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Abstract

Since the 1960s, the boundedness of solutions of the Duffing-type equations :x� gpxq � pptq has been
a significant research focus in dynamical systems. This is primarily attributed to mathematician John
E. Littlewood, who proposed investigating conditions on the functions gpxq and pptq to determine
the boundedness of all solutions to the Duffing-type equation. In light of this, a crucial strategy is
to establish the existence of invariant tori in the extended phase space of the differential equation,
confining all the dynamics in the interiors of the regions delimited by them.

Assuming pptq to be a σ-periodic function, we aim to study the existence of invariant tori for the family
of second-order discontinuous differential equations

pFq : :x� µ sgnpxq � θx� ε pptq,

where θ and ε are real parameters, sgnpxq represents the usual sign function, and µ P t�1, 1u is a modal
parameter. We focus on cases where the unperturbed equation (ε � 0) admits a ring of periodic orbits.
More precisely, assuming θ � 0, we employ KAM theory to investigate the existence of invariant
tori for pFq. In this case, pptq is required to be sufficiently differentiable. For θ � 0, considering
pptq as a Lebesgue-integrable function with vanishing average, we establish the existence of invariant
tori through a constructive and non-perturbative method. These results provide conditions for the
boundedness of solutions that initiate either on these tori or in the interiors of the regions delimited by
them, as well as conditions for the existence of periodic orbits.

Finally, for the sake of completeness, we perform a Melnikov analysis on a more general class of
differential equations given by :x � α sgnpxq � θx � ε fpt, x, 9xq, where α � 0 and fpt, x, 9xq is a
function of class C1 and σ-periodic in t, aiming to detect bifurcating periodic orbits of the differential
equation.

Keywords: Non-smooth differential equations, Carathéodory equations, Filippov systems, KAM
Theory, Invariant tori, Boundedness of solutions, Melnikov method, Periodic solutions.



Resumo

Desde os anos 60, a limitação das soluções das equações de Duffing :x � gpxq � pptq tem sido um
importante objeto de pesquisa em sistemas dinâmicos. Isso se deve, principalmente, ao matemático John
E. Littlewood, que propôs a investigação de condições sobre as funções gpxq e pptq para determinar
a limitação de todas as soluções da equação de Duffing. Nesse contexto, uma estratégia crucial é
determinar a existência de toros invariantes no espaço de fase estendido da equação diferencial,
confinando toda a dinâmica na região delimitada pelos mesmos.

Assumindo pptq como uma função σ-periódica, pretendemos estudar a existência de toros invariantes
para a família de equações diferenciais descontínuas de segunda ordem

pFq : :x� µ sgnpxq � θx� ε pptq,

em que θ e ε são parâmetros reais, sgnpxq representa a função sinal usual e µ P t�1, 1u é um parâmetro
modal, nos casos em que a equação não perturbada (ε � 0) admite um anel de órbitas periódicas.
Mais precisamente, assumindo θ � 0, recorremos à Teoria KAM para investigar a existência de toros
invariantes de pFq. Neste caso, é necessário que pptq seja suficientemente diferenciável. Para θ � 0,
tomando pptq como uma função Lebesgue integrável com média zero, constatamos a existência de
toros invariantes por meio de um método construtivo e não perturbativo. Tais resultados fornecem
condições para a limitação de todas as soluções que se iniciam em tais toros ou nas regiões delimitadas
pelos mesmos, bem como condições para a existência de órbitas periódicas.

Por fim, para efeito de completude, desenvolvemos uma análise de Melnikov para a classe mais geral
de equações diferenciais dadas por :x�α sgnpxq � θx� ε fpt, x, 9xq, em que α � 0 e fpt, x, 9xq é uma
função de classe C1 e σ-periódica em t, com o objetivo de detectar órbitas periódicas que bifurcam dos
anéis periódicos da equação diferencial.

Palavras-chave: Equações diferenciais não-suaves, Equações de Catarathéodory, Sistemas de Filippov,
Teoria KAM, Toros invariantes, Limitação de soluções, Método de Melnikov, Soluções periódicas.
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1 Introduction

Since the 1960s, researchers have been investigating the boundedness of solutions of the
Duffing-type equations

:x� gpxq � pptq. (1.1)

The interest in such investigation is mainly due to Littlewood, who, after demonstrating in [38, 39] the
existence of unbounded solutions of (1.1) when pptq is assumed to be bounded and gpxq (saturation
function) satisfies specific asymptotic conditions, proposed in [40] to investigate conditions on pptq
and gpxq that would ensure the boundedness of all solutions of (1.1). Morris, in [42], was the first
to provide an example to Littlewood’s proposal, assuming pptq to be periodic and continuous, and
gpxq � 2x3. Subsequently, Morris had its result extended by Dieckerhoff and Zehnder in [18] to the
class of equations

:x� x2n�1 �
2ņ

j�0

xjpjptq � 0, n ¥ 1,

under the assumption that pj are periodic C8 functions. Also, by considering gpxq to be piecewise
smooth, boundedness of solutions has been analyzed in the non-smooth context in [20, 34, 53, 55] . It
is noteworthy that in the literature, boundedness of all solutions is also referred to as Lagrange stability,
as described in [67].

1.1 A class of non-smooth Duffing-type equations

In this work, considering sgn as the standard sign function defined as

sgnpxq �

$'&
'%

1, if x ¡ 0,

0, if x � 0,

�1, if x   0,

we aim to study qualitative aspects of the class of differential equations

:z � α sgnpzq � θz � ε̃f̃pt, z, 9zq,
where α � 0, θ and ε̃ are real parameters, and f̃pt, z, 9zq is a function σ-periodic in the variable t. It is
worthy mentioning that, by considering the change of variables z � |α|x, the differential equation is
reduced to

:x� µ sgnpxq � θx� εfpt, x, 9xq, (1.2)

with ε � ε̃{|α|, fpt, x, 9xq � f̃pt, |α|x, |α| 9xq, and µ � sgnpαq P t�1, 1u. We notice that fpt, x, 9xq and
f̃pt, z, 9zq have the same periodicity in t. For this reason, we reduce our analysis to the differential
equation (1.2).
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The most significant aspect of this work consists in determining the existence of invariant
tori (see Definitions 1.1.1 and 1.1.2) and the boundedness of solutions for the differential equation (1.2)
in the case fpt, x, 9xq � pptq, with pptq being a σ-periodic function. Thus, we consider the subclass of
differential equations given by

:x� µ sgnpxq � θx� ε pptq. (1.3)

For the the sake of completeness, we perform a Melnikov analysis on the equation (1.2) in order to
determine the existence of periodic orbits.

The importance in studying non-smooth differential equations primarily lies in understand-
ing phenomena observed in both natural and engineering domains characterized by sudden changes.
For instance, such study can be used to comprehend biological and climate models involving abrupt
changes [7, 13, 35, 56], collisions in mechanical systems [10, 31, 32], electronic circuits in the presence
of a relay [30], and automatic pilots for ships [3].

Important studies have been conducted on the family of differential equations (1.3). For
example, in [34], Kunze et al. showed that, for θ � �1 and µ � 1, all the solutions of (1.3) are bounded
provided that ε is sufficiently small. Furthermore, they established the existence of infinitely many
periodic orbits. Regarding this matter, Silva et al. in [15] assumed pptq to be periodically continuous
and provided conditions on µ and θ to ensure the existence of periodic solutions for (1.3) through
direct computations. In terms of practical applications, equation (1.3) is very useful in describing, for
instance, the states of a simple automatic pilot for ship [3] and a dry-friction oscillator [32] through the
interaction laws

:x� x � sgnpxq and :x� x � sinpωtq � AF sgnp 9xq,
respectively, where ω is the frequency of the forcing term and AF is the magnitude of the Coulomb
friction force.

As previously mentioned, this work focuses on investigating the boundedness of solutions
for the differential equation (1.3). To this end, the primary objective is to establish the existence of
a collection of invariant tori for equation (1.3), particularly in the scenarios where the unperturbed
equation (ε � 0) admits a period annulus. For a better understanding of the concept of solution and
invariant torus of the differential equation (1.3), it is convenient to consider the change of variables
y � 9x, and, then, transform equation (1.3) into the differential system

Xθ,µpt, x, y; εq :
$&
% 9x � y,

9y � θx� µ sgnpxq � ε pptq.
(1.4)

The solutions of the differential system (1.4) will be considered according to the Filippov convention,
which exists for every initial condition if pptq is assumed to be, at least, a Lebesgue-integrable function
(see Section 2.1.1). Thus, we will refer to (1.4) as a perturbed Filippov system. Now, taking into
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account the function sgnpxq, we notice that Σ1 � tpt, x, yq P R3 : x � 0u corresponds to the switching
plane of the Filippov system (1.4), which, in turn, can be decomposed into the differential systems

X�
θ,µpt, x, y; εq :

$&
% 9x � y,

9y � θx� µ� ε pptq,
and X�

θ,µpt, x, y; εq :
$&
% 9x � y,

9y � θx� µ� ε pptq,
(1.5)

for x ¥ 0 and x ¤ 0, respectively. The regularities of X�
θ,µ and X�

θ,µ depend on the regularity of the
function pptq. We shall see that, depending on the parameters θ and µ, distinct regularities for pptq
will be assumed in our study. In any case, local uniqueness of solutions is guaranteed if we assume
pptq to be at least Lebesgue-integrable (see Example 2.1.12). We shall focus our attention on solutions
of the differential systems in (1.5) that intersect the region of discontinuity Σ1 transversely. Under
these conditions, solutions of (1.4) are obtained by concatenating solutions of (1.5) along Σ1, which
establishes the global uniqueness property in such cases.

Another important aspect of the Filippov system (1.4) to be used throughout this work is
its piecewise Hamiltonian structure associated with the function

Hθ,µpx, y, t; εq � y2

2
�Gθ,µpxq � εxpptq, (1.6)

where Gθ,µpxq � �θx
2

2
�µ|x|. We shall see that such characteristic plays a crucial role in constructing

coordinate changes that transform the Hamiltonian (1.6) into a nearly integrable one, which, roughly
speaking, consists in a perturbation of an integrable Hamiltonian.

Since pptq is assumed to be σ-periodic, the Filippov system (1.4) can be seen as the vector
field

Xθ,µpϕ, x, y; εq �
$&
%ϕ

1 � 1,

x1 � Xθ,µpϕ,x; εq,
(1.7)

in the extended phase space pϕ,xq P Sσ � R2, where Sσ � R{σZ. Let us denote the flow associated
with (1.7) by Φτ , with τ being the time.

Definition 1.1.1. We say that A � Sσ � R2 is an invariant set of Xθ,µ if Φτ paq P A, for every a P A
and τ P Ia, where Ia denotes the maximal interval of definition of Φτ paq.

Definition 1.1.2. A set T � Sσ�R2 is said to be a torus of (1.7), if the intersection of T with tϕu�R2

is homeomorphically a circle, for every ϕ P Sσ, and the intersections with tϕu �R2 and tϕ� σu �R2

coincide in the quotient space Sσ � R2, for every ϕ P Sσ.

Therefore, when we refer to a set as an invariant torus of either (1.3) or (1.4), we essentially
regard it as an invariant torus of (1.7) (see Figure 1). Moreover, in cases where pptq is a σ-periodic
function of class Cr, we denote this property by p P CrpSσq.
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x

y

ϕ

tϕ � σu

tϕ � 0u

T

Figure 1 – T represents a torus of (1.7) in the quotient space Sσ � R2, meaning that
T X pt0u � R2q � T X ptσu � R2q.

In order to discuss the main results of this thesis concerning existence of invariant tori,
boundedness of solutions, and periodic orbits, we analyze the unperturbed Filippov system associated
with (1.4).

1.1.1 Unperturbed Filippov system

For ε � 0, the Filippov system (1.4) writes as

Xθ,µpx, yq � Xθ,µpt, x, y; 0q :
$&
% 9x � y,

9y � θx� µ sgnpxq,

which matches

X�
θ,µpx, yq :

$&
% 9x � y,

9y � θx� µ,
and X�

θ,µpx, yq :
$&
% 9x � y,

9y � θx� µ,

when restricted to the semi-planes x ¥ 0 and x ¤ 0, respectively. The line Σ � tpx, yq P R2 :

x � 0u represents the set of discontinuity of Xθ,µ. Moreover, except for y � 0, it corresponds to a
crossing region of Xθ,µ, which means that the solutions of Xθ,µ with initial conditions distinct from
px, yq � p0, 0q are given by the concatenation of the solutions of X�

θ,µ and X�
θ,µ along Σ. By varying

the parameters µ and θ, we describe the phase portraits of Xθ,µ, as follows:
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(C1) θ ¡ 0 and µ � 1: In this case, the points p0 � p0, 0q, p� � p1{θ, 0q, and p� � p�1{θ, 0q are the
singularities of XpC1q, with p0 being an invisible fold-fold point and also a center-type. The
points p� and p� are both admissible linear saddles (see Figure 2);

(C2) θ ¡ 0 and µ � �1: In this case, the only singularity of XpC2q is p0 and it is a visible fold-fold
(see Figure 2);

(C3) θ � 0 and µ � 1: In this case, the only singularity of XpC3q is p0, which corresponds to an
invisible fold-fold as well as a center (see Figure 3);

(C4) θ � 0 and µ � �1: In this case, p0 is a visible fold-fold of XpC4q and also its only singularity
(see Figure 3);

(C5) θ   0 and µ � 1: In this case, the point p0 is an invisible fold-fold and also a center of XpC5q
(see Figure 4);

(C6) θ   0 and µ � �1: In this case, the point p0 is a visible fold-fold, and the points p� and p� are
both linear centers of XpC6q. These points are the only singularities of XpC6q (see Figure 4).

(C1)

x

y

p0p� p�

(C2)

x

y

p0

Figure 2 – Phase portraits of the cases (C1) and (C2).
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(C3)

x

y

p0

(C4)

x

y

p0

Figure 3 – Phase portraits of the cases (C3) and (C4).

(C5)

x

y

p0

(C6)

x

y

p0 p�p�

Figure 4 – Phase portraits of the cases (C5) and (C6).

1.1.2 Cases of period annulus: A0 �A3

We notice that in the cases (C1), (C3), (C5), and (C6), there is are regions known as
period annuli, consisting exclusively of periodic orbits (see Section 6.1 and Figure 5). Since we are
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only concerned with these cases, we rename them according to their appearance in this work in the
following way:


 A0 � (C5): θ   0 and µ � 1;


 A1 � (C6): θ   0 and µ � �1;


 A2 � (C1): θ ¡ 0 and µ � 1;


 A3 � (C3): θ � 0 and µ � 1.

We rename the case (C5) as A0 because, in the context of the existence of invariant tori
and boundedness of solutions, this case has already been studied in [34].

On the other hand, taking HA2px, yq �
y2

2
� GA2pxq � HA2px, y, t; 0q to be the unper-

turbed Hamiltonian associated with (1.3) in the case A2, we notice that Lθztp0, 0qu, where

Lθ :�
"
px, yq P R2 : 0 ¤ HA2px, yq  

1

2θ
and |x|   1

θ

*
, (1.8)

corresponds to the period annulus in case A2. It is noteworthy that the case A2 is the only case among
the aforementioned ones where the period annulus is bounded (see Figure 5). For ε � 0, we adopt the
same labels for the corresponding cases.

A0 A1 A2 A3

Figure 5 – Cases of the unperturbed equation (1.3) featuring period annuli.

1.2 Main goals

In [34], Kunze et al. demonstrated that, for sufficiently small ε ¡ 0, all solutions of (1.3)
in the case A0 are bounded, provided that p P C6pSσq. This result is a consequence of the existence
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of an infinite collection of closed curves of the time-σ-map associated with (1.3), which is directly
related to the existence of a sequence of nested invariant tori for the differential equation (1.3) in the
extended phase space, confining any solution of the system. In order to obtain aforementioned closed
curves, some coordinate changes are necessary to overcome the lack of regularity of the time-σ-map
and to fit it into the conditions of the Invariant Curve Theorem, a variant version of the Moser’s Twist
Map Theorem present in the KAM theory.

The main goal of our work is to provide conditions over pptq that ensure the existence
of a family of invariant tori in the remaining cases A1, A2, and A3 of the differential equation (1.3),
and consequently the boundedness of solutions whose initial conditions lies within such invariant tori.
According to the nature of the unperturbed differential equation (1.3), we expect boundedness of all
solutions in the cases A1 and A3, but not in the case A2, since the period annulus, for ε � 0, in such a
case is bounded.

Specifically, by adopting the framework provided by Kunze et al. in [34], we address the
existence of invariant tori for the differential equation (1.3) in the case A1 by means of the Invariant
Curve Theorem, while case A2 is treated with Moser’s Twist Map Theorem. In both cases, pptq is
required to be sufficiently smooth. In contrast to the former cases, we study the existence of invariant
tori for the differential equation (1.3) in case A3 through a simpler constructive method by assuming
pptq to be a Lebesgue-integrable function with vanishing average. More specifically, we construct
an explicit family of invariant tori of (1.3) whose union of their interiors covers the enlarged three-
dimensional space pt, x, 9xq P Sσ � R2. In this case, the Carathéodory theory for differential equations
must also be considered in order to address the uniqueness of solutions.

The reason for not using KAM theory in the study of case A3 is that, since θ � 0, the
saturation gpxq as in (1.1) becomes a bounded function. This characteristic generates a subtle twist
at infinity, making it challenging to apply the standard versions of Moser’s Twist Map Theorem to
obtain global results regarding the existence of invariant tori. On the other hand, our reasoning for
case A3 allows us to significantly reduce the regularity of pptq by assuming a vanishing average for it.
This differs from cases A1 and A2, where smoother conditions on pptq are crucial for the techniques
employed. Additionally, the results obtained for case A3 have a non-perturbative character, meaning
that their accuracy is independent of ε. For the non-vanishing average case, we present a work in
progress to deal with the existence of invariant tori and boundedness of all solutions of (1.3), primarily
relying on the parametrization method (see [27], for instance).

Besides the existence of invariant tori, we will use three distinct approaches to deal with
the existence of periodic solutions of (1.3). The first one is grounded on a topological method for
detecting fixed points in twist area-preserving maps, and it shall be applied to cases A1 and A2. The
second one consists in finding periodic solutions of (1.3) in the case A3 through direct computations.
Finally, the third one relies on the Melnikov method for detecting periodic orbits, which is going to be
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addressed to the general class of differential equations (1.2).

1.3 Structure of the thesis

Chapter 2 is dedicated to present some basic notions to be used throughout this work such
as Carathéodory equations, Filippov systems, Hamiltonian systems, and some results in KAM Theory.

In Chapter 3 we present a result concerning the existence of infinitely many invariant
tori of the differential equation (1.3) in the case A1 provided p P C6pSσq and ε is sufficiently small
(Theorem A). As a direct consequence of the main result of this chapter, we shall see that, under the
previous assumptions, all the solutions of (1.3) are bounded (Corollary 3.1.1). Furthermore, by means
of the Poincaré-Birkhoff Theorem, we will see that (1.3) has infinitely many periodic orbits (Theorem
B). The strategy followed to prove Theorem A is mainly based on [34], where the key idea is to obtain
closed curves for a Poincaré-map, which, in turn, is conjugated to the time-σ-map of (1.3), fulfilling
the conditions of the Invariant Curve Theorem.

Chapter 4 is devoted to addressing the existence of invariant tori for (1.3) in case A2.
Given that the period annulus is bounded in this case, we adopt a different approach than in case A1.
Here, we demonstrate the existence of a finite collection of invariant tori using Moser’s Twist Map
Theorem. Accordingly, for p P C5pSσq and K � Lθ a compact subset, where Lθ is the set defined in
(1.8), we prove the existence of an invariant torus of (1.3) whose intersection with the time section
t0u � R2 encloses K and it is contained in Lθ, whenever ε is sufficiently small (Theorem C). As an
immediate consequence of Theorem C, we have that every solution of (1.3) initiating in K must be
bounded for sufficiently small values of ε (Corollary 4.1.1). Moreover, given n P N, Theorem C is
used to obtain a ε�pn, pq ¡ 0 and to construct a family of n invariant tori of (1.3), 0 ¤ ε ¤ ε�pn, pq,
whose the intersection of the n-th term of such a family with the time section tt � 0u converges to the
boundary of Lθ, as n goes to infinity (Theorem D). Finally, for each n P N, we prove the existence of
n� 1 periodic solutions of (1.3) (Corollary 4.1.2).

In Chapter 5, which corresponds to the published manuscript [51], we present Theorem E
as the main result of the chapter, which addresses the existence of an infinite collection of invariant
tori for (1.3) in the case A3. This result is a consequence of a Fundamental Lemma (Lemma 5.2.1)
that provides sufficient conditions for the existence of an invariant torus of (1.3) by assuming that pptq
is a Lebesgue-integrable function with vanishing average. Furthermore, the invariant tori provided
by Theorem E are foliated by periodic orbits, representing a highly exceptional phenomenon. This
stands in contrast to the tori obtained through the KAM theory, which typically carry quasi-periodic
motions. As a final result of the chapter, Proposition 5.3.3 stands for a simple approach to the existence
of invariant tori of (1.3) in the case that pptq is a L8-function, instead of just Lebesgue-integrable. The
chapter is ended with further directions concerning case A3 when pptq has a non-vanishing average.
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Finally, Chapter 6, corresponding to the manuscript [50], is dedicated to presenting a
Melnikov analysis applied to the more general class of differential equations (1.2). Specifically, by
considering fpt, x, 9xq to be a C1-function and σ-periodic in t, we provide a Melnikov function (Theorem
F) for each one of the cases A0, A1, A2, and A3, whose simple zeros imply the existence of periodic
solutions bifurcating from the corresponding period annulus.
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2 Basic Concepts

This chapter is devoted to shortly introduce some important concepts and classical results
to be used throughout this work, such as discontinuous differential equations, Hamiltonian systems,
and KAM theory.

2.1 Some concepts and results of differential equations: contin-

uous, Carathéodory, and Filippov

When exploring differential equations with discontinuous right-hand side, different notions
of solutions may arise, creating a challenge in investigating fundamental mathematical concepts such
as existence and uniqueness of solutions.

Before we proceed with the discontinuous right-hand side differential equations, let us
revisit some crucial aspects of the continuous ones.

Consider the non-autonomous Cauchy problem$&
% 9x � fpt, xq,
xpt0q � x0,

pt, xq P U � R� Rn. (2.1)

A classical solution of (2.1) is a curve xptq defined in an interval I � R containing t0, which is
differentiable for every t P I, pt, xptqq P U for every t P I, and satisfies (2.1) for every t P I. In the
case that f is continuous in the open set U , the Cauchy problem (2.1) is equivalent to the integral
equation

xptq � x0 �
» t

t0

fps, xpsqqds, (2.2)

meaning that a differentiable curve φ : I Ñ U , whose graph is contained in U , is a solution to (2.1) if
and only if it is a solution of (2.2).

Some of the basic results concerning the existence and uniqueness of solutions in the
classical sense are presented below.

Theorem 2.1.1. [59, Peano’s Theorem] Suppose that for pt0, x0q P U there exist a and b positive

numbers such that R � Rpt0, x0, a, bq � U , where

Rpt0, x0, a, bq � tpt, xq P R� Rn : t0 ¤ t ¤ t0 � a and }x� x0} ¤ bu, (2.3)

and f is continuous on R. Then, there exists a solution to the Cauchy problem (2.1) defined on

rt0, t0 � ās, where ā � infta, b{Mu and M � }f}8 � sup
pt,xqPR

t|fpt, xq|u.
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Theorem 2.1.2. [59, Theorem 3 §5] Suppose that U � R � Rn is an open set and f : U Ñ Rn is

a continuous function. If xptq is a solution to the Cauchy problem (2.1) on some interval, then there

exists a continuation of xptq to a maximal interval of existence. Moreover, if pω�, ω�q is the maximal

interval of existence of xptq, then gptq � pt, xptqq tends to the boundary of U as tÑ ω� and tÑ ω�.

