.3 presents the time spent in seconds by each analysis. The division into 2 regions has

different numbers of elements at each one, while all other divisions have the same amount. The

subdivisions into 4 and 5 elements, as it was done, made the total time increase compared with

the single region solution. For 2 and 3 regions, the total time decreased. The total time of the

simulation depends on the combination of the number of regions and the number of elements at

each one, and if not done properly it can increase the total time simulation.

Table 4.3 – Number of elements and total time simulation for different subdivisions.

Simulation Total number of elements Elements per region Time spent (s)
1reg 700 700 372

2regA 800 300 / 500 249
2regB 800 500 / 300 249
3reg 900 300 193
4reg 1520 380 418
5reg 1900 380 531

Figure 4.54 and Table 4.3 show clearly that solution accuracy and time are depen-
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dent on how the subregions are created. In order to elucidate this matter, the subregions division

was also applied at the orthotropic cube of Section 4.3.4 as shown in Figure 4.55. The elements

have the same size as the mesh of a single region with 1728 elements.

2regA 2regB 2regC 8reg

x3

x1

x2

4regA 4regB 4regC 4regD

6regA 6regB 6regC 6regD

Figure 4.55 – The various subregions divisions of the orthotropic cube.

The displacements u1, u2, and u3 calculated along the line (x1, 1, 0.75) were com-

pared to the ANSYS results, and the average relative difference for each subregion is given in

Table 4.4. Also, each geometry was tested with interpolation functions F3 and F6 of Table 4.2.

All results were obtained without using internal points.

The results for a single region are the closest to the ANSYS solution. When the

region is sliced along x1 direction (simulations 2regA, 4regA, and 6regA), the accuracy of

displacements u1 decreases significantly. Moreover, function F6, which performed better for a

single region, performed worse with subregions. The accuracy of displacements u2 and u3 also

decreased, less than u1.

The same behavior can be noted for displacements u2 when the divisions are done

along the x2 direction, concerning the loss in accuracy (simulations 2regB, 4regB, and 6regB).
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As the number of regions increases, the difference in the results also increases, faster for

function F6. The results obtained for u1 displacements using F6 with these simulations became

quite worse.

For divisions created along x3 direction, displacements u3 were affected negatively

(simulation 2regC, 4regC, and 6regC), with increasing loss of accuracy as more regions were

defined, with the function F6 presenting more sensibility than F3, with reflexes to the displace-

ments u1.

The simulation 4regD consists of dividing the cube along directions x1 and x2, with

one division at each one. The loss in accuracy is more pronounced for displacements u1 and

u2, but this time the function F3 performed worse than F6. The simulation 6regD differs from

4regD by adding one more division to the x1 direction, and surprisingly, the results recovered

lots of accuracy.

The simulation 8reg was the result of making one division at each of the cartesian

directions, and the results demonstrate not much loss of accuracy, being more pronounced at

direction x3.

Table 4.4 – Average relative difference to ANSYS displacements calculated along the orange
line (x1, 1, 0.75) of Figure 4.55 for various subregions divisions. Values in
percentage.

Simulation
u1 u2 u3

F3 F6 F3 F6 F3 F6
1reg 0.61 0.43 0.84 0.78 0.65 0.58

2regA 4.21 4.80 1.07 1.14 2.50 2.53
2regB 1.99 2.95 7.13 8.56 2.10 2.09
2regC 1.30 1.05 1.16 1.15 8.98 12.74
4regA 5.31 8.98 0.89 1.07 2.52 2.68
4regB 4.63 13.10 9.93 20.95 2.20 2.13
4regC 0.98 5.00 0.76 0.92 15.57 36.17
6regA 4.99 13.87 0.79 1.04 2.48 2.79
6regB 3.70 25.36 8.50 35.65 2.29 2.18
6regC 0.77 10.68 0.76 0.95 13.46 63.84
4regD 8.62 5.76 11.38 6.11 3.41 2.69
6regD 2.24 2.25 2.20 1.45 2.42 2.40
8reg 3.81 3.50 1.61 1.24 5.49 4.73

The results obtained with subregions were all less accurate than the ones obtained

with a single region. The use of subregions introduces fictitious boundaries inside the domain,

with unknown displacements and tractions values, which are approximated by linear shape

functions. By doing this, another source of error that doesn’t exist at the single region mesh
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is added to the equations, reducing the accuracy of the results. Maybe, better results could be

obtained by using shape functions of higher order.

In the meanwhile, the subregions should not be used, being a limitation to this

formulation using the Dual Reciprocity Method, since bodies composed of different materials

require the use of subregions methodology.
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5 CONCLUSIONS

In this thesis, uncoupled thermoelastic formulation for static problems was imple-

mented in BESLE code, a Boundary Element software for elastic and elastodynamic anal-

ysis, that uses the fundamental solution based on Barnett-Lothe tensor and Double Fourier

series, being able to deal with isotropic or general anisotropic material. The thermoelasticity

implementation is ready to work with known temperature fields dependent on the cartesian

coordinates or potential field computed by the implemented formulation.

