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Resumo
Neste trabalho é realizado um estudo das soluções periódicas de equações diferenciais
não-suaves através da Teoria Averaging, do grau de Brouwer e de equações de operadores
em espaços de Banach. São fornecidas condições suficientes que garantem a persistência
e também para a convergência de soluções periódicas de equações diferenciais tanto
contínuas não-Lipschitz como Carathéodory descontínuas dependendo de um parâmetro
pequeno. Apresenta-se ainda uma revisão das Teorias clássicas de Melnikov e Averaging para
equações diferenciais periódicas suaves, como forma de motivar e expor os desafios do estudo
realizado neste trabalho. Foram obtidos resultados consistentes com aqueles previamente
estabelecidos na literatura e que os estendem para casos antes não contemplados, o que é
devidamente evidenciado em exemplos.

Palavras-chave: Equações Diferenciais Não-Suaves. Equações Diferenciais Contínuas
Não-Lipschitz. Equações Diferenciais Descontínuas Carathéodory. Teoria Averaging. Grau
de Brouwer. Grau de Coincidência.



Abstract
In this work a study of periodic solutions of non-smooth differential equations is carried
out by means of the Averaging theory, the Brouwer degree and operator equations in
Banach spaces. Sufficient conditions that ensure the persistence and convergence of periodic
solutions of both non-Lipschitz continuous and Carathéodory discontinuous differential
equations depending upon a small parameter are provided. The classical Melnikov and
Averaging Theories for periodic smooth differential equations are presented as a way to
motivate and expose the challenges of the study undertaken herein. The main results
proved in this work are consistent with those already established in the literature and
extend them to cases not yet covered, as it is properly evidenced with examples.

Keywords: Non-Smooth Differential Equations. Continuous Non-Lipschitz Differential
Equations. Discontinuous Carathéodory Differential Equations. Averaging Theory. Brouwer
Degree. Coincidence Degree.
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1 Introduction

In the qualitative study of dynamical systems, some objects carry important
information about the behaviour of the phenomenon they model. One such type of object
are the invariant sets, which, as the name suggests, are sets from which you can never
get out of following the flow of the dynamical system in place. One such example in the
context of ordinary differential equations, is a singularity, which is a stationary solution.
Another example of invariant set, and the main subject of study of this work, is a periodic
trajectory, which in turn corresponds to the the image set of a periodic solution.

In this work, we study the existence of periodic solutions of differential equations
with non-smooth right-hand sides. More precisely, we intend to provide sufficient conditions
for the existence of periodic solutions of non-smooth differential equations. In spite of using
the term “non-smooth” we do not treat the prominent and interesting case of Filippov
systems. Instead, we delve into those equations whose right-hand sides lack differentiability
and even continuity. As a matter of fact, we deal at first with non-Lipschitz continuous
differential equations which poses the absence of uniqueness of solutions as the main
challenge. Later we further extend our results for systems that allow some discontinuities,
which are the Carathéodory differential equations.

1.1 Brief historic background
In order to motivate the study carried out in this work, we discuss here a

few established results that give conditions for detecting periodic solutions of differential
equations while consistently relaxing smoothness hypotheses for their right-hand sides.

Consider at first the differential equation

x1 � εF1pt, xq � ε2Rpt, x, εq, (1.1)

where F1 : R�D Ñ Rn and R : R�D � RÑ Rn are T�periodic in t. A classical result
for guaranteeing the existence of T�periodic solutions of this equations for ε � 0 small is
the following theorem.

Theorem 1.1 ([30, Theorem 11.5]). Consider the differential equation (1.1). Define the
average

f1pzq � 1
T

» T

0
F1ps, zqds

and the averaged equation z1 � εf1pzq. Assume that
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• F1, R,
BF1

Bx ,
B2F1

Bx2 and BR
Bx are defined, continuous and bounded by a constant M (not

depending on ε) in r0,8s �D, for each 0 ¤ ε ¤ ε0;

If p is a critical point of the averaged equation satisfying det Bf1

Bx ppq � 0, then there exists
a T�periodic solution φpt, εq of equation (1.1) close to p such that lim

εÑ0
φpt, εq � p.

Notice that in this theorem, it is required that F P C2 and R P C1.

In [5], this theorem is generalized by first removing differentiability of F and R
yielding the following theorem.

Theorem 1.2 ([5, Theorem 1.1]). Consider the differential equation (1.1), where F1 :
R�D Ñ Rn and R : R�D� p�ε0, ε0q Ñ Rn are continuous functions, T�periodic in the
first variable and D is an open subset of Rn. Assume that F1 and R are locally Lipschitz
in the second variable and that for a P D satisfying f1paq � 0, there exists a neighbourhood
V of a such that V � D, f1pzq � 0, @ z P V ztau and dBpf1, V, 0q � 0. Then for |ε| ¡ 0
sufficiently small there exists a T�periodic solution φpt, εq to (1.1) such that φp�, εq Ñ a

as εÑ 0.

Observe that in this theorem, the authors only require F and R to be continuous
and Lipschitz. Since differentiability has been dropped, the condition det Bf1

Bx ppq � 0 does
not make sense and it is replaced by dBpf1, V, 0q � 0, which is the Brouwer degree of f1

with respect to V and 0 (see Section 2.4).

In [5] the authors also outline the proof of a further extension of Theorem 1.1
by removing the Lipschitz assumption on F and R leaving just continuity. In this case,
it is important to recall that uniqueness of solution is lost and, as we shall discuss in
Section 1.2, this is an important property in classical approaches.

In [26], the author provides a first order analysis for Carathéodory differential
equations (see Section 2.3) which allow some discontinuities in the time variable.

Consider now the differential equation

x1 � εF1pt, xq � � � � � εkFkpt, xq � εk�1Rpt, x, εq, (1.2)

where each Fi : R�D Ñ Rn and R : R�D � RÑ Rn are T�periodic in t.

For equation (1.2), the authors in [20, Theorem A] perform a higher order
averaging analysis and give sufficient conditions for the persistence of periodic solutions
assuming Fi P Ck�i and that Bi�kFi and R are Lipschitz continuous.

In [18], the authors perform a second order (k � 2) analysis for Filippov
differential equations assuming only Lipschitz continuity of the right-hand side in each
zone. Later, in [19] this result is generalized for an arbitrary order.
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The more recent advances in this field are part of this thesis and has already
been published in [27]. In this paper, the authors consider the differential equation

x1 � εF pt, x, εq,

where F is T�periodic in t and continuous. In this setting, sufficient conditions are
provided in order to guarantee the existence of T�periodic solutions for ε � 0. From this
result, they derive a continuous higher order analysis for (1.2), which was unknown up to
that point.

In this work, we shall present and discuss in more detail the results for contin-
uous differential equations and also we propose further generalizations for Carathéodory
differential equations.

1.2 The Melnikov method
Usually, when dealing with the problem of determining the existence of periodic

solutions for ordinary differential equations, one resorts to the study of the displacement
map associated to that system (see [5, 6, 20, 29]) via expansion in Taylor series. The
displacement map measures how far a solution starting at some point is from being periodic.
The approach we will briefly describe in the sequel is called the Melnikov method. It
consists in performing the Taylor series expansion of the displacement map and then
applying the Implicit Function Theorem to guarantee the existence of a branch of zeroes
of that map.

More precisely, consider the differential equation

x1 � εF pt, x, εq, pt, x, εq P I �D � p�ε0, ε0q � R� Rn � R, (1.3)

where F is T�periodic in t, for some T ¡ 0, at least Lipschitz continuous in x, and ε

is a (usually small) parameter. For pt0, x0, εq P I � D � p�ε0, ε0q, let φ � φpt, t0, x0, εq
be the unique solution of equation (1.3) satisfying φpt0, t0, x0, εq � x0. Assume that
rt0, t0 � T s � I. Define the Poincaré map π : D � p�ε0, ε0q Ñ Rn by setting

πpx, εq � φpt0 � T, t0, x, εq.

Note that the Poincaré map already encodes the information of whether a solution is
T�periodic or not. Indeed, for each fixed ε P p�ε0, ε0q, the fixed points of the map πp�, εq
are initial conditions for T�periodic solutions of equation (1.3), since πpx0, εq � x0 if, and
only if, φpt0�T, t0, x0, εq � x0 � φpt0, t0, x0, εq, so that φ can be extended to a T�periodic
solution in R.

Now, define the function ∆ : D � p�ε0, ε0q Ñ Rn by

∆px, εq � πpx, εq � x. (1.4)
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For any pair px0, εq P D � p�ε0, ε0q satisfying ∆px0, εq � 0, we have φpt0, t0, x0, εq � x0 �
φpt0 � T, t0, x0, εq, which implies that φ can be extended to a T�periodic solution in R,
since φ is C1 in t. Conversely, if φpt, t0, x0, εq is a T�periodic solution of equation (1.3),
then ∆px0, εq � 0. We have thus established that there is an equivalence between the set
of periodic solutions of equation (1.3) and the set of zeroes of the displacement function.
Equivalently, it is straightforward that zeroes of the displacement function correspond to
fixed points of the Poincaré map. Therefore, in this approach, one seeks conditions that
guarantee the existence of zeroes of functions, especially the displacement function or some
other function whose set of zeroes is contained in the set of zeroes of the displacement
function. In other words, one reduces the problem of finding T�periodic solutions of some
differential equation to the problem of finding zeroes of functions.

This is an important change of perspective and allows one to tackle the problem
of finding periodic solutions of differential equations through the problem of finding zeroes
of functions. It should be noted that determining zeroes of non-linear functions is not
necessarily an easier problem, but allows for a whole new set of tools to be used, such as
the Implicit Function Theorem and degree theory as we shall see in this work.

For equation (1.3), we note that for ε � 0 all the solutions are constant. In
general, one is interested in periodic solutions branching from these constant solutions
as ε ranges in some small interval around 0. Therefore, we usually look for branches of
zeroes of ∆ of the form ∆pxpεq, εq � 0 for ε � 0 small. One way to obtain this is using the
Implicit Function Theorem. Indeed, if ∆px0, 0q � 0 and detpB∆{Bεqpx0, 0q � 0, for some
x0 P D, then the Implicit Function Theorem tells us that there exists ε1 P p0, ε0q and a
function x : p�ε1, ε1q Ñ D such that xp0q � x0 and ∆pxpεq, εq � 0 for every ε P p�ε1, ε1q.
Notice that for this to work, we need the solution φ to be differentiable in ε.

The above procedure can be better elaborated. Assuming that F is Ck in
pt, x, εq, then by the theorem of smooth dependence of solutions on the parameters, the
solution φ is also Ck in ε, see [1, Chapter 9]. Therefore, in this case, we can expand both
the right-hand side of equation (1.3) and the Poincaré map in powers of ε up to order k
obtaining

x1 � εF pt, x, εq � εF pt, x, 0q � ε2 1
2
BF
Bε pt, x, 0q � � � � � εk 1

k!
Bk�1F

Bεk�1 pt, x, 0q �Opεk�1q

and

∆px, εq � ε
B∆
Bε px, 0q �

ε2

2!
B2∆
Bε2 px, 0q � � � � � εk

k!
Bk∆
Bεk

px, 0q �Opεk�1q
�: εM1pxq � ε2M2pxq � � � � � εkMkpxq �Opεk�1q.

Thus equation (1.3) takes the form

x1 � εF1pt, xq � � � � � εkFkpt, xq � εk�1Rpt, x, εq, (1.5)
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where

Fjpt, xq � 1
j!
BjF

Bεj
pt, x, 0q,

for every j P t1, . . . , ku, and R are differentiable functions in pt, xq and R is continuous in
ε.

For each j P t1, . . . , ku the differentiable function

Mjpxq � 1
j!
Bj∆
Bεj

px, 0q

is called the j�th order Melnikov function.

Now by the Implicit Function Theorem we determine a branch of zeroes of ∆.
If M1 is not identically zero and x0 is a zero of M1 for which detDM1px0q � 0 (such a
point is called a simple zero of M1) then there exists ε1 P p0, ε0q and a smooth function
x : p�ε1, ε1q Ñ Rn such that xp0q � x0 and ∆pxpεq, εq � 0, for every ε P p�ε1, ε1q. Indeed,
consider

δpx, εq � ∆px, εq
ε

�M1pxq � εM2pxq � � � � � εk�1Mkpxq �Opεkq.

Notice that the function δ can also be defined at ε � 0 due to the fact that the rightmost
member of the above expression is well defined at ε � 0. Now, note that the pair px0, 0q is
a zero of δ. On the other hand,

Bδ
Bxpx, εq � DM1pxq � εDM2pxq � � � � � εk�1DMkpxq �Opεkq,

so that
Bδ
Bxpx0, 0q � DM1px0q.

Since, by hypothesis, detDM1px0q � 0, it follows that detpBδ{Bxqpx0, 0q � 0. Then, the
Implicit Function Theorem implies that there exists a smooth function x : p�ε1, ε1q Ñ Rn

such that xp0q � x0 and δpxpεq, εq � 0. However, any zero of δ is also a zero of ∆. This
proves that for ε sufficiently small there is always a point xpεq such that the pair pxpεq, εq
is a zero of the displacement function. Taking into account the previous discussion, we have
actually shown that any simple zero of the Melnikov function M1 determines a T�periodic
solution of equation (1.3).

In case some of the Melnikov functions Mj are identically zero, one can look
at the first of these functions that is not so, say Mℓ, 1   ℓ ¤ k, and the same argument
above works using Mℓ instead of M1, except that the function δ should have its definition
changed to

δpx, εq � πpx, εq
εℓ

�Mℓpxq � εMℓ�1pxq � � � � � εk�ℓMkpxq �Opεk�ℓ�1q.
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This methodology is called the higher order Melnikov analysis, because a higher order
Melnikov function is needed. Thus, wrapping it all up, simple zeroes of the first non-
identically zero Melnikov function gives rise to T�periodic solution of the underlying
differential equation.

Another information we can get from this procedure is about the convergence of
solutions with respect to the parameter ε. From what was shown in the previous discussion,
xpεq is the initial condition of a T�periodic solution, denoted φpt, t0, xpεq, εq, of equation
(1.5), where φpt, t0, x0, 0q � x0 is a constant solution. Thus, by smoothness of x with
respect to ε and the continuous dependence of φ with repect to the initial condition and
parameters, it follows that φp�, t0, xpεq, εq Ñ x0 uniformly as εÑ 0. Looking at the phase
space of equation (1.5), this statement means that the constant solution φpt, t0, x0, 0q � x0

of equation (1.5) with ε � 0 persists for ε � 0 small and it starts at xpεq, for each different
ε.

Although we have changed the way we look at the problem, if we look closely,
it has not been made easier, not only because finding zeroes of functions is also a hard
problem, but mostly because to know the displacement function ∆ or, equivalently, the
Poincaré map π, and hence the Melnikov functions Mj, we would have to know the solution
φpt, t0, x0, εq explicitly, which is just as hard a problem as the one of determining periodic
solutions directly by solving the differential equation itself. Hence, in order to enable this
approach, more work is needed, namely, to find expressions for the Melnikov function in
terms of the coefficient functions Fj.

By [20, 23], if φpt, x0, εq is the solution of equation (1.3) satisfying φp0, x0, εq �
x0, then we expand φ in Taylor series about ε � 0 obtaining

φpt, x, εq � x�
ķ

i�1
εiyipt, xq

i! �Opεk�1q.

where the coefficient functions yi are given by

y1pt, xq �
» t

0
F1ps, xqds

yipt, xq �
» t

0

�
i!Fips, xq �

i�1̧

j�1

j̧

m�1

i!
j!B

m
x Fi�jps, zqBj,mpy1, . . . , yj�m�1qps, xq

�
ds,

for i P t2, . . . , ku. For each p, q positive integers, Bp,q is the Bell polynomial

Bp,qpx1, . . . , xp�q�1q �
¸
bPS

p!
b1!b2! � � � bp�q�1!

p�q�1¹
j�1

�
xj

j!


bj

,

where S � tb � pb1, . . . , bp�q�1q : b1�2b2�� � ��pp�q�1qbp�q�1 � p and b1�� � ��bp�q�1 �
qu. In addition, Bm

x Fi�jps, xq denotes the derivative with respect to x calculated at x.
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From the above development, we note that

∆px, εq � φpT, x, εq � x �
ķ

i�1
εiyipT, xq

i! �Opεk�1q,

which gives us that the Melnikov functions are precisely Mipxq � yipT, xq for every
i P t1, . . . , ku. In particular, it follows that

M1pxq �
» T

0
F1ps, xqds

M2pxq � 2!
» T

0
pF2ps, xq �DxF1ps, xqy1ps, xqq ds.

As i ranges through t1, . . . , ku the expressions for Mj get more and more cumbersome.

1.3 The Averaging method
Another approach to study the qualitative behaviour of dynamical systems is

the averaging method. Consider a periodic differential equation in the form of equation
(1.3). The averaging method consists of performing a change of coordinates, called a
near-identity transformation, of the form

x � Upt, y, εq � y � εu1pt, yq � ε2u2pt, yq � � � � � εkukpt, yq, (1.6)

with Up0, y, εq � y, that takes the original equation into

y1 � εg1pyq � ε2g2pyq � � � � � εkgkpyq � εk�1rpt, y, εq, (1.7)

and then provides long-time asymptotic estimates for the solutions of equation (1.5) based
on the solutions of the truncated equation

y1 � εg1pyq � ε2g2pyq � � � � � εkgkpyq, (1.8)

see [29, Lemma 2.9.1 and Theorem 2.9.2]. That is to say, if φpt, εq is a solution of
equation (1.5) and ψpt, εq is a solution of equation (1.8) such that φp0, εq � ψp0, εq, then
|φpt, εq � ψpt, εq| � Opεkq for time Op1{εq, i.e., for t P r0, L{εs for some positive constant
L. The functions gi in equation (1.7) are called the averaged functions.

In particular, when k � 1, equation (1.5) writes

x1 � εF1pt, xq � ε2Rpt, x, εq, (1.9)

then applying a corresponding near-identity transformation as in equation (1.6), we obtain
the full averaged system

y1 � εg1pyq � ε2rpt, y, εq, (1.10)
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with

g1pxq � 1
T

» T

0
F1ps, xqds.

By considering the rescaling of time give by τ � εt and truncating the resulting equation,
equation (1.10) is taken into the so called guiding system

z1 � g1pzq.

Now, if z0 is an equilibrium of the guiding system such that Dg1pz0q is non-singular,
then there exists a smooth function ε ÞÑ zε defined for small ε such that φpt, zε, εq is a
T�periodic solution of equation (1.9) (see [29, Theorem 6.3.2]). This fact suggests that
there exists some relation between the averaging and the Melnikov methods. And indeed
there is.

1.4 Relating the averaging and Melnikov methods
We noting that, unlike for the Melnikov functions, in general there is no explicit

formula to obtain the functions gi in equation (1.7) in terms of the Fi, even though there
exists an algorithmic process to achieve that. However, in [24] the author shows that the
following relationship between the expressions of gi and the Melnikov functions Mi hold

g1pxq � 1
T
M1pxq

gipxq � 1
T

�
Mipxq �

i�1̧

j�1

j̧

m�1

1
j!d

mgi�jpxq
» T

0
Bj,mpỹ1, . . . , ỹj�m�1qps, xqds

�
,

where ỹipt, xq are polynomials in t defined recursively as

ỹ1pt, xq � tg1pxq

ỹipt, xq � i!tgipxq �
i�1̧

j�1

j̧

m�1

i!
j!d

mgi�jpxq
» T

0
Bj,mpỹ1, . . . , ỹj�m�1qps, xqds.

The above expressions, although cumbersome, provide a clear relationship
between the methods of Melnikov and Averaging. In particular, if for some ℓ P t2, . . . , ku
either M1 � � � � �Mℓ�1 � 0 or g1 � � � � � gℓ�1 � 0, then Mi � Tgi for every i P t1, . . . , ℓu.
Equivalently, this results says that g1 � � � � � gℓ�1 � 0 if, and only if, M1 � � � � �Mℓ�1 � 0
and Mℓ � Tgℓ. From this relation, the conclusion drawn before about the existence of
periodic solutions being related to existence of simple zeroes of the first non-vanishing
Melnikov function can be transposed to the averaged functions, that is, simple zeroes of
the first non-vanishing averaged function, say gℓ, provide periodic solutions of the original
differential equation, equation (1.5), [24].
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1.5 Less regular systems
The results discussed in the previous sections work very well as long as the right-

hand side of the equation is differentiable. However, if we lower the smoothness conditions
on F (or the functions Fi) we may find it hard to apply the same rationale. Observe that in
the above discussion, in order to guarantee the existence of periodic solutions of equation
(1.3), the Lipschitz property of the right-hand side, F, is of paramount importance for the
uniqueness of solutions, making it possible to define the Poincaré map and, consequently,
the displacement function. Note that if we did not have this property, then there would
be ambiguities in the choice of the solution used to define π. Moreover, the smoothness
of F plays a crucial role by guaranteeing the differentiable dependence of the solutions
with respect to the parameters and initial conditions, otherwise it would not be possible
to extend the Poincaré function about ε � 0.