That is, for each compact K � U there exists a neighborhood V of ω� such that gptq R K for every

t P V .

Remark 2.1.3. As a direct consequence of the previous result, we have every maximal solution of (2.1)
confined in an invariant compact set of 9x � fpt, xq must be defined for every t P R.

Theorem 2.1.4. [59, Uniqueness of classical solutions] For pt0, x0q P U , suppose that there exist a

and b such that f is Lipschitiz continuous on R � Rpt0, x0, a, bq. If }f}8 ¤M in R, then there exists

a unique solution to (2.1) defined on rt0, t0 � ās, where ā � infta, b{Mu.

For the purposes of this work, our focus lies specifically on the concepts of Carathéodory
and Filippov solutions for differential equations with discontinuous right-hand sides, which are
intrinsically related with the concept of absolutely continuous functions.

2.1.1 Carathéodory differential equations

The essence of Carathéodory’s theory of differential equations is to extend the concept of
a solution to a wider class of initial value problems of the form$&

% 9x � fpt, xq,
xpt0q � x0,

pt, xq P U � R� Rn, (2.4)

and investigate their properties under less restrictive assumptions over f .

In what follows, we present the concept of absolutely continuous function, as well as the
definition of a Carathéodory differential equation.

Definition 2.1.5. A function u : ra, bs � RÑ Rn is called absolutely continuous on the closed interval

ra, bs, if there exists a Lebesgue-integrable function v : ra, bs Ñ Rn satisfying

upxq � upaq �
» x

a

vpsqds,

for every x P ra, bs. In such cases, we say that u is differentiable for almost every x P ra, bs and

u1pxq � vpxq almost everywhere.

Remark 2.1.6. Every absolute continuous function is continuous, but the converse is not true. For

instance, the function

uptq :�
$&
% t sin

�
1

t



, if t � 0,

0, if t � 0,
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is continuous, but not absolute continuous.

Definition 2.1.7. Let I �V � R�Rn be an open set. We say that a function f : I �V Ñ Rn satisfies

the Carathéodory conditions if:

(i) For every x P V , the function t ÞÑ fpt, xq is measurable;

(ii) For almost every t P I, x ÞÑ fpt, xq is continuous;

(iii) For every pt0, x0q P I � V , there exist positive numbers a and b, and a non-negative summable

function ρpt0,x0q : rt0, t0 � as Ñ R satisfying

(a) Rpt0, x0, a, bq � U ;

(b) }fpt, xq} ¤ ρpt0,x0qptq for every pt, xq P Rpt0, x0, a, bq;

with Rpt0, x0, a, bq being the set defined in (2.3).

Then, if f satisfies the Carathéodory conditions, we call (2.4) a Carathéodory differential equation.

Definition 2.1.8. A Carathéodory solution of (2.4) is an absolutely continuous function satisfying

(2.2) whose graph is contained in U .

Evidently, every classical solution is a Carathéodory solution.

Example 2.1.9. Consider f : RÑ R the piecewise function defined by

fpxq �

$''&
''%

1, if x ¡ 0,
1

3
, if x � 0,

�1, if x   0.

The differential equation 9x � fpxq has no classical solutions at x0 � 0. However, there exist

two Carathéodory solutions initiating in 0 and having r0,�8q as the interval of definition, namely,

x1ptq � t and x2ptq � �t.

Now, we provide some sufficient conditions for the existence and uniqueness of Carathéodory
solutions. We emphasize that different assumptions over f may be considered in order to establish
such properties (see [14], for instance).

Theorem 2.1.10. [22, Existence of Carathéodory solutions] For a given pt0, x0q P I�V , let us assume

that f satisfies the Carathéodory conditions on Rpt0, x0, a, bq � I � V for some positive number a

and b. Then, on a closed interval rt0, t0 � ds there exists a Carathéodory solution to the initial value

problem (2.4), where d is a constant satisfying
t0�d

∫
t0

ρpt0,x0qptqdt ¤ b.
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Theorem 2.1.11. [22, Uniqueness of Carathéodory solutions] Given pt0, x0q P I � V , let us assume

that Rpt0, x0, a, bq � I � V , for some positive numbers a and b, and that there exists an integrable

function λpt0,x0q : rt0, t0 � as Ñ R satisfying

}fpt, x1q � fpt, x2q} ¤ λpt0,x0qptq}x1 � x2}, (2.5)

for every pt, x1q, pt, x2q P Rpt0, x0, a, bq. Then, there exists a unique Carathéodory solution to the

initial value problem (2.4).

In the following example, we study the uniqueness of solutions of the differential systems
in (1.5).

Example 2.1.12. Assuming pptq to be Lebesgue integrable, let us revisit the differential systems in

(1.5). Assume that x0 ¡ 0, and take b � x0{2. Then, for each pt, x, yq P R � Rpt0, x0, y0, a, bq, we

have that 0   x0{2 ¤ x ¤ 3x0{2, for any y0 P R and a ¡ 0. This implies that X�
θ,µp�; εq : RÑ R2 is

well defined. Besides that, for each pt, x1, y1q, pt, x2, y2q P R � Rpt0, x0, y0, a, bq and for a fixed ε ¡ 0,

we get

}X�
θ,µpt, x1, y1; εq �X�

θ,µpt, x2, y2; εq} ¤ }py1 � y2, θpx1 � x2qq} ¤ maxt1, |θ|u}px1, y1q � px2, y2q},

which means that, by defining λpt0,x0,y0qptq � maxt1, |θ|u, relationship (2.5) holds. We conclude that,

for any x0 ¡ 0, y0 P R, and t0 P R, there exists a unique local solution to the initial value problem$&
%p 9x, 9yq � X�

θ,µpt, x, y; εq,
pxpt0q, ypt0qq � px0, y0q.

The proof of the uniqueness of the local trajectories of X�
θ,µpt, x, y; εq is entirely analogous to that of

X�
θ,µpt, x, y; εq.

2.1.2 Filippov differential equations

We saw in the previous section that when (2.4) exhibits discontinuities in t, we can use
Carathéodory’s theory for differential equations to understand the flow generated by it in such case.
Nevertheless, when such discontinuities occurs with respect to x, the associated vector field may
undergo substantial variations near a specific point, making it impossible to construct a Carathéodory
solution in this situation. The Filippov theory for differential equations with discontinuous right-hand
side aims to describe the solutions of a equation of the form

9x � fpt, xq, pt, xq P U � R� Rn, (2.6)

by considering the behavior of the associated vector field in a neighborhood of each point pt, xq in its
domain U .



Chapter 2. Basic Concepts 27

In this section, we briefly introduce the Filippov formalism and discuss some important
results concerning this theory. For further details on this topic, we recommend [22].

For x P Rn and δ ¡ 0, let us denote by Bpx, δq the ball centered in x of radio δ. Assume
that the differential equation (2.6) is discontinuous in x in a set of measure zero and define the
set-valued map

Frf spt, xq :�
£
δ¡0

£
µpSq�0

cotfpt,Bpx, δqzSqu,

with co standing for the convex closure and µ for the Lebesgue measure. We notice that, if fpt, �q is
continuous in x, then Frf spt, xq � tfpt, xqu.

Definition 2.1.13. Let F : U � R � Rn Ñ Rn be a set-valued function. A function φ : I Ñ U is

called a solution of the differential inclusion

9x P F pt, xq, (2.7)

if it is absolutely continuous and it satisfies (2.7) for almost every t P I .

More informations about differential inclusions can be found in [57].

Definition 2.1.14. A curve xptq defined in some interval I � R containing t0 is said to be a Filippov

solution of $&
% 9x � fpt, xq,
xpt0q � x0,

pt, xq P U � R� Rn, (2.8)

if pt, xptqq P U for every t P U and it is a solution to the differential inclusion#
9x P Frf spt, xq,
xpt0q � x0.

(2.9)

In general, Carathéodory and Filippov solutions are not related, as we shall see in the
following example.

Example 2.1.15. Assume that t0 � 0 and x0 � 0, and consider the initial value problem (2.8) with

fpt, xq � fpxq �
#
1 if x � 0,

0 if x � 0.

There are two Carathéodory solutions to the initial value problem with the maximal interval of definition

being r0,�8q. Namely, x1ptq � 0 and x2ptq � t. When we adopt the Filippov convention for the initial

value problem, we have that Frf s : RÑ 2R is given by Frf spxq � t1u, and consequently, x2ptq � t

is the only solution to the initial value problem (2.8).
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In what follows, we present a definition that extends the concept of continuity of vector-
valued functions to set-valued functions.

Definition 2.1.16. Let F : U � R � Rn Ñ 2R
n

be a set-valued map, that is, each point pt, xq P U
is assigned to a subset F pt, xq � Rn. We say the F is upper semi-continuous (resp. lower semi-

continuous) on x P Rn if for every ε ¡ 0, there exists δ ¡ 0 such that F pyq � F pxq � Bp0, εq (resp.

F pxq � F pyq � Bp0, εq) for every y P Bpx, δq. The set-valued function F is said to be continuous if it

is both upper and lower semi-continuous.

Sufficient conditions for the existence of solutions for a given differential inclusion of the
form 9x P F pt, xq is given in the following result.

Theorem 2.1.17. [22, Theorem 1 §1 ] Assume that for each pt, xq P U , the set F pt, xq � Rn is

non-empty, closed, convex, and bounded. If F is upper semi-continuous in U , then for each pt0, x0q
there exists a solution to the problem $&

% 9x P F pt, xq,
xpt0q � x0.

Back to the differential equation (2.4), some conditions over f can be assumed in order to
the associated Filippov set-valued function Frf s fulfills the conditions of Theorem 2.1.17.

Definition 2.1.18. A function f : U � R� Rn Ñ Rn is called locally essentially bounded in U if, for

each pt0, x0q P U , there exist δ1 ¡ 0, δ2 ¡ 0, and a positive integrable functionmpt0,x0q : rt, t�δ2s Ñ R
satisfying

}fpt, xq} ¤ mpt0,x0qptq
for almost every t P rt0, t0 � δ2s and almost every x P Bpx0, δ1q in the sense of Lebesgue measure.

Proposition 2.1.19. [22, §7] Let f : U � R � Rn Ñ Rn be a locally essentially bounded function.

Then, for each pt, xq P U , the set Frf spt, xq is non-empty and bounded. Moreover, the set-valued

function Frf s is upper semi-continuous.

As direct consequence of the previous result, we have the following.

Theorem 2.1.20. [22, Theorem 8 §7] Let f : U � R � Rn Ñ Rn be a locally essentially bounded

function. Thus, for each pt0, x0q P U , there exists a solution to the initial value problem (2.8).

Example 2.1.21. Let us consider the differential system Xθ,µpt, x, y; εq � py, θx� µ sgnpxq � ε pptqq
introduced in (1.4), with θ and ε being real parameters, and µ P t�1, 1u. We notice that

}Xθ,µpt, x, y; εq} ¤ |y| � |θ||x| � 1� |ε||pptq|.
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Then, given pt0, x0, y0q P R� R2, it follows that, for any δ1 ¡ 0,

}Xθ,µpt, x, y; εq} ¤ δ1 � |y0| � |θ|pδ1 � |x0|q � 1� |ε||pptq|,

for every px, yq P Bppx0, y0q, δ1q. Therefore, by taking pptq to be Lebesgue-integrable, it follows that

mpt0,x0,y0qptq :� δ1 � |y0| � |θ|pδ1 � |x0|q � 1 � |ε||pptq| is a positive Lebesgue-integrable function

defined on rt0, t0 � δ2s, for any δ2 ¡ 0. This implies that Xθ,µpt, x, y; εq is locally essentially bounded

provided pptq is a Lebesgue-integrable function. It results from Theorem 2.1.20 that, for any given

initial condition pt0, x0, y0q P R� R2, there exists a local solution of Xθ,µpt, x, y; εq passing through

it.

In the Filippov context of solutions, there exists a similar result concerning continuous
extension to the boundary of maximal solutions.

Theorem 2.1.22. [22, Theorem 9 §7] Under the conditions of Theorem 2.1.20, any maximal solution

existing within a specified closed and bounded domain is extended on both sides until it reaches the

boundary of the domain.

The task of describing the trajectories of a differential equation is significantly facilitated
when the set of discontinuity of a given vector-valued function corresponds to a codimension one
smooth manifold being the preimage of a regular value. For instance, let us assume that f : V �
Rn Ñ Rn is a Filippov vector field discontinuous on Σ � tx P V : hpxq � 0u, where h is a smooth
submersion. Then, Σ separates the set V into two subsets, namely

V� � tx P V : hpxq ¡ 0u and V� � tx P V : hpxq   0u,

and the vector-valued function fpxq can be expressed as follows

fpxq �
$&
%f

�pxq if hpxq ¥ 0,

f�pxq if hpxq   0.

If x0 P V� (resp. x0 P V�), then the local trajectory of f having point x0 as initial condition is
determined by the trajectory of f� (resp. f�) passing through x0. For x0 P Σ, we use the geometrical
characteristics of Σ to determine the local trajectory passing though a given point. The set Σ can be
separated into three disjoint subsets

Σc :� tx P Σ : f�hpxq � f�hpxq ¡ 0u,
Σe :� tx P Σ : f�hpxq ¡ 0, f�hpxq   0u,
Σs :� tx P Σ : f�hpxq   0, f�hpxq ¡ 0u,

where f�hpxq :� xf�pxq,∇hpxqy denotes the Lie derivative of h in the direction of the vector fields
f�. The sets above are usually referred as crossing, escaping, and sliding regions, respectively. If
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x0 P Σc, the local trajectory of f having x0 as initial condition is given by the concatenation of the
local trajectories of f� and f� passing through x0. When x P Σe 9YΣs, then it is necessary to study the
sliding vector field given by

f sppq � f�hppqf�ppq � f�hppqf�ppq
f�hppq � f�hppq

to understand the local behavior of solutions of the vector field f , and in such case, uniqueness is not
expected for the local solutions. The points x P Σ where either f�hpxq � 0 or f�hpxq � 0 are called
tangency points and are one of the singular points of Filippov vector fields.

Since we are primarily concerned with crossing solutions in our work, we are not extending
the discussion on Filippov vector fields having smooth manifolds as their set of discontinuity. For the
readers interested in this topic, we recommend [22, 24].

Example 2.1.23. We revisit the vector field (1.4). Let us denote Xθ,µpϕ, x, y; εq � p1, Xθ,µpϕ, x, y; εqq
the Filippov vector field associated with (1.4). The set of discontinuity of Xθ,µpϕ, x, y; εq is Σ1 � h�1p0q,
where h : R3 Ñ R is defined by hpϕ, x, yq � x. Taking into account the decomposed differential

systems in (1.5), we have that

Xθ,µpϕ, x, y; εq �
$&
%X�

θ,µpϕ, x, y; εq � p1, X�
θ,µpϕ, x, y; εqq, if x ¡ 0,

X�
θ,µpϕ, x, y; εq � p1, X�

θ,µpϕ, x, y; εqq, if x   0.

Thus, for a fixed ε, it follows that

X�
θ,µhpϕ, x, y; εq � y,

which implies that, except for y � 0, the plane Σ1 corresponds to a crossing region of Xθ,µpϕ, x, y; εq,
since X�

θ,µhpϕ, x, y; εq � X�
θ,µhpϕ, x, y; εq � y2 ¡ 0.

2.2 Hamiltonian systems

Hamiltonian differential systems are a powerful mathematical tool for describing mechan-
ical dynamics, especially those related to celestial mechanics. Its development is mainly attributed
to the Irish mathematician W. R. Hamilton, who in [26] proposed a new way of dealing with the
interaction laws of I. Newton introduced in [45]. In this section, we briefly introduce Hamiltonian
systems and present some interesting properties concerning these objects. For further details on this
theory, we suggest consulting [6].

Let us consider the differential system$''&
''%

9x � BH
By px, yq,

9y � �BHBx px, yq,
px, yq P Rn � Rn, (2.10)
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where H : U � R2n Ñ R, with U being open, is a function of class Cr, r ¥ 1. We refer to (2.10) as
Hamiltonian system with n-degrees of freedom associated with the Hamiltonian H . The variables x
and y are usually referred to as position and conjugated momentum, respectively.

A distinctive characteristic of Hamiltonian systems is the invariance of the level surfaces of
the Hamiltonian function under its generated flow. In other words, if pxptq, yptqq is an integral curve of
(2.10), then, for some h P R, Hpxptq, yptqq � h for every t P I , with I denoting the maximal interval
of definition of pxptq, yptqq. In the case of a Hamiltonian system with one degree of freedom, the level
curves of H carry the solutions of the originating differential system, providing a full description of its
phase portrait.

Hamiltonian systems are also at the core of symplectic geometry, a branch of differential
topology and differential geometry that deals with symplectic manifolds. This area of mathematics
provides a modern language to study classical mechanics through the Hamiltonian formulation. More
on this theory can be found in [61].

For our purposes, we concentrate on the exact sympletic character of Poincaré maps asso-
ciated with Hamiltonian systems. Therefore, we only present some aspects concerning the symplectic
geometry.

Let V be a 2n-dimensional vector space and ω : V �V Ñ R a 2-form. We say that the pair
pV , ωq is a sympletic vector space if ω is a closed skew-symmetric form satisfying a non-degeneracy
condition given by

ω pu1, u2q � 0 for every u1 P V, then u2 � 0.

The pair pM,ωq is called symplectic manifold, if M is a 2n-dimensional manifold and ω is closed
2-form for which pTxM,ωxq is a symplectic vector space for every x PM .

Definition 2.2.1. A diffeomorphism f between two symplectic manifolds pM1, ω1q and pM2, ω2q is

called symplectomorphism if it satisfies f�ω2 � ω1. Under this condition, pM1, ω1q and pM2, ω2q are

said to be symplectomorph.

Let us consider pR2n, ηq with the 2-form η � °n
j�1 dpj ^ dqj and

pq1, . . . , qn, p1, . . . , pnq P R2n the usual coordinates of R2n. The pair pR2n, ηq is a symplectic manifold,
with η being called canonical symplectic form. According to Darboux theorem (see [12, p.40]), if
pM,ωq is a symplectic manifold, then, for every x P M there exist Ux � M and V0 � R2n open
neighborhoods of x and 0, respectively, and a symplectomorphism Φx : Ux Ñ V0 such that Φ�

xη � ω.

In what follows, we provide a way to define Hamiltonian systems in the context of
symplectic geometry.

Definition 2.2.2. Let pM,ωq be a sympletic manifold and H :M Ñ R a smooth function. The function

H defines a 1-form in M denoted dH . From the non-degeneracy of ω, there exists a unique vector field
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XH satisfying

ωpXH , �q � dH.

The triple pM,ω,Hq is called Hamiltonian system with n-degree of freedom.

Remark 2.2.3. From Darboux Theorem, it follows that, in local coordinates, a Hamiltonian vector

field XH assumes the form (2.10).

Let ρHt :M ÑM denotes the flow generated by a Hamiltonian system pM,ω,Hq. Assume
that ρHt is complete. Then, for every t P R, pρHt q�ω � ω, meaning that the flow associated with a
Hamiltonian system pM,ω,Hq defines a group of symplectomorphisms on M .

Hamiltonian systems can indeed depend on time. In such cases, the extended phase space
of a Hamiltonian system is considered as M � R, or M � Sσ when the Hamiltonian is σ-periodically
dependent on time. We refer to this as a n1{2- degree of freedom Hamiltonian system.

Notice that when the symplectic structure ω is exact, meaning there exists a 1- form ν for
which ω � dν, any symplectomorphism f : pM,ωq Ñ pM,ωq defines a closed 1-form ν̃ � ν�f�ν. If
ν̃ is exact, then f is called an exact symplectic map. On this subject, we have the following interesting
result.

Proposition 2.2.4. [61, Proposition 1.1] Let pM,ω,Hq be a σ-periodic non-autonomous Hamiltonian

system, and let PH : M � tτ0u Ñ M � tτ0 � σu denote the time-σ-map associated with pM,ω,Hq,
for some τ0 P R. If ω is exact, then PH is an exact sympletic map.

As a consequence of the previous result we have that Poincaré maps associated with
periodic non-autonomous Hamiltonian systems are volume preserving.

In the following sections, we present important results concerning planar Hamiltonian sys-
tems, such as the period function for closed trajectories and canonical transformations for Hamiltonian
systems featuring period annuli.

2.2.1 Period function for symmetric one degree of freedom Hamiltonian

systems

For Hamiltonian differential systems whose trajectories exhibit symmetry with respect to
the x-axis expressed by Hpx, yq � y2

2
�Gpxq, the period of a closed trajectory lying on the level curve

Hpx, yq � h, with h P R, can be determined using the function

T phq � 2

» a

b

dua
2ph�Gpuqq ,

with pa, 0q and pb, 0q, b   0   a, representing the points resulting from the intersection between the
corresponding level curve and the x-axis (see [25, p. 203]). If Gpxq � Gp�xq for every x P R, then the
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level curves of H are also symmetric with respect to the y-axis. This implies that the period function
T phq can be simplified to

T phq � 4

» a

0

dua
2ph�Gpuqq ,

since b � �a.

2.2.2 Action-angle coordinates for non-autonomous planar Hamiltonian sys-

tems

In this section, we will outline a procedure involving the action-angle transformation for
planar time-dependent Hamiltonian systems. This technique is a common method used to modify the
original Hamiltonian into a version where the main component depends only on the action variable.
The discussion present in this section is mainly based on [36, §2]. It is also important to mention [5] as
a standard literature on this subject.

The formal definition of the action-angle variables is as follows: By taking time as a
parameter, we consider the Hamiltonian

Hpx, y, tq � y2

2
�Gpx, tq. (2.11)

Assume that h0pI, tq corresponds to the value of H on the level curve that encloses the area I in the
px, yq-plane. Implicitly, the function h0pI, tq can be expressed by the following integral

I �
¾

Hpx,y,tq�h0pI,tq

ydx.

Remark 2.2.5. Let h0pI, tq � h be the energy for which the corresponding level curve encloses the

region with area I , and let Aph, tq be the inverse of h0 in I , that is, for a fixed t, Aph0pI, tq, tq � I . As

discussed in [5, p. 282], the derivative of A with respect to h corresponds to the period of the level

curve Hpx, y, tq � h in terms of h, which yields

T ph, tq � BhAph, tq � 1

BIh0pI, tq .

By considering γ as the curve connecting the y-axis to the point px, yq on the level curve
Hpx, y, tq � h0pI, tq oriented clockwise, we define the generating function

Spx, I, tq �
¾
γ

ydx.

Then, the action-angle transformation pϕ, I, tq ÞÑ px, y, tq is defined through the relations

y � BxSpx, I, tq and ϕ � BISpx, I, tq. (2.12)
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We notice that (2.12) defines a sympletic transformation, since

dϕ^ dI � d pBISpx, I, tqq ^ dI � BxBISpx, I, tqdx^ dI,

dx^ dy � dx^ d pBxSpx, I, tqq � BIBxSpx, I, tqdx^ dI.

This implies that the transformation provided by (2.12) between px, y, tq and pϕ, I, tq does not change
the Hamiltonian character of H , now given by

Hpϕ, I, tq � h0pI, tq �H1pϕ, I, tq,

where H1pϕ, I, tq � BtSpx, I, tq and x � xpϕ, I, tq is implicitly given by (2.12).