The BEM solver for potential problems was successfully implemented using the

classical 3D isotropic fundamental solution and Direct Domain Mapping (DDM), as well as the

evaluation of the temperature at points inside the domain. Some examples were used to validate

the potential solution, including one anisotropic bidimensional with subregions, demonstrating

that the three-dimensional formulation is adequate to solve 2D problems.

The thermoelastic formulation included a volume integral at the Boundary Integral

Equation solved by the Dual Reciprocity Method which required the use of two Radial Basis

Functions: one for the particular solution of the elasticity, and another to interpolate the gradient

of the thermal field. The last one was obtained by using the RBF to interpolate the temperature

field, calculating the coefficients of interpolation, and then, deriving it with respect to the

cartesian coordinates. This methodology was suitable to solve some problems using only

boundary nodes except for thermal fields with strong variations, in which the use of internal

points for temperature interpolation was mandatory to achieve satisfactory results.

The stresses and strains at the boundary were evaluated using the shape functions,

including the thermoelasticity effects at the formulation presented by Kane (1994). This

formulation avoids the calculation of integrals and singularity effects and the results obtained

were very good, despite some small edge effects which are a consequence of the use of linear

elements.

Different zero-parameter RBF were used for temperature interpolation and they

presented an important influence on the accuracy of the results. The use of high-order functions

demonstrated sensibility to saturation effect when reducing the element size or reducing the

distance of internal points, losing the capacity to deliver a representative solution, and therefore

their use must be avoided. The reference function F1 presented the same results as the function
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F3, so the last one can be used instead of F1 since fewer calculations are done. Moreover,

the cubic RBF (F3) and the proposed modified thin plate spline (F6) were the only non-zero

parameter functions tested reliably to be used as temperature interpolation functions, but the

last one should be avoided for thin plate problems.

Although they might not be necessary, the use of internal points for temperature

interpolation has the potential to increase the accuracy of the solution, which depends on the

mesh refinement. The results demonstrated that as the mesh is refined, the number of internal

points to achieve the minimum error also increases. On the other hand, for thin geometries the

boundary interpolation nodes are so close enough that adding internal points induces saturation

and loss of accuracy, and therefore they should not be used.

The subregions method was applied as an attempt to use the interfaces as internal

points, taking advantage of the subregions procedure to generate sparse matrices and reduce

the computing time. The time spent is dependent on how the subregions are created, and may

even increase the total solution time. Moreover, despite the increase in accuracy of the results

at some conditions, this was not a general behavior, and the subregions division reduced the

accuracy at conditions in which they were unnecessary.

In short, the simulation conditions that guarantee reliable solutions consist of using

the cubic RBF and a reasonable mesh refinement combined with a great number of internal

points, despite the drawback of increasing the computational cost, except for the thin plate

problems, in which the use of internal points is undesirable.

5.1 Future works

The results of the Dual Reciprocity Method demonstrated great dependence on

the RBF used for the interpolation of the gradient of temperature. So, deep investigations

for the different Radial Basis Functions should be performed, like considering the number of

conditioning of the interpolation matrix, the use of augmented polynomial RBF, RBF with shape

parameter and methods to evaluate the optimal shape parameter, the use of RBF-FD technique,

and the procedure presented by Mai-Duy and Tran-Cong (2003) named Indirect Radial Basis

Function Network, which consists in proposing the functions to interpolate the derivatives, and

then, integrating to find the function that interpolates the potential field.

The DRM applied to thermoelasticity as proposed by Gao (2003) requires the use

of two RBF, meaning that two interpolation matrices will need to be inverted, which can be
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of high computational cost. Then, other methods for evaluating the domain integral can be

investigated, like Radial Integration and Direct Interpolation Boundary Element Methods, and

maybe, less computational cost, better accuracy, and fewer considerations about the reliability

of the functions can be achieved.

Moreover, the two RBF required (particular solution for elasticity and temperature

interpolation) may present some kind of resonance, so, the fact that both functions are cubic

may not be a coincidence, like the Galerkin Method for the Weighted Residual Method, which

uses the same functions for approximation and weighting. Then, different combinations of these

two functions can be studied.

The subregions technique is not reliable at this point, but it has the potential to

generate accurate results. The use of shape functions of high order for the interpolation of the

variable fields at the elements may be performed, combined or not with the considerations just

made for the Radial Basis Functions.

Finally, the code implementations were done at BESLE amplifying the type of

problems that this software can solve. This new version will be published to be available to

the community, as well as new documentation explaining the changes and the use of the free

and open-source Blender software as a possibility to generate the meshes, allowing a non-user

of BESLE become able to make simulations by his own.
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