Thus, one can pursue this direction of finding the minimal regularity conditions
under which it is possible to provide sufficient conditions for the existence of periodic
solutions.

There has been already some interest in applying the averaging procedure to
less regular systems. In [5] the authors consider the first order averaging for equation (1.9)

x1 � εF1pt, xq � ε2Rpt, x, εq,

removing, at first, the differentiability and assuming the locally Lipschitz property in the
x variable of F1 and R and later they outline the proof for the non-Lipschitz case. In both
cases, the authors use the Brouwer degree to replace the condition detDf1pz0q � 0 present
in the classical averaging approach.

In [20] the authors develop an arbitrary order Melnikov analysis of equation
(1.5)

x1 � εF1pt, xq � � � � � εkFkpt, xq � εk�1Rpt, x, εq,

assuming that Fi is Ck�i, Bk�i
x Fi and R are locally Lipschitz continuous in the x variable

for each i P t1, . . . , ku, where Bi
xF is the i�th derivative of F with respect to x. In this

work, the authors provide explicit expressions for the Melnikov functions.

In [18] the authors consider a second order Melnikov analysis, providing the
corresponding Melnikov functions, for the differential equation

x1 � εF1pt, xq � ε2F2pt, xq � ε3Rpt, x, εq,

where each Fi is defined by parts in S1 �D and the boundary of each part is a piecewise
smooth hypersurface. In this case, the trajectories that intersect the boundaries are given
following the Filippov’s convention.
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It is important to note that in all of the above cases, uniqueness of solutions
is guaranteed, allowing for a Taylor-like expansion of the displacement function, so that
at the core, it is used a Melnikov analysis. In turn, the Brouwer degree is the main tool
used to guarantee the continuation of zeroes of the corresponding averaged or Melnikov
function.

1.6 The purpose of this work
From what we observed in the previous section, it is interesting to study

an averaging- or Melnikov-like analysis for differential equations under low regularity
conditions. The lack of Lipschitz continuity and differentiability suggests that the approach
presented in Section 1.2 and Section 1.3 might not be directly applicable to provide
existence results for this type of differential equation.

It can be seen that there are still some cases lacking a feasible approach to
study their periodic solutions. For example, as far as we know there is no result providing
sufficient conditions for the existence of periodic solution for equation (1.5)

x1 � εF1pt, xq � � � � � εkFkpt, xq � εk�1Rpt, x, εq,

with arbitrary k when the functions Fi are continuous non-Lipschitz or Carathéodory.

We point out that in both cases the property of uniqueness of solutions is
lost, so that the aforementioned approach of studying the displacement function of these
systems is not quite feasible. Thus, in order to work around that, we formulate an operator
equation defined in some Banach space whose solutions correspond to periodic solutions of
the underlying differential equation. This approach implies the introduction of techniques
that differ very much from those described in this chapter.

Thus the purpose of this work is to study the differential equations whose
right-hand sides are not smooth. Therefore we carry out an analysis similar to the Melnikov
method aiming at detecting periodic solutions of differential equations such as equation
(1.3) and equation (1.5) where the functions on the right-hand side are not Lipschitz. We
also study the case of Carathéodory right-hand sides, which generalizes the non-Lipschitz
case and where continuity may fail too.

This work is structured as follows. In Chapter 2 we provide a few known results
that will be used in this work for the sake of completeness. In Chapter 3, we address
differential equations with continuous right-hand sides. In Chapter 4, we treat the case of
Carathéodory right-hand sides. In Chapter 5 we study the convergence of the solutions with
respect to the parameter ε. Finally, in Chapter 6 we apply our results to concrete examples
of differential equations demonstrating the applicability of the theorems obtained.
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2 Preliminaries

In this chapter, we present the already established results on functional anal-
ysis, measure theory, ordinary differential equations and related subjects that are used
throughout this thesis. We make clear that the extensive explanation of such topics is not
the main goal of this work, so that we do not spend too much energy proving the results
that appear in this chapter, we rather refer the reader to the suitable references.

2.1 Relevant topics on functional analysis
In the sequel we present the main facts and theorems used in this work. We

assume some basic knowledge of metric spaces and do not define all the concepts that
show up.

2.1.1 Arzelá-Ascoli Theorem

The Arzelá-Ascoli Theorem is classical one when it comes to proving that
a certain subset in a metric space has compact closure or, equivalently, that a certain
sequence has a convergent subsequence. In particular, we shall use this theorem in the
context of function spaces. This type of result will play a part when we discuss compact
operators. For more details and a proof of this theorem, see [17, Chapter 8].

We start by making some definitions. Let pX, dq be a compact metric space
and F a family of functions φ : X Ñ Rn.

Definition 2.1. We say that F is an equicontinuous family if for each x P X, ε ¡ 0, there
exists δ ¡ 0, such that for every y P X, with dpx, yq   δ, we have |φpxq � φpyq|   ε, for
each φ P F .

Note that in this definition, δ depends only on x and ε, not on the particular
element of the family F .

Definition 2.2. F is said to be a pointwise bounded family if for each x P X, there exists
a positive constant M such that |φpxq|  M, for every φ P F .

In the above definition, when the constant M does not depend on x, it is usual
to call F a uniformly bounded family.

We can now state the Arzelá-Ascoli Theorem.
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Theorem 2.1 ([17, Proposição 16]). Let pX, dq be a compact metric space. Let F be a
family of equicontinuous functions φ : X Ñ Rn. If F is pointwise bounded, then every
sequence tφnu of elements of F has a uniformly convergent subsequence tφnk

u in X.

It is important to remark that the conclusion of the Arzelá-Ascoli Theorem is
equivalent to saying that the family F has compact closure or, in other words, is relatively
compact ([15]). We make this remark because both understandings of the Arzelá-Ascoli
Theorem will be used in the text.

2.1.2 Normed spaces and operators

For this section, except otherwise mentioned, let X and Z be real normed
spaces.

Definition 2.3 ([16, Chapter 2]). The codimension of a vector subspace Y � X is defined
as Codim Y � dimX{Y.

Definition 2.4 ([12, Chapter 3]). If L : X Ñ Z is a linear operator, the space Z{Im L is
called the cokernel of L and is denoted by Coker L.

Notice, in particular, that since the cokernel of a linear operator is given by a
quotient, then there exists a canonical projection Π : Z Ñ Coker L given by

Πpzq � rzs � z � Im L, z P Z.

Moreover, Π is continuous. For this work, this is all the understanding one should have
about quotient spaces. For the reader interested in more information on quotient spaces,
we refer the reader to [22].

Proposition 2.1 ([8, Chapter 2, Proposition 7.10]). Let X and Z be Banach spaces
and L : X Ñ Z a continuous linear operator. Then, Im L is a closed subspace of Z if
Codim Im L   8.

Recall the definition of a bounded operator, even when this operator is not
necessarily linear.

Definition 2.5. Let Ω � X be any subset of X. An operator N : Ω Ñ Z (not necessarily
linear) between Banach spaces is said to be bounded if it maps bounded sets into bounded
sets, i.e., NpAq is bounded for every A � Ω bounded.

The following definition sets apart an important class of operators which play
a major role in the future developments on this thesis.
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Definition 2.6 ([8, Chapter 8]). An operator F : Ω Ñ Z is said to be completely continuous
if it is continuous and such that for each bounded set B � Ω, the set F pBq is relatively
compact.

The next Theorem tells us that the composition of a completely continuous
map with a continuous one is still completely continuous.

Theorem 2.2 ([8]). Let X, Y, Z be Banach spaces, Ω � X any subset of X, K : Ω Ñ Y a
completely continuous operator and F : Y Ñ Z any continuous map. Then, F �K : Ω Ñ Z

is a completely continuous.

2.1.3 Fredholm operators

In this subsection, we give a definition for Fredholm operators of index zero
and discuss some facts associated to them.

Here we introduce a key notion for our exposition.

Definition 2.7 (Fredholm Operator, [8]). Let X and Z be real Banach spaces. We say
that L : dom L � X Ñ Z is a Fredholm operator if Im L is closed subspace of Z and
dim Ker L and dim Coker L are finite.

Associated to every Fredholm operator there is the concept of index which we
define below.

Definition 2.8 (Index of a Fredholm Operator, [8]). We define the Fredholm index of L
as Ind L � dim Ker L� dim Coker L.

In this work, we are going to work only with Fredholm operators of index
zero, that is, dim Ker L � dim Coker L. It is known from linear algebra that one can
always complement a space using the quotient space, see [14]. In particular, Z � Im L`
pZ{Im Lq � Im L` Coker L. In the case of a Fredholm operator of index zero, Ker L is
isomorphic to Coker L, so that Z � Im L`Ker L. Thus, there exist continuous projectors
P : X Ñ X and Q : Z Ñ Z such that the sequence

X dom L Z ZP L Q (2.1)

is exact, which means that Im P � Ker L and Im L � Ker Q. Notice that, in particular,
Ker P X Ker L � t0u, because if x P Ker P X Ker L, then since Im P � Ker L, x � Py,

for some y P X, and since P is a projector and x P Ker P, 0 � Px � P 2y � Py � x.

Furthermore, X � Ker P `Ker L and Z � Im L` Im Q. Since Ker P XKer L � t0u, it
follows that L|Ker P is invertible. Define KP � L�1

|Ker P and KP,Q � KP pId�Qq. This last
operator can be thought of as a generalized inverse of L. Indeed, since L is not necessarily
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invertible, KP is only defined on the proper subset Im L of Z, so that the points of Z
lying outside of Im L are then projected onto Im L � Ker Q through Id�Q.

We finish this section with another key definition.

Definition 2.9 (L�Compact Operator, [12]). We say that the operator N : Ω Ñ Z

is L�Compact in Ω if ΠN : Ω Ñ Coker L is a continuous and bounded operator and
KP,QN : Ω Ñ X is completely continuous.

Assume that L is the identity map L � Id : X Ñ X and N : Ω � X Ñ X

is L�compact. First, notice that Ker L � t0u and Coker L � X{Im L � t0u, showing
that the identity map is a Fredholm operator of index zero. In this case, the canonical
projection, Π : Z Ñ Coker L, takes every element of Z to 0, so that Π � 0, the projection
P : X Ñ X must have the image equal to the kernel of L, which yields P � 0, and
the kernel of Q : Z Ñ Z must equal the image of L, thus Q � 0. Hence, ΠN � 0 and
KP,Q � �L|Ker P

��1 pId�Qq � Id. Hence, L�compactness of N when L � Id reduces to
N being completely continuous (Definition 2.6). Therefore, the concept of L�compactness
generalizes that of complete continuity.

The pair pL,Nq where L is a linear Fredholm operator of index zero and N is
L�compact is a fundamental piece in the development of the main contributions of this
work and the role they play will become clear in Section 2.5 and even clearer in Chapter 3
and Chapter 4.

2.2 Essentials of measure theory
In this section, we enlist some definitions and results that will be used in

Chapter 4 where the Carathéodory equations will be studied. The results present in this
section can be found in the classical references on measure theory, for example [2, 10, 28].

Unless otherwise mentioned, in this section pX,µq denotes a measure space
and Y a topological space.

We start by the basic concept of a measurable function.

Definition 2.10 ([28]). A function f : X Ñ Y is said to be measurable if f�1pW q is a
measurable set of X for every open set W � Y.

The next proposition gives us a criterium to decide whether a given function is
measurable or not.
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Proposition 2.2 ([2, Chapter 5]). If f : X Ñ Rn is measurable, g : X Ñ R is integrable
and |f | ¤ |g|, then f integrable and»

|f |dµ ¤
»
|g|dµ.

The next theorem is the celebrated Lebesgue dominated convergence Theorem,
which roughly speaking, gives us conditions under which the integral and limits signs can
be interchanged.

Theorem 2.3 (Dominated Convergence Theorem). Let pfmqmPN be a sequence of integrable
functions fm : X Ñ R which converges almost everywhere to a real-valued measurable
function f : X Ñ R. If there exists an integrable function g such that |fmpxq| ¤ |gpxq| for
almost every x P X and all m P N, then f is integrable and»

fdµ � lim
»
fmdµ.

We remark that if for each m P N, fm is an integrable function from the measure
space X into Rn, then fm � pfm1, . . . , fmnq, where each fmj : X Ñ R is an integrable
function. Then, for each j P t1, . . . , nu we have a sequence pfmjqmPN of real-valued functions.
Assuming that lim fmj � Fj almost everywhere in x P X for each j P t1, . . . , nu as mÑ 8.
If, in addition, for each j P t1, . . . , nu there exists an integrable real-valued function
gj : X Ñ R such that |fmjpxq| ¤ gjpxq for almost every x P X and every m P N, then
Theorem 2.3 can be applied to each sequence pfmjqmPN with gj and f � pF1, . . . , Fnq.
Hence the following is true:

Theorem 2.4. Let pfmqmPN be a sequence of integrable functions fm : X Ñ Rn which
converges almost everywhere to a measurable function f : X Ñ Rn. If there exists an
integrable function g such that |fmpxq| ¤ |gpxq| for almost every x P X and all m P N,
then f is integrable and »

fdµ � lim
»
fmdµ.

2.3 Some results on ordinary differential equations
Besides the well-known classical definitions of ordinary differential equations

and their solutions, in this subsection we comment on an extended notion of ordinary
differential equations and their solutions as well as provide existence and uniqueness results
for these extended differential equations. We point out that this other notion of differential
equation will be important when dealing with more general equations.

First, for completeness, let us recall the usual notion of solution of an ordinary
differential equation and the classical existence and uniqueness theorem.
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Consider the differential equation

x1 � fpt, x, εq, pt, x, εq P I �D � p�ε0, ε0q � R� Rn � R. (2.2)

Then, by adjoining the initial condition

xpt0q � x0 for some t0 P I and x0 P D (2.3)

to equation (2.2), we obtain what is called an initial value problem. A solution for the
initial value problem (2.2)-(2.3) is a C1 function φ : I0 � I Ñ Rn defined on an interval
I0 containing t0 such that

1. φpt0q � x0;

2. pt, φptqq P I �D for every t P I0; and

3. φ1ptq � fpt, φptq, εq for every t P I0.

It follows directly from the definition above that φ is a solution of equation
(2.2) if, and only if, it also satisfies the integral equation

φptq � x0 �
» t

t0

fps, φpsq, εqqds, for every t P I0.

Having that, we state the celebrated Picard-Lindelöf Theorem:

Theorem 2.5 (Picard-Lindelöf Theorem, [13]). Consider the initial value problem (2.2)-
(2.3). If f is a continuous function and locally Lipschitz in the second variable, then there
exists a unique solution φ for (2.2)-(2.3) for each tuple pt0, x0, εq P I �D � p�ε0, ε0q.

In many applications, the above setting is adequate because the function f

is smooth, thus, having continuous derivatives in both t, x and ε, so that f meets the
hypotheses of Theorem 2.5. However, there are applications where the right-hand side
of equation (2.2) is either not Lipschitz in x (as for instance in [11]) or continuous in t

(see [3, Theorem 5.1.1]), or neither (see [25]). When the right-hand side of the differential
equation (2.2) is continuous but lacks the Lipschitz property, we know that solutions exist,
even though it is not guaranteed that they are unique.

The case where the differential equation (2.2) is not continuous may appear in
many different fashions. In this work, we consider the case where fpt, x, εq is continuous
in the px, εq variables for most of the values of t and may have some discontinuities in
the variable t for fixed px, εq. We shall elaborate on this in the sequel. An interesting fact,
however, is that it is still possible to guarantee existence of solutions and even uniqueness,
in some cases.
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A central concept in this discussion is that of a Carathéodory function. These
functions play a major role in this work, since Chapter 4 is entirely devoted to the study
of the differential equations whose right-hand sides are Carathéodory functions. As we
will see, this type of function may have discontinuities, but in some sense, not too many
of them.

Definition 2.11 ([7]). Let I � R be any open interval, D � Rn an open subset of Rn and
ε0 ¡ 0. We say that a function f : I �D � p�ε0, ε0q Ñ Rn is a Carathéodory function if
the following conditions are satisfied:

C.1 px, εq P D � p�ε0, ε0q ÞÑ fpt, x, εq is continuous for almost every t P I;

C.2 t P I ÞÑ fpt, x, εq is measurable for every px, εq P D � p�ε0, ε0q;

C.3 for each r ¡ 0, there exists a positive integrable function gr : I Ñ R such that for
almost every t P I, |fpt, x, εq| ¤ grptq whenever |px, εq| ¤ r.

The following result will allow us to decide whether some functions are
Carathéodory.

Proposition 2.3. Let F : I �D � p�ε0, ε0q � R� Rn � RÑ R be such that

F pt, x, εq � pptqhpx, εq,

where p : I Ñ R is a measurable function and h : D � p�ε0, ε0q Ñ R is continuous. If
there exists a positive integrable function g : I Ñ R such that

|pptq| ¤ gptq,

for every t P I, then, F is a Carathéodory function.

Proof. We will check that F satisfies the conditions C.1–C.3. For each t P I fixed, F pt, �, �q
is a constant times h, thus it is continuous. So, C.1 holds. For each px, εq P D � p�ε0, ε0q
fixed, F p�, x, εq is a constant times p, thus it is measurable. Hence, C.2 holds. Given r ¡ 0,
define gr : I Ñ R by setting

grptq � gptq supt|hpx, εq| : px, εq P Bp0, rq XDu.

Then, gr is a positive integrable function and

|F pt, x, εq| � |pptqhpx, εq| ¤ grptq,

for every px, εq P D � p�ε0, ε0q such that |px, εq|   r and every t P I. Thus, C.3 holds. It
follows that F is a Carathéodory function.
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Example 2.1. Consider the function F : r0, 2πs � p0,�8q Ñ R given by

F pθ, rq � sin θ sgnpsin θq 3
?
r2 � 1.

Notice that this function can be written as F pθ, rq � ppθqhprq, where ppθq � sin θ sgnpsin θq
and hprq � 3

?
r2 � 1. We have that p is an integrable and bounded function and h is

continuous. Thus, taking g � |p|, by Proposition 2.3 it follows that F is a Carathéodory
function.

Example 2.2. Consider F : r0, 2πs � p0,�8q Ñ R given by

F pθ, rq � sin θ sgnpsin θq sgn
�
r2 � 1

�
max

"
0,
�
r2 � 1

4


�
r2 � 9

4


*
.

This function can also be written as F pθ, rq � ppθqhprq, with ppθq � sin θ sgnpsin θq and

hprq � sgn
�
r2 � 1

�
max

"
0,
�
r2 � 1

4


�
r2 � 9

4


*
. The function p is the same used in

the previous example and it is integrable and bounded. On the other hand, h can be proved
to be continuous for r ¡ 0. Indeed, the only issue we might have is at r � 1. Notice that
hp1q � 0, since sgnp0q � 0. Taking r P r3{4, 5{4s � p1{2, 3{2q, we see that hprq � 0, which
shows that h is continuous on r3{4, 5{4s and, in particular, at r � 1. By Proposition 2.3,
it follows that F is a Carathéodory function.