For the Hamiltonian (2.11), we notice that, for y ¥ 0,

y �
a
2 ph0pI, tq �Gpx, tqq,

which means that the curve γ defining the generating function Spx, I, tq can be parameterized by
γpsq � ps,

a
2 ph0pI, tq �Gps, tqqq, with s P r0, xs, yielding

Spx, I, tq �
» x

0

a
2 ph0pI, tq �Gps, tqqds.

Consequently, from the Leibniz Integral rule, the angle variable is given by

ϕpx, h, tq � BIh0pI, tq
» x

0

dsa
2 ph0pI, tq �Gps, tqq �

1

T ph, tq
» x

0

dsa
2 ph�Gps, tqq , (2.13)

with the second equality above resulting from Remark 2.2.5.

2.2.3 Time and energy as the new position and momentum

For the following coordinate transformation, we employ the well-known technique in-
troduced by Arnold in [4], which has been consistently reiterated in works such as [34, 36, 37, 64].
Roughly speaking, this coordinate transformation consists in exchange the roles of position and time in
the Hamiltonian systems in the region where the derivative of the corresponding Hamiltonian function
with respect to the momentum variable does not vanish.

In order to establish such coordinate change, let us first consider V � R3 as an open set and
H : V Ñ R a non-autonomous Hamiltonian function of class C1. The Hamiltonian system associated
with H in its extended form is given by $'''''&

'''''%

9q � BH
Bp pq, p, tq,

9p � �BHBq pq, p, tq,
9t � 1,

(2.14)
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with dot denoting the derivative with respect to s.

We assume that there exists an open set U � V such that
BH
Bp pq, p, tq ¡ 0 for every

pq, p, tq P U . Then, we have that (2.14) is equivalent with$'''''&
'''''%

q1 � 1,

p1 � �BHBq pq, p, tq{
BH
Bp pq, p, tq,

t1 � 1{BHBp pq, p, tq,

(2.15)

where 1 � d{dq. Fixing q and t as parameters and taking account
BH
Bp pq, p, tq ¡ 0, it follows that

Hpq, �, tq is invertible, for every pq, p, tq P U . This leads us to the following coordinate change

Φ : U ÝÑ ΦpUq
pq, p, tq ÞÝÑ pQ,P, τq,

where Qpq, p, tq � t, P pq, p, tq � Hpq, p, tq, and τpq, p, tq � q. Let us denote by H pQ,P, tq the
inverse of H in p, that is, Hpτ,H pQ,P, τq, Qq � P , for every pQ,P, tq P ΦpUq. By performing Φ to
the differential system (2.15), we have that$'''''&

'''''%

Q1 � 1{BHBp pτ,H pQ,P, τq, Qq,

P 1 � BH
Bt pτ,H pQ,P, τq, Qq{BHBp pτ,H pQ,P, τq, Qq,

τ 1 � 1,

which is Hamiltonian with the function H pQ,P, τq, since

BH
BP pQ,P, τq � 1

BH
Bp pτ,H pQ,P, τq, Qq and

BH
BQ pQ,P, τq � �

BH
Bt pτ,H pQ,P, τq, Qq
BH
Bp pτ,H pQ,P, τq, Qq .

2.3 KAM theory

The KAM theory comprises a collection of results concerning the persistence of quasi-
periodic motions in nearly integrable systems under specific Diophantine and non-degeneracy con-
ditions. It is named in honor of the Russian mathematicians Kolmogorov, Arnold, and Moser, who,
in the 1950s and 1960s, introduced a novel approach to tackle the n-body problem initially posed by
Newton. This problem remained unsolved for almost two centuries, primarily due to issues arising
from the appearance of the so-called “small divisors” when attempting to solve functional equations
through series expansions.

Among the most celebrated results in this theory are the KAM Theorem [6], which
addresses the existence of invariant tori in nearly integrable Hamiltonian systems; Arnold’s Theorem
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[66], dealing with the existence of analytical conjugacies between pure rotations and close to pure
rotations on the circle; and Moser’s Twist Map Theorem [43], addressing the existence of invariant
curves for twist regular maps defined on the annulus. The main idea behind the proof of the KAM
results mainly relies on two points: The first one involves linearizing the functional equation around an
approximate solution and solving the linearized problem, and the second is based on an adaptation of
Newton’s method to approximate the solution of the original problem by the solutions of the linearized
one. This procedure, together with the symplectic structure and the Diophantine character required in
the KAM results, enables the construction of a convergent sequence with a square rate of convergence,
overcoming the harmful effects of the “small divisors”.

In this section, our primary focus is on Moser’s Twist Map Theorem and its variations. For
readers interested in KAM theory, we recommend consulting [19].

2.3.1 Diophantine numbers

This section is devoted to briefly introduce a special class of irrational numbers called
Diophantine.

Definition 2.3.1. We say that a number ω P RzQ is Diophantine if there exist two positive constants

ν ¡ 2 and γ ¡ 0 such that ����ω � p

q

���� ¥ γ

|q|ν ,

for every p P Z and q P Z�.

Remark 2.3.2. A direct consequence of the previous definition is that if ω P RzQ is a Diophantine

number, then so it is ω � k for every k P Z.

In what follows we present a particular class of Diophantine numbers.

Definition 2.3.3. A number ω P RzQ is said to be of constant type if the quantity

Ω :� inf

"
q2
����ω � p

q

���� : p P Z and q P N
*

is positive. In such cases, Ω is called Markoff constant associated with ω.

Equivalently, irrational numbers of constant type can be characterized through their contin-
ued fraction expansions. In particular, for a given ω P RzQ, we express it as

ω � ra0; a1, a2, . . .s � a0 � 1

a1 � 1
a2����

.

This continued fraction expansion is unique for every real number, and ω is irrational if, and only if the
terms ai are infinitely determined. Such characterization leads to the following result.
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Proposition 2.3.4. [28, §3.5] An irrational number ω � ra0; a1, a2, . . .s is of constant type if, and only

if suptai : i P Nu � C   8. The Markoff constant Ω associated with ω satisfies

1

C � 2
¤ Ω ¤ 1

C
.

The previous proposition is crucial for finding irrational numbers of constant type in any
real interval and determine the bounds for their Markoff constants.

Proposition 2.3.5. [53, Lemma 4.4] For each interval ra, bs � r0, 1s with b� a ¥ ϵ ¡ 0, there exists

an irrational number α� P ra, bs of constant type such that the corresponding Markoff constant Ω�

satisfies ϵ{16 ¤ Ω� ¤ ϵ{4.

2.3.2 Moser’s Twist Map Theorem

Let A denote an annulus defined by A �  pθ̄, rq : θ̄ P S1 and a ¤ r ¤ b
(
, whose univer-

sal cover is the strip A � tpθ, rq : θ P R and a ¤ r ¤ bu.

Definition 2.3.6. The maps of the form

M : A ÝÑ S1 � R,

pθ̄, rq ÞÝÑ �
θ̄ � β � αprq, r� ,

where α : ra, bs Ñ R is a smooth function with α1prq ¡ 0 for every r P ra, bs, are called twist maps.

Definition 2.3.7. Let ϕ : S1 Ñ S1 be an orientation preserving diffeomorphism. The rotation number

of ϕ is defined as the limit

ρpϕq � lim
nÑ8

ϕnpxq � x

n
,

when such a limit exists.

Remark 2.3.8. Important aspects regarding the rotation number include the independence of the

limit in Definition 2.3.7 on the choice of x P S1 and its invariance under topological conjugations.

Furthermore, if f is a Cr-diffeomorphism, with r ¥ 2, defined on a curve topologically equivalent to a

circle and possessing an irrational rotation number ω, then f is topologically conjugated to a pure

rotation of the circle
Rω : S1 ÝÑ S1

θ ÞÝÑ θ � ω.

The term “twist maps”, as defined in Definition 2.3.6, is appropriate because, for fixed
angles θ0 P S1, the lines Lθ0 :� tθ0u�ra, bs are twisted when subjected to the map M . Additionally, it
is noteworthy that the curves Cr0 :� S1�tr0u, where r0 P ra, bs, remain invariant under M . Moreover,
the restriction M

��
Cr0

has rotation number ρpM ��
Cr0
q � β�αpr0q. A natural question arising from these
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points is: What happens if M is slightly perturbed? Is there any invariant curve for such perturbation?
The answer for the second question, in general, is no, as noticed in the following example.

Example 2.3.9. Consider the map Mpθ, rq � pθ� r, p1�εqrq, defined on the annulus S1�p0, r̄q, with

ε P p0, 1q and r̄ ¡ 0. The map M does not have any invariant curve in S1 � p0, r̄q. Indeed, suppose

that there exists an invariant curve C for M in S1 � p0, r̄q. Then, there would exist r1, r2 P p0, r̄q such

that C is contained in the region enclosed by the curves Cr1 and Cr2 , which is going to be denoted D.

However, when we apply M iterativelly to D, this region is shrunk to S1 � t0u, and, thus, the curve C

cannot be invariant. This implies that M cannot have invariant curves.

Definition 2.3.10. A map M : S1 � ra, bs Ñ R2 has the intersection property in S1 � ra, bs if

MpΓq X Γ � H for any Jordan curve Γ � S1 � ra, bs, which is homotopic to Cr0 , for r0 P ra, bs.

Certainly, the map provided in Example 2.3.9 does not have the intersection property.
On the other hand, in certain maps, such a property follows from previously assumed geometric
conditions, such as area-preserving maps and Poincaré-maps derived from Hamiltonian systems. For
the latter, we present the following result, provided by R. Dieckerhoff and E. Zehnder in [18], which is
a consequence of the exact symplectic character presented in Proposition 2.2.4.

Theorem 2.3.11. [18, Lemma 5] Let P : S1 � ra, bs Ñ R2 be a Poincaré map associated to a

non-autonomous periodic Hamiltonian system. Then P has the intersection property.

It is not difficult to see that the intersection property is a topologically invariant condition,
as stated in the following proposition.

Proposition 2.3.12. Consider the maps P : D Ñ D and P̄ : D Ñ D, along with a conjugation

Ψ : D Ñ D between P and P̄ . If P exhibits the intersection property, then such a property also holds

for P̄ .

In order to present the Moser’s Twist Map Theorem, let us introduce the Cr- norm. For
f P CrpAq, we denote by ∥f∥CrpAq the norm

∥f∥CrpAq � max
0¤m�n¤r

∥∥∥∥Bm�nf

Bmx Bny

∥∥∥∥
8
, (2.16)

where ∥∥∥∥Bm�nf

Bmx Bny

∥∥∥∥
8
� sup

px,yqPA

����Bm�nf

Bmx Bny
px, yq

���� .
Theorem 2.3.13. [44, Moser’s Twist Map Theorem] Let M : S1 � ra, bs Ñ R2 be a twist map with the

intersection property. We assume that its lift can be written in the form

M : R� ra, bs ÝÑ R� R,

pθ, rq ÞÝÑ pθ � β � αprq � φ1pθ, rq, r � φ2pθ, rqq ,
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where α P C4pra, bsq is a function satisfying α1prq ¡ 0 for every r P ra, bs, and φ1 and φ2 are of class

C4 in R� ra, bs and 1-periodic in θ. Then, there exists κ ¡ 0 depending on b� a and α such that if

∥φ1∥C4pS1�ra,bsq � ∥φ2∥C4pS1�ra,bsq   κ,

then M has invariant curves.

Remark 2.3.14. As noticed in [44, Thereom 2.11], the invariant curves mentioned in the previous

result are directly associated with irrational numbers satisfying the Diophantine condition 2.3.1.

Specifically, if the map M satisfies the conditions of Moser’s Twist Map Theorem, then there exist an

invariant curve Γ of M and a Diophantine number ω such that M
��
Γ

is conjugated to the pure rotation

of the circle Rω. Furthermore, any irrational number within the image of the function αprq satisfying

the same Diophantine condition as ω leads to the existence of an invariant curve of M distinct of Γ.

2.3.3 Invariant Curve Theorem

As one of the variations of Moser’s Twist Map Theorem, the following theorem was
presented by Kunze et al. [34], and it builds upon the results established by M. Herman in [29]. As a
particular case of the Diophantine numbers, this result requires that the associated rotation number
to be irrational of constant type. Additionally, we will notice that a small condition on the twist is
allowed in this case, justifying the alternative name that this result can be referred to: Small Twist Map
Theorem.

Theorem 2.3.15. [34, Invariant Curve Theorem] Consider the map P : R� r�6,�3s Ñ R2 defined

as

P pu, vq � pu� β � δv � δF1pu, vq, v � δF2pu, vqq, (2.17)

where F1 and F2 are both C5 functions defined in R� r�6,�3s, and δ lies within the interval p0, 2q.
It is also assumed that P satisfies the intersection property, it is one-to-one, and 1-periodic in u.

Furthermore, let us assume that β is an irrational number of constant-type with Markoff constant Ω

that fulfills the condition

Ω ¤ δ ¤MΩ, (2.18)

for some fixed positive number M . Then, there exists a constant M�, depending only on M , such that if

∥F1∥C5pR�r�6,�3sq � ∥F2∥C5pR�r�6,�3sq ¤M�, (2.19)

then there exists a function γ P C3pS1q that parameterizes a closed curve Γ � tpu, γpuqq : u P S1u
which is invariant under P and for which ρ pP |Γq � β.
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2.4 Periodic points for maps on the annulus

In this section, we present a specific condition for a twist map to have periodic points. We
shall see that the existence of such points is guaranteed by a version of the Poincaré-Birkhoff Theorem,
concerned with maps with the intersection property satisfying a twist condition on the boundaries.

Definition 2.4.1. Let f : S1 � ra, bs Ñ S1 � ra, bs be an area-preserving homeomorphism. We say that

f leaves the boundaries of S1�ra, bs invariant if fpS1�tauq � S1�tau and fpS1�tbuq � S1�tbu.

Definition 2.4.2. Let F � pFθ, Frq : R�ra, bs Ñ R�ra, bs be a lift of f : S1�ra, bs Ñ S1�ra, bs. The

map f satisfy a twist condition on the boundaries of S1�ra, bs if either Fθpu, aq ¡ u and Fθpu, bq   u

or Fθpu, bq ¡ u and Fθpu, aq   u, for every u P R.

Theorem 2.4.3. [9, Poincaré Birkhoff Theorem] Suppose that f : S1 � ra, bs Ñ S1 � ra, bs is an

area-preserving homeomorphism that leaves the boundaries of S1 � ra, bs invariant and satisfies a

twist condition on the boundaries. Then, f has at least two fixed points in S1 � ra, bs.

Recently, in [65], the Poincaré-Birkhoff Theorem was extended to maps with the intersec-
tion property.

Theorem 2.4.4. [65, Theorem 1] Let f : S1 � ra, bs Ñ S1 � ra, bs be a homeomorphism with the

intersection property and satisfying the twist condition on the boundaries. Then, f has at least one

fixed point in S1 � ra, bs.

The following theorem is an adaptation of the result presented in [18, Proof of Theorem 3].

Theorem 2.4.5. Assume that G : S1 � r0, 1s Ñ S1 � r0, 1s is a diffeomorphism of class C2 with the

intersection property, leaving the boundaries of S1 � r0, 1s invariant. Suppose that ρ
�
G
��
S1�t0u

	
� ω1

and ρ
�
G
��
S1�t1u

	
� ω2, with ω1, ω2 P RzQ, satisfying ω2 ¡ ω1. Then, there exists q� P N such that,

for each q P N satisfying q ¥ q�, the map G has at least one periodic point of period q.

Proof. From assumption, both G
��
S1�t0u and G

��
S1�t1u are C2-diffeomorphisms on the circle having

irrational rotation numbers. From Denjoy’s Theorem ([17]), there exists two orientation preserving
homeomorphisms h1 : S1 Ñ S1 and h2 : S1 Ñ S1 that conjugate G

��
S1�t0u and G

��
S1�t1u to the pure

rotations of the circle Rω1 and Rω2 , respectively, that is,

G
��
S1�t0u � h1 �Rω1 � h�1

1 and G
��
S1�t1u � h2 �Rω2 � h�1

2 .

Since the group of orientation preserving homeomorphisms of the circle is path connected, it follows
that there exists a path of orientation preserving homeomorphisms ρr : S1 Ñ S1, with r P r0, 1s,
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between h1 and h2 satisfying ρ0 � h1 and ρ1 � h2. We define the transformation

χ : S1 � r0, 1s ÝÑ S1 � r0, 1s
pθ, rq ÞÝÑ pρrpθq, rq,

which is a homeomorphism from S1�r0, 1s onto itself, as it is a continuous bijection between a compact
and a Hausdorff space. Now, let us consider the conjugated map Ḡ � χ�1 �G � χ : S1 � r0, 1s ÝÑ
S1 � r0, 1s. We notice that

Ḡpθ, 0q � χ�1 �G � χpθ, 0q � χ�1 �Gph1pθq, 0q � χ�1ph1 �Rω1pθq, 0q � pθ � ω1, 0q,
Ḡpθ, 1q � χ�1 �G � χpθ, 1q � χ�1 �Gph2pθq, 1q � χ�1ph2 �Rω2pθq, 1q � pθ � ω2, 1q,

with ω1, ω2 P RzQ satisfying ω2 � ω1 ¡ 0. This implies that there exists q� P N such that, for every
q ¥ q�, qpω2�ω1q ¡ 1. Let us fix q ¥ q�. Then, by denoting tqω1u as the integer part of qω1, we notice
that pqω1 � tqω1u, qω2 � tqω1uq is a positive interval, satisfying pqω1 � tqω1u, qω2 � tqω1uq X Z � H.
Take p P pqω1 � tqω1u, qω2 � tqω1uq XZ and define the induced function Ḡq :� s�p�tqω1u � Ḡq, where

s : S1 � r0, 1s ÝÑ S1 � r0, 1s
pu1, u2q ÞÝÑ pu1 � 1, u2q.

The map Ḡq leaves the boundary of S1 � r0, 1s invariant. Indeed,

Ḡqpu1, 0q � s�p�tqω1u � Ḡqpu1, 0q � pu1 � qω1 � p� tqω1u, 0q,

and
Ḡqpu1, 1q � s�p�tqω1u � Ḡqpu1, 1q � pu1 � qω2 � p� tqω1u, 1q.

Moreover, from equations above and taking ḡ1,q and ḡ2,q to be the components of Ḡq, we have that

ḡ1,qpu1, 0q � u1 � �p� qω1 � tqω1u   0   �p� qω2 � tqω1u � ḡ1,qpu1, 1q � u1,

because qω1 � tqω1u   p   qω2 � tqω1u. This implies that Ḡq is satisfying the twist condition on the
boundaries of S1 � r0, 1s. Moreover, the map Ḡq has the intersection property, since it is conjugated
with G (Proposition 2.3.12). Thus, from Theorem 2.4.4, it follows that Ḡq has at least one fixed point,
which is associated with a periodic point of G of period q. This concludes the proof of the theorem.
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3 Analysis of the Case A1

In this chapter, our focus is to study the existence of invariant tori and boundedness of all
solutions for the subclass of differential equation

:x� sgnpxq � θx� εpptq, (3.1)

where θ   0 and pptq is a σ-periodic function of class C6. This equation corresponds to the particular
case A1 of (1.3).

As previously mentioned, a similar case of equation (3.1) was considered in [34], where,
under the same assumptions for pptq, the authors showed that all solutions of

:x� x� sgnpxq � εpptq, (3.2)

are bounded when ε is sufficiently small. The equation (3.2), when non-perturbed, features two virtual
linear centers, in contrast to the two admissible linear centers for the unperturbed equation (3.1)ε�0.
In both equations, (3.1) and (3.2), a symmetric behavior can be observed in the unperturbed scenario
(see Figure 4). By taking p P C4pS1q, the boundedness of solutions is also investigated in [53] for the
forced asymmetric oscillator

:x� ax� � bx� � 1� pptq,
where x� :� maxt�x, 0u, and a and b are distinct positive real numbers. Thus, the investigation
presented in this chapter complements the findings from [34] and [53].

It is worthy mentioning that unbounded solutions arise in (3.2) under a Landesman-Lazer-
like condition on pptq. This condition is explored in [33], where a differential inclusion analysis
demonstrates that all solutions of (3.2) become unbounded if the first Fourier coefficient of pptq
satisfies

ε

����
» σ

0

pptqeπitσ dt

���� ¡ 4σ.

We believe that a similar analysis can be conducted on (3.1) in order to determine unbounded solutions.

This chapter is structured as follows: Section 3.1 introduces our main result (Theorem
A) and the corollaries resulting from it. Section (3.2) is devoted to present some preliminary results
concerning the unperturbed equation (3.1)ε�0. In Sections 3.3 and 3.4, we provide some coordinate
changes in order to fit our problem into the conditions needed to apply the Invariant Curve Theorem.
The proof of Theorem A is done in Section 3.5. Finally, we devote Section 3.6 to present the proofs of
the technical lemmas mentioned in the preceding sections.
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3.1 Main results

The main result of this chapter stands for the existence of a family of nested invariant tori
of (3.1) whose union of their interiors cover all the extended phase space Sσ � R2, as follows.

-1{θ 1{θ x

y

Figure 6 – Trajectories of (3.1) when ε � 0.

Theorem A. For each p P C6pSσq and θ   0, there exists ε�pp,θq ¡ 0 such that, if 0 ¤ ε   ε�pp,θq then

there exists an infinity collection tT i
ε uiPN of nested invariant tori of (3.1), carrying quasi-periodic

motion and satisfying ¤
iPN

intpT i
ε q � Sσ � R2,

where intpT i
ε q corresponds to the open region in Sσ � R2 enclosed by the torus T i

ε .

The proof of Theorem A primarily relies on the techniques and results presented in [34].

As can be noticed in the unperturbed scenario, the trajectories of (3.1)ε�0 are either singular
points or periodic orbits (see Figure 6). This implies that every solution of (3.1) is bounded when
ε � 0. From Theorem A, it follows that, even under regularly small periodic perturbations, the
boundedness property of the solutions of (3.1) persists. In fact, given p P C6pSσq and θ   0, there exists
ε�pp,θq ¡ 0 such that for each 0 ¤ ε   ε�pp,θq there exists a sequence of nested invariant tori tT i

ε uiPN of
(3.1) whose union of their interiors cover all the phase space Sσ � R2. Consequently, for any initial
condition p0, xp0q, 9xp0qq P Sσ � R2, there exists k P N such that p0, xp0q, 9xp0qq P intpT k�1

ε qzintpT k
ε q.
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Since intpT k�1
ε qzintpT k

ε q is invariant under the flow of (3.1), it follows that the trajectory whose initial
condition is p0, xp0q, 9xp0qq must perpetually remain in intpT k�1

ε qzintpT k
ε q, which, in turn, is a bounded

set of Sσ � R2. This leads us to the following result.

Corollary 3.1.1. For every p P C6pSσq and θ   0, there exists ε�pp,θq ¡ 0 such that if 0 ¤ ε   ε�pp,θq,

then all solutions of (3.1) are bounded.

By using Theorems A and 2.4.5, we get the existence of infinitely many periodic orbits of
(3.1). This result is stated below, and its proof is deferred to Section 3.5.

Theorem B. For any p P C6pSσq and θ ¡ 0, there exists an ε�pp,θq ¡ 0 such that equation (3.1) has

infinitely many periodic solutions whenever 0 ¤ ε   ε�pp,θq.

In order to illustrate the main result of this chapter (Theorem A), we present some numerical
simulations concerning the solutions of the differential equation (3.1). Specifically, assuming θ � �1
and pptq � cosp2πtq � 3sinp2πtq, and choosing a specific value for ε in (3.1), we consider several
initial conditions for the differential equation (3.1). Subsequently, we plot 1000 points for each of them
on the time section ptt � 1u � R2q, as pptq is 1-periodic in this case.

ε � 2

Figure 7 – The existence of invariant curves for the time-1-map, and consequently invariant tori for the
differential equation (3.1), is indicated by the concentration of colors in the figure.
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ε � 1{5

Figure 8 – The existence of invariant curves for the time-1-map, and consequently invariant tori for the
differential equation (3.1), is indicated by the concentration of colors in the figure.

ε � 1{20

Figure 9 – The existence of invariant curves for the time-1-map, and consequently invariant tori for the
differential equation (3.1), is indicated by the concentration of colors in the figure.

3.2 Preliminary results

This section is dedicated to the study of some objects related to the unperturbed equa-
tion (3.1)ε�0. Such objects play a crucial role in constructing the transformations needed to fit our
problem into the conditions of the Invariant Curve Theorem.
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For the sake of simplicity, we are assuming that θ ¡ 0 and changing its sign at the
corresponding system, that is, #

9x � y,

9y � sgnpxq � θx� ε pptq. (3.3)

Additionally, since θ remains constant, we will omit its dependence on the subsequent elements. In
this configuration, we remind that (3.3) is Hamiltonian with

Hpx, y, t; εq � HA1px, y, t; εq �
y2

2
�Gpxq � εxpptq (3.4)

where Gpxq � GA1pxq � �|x| � θx
2

2
. We notice that Hpx, y, t; εq is continuous but not smooth on the

plane tx � 0u. By taking ε � 0, we notice that the Hamiltonian H becomes an one degree of freedom
piecewise smooth Hamiltonian to be denoted Hpx, yq � Hpx, y, t; 0q. Thus, in the unperturbed sce-
nario, the trajectories of (3.3)ε�0 lie in the level curves
Ch :� tpx, yq P R2 : Hpx, yq � hu, for h ¡ �1{p2θq (see Figure 6).

The points resulting from the intersection between Ch and the x-axis are given by
t�a�phq,�a�phq, a�phq, a�phqu, where a�phq � p1�

?
2hθ � 1q{θ. In order to compute the pe-

riod of a trajectory that lies in the level curve Ch, we consider the value

aphq � a�phq � 1�?
2hθ � 1

θ
,

for h ¡ 0, which corresponds to the maximum value among t�a�phq,�a�phq, a�phq, a�phqu, for
h ¡ 0.

By selecting the values h ¡ 0, we effectively eliminate the possibility of level curves for
H being completely situated within the half-planes x ¥ 0 and x ¤ 0 (see Figure 11). This scenario
can be more precisely outlined by considering the complement in R2 of the region

D :� tpx, yq P R2 : �1{p2θq ¤ Hpx, yq ¤ 0u. (3.5)

Remark 3.2.1. It is important to mention that the intersections between the invariant tori provided by

Theorem A and the section time tt � 0u must be closed curves contained in the set tp0, x, yq : px, yq P
R2zDu. This is fact will be clarified along the proof of Theorem A.

Period function. Since Hp�x, yq � Hpx, yq and Hpx,�yq � Hpx, yq for every px, yq P R2, we
notice that the energy curves of the Hamiltonian Hpx, yq exhibits symmetry with respect to both x-axis
and y-axis. Thus, as a consequence of the discussion provided in Section 2.2.1, we find that the period
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y

x
a�ph1q�a�ph1q a�ph1q�a�ph1q a�ph2q�a�ph2q

Ch1Ch1

Ch2

Figure 10 – Intersection between the level curves Ch1 and Ch2 with the x�axis. We notice that, if
�1{p2θq   h1   0, then the intersection results in four points, while for h2 P p0,8q, then
the intersection must consist in only two points, since the other two are virtual.

D

x

y

Figure 11 – The shaded area corresponds to the set D.

of a solution lying on the level curve Ch, for h ¡ 0, is given by

T phq � 4

» aphq

0

dua
2pGpaphqq �Gpuqq

� 4?
θ

�
π

2
� arcsin

�
1?

2θh� 1





� 4?
θ

�
arccos

�
� 1?

2θh� 1




,

(3.6)
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where we are using the identity π{2� arcsinpxq � arccosp�xq.
In the next result, we provide some properties of the period function T and we postpone

their proofs to Section 3.6.

Lemma 3.2.2. Let T : p0,8q Ñ p2π{
?
θ, 4π{

?
θq be the period function given by (3.6). Then, T is a

strictly decreasing smooth function and its inverse is given by

T�1pρq � 1

2θ
tan2

�?
θρ

4

�
.

In addition, for h ¡ 0 sufficiently large and |2π �
?
θρ| sufficiently small, we have

cih
�1{2�i ¤ |DiT phq| ¤ Cih

�1{2�i, i ¥ 1, (3.7)

ci|2π �
?
θρ|�2 ¤ T�1pρq ¤ Ci|2π �

?
θρ|�2, (3.8)

ci|2π �
?
θρ|�pi�2q ¤ |DiT�1pρq| ¤ Ci|2π �

?
θρ|�pi�2q, i ¥ 1, (3.9)

where ci and Ci are universal positive constants depending on θ , and Di denotes the i-th total

derivative of the corresponding function.

Remark 3.2.3. Let us consider a positive geometric sequence tλnunPN with ratio strictly smaller than

1{2. By defining the numbers b�n :� T�1p2π{
?
θ�λn{2q and b�n :� T�1p2π{

?
θ�λnq, we notice that,

for each n P N, the interval In :� rb�n , b�n s is well defined and satisfies the properties

(i) b�n , b�n , b
�
n � b�n ÝÑ

nÑ�8
�8;

(ii) For each n P N, In X In�1 � H.

These properties essentially ensure that the intervals In are pairwise disjoint and their lengths increase

as n approaches to infinity.

3.3 Action-angle transformation

For the construction of the so-called action-angle variables, we adhere to the procedure
discussed in Section 2.2.2. Then, by noticing that the level curves of Hpx, yq are piecewise smooth, we
partition the process of obtaining the generating function into zones where this approach is applicable.
Hence, the angle-function is given by

ϕpx, hq �

$''''&
''''%

ϕ1px, hq if x, y ¥ 0,

π � ϕ1px, hq if x ¥ 0, y ¤ 0,

π � ϕ1p�x, hq if x, y ¤ 0,

2π � ϕ1p�x, hq if x ¤ 0, y ¥ 0,
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where

ϕ1px, hq � 2π

T phq
» x

0

dua
2pGpaphqq �Gpuqq

� 2π?
θT phq

�
arcsin

�
1?

2hθ � 1



� arcsin

�
θx� 1?
2hθ � 1




,

as given in (2.13). The action-function is then given by

Aphq :�4
» aphq

0

?
2h� 2x� θx2dx

�π � 2πhθ � 2
?
2hθ � 2p1� 2hθqarccscp?1� 2hθq

θ3{2 .

(3.10)

The value Aphq corresponds to the area of the region enclosed by the level curve Ch, while ϕpx, hq is
bijectively equivalent to the angle formed between the positive part of the y-axis and the line connecting
the origin with the point px, yq that lies on the level curve Ch, as we can see in the Figure 12.

ϕpx0, h0q

px0, y0q

Ch0Aph0q

x

y

Figure 12 – The shaded area enclosed by the level curve Ch0 is represented by the value Aph0q. The
value ϕpx0, h0q uniquely corresponds to the angle between the positive y-axis and the line
originating at p0, 0q and passing through px0, y0q.

Lemma 3.3.1. Let us consider the functions A : p0,�8q Ñ p2π{θ3{2,�8q and

T : p0,�8q Ñ p2π{
?
θ, 4π{

?
θq defined in (3.10) and (3.6), respectively. Then, A is an invertible

smooth function and satisfies A1phq � T phq for h P p0,�8q. Moreover, if we denote by h0 :

p2π{θ3{2,�8q Ñ p0,�8q the inverse of A, then h0 is smooth, and for h and I � Aphq sufficiently

large, the following estimates holds

c0h ¤ Aphq ¤ C0h, c1 ¤ A1phq ¤ C1, cih
1{2�i ¤ DiAphq ¤ Cih

1{2�i i ¥ 2, (3.11)

c0I ¤ h0pIq ¤ C0I, c1 ¤ h10pIq ¤ C1, |Dih0pIq| ¤ CiI
1{2�i i ¥ 2. (3.12)



Chapter 3. Analysis of the Case A1 50

Next lemma provides a homeomorphism between the complementary of D (see equation
(3.5)) and the infinite cylinder S2π � p2π{θ3{2,�8q.

Lemma 3.3.2. Let Hpx, yq be the unperturbed Hamiltonian associated with (3.4). The transformation

Φ1 : R2zD Ñ S2π � p2π{θ3{2,�8q, defined by

Φ1px, yq � pϕ px,Hpx, yqq , A pHpx, yqqq � pϕpx, hq, Aphqq,

is a homeomorphism. Furthermore, if xpϕ, Iq and ypϕ, Iq are the ones satisfying Φ�1
1 pϕ, Iq �

pxpϕ, Iq, ypϕ, Iqq, then x is smooth in I and, for I sufficiently large, we have

|BiIxpϕ, Iq| ¤ Ci I
1{2�i for i ¥ 0, (3.13)

with Ci ¡ 0 being constants.

As outlined in Section 2.2.3, the transformation Φ1 applied to H does not change the
Hamiltonian character of (3.3), leading us to a new Hamiltonian

Hpϕ, I, t; εq � h0pIq � εxpϕ, Iqpptq, (3.14)

which is smooth in I , continuous and 2π-periodic in ϕ, and of class C6 and σ-periodic in t.

3.4 Angle and energy as new time and position

We notice that, by differentiating (3.14) with respect to I , while keeping ϕ and t fixed, we
have

BIHpϕ, I, t; εq � h10pIq � εBIxpϕ, Iqpptq.
Then, taking into account (3.12) and (3.13), it follows that

BIHpϕ, I, t; εq ¡ 0,

for sufficiently large I and sufficiently small ε. This implies that, with ϕ and t fixed, Hpϕ, �, t; εq is
invertible for sufficiently large values of I . This leads us to the following transformation:

Φ2 : pϕ, I, tq ÞÑ pβ, r, τq :� pt,Hpϕ, I, t; εq, ϕq.

Thus, by performing Φ2 to Hpϕ, I, t; εq, we have the new Hamiltonian

H pβ, r, τ ; εq � rHpτ, �, β; εqs�1prq,

which, in turn, can be written in the form

H pβ, r, τ ; εq � Aprq � ε H1pβ, r, τ ; εq, (3.15)

with H1 being defined implicitly by the formula above. It is worthy noting that r plays the role
previously attributed to the energy h.
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Lemma 3.4.1. For r sufficiently large and sufficiently small ε, we have��BiβBjrH1pβ, r, τ ; εq
�� ¤ Ci,jr

1{2�j for 0 ¤ i� j ¤ 6,

where Ci,j are positive constants depending on }p}C6pSσq and θ.

We recall that A1prq � T prq for all r P p0,�8q. Thus, the Hamiltonian system originating
from (3.15) is given by$''&

''%
dβ

dτ
� BH

Br pβ, r, τ ; εq � T prq � εBrH1pβ, r, τ ; εq,
dr

dτ
� �BHBβ pβ, r, τ ; εq � �εBβH1pβ, r, τ ; εq.

(3.16)

The functions BrH1 and BβH1 are C6 and C5 function, respectively, in β, smooth in r, and
continuous in τ . Furthermore, Peano’s Theorem (see Theorem 2.1.1) ensures that, for each initial
condition pβ0, r0, τ0q P Sσ�R�S2π, with r0 sufficiently large, there exists a solution of (3.16) passing
through pβ0, r0, τ0q, as follows.

Lemma 3.4.2. There exists r� ¡ 0 and a constant C� P p0, 1q such that if r0 ¥ r�, then the solution

with initial condition pβp0, β0, r0; εq, rp0, β0, r0; εqq � pβ0, r0q of (3.16) is defined on the interval

r0, 2πs and satisfies

r1� C�s r0 ¤ rpτq ¤ rC� � 1s r0.

Proof. We appeal to the quantitative character provided by Peano’s theorem (Theorem 2.1.1) to prove
this lemma. We define Gpτ, β, r; εq � pT prq � εBrH1pβ, r, τ ; εq,�εBβH1pβ, r, τ ; εqq as the function
associated to the non-autonomous differential equation (3.16). For sufficiently large r, it follows from
Lemma 3.4.1 that

}G} ¤ |T prq � εBrH1| � |εBβH1| ¤
4π?
θ
r1{2 � εC0,1 � εC1,0r

1{2

r1{2
.

By taking a � 2π and b � C�r0, with C� P p0, 1q, we define R � Rp0, β0, r0, a, bq as in (2.3). We
have that G is continuous on R and , for sufficiently small ε, it satisfies

M :� sup
pτ,β,rqPR

t|Gpτ, β, r; εq|u ¤
4π?
θ
rp1� C�q r0s1{2 � C0,1 � C1,0 rp1� C�q r0s1{2

pp1� C�q r0q1{2
.

Consequently, we have

b

M
� C�r0

M
¥ C� p1� C�q r3{20

4π?
θ
rp1� C�q r0s1{2 � C0,1 � C1,0 rp1� C�q r0s1{2

.

We notice that b{M Ñ �8 as r0 Ñ �8. Thus, there exists r� ¡ 0 such that inftb{M,au � 2π if
r0 ¡ r�, and this concludes the proof.
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LetC� be the constant provided by Lemma 3.4.2. There exists n�1 P N such that b�n {p1� C�q�
b�n {p1� C�q ¡ 0, for every n ¥ n�1 . Hence, we can define the intervals

Jn :�
�

b�n
1� C� ,

b�n
1� C�

�
� pr�,�8q (3.17)

for n ¥ n�1 . Notably, n�1 can be chosen so that the properties provided in Remark 3.2.3 still hold for
the intervals Jn, and, then, we construct a sequence of coordinate changes between Sσ � Jn and
S1 � r1{2, 1s, for every n ¥ n�1 , in the following way

Φ3,n : pβ, rq ÞÝÑ pβ̄, ρ̄q :�
�
β

σ
,
T prq � 2π{?θ

λn

�
, (3.18)

with tλnunPN being the sequence introduced in Remark 3.2.3. Therefore, upon applying the coordinate
changes Φ3,n to the system of differential equations (3.16), we obtain$''&

''%
dβ̄

dτ
� λn

σ
ρ̄� 2π

σ
?
θ
� εf̄1,npβ̄, ρ̄, τ ; εq,

dρ̄

dτ
� εf̄2,npβ̄, ρ̄, τ ; εq,

(3.19)

where we are introducing

f̄1,npβ̄, ρ̄, τ ; εq :� 1

σ
BrH1

�
σβ̄, T�1

�
λnρ̄� 2π?

θ



, τ ; ε



,

and

f̄2,npβ̄, ρ̄, τ ; εq :� �λ�1
n T 1

�
T�1

�
λnρ̄� 2π?

θ




BβH1

�
σβ̄, T�1

�
λnρ̄� 2π?

θ



, τ ; ε



.

We can deduce that both f̄1,n and f̄2,n are of class C5 with respect to β̄, while they are smooth with
respect to ρ̄. Furthermore, they exhibit a 1-periodicity in terms of β̄ and a 2π-periodicity in the variable
τ . The subsequent lemma provide the bounds for such functions.

Lemma 3.4.3. There exists a constant C ¡ 0 depending only on }p}C6pSσq and θ, but not on n, and a

natural n�2 P N such that, for sufficiently small ε,∥∥f̄1,np�, �, τ ; εq∥∥C5pR�r 12 ,1sq �
∥∥f̄2,np�, �, τ ; εq∥∥C5pR�r 12 ,1sq ¤ Cλn, (3.20)

for every n ¥ n�2 .

3.4.1 Time-2π-map

Let us consider pβ̄pτ ; εq, ρ̄pτ ; εqq � pβ̄pτ, β̄0, ρ̄0; εq, ρ̄pτ, β̄0, ρ̄0; εqq as the solution of (3.19)
whose initial conditions is pβ̄p0; εq, ρ̄p0; εqq � pβ̄0, ρ̄0q. For the sake of simplicity in the following
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notations, we will omit the dependence of λn, f̄1,n, and f̄2,n on n until explicitly needed. The integral
equation for the solutions of a differential equation provides us

β̄pτ ; εq � β̄0 �
» τ

0

�
λ

σ
ρ̄ps; εq � 2π

σ
?
θ
� εf̄1pβ̄ps; εq, ρ̄ps; εq, s; εq



ds,

ρ̄pτ ; εq � ρ̄0 �
» τ

0

�
εf̄2pβ̄ps; εq, ρ̄ps; εq, s; εq

�
ds.

Thus, for sufficiently small ε,

β̄pτ ; εq � β̄0 �
�
λ

σ
ρ̄0 � 2π

σ
?
θ



τ � ε

�
λ

σ

» τ

0

» s

0

f̄2pβ̄pξ; εq, ρ̄pξ; εq, ξ; εqdξds

�
» τ

0

f̄1pβ̄ps; εq, ρ̄ps; εq, s; εqds


,

ρ̄pτ ; εq � ρ̄0 � ε

» τ

0

f̄2pβ̄ps; εq, ρ̄ps; εq, s; εqds.

(3.21)

As a consequence of Lemma 3.4.2, the solutions of (3.19) are defined in the interval r0, 2πs,
which enables us to construct the Poincaré map (time-2π-map) associated with the system (3.19). This
map consists in the function that takes pβ̄0, ρ̄0q as input and returns the point where the solution with
pβ̄0, ρ̄0q as the initial condition will be at time τ � 2π. Let us denote it by P̄ : R� r1{2, 1s Ñ R� R
the Poincaré map associated with (3.19), then

P̄ pβ̄0, ρ̄0; εq � pβ̄p2π, β̄0, ρ̄0; εq, ρ̄p2π, β̄0, ρ̄0; εqq.

Based on the solutions expressed in (3.21), we can establish asymptotic expressions for P̄ , as follows

P̄ pβ̄0, ρ̄0; εq � pβ̄0 � ᾱ � λ̄ρ̄0 � λ̄εP̄1pβ̄0, ρ̄0; εq, ρ̄0 � λ̄εP̄2pβ̄0, ρ̄0; εqq, (3.22)

with ᾱ � 4π2{pσ
?
θq and λ̄ � 2πλ{σ, and P̄1 and P̄2 being expressed by

λ̄P̄1pβ̄0, ρ̄0; εq � λ̄2

2π

» 2π

0

» s

0

f̄2pβ̄pξ; εq, ρ̄pξ; εq, ξ; εqdξds�
» 2π

0

f̄1pβ̄ps; εq, ρ̄ps; εq, s; εqds

and

λ̄P̄2pβ̄0, ρ̄0; εq �
» 2π

0

f̄2pβ̄ps; εq, ρ̄ps; εq, s; εqds,

respectively. We notice that P̄ is 1-periodic with respect to β̄0 and it is of class C5 in the variables
pβ̄0, ρ̄0q. Additionally, we remind that P̄ , P̄1, P̄2, and λ̄ depend on n. Next result provides a uniform
bound for the functions P̄1,n and P̄2,n, for sufficiently large n and sufficiently small ε.

Lemma 3.4.4. There exists n�3 P N such that, for each n ¥ n�3 and for sufficiently small ε, we have the

bounds ∥∥P̄1,np�; εq
∥∥
C5pR�r1{2,1sq �

∥∥P̄2,np�; εq
∥∥
C5pR�r1{2,1sq ¤ C,

with C ¡ 0 depending on ppβ0q and θ, but not on n.
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We notice that (3.22) is not currently in the required format for the Invariant Curve
Theorem, as the irrationality of ᾱ as a number of constant type is unknown. In order to overcome this
hindrance, we will conjugate (3.22) with a map that satisfies the conditions of the Invariant Curve
Theorem, specially those related to irrational numbers of constant type. To this end, we provide a
technical result that offers approximations of ᾱ using irrational numbers of constant type along with
their associated Markoff constants.

Lemma 3.4.5. Let us consider ᾱ � 4π2{pσ
?
θq. There exists n�4 P N such that, for every natural

n ¥ n�4 , there exist an irrational number of constant type, denoted as αn, with Markoff constant Ωn,

satisfying

4λ̄n ¤ αn � ᾱ ¤ 13

2
λ̄n, (3.23)

and
λ̄n
16

¤ Ωn ¤ λ̄n
4
. (3.24)

Proof. Let us denote the fractional part of ᾱ � 4π2{pσ
?
θq as α � ᾱ � tᾱu. For n P N, we define

the numbers an :� α � 4λ̄n and bn :� α � 13
2
λ̄n. We notice that there exists n�4 P N such that

ran, bns � r0, 1s for every n ¥ n�4 . Then, from Proposition 2.3.5, it follows that there exists an
irrational number α1n P ran, bns of constant-type with the corresponding Markoff constant Ωn satisfying
relation (3.24). As a consequence of Remark 2.3.2, we can deduce that for n P N satisfying n ¥ n�4 ,
αn � α1n � tᾱu is also an irrational number of constant type with the same Markoff constant Ωn.
Furthermore, from definition of αn, an, and bn, relationship (3.23) holds.

Let us define n� :� maxtn�1 , n�2 , n�3 , n�4u. Then, taking into account Lemma 3.4.5, we
construct, for n ¥ n�, a sequence of transformations between R� r1{2, 1s and R� r�6,�3s in the
following way

Ψn : pβ̄0, ρ̄0q ÞÝÑ pupβ̄0, ρ̄0q, vpβ̄0, ρ̄0qq :�
�
β̄0, ρ̄0 � ᾱ � αn

λ̄n



. (3.25)

By performing Ψn to P̄n as given in (3.22), the conjugate map Pn � Ψn � P̄n � Ψ�1
n is

given by
Pnpu, v; εq � pu� αn � λ̄nv � λ̄nεP1,npu, v; εq, v � λ̄nεP2,npu, v; εqq, (3.26)

where
Pj,npu, v; εq � P̄j,n

�
u, v � ᾱn � α

λ̄n
; ε



, for j � 1, 2.

Furthermore, under the same assumptions, the bounds presented in Lemma 3.4.4 naturally extend to
the functions P1,n and P2,n. In the following, we show that, for sufficiently large n, Pn satisfies the
intersection property condition.

Proposition 3.4.6. For each n ¥ n� � maxtn�1 , n�2 , n�3 , n�4u, the map Pn has the intersection property.
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Proof. Let P be the Poincaré map corresponding to the Hamiltonian system (3.16). From Theorem
2.3.11, it follows that P has the intersection property. By considering the transformation Ψ̃n :�
Ψn � Φ3,n, where Φ3,n and Ψn are the transformations given in (3.18) and (3.25), respectively, we see
that, for n ¥ n�, the maps P and Pn are conjugated. Then, according with Proposition 2.3.12, it
follows that, for n ¥ n�, the map Pn also exhibits the intersection property.

3.5 Proof of the main results

Proof of Theorem A. Let us consider the maps Pn obtained in (3.26). We are interested in applying
the Invariant Curve Theorem to these maps, which are in the same form presented in (2.17).

Let us remind that n� � maxtn�1 , n�2 , n�3 , n�4u. Then, for each n ¥ n�, the irrational
number αn is of constant-type with corresponding Markoff constant Ωn satisfying relationship (3.24).
Moreover, if necessary, the natural n� can be chosen sufficiently large such that λ̄n � 2πλn{σ P p0, 2q
for every n ¥ n�, satisfying the inequality

Ωn ¤ λ̄n
4
  λ̄n � 16

λ̄n
16

¤ 16Ωn.