For the sake of completeness, we recall the definition of an absolutely continuous
function.

Definition 2.12 ([10, Chapter 3]). A function φ : I Ñ Rn is said to be an absolutely
continuous function if for every ε ¡ 0 there exists δ ¡ 0 such that for any finite collection
of closed disjoint intervals traj, bjs : aj   bjuj�1,...,m contained in I,

m̧

j�1
|bj � aj|   δ

implies
m̧

j�1
|φpbjq � φpajq|   ε.

A useful characterization of absolute continuity is the following theorem:

Theorem 2.6 ([10, Chapter 3]). A function φ : ra, bs Ñ Rn is absolutely continuous if,
and only if, for every t P ra, bs

φptq � φpaq �
» t

a

fpsqds

for some integrable function f : ra, bs Ñ Rn.
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From the above theorem, it is straightforward that an absolutely continuous
function has derivatives for almost every point in its domain.

In the sequel, we extend our notion of solution for differential equations.

Definition 2.13 ([7, Chapter 2]). A function φ : I0 � I Ñ Rn is a solution of (2.2) in
the extended sense if it is an absolutely continuous function satisfying

1. pt, φptqq P I0 �D for every t P I0; and

2. φ1ptq � fpt, φptq, εq for almost every t P I0.

Note that just like before, the second condition in the above definition is
equivalent to

φptq � φpt0q �
» t

t0

fps, φpsq, εqds, for every t P I0.

Let A � rt0 � τ, t0 � τ s � Bpx0, ξq � r�ε1, ε1s, where t0 P I0, τ ¡ 0, ξ ¡ 0 and
0   ε1   ε0 such that A � I �D � p�ε0, ε0q. The following theorem assures the existence
of solutions in the extended sense (Definition 2.13) for equation (2.2) in A.

Theorem 2.7 ([7, Chapter 2]). Let f be defined in A and assume that it satisfies the
Carathéodory conditions C.1–C.3. Then there exists a solution φ of the initial value problem
(2.2)–(2.3) in the extended sense defined on some interval rt0 � β, t0 � βs, with 0   β ¤ τ.

Henceforth, we drop the term “in the extended sense”, since it shall always be
clear what type of solution we will be talking about in each context.

An important fact to establish about the solutions of Carathéodory differential
equations is that they can be continued to maximal solutions in their domain of definition.

Theorem 2.8 ([9, Chapter 1]). Let V � Rn be a bounded open set such that V � D and
x0 P V. If f satisfies the Carathéodory condition, then any solution of initial value problem
(2.2)-(2.3) can be continued on both sides up to the boundary of V.

Although Carathéodory differential equations are a lot less regular than con-
tinuous ones, it is still possible to provide uniqueness results, so that one could try and
follow the approach of studying the Poincaré map. One way to do that is requiring some
sort of Lipschitz condition as shown in the following theorem.

Theorem 2.9 ([9, Chapter 1]). Assume that there exists an integrable function l : I Ñ R
such that for each pt, x, εq and pt, y, εq in I �D � p�ε0, ε0q the following relation holds

|fpt, x, εq � fpt, y, εq| ¤ lptq|x� y|.
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Then there exists at most one solution of the initial value problem (2.2)-(2.3) in I �D �
p�ε0, ε0q.

However, we are not that interested in having uniqueness of solutions, since we
are able to provide a framework where this property is no longer necessary. In Chapter 4
we shall discuss in more detail the intricacies involved in dealing with Carathéodory
differential equations.

2.4 Brouwer degree
In this section we present one of the central tools used to establish the results

in this thesis.

As previously discussed in the Introduction, the study of periodic solutions
of differential equations through zeroes of the Poincaré map works just fine when the
right-hand side, and consequently the Poincaré map, of the differential equation is smooth,
since the device used is the Implicit Function Theorem. However, if smoothness of the
Poincaré map cannot be assured, the analysis could be compromised.

This is the point where the Brouwer degree comes into play. Roughly speaking,
the Brouwer degree indicates whether there is a zero of a function in a certain domain or
not. Thus, in practice, using the Brouwer degree, one can arrive at the same conclusions
as those discussed in the Introduction without the use of the Implicit Function Theorem.

Consider the equation

fpxq � y0, x P V, (2.4)

where f : V � Rn Ñ Rm is a continuous function defined on the closure of the open and
bounded subset V of Rn and y0 P Rm is an arbitrary constant vector.

The Brouwer degree is a function, denoted dB, that assigns to every admissible
triple pf, V, y0q (Definition 2.14) an integer, dBpf, V, y0q, which gives information about
the existence of solutions of equation (2.4).

Definition 2.14. Consider a function f : X Ñ Y, an open bounded subset V of X such
that V � X, and a point y0 P Y . The triple pf, V, y0q is said to be admissible if f is
continuous and y0 R fpBV q.

The Brouwer degree is defined as the only integer-valued function satisfying
the properties in the following theorem (see [4, 8]).

Theorem 2.10 ([8, Chapter 1]). Let X � Rn � Y for some positive integer n, f : V �
X Ñ Y a continuous function on V , where V is a bounded open subset of X and y0 P Y
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such that pf, V, y0q is admissible. For each triple pf, V, y0q there corresponds an integer
dBpf, V, y0q satisfying the following conditions:

B.1 If dBpf, V, y0q � 0, then y0 P fpV q. Furthermore, if f0 : X Ñ Y is the identity
function of X onto Y , then for any bounded open subset V � X we have

dBpf0|V , V, y0q � 1.

B.2 (Additivity) If V1, V2 � V are disjoint open subsets of V such that y0 R fpV zpV1YV2qq,
then

dBpf, V, y0q � dBpf|V1 , V1, y0q � dBpf|V2 , V2, y0q.

B.3 (Invariance under Homotopy) Consider a homotopy tft : V Ñ Y |t P r0, 1su. Let
tyt P Y |t P r0, 1su be a continuous curve in Y such that yt R ftpBV q, @t P r0, 1s. Then
dBpft, V, ytq is constant in t.

Observe that B.1 is the raison d’être of the Brouwer degree. It tells us, in
particular, that when dBpf, V, y0q � 0 there exists at least one solution of equation (2.4)
in V.

On the other hand, B.2 and B.3 are more computational properties. The former
stating that the calculation of the Brouwer degree can be broken into smaller domains,
whereas the latter says that as long as you can continuously deform one function into
another in a way that zeroes do not escape nor enter through the boundary of V the
Brouwer degree remains constant.

Example 2.3. As an example, consider a differentiable function f : D � Rn Ñ Rn defined
on the open and bounded set D. If we assume that det f 1pxq � 0, for every x P f�1py0q,
then the Brouwer degree for this class of functions is given by

dBpf,D, y0q �
¸

xPf�1py0q

sgn det f 1pxq.

Note that if f is invertible, there exists only one solution for fpxq � y0, given by
x0 � f�1py0q and dBpf,D, y0q � �1, depending on whether f 1px0q preserves or reverses
orientation.

Although the Brouwer degree can be calculated for any smooth function as
shown above, its usefulness comes from the fact that the function does not need to be
differentiable, only continuous. The next examples illustrate this possibility through the
use of the property of invariance under homotopies.

Before we go through the examples, we provide a technical result that will aid
us in analysing them. For real functions defined on intervals, we can explicitly calculate
the Brouwer degree according to the next lemma.
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Lemma 2.1. Let a, b be real numbers such that a   b and f : ra, bs Ñ R be a continuous
function. If fpaqfpbq   0, then dBpf, ra, bs, 0q � sgnpfpbq � fpaqq.

Proof. Indeed, let g : ra, bs Ñ R be the function whose graph is the straight line connecting
the points pa, fpaqq and pb, fpbqq, i.e.,

gpxq � fpaq � fpbq � fpaq
b� a

px� aq.

Notice that gpaq � fpaq, gpbq � fpbq and since g is a smooth function, by Example 2.3 we
get

dBpg, ra, bs, 0q � sgnpg1px�qq � sgn
�
fpbq � fpaq

b� a



� sgnpfpbq � fpaqq,

where x� is the unique zero of g in the interval ra, bs, which exists since fpaqfpbq   0.
Define the homotopy H : ra, bs � r0, 1s Ñ R by setting

Hpx, tq � p1� tqfpxq � tgpxq.

First of all, H is clearly a continuous function. Moreover, Hpx, 0q � fpxq, Hpx, 1q � gpxq for
every x P ra, bs, Hpa, tq � fpaq and Hpb, tq � fpbq for every t P r0, 1s, so that Hpx, tq � 0
for every x P Bra, bs � ta, bu and every t P r0, 1s. Hence by property B.3 of invariance
under homotopies, it follows that dBpHp�, tq, ra, bs, 0q is constant in t. Thus,

dBpf, ra, bs, 0q � dBpHp�, 0q, ra, bs, 0q � dBpHp�, 1q, ra, bs, 0q � dBpg, ra, bs, 0q
� sgnpfpbq � fpaqq,

as desired.

As an application of this lemma, we work out explicitly the Brouwer degree of
some functions.

Example 2.4. Let f : r0, 2s Ñ R be defined by

fprq � r 3
?

1� r2

2 .

Observe that f is not differentiable at r� � 1, which is a zero of f, see Figure 1. Therefore,
we cannot apply the formula in Example 2.3 to calculate its Brouwer degree. On the other
hand, since fprq ¡ 0 for 0   r   1 and fprq   0 for r ¡ 1, it follows from Lemma 2.1
that for any subinterval rr1, r2s � r0, 2s such that 0   r1   1   r2 ¤ 2,

dBpf, rr1, r2s, 0q � sgnpfpr2q � fpr1qq � �1.
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f(r)

Figure 1 – The graph of fprq � r 3
?
r2 � 1
2 .

As we mentioned in Chapter 1, the Brouwer degree arises as a natural tool to
replace the hypothesis on the derivative of the Melnikov function which allows one to apply
the Implicit Function Theorem. The condition of some x0 being a simple zero of, say, Mℓ,

that is, Mℓpx0q � 0 and detDMℓpx0q � 0 in particular guarantees that x0 is an isolated
zero of Mℓ. So, even when Mℓ is a smooth function, the Implicit Function Theorem cannot
be directly applied if its zeroes are not isolated. The Brouwer degree also covers this case.

The next example illustrates the case where the set f�1p0q is a continuum.

Example 2.5. Consider the function f : r0, 2s Ñ R

fprq � 2
π

sgn
�
1� r2�max

"
0,
�
r2 � 1

4


�
r2 � 9

4


*
,

whose graph is shown in Figure 2. From Lemma 2.1 follows that for any interval rr1, r2s �
r0, 2s such that 0 ¤ r1   1{2 and 3{2   r2 ¤ 2,

dBpf, rr1, r2s, 0q � sgnpfp2q � fp0qq � �1.

A handy property of the Brouwer degree is presented in the following proposition.
It tells us that the calculation of the Brouwer degree may be carried out in a smaller
domain provided there is no solution for the equation fpxq � y0 outside this domain. It is
actually a direct consequence of B.2 by taking V2 � H and declaring that the Brouwer
degree over the empty set is zero, which is a fairly reasonable convention.

Proposition 2.4 (Excision Property, [8, Chapter 1]). Let f : V Ñ Y be as in the above
theorem. If V1 � V is open and y0 R fpV zV1q, then

dBpf, V, y0q � dBpf|V1 , V1, y0q.
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Figure 2 – The graph of fprq � � 2
π

sgn
�
1� r2�max

"
0,
�
r2 � 1

4


�
r2 � 9

4


*
.

The Brouwer degree also possesses the property of being constant in a neigh-
bourhood of the function.

Proposition 2.5 (Local constancy, [8, Theorem 3.1 (d5)]). dBpg, V, y0q � dBpf, V, y0q
for every continuous function g : V Ñ Rn such that |g � f | � sup

xPV

|fpxq � gpxq|  
dist py0, fpBV qq.

The next proposition is another invariance result of the Brouwer degree, which
says that for a family of functions depending on a small parameter, the Brouwer degree
does not vary.

Proposition 2.6 ([6]). Let V be an open bounded subset of Rm. Consider the continuous
functions fi : V Ñ Rn, i � 0, 1, � � � , k, and f, g, r : V � r0, ε0s Ñ Rn given by

gpz, εq � f0pzq � εf1pzq � � � � � εkfkpzq and fpz, εq � gpz, εq � εk�1rpz, εq.
Let Vε � V, R � maxt|rpz, εq| : pz, εq P V � r0, ε0su and assume that |gpz, εq| ¡ R|ε|k�1

for all z P BVε and ε P p0, ε0s. Then, for each ε P p0, ε0s we have dB pfp�, εq, Vε, 0q �
dB pgp�, εq, Vε, 0q .

2.5 Continuation theorem
In this section we introduce a key result. As we shall see in the next chapters,

the study of the periodic solutions of differential equations will be undertaken by means
of the analysis of associated operator equations in some suitable Banach space. Then it is
essential to build some knowledge on the theory of operator equations in Banach spaces.

Let X and Z be real Banach spaces, L be a continuous linear Fredholm operator
of index zero and N be continuous L�compact operator defined on Ω� r0, 1s, where Ω is
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an open and bounded subset of X. Then, the next theorem gives us sufficient conditions
for the existence of solutions of the operator equation

Lx � λNpx, λq, x P Ω. (2.5)

Theorem 2.11 ([12, Chapter 4]). Suppose L : dom L � X Ñ Z is a linear Fredholm
operator of index zero, and that N : Ω � r0, 1s � X � R Ñ Z is L�compact on Ω. If
Q : Z Ñ Z is a continuous projector such that Im L � Ker Q, J : Im Q Ñ Ker L is an
isomorphism and

A.1 Lx � λNpx, λq, for every x P pdom LX BΩq � p0, 1q;

A.2 QNpx, 0q � 0, for each x P Ker LX BΩ.

Moreover, if

dBpJQNp�, 0q|Ker LXBΩ,Ker LX BΩ, 0q � 0,

then equation (2.5) with λ P r0, 1q

Lx � λNpx, λq, x P Ω,

has at least one solution on Ω and

Lx � Npx, 1q, x P Ω,

has at least one solution on Ω.

Although in this work, we shall not discuss all the intricate details of the proof
of such theorem, it is worth mentioning a few facts about it. The proof of this theorem
relies on the theory of the coincidence degree (see Theorem 2.13 below) developed by
J. Mawhin in [21] (see also [12] for a systematic development of the theory and further
properties and consequences).

2.5.1 Some comments on degree theory in infinite dimensions

In this subsection, we discuss some topics about the inner workings of Theo-
rem 2.11, although we do not prove it. It is intended for the reader to have a better grasp
of the techniques used in this work.

The coincidence degree is indeed a degree function since it satisfies properties
that are very similar to B.1–B.3 of the Brouwer degree. Its definition involves the notion
of Leray-Schauder degree, which is a generalization of the Brouwer degree for compact
perturbations of the identity defined on infinite dimensional vector spaces. Indeed, we
have the following theorem
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Theorem 2.12 ([8, Theorem 8.1]). Let X be a real Banach space and

T � tpId�M,Ω, yq : Ω � X open bounded, M compact on Ω and y R pId�MqpBΩqu.

Then there exists exactly one function dLS : T Ñ Z, the Leray-Schauder degree, satisfying

LS.1 If dLSpId �M,Ω, yq � 0, then y P pId �MqpΩq. Moreover, dLSpId,Ω, yq � 1 for
every y P Ω;

LS.2 dLSpId �M,Ω, yq � dLSpId �M,Ω1, yq � dLSpId �M,Ω2, yq, whenever Ω1 and Ω2

are disjoint open subsets of Ω such that y R pId�MqpΩzpΩ1 Y Ω2qq;

LS.3 dLSpId�Hpt, �q,Ω, yptqq is independent of t P r0, 1s whenever H : r0, 1s � Ω Ñ X is
compact on r0, 1s � Ω, y : r0, 1s Ñ X is continuous and yptq R pId�Hpt, �qqpBΩq on
r0, 1s.

The integer dLSpId �M,Ω, yq is given by dBppId �M1q|Ω1 ,Ω1, yq, where M1 : Ω Ñ X is
any compact map such that M1pΩq � X1 with X1 any subspace of X such that dimX1  
8, y P X1, sup

xPΩ
|M1x�Mx|   dist py, pId�MqpBΩqq and Ω1 � ΩXX1.

Notice that the Leray-Schauder degree is obtained by approximating the original
operator M by an operator M1 whose image lies in a finite dimensional subspace of X
and calculating the Brouwer degree of this approximating operator. The main property of
this degree is LS.1, which asserts that whenever dLSpId �M, yq � 0, there exists x P Ω
such that pId�Mqx � y. Notice, in particular, that if y � 0, then dLSpId�M,Ω, 0q � 0
implies that x �Mx, so that x is a fixed point of M.

Now, consider the operator equation

Lx � Nx, x P Ω, (2.6)

where L : dom L � X Ñ Z and N : Ω � X Ñ Z are a linear Fredholm operator of
index zero and an L�compact operator, respectively, with X a Banach space, dom L

a subspace of X and Ω an open and bounded subset of X. Using the same notation as
in Subsection 2.1.3, in [12, Chapter 3] it is shown that the set of solutions of equation
(2.6) is equal to the set of fixed points of the operator M � P � pΛΠ �KP,QqN, where
Λ : Coker LÑ Ker L is an isomorphism. Moreover, being L a linear Fredholm operator
of index zero, N an L�compact operator and if 0 R pL � NqpBΩq, then M is compact
and the coincidence degree of the pair pL,Nq with respect to Ω, denoted dppL,Nq,Ωq, is
defined by

dppL,Nq,Ωq � dLSpId�M,Ω, 0q.

Thus, by using the properties of the Leray-Schauder degree we have the following theorem.
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Theorem 2.13 ([12, Chapter 3]). Let L : dom L � X Ñ Z be a linear Fredholm operator
of index 0 and N : Ω � X Ñ Z be an L�compact operator in Ω, where Ω is an open and
bounded subset of X and 0 R pL�NqpBΩq. Then

CD.1 If dppL,Nq,Ωq � 0, then there exists x P dom LX Ω such that Lx � Nx.

CD.2 dppL,Nq,Ωq � dppL,Nq,Ω1q � dppL,Nq,Ω2q. whenever Ω1 and Ω2 are disjoint open
subsets of Ω such that 0 R pL�NqpΩzpΩ1 Y Ω2qq.

CD.3 dppL, Ñp�, λqq,Ωq is independent of λ P r0, 1s whenever Ñ : Ω � r0, 1s Ñ Z is
continuous and L�compact on Ω� r0, 1s and 0 R pL� Ñp�, λqqpBΩq, @λ P r0, 1s.

The main property of this degree is CD.1 which asserts that if dppL,Nq,Ωq � 0,
then there is at least one solution of equation (2.5) in Ω, as in LS.1 and B.1.

Continuation theorems like Theorem 2.11 are usually proved using an L�com-
pact homotopy Hpλ, xq where λ P r0, 1s. Generally, for λ � 0, Hp0, xq is simple and one
can prove that dppL,Hp0, �qq,Ωq � dBpJQNp�, 0q|Ker LXΩ,Ker LXΩ, 0q � 0, then by CD.3,
it follows that dppL,Npλ, �qq,Ωq is constant in λ which in turn guarantees the existence of
solution for the desired equation.

2.5.2 The boundary condition

Our aim in this subsection is to bring some familiarity with this condition. We
shall carry out a more detailed discussion thereon in the next chapter where, in fact, we
provide an equivalent formulation for it in the particular context we are mostly interested
in. So here we make a few general comments.