Therefore, by taking M � 16, the relation (2.18) is satisfied. In addition, Proposition 3.4.6 guarantees
that the maps Pn has the intersection property. Also, due to the uniqueness of solutions of (3.19), they
are one-to-one maps having 1-periodicity in the variable u. This enables the application of the Invariant
Curve Theorem to Pn. Hence, the constant M� in (2.19) can be selected independently of n ¥ n�. By
defining Fj � εPj,n for j � 1, 2, and ε�pp,θq �M�{C, where C is the constant depending on }p}C5pSσq
and θ as provided in Lemma 3.4.4, we can deduce that

∥F1∥C5pR�r�6,�3sq � ∥F2∥C5pR�r�6,�3sq � ε
�
∥P1,np�; εq∥C5pR�r�6,�3sq � ∥P2,np�; εq∥C5pR�r�6,�3sq

	
¤ εC.

Thus, relationship (2.19) is satisfied for every 0 ¤ ε   ε�pp,θq and for every n ¥ n�. We can therefore
conclude that, for every 0 ¤ ε   ε�pp,θq and for each n ¥ n�, the map Pn has an invariant closed curve,
denoted by Γn

ε , carrying quasi-periodic motion, since the rotation number of Pn restricted to Γn
ε is the

irrational αn.

Upon transforming the system back to its original form, we notice that the curves cor-
responding to Γn

ε in the plane px, yq P R2 give rise to nested invariant tori of (3.1) in the extended
phase space Sσ � R2. These tori, to be denoted T̄ i

ε , carry quasi-periodic solutions of (3.1). Finally, the
sequence of nested invariant tori introduced in Theorem A is obtained by defining T i

ε � T̄ i�n�
ε , for

i P N.

Proof of Theorem B. Let us consider the invariant curves Γn
ε of Pn provided in the proof of Theorem

A along with their parametrizations γnε P C3pS1q, for n ¥ n� and 0 ¤ ε   ε�pp,θq. By performing the
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inverse transformations given in (3.25) and (3.18) to Pn, that is, Ψ̃�1
n � Φ�1

3,n � Ψ�1
n (see Proof of

Proposition 3.4.6) we get the Poincaré map P associated with (3.16) and defined on the sequence of
disjoint annuli tSσ�Jnun¥n� � pr�,�8q. Besides that, the invariant curve Γn

ε of Pn in S1�r�6,�3s
are transformed into an invariant curve Γ̃n

ε � Ψ̃�1
n pΓn

ε q of P in the annulus Sσ � Jn, for each n ¥ n�

and 0 ¤ ε   ε�pp,θq. We denote the parametrizations of Γ̃n
ε by γ̃nε , that is, Γ̃n

ε � tpβ, γ̃nε pβqq : β P Sσu.
Taking (3.26) into account, we notice that ρ

�
Pn

��
Γn
ε

	
� αn, with αn being the irrational

number of constant type provided in Lemma 3.4.5. This implies that ρ
�
P

��
Γ̃n
ε

	
� σαn. From the

relation (3.23), it can be shown that, for each i ¥ n� there exists j ¡ i such that αi ¡ αj. These values
are assumed to be fixed from now on.

Given that the annuli Sσ � Ji and Sσ � Jj are pairwise disjoint, we have that the curves
Γ̃i
ε and Γ̃j

ε are also pairwise disjoint, implying that γ̃iεpβq � γ̃jεpβq, for every β P Sσ.

Now, let us denote by R̃pi,jq the invariant region of P comprised between the invariant
curves Γ̃i

ε and Γ̃j
ε. This region can be described by means of the parametrizations of Γ̃i

ε and Γ̃j
ε as

follows
R̃pi,jq � tpβ, rq P Sσ � R : β P Sσ and γ̃iεpβq ¤ r ¤ γ̃jεpβqu.

By taking into account the diffeomorphism

χ̃ : R̃pi,jq ÝÑ S1 � r0, 1s
pβ, rq ÞÝÑ

�
β

σ
,

r � γ̃ipβq
γ̃jpβq � γ̃ipβq



,

we notice that the conjugated map G � χ̃ � P � χ̃�1 : S1 � r0, 1s Ñ S1 � r0, 1s matches all the
conditions of Theorem 2.4.5. Indeed, since G is conjugated with P , it has the intersection property.
Besides that, it leaves the boundaries of S1 � r0, 1s invariant and satisfies ρ

�
G
��
S1�t0u

	
� αi and

ρ
�
G
��
S1�t1u

	
� αj , with αi, αj P RzQ satisfying αi � αj ¡ 0. Thus, there exists q� P N such that for

each q P N satisfying q ¥ q�, the map G has at least one periodic point of period q. This implies the
existence of periodic solutions for (3.19) and, consequently, for (3.1), whenever 0 ¤ ε   ε�pp,θq.

By recursively applying this procedure to the sequence of invariant curves tΓn
ε un¥j , we

conclude the proof of the corollary.

3.6 Proofs of the technical results

In this section, we are concerned with the proofs of the technical results previously
presented throughout the corresponding chapter, particularly those related to estimating functions.
Before we proceed with those proofs, we introduce an auxiliary lemma concerning higher-order
derivatives of composite functions (see, for instance, [1, 46] for more details).
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Lemma 3.6.1. Let F : R2 Ñ R and f, g : R2 Ñ R be sufficiently differentiable functions. Then, for

i� j ¥ 1, we have

BixBjyrF � pf, gqs �
¸

pk,pqPN2
0: 1¤k�p¤i�j,

i⃗�pi1,��� ,ik�pq, |⃗i|�i,

j⃗�pj1,��� ,jk�pq, |⃗j|�j

Ck,p,⃗i,⃗jpBk1Bp2F pf, gqq
�
pBi1x Bj1y fq . . . pBikx Bjky fqpBik�1

x Bjk�1
y gq . . . pBik�p

x Bjk�p
y gq

�
,

where the coefficients Ck,p,⃗i,⃗j are integers and satisfy Ck,p,⃗i,⃗j � 0 if il � jl � 0 for 1 ¤ l ¤ k � p,

meaning that when the l-th entries of vectors i⃗ and j⃗ are both zero, the corresponding coefficients will

also be zero.

In particular, if F : RÑ R and f : R2 Ñ R are sufficiently differentiable functions, then

BixBjyrF � f s �
¸

1¤k¤i�j,

i⃗�pi1,��� ,ikq, |⃗i|�i,

j⃗�pj1,��� ,jkq, |⃗j|�j

Ck,⃗i,⃗jpDkF pfqq
�
pBi1x Bj1y fq . . . pBikx Bjky fq

�
. (3.27)

Lemma 3.6.2 (General Leibniz rule [52]). Let f ang g be real function n-times differentiable. Then

the product f � g is n-times differentiable and its derivative is given by the formula

Dnpfpxq � gpxqq �
ņ

k�0

�
n

k



Dkfpxq �Dn�kgpxq.

Proof of Lemma 3.2.2. In order to establish the relationship given in (3.7), we start by observing that

T 1phq � � 2
?
2

h1{2p1� 2θhq ,

which also ensures the strictly decreasing character that T possess. Subsequently, by proceeding with
induction over i ¥ 1, we verify that DiT phq � CiPiphqh1{2�ip1 � 2θhq�i, where Ci is a positive
constant dependent on θ, and Pi is a polynomial of degree i�1. Thus, relationship (3.7) holds for every
i ¥ 1. The inverse of T is obtained by considering the relations T phq � ρ, for ρ P p2π{

?
θ, 4π{

?
θq,

and 1{cos2pxq � 1� tan2pxq, for x P p�π{2, π{2q. We achieve relationship (3.8) by noticing that

lim
ρÑ2π{?θ

T�1pρq
|2π �?

θρ|�2
� 8

θ
.

The bounds stated in (3.9) are obtained through an induction approach over i. For the base
case i � 1, we derive the equation T pT�1pρqq � ρ to obtain

DT�1pρq � pDT pT�1pρqqq�1.

Therefore, for the case where i � 1, the bounds in (3.9) holds by considering those from (3.7) and
(3.8). From the induction step, we assume that for i � n� 1 relationship (3.9) holds. From Lemma
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3.6.1, we have

DnT�1pρq � 1

pDT pT�1pρqqqn
¸

1¤r n
m⃗�pm1,...,mrq

|m⃗|�n

Cr,m⃗ �DrT�1pρq �Dm1T pT�1pρqq � � �DmrT pT�1pρqq� , (3.28)

for n ¥ 2. To conclude the proof, it is sufficient to show that each therm of the sum (3.28) satisfies the
bounds in (3.9). By considering relationships (3.7) and (3.8), we find

c|2π �
?
θρ|�3n ¤ |pDT pT�1pρqqq|�n ¤ C|2π �

?
θρ|�3n,

and
c|2π �

?
θρ|r�2n ¤ |Dm1T pT�1pρqq � � �DmrT pT�1pρqq| ¤ C|2π �

?
θρ|r�2n,

since m1 � � � � �mr � n, for every 1 ¤ r   n� 1. By the induction hypothesis, we deduce

c|2π �
?
θρ|�pr�2q ¤ |DrT�1pρq| ¤ C|2π �

?
θρ|�pr�2q.

Consequently, for 1 ¤ r   n,

c|2π�
?
θρ|�pn�2q ¤

���� DrT�1pρq|
pDT pT�1pρqqqn

�
Dm1T pT�1pρqq � � �DmrT pT�1pρqq����� ¤ C|2π�

?
θρ|�pn�2q.

This completes the induction step, as (3.28) consists in a finite sum, thereby completing the proof of
the lemma.

Proof of Lemma 3.3.1. It is not difficult to see that A is a smooth function, since it consists in a
combination of elementary smooth functions. Direct computations and also Remark 2.2.5 provide us
A1phq � T phq for every h P p0,�8q, and, since T phq ¡ 0 for any h P p0,�8q, we conclude that A is
invertible. Furthermore, this fact in combination with

lim
hÑ�8

Aphq
h

� 2π?
θ

and the bounds in (3.7) yield relationship (3.11).

In order to establish the estimates stated in (3.12), we start by noticing that h0 is an
increasing smooth function, and that the differentiation of the equality Aph0pIqq � I provides

DhpIq � 1

DAph0pIqq .

Hence, for sufficiently large I ,

c0I ¤ h0pIq ¤ C0I and c1 ¤ Dh0pIq ¤ C1. (3.29)

In order to complete the proof of the lemma, it only remains to show that

|Dih0pIq| ¤ CiI
1{2�i for i ¥ 2.
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To this end, we proceed by induction over i. For the base step, i � 2, we notice that

D2h0pIq � �Dh0pIqD
2Aph0pIqq

rDAph0pIqqs2 ,

which, in conjunction with (3.11) and (3.29), yields��D2h0pIq
�� ¤ C

��D2Aph0pIqq
�� ¤ CI�3{2.

Therefore, relationship (3.12) holds for i � 2. Now, as induction step, we assume that relationship also
holds for i � n� 1. Then, by invoking Lemma 3.6.1, we can establish the following for i � n :

Dnh0pIq � 1

pDAph0pIqqqn
¸

2¤r n
m⃗�pm1,...,mrq

|m⃗|�n

Cr,m⃗ �Drh0pIq rDm1Aph0pIqq . . . DmrAph0pIqqs . (3.30)

Similar to what was done in Lemma 3.2.2, we demonstrate that each term from the sum
(3.30) is bounded by CI1{2�n. However, we must distinguish between the case where m⃗ has coordinates
of the form mj � 1, with 1 ¤ j ¤ r, and the case where does not. Then, for 2 ¤ r   n, we consider
the cases:

The vector m⃗ does not have coordinates of the form mj � 1: The bounds in (3.11) and the induction
hypothesis imply that����Cr,m⃗ � Drh0pIq

pDAph0pIqqqn rD
m1Aph0pIqq . . . DmrAph0pIqqs

���� ¤ C|Drh0pIq| |Dm1Aph0pIqq . . . DmrAph0pIqq|

¤ CI
1{2�rI

r{2�n

¤ CI
1{2�r{2�n

¤ CI
1{2�n,

for sufficiently large I .

The vector m⃗ has 1 ¤M ¤ r coordinates of the form mj � 1: Once again, from the relation (3.11)
and the induction hypothesis, we can deduce that, for sufficiently large I ,����Cr,m⃗ � Drh0pIq

pDAph0pIqqqn rD
m1Aph0pIqq . . . DmrAph0pIqqs

���� ¤ CI
1{2�rI

pr �Mq{2�pn�Mq

¤ CI
p1 � r �Mq{2�n

¤ CI
1{2�n,

since 1� r �M ¤ 1. Then we conclude that for i � n relationship (3.12) holds, and this completes
the proof of the lemma.

Proof of Lemma 3.3.2. The transformation Φ1 is onto by construction. Injectivity is shown using
the level curves Ch, for h ¡ 0, of the Hamiltonian H. Suppose that pϕ1, I1q � pϕ2, I2q P S2π �
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p2π{θ3{2,�8q. Since A is a bijection between p0,�8q and p2π{θ3{2,�8q, there exist h1 � h2 P
p0,�8q such that Aphiq � Ii, for i � 1, 2. For fixed values of h, we have that ϕpx, hq is one-to-one
in the interval r0, aphqs, which implies that, if ϕ1 � ϕpx1, h1q � ϕpx2, h2q � ϕ2, then x1 � x2. We
conclude that y1 � y2 by considering the definition of ϕpx, hq. The continuity of Φ1 follows from the
fact that each term of the function is continuous. In order to show that its inverse is continuous, we
state the relation

xpϕ, Iq � x̃pϕ, h0pIqq � x̃pϕ, hq. (3.31)

Then, if ϕ P p0, π{2q, we have ϕ � ϕ1px̃, hq, that is,

ϕ � 2π?
θT phq

�
arcsin

�
1?

2hθ � 1



� arcsin

�
θx̃pϕ, hq � 1?

2hθ � 1




,

which implies that

sin

�
T phq?θ

2π
ϕ� arcsin

�
1?

2hθ � 1


�
� θx̃pϕ, hq � 1?

2hθ � 1

Therefore, considering |
?
2hθ � 1| ¡ 1 when h ¡ 0, and using the relationship

sinpz � arcsinpyqq �
a
1� y2sinpzq � ycospzq for y P r0, 1s and z P R, we obtaind

1�
�

1?
2hθ � 1


2

sin

�
T phq?θ

2π
ϕ

�
� 1?

2hθ � 1
cos

�
T phq?θ

2π
ϕ

�
� θx̃pϕ, hq � 1?

2hθ � 1
,

and consequently,

x̃pϕ, hq � 1

θ
�
c

2h

θ
sin

�
T phq?θ

2π
ϕ

�
� 1

θ
cos

�
T phq?θ

2π
ϕ

�
.

Reapplying the previous argument to the remaining angles, we get

x̃pϕ, hq �

$'''''''''''''''''''&
'''''''''''''''''''%

1

θ
�
c

2h

θ
sin

�
T phq?θ

2π
ϕ

�
� 1

θ
cos

�
T phq?θ

2π
ϕ

�
if ϕ P r0, π

2
q,

1

θ
�
c

2h

θ
sin

�
T phq?θ

2π
pπ � ϕq

�
� 1

θ
cos

�
T phq?θ

2π
pπ � ϕq

�
if ϕ P rπ

2
, πq,

�1

θ
�
c

2h

θ
sin

�
T phq?θ

2π
pϕ� πq

�
� 1

θ
cos

�
T phq?θ

2π
pϕ� πq

�
if ϕ P rπ, 3π

2
q,

�1

θ
�
c

2h

θ
sin

�
T phq?θ

2π
p2π � ϕq

�
� 1

θ
cos

�
T phq?θ

2π
p2π � ϕq

�
if ϕ P r3π

2
, 2πs.
(3.32)
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We observe that, for all h ¡ 0, lim
ϕÑϕ0

x̃pϕ, hq � x̃pϕ0, hq holds for every

ϕ0 P t0, π{2, π, 3π{2, 2πu. Consequently, x̃ exhibits continuity over S2π � p0,�8q, and this con-
tinuity extends to x (regarded as a function) over S2π � p2π{θ3{2,�8q through the relationship (3.31),
and this concludes that Φ1 is a homeomorphism.

The smoothness of xpϕ, Iq with respect to the variable I is also achieved from relationship
(3.31) and the smoothness of the function h0 provided in the Lemma 3.3.1. In order to verify the
bounds for (3.13), let us begin by checking that, for a fixed ϕ and i ¥ 0,

|Bihx̃pϕ, hq| ¤ Cih
1{2�i. (3.33)

As seen in (3.32), x̃pϕ, hq is a piecewise smooth function. However, within each quadrant
of the plane R2, x̃pϕ, hq is composed by functions of the same nature when considering their asymptotic
behavior. For this reason, we will demonstrate that the relationship (3.33) holds for ϕ P r0, π{2q, and
this result will be naturally extended to the remaining angles. Specifically, for ϕ P r0, π{2q and i � 0,
we have

x̃pϕ, hq � 1

θ
�
c

2h

θ
sin

�
T phq?θ

2π
ϕ

�
� 1

θ
cos

�
T phq?θ

2π
ϕ

�
.

Consequently, for sufficiently large h, it follows that

|x̃pϕ, hq| ¤ Ch
1{2.

For i ¥ 1, the higher-order derivatives of x̃pϕ, hq with respect to h are given by

Bihx̃pϕ, hq � Bih
�c

2h

θ
sin

�
T phq?θ

2π
ϕ

��
� Bih

�
1

θ
cos

�
T phq?θ

2π
ϕ

��
. (3.34)

Claim 1. For i ¥ 1 and sufficiently large h, the following estimate holds�����Bih
�
G

�
T phq?θ

2π
ϕ

������� ¤ Ch�1{2�i,

where Gpxq is either cospxq or sinpxq.
Proof of Claim 1. By considering the formula provided in Lemma 3.6.1, we are led to

Bih
�
G

�
T phq?θ

2π
ϕ

��
�
¸

1¤r¤i
m⃗�pm1,��� ,mrq

|m⃗|�i

Cr,m⃗pDrGpT phq
2π
ϕqq rDm1T phq . . . DmrT phqs . (3.35)

We observe that in the sum (3.35), if the constant Cr,m⃗ � 0 ,then mj ¥ 1 for every 1 ¤ j ¤ r.
Therefore, for i ¥ 1 and sufficiently large h, any non-zero term in the sum (3.35) is bounded by���Cr,m⃗D

rG
�

T phq
2π
ϕ
	
rDm1T phq . . . DmrT phqs

��� ¤ Ch�r{2�i ¤ Ch�1{2�i,
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where we have considered the bounds in (3.7) and the fact that |DrG
�

T phq
2π
ϕ
	
| ¤ 1. This completes

the proof of Claim 1.

Claim 2. For i ¥ 1 and sufficiently large h, we have that�����Bih
�c

2h

θ
sin

�
T phq?θ

2π
ϕ

������� ¤ Ch
1{2�i.

Proof of Claim 2. We first observe that, for sufficiently large h and k P N,�����Dk

�c
2h

θ

������ ¤ Ch
1{2�k.

Then, after applying the General Leibniz rule to (3.34), we have

Bih
�c

2h

θ
sin

�
T phq?θ

2π
ϕ

��
�

i̧

j�0

�
i

j



Dj

�c
2h

θ

�
Di�j

�
sin

�
T phq?θ

2π
ϕ

��

�
i�1̧

j�0

�
i

j



Dj

�c
2h

θ

�
Di�j

�
sin

�
T phq?θ

2π
ϕ

��
�Di

�c
2h

θ

�
.

By applying the bounds provided in Claim 1, it follows that�����Bih
�c

2h

θ
sin

�
T phq?θ

2π
ϕ

������� ¤ Ch�i � Ch
1{2�i ¤ Ch

1{2�i,

for sufficiently large h, which concludes the proof of Claim 2.

Therefore, from Claims 1 and 2 we conclude that, for sufficiently large h and i ¥ 0,
relationship (3.33) holds. Back to our initial goal, we now consider the composite function xpϕ, Iq �
x̃pϕ, h0pIqq. For i � 0, taking into account the bounds (3.33), (3.31), and (3.12), we have that

|xpϕ, Iq| � |x̃pϕ, h0pIqq| ¤ C0ph0pIqq1{2 ¤ C0I
1{2,

for sufficiently large I . For i ¥ 1, it follows from Lemma 3.6.1 that

BnI xpϕ, Iq � BiIrx̃pϕ, h0pIqqs �
¸

1¤k¤i
pm1,...,mkq�m⃗

|m⃗|�i

Ck,m⃗

�Bkhx̃pϕ, h0pIqq� rDm1h0pIq . . . Dmkh0pIqs ,

with C⃗i,k � 0, if il � 0 for any 1 ¤ l ¤ k. Thus, each term of the sum (3.36) is of the form

Ck,m⃗

�Bkhx̃pϕ, h0pIqq� rDm1h0pIq . . . Dmkh0pIqs .

The bounds in (3.33) and (3.12) yields

|Bkhx̃pϕ, h0pIqq| ¤ Ckph0pIqq1{2�k ¤ CI
1{2�k,
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for sufficiently large I . In order to provide estimations for the term Dm1h0pIq . . . Dmkh0pIq, we need
to distinguish between two cases: the case where m⃗ does not have coordinates of the form mj � 1,
and the case where it does.

The vector m⃗ does not have coordinates of the form mj � 1: In this case, we take into account
(3.12), and then

|Di1h0pIq . . . Dikh0pIq| ¤ CI
1{2�i1 . . . I

1{2�ik � CI
k{2�i,

hence

|Bkhx̃pϕ, h0pIqqrDi1h0pIq . . . Dikh0pIqs| ¤ CA � I
1{2�kI

k{2�i

� CI
p1�kq

2
�i

¤ CI
1{2�i,

since 1� k   1, for any 1 ¤ k ¤ i.

The vector m⃗ has coordinates of the form mj � 1: Suppose that m⃗ has 1 ¤M ¤ k coordinates of
the type mj � 1, then for such coordinates |Dilh0pAq| ¤ C. In this way,

|Dm1h0pIq . . . Dmkh0pIq| ¤ CA
pk�Mq

2
�iIM � CI

pk�Mq
2

�i,

which implies that

|Bkhx̃pϕ, h0pIqqrDm1h0pIq . . . Dmkh0pIqs| ¤ CI
1{2�kI

pk�Mq
2

�i

� CI
p1�k�Mq

2
�i

¤ CI
1{2�i,

given that 1 � k �M ¤ 1. Then, each term of the sum (3.36) is less or equal to CI1{2�i in absolute
values for every i ¥ 1 and sufficiently large I , which means that relationship (3.13) holds under the
same conditions. This concludes the proof of the lemma.

Proof of Lemma 3.4.1. For the sake of simplicity, we are going to omit the dependence of H1 on β, r,
τ , and ε, unless necessary. It follows from (3.14) and (3.15) that

r � Hpτ,H pβ, r, τ ; εq, β; εq
� Hpτ, Aprq � εH1, βq
� h0pAprq � εH1q � εxpτ, Aprq � εH1qppβq.

Since Ap�q � h�1
0 p�q, we obtain

εH1 � Apr � εxpτ, Apr � εH1qqppβqq � Aprq.
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Thus, by defining Fpρq :� Apr � ρεxpτ, Apr � εH1qqppβqq, we have Fp1q � Apr � εxpτ, Apr �
εH1qqppβqq and Fp0q � Aprq. Additionally,

F 1pρq � εxpτ, Aprq � εH1qppβqT pr � ρεxpτ, Aprq � εH1qppβqq,

since A1 � T . Therefore, by the Fundamental Theorem of Calculus, we can rewrite εH1 as

H1 � xpτ, Aprq � εH1qppβq
» 1

0

T pr � ρεxpτ, Aprq � εH1qppβqqdρ. (3.36)

In order to avoid repetitive arguments, we will assume that r is sufficiently large and
ε ¤ 1{2 throughout this proof. The lemma is proved by induction over i� j.