We start by pointing out that the condition 0 R pL�NqpBΩq is indispensable
in this framework. In words, it signifies that there is no solution of the operator equation
(2.5) that lies in the boundary of Ω. Comparing this condition with A.1 in Theorem 2.11,
we see that it is the same condition except that in A.1, Ker L is excluded, but this is
a technical detail that should not obscure our analysis. As a matter of fact, this case is
treated in A.2. This hypothesis is very important to guarantee that the coincidence degree
dppL,Nq,Ωq exists in the first place. Accordingly, it becomes important in this work in
order to be able to apply the previous theorem.

It should be reinforced that requiring this condition in this context is just as
natural as requiring that y0 R fpBV q when defining the Brouwer degree, Theorem 2.10.
What we should keep in mind, however, is that in the context of infinite dimensional
function spaces, the consequences of a condition like this can sometimes be surprising.
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3 Averaging Theory for Periodic Solutions in
Continuous Differential Systems

Periodic solutions in ordinary differential equations hold a central place in
the understanding of dynamical systems, offering valuable insights into their behaviour.
The Averaging method, a well-established tool, has played a crucial role in analysing
differential equations with smooth right-hand sides. However, many real-world systems
exhibit non-Lipschitz non-linearities, challenging the conventional applicability of the
Averaging method.

Considerable progress has been achieved in extending the Averaging method
to address Lipschitz differential equations and, notably, Piecewise Lipschitz differential
equations. These developments have significantly augmented our comprehension of periodic
solutions within specific system classes and order of perturbation, such as first order
Lipschitz systems [5], arbitrary order in both Lipschitz systems [20] and piecewise Lipschitz
systems [18]. However, a critical void persists in the examination of continuous non-Lipschitz
differential perturbations of any order. The present chapter takes on the challenge of
elucidating this hitherto unexplored territory, focusing on scenarios where the right-hand
sides lack Lipschitz continuity. By applying the degree theory for operator equations on
suitable function spaces, our objective is to contribute a pivotal segment to the evolving
framework of Averaging theory, expanding its applicability across a broader range of
differential equations, thereby augmenting the analytical toolkit for comprehending the
dynamics of diverse systems.

This chapter introduces an extension of the Averaging method to address the
challenges posed by differential equations with continuous but non-Lipschitz right-hand
sides. The absence of Lipschitz continuity introduces difficulties, particularly regarding the
uniqueness of solutions, necessitating novel analytical approaches. Our primary objectives
in this chapter are to carry on an analysis for a very general setting and, as a consequence,
derive new results for detecting periodic solutions that generalize those in [5, 20].

The theorems present in this chapter are published on [27].

3.1 Setting up
The starting point of our analysis is the general differential equation in the

standard form of the averaging method. Thus, consider the following equation

x1 � εF pt, x, εq, (3.1)
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where F : I �D � r0, ε0s � R� Rn � RÑ Rn is a continuous function T�periodic in the
variable t, with D being an open subset of Rn and ε0 ¡ 0.

Building upon the insights gained from equation (3.1), we derive profound
results that extend beyond the general formulation. A notable case arises in the specific
form

x1 � εF pt, x, εq � εF1pt, xq � � � � � εkFkpt, xq � εk�1Rpt, x, εq, (3.2)

where Fi : R �D Ñ Rn, for i P t1, . . . , ku, and R : R �D � r0, ε0s Ñ Rn are continuous
functions T�periodic in the variable t.

This equation represents a distinctive instance, where the terms F1, . . . , Fk

characterize the system’s behaviour, whereas the remainder term R encapsulates higher-
order effects. Crucially, equation (3.2) emerges as a particular but highly significant case
within the broader framework of equation (3.1). Despite its specificity, equation (3.2) often
proves more amenable to analytical treatment, making it a key focal point in various
practical applications.

3.2 Formulating the associated operator equation Lx � Npx, εq

The approach adopted to demonstrate the existence of periodic solutions in
differential equations, where the assurance of solution uniqueness is not guaranteed, involves
a strategic transformation. We convert the original equation into an operator equation
and leverage the tools of functional analysis, more specifically degree theory for operator
equations, to employ effective methods for our analysis. This methodological shift enables
a comprehensive exploration of the existence of periodic solutions, providing valuable
insights into the dynamic behaviour of the system.

As discussed in Section 2.3, given the differential equation equation (3.1), a
continuously differentiable function x : I � RÑ Rn is a solution for that equation if, and
only if, it satisfies the integral equation

xptq � xp0q �
» t

0
εF ps, xpsq, εqds, @ t P I. (3.3)

In this work we denote by Cr0, T s the set of all continuous paths x : r0, T s Ñ Rn

endowed with the sup�norm. We point out that Cr0, T s with this norm is a real Banach
space. Now, we define two subspaces of Cr0, T s which play a fundamental role in what
follows. Thus, let X and Z be given by

X � tx P Cr0, T s : xp0q � xpT qu, Z � tx P Cr0, T s : xp0q � 0u

and note that X and Z are also real Banach spaces. These will be our ambient spaces. We
must consider now an adequate subset of X for the solutions of the new problem we are
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about to define to lie in. Hence, for some open bounded subset V � Rn satisfying V � D

we consider the set

Ω � tx P X : xptq P V, @t P r0, T su. (3.4)

Let us now define the operators L : X Ñ Z and N : Ω� r0, ε0s Ñ Z by setting

Lxptq � xptq � xp0q and Npx, εqptq �
» t

0
εF ps, xpsq, εqds, @ t P r0, T s. (3.5)

Now taking into account equation (3.3) and equation (3.5), a function x P
Cr0, T s is a T�periodic solution of equation (3.1) if, and only if, it is a solution of the
operator equation

Lx � Npx, εq, x P Ω. (3.6)

3.3 Some properties of L and N
Now that we have already established the equivalence between obtaining

periodic solutions of equation (3.1) and solving an operator equation, our efforts must go
in the direction of guaranteeing the existence of solutions for the latter type of equation.
In order to do that, we must verify that L and N meet some minimal requirements. The
whole point of this change of perspective is to be able to use Theorem 2.11 as a way
to ensure the existence of solutions for equation (3.6). For this we prove some essential
properties of L and N in the sequel.

We begin by showing that Ω defined in (3.4) is an open and bounded subset of
X.

Proposition 3.1. Ω is an open and bounded subset of X.

Proof. To show that Ω is open, we take an element x0 P Ω, then x0ptq P V, @ t P r0, T s.
For each t P r0, T s, let δt ¡ 0 be such that the open ball around x0ptq of radius δt is
completely inside of V. This is possible since V is open. In this way, we get an open
covering tBpx0ptq, δtq : t P r0, T su of tx0ptq : t P r0, T su, which is a compact set and
therefore, we can extract a finite subcovering tBpx0ptiq, δti

q : i � 1, . . . ,mu. Now take
δ   mintδ1, . . . , δmu such that T � YtPr0,T sBpx0ptq, δq � V. Now consider the set Ψ of
all functions x : r0, T s Ñ Rn in X such that xptq P T . Clearly, Ψ � Ω and the open
ball around x0 of radius δ, Bpx0, δq � tx P X : sup

tPr0,T s
|xptq � x0ptq|   δu, is contained in

Ψ. This shows that Ω is open. On the other hand, since V is a bounded subset of Rn,

there exists a constant M ¡ 0, such that V � Bp0,Mq. Given any element of Ω, say x,
we have xptq P V, @ t P r0, T s and hence ∥x∥ � sup

tPr0,T s
|xptq| ¤ M, which shows that Ω is

bounded.
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Let us quickly verify that L is a well defined linear operator. For any x P X
we notice that Lx is just a translation of x, so that Lx is continuous and, in addition,
Lxp0q � xp0q � xp0q � 0 which implies that Lx P Z. Furthermore, given x1, x2 P X and
any c P R,

Lpx1 � cx2qptq � px1 � cx2qptq � px1 � cx2qp0q � px1ptq � x1p0qq � cpx2ptq � x2p0qq
� Lx1ptq � cLx2ptq,

for every t P r0, T s, showing that Lpx1 � cx2q � Lx1 � cLx2, thus L is linear. Moreover, L
is a bounded, therefore continuous, operator, since

||Lx|| � sup
tPr0,T s

|Lxptq| � sup
tPr0,T s

|xptq � xp0q| ¤ sup
tPr0,T s

p|xptq| � |xp0q|q ¤ 2||x||.

It takes a little more effort to prove that N is well defined and continuous since
it is not a linear operator. So we put these facts in a proposition.

Proposition 3.2. N is a well defined continuous operator.

Proof. Note that since F is continuous, then Npx, εq is a continuous function of t and
that Npx, εqp0q � 0, for every px, εq P Ω� r0, ε0s so that Npx, εq P Z. Now to see that it is
continuous, fix x P X and ε P r0, ε0s, and consider a sequence tpxm, εmqumPN contained in
X � r0, ε0s converging to px, εq. For each m P N define the function ∆m : r0, T s Ñ Rn by

∆mptq � εmF pt, xmptq, εmq � εF pt, xptq, εq.

Observe that ∆mptq Ñ 0 for every t P r0, T s. Since F is continuous on a compact set, it is
uniformly continuous and so is ∆m. Thus, in particular,

lim
mÑ8

» t

0
|∆mpsq|ds �

» t

0
lim

mÑ8
|∆mpsq|ds � 0, (3.7)

for every t P r0, T s. Now,

||Npxm, εmq �Npx, εq|| � sup
tPr0,T s

|Npxm, εmqptq �Npx, εqptq|

� sup
tPr0,T s

����
» t

0
εmF ps, xmpsq, εmqds�

» t

0
εF ps, xpsq, εqds

����
� sup

tPr0,T s

����
» t

0
εmF ps, xmpsq, εmq � εF ps, xpsq, εqds

����
¤ sup

tPr0,T s

» t

0
|εmF ps, xmpsq, εmq � εF ps, xpsq, εq| ds

¤
» T

0
|∆mpsq| ds.

By (3.7), it follows that Npxm, εmq Ñ Npx, εq, showing that N is continuous.
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We move on now to the more intricate properties. The definitions for each of
the properties we are about to check are all defined in Chapter 2.

We begin with the Fredholm property.

Lemma 3.1. The linear operator L : X Ñ X defined in equation (3.5) is a Fredholm
operator of index 0.

Proof. Indeed, we have

Ker L � tx P X : Lx � 0u � tx P X : xptq � xp0q, @ t P r0, T su,
that is, Ker L is the subspace of X consisting of constant paths. Hence, the map that
assigns to each z P Rn the constant function xptq � z is an isomorphism between Rn and
Ker L, so that the latter is a finite dimensional subspace of X and its dimension is n.
Furthermore, the subspace Coker L � Z{Im L is given by

Coker L � trus � u� Im L : u P Zu.
Two elements rus, rvs in Coker L are equal if and only u � v P Im L, which means that
there exists x P X such that u� v � Lx. In particular, evaluating at t � T, we obtain

pu� vqpT q � LxpT q ô upT q � vpT q � xpT q � xp0q � 0 ô upT q � vpT q.
In other words, rus � rvs if and only if upT q � vpT q. Conversely, if two functions u, v P Z
are such that upT q � vpT q, then Lpu� vqptq � pu� vqptq � pu� vqp0q � pu� vqptq, hence,
u� v P Im L. Therefore, each element of Coker L is completely determined by its value at
t � T so that Coker L is isomorphic to Rn. Hence, by Proposition 2.1, Im L is a closed
subspace of Z. Since Ker L and Coker L are both finite dimensional and have the same
dimension the proof is concluded.

The Fredholm property holds significant importance within our context. Its
possession of a finite-dimensional kernel becomes pivotal, as we will demonstrate later on.
This feature empowers us to extend treatments typically reserved for operators on finite-
dimensional spaces to those defined on infinite-dimensional counterparts. This extension
facilitates a more straightforward formulation of our results, streamlining the exposition
of our findings and enhancing the clarity and applicability of our theoretical framework.

As we saw in Chapter 2, since L is a linear Fredholm operator of index 0, there
exists continuous projectors P : X Ñ X and Q : Z Ñ Z such that the following sequence

X X Z ZP L Q (2.1)

is exact, meaning that Im P � Ker L and Im L � Ker Q. For our particular operator, we
explicit the choices for P and Q. Thus, let P : X Ñ X and Q : Z Ñ Z be given by

Pxptq � xp0q, Qyptq � t

T
ypT q, @ t P r0, T s. (3.8)
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We claim that these operators make (2.1) exact. That Im P � Ker L it is clear, since Ker L
consists of constant paths. On to the equality Im L � Ker Q, we note that Im L � X XZ,
that is, the closed paths in Rn starting and ending at the origin of the coordinate system.
On the other hand, an element y P Z is in Ker Q if, and only if, ypT q � 0. Consequently,
Im L � Ker Q. But since y P Z, it also holds that yp0q � 0. As a result, Ker Q � Im L,

therefore, Ker Q � Im L, as desired. We point out that for this framework it is known
([12]) that the particular choice of P and Q does not interfere in the validity of the results,
as long as the sequence (2.1) is exact.

Given these choices, notice that Ker P � tx P X : xp0q � 0u, so that the
restriction of L to Ker P is the identity operator. Therefore, it readily follows that
KP � Id, so that KP,Q � Id�Q.

In the sequel we prove that N is L�compact (Definition 2.9), which is where
the operators L and N connect.

Recall that we denote by Π : Z Ñ Coker L the canonical projection from Z

onto Coker L

Πpzq � rzs � z � Im L. (3.9)

As shown above, since Coker L � Rn and we can identify each element rys P Coker L
with the value of its representative at t � T, ypT q, we can think of the projection Π as
Πpyq � ypT q.

Next we prove L�compactness of the operator N (Definition 2.9) which is a
fundamental property for proving the a main theorems of this chapter.

Lemma 3.2. N : Ω� r0, ε0s Ñ Z is an L�compact operator on Ω for each ε P r0, ε0s.

Proof. For any px, εq P Ω � r0, ε0s, since Π is a continuous linear map, there exists a
constant C ¡ 0 such that

|ΠNpx, εq| ¤ C |Npx, εq| � C sup
tPr0,T s

����
» t

0
εF ps, xpsq, εqds

����
¤ C

» T

0
|εF ps, xpsq, εq| ds

¤ CT maxt|εF pt, z, εq| : pt, z, εq P r0, T s � V � r0, ε0su,

where the last inequality follows from the fact that F is continuous in the compact set
r0, T s �V � r0, ε0s. This shows that the image of the operator ΠN is a bounded set, which
implies that ΠN is a bounded operator.

Recall that KP,Q � Id�Q. Since KP,QN is composition of continuous operators,
then it is also continuous. Consider the family Λ � KP,QNpΩ� r0, ε0sq. To show that the
closure of Λ is compact, we use the Arzelá-Ascoli Theorem, Theorem 2.1. Hence, we must
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check that Λ is equicontinuous and uniformly bounded. Let y P Λ. Hence, there exist x P Ω
and ε P r0, ε0s such that

yptq � pId�QqNpx, εqptq � pId�Qq
�» t

0
εF ps, xpsq, εqds



.

For t, τ P r0, T s we have

|yptq � ypτq| � |pId�QqNpx, εqptq � pId�QqNpx, εqpτq|
¤ |Npx, εqptq �Npx, εqpτq � pQNpx, εqptq �QNpx, εqpτqq|

¤
����
» t

τ

εF ps, xpsq, εqds� t� τ

T

» T

0
εF ps, xpsq, εqds

���� .
Using the continuity of F in r0, T s � V � r0, ε0s, we conclude that M � maxt|εF pt, z, εq| :
pt, z, εq P r0, T s � V � r0, ε0su   8. It follows that

|yptq � ypτq| ¤
����
» t

τ

εF ps, xpsq, εqds� t� τ

T

» T

0
εF ps, xpsq, εqds

����
¤
» t

τ

|εF ps, xpsq, εq| ds�
����t� τ

T

����
» T

0
|εF ps, xpsq, εq| ds

¤ |t� τ |M � |t� τ |M
¤ 2M |t� τ |.

Notice that the constant M ¡ 0 does not depend on either x nor ε, consequently, it does
not depend on y. Thus, given ξ ¡ 0, whenever |t� τ |   ξ{p2Mq, we have |yptq� ypτq|   ξ.

Since y was taken arbitrarily in the family Λ it is then proved that Λ is an equicontinuous
family.

On the other hand, since F is continuous on the compact set r0, T s�V �r0, ε0s
it follows that

|yptq| � |pId�QqNpx, εq|
¤ |pId�Qq||Npx, εq|

�
����
» t

0
εF ps, xpsq, εqds

����
¤
» t

0
|εF ps, xpsq, εq| ds

¤ TM,

showing that Λ is uniformly bounded. Thus, by applying the Theorem of Arzelá-Ascoli, The-
orem 2.1, we conclude that the family has compact closure, implying the L�compactness
of N on Ω for every ε P r0, ε0s.
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3.4 The condition H
What we have proved so far provides the building blocks of our results. There

is, however, an important piece that is still missing, once we will use degree theory to
prove the theorems in the next section. When working with degree theory, we often come
across some type of boundary condition. This kind of condition is necessary for the theory
to work and usually does not imply a great compromise in generality. For instance, in
the case of the Brouwer degree, as we saw in Section 2.4, for the triple pf, V, y0q, where
f : V � Rn Ñ Rm is a continuous function defined on the closure of the open and bounded
subset V of Rn and y0 P Rm, one requires that y0 R fpBV q.

In our case, we recall that behind the curtains, the results proved here rely
on the theory of the coincidence degree, which is another degree function specialized in
operator equations such as equation (2.5). Therefore, we present now a condition that is
precisely the boundary condition associated to the coincidence degree, although at first it
might not look like so.

Given an open and bounded subset V of Rn, we say that the condition H holds
on V if

H. there exists ε1 P p0, ε0s such that, for each λ P p0, 1q and ε P p0, ε1s, any T -periodic
solution of the differential equation

x1 � ελF pt, x, εq, x P V , (3.10)

is entirely contained in V.

This condition looks abstract and hard to check. However, it can be verified by
a contradiction or contrapositive argument. In the sequel, we indicate how one proceeds to
verify this condition. Later on, in Chapter 6, we apply this argument to verify condition
H for a concrete example.

Proposition 3.3. If condition H does not hold on an open and bounded subset V of Rn,

then there exist sequences tεmumPN � p0, ε0s, tλmumPN P p0, 1q and txmumPN of T�periodic
solutions of equation (3.10) with εm Ñ 0 and xm Ñ z0 P BV uniformly on r0, T s such that

» T

0
F ps, z0, 0qds � 0. (3.11)

Proof. Assume that H does not hold on the open and bounded subset V of Rn. It follows
immediately that for every ε1 P p0, ε0s, there exist λ P p0, 1q, ε P p0, ε1s and a T�periodic
solution of the differential equation (3.10) with ε � εm and λ � λm

x1 � εmλmF pt, x, εmq, x P V , (3.12)
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for which there exists t P r0, T s such that xptq P BV. Equivalently, consider any sequence
tε̂mumPN, contained in p0, ε0s converging to 0. For every m P N, there exist λm P p0, 1q, εm P
p0, ε̂ms and a T�periodic solution xm : r0, T s Ñ Rn of equation (3.12) for which there
exists tm P r0, T s such that xmptmq P BV. Notice that since εm ¤ ε̂m, then necessarily
εm Ñ 0. Therefore, for each m P N

xmptq � xmp0q �
» t

0
εmF ps, xmpsq, εmqds.

By periodicity xmp0q � xmpT q, consequently» T

0
F ps, xmpsq, εmqds � 0. (3.13)

Consider the family Λ � txm : m P Nu. Given t, τ P r0, T s,

|xmptq � xmpτq| �
����xmp0q �

» t

0
εmλmF ps, xmpsq, εmqds

�xmp0q �
» τ

0
εmλmF ps, xmpsq, εmqds

����
�
����
» t

τ

εmλmF ps, xmpsq, εmqds
����

¤
» t

τ

|F ps, xmpsq, εmq| ds

¤ |t� τ |M,

where M ¡ 0 is the maximum of pt, z, εq ÞÑ |F pt, z, εq| on r0, T s�V �r0, ε0s, and therefore
does not depend upon xm itself. We conclude that Λ is an equicontinuous family of
functions. On the other hand, since V is a bounded set, there exists r ¡ 0 such that
V � Bp0, rq. Then, for each t P r0, T s, |xmptq|   r for every m P N, which shows that Λ is
a uniformly bounded family. Then, by Theorem 2.1 (Arzelá-Ascoli) it follows that there
exists a uniformly convergent subsequence of txmumPN, say txkmumPN. Since εm Ñ 0 and
F is uniformly continuous on the compact r0, T s � V � r0, ε0s, we conclude that

lim
mÑ0

xkmptq � lim
mÑ0

�
xkmp0q �

» t

0
εmF ps, xkmpsq, εmqds




� lim
mÑ0

xkmp0q �
» t

0
lim
mÑ0

εmF ps, xkmpsq, εmqds

� lim
mÑ0

xkmp0q � z0,

for some z0 P V . Thus, the limit of the sequence of functions xkm is a constant function.
Moreover, we claim that since each xm touches the boundary of V at some time t � tm,

then z0 must lie on BV. Indeed, if it were not so, that is, if z0 were an interior point of
V, then for ξ ¡ 0 sufficiently small, the ball Bpz0, ξq � V and since xkm Ñ z0, for m P N
large enough we would have xmptq P Bpz0, ξq, which contradicts xmptmq P BV. Thus, we
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must have z0 P BV. In addition, from equation (3.13) the uniform continuity of F and the
uniform convergence of xkm we obtain

0 � lim
mÑ8

» T

0
F ps, xkmpsq, εkmqds �

» T

0
lim

mÑ8
F ps, xkmpsq, εkmqds

�
» T

0
F
�
s, lim

mÑ8
xkmpsq, lim

mÑ8
εkm

	
ds

�
» T

0
F ps, z0, 0qds.

(3.14)

To move forward from this point it depends on the particular equation one
is dealing with. The aim of this discussion is to shed some light on the tractability of
condition H. As a way to show that this condition is not too restrictive, in the next
proposition, we prove that it is always valid for a class of differential equations.

Proposition 3.4. Assume that equation (3.1) can be written as

x1 � εF1pt, xq � ε2Rpt, x, εq, for pt, x, εq P r0, T s �D � r0, ε0s,

where F1 and R are continuous functions and T�periodic in t. Assume that

f1pzq � 1
T

» T

0
F1ps, zqds

has an isolated zero z�. If V � Rn is any neighbourhood of z� such that V � D and
f1pzq � 0, for every z P V ztz�u, then condition H holds on V.

Proof. Assume then that condition H does not hold on V. By the Proposition 3.3, it
follows that there exist sequences tεmumPN � p0, ε1s and txmumPN such that εm Ñ 0 as
mÑ 8, xm Ñ z0 P BV uniformly on r0, T s and» T

0
F ps, xmpsq, εmqds � 0,

for every m P N. Moreover, equation (3.14) implies

0 �
» T

0
F ps, z0, 0qds �

» T

0
F1ps, z0qds � Tf1pz0q,

contradicting f1pzq � 0 for every z P V ztz�u. Thus, condition H holds on V.

We finish this section with a last comment on how to verify that condition
H holds. Assume that the boundary of V, BV, is a smooth manifold. Intuitively, if the
solutions of equation (3.10) all hit the boundary of V transversally, then no T�periodic
solution of it can touch the boundary and stay inside.
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V

z�

Tz�BV

F pt�, z�, εq

Figure 3 – Illustration of solution touching the boundary of the domain.

Proposition 3.5. Let V � Rn be an open and bounded subset of Rn such that V � D.

If there exists ε1 P p0, ε0s such that for each pt, z, εq P r0, T s � BV � p0, ε1s, F pt, z, εq is
transversal to the boundary of V, that is, F pt, z, εq R TzBV, then condition H holds on V.

Proof. Assume that condition H does not hold on V. Then, for some ε P p0, ε0s, λ P p0, 1q
there exists a T�periodic solution φ of equation (3.10) such that φptq P V for every
t P r0, T s and for some t� P r0, T s, z� � φpt�q P BV, see Figure 3. Since BV is a smooth
pn�1q�manifold, there exists an open subset of Rn,W, such that WXBV is a parametrized
neighbourhood of BV. In addition, this neighbourhood can be taken smaller if necessary, so
that W X BV is the inverse image of a regular value of some real function, say W X BV �
h�1p0q where h : W Ñ R is a smooth function having 0 as a regular value. Notice that we
can write W � tz P Rn : hpzq   0u Y BV Y tz P Rn : hpzq ¡ 0u and we identify without
loss of generality the points where hpzq ¡ 0 with the points in the interior of V. Now,
define g � h � φ : r0, T s Ñ R. Of course, g is a smooth function. Moreover, since φptq P V
for every t P r0, T s, it follows that gptq ¥ 0 for every t P r0, T s. Hence, 0 is a minimum
of g with minimizer t�. Since g is smooth, we conclude that g1pt�q � 0. On the other
hand, g1pt�q � x∇hpz�q, F pt�, z�, εqy � 0, showing that F pt�, z�, εq is tangent to BV at
pt�, z�q.

3.5 Statements and proofs of main results
Building upon the foundations established thus far, this section engages in the

precise statement and rigorous proof of the primary theorems that encapsulate the essence
of our research. The preceding exposition has set the stage for a systematic exploration
into the heart of our contributions.

The first theorem we present, Theorem A, is the most general one of this
chapter, since it deals directly with equation (3.1). The next two theorems, Theorem B
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and Theorem C, treat equation (3.2).

Before we present the first theorem, we introduce the averaged function f :
V � r0, ε0s Ñ Rn given by

fpz, εq � 1
T

» T

0
εF ps, z, εqds.

In words, it correspond to the average of F over the interval r0, T s for fixed z P V and
ε P r0, ε0s. The averaging method consists of extracting information about the solutions of
equation (3.1) through f. In our particular case, roughly speaking, existence of zeroes of f
determines the existence of periodic solutions of equation (3.1).

Theorem A. Consider the continuous T -periodic non-autonomous differential equation
(3.1). Assume that for a given open bounded subset V � Rn, with V � D, condition H
holds,

fpz, εq � 0, for all z P BV and ε P p0, ε1s, (3.15)

and dBpfp�, ε�q, V, 0q � 0, for some ε� P p0, ε1s. Then, for each ε P p0, ε1s, there exists
a T�periodic solution φpt, εq of the differential equation (3.1) satisfying φpt, εq P V , for
every t P r0, T s.

Proof. The theorem will follow by applying Theorem 2.11. Let N � Npx, εq. We shall use
the conclusion of this theorem for λ � 1 in the operator equation

Lx � λNpx, εq, px, λq P Ω� r0, 1s, ε P p0, ε1s. (3.16)

Recall the continuous projections P : X Ñ X and Q : Z Ñ Z defined in equation (3.8)
given by

Pxptq � xp0q and Qyptq � t ypT q
T

, for t P r0, T s,
respectively. In Subsection 2.1.3 and Lemma 3.2 we proved that L is a linear Fredholm
operator of index 0 and N is L�compact, respectively. Now, let us check the conditions of
Theorem 2.11.

Claim 3.0.1. Condition H implies that condition A.1 of Theorem 2.11 holds, for each
ε P p0, ε1s.

To arrive at this conclusion, we must check that under H, for each ε P p0, ε1s,
Lx � λNpx, εq, for every x P dom LXBΩ and λ P p0, 1q. Notice that x P BΩ if, and only if,
there exists t0 P r0, T s such that xpt0q P BV, and that the equality Lx � λNpx, εq means
that x is a solution of equation (3.10). But since H holds, no solution of this equation can
reach the boundary of V, therefore for x P BΩ, Lx � λNpx, εq, which is A.1.

Now we proceed to verify A.2. Note that for x P Ker LXBΩ, say, xptq � z P BV,

QNpx, εqptq � t

T

» T

0
εF ps, z, εqds � tfpz, εq,
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which, by Equation 3.15, is not the 0 constant function in Z. Therefore, condition A.2 of
Theorem 2.11 holds, for each ε P p0, ε1s.

Observe that Im Q � ty P Z : yptq � t v, v P Rnu is isomorphic to Rn as well
as Ker L. Thus, it is straightforward to see that the linear map J : Im QÑ Ker L given
by

Jyptq � ypT q
T

(3.17)

is an isomorphism. If follows that for x P Ker LX Ω, xptq � z P V

JQNpx, εq � J ptfpz, εqq � fpz, εq.

Thus,
dBpJQNp�, εq|Ker LXΩ,Ker LX Ω, 0q � dBpfp�, εq, V, 0q.

To conclude the proof, we just need to show that dBpfp�, εq, V, 0q � 0 for each ε P p0, ε1s.
For future reference, we make that into a claim.

Claim 3.0.2. dBpfp�, εq, V, 0q � 0 for each ε P p0, ε1s.

Let E � tε P p0, ε1s : dBpfp�, εq, V, 0q � 0u. By hypothesis, there exists
ε� P p0, ε1s such that dBpfp�, ε�q, V, 0q � 0, so that E � H. Recall that f is continuous on
V � p0, ε1s. Given any ϵ P E , there exists δ ¡ 0 such that rϵ� δ, ε1s � p0, ε1s. Now, since
V � rϵ � δ, ε1s is a compact set, f restricted to this set is uniformly continuous. From
Equation 3.15, the function pz, εq ÞÑ |fpz, εq| has a minimum value that is positive, say
µ � mint|fpz, εq| : pz, εq P BV � rϵ � δ, ε1su ¡ 0. Thus, that there exists a small open
interval I such that fpz, εq � 0 for all z P BV and ε P I. Using the uniform continuity of
f, for any ε P I sufficiently close to ϵ

|fp�, εq � fp�, ϵq| � sup
zPV

|fpz, εq � fpz, ϵq|   µ � dist p0, fpBV, ϵqq.

Therefore, by Proposition 2.5, I can be taken smaller if necessary so that dBpfp�, εq, V, 0q �
dBpfp�, ϵq, V, 0q � 0, for every ε P I. Thus, I X p0, ε1s � E , from which follows that E is
open in p0, ε1s. Analogously, Proposition 2.5 also implies that p0, ε1szE � tε P p0, ε1s :
dBpfp�, εq, V, 0q � 0u is open in p0, ε1s and, consequently, E is closed in p0, ε1s. Hence, from
the connectedness of p0, ε1s, we obtain E � p0, ε1s.

Therefore, applying Theorem 2.11 for λ � 1 to equation (3.16) for each ε P
p0, ε1s, we conclude that there exists a solution of equation (3.6) and, consequently, a
T�periodic solution φpt, εq of equation (3.1), for each ε P p0, ε1s, such that φpt, εq P V for
every t P r0, T s.

The above theorem, although of great theoretical value, is not very suitable
to work with directly. It is more common in applications to be able to at least express
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F as a polynomial in ε with coefficients Fipt, xq continuous functions of t and x, plus a
remainder term Rpt, x, εq, as in equation (3.2). Since this equation is a particular instance
of equation (3.1), the framework provided by Theorem A can be used to specialize this
theorem for equation (3.2). Requiring a little more information on the structure of F, even
though it particularizes the corresponding result, allows us to provide a more practical set
of hypotheses.

Before stating and proving our second main theorem of this chapter, we recall
a few definitions for the sake of clarity. equation (3.2) is given by

x1 � εF pt, x, εq � εF1pt, xq � � � � � εkFkpt, xq � εk�1Rpt, x, εq,

where Fi : r0, T s � D Ñ Rn, for i P t1, . . . , ku, and R : r0, T s � D � r0, ε0s Ñ Rn are
continuous functions T�periodic in the variable t.

For each i P t1, . . . , ku we define fi : D Ñ Rn by setting

fipzq � 1
T

» T

0
Fips, zqds.

Naturally, each fi is a continuous function. We also define the k�truncated averaged
function Fk : D Ñ Rn and the averaged remainder r : D � r0, ε0s Ñ Rn by

Fkpz, εq � εf1pzq � � � � � εkfkpzq rpz, εq � 1
T

» T

0
Rps, z, εqds.

Therefore, the full averaged function f can be written as

fpz, εq � 1
T

» T

0
εF ps, z, εqds � Fkpz, εq � εk�1rpz, εq.

Now we can proceed to the next theorem.

Theorem B. Consider the continuous T -periodic non-autonomous differential equation
(3.2). Assume that for a given open bounded subset V � Rn, with V � D, hypothesis H
holds,

lim
εÑ0

inf
zPBV

����Fkpz, εq
εk�1

���� ¡ maxt|rpz, εq| : pz, εq P V � r0, ε1su, (3.18)

and dBpFkp�, εq, V, 0q � 0, for ε ¡ 0 sufficiently small. Then, there exists εV P p0, ε1s such
that, for each ε P p0, εV s, the differential equation (3.2) has a T�periodic solution φpt, εq
satisfying φpt, εq P V , for every t P r0, T s.

Proof. As shown above, for equation (3.2), the full averaged function is given by

fpz, εq � Fkpz, εq � εk�1rpz, εq.

The limit in equation (3.18) readily implies that there exists ε P p0, ε1s such that

inf
zPBV

����Fkpz, εq
εk�1

���� ¡ maxt|rpw, εq| : pw, εq P V � r0, ε1su,
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for every ε P p0, εs. In particular, for every z P BV and ε P p0, εs����Fkpz, εq
εk�1

���� ¡ |rpz, εq|.

This inequality implies Equation 3.15, since

|fpz, εq| � |Fkpz, εq � εk�1rpz, εq|
¥ |Fkpz, εq| � εk�1|rpz, εq| ¡ 0.

Taking Vε � V in Proposition 2.6, we get that dBpfp�, εq, V, 0q � dBpFkp�, εq, V, 0q, for
ε P p0, εs and since, by hypothesis, dBpFkp�, εq, V, 0q � 0 for ε ¡ 0 sufficiently small, all the
hypotheses of Theorem A are verified and we conclude that for every ε P p0, εs, there exists
a T�periodic solution φpt, εq of equation (3.2) satisfying φpt, εq P V for every t P r0, T s,
as desired.

It is worth mentioning that in the above theorem, we are able to request that
the Brouwer degree of the k�truncated averaged function be different from 0, instead of
asking the same for the full averaged function. That by itself already refines Theorem A
by presenting a more verifiable condition. Besides, Fk being polynomial in ε gives us more
insight on what to expect of its behaviour.

We mention that since Fkpz, εq � εf1pzq� � � ��εkfkpzq with ε small, the lowest
order terms in its expression are those that control the behaviour of Fk regarding its
Brouwer degree. This will be made clearer in the next theorem. This result is a particular
case of Theorem B, when some, but not all, of the functions fi are identically zero. In this
case the hypotheses can be further simplified.

Theorem C. Consider the continuous T -periodic non-autonomous differential equation
(3.2). Suppose that for some ℓ P t1, 2, . . . , ku, f0 � . . . � fℓ�1 � 0, fℓ � 0. Assume that
there exists an open and bounded set V � Rn with V � D and fℓpzq � 0 for every z P BV
for which condition H holds and dBpfℓ, V, 0q � 0. Then, there exists εV P p0, ε1s such
that, for each ε P p0, εV s, the differential equation (3.2) has a T�periodic solution φpt, εq
satisfying φpt, εq P V , for every t P r0, T s.

Proof. Without loss of generality, we can assume that ℓ � k, because if this is not the
case, we can just consider the ℓ�th truncated averaged function

Fℓpz, εq � εf1pzq � � � � � εℓfℓpzq � εℓ�1pfℓ�1pzq � � � � � εk�ℓ�1rpz, εqq,
where fℓ�1pzq�� � ��εk�ℓ�1rpz, εq would be the remainder term. Since f0 � � � � � fk�1 � 0,
then Fkp�, εq � εkfkpzq. In addition, we have fkpzq � 0, for every z P BV and rpz, εq
continuous, consequently, bounded on compact sets. As a result,

lim
εÑ0

inf
zPBV

∣∣∣∣∣εkfkpzq
εk�1

∣∣∣∣∣ � lim
εÑ0

inf
zPBV

∣∣∣∣∣fkpzq
ε

∣∣∣∣∣ � 8 ¡ maxt|rpz, εq| : pz, εq P V � r0, ε1su.
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At last, for ε P p0, ε1s it holds

dBpFkp�, εq, V, 0q � dBpfℓ, V, 0q � 0.

Thus, all the hypotheses of Theorem B hold and it follows that there exists εV P p0, ε1s
such that for every ε P p0, εV s, there exists a T�periodic solution φpt, εq of equation (3.2)
satisfying φpt, εq P V for every t P r0, T s.

Now we prove that in the first order case, that is k � 1, Theorem C follows
without the need to assume condition H. This is the first step in showing that [5, Theorem
1.2] is a corollary of the results obtained in this work. We stress that the result in [5] does
not require a hypothesis like condition H and it has also a convergence part. This part
will be treated in Chapter 5.

Theorem D. Consider the differential equation (3.2) with k � 1, that is,

x1 � εF1pt, xq � ε2Rpt, x, εq, pt, x, εq P r0, T s �D � r0, ε0s, (3.19)

where F1 and R are continuous functions, and T�periodic in t. Assume that there exist
z� P D and an open bounded set V � Rn satisfying V � D, z� P V, f1pz�q � 0 and
f1pzq � 0 for every z P V ztz�u. If dBpf1, V, 0q � 0, then there exists εV P p0, ε1s such
that, for each ε P p0, εV s, the differential equation (3.19) has a T�periodic solution φpt, εq
satisfying φpt, εq P V , for every t P r0, T s.

Proof. Since f1 has an isolated zero, we get that ℓ � 1. Then, it suffices to show that
condition H holds on V, since all the other hypotheses of Theorem C match. But that was
proved in Proposition 3.4. Therefore, by Theorem C, there exists εV P p0, ε1s such that for
every ε P p0, εV s there exists a T�periodic solution φpt, εq of equation (3.19) satisfying
φpt, εq P V for every t P r0, T s.

In Chapter 6 we will see Theorem C applied to a concrete example.
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4 Averaging Theory for Periodic Solutions in
Carathéodory Differential Systems

The realm of ordinary differential equations defined by Carathéodory functions
introduces a whole new layer of complexity, where the right-hand side may exhibit
discontinuities. While existing literature has provided valuable insights into the existence
and uniqueness of solutions for such equations, the permissibility of discontinuities within
Carathéodory functions presents a set of novel challenges when compared to those of the
previous chapter.

This chapter extends our exploration beyond the context of continuous functions
by considering differential equations with Carathéodory right-hand sides. As we mentioned
in Section 4.3 one may impose conditions to guarantee the uniqueness of solutions of
Carathéodory equations, but in this chapter we shall not require that. In this context, the
usual averaging o Melnikov techniques face limitations, necessitating innovative approaches
to study the dynamics of solutions.

Our primary focus lies in addressing the challenges posed by discontinuities
in Carathéodory functions. To overcome these difficulties, we leverage the powerful tools
of degree theory for operator equations. Degree theory provides a systematic framework
for analysing the solvability of equations involving non-linear operators, offering a robust
foundation for understanding the existence of solutions in less regular scenarios.

Nevertheless, we point out that, naturally, the study of Carathéodory equations
includes the continuous equations we worked with in the previous chapter. Therefore, this
chapter provides a further extension of the study undertaken in Chapter 3. And as we
shall see in the sequel, the theorems admit nearly identical statements, emphasizing a
smooth transition from the continuous to this possibly discontinuous case.