For the base step, that is, for i� j � 0, we notice that (3.36), (3.13), and the boundedness
of T imply that

|H1| ¤ C|xpτ,H q| ¤ C|H |1{2,
with C being a constant depending on p. Since |Aprq| ¤ Cr, it follows that |H1| ¤ Cr

1{2, as desired.

Before we proceed with the proof, we notice that, from (3.14) and (3.11), we have

cr ¤ cr � Cr
1{2 ¤ |Aprq| � |H1| ¤ |H | ¤ |Aprq| � |H1| ¤ Cr � Cr

1{2 ¤ Cr, (3.37)

and this together with (3.13) imply that

|BkIxpτ,H q| ¤ Cr
1{2�k for k ¥ 0. (3.38)

Now, let us assume that the bound in Lemma 3.4.1 holds for i� j � n. We will show that
it also holds for i� j � n� 1. For this purpose, we define the auxiliary functions

Upβ, r, τ ; εq :� xpτ,H pβ, r, τ ; εqqppβq,
T̃ pρq :� T pr � ρεxpτ, Aprq � εH1qppβqq � T pr � ρεUpβ, r, τqq,

and we provide bounds for them in distinct claims.

Claim 1. For 0 ¤ i� j ¤ n� 1,

|BiβBjrrxpτ,H qs| ¤ Cpr�1{2|BiβBjrH | � r
1{2�jq. (3.39)

Proof of Claim 1. In order to prove the estimate (3.39), we will use (3.27) from Lemma 3.6.1, thus

BiβBjrrxpτ,H qs � C pBIxpτ,H qq �BiβBjrH ��¸
2¤k¤i�j,

i⃗�pi1,��� ,ikq, |⃗i|�i,

j⃗�pj1,��� ,jkq, |⃗j|�j

Ck,⃗i,⃗j

�BkIxpτ,H q� �Bi1β Bj1r H
�
. . .

�Bikβ Bjkr H
�
.

(3.40)
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Let us observe that the absolute value of the first term in the equation (3.40) is smaller thanCr�1{2|BiβBjrH |,
due to (3.38). Therefore, to conclude the proof of this first claim, it suffices to demonstrate that each
non-zero term in the sum (3.40) is smaller in absolute value than Cr1{2�j . To this end, we start by
noticing that, from Lemma 3.6.1, each non-zero term in the expression¸

2¤k¤i�j,

i⃗�pi1,��� ,ikq, |⃗i|�i,

j⃗�pj1,��� ,jkq, |⃗j|�j

Ck,⃗i,⃗j

�BkIxpτ,H q� �Bi1β Bj1r H
�
. . .

�Bikβ Bjkr H
�

(3.41)

should have 1 ¤ il � jl ¤ n for every 1 ¤ l ¤ k � p, otherwise if there exists 1 ¤ l ¤ k such
that il � jl � n � 1, then, since i⃗ and j⃗ must have at least two components, it would follow that
il�1 � jl�1 � 0 or il�1 � jl�1 � 0, which contradicts Lemma 3.6.1. Thus, we can apply the induction
hypothesis to Bilβ Bjlr H1, yielding |Bilβ Bjlr H1| ¤ Cr

1{2�jl for such indices. Consequently, if il ¥ 1, then
from (3.11), (3.38), and the induction hypothesis, it follows that

|Bjlr H | � |DjlA� εBjlr H1| ¤
#
C � Cr�1{2 if jl � 1,

Cr
1{2�jl � Cr

1{2�jl if jl ¥ 1,

¤
#
C if jl � 1,

Cr
1{2�jl if jl ¥ 1,

which implies that

|Bilβ Bjlr H | ¤
#
C if pil, jlq � p0, 1q,
Cr

1{2�jl if pil, jlq � p0, 1q, for every 1 ¤ l ¤ k. (3.42)

Therefore, if a non-zero term in the sum (3.40) does not have pairs of indices of the form pil, jlq � p0, 1q,
it follows from (3.38) and (3.42) that

���BkIxpτ,H q� �Bi1β Bj1r H
�
. . .

�Bikβ Bjkr H
��� ¤ Cr

1{2�kr
1{2�j1 . . . r

1{2�jk

� Cr
p1 � kq{2�j.

Now, let us consider a non-zero term from the sum (3.41) that has 1 ¤M ¤ k pairs of indices of the
form pil, jlq � p0, 1q. In such a scenario,

���BkIxpτ,H q� �Bi1β Bj1r H
�
. . .

�Bikβ Bjkr H
��� ¤ Cr

1{2�kr
pk�Mq

2
�jrM � Cr

p1�k�Mq
2

�j

¤ Cr
1{2�j,

where the last inequality follows from the fact that 1� k �M ¤ 1. This concludes the proof of the
claim.

As a consequence of Claim 1 and the induction hypothesis, we have, for 0 ¤ i� j ¤ n,

|BiβBjrrxpτ,H qs| ¤ Cpr�1{2r1{2�j � r
1{2�jq ¤ Cr

1{2�j. (3.43)
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Claim 2. For 0 ¤ i� j ¤ n� 1,

|BiβBjrU | ¤ Cpr�1{2|BiβBjrH | � r
1{2�jq. (3.44)

Proof of Claim 2. From the general Leibniz rule, we have

BiβBjrU � BiβpBjrrxpτ,H qsppβqq �
i�1̧

k�0

�
i

k



Di�kppβqBkβBjrrxpτ,H qs � BiβBjrrxpτ,H qs.

The above equality combined with the bounds (3.39) and (3.43), yield the claim.

Claim 3. For a fixed ρ P r0, 1s and for 0 ¤ i� j ¤ n� 1, we have

|BiβBjrrT pr � ερUqs| ¤ Cpr�2|BiβBjrH| � r�1{2�jq.

Proof of Claim 3. We start the proof of the claim by noticing that

|U | ¤ Cpr�1{2|H | � r
1{2q ¤ Cpr�1{2r � r

1{2q � Cr
1{2,

where we have used (3.44) and (3.37). Thus, for sufficiently small ε, we have the bounds

|r � ερU | ¥ r � ερ|U | ¥ r � Cr
1{2 ¥ cr. (3.45)

Hence, relation (3.45) combined with the bounds for the derivatives of T provided in (3.7), gives us,
for k ¥ 1, the following:

|DkT pr � ερUq| ¤ C|r � ερU |�1{2�k ¤ Cr�1{2�k. (3.46)

Now, let us consider, for i� j ¥ 1, the higher order derivatives of r � ερU , which are given by:

BiβBjrrr � ερU s �
#

1� ερpBrUq if pi, jq � p0, 1q,
ερpBiβBjrUq if pi, jq � p0, 1q. (3.47)

Thus, for pi, jq � p0, 1q, it follows from (3.44) and (3.46) that

|BrrT pr � ερUqs| � |T 1pr � ερUq|p1� ερ|BrU |q
¤ Cr�3{2p1� r�1{2|BrH | � r�1{2q
¤ Cpr�2|BrH | � r�3{2q.

On the other hand, if pi, jq � p0, 1q, we take into account the bounds (3.44) and (3.46) to show that

��T 1pr � ερUq �BiβBjrrr � ερU s��� ¤ Cr�3{2pr�1{2|BiβBjrH | � r
1{2�jq ¤ Cpr�2|BiβBjrH | � r�1{2�jq.
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We notice that in both cases, for pi, jq � p0, 1q and pi, jq � p0, 1q, the first term of the sum

BiβBjrrT pr � ερUqs � CT 1pr � ερUq �BiβBjrrr � ερU s�
�
¸

2¤k¤i�j,

i⃗�pi1,��� ,ikq, |⃗i|�i,

j⃗�pj1,��� ,jkq, |⃗j|�j

Ck,⃗i,⃗j

�
DkT pr � ερUq� �Bi1β Bj1r rr � ερU s� . . . �Bikβ Bjkr rr � ερU s� .

(3.48)

is smaller than Cpr�2|BiβBjrH | � r�1{2�jq, for j ¥ 1, in absolute values. Thus, it only remains to show
that the remaining terms of the sum (3.48) are bounded by Cr�1{2�j . In fact, it is known that each
non-zero term of the sum (3.48) is of the form

Ck,⃗i,⃗j

�
DkT pr � ερUq� �Bi1β Bj1r rr � ερU s� . . . �Bikβ Bjkr rr � ερU s�

with 2 ¤ k ¤ i� j. We divide the analysis in two cases, namely

There are no pairs of indices of the form pil, jlq � p0, 1q in the vectors i⃗ and j⃗: In this situation, for
2 ¤ k ¤ i� j, equation (3.47) and the induction hypothesis yield

| �DkT pr � ερUq� �Bi1β Bj1r rr � ερU s� . . . �Bikβ Bjkr rr � ερU s� | ¤ Cr�1{2�kr
k{2�j

¤ Cr�1{2�j.

There exist M , with 1 ¤M   k, pairs of the form pil, jlq � p0, 1q in the vectors i⃗ and m⃗: In such
case, from equation (3.47) and the induction hypothesis, it follows that

| �DkT pr � ερUq� �Bi1β Bj1r rr � ερU s� . . . �Bikβ Bjkr rr � ερU s� | ¤ Cr�1{2�kr
1{2pk�Mq�pj�Mq

¤ Cr
1{2p1�k�Mq�j

¤ Cr�1{2�j,

since 1 � k �M ¤ 1. Thus, Claim 3 holds. We observe that the induction hypothesis implies, for
0 ¤ i� j ¤ n, that

|BiβBjrrT pr � ερUqs| ¤ Cr�1{2�j.

We are now in position to complete the proof of Lemma 3.4.1, as we have established

bounds for all the components involved in the higher-order derivatives of H1 � U

» 1

0

T̃ pρqdρ. From
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Lemma (3.6.1), the Integral Leibniz Rule, and Claims 1, 2, and 3, we obtain

|BiβBjrH1pβ, r, τq| ¤ |BiβBjrU | �
» 1

0

|BiβBjrrT pr � ερUqs|dρ

� C
¸

p�0,...,i
k�0,...,j

pp,kq�p0,0q,pp,kq�pi,jq

|BpβBkrU |
�» 1

0

|Bi�p
β Bj�k

r rT pr � ερUqs|dρ



¤ C

�
�r�1{2|BiβBjrH | � r

1{2�j �r�2|BiβBjrH |�r�1{2�j �
¸
pp,kq

r
1{2�kr�1{2�pj�kq

�



¤ Cpr�1{2|BiβBjrH | � r
1{2�jq. (3.49)

We observe that, when pi, jq � p0, 1q, then

|BrH1| ¤ Cpr�1{2|BrH | � r�1{2q
¤ Cpr�1{2p|A1prq| � ε|BrH1|q � r�1{2q
¤ Cr�1{2 � Cr�1{2|BrH1|,

where we have used (3.11) to bound A. On the other hand, for pi, jq � p0, 1q and i� j ¥ 1, it follows
from (3.11) and the sum (3.49) that

|BiβBjrH1| ¤ Cpr�1{2|BiβBjrH | � r
1{2�jq

¤ Cr�1{2|BiβBjrAprq| � εCr�1{2|BiβBjrH1| � Cr
1{2�j

¤ Cr�1{2|BiβBjrH1| � Cr
1{2�j.

Therefore, for sufficiently large r such that Cr�1{2 ¤ 1{2, we have

|BiβBjrH1| ¤ Cr
1{2�j,

and this completes the proof by induction.

Proof of Lemma 3.4.3. In order to provide the bounds (3.20), we define the auxiliary function

rnpρ̄q :� T�1

�
λnρ̄� 2π?

θ



,

which allows us to rewrite f̄1,n and f̄2,n as

f̄1,npβ̄, ρ̄, τ ; εq � 1

σ
BrH1

�
σβ̄, rnpρ̄q, τ ; ε

�
and

f̄2,npβ̄, ρ̄, τ ; εq :� �λ�1
n T 1 prnpρ̄qq BβH1

�
σβ̄, rnpρ̄q, τ ; ε

�
.



Chapter 3. Analysis of the Case A1 69

Thus, the most significant task in this case is to determine the bounds for rnpρ̄q and subsequently apply
Lemma 3.4.1 to derive the bounds for f̄1,n and f̄2,n. Since bounding the functions f̄1,n and f̄2,n meet a
finite number of conditions, we can assume that there exists n�2 P N, for which the bounds provided in
(3.9) hold for every n ¥ n�2 .

We start by stating that, for i ¥ 0,

|Dirrnpρ̄qs| ¤ Cλ�2
n .

Indeed, when i � 0, it follows that

cλ�2
n ¤ c|λnρ̄|�2 ¤ rnpρ̄q ¤ C|λnρ̄|�2 ¤ Cλ�2

n ,

since ρ̄ P r1{2, 2s and T�1 is bounded. For i ¥ 1, we consider the bounds in (3.9) to obtain

|Dirrnpρ̄qs| � λin|DiT�1pλnρ̄� 2πq| ¤ Cλin|λnρ̄|�pi�2q ¤ Cλ�2
n , (3.50)

and it is a immediate consequence of (3.7) and (3.50) that

|DiT prnpρ̄qq| ¤ Cλ1�2i
n ,

for every i ¥ 1 and every n ¥ n�2 , which leads us to the following claim.

Claim 1. For every i ¥ 0, the following bounds hold

|DirT 1prnpρ̄qqs| ¤ Cλ3n.

Proof of Claim 1. For i � 0, it is evident from the estimates above. Now, let us assume that i ¥ 1.
Then, from Lemma 3.6.1 and the bounds provided in (3.50), we have that

|DirT 1prnpρ̄qqs| �
���¸
1¤k¤i,

j⃗�pj1,��� ,jkq, |⃗j|�i

Ck,⃗jpDk�1T prnpρ̄qq
�pDj1rnpρ̄q . . . Djkrnpρ̄qq

� ���
¤ Cλ3�2k

n λ�2
n . . . λ�2

n ¤ Cλ3n,

which concludes the proof of the claim.

Taking into account Lemmas 3.6.1 and 3.4.1, we are in position to provide bounds for f̄1,n
and f̄2,n. We notice that, for i� j ¥ 0,

|Biβ̄Bjρ̄rBβH1pσβ̄, rnpρ̄q, τ ; εqs| � σi|Bjρ̄rBi�1
β H1pσβ̄, rnpρ̄q, τqs|

� σi
���¸
1¤k¤j,

j⃗�pj1,��� ,jkq, |⃗j|�j

Ck,⃗jpBkr Bi�1
β H1pσβ̄, rnpρ̄q, τ ; εqq

�pDj1rnpρ̄q . . . Djkrnpρ̄qq
� ���

¤ C
¸
prnpρ̄qq1{2�kλ�2

n . . . λ�2
n ¤ C

¸
λ�1�2k
n λ�2k

n ¤ Cλ�1
n ,
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which allows us to conclude that

|Biβ̄Bjρ̄rBβH1pσβ̄, rnpρ̄q, τ ; εqs| ¤ Cλ�1
n . (3.51)

In an analogous way,

|Biβ̄Bjρ̄rBrH1pσβ̄, rnpρ̄q, τ ; εqs| � σi|Bjρ̄rBiβBrH1pσβ̄, rnpρ̄q, τ ; εqs|
� σi

���¸
1¤k¤j,

j⃗�pj1,��� ,jkq, |⃗j|�j,
jl¥1:@1¤l¤k

Ck,⃗jpBk�1
r BiβH1pσβ̄, rnpρ̄q, τ ; εqq

�pDj1rnpρ̄q . . . Djkrnpρ̄qq
� ���

¤ C
¸
prnpρ̄qq1{2�pk�1qλ�2

n . . . λ�2
n ¤ C

¸
λ1�2k
n λ�2k

n ¤ Cλn,

which implies that
|f̄1,npβ̄, ρ̄, τ ; εq| ¤ Cλn. (3.52)

Finally, by taking into account the general Leibniz rule, the bounds provided in (3.51), and
Lemma 3.4.1, we have that

|Biβ̄Bjρ̄rT 1prnpρ̄qqBβH1pσβ̄, rnpρ̄q, τ ; εqs| � |
j̧

k�0

Ck,⃗jD
j�krT 1prnpρ̄qqs.Bkβ̄rBβH1pσβ̄, rnpρ̄q, τ ; εqs|

¤ Cλ3nλ
�1
n

� Cλ2n,

and consequently,
|f̄2,npβ̄, ρ̄, τ ; εq| ¤ Cλ2nλ

�1
n � Cλn,

which concludes the proof of the lemma.

Proof of Lemma 3.4.4. Let us remind that λ̄ � 2πλ{σ and ᾱ � 4π2{pσ
?
θq, which allows us to

rewrite (3.21) as

pβ̄pτ ; εq, ρ̄pτ ; εqq �
�
β̄0 � α

2π
τ � λ̄

2π
ρ̄0τ � λ̄εApβ̄0, ρ̄0, τ ; εq, ρ̄0 � λ̄εBpβ̄0, ρ̄0, τ ; εq



, (3.53)

where

λ̄Apβ̄0, ρ̄0, τ ; εq � λ̄2

2π

» τ

0

Bpβ̄0, ρ̄0, s; εqds�
» τ

0

f̄1pβ̄ps; εq, ρ̄ps; εq, s; εqds, (3.54)

λ̄Bpβ̄0, ρ̄0, τ ; εq �
» τ

0

f̄2pβ̄ps; εq, ρ̄ps; εq, s; εqds, (3.55)

and pβ̄0, ρ̄0q is the initial condition of the solution pβ̄pτ ; εq, ρ̄pτ ; εqq, which has the maximal interval
of definition containing the interval τ P r0, 2πs. We notice that P̄1pβ̄0, ρ̄0; εq � Apβ̄0, ρ̄0, 2π; εq and
P̄2pβ̄0, ρ̄0; εq � Bpβ̄0, ρ̄0, 2π; εq. For the sake of simplicity, let us denote the norms of A and B by

∥A∥N � ∥A∥CN and ∥B∥N � ∥B∥CN ,
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where ∥�∥CN is the norm introduced in (2.16). Thus, in order to proof the desired lemma, we provide
the bounds for the auxiliary functions A and B using an inductive step over N . Subsequently, we
extend this result to P̄1 and P̄2. We should mention that λ̄ depends on n, and this proof specifically
addresses cases where n is sufficiently large, that is, there exists n�3 P N such that all the bounds used
in this proof are valid if n ¥ n�3 . This implies λ̄ is sufficiently small, when n is sufficiently large. We
also remind that C ¡ 0 is recursively defined in order to meet a finite number of conditions.

For the base step i � j � N � 0, we first notice that cλ̄ ¤ λ ¤ Cλ̄. Then, taking into
account (3.55) and Lemma 3.4.3, we obtain

∥B∥0 �
1

λ̄

∥∥∥∥» τ

0

f̄2pβ̄ps; εq, ρ̄ps; εq, s; εq ds
∥∥∥∥
8
¤ 1

λ̄

» τ

0

Cλ ds ¤ C,

and consequently, by considering (3.54), we have

∥A∥0 �
1

λ̄

∥∥∥∥ λ̄22π
» τ

0

Bpβ̄0, ρ̄0, s; εq ds�
» τ

0

f̄1pβ̄ps; εq, ρ̄ps; εq, s; εq ds
∥∥∥∥
8

¤ 1

λ̄
pCλ̄2 � Cλ̄q

¤ Cλ̄� C

¤ C.

Thus, for the base step i� j � 0, the bounds for A and B holds. Now, let us assume as induction step
that

∥A∥N � ∥B∥N ¤ C

for some N P N. By differentiating equations (3.53), we get

Bβ̄0
rβ̄pτ, β̄0, ρ̄0; εqs � 1� λ̄εpBβ̄0

Aq, Bβ̄0
rρ̄pτ, β̄0, ρ̄0; εqs � λ̄εpBβ̄0

Bq, (3.56)

Bρ̄0rβ̄pτ, β̄0, ρ̄0; εqs �
λ̄

2π
τ � λ̄εpBρ̄0Aq, Bρ̄0rρ̄pτ, β̄0, ρ̄0; εqs � 1� λ̄εpBρ̄0Aq (3.57)

Biβ̄0
Bjρ̄0rβ̄pτ, β̄0, ρ̄0; εqs � λ̄εpBiβ̄0

Bjρ̄0Aq, Biβ̄0
Bjρ̄0rρ̄pτ, β̄0, ρ̄0; εqs � λ̄εpBiβ̄0

Bjρ̄0Bq, i� j ¥ 2.

The expressions above implies that, for i� j ¥ 1,

|Biβ̄0
Bjρ̄0rβ̄pτ, β̄0, ρ̄0; εqs| � |Biβ̄0

Bjρ̄0rρ̄pτ, β̄0, ρ̄0; εqs| ¤ Cp1� ∥A∥i�j � ∥B∥i�jq. (3.58)
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Then, by setting either F � f̄1 or F � f̄2, it follows from Lemma 3.6.1 that

|Biβ̄0
Bjρ̄0rF pβ̄pτ ; εq, ρ̄pτ ; εq, τ ; εqs| �

���¸
pk,pqPN2

0: 1¤k�p¤i�j,

i⃗�pi1,��� ,ik�pq, |⃗i|�i,

j⃗�pj1,��� ,jk�pq, |⃗j|�j

Ck,p,⃗i,⃗jpBk1Bp2F pβ̄pτ ; εq, ρ̄pτ ; εq, τ ; εqq

�
�
pBi1

β̄0
Bj1ρ̄0rβ̄pτ ; εqsq . . . pBikβ̄0

Bjkρ̄0rβ̄pτ ; εqsq
� pBik�1

β̄0
Bjj�1

ρ̄0 rρ̄pτ ; εqsq . . . pBik�p

β̄0
Bjk�p

ρ̄0 rρ̄pτ ; εqsq
����

¤ C|Bβ̄0
F pβ̄pτ ; εq, ρ̄pτ ; εq, τ ; εqBiβ̄0

Bjρ̄0rβ̄pτ ; εqs|
� C|Bρ̄0F pβ̄pτ ; εq, ρ̄pτ ; εq, τ ; εqBiβ̄0

Bjρ̄0rρ̄pτ ; εqs|
�
���¸

pk,pqPN2
0: 2¤k�p¤i�j,

i⃗�pi1,��� ,ik�pq, |⃗i|�i,

j⃗�pj1,��� ,jk�pq, |⃗j|�j

Ck,p,⃗i,⃗jpBk1Bp2F pβ̄pτ ; εq, ρ̄pτ ; εq, τ ; εqq (3.59)

�
�
pBi1

β̄0
Bj1ρ̄0rβ̄pτ ; εqsq . . . pBikβ̄0

Bjkρ̄0rβ̄pτ ; εqsq
� pBik�1

β̄0
Bjj�1

ρ̄0 rρ̄pτ ; εqsq . . . pBik�p

β̄0
Bjk�p

ρ̄0 rρ̄pτ ; εqsq
����.

We recall that if Ck,p,⃗i,⃗j � 0 in (3.59), then 1 ¤ il � jl ¤ N for every 1 ¤ l ¤ k� p. Then,
taking into account the induction hypothesis, it follows that each non-zero term in the sum (3.59) must
have, for 1 ¤ l ¤ k,

|Bil
β̄0
Bjlρ̄0rβ̄pτ ; εqs| ¤ Cp1� ∥A∥il�jl

� ∥B∥il�jl
q ¤ Cp1� ∥A∥N � ∥B∥Nq ¤ C,

and, similarly, for k � 1 ¤ l ¤ k � p,

|Bil
β̄0
Bjlρ̄0rρ̄pτ ; εqs| ¤ C.