4.1 Setting up
Consider the following differential equation in the standard form of the averaging

method

x1 � εF pt, x, εq, (4.1)

for pt, x, εq P r0, T s �D � r�ε0, ε0s, where F is a Carathéodory function. In Chapter 3 we
showed that the Lipschitz property is not necessary when it comes to detecting periodic
solutions of systems such as (4.1) for a continuous F. In particular, when F can be written



Chapter 4. Averaging Theory for Periodic Solutions in Carathéodory Differential Systems 56

as a polynomial in ε

x1 � εF pt, x, εq � εF1pt, xq � � � � � εk�1Fk�1pt, xq � εkFkpt, x, εq, (4.2)

for pt, x, εq P R�D � rε0, ε0s the same result follows.

In this chapter, we further extend these results by relaxing the continuity
hypothesis on F. In equation (4.1) and equation (4.2) we consider F to be a Carathéodory
function (see Definition 2.11).

The strategy to arrive at those results is the same used in Chapter 3, however,
since we are now dealing with functions that may not be continuous, some technical details
must be filled in order to advance. That said, in order to prove the main results in this
chapter, a common ground must be established and that is what will be done in the next
sections. Then, in Section 4.6 we state and prove the main results.

4.2 What can be reused from the continuous case
In Chapter 3, we showed that looking for periodic solutions of a differential

equation like equation (4.1) is equivalent to looking for solutions of an operator equation
suitably defined. This rationale will be repeated here, and since the form of the equation
itself is not changed, we use the same function spaces and operators. So we consider the
spaces

X � tx P Cr0, T s : xp0q � xpT qu, Z � tx P Cr0, T s : xp0q � 0u,

with the sup�norm, the subset

Ω � tx P X : xptq P V, @t P r0, T su,

where V is some open and bounded subset of Rn satisfying V � D, and the operators
L : X Ñ Z and N : Ω� r0, ε0s Ñ Z given by

Lxptq � xptq � xp0q and Npx, εqptq �
» t

0
εF ps, xpsq, εqds, @ t P r0, T s. (4.3)

Therefore, also by the integral form of solutions for Carathéodory differential
equations presented in Section 2.3, it follows that an absolutely continuous function
x : r0, T s Ñ Rn is a solution of equation (4.1) if, and only if, it is a solution of the operator
equation

Lx � Npx, εq, x P Ω. (4.4)

Because we are reusing the definitions from Chapter 3, some facts about these
objects have already been proved therein. From Section 3.3, we know that Ω is an open and
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bounded subset of X and L is a continuous linear Fredholm operator of index zero. We can
not, however, assert directly from the proof given in Section 3.3 that N is a well defined
continuous L�compact operator, because now the right-hand side of equation (4.1) is a
Carathéodory function, whose continuity in t is no longer guaranteed, thus necessitating a
more careful treatment regarding its integrability.

4.3 N is L-compact
In the next two lemmas, we show that N is L�compact. Firstly, it needs to be

shown that N is well defined and continuous.

Lemma 4.1. The operator N : Ω� r0, ε0s Ñ Z defined in equation (4.3) is a well-defined
continuous operator.

Proof. Since Ω is bounded, there exists r ¡ 0 such that |pxpsq, εq| ¤ r for every t P r0, T s
and px, εq P Ω � r0, ε0s and, by C.3, there exists an integrable function gr : r0, T s Ñ Rn

such that |εF pt, xptq, εq| ¤ grptq for almost every t P r0, T s. Hence, taking Proposition 2.2
into account, we see that the integral defining Npx, εqptq is well-defined for every t P r0, T s.
To verify that Npx, εq P Z we must see that it is a continuous function and Npx, εqp0q � 0.
Define Gr : r0, T s Ñ R by

Grptq �
» t

0
grpsqds, (4.5)

and note that

|Npx, εqptq| ¤ Grptq, @ t P r0, T s, (4.6)

which, in particular, implies that Npx, εqp0q � 0. Furthermore, Gr is a uniformly continuous
function. Given any px, εq P Ω� r0, ε0s. For t, τ P r0, T s

|Npx, εqptq �Npx, εqpτq| �
����
» t

0
εF ps, xpsq, εqds�

» τ

0
εF ps, xpsq, εqds

����
�
����
» t

τ

εF ps, xpsq, εqds
���� ¤

» t

τ

|εF ps, xpsq, εq| ds

¤
» t

τ

grpsqds �
» t

0
grpsqds�

» τ

0
grpsqds

¤ |Grptq �Grpτq|
Therefore, by uniform continuity of Gr it follows that Npx, εq is a continuous function,
concluding the proof that Npx, εq P Z.

We proceed now to prove that N is a continuous operator. For that matter, let
tpxm, εmqumPN be any sequence converging to px, εq. For each m P N define

∆mptq � εmF pt, xmptq, εmq � εF pt, xptq, εq.
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Observe that

|Npxm, εmq �Npx, εq| � sup
tPr0,T s

|Npxm, εmqptq �Npx, εqptq|

� sup
tPr0,T s

����
» t

0
εmF ps, xmpsq, εmqds�

» t

0
εF ps, xpsq, εqds

����
� sup

tPr0,T s

����
» t

0
εmF ps, xmpsq, εmq � εF ps, xpsq, εqds

����
¤ sup

tPr0,T s

» t

0
|εmF ps, xmpsq, εmq � εF ps, xpsq, εq| ds

� sup
tPr0,T s

» t

0
|∆mpsq| ds.

Moreover, ∆mptq Ñ 0 for almost every t P r0, T s and

|∆mptq| ¤ |εmF pt, xmptq, εmq| � |εF pt, xptq, εq| ¤ 2grptq,

for almost every t P r0, T s. Hence, each ∆m is an integrable function and they are all
dominated by 2gr. Thus, by the Dominated Convergence Theorem, Theorem 2.3

lim
» t

0
∆mpsqds �

» t

0
lim ∆mpsqds � 0.

Therefore, for m P N sufficiently large, |Npxm, εmq �Npx, εq| can be made arbitrarily
small, showing the continuity of N.

Now the next lemma shows that N is an L�compact operator on Ω.

Lemma 4.2. N : Ω� r0, ε0s Ñ Z is an L�compact operator on Ω for every ε P r0, ε0s.

Proof. For any px, εq P Ω � r0, ε0s, since Π is a continuous linear map, there exists a
constant C ¡ 0 such that

|ΠNpx, εq| ¤ C |Npx, εq| � C sup
tPr0,T s

����
» t

0
εF ps, xpsq, εqds

����
Now since x P Ω, xptq P V for every t P r0, T s, where V is a bounded subset of Rn,

hence there exists r ¡ 0 for which V � r0, ε0s � Bp0, rq � Rn�1. Using C.3, there exists
an integrable positive function gr : r0, T s Ñ R such that |εF pt, z, εq| ¤ grptq for every
|pz, εq|   r. It follows that

|ΠNpx, εq| ¤ C

» t

0
|εF ps, xpsq, εq| ds

¤ C

» t

0
grpsqds.

Notice that gr depends neither on x nor on ε. This shows that the image of the operator
ΠN is a bounded set, which implies that ΠN is a bounded operator.
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Recall that KP,Q � Id�Q. Since KP,QN is composition of continuous operators,
then it is also continuous. Consider the family Λ � KP,QNpΩ� r0, ε0sq. To show that the
closure of Λ is compact, we use the Arzelá-Ascoli Theorem, Theorem 2.1. Hence, we must
check that Λ is equicontinuous and uniformly bounded. Let y P Λ. Hence, there exist x P Ω
and ε P r0, ε0s such that

yptq � pId�QqNpx, εqptq � pId�Qq
�» t

0
εF ps, xpsq, εqds



.

For t, τ P r0, T s we have

|yptq � ypτq| � |pId�QqNpx, εqptq � pId�QqNpx, εqpτq|
¤ |Npx, εqptq �Npx, εqpτq � pQNpx, εqptq �QNpx, εqpτqq|

¤
����
» t

τ

εF ps, xpsq, εqds� t� τ

T

» T

0
εF ps, xpsq, εqds

����
¤
» t

τ

|εF ps, xpsq, εq| ds�
����t� τ

T

����
» T

0
|εF ps, xpsq, εq| ds

¤
» t

τ

grpsqds�
����t� τ

T

����
» T

0
grpsqds

¤ |Grptq �Grpτq| � |t� τ | GrpT q
T

.

Given ξ ¡ 0, by the uniform continuity of Gr, there exists δ1 ¡ 0 such that |Grptq �
Grpτq|   ξ{2. Hence, taking δ � mintδ1, ξT {2GrpT qu, we obtain that if |t� τ |   δ, then
|yptq � ypτq|   ξ. Since δ does not depend on the particular y, it follows that Λ is a
equicontinuous family.

On the other hand,

|yptq| � |pId�QqNpx, εq|
¤ |pId�Qq||Npx, εq|

¤
����
» t

0
εF ps, xpsq, εqds

����
¤
» t

0
|εF ps, xpsq, εq| ds

¤
» t

0
grpsqds

¤ GrpT q,

showing that Λ is uniformly bounded. Thus, by applying the Theorem of Arzelá-Ascoli, The-
orem 2.1, we conclude that the family has compact closure, implying the L�compactness
of N on Ω for every ε P r0, ε0s.



Chapter 4. Averaging Theory for Periodic Solutions in Carathéodory Differential Systems 60

4.4 Continuity of the averaged functions
For equation (4.1), we define the full averaged function f : D� r0, ε0s Ñ Rn by

fpz, εq � 1
T

» T

0
F ps, z, εqds.

Proposition 4.1. f is a continuous function.

Proof. Let tpzm, εmqumPN be a sequence converging to pz0, εq P D � r0, ε0s.

|fpzm, εmq � fpz0, εq| �
����
» T

0
F ps, zm, εmqds�

» T

0
F ps, z0, εqds

����
�
����
» T

0
F ps, zm, εmq � F ps, z0, εqds

����
�
» T

0
|F ps, zm, εmq � F ps, z0, εq| ds.

By an almost identical argument as that used to prove that N is a continuous operator,
we conclude that f is continuous.

For the differential equation in (4.2)

x1 � εF pt, x, εq � εF1pt, xq � � � � � εk�1Fk�1pt, xq � εkFkpt, x, εq,

where each Fi : r0, T s � D Ñ Rn and Fk : r0, T s � D � r0, ε0s Ñ Rn are Carathéodory
functions T�periodic in t, we define for each i P t1, . . . , ku, fi : D Ñ Rn by setting

fipzq � 1
T

» T

0
Fips, zqds, i P t1, . . . , k � 1u,

fkpzq � 1
T

» T

0
Fkps, z, 0qds.

Proposition 4.2. For each i P t1, . . . , ku, fi is a continuous function.

Proof. Consider at first i P t1, . . . , k � 1u. Let z0 P D be an arbitrary point in D and let
tzmumPN be any sequence in D converging to z0. Define

∆mptq � Fipt, zmq � Fipt, z0q,

and notice that ∆mptq Ñ 0 as mÑ 8 for almost every t P r0, T s. Moreover, let r ¡ 0 be
such that |z0|   r. Thus there exists m0 P N for which m ¡ m0 implies |zm| ¤ r. Thus, by
C.3 there exists a positive integrable function gr : r0, T s Ñ R such that |Fipt, zq| ¤ grptq
for almost every t P r0, T s. It follows that

|∆mptq| � |Fipt, zmq � Fipt, z0q| ¤ 2grptq,
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for almost every t P r0, T s and m ¡ m0. Now, we can apply the Dominated Convergence
Theorem (Theorem 2.3) to conclude that

lim
mÑ8

» T

0
|∆mpsq|ds �

» T

0
lim

mÑ8
|∆mpsq|ds � 0. (4.7)

Now, since

|fipzmq � fipz0q| �
���� 1T
» T

0
Fips, zmqds� 1

T

» T

0
Fips, z0qds

����
�
���� 1T
» T

0
Fips, zmq � Fips, z0qds

����
¤ 1
T

» T

0
|Fips, zmq � Fips, z0q| ds

� 1
T

» T

0
|∆mpsq| ds

by equation (4.7)

lim
mÑ8

|fipzmq � fipz0q| ¤ lim
mÑ8

1
T

» T

0
|∆mpsq| ds � 0.

This shows that fipzmq Ñ fipz0q as mÑ 8 for any sequence converging to z0 which was
also taken arbitrarily, so that fi is continuous in D. Notice that the exact same argument
follows for fk.

From the functions fi defined above, let us now define the k�truncated averaged
function Fk : D Ñ Rn and the averaged remainder r : D � r0, ε0s Ñ Rn by

Fkpz, εq � εf1pzq � � � � � εkfkpzq rpz, εq � 1
T

» T

0
Fkps, z, εq � Fkps, z, 0qds.

Therefore, the full averaged function f can be written as

fpz, εq � 1
T

» T

0
εF ps, z, εqds � Fkpz, εq � εk�1rpz, εq.

From the continuity of the fis, we conclude that Fk and rpz, εq are continuous.

In Theorem F and Theorem G we provide conditions on the functions fi and
Fk in order to have T�periodic solutions of equation (4.2).

4.5 The condition H in the Carathéodory case
To extend the methodology for studying periodic solutions of Carathéodory

differential equations, we use the same approach as we did in the last chapter, namely we
convert the differential equation in an operator equation and use Theorem 2.11.
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We have already discussed in Subsection 2.5.2 that a boundary condition is
needed in order to apply Theorem 2.11. The Carathéodory case is no different from the
continuous one for that matter, we also need a boundary condition. As it turns out, it
is the same condition that was used in the continuous case, however it is important to
mention that this condition is a little more strict in the Carathéodory context than it is in
the continuous one.

Given an open and bounded subset V of Rn, we say that the condition H holds
on V if

H. there exists ε1 P p0, ε0s such that, for each λ P p0, 1q and ε P p0, ε1s, any T -periodic
solution of the differential equation

x1 � ελF pt, x, εq, x P V , (4.8)

is entirely contained in V.

To verify that this condition holds on a given set, one must follow a similar
path as that described in Section 3.4, arguing by contradiction.

Notice that since V is bounded, there exists r ¡ 0 such that V � Bp0, rq. Using
C.3, there exists a positive integrable function gr : r0, T s Ñ R such that |F pt, z, εq| ¤ grptq
for almost every t P r0, T s. Let Gr : r0, T s Ñ R be given by

Grptq �
» t

0
grpsqds.

Of course, Gr is also a positive function. Moreover, Gr is a continuous function on a
compact set, thus Gr is uniformly continuous.

Proposition 4.3. If condition H does not hold on an open and bounded subset V of Rn,

then there exist sequences tεmumPN � p0, ε0s, tλmumPN P p0, 1q and txmumPN of T�periodic
solutions of equation (4.8) with εm Ñ 0 and xm Ñ z0 P BV uniformly on r0, T s such that

» T

0
F ps, z0, 0qds � 0. (4.9)

Proof. The proof follows the same steps as the proof of Proposition 3.3. Thus, if we assume
that H does not hold on V, then we get sequences tεmumPN � p0, ε0s, tλmumPN P p0, 1q
and txmumPN of T�periodic solutions of equation (4.8) with εm Ñ 0 and xmptmq P BV, for
some tm P r0, T s and every m P N. We claim that as in the continuous case, we can pick
the sequence txmumPN so that xm Ñ z0 P BV uniformly on r0, T s. The proof is analogous
and also makes use of the Arzelá-Ascoli Theorem. In proving that Λ � txm : m P Nu is
equicontinuous and uniformly bounded, we must use property C.3 and the function Gr to
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conclude that for t, τ P r0, T s,

|xmptq � xmpτq| ¤ εmλm

» t

τ

|F ps, xmpsq, εmq| ds

¤
» t

τ

grpsqds

¤ |Grptq �Grpτq|,

from where equicontinuity of Λ follows from the uniform continuity of Gr in r0, T s. In
addition,

|xmptq| ¤ |xmp0q| �
» t

0
|εmλmF ps, xmpsq, εmq| ds ¤ r �GrpT q,

which shows that Λ is uniformly bounded. Moreover, since for every m P N, xm touches
the boundary of V, xm Ñ z0 P BV. Therefore F pt, xmptq, εmq Ñ F pt, z0, 0q as m Ñ 8 for
almost every t P r0, T s. From the periodicity of each xm, we have» T

0
F ps, xmpsq, εmqds � 0.

By the Dominated Convergence Theorem (Theorem 2.3), it follows that

lim
mÑ8

» T

0
F ps, xmpsq, εmqds �

» T

0
lim

mÑ8
F ps, xmpsq, εmqds �

» T

0
F ps, z0, 0qds,

therefore » T

0
F ps, z0, 0qds � 0, (4.10)

completing the proof.

Notice that the effect of negating condition H is the same, however it does not
follow as naturally here as it does in Chapter 3 due to the lack of continuity.

As in Section 3.4, we show here that condition H also holds for the first order
case.

Proposition 4.4. Assume that equation (3.1) can be written as

x1 � εF1pt, xq � ε2Rpt, x, εq, for pt, x, εq P r0, T s �D � r0, ε0s,

where F1 and R are Carathéodory functions and T�periodic in t. Define f1 : D Ñ Rn by

f1pzq � 1
T

» T

0
F1ps, zqds.

Let V � Rn be an open and bounded subset such that V � D and f1pzq � 0, for every
z P BV. Then condition H holds on V.
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Proof. Assume then that condition H does not hold on V. By Proposition 4.3, it follows
that there exist sequences tεmumPN � p0, ε1s and txmumPN such that εm Ñ 0 as m Ñ
8, xm Ñ z0 P BV uniformly on r0, T s and

» T

0
F ps, xmpsq, εmqds � 0,

for every m P N. Moreover, equation (4.9) implies

0 �
» T

0
F ps, z0, 0qds �

» T

0
F1ps, z0qds � Tf1pz0q,

contradicting f1pzq � 0 for every z P BV. Thus, condition H holds on V.

On the other hand, we do not have an analogue of Proposition 3.5 for the
Carathéodory case, that is, when the boundary of V, BV, is a smooth manifold and the
the right-hand side F is transversal to BV, it is not true that condition H holds. We show
that via an example.

Let D � r0, 2πs � R� r0, ε0s and define f : D Ñ R by

fpt, x, εq �

$''&
''%

1, t P
�

0, π2

	
Y
�

3π
2 , 2π

�

�1, t P
�
π

2 ,
3π
2


 , @ px, εq P R� r0, ε0s.

and note that it is clearly a Carathéodory function.

Let V � p�1, 1q � R. The solutions of x1 � ελfpt, x, εq, x P V , for each
ε P p0, ε0s and λ P p0, 1q fixed have the form shown in Figure 4.

t

x

0
π
2

3π
2 2π

1

−1

Figure 4 – Solutions of x1 � ελfpt, x, εq.

Notice that BV � t�1, 1u and fpt,�1, εq � 0 for every pt, εq P r0, 2πs � r0, ε0s.
Furthermore, since the solutions of Carathéodory functions can have a few points where the
derivative may not exist, it is possible to have a 2π�periodic solution of x1 � ελfpt, x, εq
with x P V such that xpt�q P BV for some t� P r0, 2πs even if BV is a smooth manifold and
fpt, x, εq is transversal to BV for every t P r0, T s, x P BV, ε P p0, ε0s.
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4.6 Statements and proofs of main results
Now, we can state and prove the main results of this chapter. Recall that given

equation (4.1), we define the full averaged function f : D � r0, ε0s Ñ Rn as

fpz, εq � 1
T

» T

0
εF ps, z, εqds

and by Proposition 4.1 it is continuous.

Theorem E. Consider the non-autonomous Carathéodory T�periodic differential equation
(4.1). Suppose that there exists an open bounded subset V � Rn, with V � D, and
ε1 P p0, ε0s for which H holds. Assume that

fpz, εq � 0, pz, εq P BV � p0, ε1s, (4.11)

and that dBpfp�, ε�q, V, 0q � 0 for some ε� P p0, ε1s. Then, for each ε P p0, ε1s, there exists
a T�periodic solution φpt, εq of (4.1) such that φpt, εq P V , for every t P r0, T s.