Consequently, Lemma 3.20 yields���¸
pk,pqPN2

0: 2¤k�p¤i�j,

i⃗�pi1,��� ,ik�pq, |⃗i|�i,

j⃗�pj1,��� ,jk�pq, |⃗j|�j

Ck,p,⃗i,⃗jpBk1Bp2F pβ̄pτ ; εq, ρ̄pτ ; εq, τ ; εqq �
�
pBi1

β̄0
Bj1ρ̄0rβ̄pτ ; εqsq . . . pBikβ̄0

Bjkρ̄0rβ̄pτ ; εqsq

� pBik�1

β̄0
Bjj�1

ρ̄0 rρ̄pτ ; εqsq . . . pBik�p

β̄0
Bjk�p

ρ̄0 rρ̄pτ ; εqsq
���� ¤ Cλ̄,

which implies that (3.59) is bounded as follows

|Biβ̄0
Bjρ̄0rF pβ̄pτ ; εq, ρ̄pτ ; εq, τ ; εqs| ¤ Cλ̄p1� |Biβ̄0

Bjρ̄0rβ̄pτ ; εqs| � |Biβ̄0
Bjρ̄0rρ̄pτ ; εqs|q,

for either F � f̄1 or F � f̄2. By considering (3.56), (3.57), (3.58), and the fact that τ P r0, 2πs, we
have

|Biβ̄0
Bjρ̄0rF pβ̄pτ ; εq, ρ̄pτ ; εq, τ ; εqs| ¤ Cλ̄

�
1� λ̄

�∥∥∥Biβ̄0
Bjρ̄0A

∥∥∥
8
�
∥∥∥Biβ̄0

Bjρ̄0B
∥∥∥
8

�	
. (3.60)
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Thus, from (3.55), (3.60), and the integral Leibniz rule, it follows that

}Biβ̄0
Bjρ̄0B}8 ¤ C

�
1� λ̄

�∥∥∥Biβ̄0
Bjρ̄0A

∥∥∥
8
�
∥∥∥Biβ̄0

Bjρ̄0B
∥∥∥
8

�	
. (3.61)

Hence, for sufficiently small λ̄, we obtain
∥∥∥Biβ̄0

Bjρ̄0B
∥∥∥
8
¤ C. Taking into account (3.54), (3.60), and

(3.61), we obtain∥∥∥Biβ̄0
Bjρ̄0A

∥∥∥
8
¤ C � Cλ̄

�
1� λ̄

�∥∥∥Biβ̄0
Bjρ̄0A

∥∥∥
8
�
∥∥∥Biβ̄0

Bjρ̄0B
∥∥∥
8

�	
¤ C,

and for sufficiently small λ̄, ∥∥∥Biβ̄0
Bjρ̄0A

∥∥∥
8
�
∥∥∥Biβ̄0

Bjρ̄0B
∥∥∥
8
¤ C.

This concludes the proof by induction over i � j, since ∥A∥N�1 � ∥B∥N�1 ¤ C, and consequently
the proof of the lemma.
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4 Analysis of the Case A2

This chapter is dedicated to investigate the existence of invariant tori, boundedness of
solutions, and periodic orbits of the differential equation

:x� sgnpxq � θx� ε pptq, (4.1)

with θ ¡ 0, corresponding to case A2 in (1.3). This case presents a very rich dynamics, featuring
phenomena such as the existence of heteroclinic connections, periodic orbits, unbounded solutions,
and chaos (see Figure 13).

The persistence of heteroclinic connections and periodic orbits is explored in [23], where
the Melnikov method is employed, and bifurcating functions are provided to verify the existence of
such objects in a family of impact systems that comprises the differential equation (4.1). The authors
in [23] also suggested the possibility of investigating the existence of two-dimensional invariant tori of
(4.1) by means of the techniques employed in [34]. This suggestion was one of the motivations of the
study presented in this chapter.

This chapter is organized as follows: Section 4.1 provides the main results of this chapter
(Theorems C and D). Section 4.2 is devoted to present preliminary results concerning the unperturbed
differential equation (4.1), which is very useful in constructing the coordinates changes, discussed in
Section 4.3, that fit our problem into the Moser’s Twist Map Theorem conditions. Finally, Section 4.5
is dedicated to the proofs of the main results.

4.1 Main results

In order to present the main results of this chapter, we recall some aspects concerning
the differential equation (4.1). We start by considering the additional variable y � 9x and writing the
corresponding differential system $&

% 9x � y,

9y � θx� sgnpxq � ε pptq.
(4.2)

The differential system (4.2) is Hamiltonian with

Hpx, y, t; εq � HA2px, y, t; εq �
y2

2
�Gpxq � εxpptq, (4.3)



Chapter 4. Analysis of the Case A2 75

y

x
1{θ�1{θ p

Figure 13 – Trajectories of (4.1) for ε � 0.

where Gpxq :� GA2pxq � �θx
2

2
� |x|. We stress that H is sufficiently smooth on y, t, and ε, but only

continuous on x. When ε � 0, the differential system (4.2) simplifies to$&
% 9x � y,

9y � θx� sgnpxq,
(4.4)

while the Hamiltonian H simplifies to Hpx, yq :� y2

2
�Gpxq � Hpx, y, t; 0q. Taking into account the

set Lθ, whose definition is reminded below

Lθ :�
"
px, yq P R2 : 0 ¤ Hpx, yq   1

2θ
and |x|   1

θ

*
,

we state our first main result of this chapter concerning the existence of an invariant torus of (4.2). The
proof is postponed to Section 4.5.

Theorem C. Given a compact K � Lθ and a function p P C5pSσq, there exist ε�pK,pq ¡ 0 such that, for

each 0 ¤ ε ¤ ε�pK,pq, there exists an invariant torus Tε of (4.2) whose intersection with the time section

t � 0, to be denoted Λε, satisfies

K � intpΛεq � Lθ,

where intpΛεq denotes the open region in R2 enclosed by Λε.

Since Tε is an invariant torus of (4.2) it follows that any solution initiating in intpΛεq must
perpetually remain in intpTεq. This property leads us to following result concerning boundedness of
solutions whose initial conditions lie within a compact set K � Lθ.
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Corollary 4.1.1. For each compact K � Lθ and for each p P C5pSσq, there exist ε�pK,pq ¡ 0 such that,

for every 0 ¤ ε ¤ ε�pK,pq, all solutions of (4.2) with initial conditions px0, y0q P K are bounded.

Theorem C is very useful in constructing a family of nested invariant tori of (4.2), as given
in the next result.

Theorem D. Given n P N and p P C5pSσq, there exists ε�pn,pq ¡ 0 such that, for each 0 ¤ ε ¤ ε�pn,pq,

the differential system (4.2) admits a family of nested invariant tori tT i
ε uni�1. In addition, Λn Ñ BLθ

when nÑ �8, with Λn � T n
ε�pn,pq

X ptt � 0u � R2q.

The construction of a family of nested invariant tori for (4.2) implies the existence of
periodic orbits for (4.2), as observed in the following result. The proof is entirely analogous to
Theorem B.

Corollary 4.1.2. Given n P N and p P C5pSσq, there exists ε�pn,pq ¡ 0 such that, for each 0 ¤ ε ¤ ε�pn,pq,

the differential system (4.2) admits at least n� 1 periodic solutions.

In order to illustrate the main result of this chapter (Theorem C), we present some numerical
simulations concerning the solutions of the differential equation (4.1). Specifically, assuming θ � 1

and pptq � sinp2πtq, and choosing a specific value for ε in (4.1), we consider several initial conditions
for the differential equation (4.1). Subsequently, we plot 1000 points for each of them on the time
section ptt � 1u � R2q, as pptq is 1-periodic in this case.

ε � 2

Figure 14 – The existence of invariant curves for the time-1-map, and consequently invariant tori for
the differential equation (4.1), is indicated by the concentration of colors in the figure.
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ε � 1{10

Figure 15 – The existence of invariant curves for the time-1-map, and consequently invariant tori for
the differential equation (4.1), is indicated by the concentration of colors in the figure.

ε � 1{20

Figure 16 – The existence of invariant curves for the time-1-map, and consequently invariant tori for
the differential equation (4.1), is indicated by the concentration of colors in the figure.
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4.2 Preliminary results

This section provides important results concerning the unperturbed differential system
(4.4), which is very useful in constructing coordinate changes that allow the application of Moser’s
Twist Map Theorem to a differential system equivalent to (4.2).

As previously remarked, the unperturbed Hamiltonian satisfies Hp�x, yq � Hpx, yq,
which implies that the level curves Ch :� tpx, yq P R2 : Hpx, yq � hu, with h P R, exhibit symmetry
with respect to y-axis. We study these level curves by considering x ¥ 0 in the Hamiltonian H, and
using the aforementioned symmetry to derive geometrical properties of Ch across the whole plane. For
x ¥ 0, the Hamiltonian Hpx, yq can be expressed as

Hrpx, yq � y2

2
� 1

2θ

�p1� θxq2 � 1
�
,

with r being used to denote the Hamiltonian on the right side of the y-axis. We notice that, for h � 1{2θ,
the energy level Cr

h is a hyperbola having Cr
1{2θ as its asymptotes and the point p1{θ, 0q as its focus. For

h ¡ 1{2θ, the vertices of Cr
h lie on the line tx � 1{θu, while, for h   1{2θ the vertices of Cr

h lie on the
x-axis. In the former case, the connected components of Cr

h are given by the sets

Rr
h :� tpx, yq P Cr

h : |x| ¡ 1{θu and Lr
h :� tpx, yq P Cr

h : |x|   1{θu.
y

x

Cr
h3

Cr
h3

Cr
1{2θ

Rr
h1

Rr
h2

Lr
h1

Lr
h2

1{θ

Figure 17 – Example of some level curves of Hrpx, yq, with h1   0, 0   h2   1{2θ, and h3 ¡ 1{2θ.

When h   0, the subsets Rr
h and Lr

h are entirely contained in the half-planes tx ¡ 0u
and tx   0u, respectively. On the other hand, if 0 ¤ h   1{θ, then Lr

h X tx ¡ 0u � H and
Rr

h X tx ¡ 0u � Rr
h. Moreover, Lr

h X tx ¡ 0u is bounded, while Rr
h is unbounded (see Figure 17).
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Back to the Hamiltonian H, we notice that, for 0   h   1{2θ, the level curve Ch restricted
to the band |x|   1{θ is a closed curve carrying a periodic solution of (4.4). The set Lθ can, then, be
described as follows

Lθ � 9¤
0¤h 1{2θCh.

Remark 4.2.1. Given a compact K � Lθ, there exists hK P p0, 1{2θq such that Hpx, yq ¤ hK for every

px, yq P K. In other words, the level curve ChK
encloses the set K.

The points of intersection between Ch and the x-axis, when 0 ¤ h ¤ 1{2θ and |x|   1{θ, are
given by tp�aphq, 0q, paphq, 0qu, where

aphq � 1�?1�2hθ
θ

.

Period function: Let us consider Gpxq � � 1
2θ
F pxq � x� θ x2

2
. Given that G is an even function, the

period of the solution in (4.2)ε�0 on the level curve Ch, for 0 ¤ h   1{2θ, is determined by the function

T phq � 4

» aphq

0

dua
2ph�Gpuqq �

4?
θ

» ?
θaphq�1{?θ

�1{?θ

dub
2hθ�1

θ
� u2

� 4?
θ

�
log

�����u�
c

2hθ � 1

θ
� u2

�����
�?θaphq�1{?θ

�1{?θ

� 2?
θ
log

�
1�?

2hθ

1�?
2hθ

�
.

We notice that T is a strictly increasing function over r0, 1{2θq and smooth in the interval
p0, 1{2θq.

4.3 Action-angle transformation

In this Section we follow the procedure outlined in Section 3.3 to provide a transformation
that puts the Hamiltonian (4.3) into action-angle variables. We recall that the angle-function is given
by

ϕpx, hq �

$''''&
''''%

ϕ1px, hq, if x, y ¥ 0,

π � ϕ1px, hq, if x ¥ 0, y ¤ 0,

π � ϕ1p�x, hq, if x, y ¤ 0,

2π � ϕ1p�x, hq, if x ¤ 0, y ¥ 0,
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for 0   h   1{2θ and |x|   1{2θ. For the case A2, with x ¥ 0, we have that Gpxq � �θx
2

2
� x, and the

function ϕ1px, hq is given as follows

ϕ1px, hq � 2π

T phq
» x

0

dua
2ph�Gpuqq

� 2π?
θT phq

�
log

�
u�

c
2hθ � 1

θ
� u2

��?θx�1{?θ

�1{?θ

� 2π?
θT phq log

�
θx� 1�a

2hθ � 1� pθx� 1q2
1�?

2hθ

�

� π

�
logpθx� 1�a

2hθ � 1� pθx� 1q2q � logp1�?
2hθq

logp1�?
2hθq � logp1�?

2hθq

�
,

whereas the action-function is given by

Aphq � 4

» a�phq

0

a
2ph�Gpxqqdx

� 4?
θ

» ?
θa�phq�1{?θ

�1{?θ

c
2hθ � 1

θ
� u2du

� 4?
θ

�
u

2

c
2hθ � 1

θ
� u2 � 1

2

2hθ � 1

θ
log

�����u�
c

2hθ � 1

θ
� u2

�����
�?θa�phq�1{?θ

�1{?θ

� 2
?
2hθ

θ3{2 � p1� 2hθq
θ3{2 log

�
1�?

2hθ

1�?
2hθ

�
.

We remind that Aphq corresponds to the area enclosed by the level curve Ch when 0 ¤ h   1{2θ and
|x|   1{θ.

Remark 4.3.1. The functions T : p0, 1{2θq Ñ p0,8q and A : p0, 1{2θq Ñ p0, 2{θ3{2q are smooth, and

A1phq � T phq for every h P p0, 1{2θq. Since T phq ¡ 0 for every h P p0, 1{2θq, it follows that A has a

smooth inverse function, to be denoted by h0.

Lemma 4.3.2. The transformation

Φ1 : Lθztp0, 0qu ÝÑ S2π � p0, 2{θ3{2q
px, yq ÞÝÑ pϕ px,Hpx, yqq , A pHpx, yqqq � pϕpx, hq, Aphqq

is a homeomorphism. Furthermore, if xpϕ, Iq is the one satisfying Φ�1
1 pϕ, Iq � pxpϕ, Iq, ypϕ, Iqq, then

xpϕ, Iq is smooth on I .

Proof. In order to show that the transformation Φ1 is onto, let us consider pϕ�, I�q P S2π �
�
0, 2{θ3{2�.

Since A is a bijection between p0, 1{p2θqq and
�
0, 2{θ3{2�, there exists h� P p0, 1{p2θqq such that
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Aph�q � I�. The value for x� is given by x� � x̃pϕ�, h�q (see equation (4.6)), while y� is obtained
through the relation h� � Hpx�, y�q. The injectivity of Φ1 is demonstrated using the same procedure
as outlined in Lemma 3.3.2. Continuity is clear from the explicit expressions of ϕpx, hq and Aphq. In
order to show that its inverse is continuous, we state the relation

xpϕ, Iq � x̃pϕ, h0pIqq � x̃pϕ, hq. (4.5)

Then, if ϕ P p0, π{2q, we have ϕ � ϕ1px̃, hq, that is,

ϕ � π

�
logpθx̃pϕ, hq � 1�a

2hθ � 1� pθx̃pϕ, hq � 1q2q � logp1�?
2hθq

logp1�?
2hθq � logp1�?

2hθq

�
.

From the properties of the Logarithm function, we have the relation

Kpϕ, hq � pθx̃pϕ, hq � 1q �
a
2hθ � 1� pθx̃pϕ, hq � 1q2,

where Kpϕ, hq :� p1�
?
2hθqϕ{πp1�

?
2hθq1 � ϕ{π. This implies that

�pθx̃pϕ, hq � 1q �Kpϕ, hq � �
a
2hθ � 1� pθx̃pϕ, hq � 1q2,

and consequently
�2pθx̃pϕ, hq � 1qKpϕ, hq � pKpϕ, hqq2 � 2hθ � 1.

The relation above leads us to

x̃pϕ, hq � 1

θ
� 1

2θ

�
��

1�?
2hθ

1�?
2hθ

�ϕ{π

p1�
?
2hθq �

�
1�?

2hθ

1�?
2hθ

�ϕ{π

p1�
?
2hθq

�

. (4.6)

In analogous way, we obtain the expression for x̃pϕ, hq when ϕ P rπ, 2πs. Thus, as a complete
expression for x̃pϕ, hq, we have

x̃pϕ, hq �

$'''''''''&
'''''''''%

1

θ
� 1

2θ

�
��

1�?
2hθ

1�?
2hθ

�ϕ{π

p1�
?
2hθq �

�
1�?

2hθ

1�?
2hθ

�ϕ{π

p1�
?
2hθq

�

 if ϕ P r0, πq,

�1

θ
� 1

2θ

�
��

1�?
2hθ

1�?
2hθ

�ϕ{π�1

p1�
?
2hθq �

�
1�?

2hθ

1�?
2hθ

�ϕ{π�1

p1�
?
2hθq

�

 if ϕ P rπ, 2πs.

Notice that, for each 0   h   1{2θ, lim
ϕÑϕ0

x̃pϕ, hq � x̃pϕ0, hq holds for every ϕ0 P t0, π, 2πu. Con-

sequently, x̃ exhibits continuity over S2π � p0, 1{2θq, and this continuity extends to x (regarded as a
function) over S2π � p0, 2{θ3{2q through the relationship (4.5), and therefore Φ1 is a homeomorphism. In
addition, for fixed values of ϕ, we observe that xpϕ, Iq is composed only by smooth functions, which
concludes the proof of the lemma.
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By performing Φ1 to the Hamiltonian (4.3), we have

Hpϕ, I, t; εq � h0pIq � εxpϕ, Iqpptq,

which is defined on S2π � p0, 2{θ3{2q � Sσ, for every ε P R. Notice that the Hamiltonian H is continuous
in ϕ, smooth in I , and of class C5 in t. Besides that, taking IK � AphKq, where hK is the energy
provided in Remark 4.2.1 for a given compact K � Lθ, the following lemma holds.

Lemma 4.3.3. Given a compact set K � Lθ, there exists εpK,pq ¡ 0 and I1, I2 P pIK , 2{θ3{2q, with

I1   I2, such that BIHpϕ, I, t; εq ¡ 0 for every I P rI1, I2s and 0 ¤ ε ¤ εpK,pq.

Proof. From Remark 4.2.1, it follows that there exists hK P p0, 1{2θq such that Hpx, yq ¤ hK . As the
sequence Ch converges to BLθ as h tends to 1{2θ�, there exist distinct values h1 and h2 in phK , 1{2θq,
with h1   h2, satisfying

Dph1, h2q :� tpx, yq P Lθ : h1 ¤ Hpx, yq ¤ h2u � Lθ, (4.7)

with each level curve Ch � Dph1, h2q enclosing the compact set K (see Figure 18). The action-
angle transformation Φ1 provided in Lemma 4.3.2 transforms the annulus Dph1, h2q into the annulus
S2π � rI1, I2s, where Ii � Aphiq, for i � 1, 2. For fixed values of ϕ and t in the Hamiltonian
Hpϕ, I, t; εq, and taking into account Lemma 4.3.2, we have that

BIHpϕ, I, t; εq � h10pIqp1� εBhx̃pϕ, h0pIqqpptqq,

where we have used relationship (4.5). Since h10pIq ¡ 0 for every I P rI1, I2s and Bhx̃pϕ, h0pIqqpptq is
continuous on S2π � rI1, I2s � Sσ, there exists εpK,pq ¡ 0 such that

1� εBhx̃pϕ, h0pIqqpptq ¡ 0,

for every pϕ, I, tq P S2π � rI1, I2s � Sσ and for each ε P r0, εpK,pqs. This completes the proof of the
lemma.

4.4 Angle and energy as new time and position

In order to overcome the lack of regularity of the Hamiltonian H in the angle variable, we
follow the method presented in Section 2.2.3 to construct another coordinate change that turns H into
a sufficiently smooth Hamiltonian in both angle and action variables. From Lemma 4.3.3, we have
that, for fixed ϕ P S2π and t P Sσ, and for each ε P r0, εpK,pqq, the function Hpϕ, �, t; εq is invertible in
rI1, I2s. Thus, for every ε P r0, εpK,pqs, the transformation

Φ2 : S2π � rI1, I2s � Sσ ÝÑ Sσ � rr1, r2s � S2π

pϕ, I, tq ÞÝÑ pt,Hpϕ, I, t; εq, ϕq,
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y

x
1{θ�1{θ

K

Ch1

Ch2

Figure 18 – The shaded gray area corresponds to the annulus Dph1, h2q, where each level curve
Ch � Dph1, h2q encloses the compact set K.

with ri � h0pIiq, for i � 1, 2, defines a diffeomorphism on the extended phase space that pre-
serves the Hamiltonian character of H, as mentioned in Section 2.2.3. Taking into account that
Hpϕ, I, t; 0q � h0pIq and denoting the new variables as pβ, r, τq P Sσ � rr1, r2s � S2π, we can express
the new Hamiltonian as follows:

H pβ, r, τ ; εq � Aprq � εH1pβ, r, τ ; εq, (4.8)

where H1 is defined by the relation above.

Remark 4.4.1. The Hamiltonian H pβ, r, τ ; εq is of class C5 in β, smooth in r, and continuous on τ .

In addition, the compactness of Sσ � rr1, r2s � S2π ensures the boundedness of H1pβ, r, τ ; εq and all

its partial derivatives with respect to β and r, which means that there exists C depending on K and

ppβq, such that ��BiβBjrH1pβ, r, τ ; εq
�� ¤ C for 0 ¤ i� j ¤ 5.

Since A1prq � T prq, it follows that, for every ε P r0, εpK,pqq, the Hamiltonian differential
system associated with (4.8) is given by$''&

''%
dβ

dτ
� BH

Br pβ, r, τ ; εq � T prq � εBrH1pβ, r, τ ; εq,
dr

dτ
� �BHBβ pβ, r, τ ; εq � �εBβH1pβ, r, τ ; εq.

(4.9)
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Moreover, the existence and uniqueness of solutions for (4.9) are established due to their smoothness
in the respective components. We denote by pβpτ, τ0, β0, r0; εq, rpτ, τ0, β0, r0; εqq the solutions of (4.9)
satisfying pβpτ0, τ0, β0, r0; εq, rpτ0, τ0, β0, r0; εqq � pβ0, r0q P S2π � rr1, r2s, and we state that such
solutions are defined for every τ P R, as noticed in the following result.

Lemma 4.4.2. For every ε P r0, εpK,pqs and for each pβ0, r0q P S2π � rr1, r2s, the maximal solution of

(4.9) having pβ0, r0q as initial condition has R as its maximal interval of definition.

Proof. We first notice that the differential system (4.9) is defined for every
pβ, r, τq P Sσ � rr1, r2s � S2π and for every ε P r0, εpK,pqs. Thus, proceeding by reduction to ab-
surdity, let us assume that there exists ε� P r0, εpK,pqs and pβ0, r0q P Sσ � rr1, r2s for which the
corresponding solution pβpτ, τ0, β0, r0; ε�q, rpτ, τ0, β0, r0; ε�qq of (4.9) is not defined for every τ P R.
In other words, there exists τ0   τ1   8 such that pβpτ, τ0, β0, r0; εq, rpτ, τ0, β0, r0; εqq cannot be
continuously extended to an interval that properly contains rτ0, τ1s.

Since pβpτ, τ0, β0, r0; εq, rpτ, τ0, β0, r0; ε�qq is a solution of (4.9), it follows that
rpτ, τ0, β0, r0; ε�q P rr1, r2s for every τ P rτ0, τ1s, which implies that
T prpτ, τ0, β0, r0; ε�qq P rT pr1q, T pr2qs for every τ P rτ0, τ1s. In addition, βpτ, τ0, β0, r0; ε�q must
satisfy the integral equation

βpτ, τ0, β0, r0; ε�q � β0 �
» τ

τ0

T prps, τ0,β0, r0; ε�qq

� ε�BrH1pβps, τ0, β0, r0; ε�q, rps, τ0, β0, r0; εq, s; ε�qds.