Proof. We will apply Theorem 2.11. We start by showing that H implies A.1. Indeed,
if A.1 does not hold, then there exists x P dom L X BΩ, ε P r0, ε0s and λ P p0, 1q
for which Lx � λNpx, εq. This is equivalent to saying that there exists a solution of
x1 � λεF pt, x, εq, x P V lying in BΩ, meaning that xpt�q P BV for some t� P r0, T s. Then
H does not hold. This shows the desired implication.

Now let x P Ker L X BΩ. Let z P Rn be such that xptq � z. Working out
QNpx, εq for each P r0, ε0s we get

QNpx, εq � t

T

» T

0
εF ps, xpsq, εqds � tfpz, εq.

Then, by (4.11), we conclude that the condition A.2 holds. Using Claim 3.0.2 from the
proof of Theorem A, we show that dBpfp�, εq, V, ε�q � 0 for some ε� P p0, ε1s implies that
dBpfp�, εq, V, εq � 0 for every ε P p0, ε1s. Then, by Theorem 2.11, there exist εV P p0, ε0s
and a T�periodic solution φ : r0, T s � p0, εV s Ñ Rn such that φpt, εq P V for every
t P r0, T s.

Notice that the proof of the above theorem is a lot shorter than that of
Theorem A. This is due to the fact that many of the technical machinery has already been
developed for it and is being reused in this context.

Theorem F. Consider the non-autonomous Carathéodory T�periodic differential equation
(4.2). Suppose that there exists and open bounded subset V � Rn, with V � D, and
ε1 P p0, ε0s for which condition H holds. Assume that

lim
εÑ0�

inf
zPBV

|Fkpz, εq|
εk

¡ max t|rpz, εq|, @ pz, εq P BV � r0, ε1su , (4.12)
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and that dBpFkp�, εq, V, 0q � 0 for every ε P p0, ε1s. Then, there exists 0   εV ¤ ε1 such
that for each ε P p0, εV s, there exists a T�periodic solution φpt, εq of (4.1) such that
φpt, εq P V , for every t P r0, T s.

Proof. Note that by equation (4.12) there exists ε2 ¡ 0 such that

|Fkpz, εq|
εk

¡ |rpz, εq|, for pz, εq P BV � p0, ε2s.

The above inequality implies

|fpz, εq| � |Fkpz, εq � εk�1rpz, εq| ¥ |Fkpz, εq| � εk�1|rpz, εq| ¡ 0,

showing that hypothesis (4.11) of Theorem E is met. We have also that

dBpfp�, εq, V, 0q � dBpFkp�, εq, V, 0q � 0.

Thus, applying Theorem E the result follows.

Finally, we consider the case when some of the function fi are identically zero.

Theorem G. Consider the non-autonomous Carathéodory T�periodic differential equation
(4.2). Suppose that, for some ℓ P t1, 2, . . . , ku, f0 � . . . � fℓ�1 � 0, fℓ � 0. Assume that
there exists an open bounded set V � Rn, with V � D, for which condition H holds,
fℓpzq � 0, for every z P BV, and dBpfℓ, V, 0q � 0. Then, there exists εV ¡ 0 such that, for
each ε P r0, εV s, the differential equation (4.1) has a T�periodic solution φpt, εq satisfying
φpt, εq P V , for every t P r0, T s.

Proof. We have

fpz, εq � Fℓpz, εq � εℓ�1rpz, εq,

so that

lim
εÑ0

inf
zPBV

Fkpz, εq
εℓ�1 � lim

εÑ0
inf

zPBV

fℓpz, εq
ε

� �8.

Hence, by continuity of rpz, εq, it is clear that (4.12) holds. Since

dBpfℓ, V, 0q � dBpFℓp�, εq, V, 0q � 0,

for ε ¡ 0 sufficiently small, then Theorem F can be applied and the result follows.

As for the continuous case, to perform a first order analysis for Carathéodory
differential equations it is not needed to assume condition H.
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Theorem 4.1. Consider the non-autonomous Carathéodory T�periodic differential equa-
tion

x1 � εF1pt, xq � ε2Rpt, x, εq, pt, x, εq P r0, T s �D � r0, ε0s. (4.13)

Let f1 : D Ñ Rn be given by

f1pzq � 1
T

» T

0
F1ps, zqds.

Let V � Rn be an open and bounded subset such that V � D and f1pzq � 0, for every
z P BV. If dBpf1, V, 0q � 0, there exists εV ¡ 0 such that, for each ε P r0, εV s, equation
(4.13) has a T�periodic solution φpt, εq satisfying φpt, εq P V , for every t P r0, T s.

Proof. By Proposition 4.4, we have that condition H holds on V. Since by hypothesis,
f1 � 0 and dBpf1, V, 0q � 0, by Theorem G the conclusions follows immediately.
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5 Convergence of solutions

In the exploration of ordinary differential equations, unravelling the behaviour
of solutions concerning the system’s parameters stands as a cornerstone in understanding
the robustness of the underlying dynamical system. This chapter delves into the intricate
interplay between the solutions of differential equations and the parameters that govern
their evolution. The overarching theme revolves around the convergence of solutions,
shedding light on a kind of regularity exhibited by these solutions concerning changes in
the parameter space.

Our primary objective is to discern the manner in which solutions evolve with
variations in the parameters. This nuanced perspective extends beyond the mere existence
of solutions, delving into the broader question of their convergence as the parameters
undergo systematic transformations.

As we have seen in Chapter 1, in the literature, the convergence of solutions
is obtained by the Implicit Function Theorem. Indeed, we obtain a branch of zeroes,
x : p�ε1, ε1q Ñ Rn, of the displacement function, ∆px, εq � πpx, εq � x, by the Implicit
Function Theorem such that xp0q � x0 and ∆pxpεq, εq � 0, the function xpεq is known to
be differentiable and, therefore, xpεq Ñ x0 as εÑ 0 showing that the solutions starting at
xpεq tend to the solution starting at x0 as εÑ 0.

However in the non-smooth case, where the Implicit Function Theorem is not
available, the convergence of solutions is not as straightforward. Nonetheless, even in this
scenario, it is still possible to arrive at convergence results.

The main tool used in this work specially as a replacement to the condition
on the derivative of the averaged functions is the Brouwer degree. Besides providing a
criterium to know whether a function has a zero in some domain or not, the Brouwer
degree also has the excision property Proposition 2.4 which will be fundamental in the
next results.

5.1 Statements and proofs of main results
In this section the reader will notice that we state the results mainly driven

to the more general case of Carathéodory equations. However, it should be noted that
this case contains the non-Lipschitz one and because of that, in the next theorems we
reference inside parentheses the continuous non-Lipschitz counterpart of the underlying
Carathéodory equation.

The first result regarding convergence in the parameter is the following.
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Theorem H. In addition to the hypotheses of Theorem E (Theorem A), assume that for
each ε P p0, ε1s there exists a unique zε P V such that fpzε, εq � 0, zε Ñ z� P V as εÑ 0,
and that there exists a family tWµ : µ P p0, µ0su of open subsets of V containing z� such
that diamWµ Ñ 0 as µ Ñ 0 on each of which condition H holds. Then, there exists a
T�periodic solution φpt, εq of (4.1) satisfying φp�, εq Ñ z� uniformly as εÑ 0.

Proof. Condition (4.11) still holds if we change V for Wµ. From the convergence lim
εÑ0

zε � z�

it follows that for each µ P p0, µ0s, there exists εµ P p0, ε1s such that for each ε P p0, εµs, zε P
Wµ. By uniqueness of zε, we conclude using the excision property of the Brouwer degree,
Proposition 2.4, that given µ P p0, µ0s,

dBpfp�, εq,Wµ, 0q � dBpfp�, εq, V, 0q � 0,

for every ε P p0, εµs. In addition, H holds on each Wµ, therefore, by Theorem E, for
each µ P p0, µ0s there exists ε1Wµ

P p0, ε1s such that for every ε P p0, ε1Wµ
s there exists a

T�periodic solution φµpt, εq of (4.1) satisfying

φµpt, εq P Wµ, for every t P r0, T s and ε P p0, ε1Wµ
s. (5.1)

In order to construct a solution φpt, εq converging to z�, we consider a sequence tµmumPN

whose terms lie in p0, µ0s satisfying µm Ñ 0 as mÑ 8. This sequence automatically gives
us two other sequences tϵmumPN and tφmumPN, with ϵm :� ε1Wµm

and each φm :� φµm is
a T�periodic solution of equation (4.1) satisfying φmpt, εq P Wµm for every t P r0, T s, ε P
p0, ϵms and m P N. Since a convergent subsequence of tϵmumPN can be extracted so that
ϵmk

Ñ ε� P r0, ε1s, we assume that the sequence itself converges to ε�. We treat the cases
ε� ¡ 0 and ε� � 0 separately. Assume first that ε� ¡ 0. Since, ϵm ¡ 0 for every m P N,
there exists ε ¡ 0 such that r0, εs � r0, ϵms. By (5.1), it follows that φm Ñ z� uniformly
as mÑ 8. Thus, define φpt, εq :� z�. We claim that φpt, εq is a solution of (4.1) for every
ε P r0, εs. Indeed, in order to prove this claim, we must verify that this function satisfies
the integral equation

xptq � xp0q �
» t

0
εF ps, xpsq, εqds,

for every t P r0, T s. Since φpt, εq is constant in t, the above equation is equivalent to» t

0
εF ps, z�, εqds � 0, @ t P r0, T s.

For every m P N, we have

φmpt, εq � φmp0, εq �
» t

0
εF ps, φmps, εq, εqds.

Making mÑ 8 and using that φmpt, εq Ñ z� for every pt, εq P r0, T s � p0, εs, we get that

0 � lim
» t

0
εF ps, φmps, εq, εqds.
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Define pmpt, εq � εF pt, φmpt, εq, εq, for each m P N. By C.3 and Proposition 2.2 we conclude
that each pm is an integrable function. As it is clear, pmpt, εq Ñ ppt, εq :� εF pt, z�, εq,
which by C.2 is a measurable function for each fixed ε. Finally, by C.3, for r ¡ 0 large
enough, there exists an integrable function gr satisfying |pmpt, εq| ¤ grptq, for almost every
t P r0, T s and every m P N. Hence, by the Lebesgue Dominated Convergence Theorem,
Theorem 2.3, we obtain the following

0 � lim
» t

0
εF ps, φmps, εq, εqds �

» t

0
lim εF ps, φmps, εq, εqds �

» t

0
εF ps, z�, εqds,

proving the claim.

Now, if ε� � 0, set ϵmax � maxtϵm : m P Nu and for each ε P p0, ϵmaxs, define
mε � maxtm P N : ε ¤ ϵmu. Note that mε Ñ 8 as εÑ 0. We then put φpt, εq :� φmεpt, εq.
One readily sees that for each ε P p0, ϵmaxs, φpt, εq P Wµmε

for every t P r0, T s, which once
diamWµmε

Ñ 0 as µmε Ñ 0 and µmε Ñ 0 as ε Ñ 0 yields φp�, εq Ñ z� uniformly as
εÑ 0.

Now, by specializing equation (4.1) to equation (4.2), we can provide a condition
that depends on the k�truncated averaged function instead of the full averaged.

Theorem I. In addition to the hypotheses of Theorem F (Theorem B), assume that for
each ε P p0, ε1s there exists a unique zε P V such that Fkpzε, εq � 0, zε Ñ z� P V as εÑ 0,
and that there exists a family tWµ : µ P p0, µ0su of open subsets of V containing z� such
that diamWµ Ñ 0 as µ Ñ 0 on each of which condition H holds. Then, there exists a
T�periodic solution φpt, εq of (4.1) satisfying φp�, εq Ñ z� uniformly as εÑ 0.

Proof. Note that

fpz, εq � Fkpz, εq � εk�1rpz, εq

alongside equation (4.12) imply that Proposition 2.6 can be applied on Wµ. Therefore,
by the excision property of the Brouwer degree, Proposition 2.4, and Proposition 2.6 we
obtain dBpfp�, εq, V, 0q � dBpfp�, εq,Wµ, 0q � dBpFkp�, εq,Wµ, 0q � 0. Hence, Theorem F
can be used to conclude that for each µ P p0, µ0s there exists εµ P p0, ε1s such that for
every ε P p0, εµs there exists a T�periodic solution φµpt, εq of equation (4.2) satisfying
φµpt, εq P Wµ for every t P r0, T s. Now the exact same argument used in the proof of
Theorem H can be applied to conclude the proof of this result.

Moreover, when some of the averaged functions vanish, the previous theorem
can be further simplified.

Theorem J. In addition to the hypotheses of Theorem G (Theorem C), if there exists
z� P V such that fℓpz�q � 0, fℓpzq � 0 for every z P V ztz�u, and there exists a family
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tWµ : µ P p0, µ0su of open subsets of V containing z� such that diamWµ Ñ 0 as µÑ 0 on
each of which H holds, then φp�, εq Ñ z�, uniformly, as εÑ 0.

Proof. We have that Fℓpz, εq � εℓfℓpzq. Hence, by Theorem I the result follows immediately.

Now using Theorem J we can finish the proof of the first order case.

Corollary 5.0.1. Consider the non-autonomous T�periodic Carathéodory differential
equation

x1 � εF1pt, xq � ε2Rpt, x, εq.

In addition to the hypotheses of Theorem D, if there exists z� P V such that f1pz�q �
0, f1pzq � 0 for every z P V ztz�u, then φp�, εq Ñ z�, uniformly, as εÑ 0.

Proof. The results follows immediately from Theorem J with k � ℓ � 1.

5.2 Further comments
We note that the theorems present in this section provide a correction to the

convergence part of [27, Theorem C]. Indeed, in that paper, for the convergence part of
the result, the authors only require that condition H hold on V and not on a family of
open subsets of V containing z�. The watchful reader will notice, however, that the proof
makes a tacit use of this stronger condition where the family consists of the open balls
around z� contained in V. Moreover, the example present in that paper is still valid since
condition H is shown to hold on every subinterval p1� α, 1� αq, for α P p0, 1q.
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6 Applications

In this chapter we apply the results obtained thus far in order to show that they
really extend the range of application of the averaging theory. We stress the verification of
condition H in both the continuous and Carathéodory case.

6.1 Continuous Non-Lipschitz perturbation of a harmonic oscillator
Consider the continuous higher order non-Lipschitz perturbation of a harmonic

oscillator
:x � �x� ε

�
x2 � 9x2�� εk

9x
3
?
x2 � 9x2 � 1� εk�1Epx, 9x, εq, (6.1)

where k is a positive integer and E is a continuous function on R3. One can readily see
that the right-hand side of this differential equation is not Lipschitz in any neighbourhood
of S1 � tpx, 9xq P R2 : x2 � 9x2 � 1u due to the presence of the term 3

?
x2 � 9x2 � 1.

The goal of this section is to prove the following theorem

Theorem 6.1. For any positive integer k and |ε| � 0 sufficiently small, the differential
equation (6.1) admits a periodic solution xpt; εq satisfying pxpt; εq, 9xpt; εqq Ñ S1 uniformly
as εÑ 0.

The first step is to put equation (6.1) in the standard form as in equation
(3.1). For that, we start by writing equation (6.1) as a first order differential equation by
introducing a new variable y#

9x � y

9y � �x� ε
�
x2 � y2�� εky 3

a
x2 � y2 � 1� εk�1Epx, y, εq.

Applying a polar change of variables

ϕpr, θq � pr cos θ, r sin θq, r ¡ 0, θ P r0, 2πs,
we obtain $'&

'%
9r � ε sin θ

�
r2 � εk�1 3

?
r2 � 1� εkEpr cos θ, r sin θ, εq

	
,

9θ � �1� ε cos θ
�
r2 � εk�1 3

?
r2 � 1� εkEpr cos θ, r sin θ, εq�

r
.

Observe that for ε sufficiently small, 9θ � 0. Therefore, we can take θ as the new independent
variable and

r1 � dr
dθ �

dr
dt

dt
dθ �

9r
9θ

� εr sin θ
�
r2 � εk�1 3

?
r2 � 1� εkEpr cos θ, r sin θ, εq�

�r � ε cos θ
�
r2 � εk�1 3

?
r2 � 1� εkEpr cos θ, r sin θ, εq� ,
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which expresses the differential equation for r in the form

r1 � εF pθ, r, εq, (6.2)

where

F pθ, r, εq � r3 sin θ � εk�1r sin θ 3
?
r2 � 1� εkr sin θEpr cos θ, r sin θ, εq

�r � εr2 cos θ � εk cos θ 3
?
r2 � 1� εk�1 cos θEpr cos θ, r sin θ, εq ,

which is 2π�periodic in θ. Calculating the Taylor series expansion of order k � 1 of F
about ε � 0, we obtain

F pθ, r, εq � εF1pθ, rq � � � � � εkFkpθ, rq �Opεk�1q

� �
k�1̧

i�1
εi�1ri�1 cosi�1 θ sin θ

�εk�1r
�

3
?
r2 � 1 sin θ � rk cosk�1 θ

	
sin θ �Opεkq,

(6.3)

with

Fipθ, rq � �ri�1 cosi�1 θ sin θ, i P t1, . . . , k � 1u,
Fkpθ, rq � �r

�
3
?
r2 � 1 sin θ � rk cosk�1 θ

	
sin θ.

Notice that for ε � 0, F is not Lipschitz in any neighbourhood of r � 1, so that no known
version of the averaging methodology can be applied in this case to detect any periodic
solution around r � 1 since a first order analysis in this case is not possible and the higher
order results available require at least Lipschitz continuity of the right-hand side of the
equation.

Let Vα � p1�α, 1�αq for some 0   α   1. The averaged functions fi : Vα Ñ R
are then given by

fiprq � 1
2π

» 2π

0
�ri�1 cosi�1 θ sin θdθ � 0, i P t1, 2, . . . , k � 1u,

fkprq � 1
2π

» 2π

0
�r
�

3
?
r2 � 1 sin θ � rk cosk�1 θ

	
sin θdθ � �r

3
?
r2 � 1
2 .

From the above expressions it is clear that fk has a unique zero r� � 1 in V α. In
addition, its Brouwer degree was calculated in Example 2.4, thus dBpfk, Vα, 0q � �1 � 0.
Since f1 � 0, a first order analysis is not applicable, therefore, in order to apply any of the
theorems proved in Chapter 3 and Chapter 5, we have to show that condition H holds on
Vα. As it turns out, we are actually able to prove that H holds on Vα for every α P p0, 1q.

Proposition 6.1. For any positive integer k, condition H holds on Vα for every α P p0, 1q.

Proof. In what follows we shall assume that ε ¡ 0. The result for ε   0 can be obtained
analogously just by considering �F pθ, r, εq. As discussed in Section 3.4, the negation of
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condition H provides numerical convergent sequences pεmqmPN � p0, ε0s and pλmqmPN �
p0, 1q, such that εm Ñ 0 as mÑ 8, and a sequence prmqmPN of 2π-periodic solutions of

r1 � εmλmF pθ, r, εmq, r P V , (6.4)

for which there exists θm P r0, 2πs such that rmpθmq P BV for each m P N uniformly
converging to a constant function r0 P BV � t1� αu and, in particular,» 2π

0
F pθ, rmpθq, εmqdθ � 0, m P N. (6.5)

For each i, j,m P N, define

Gi,j
m �

» 2π

0
ri

mpθq cosjpθq sinpθqdθ. (6.6)

Henceforth, despite pεmqmPN being a numerical sequence, we borrow the Landau’s symbol
notation hm � Opεp

mq, for some p P N, to mean that there exists a positive constant C
such that |hm| ¤ C|εp

m|, for m sufficiently large. Thus, by Equation 6.5 and equation (6.3),
we have

0 �
» 2π

0
F pθ, rmpθq, εmqdθ

�
» 2π

0

�
�

k�1̧

i�1
εi�1

m ri�1
m pθq cosi�1 θ sin θ

� εk�1
m rmpθq

�
3
a
r2

mpθq � 1 sin θ � rk
mpθq cosk�1 θ

	
sin θ

�
dθ �Opεk

mq

� �
k�1̧

i�1
εi�1

m

» 2π

0
ri�1

m pθq cosi�1 θ sin θdθ

� εk�1
m

» 2π

0
rmpθq

�
3
a
r2

mpθq � 1 sin θ � rk
mpθq cosk�1 θ

	
sin θdθ �Opεk

mq

� �
k�1̧

i�1
εi�1

m Gi�1,i�1
m � εk�1

m

�» 2π

0
rmpθq 3

a
r2

mpθq � 1 sin2 θdθ �Gk�1,k�1
m



�Opεk

mq,

which, upon rearrangement, implies» 2π

0
rmpθq 3

a
rmpθq2 � 1 sin2 θdθ � 1

εk�1
m

ķ

i�1
εi�1

m Gi�1,i�1
m �Opεmq. (6.7)

Our aim here is to provide some estimate on left-hand side of the above equality and
study its behaviour as mÑ 8. To achieve that, we apply integration by parts on Gi,j

m for
arbitrary i, j,m P N.

Gi,j
m �

» 2π

0
ri

mpθq cosj θ sin θdθ

�
�
��ri

mpθq cosj�1 θ

j � 1

�����
2π

0

�

� i

j � 1

» 2π

0
rmpθqi�1 cosj�1 θr1mpθqdθ

� i

j � 1

» 2π

0
rmpθqi�1 cosj�1 θr1mpθqdθ,
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where the last equality follows from periodicity of rm. Since rmpθq satisfies equation (6.4),
we conclude that

Gi,j
m � � i

j � 1

k�1̧

l�1
λmε

l
m

» 2π

0
rmpθqj�l cosj�lpθq sin θ dθ �Opεk

mq

� � i

j � 1

k�1̧

l�1
λmε

l
mG

i�l,j�l
m �Opεk

mq

� Opεmq.

Therefore, it follows that Gi�l,j�l
m � Opεmq. Plugging this into the above expression, we get

that Gi,j
m � Opε2

mq. Applying this procedure recursively, we conclude that Gi,j
m � Opεk

mq.
Thus, from (6.7), we get that» 2π

0
rmpθq 3

a
rmpθq2 � 1 sin2 θdθ � Opεmq.

Since rm Ñ r0 P t1� αu uniformly, we compute the limit of the integral above as

0 � lim
mÑ8

» 2π

0
rmpθq 3

a
rmpθq2 � 1 sin2 θdθ

�
» 2π

0
lim

mÑ8
rmpθq 3

a
rmpθq2 � 1 sin2 θdθ

�
» 2π

0
r0

3
a
r2

0 � 1 sin2 θdθ,

which is an absurd, because» 2π

0
r0

3
a
r2

0 � 1 sin2 θdθ � πr0
3
a
r2

0 � 1 � 0,

for r0 � 1. Thus, we obtain that condition H holds on V.

Finally, Theorem 6.1 can be proved.

Proof of Theorem 6.1. Since f1 � � � � � fk�1 � 0, fk � 0, fkprq � 0, for r P BV and
dBpfk, Vα, 0q � 0, by Theorem C, with ℓ � k, it follows that there exists εVα ¡ 0 such that
for every ε P p0, εVαs there exists a 2π�periodic solution φpθ, εq of equation (6.1) satisfying
φpθ, εq P V α for every θ P r0, 2πs and, since condition H holds on Vα for every α P p0, 1q,
then H holds on every open subset of p0, 2q containing r� � 1. Thus, by Theorem J, it
follows that φpθ, εq Ñ r� � 1 uniformly as εÑ 0.

In order to illustrate the existence of the periodic solution ensured by Theo-
rem 6.1 for some values of k and ε, we ran some numerical simulations. Using the software
application MATHEMATICA® we show the displacement function obtained for some of
these simulations, which has its zero corresponding to a periodic solution.
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Figure 5 – Displacement function of differential equation (6.2) assuming k � 1 and E � 0
for ε � 1{20 (left) and ε � 1{100 (right).
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Figure 6 – Displacement function of differential equation (6.2) assuming k � 2 and E � 0
for ε � 1{20 (left) and ε � 1{100 (right).
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Figure 7 – Displacement function of differential equation (6.2) assuming k � 3 and E � 0
for ε � 1{20 (left) and ε � 1{100 (right).

6.2 Discontinuous perturbations of a harmonic oscillator

6.2.1 First example

Consider the following modification of equation (6.1)

:x � �x� ε
�
x2 � 9x2�� εk sgnp 9xq 3

?
x2 � 9x2 � 1� εk�1Epx, 9x, εq, (6.8)
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where k ¡ 1 is a positive integer and E is a continuous function on R3. Notice the presence
of the sign function, sgnp 9xq, multiplying the cube root term.

In this section, we will prove the following result.

Theorem 6.2. For any positive integer k and |ε| � 0 sufficiently small, the differen-
tial equation (6.8) admits a 2π�periodic solution xpt, εq satisfying pxpt, εq, 9xpt, εqq Ñ S1

uniformly as εÑ 0.

We start by noting that the above differential equation possesses a discontinuity
introduced by the term sgnp 9xq. Moreover, it is also important to notice, just as in the
previous section that this right-hand side is not a Lipschitz function in any neighbourhood
of the unit circle S1 centred at the origin of the phase space px, 9xq. Therefore, none of the
Melnikov-type or Averaging-type theorems known so far could be applied to study this
system.

Observe that equation (6.8) is not in the form of equation (1.3). A procedure
similar to that employed in the previous section can be applied to transform equation
(6.8) into an equation in the standard form, such as equation (1.3). Thus after performing
the same steps as in the previous section, the above system reads

r1 � εr sin θ
�
r2 � εk�1 sgnpsin θq 3

?
r2 � 1� εkEpr cos θ, r sin θ, εq�

�r � εr2 cos θ � εk cos θ sgnpsin θq 3
?
r2 � 1� εk�1 cos θEpr cos θ, r sin θ, εq .

We point out that since r ¡ 0 we omitted it from the argument of the sgn function and
wrote just sgnpsin θq instead of sgnpr sin θq. We shall follow with this notation henceforth.
Again, we have expressed equation (6.8) as

r1 � εF pθ, r, εq, (6.9)

with F a 2π�periodic function in θ given by

F pθ, r, εq �
r sin θ

�
r2 � εk�1 sgnpsin θq 3

?
r2 � 1� εkEpr cos θ, r sin θ, εq�

�r � εr2 cos θ � εk cos θ sgnpsin θq 3
?
r2 � 1� εk�1 cos θEpr cos θ, r sin θ, εq .

Now expanding F in Taylor series up to order k � 1 about ε � 0 we get

r1 � �
k�1̧

j�1
εjrj�1 cosj�1 θ sin θ � εk

�
rk�1 cosk�1 θ sin θ�

sin θ sgnpsin θq 3
?
r2 � 1

	
�Opεk�1q (6.10)

Observe that this equation is in the standard form we have been using all along

r1 �
ķ

j�1
εjFjpθ, rq �Opεk�1q,
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where

Fjpθ, rq � �rj�1 cosj�1 θ sin θ, for each j P t1, . . . , k � 1u

and

Fkpθ, rq � �rk�1 cosk�1 θ sin θ � sin θ sgnpsin θq 3
?
r2 � 1.

Notice that Fi is continuous for every i P t1, . . . , k � 1u and Fk is a sum of a continuous
function with a Carathéodory function, as shown in Example 2.1. We can now apply
the methodology described in this work. Let Vα � p1 � α, 1 � αq for some 0   α   1.
Integrating each Fj over r0, 2πs, we obtain the averaged functions fi : V α Ñ R for each
j P t1, . . . , k � 1u

fjprq � 1
2π

» 2π

0
Fjpθ, rqdθ � 1

2π

» 2π

0
�rj�1 cosj�1 θ sin θdθ � 0

and

fkprq � 1
2π

» 2π

0
Fkpθ, rqdθ

� 1
2π

» 2π

0
�rk�1 cosk�1 θ sin θ � sin θ sgnpsin θq 3

?
r2 � 1dθ

� 1
2π

» 2π

0
� sin θ sgnpsin θq 3

?
r2 � 1dθ

� 2 3
?

1� r2

π
.

Notice that fk has an isolated zero at r� � 1 and that its Brouwer degree is the same as
the one calculated in Example 2.4, so dBpfk, Vα, 0q � �1 � 0 for every α P p0, 1q. Now in
order to apply Theorem G and Theorem J we only have to show that condition H holds.

Proposition 6.2. For any positive integer k, condition H holds on Vα for every α P p0, 1q.

Proof. The proof that condition H holds goes along the same lines as that of Proposition 6.1.
There are only a few changes that must be noted. Let α P p0, 1q be fixed. By negating
item H we get numerical convergent sequences pεmqmPN � p0, ε0s and pλmqmPN � p0, 1q,
such that εm Ñ 0 as mÑ 8, and a sequence prmqmPN of 2π-periodic solutions of

r1 � εmλmF pθ, r, εmq, r P V α, (6.11)

for which there exists θm P r0, 2πs such that rmpθmq P BVα for each m P N uniformly
converging to a constant function r0 P BVα � t1� αu and, in particular,» 2π

0
F pθ, rmpθq, εmqdθ � 0, m P N. (6.12)



Chapter 6. Applications 79

By the exact same arguments, we conclude that» 2π

0
sin θ sgnpcos θ � sin θq 3

a
rmpθq2 � 1dθ � Opεmq. (6.13)

Thus, by taking the limit of the above equality as mÑ 8, we obtain

0 �
» 2π

0
sin θ sgnpcos θ � sin θq 3

a
r2

0 � 1dθ

� 2
?

2 3
a
r2

0 � 1 � 0,

which is an absurd. And since α was taken arbitrarily, it follows that condition H holds
on Vα for every α P p0, 1q.

Now Theorem 6.2 can be proved.

Proof of Theorem 6.2. Since f1 � � � � � fk�1 � 0, fk � 0, fkprq � 0, for r P BV and
dBpfk, Vα, 0q � 0, by Theorem G, with ℓ � k, it follows that there exists εVα ¡ 0 such that
for every ε P p0, εVαs there exists a 2π�periodic solution φpθ, εq of equation (6.8) satisfying
φpθ, εq P V α for every θ P r0, 2πs and, since condition H holds on Vα for every α P p0, 1q,
then H holds on every open subset of p0, 2q containing r� � 1. Thus, by Theorem J, it
follows that φpθ, εq Ñ r� � 1 uniformly as εÑ 0.

Similar numerical simulations were run for equation (6.9) and we can observe
a curious behaviour. The reader will notice that in each figure there are two branches of
points, one that is clearly a straight line and the other consisting of a few points near the
x axis. These points near the x axis show that the displacement function reaches values
very close to zero, which indicate the presence of 2π�periodic solutions. The other branch
appears due to the lack of uniqueness of solutions.
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Figure 8 – Displacement function of differential equation (6.2) assuming k � 1 and E � 0
for ε � 1{20 (left) and ε � 1{100 (right).
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Figure 9 – Displacement function of differential equation (6.2) assuming k � 2 and E � 0
for ε � 1{20 (left) and ε � 1{100 (right).
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Figure 10 – Displacement function of differential equation (6.2) assuming k � 3 and E � 0
for ε � 1{20 (left) and ε � 1{100 (right).

6.2.2 Second example

Let g : R2 Ñ R be given by

gpx, yq � sgnpypx2 � y2 � 1qqmax
"

0,
�
x2 � y2 � 1

4


�
x2 � y2 � 9

4


*

and consider the following differential equation

:x � �x� εpx2 � 9x2q � εkgpx, 9xq � εk�1Epx, 9x, εq, (6.14)

where E is a continuous function on R3. The function gpx, 9xq multiplying the εk term is
clearly a discontinuous one.

We will prove the following result.

Theorem 6.3. For α P p1{2, 1q, let Aα � tpx, yq P R2 : 1�α   x2 � y2   1�αu. For any
positive integer k and |ε| � 0 sufficiently small, the differential equation (6.14) admits a
2π�periodic solution xpt, εq satisfying pxpt, εq, 9xpt, εqq P Aα for every t P r0, 2πs.

Applying once more the same procedure employed in the previous sections of
this chapter, namely perform a polar change to variables pr, tq and taking θ as the new
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time variable we obtain the system

r1 � r sin θpεr2 � εkgpr cos θ, r sin θq � εk�1Epr cos θ, r sin θ, εqq
�r � εr2 cos θ � εk cos θgpr cos θ, r sin θq � εk�1 cos θEpr cos θ, r sin θ, εq , (6.15)

which is a 2π�periodic differential equation. By expanding the tight-hand side of the
above equation in Taylor series up to order k about ε � 0, we get

r1 � εF1pθ, rq � � � � � εkFkpθ, rq �Opεk�1q

� �
k�1̧

i�1
εiri�1 cosi�1 θ sin θ

� εk
�
rk�1 cosk�1 θ sin θ � sin θgpr cos θ, r sin θq��Opεk�1q.

Notice that the right-hand side of this equation is a Carathéodory function, since it is a
sum of continuous functions with the term sin θgpr cos θ, r sin θq which is Carathéodory,
as shown in Example 2.2. Let 1{2   α   1 and define Vα � p1� α, 1� αq. The averaged
functions fi : V Ñ R are given by

fiprq � 1
2π

» 2π

0
�ri�1 cosi�1 θ sin θdθ � 0, i P t1, . . . , k � 1u

fkprq � 1
2π

» 2π

0
�ri�1 cosi�1 θ sin θ � gpr cos θ, r sin θq sin θdθ

� � 2
π

sgn
�
r2 � 1

�
max

"
0,
�
r2 � 1

4


�
r2 � 9

4


*
.

Hence, we have f1 � � � � � fk�1 � 0 and fk � 0 in V . In addition, the degree of fk was
calculated in Example 2.5 so that dBpfk, Vα, 0q � �1 � 0.
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0.4
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fk

Figure 11 – Graph of the k�th averaged function.

In order to verify condition H, we follow the same procedure employed in the
last sections.
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Proposition 6.3. For any positive integer k, and any α P p1{2, 1q, condition H holds on
Vα.

Proof. Negating condition H, we obtain numerical sequences tεmumPN, tλmumPN such that
εm Ñ 0 as mÑ 8, and a sequence prmqmPN of 2π-periodic solutions of

r1 � εmλmF pθ, r, εmq, r P V α, (6.16)

for which there exists θm P r0, 2πs such that rmpθmq P BVα for each m P N uniformly
converging to a constant function r0 P BVα � t1� αu and, in particular,» 2π

0
F pθ, rmpθq, εmqdθ � 0, m P N. (6.17)

By the exact same arguments used in the previous sections, we conclude that» 2π

0
sin θ sgnprpr2 � 1q sin θqmaxt0, pr2 � 1{4qpr2 � 9{4qudθ � Opεmq. (6.18)

Thus, by taking the limit of the above equality as mÑ 8, we obtain

0 �
» 2π

0
sin θ sgnprpr2 � 1q sin θqmaxt0, pr2 � 1{4qpr2 � 9{4qudθ

� �4 sgn
�
r2

0 � 1
�

max
"

0,
�
r2

0 �
1
4


�
r2

0 �
9
4


*
� 0,

which is an absurd. And since α was taken arbitrarily, it follows that condition H holds
on Vα for every α P p0, 1q.

Thus, we can prove Theorem 6.3.

Proof of Theorem 6.3. We have f1 � � � � � fk�1 � 0 and fk � 0. In addition, condition H
holds on Vα and dBpfk, Vα, 0q � 0 for every α P p1{2, 1q. Therefore, by Theorem G there
exists εVα P p0, ε0s such that for every ε P p0, εVαq there exists a 2π�periodic solution
φpt, εq of equation (6.14) satisfying φpt, εq P V α for every t P r0, 2πs.

This is an example where we can guarantee the existence of periodic solutions,
but not the convergence of these solutions as εÑ 0.

Below we show some numerical simulations carried out with Epx, y, εq � y�y3.

We note, that for most cases these simulations clearly indicate the presence of 3 periodic
solutions.
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Figure 12 – Displacement function of differential equation (6.2) assuming k � 1 and
Epx, y, εq � y � y3 for ε � 1{20 (left) and ε � 1{100 (right).
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Figure 13 – Displacement function of differential equation (6.2) assuming k � 2 and
Epx, y, εq � y � y3 for ε � 1{20 (left) and ε � 1{100 (right).
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Figure 14 – Displacement function of differential equation (6.2) assuming k � 3 and
Epx, y, εq � y � y3 for ε � 1{20 (left) and ε � 1{100 (right).
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7 Conclusion and future works

In this work, we have studied the problem of detecting periodic solutions of
ordinary differential equations with discontinuous right-hand sides. More precisely, we
have considered differential equations whose right-hand sides are functions satisfying the
Carathéodory conditions.

The major challenge in dealing with less regular differential equations is the
lack of uniqueness of solutions. This property is very important in order to properly define
a Poincaré map and study its fixed points. Since this is not possible in the context of this
work, we had to look for a feasible approach.

The main technique used for proving existence results for non-smooth differential
equations was topological degree theory for operator equations in infinite dimensional
spaces. We have used the integral characterization of solutions of differential equations to
define operators on suitable Banach spaces and studied the resulting equivalent operator
equation. We are then able to use the average of the right-hand side as bifurcation functions.

Convergence of solutions was also studied. In this way, we see that the periodic
solutions detected for ε � 0 converge to some solution of the unperturbed differential
equation as εÑ 0.

The development of this work opened many possibilities for further research.
We briefly discuss some of these topics in the sequel.

7.1 Averaging for Filippov systems
Aiming at considering as much cases as possible, it is natural to also consider

the case of Filippov systems.

Consider the differential equation

x1 � εF pt, x, εq � ε
m̧

j�1
χDi

pxqFjpt, x, εq, pt, x, εq P r0, T s �D � p�ε0, ε0q,

where χA is the characteristic function of the subset A, that is, χApxq � 1 if x P A and
χApxq � 0 if x R A, and Fj : r0, T s � Dj � r�ε0, ε0s Ñ Rn for each j P t1, . . . ,mu is a

Carathéodory function T�periodic in t and D �
m¤

j�1
Dj.

It is then interesting to investigate whether it is possible to apply the methodol-
ogy used in this work to provide sufficient conditions for the existence of periodic solutions
for the Filippov system above.
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7.2 Bifurcation from a non-degenerate family of periodic solutions
In this work, the differential equation studied is reduced to x1 � 0 by taking

ε � 0. This unperturbed system has all of its solutions as constants, thus periodic.

An interesting problem is consider the differential equation

x1 � F0pt, xq � εRpt, x, εq, (7.1)

where F0 : r0, T s �D Ñ Rn, and R : r0, T s �D � r0, εf s Ñ Rn are continuous function,
T�periodic in t. Let us assume that F0 is Lipschitz continuous. Consider the unperturbed
problem

x1 � F0pt, xq. (7.2)

Let k ¤ n, be a non-negative integer, V � Rk an open bounded subset, β0 : V Ñ Rn�k a
C1 function and consider the set

Z � tzα � pα, β0pαqq : α P V u.

We pose the following condition

H1 for each zα P Z, the solution φαptq � φpt, zαq of (7.2) such that φαp0q � zα is
T�periodic.

The goal here is to provide an averaging like result using topological degree
theory to give conditions that guarantee that equation (7.1) has a T�periodic solution for
ε ¡ 0 sufficiently small.

7.3 Stability of periodic solutions
When studying the bifurcation of periodic solutions, a natural question arises,

namely, whether we can get some information about the stability of these solutions.

The analysis of stability of periodic solutions of differential equations usually
employ techniques such as te study of the Poincaré map. However, as we have seen, for
equations with regularity as low as those considered in this work, we cannot properly
define a Poincaré map. Thus it remains an open problem to provide sufficient conditions
that guarantee the stability of the periodic solutions detected by the methods used in this
work.
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