From the comments above and Remark 4.4.1, it follows that, there exists a constant K0 ¡ 0 depending
on T pr1q, T pr2q, and BrH1 such that

|βpτ, τ0, β0, r0; ε�q| ¤ β0 �K0pτ1 � τ0q.

This implies that the curve described by the function gpτq � pτ, βpτ, τ0, β0, r0; ε�q, rpτ, τ0, β0, r0; ε�qq
is entirely contained in the compact rτ0, τ1s � r�β0�K0pτ1� τ0q, β0�K0pτ1� τ0qs � rr1, r2s, which
contradicts Theorem 2.1.2. This completes the proof of the lemma.

In order to simplify the expressions of the differential system (4.9), we propose the
following change of variables:

Φ3 : Sσ � rr1, r2s ÝÑ S2π � rρ̄1, ρ̄2s

pβ, rq ÞÝÑ
�
2π

σ
β,

2π

σ
T prq



,
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where ρ̄i � 2π

σ
T priq, for i � 1, 2. Thus, by denoting pβ̄, ρ̄q � Φ3pβ, rq, the differential system (4.9) is

equivalent to $''&
''%

dβ̄

dτ
� ρ̄� εf 1pβ̄, ρ̄, τ ; εq

dρ̄

dτ
� εf 2pβ̄, ρ̄, τ ; εq

(4.10)

with
f 1pβ̄, ρ̄, τ ; εq � BrH1p σ

2π
β̄, rpρ̄q, τ ; εq

and
f 2pβ̄, ρ̄, τ ; εq � �2π

σ
T 1prpρ̄qqBβH1p σ

2π
β̄, rpρ̄q, τ ; εq,

where rpρ̄q � T�1
�

σ
2π
ρ̄
�
. In this setup, it follows that f 1 and f 2 are C4 and 2π-periodic in β̄, and

smooth in ρ̄. Furthermore, the bounds provided in the Remark 4.4.1 extend to f 1 and f 2, yielding the
lemma.

Lemma 4.4.3. There exists a positive constant C depending on K, p and θ such that���Biβ̄Bjρ̄f 1pβ̄, ρ̄, τ ; εq
���� ���Biβ̄Bjρ̄f 2pβ̄, ρ̄, τ ; εq

��� ¤ C for 0 ¤ i� j ¤ 4,

for every pβ̄, ρ̄, τq P S2π � rρ̄1, ρ̄2s � r0, 2πs, and for each ε P r0, εpK,pqs.

Let us denote by pβ̄pτ ; εq, ρ̄pτ ; εqq � pβ̄pβ̄0, ρ̄0, τ ; εq, ρ̄pβ̄0, ρ̄0, τ ; εqq the solution of (4.10)
whose initial condition is pβ̄p0; εq, ρ̄p0; εqq � pβ̄0, ρ̄0q. We see that for ε � 0, the solutions of (4.10)
are explicitly given by

pβ̄pτ ; 0q, ρ̄pτ ; 0q � pβ̄0 � ρ̄0τ, ρ̄0q.
Then, for 0 ¤ ε ¤ εpK,pq, where we redefine εpK,pq to be the one given in Lemma 4.3.3 and also allows
the Taylor expansion of pβ̄pτ ; εq, ρ̄pτ ; εqq, it follows that

β̄pτ ; εq � β̄0 � τ ρ̄0 � εApβ̄0, ρ̄0, τ ; εq and ρ̄pτ ; εq � ρ̄0 � εBpβ̄0, ρ̄0, τ ; εq, (4.11)

where
Bpβ̄0, ρ̄0, τ ; εq �

» τ

0

f 2pβ̄pτ ; εq, ρ̄ps; εq, s; εqds

and
Apβ̄0, ρ̄0, τ ; εq �

» τ

0

Bpβ̄0, ρ̄0, s; εq � f 1pβ̄ps; εq, ρ̄ps; εq, s; εqds

For ε P r0, εpK,pqs, we define the Poincaré-map P : S2π � rρ̄1, ρ̄2s Ñ R2 associated with
(4.10) in the following way:

P pβ̄0, ρ̄0; εq � pβ̄pβ0, ρ̄0, 2π; εq, ρ̄pβ0, ρ̄0, 2π; εqq,
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which, by considering relationship (4.11), can be expressed as

P pβ̄0, ρ̄0; εq � pβ̄0 � 2πρ̄0 � εP1pβ̄0, ρ̄0; εq, ρ̄0 � εP2pβ̄0, ρ̄0; εqq,

with P1pβ̄0, ρ̄0; εq � Apβ̄0, ρ̄0, 2π; εq and P2pβ̄0, ρ̄0; εq � Bpβ̄0, ρ̄0, 2π; εq. One can see that P is 2π-
periodic in β̄0 and of class C4 in S2π � rρ̄1, ρ̄2s. Besides that, the bounds in Lemma 4.4.3 naturally
extend to P1 and P2, yielding the following.

Lemma 4.4.4. There exists a positive constant C̃ ¡ 0 depending on ppβ̄0q and K such that

∥P1p�; εq∥C4pS2π�rρ̄1,ρ̄2sq � ∥P2p�; εq∥C4pS2π�rρ̄1,ρ̄2sq ¤ C̃,

for every ε P r0, εpK,pqs.

4.5 Proofs of the main results

We start by proving Theorem C.

Proof of Theorem C. Let us begin by defining αpρq � 2πρ. We notice that α P C4prρ̄1, ρ̄2sq and
α1pρq � 2π ¡ 0, for every ρ P rρ̄1, ρ̄2s. The map P has the intersection property since it is conjugated
to a Poincaré-map originating from a Hamiltonian system (Proposition 2.3.11), and its lift can be
written in the same form presented in Moser’s Twist Map Theorem due to its 1-periodicity in β̄0. Hence,
there exists κ ¡ 0, depending on ρ̄2 � ρ̄1 and α, such that if

∥εP1∥C4pS2π�rρ̄1,ρ̄2sq � ∥εP2∥C4pS2π�rρ̄1,ρ̄2sq   κ,

then P has invariant curves.

By taking ε�pK,pq � mintκ{2C̃, εpK,pqu, where C̃ ¡ 0 is the constant provided in Lemma
4.4.4 and εpK,pq ¡ 0 is provided in Lemma 4.3.3, it follows that for each 0 ¤ ε ¤ ε�pK,pq, there exists an
invariant closed curve Γε of P . This implies that the saturation of Γε by the flow of (4.10) correspond
to an invariant torus of (4.10), which is going to be denoted T̄ε. By reversing all the transformations
applied so far, we have that T̄ε is transformed into an invariant torus of (4.2), to be denoted Tε, whose
intersection with the time section t � 0 is a Jordan curve Λε entirely contained in the annulus Dph1, h2q
(see (4.7)). Since every closed curve contained in Dph1, h2q encloses the compact set K, we conclude
this proof.

As previously mentioned, Corollary 4.1.1 follows as a direct consequence of Theorem C,
while Theorem D is proved by recursively applying Theorem C, as we shall see in the sequel.

Proof of Theorem D. Let n P N and p P C5pSσq be fixed. We define K1 � Ch1 , with h1 � 0, and we
notice thatK1 is compact set contained in Lθ. Then, from Theorem C, there exists ε�pK1,pq ¡ 0, such that
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for each 0 ¤ ε ¤ ε�pK1,pq, there exists an invariant torus T 1
ε of (4.2) such that Λ1

ε :� T 1
ε Xptt � 0u�R2q

satisfies
K1 � intpΛ1

εq � Lθ.

From Remark 4.2.1, there exists h2 P p0, 1{2θq such that the level curve Ch2 encloses Λ1
ε. By defining

K2 :� Ch2 , we can apply Theorem C and, then, obtain an 0   ε�pK2,pq ¤ ε�pK1,pq, such that for each
0 ¤ ε ¤ ε�pK2,pq, there exists an invariant torus T 2

ε of (4.2) such that Λ2
ε :� T 2

ε X ptt � 0u � R2q
satisfies

intpΛ1
εq � intpCh2q � intpΛ2

εq � Lθ.

By taking Remark 4.2.1 into account and recursively applying Theorem C, we obtain an increasing
sequence of energies 0 � h1   h2   � � �   hn   1{2θ and 0   ε�pKn,pq � ε�pn,pq   � � �   ε�pK1,pq, such
that for each 0 ¤ ε ¤ ε�pn,pq there exists a sequence tT i

ε uni�1 of invariant tori of (4.2). Furthermore, by
defining Λn :� T n

ε�pn,pq
X ptt � 0u � R2q, we have that, for n P N,

Ch1 � intpΛ1q � intpCh2q � intpΛ2q � � � � intpChnq � intpΛnq � Lθ.

Since Ch Ñ BLθ when hÑ 1{p2θq, it follows from the construction above that Λn Ñ BLθ

when nÑ �8, and this completes the proof of the theorem.
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5 Analysis of the Case A3

The findings presented in this chapter are based on the paper [51].

In this chapter, we investigate the existence of invariant tori and the boundedness of
solutions for the differential equation

:x� sgnpxq � εpptq,

which corresponds to case A3. For such a case, our analysis is non-perturbative, meaning that the
results presented in this chapter holds for every value of ε. Consequently, the perturbative parameter ε
in (1.3) is absorbed by the function pptq, simplifying the differential equation above to

:x� sgnpxq � pptq. (5.1)

Furthermore, by assuming pptq to be a periodic function with a vanishing average, we employ a
constructive method to obtain results similar to those in Chapters 3 and 4. In addition to not using
KAM theory for case A3, a notable difference between the approach used in this chapter and the former
ones lies in the fact that the regularity of pptq can be significantly reduced to Lebesgue-integrable.

As mentioned in [37], Ortega in a talk [54] at Academia Sinica in 1998 suggested the
question of whether all solutions of (1.1), when gpxq � arctanpxq and pptq is periodic, are bounded or
not. In this case, the saturation function is bounded and generates a small twist at infinity, which makes
it difficult to apply the standard versions of the Moser’s Twist Map Theorem. It fell to Li [37] to first
answered this question, in the case that pptq is a C8 periodic function with vanishing average. In [64],
Wang improved the result of Li by considering pptq as a C5 periodic function with some smallness
condition on its average. The non-smooth forced oscillator (5.1) represents a limit scenario to the case
introduced by Ortega in [54]. Particularly, the differential equation (5.1) provides models of electronic
circuit in the presence of a relay as noticed by [30].

The goal of this chapter is to provide a simple proof for the boundedness of every solutions
of the differential equation (5.1) in the case that pptq is a Lebesgue-integrable periodic function with
vanishing average. Despite of the vanishing average restriction, equation (5.1) still presents a rich
dynamics, for instance, periodic solutions [30] and chaotic behaviour [11, 60]. Our reasoning is based
on a simple constructive approach that allows us to prove the existence of a sequence of invariant tori
such that the union of their interiors covers all the pt, x, 9xq-space, pt, x, 9xq P Sσ � R2. In addition, we
will see that these tori are foliated by periodic solutions, representing a highly exceptional phenomenon.

This chapter is structured as follows. In Section 5.1, we define some objects to be used
throughout this chapter and we state our main result (Theorem E) concerning the existence of infinitely
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many invariant tori. Section 5.2 is dedicated to provide a sufficient condition for the existence of an
invariant torus of (5.2), while Section 5.3 is devoted to the proof the main result of this chapter. In
Section 5.4, we explore further directions for this study, particularly addressing an approach to handle
cases where pptq has a non-zero average.

5.1 Main result

In order to address the properties of the solutions of the differential equation (5.1), it is
convenient to consider it written as the following first-order autonomous differential system in the
extended phase space, by taking y � x1, t � ϕ and ϕ1 � 1$'''&

'''%
ϕ1 � 1,

x1 � y,

y1 � �sgnpxq � ppϕq,
(5.2)

pϕ, x, yq P R� R2.

5.1.1 Existence and uniqueness of solutions

The differential system (5.2) has two kinds of discontinuities, namely, the ones generated
by the sgn function and the ones possibly generated by the Lebesgue-integrable function pptq. We
recall that, by taking y � x1, the differential equation (5.1) can be written as the following first-order
differential system: $&

%x
1 � y,

y1 � �sgnpxq � pptq.
(5.3)

As previously mentioned, Filippov convention will be assumed for solutions of the differential system
(5.3) (see Definition 2.1.14), which exist for every initial conditions (see Example 2.1.21). As usual,
solutions of the differential system (5.2) are given in terms of solutions of the Filippov system (5.3)
and, therefore, also exist for every initial conditions.

The solutions of (5.3) can be investigated by considering the following differential systems:$&
%x

1 � y,

y1 � �1� pptq,
x ¥ 0, and

$&
%x

1 � y,

y1 � 1� pptq,
x ¤ 0, (5.4)

which match (5.3) restricted to x ¥ 0 and x ¤ 0, respectively. Since pptq is a Lebesgue integrable
function, the differential systems in (5.4) correspond to Carathéodory differential systems for which
all the conditions for the existence and uniqueness of solutions are satisfied (see Example 2.1.12). In
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the extended phase space, such differential systems become:$'''&
'''%
ϕ1 � 1,

x1 � y,

y1 � �1� ppϕq,
x ¥ 0, and

$'''&
'''%
ϕ1 � 1,

x1 � y,

y1 � 1� ppϕq.
x ¤ 0. (5.5)

We remind that, except for y0 � 0, the switching plane Σ1 � tpϕ, x, yq P R�R2 : x � 0u is a crossing
region of (5.2) (see Example 2.1.23). In addition, we have seen in Example 2.1.12 that each one of the
system in (5.5) satisfy the conditions for local uniqueness of solutions. These facts allow to conclude
that, for each initial condition pϕ0, 0, y0q P Σ1 with y0 � 0, the unique maximal solutions of the
differential systems in (5.5) are transversal to Σ1 at pϕ0, 0, y0q and concatenate in order to form a (local)
solution of the differential system (5.2) that is unique around pϕ0, 0, y0q. The explicit expressions of
the solutions of the differential systems in (5.5) will be provided below in Section 5.2.

5.1.2 Main result

Let us define

P1ptq :�
» t

0

ppsqds and P2ptq :�
» t

0

P1psqds,

and, as usual, let p denote the average of pptq, i.e.

p :� 1

σ

» σ

0

ppsqds � P1pσq
σ

.

Notice that the function P1ptq is continuous and the function P2ptq is continuously differentiable.

Our main result provides the existence of a sequence of invariant tori for (5.2) under the
assumption p � 0.

Theorem E. Suppose that pptq is a Lebesgue integrable σ-periodic function satisfying p � 0. Then,

there exists a sequence tTnunPN � Sσ � R2 of nested invariant tori of the differential system (5.2)
foliated by periodic solutions and satisfying:

Sσ � R2 �
¤
nPN

intpTnq,

where intpTnq denotes the open region enclosed by Tn. In addition, all the maximal solutions of (5.2)
are defined for every t P R and the ones starting at pSσ � R2qzintpT1q are unique and transversal to

Σ1.

Since Tn is invariant for each n P N, the uniqueness property provided by Theorem E
implies that a solution starting at intpTnq cannot leave it for all t P R. This leads us to the following
corollary.
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Corollary 5.1.1. Suppose that pptq is a Lebesgue integrable σ-periodic function satisfying p � 0. Then,

all the solutions of the differential system (5.3) are bounded.

In order to illustrate the main result of this chapter (Theorem E), we present some numerical
simulations concerning the solutions of the differential equation (5.1). Specifically, pptq � εsinp2πtq,
and choosing a specific value for ε, we consider several initial conditions for the differential equation
(5.1). Subsequently, we plot 2500 points for each of them on the time section ptt � 1u � R2q, as pptq
is 1-periodic in this case.

ε � 2

Figure 19 – The existence of invariant curves for the time-1-map, and consequently invariant tori for
the differential equation (4.1), is indicated by the concentration of colors in the figure. On
the other hand, the black curves represent the intersection between the tori Tn provided by
Theorem E and the time section ptt � 1u � R2q.
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ε � 1{2

Figure 20 – The existence of invariant curves for the time-1-map, and consequently invariant tori for
the differential equation (4.1), is indicated by the concentration of colors in the figure. On
the other hand, the black curves represent the intersection between the tori Tn provided by
Theorem E and the time section ptt � 1u � R2q.

ε � 1{20

Figure 21 – The existence of invariant curves for the time-1-map, and consequently invariant tori for
the differential equation (4.1), is indicated by the concentration of colors in the figure. On
the other hand, the black curves represent the intersection between the tori Tn provided by
Theorem E and the time section ptt � 1u � R2q.
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5.2 Fundamental Lemma

This section is devoted to provide a sufficient condition for the existence of invariant tori
of (5.2).

For each n P N, define the functions y�n : r0, σs Ñ R and y�n : r0, σs Ñ R by

y�n pϕ0q � �nσ
2
� P1pϕ0q � P2pσq

σ
(5.6)

and, for each n P N, such that y�n pϕ0q   y�n pϕ0q for every ϕ0 P r0, σs, define the surface

Tn :� T �
n Y T �

n , where

T �
n :� tpϕ0,Ψ

�
n pϕ0, y0q, y0q : ϕ0 P R, y0 P ry�n pϕ0q, y�n pϕ0qsu,

(5.7)

and

Ψ�
n pϕ0, y0q :� 1

8

�
�n2σ2 	 4y20 � 8P2

�
nσ

2
� y0 	 P1pϕ0q � P2pσq

σ
� ϕ0




� 4P2pσq
�
n� P2pσq

σ2



� 4P1pϕ0qp�P1pϕ0q 	 2y0q � 8P2pϕ0q



.

The following result provides sufficient conditions for which the surface Tn, for some
n P N, corresponds to an invariant torus of (5.2).

Lemma 5.2.1 (Fundamental Lemma). Let n P N be fixed and suppose that p � 0. Assume that, for

every ϕ0 P r0, σs, ��σP1pϕ0q � P2pσq
��   nσ2

2
(5.8)

and ��tP2pσq � σP2pϕ0q � σP2pt� ϕ0q
��   σ

2
tpnσ � tq, t P p0, nσq. (5.9)

Then, Tn is an invariant torus of the differential system (5.2). Moreover, Tn is foliated by 2nσ-periodic

solutions.

Before we proceed with the proof of Lemma 5.2.1, we define some important objects to
help us along the process. Consider the following sequence of curves in the plane Σ1:

γ�n � tpϕ0, 0, y
�
n pϕ0qq : ϕ0 P Sσu and γ�n � tpϕ0, 0, y

�
n pϕ0qq : ϕ0 P Sσu, (5.10)

where y�n and y�n are the continuous functions defined in (5.6).

We observe that the solutions of the differential systems in (5.5) are given, respectively, by

φ�pt, ϕ0, x0, y0q �
�
t� ϕ0,�t

2

2
� x0 � ty0 � tP1pϕ0q � P2pϕ0q � P2pt� ϕ0q,

� t� y0 � P1pϕ0q � P1pt� ϕ0q
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and

φ�pt, ϕ0, x0, y0q �
�
t� ϕ0,

t2

2
� x0 � ty0 � tP1pϕ0q � P2pϕ0q � P2pt� ϕ0q,

t� y0 � P1pϕ0q � P1pt� ϕ0q
	
,

which are obtained via direct integration. As mentioned in Section 5.1.1, if a solution φptq of the
differential system (5.2) is transversal to Σ1, then it writes as concatenations of φ� and φ�.

Remark 5.2.2. Expressions for y�n and y�n are obtained by forcing a solution initiating in Σ1 to firstly

return to Σ1 after a time nσ.

Also, the next lemma concerning the primitives P1 and P2 plays an important role through-
out this work.

Lemma 5.2.3. The following identities hold for every t P R and n P N:

P1pt� nσq � P1ptq � nP1pσq (5.11)

and

P2pt� nσq � P2ptq � nP1pσqt� n2 � n

2
σP1pσq � nP2pσq. (5.12)

In particular, if pptq has vanishing average, then P1 is σ-periodic.

Proof. The identity (5.11) is obtained through elementary properties of the Lebesgue integral, as
follows:

P1pt� nσq �
» t�nσ

0

ppsqds �
» t

0

ppsqds�
» t�nσ

t

ppsqds

� P1ptq �
» nσ

0

ppsqds

� P1ptq �
» σ

0

ppsqds� � � � �
» σ

0

ppsqdslooooooooooooooooomooooooooooooooooon
n

� P1ptq � nP1pσq.
In order to derive the identity (5.12), we define the auxiliary function

δnptq :� P2pt� nσq �
�
P2ptq � nP1pσqt� n2 � n

2
σP1pσq � nP2pσq



,

which is continuously differentiable for every n P N and every t P R. Considering (5.11), we notice
that

δ1nptq � P1pt� nσq � P1ptq � nP1pσq � 0,

for every n P N. This means that δnptq is constant over R. Proceeding by induction over n, we are
going to show that δnp0q � 0 for every n P N, and, then, conclude that relationship (5.12) holds for
every t P R and n P N.
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For the base step n � 1, we have that

δ1p0q � P2pσq � P2pσq � 0,

which means that the identity (5.12) holds for n � 1. Now, as induction step, let us assume that
δkp0q � 0. Then, for n � k � 1, we have

δk�1p0q � P2ppk � 1qσq �
�pk � 1q2 � pk � 1q

2
σP1pσq � pk � 1qP2pσq




�
» pk�1qσ

0

P1psqds�
�
k2 � k

2
σP1pσq � pk � 1qP2pσq




�
» kσ

0

P1psqds�
» pk�1qσ

kσ

P1psqds�
�
k2 � k

2
σP1pσq � pk � 1qP2pσq




� P2pkσq �
» σ

0

P1ps� kσqds�
�
k2 � k

2
σP1pσq � pk � 1qP2pσq




� P2pkσq � P2pσq � kσP1pσq �
�
k2 � k

2
σP1pσq � pk � 1qP2pσq




� P2pkσq �
�
k2 � k

2
σP1pσq � kP2pσq



� P2pσq � P2pσq

� δkp0q
� 0.

This completes the proof of the lemma.

5.2.1 Proof of the Fundamental Lemma

Let us first prove that φ� takes the curves γ�n into γ	n (see Figure 22), that is

φ�pt, ϕ0, 0, y
�
n pϕ0qq R Σ1 for every t P p0, nσq (5.13)

and
φ�pnσ, ϕ0, 0, y

�
n pϕ0qq � pnσ � ϕ0, 0, y

	
n pϕ0qq. (5.14)

Indeed, condition (5.8) implies that

y�n pϕ0q ¡ 0 and y�n pϕ0q   0,

which means that the points in γ�n and γ�n follows the forward flows φ� and φ�, respectively. From
now on, φ�i , i � 1, 2, 3, denotes the i-th coordinate of the function φ�, thus

φ�2 pt, ϕ0, 0, y
�
n pϕ0qq � �t

2

2
� t

�
�nσ

2
� P1pϕ0q � P2pσq

σ



� tP1pϕ0q � P2pϕ0q � P2pt� ϕ0q

� 	t
2

2
� nσ

2
t� P2pσq

σ
t� P2pϕ0q � P2pt� ϕ0q.
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The condition (5.9) implies that

φ�2 pt, ϕ0, 0, y
�
n pϕ0qq ¡ 0 and φ�2 pt, ϕ0, 0, y

�
n pϕ0qq   0,

for every t P p0, nσq, which provides that relationship (5.13) holds. Moreover, taking Lemma 5.2.3
into account, we have

φ�2 pnσ, ϕ0, 0, y
�
n pϕ0qq � 	pnσq

2

2
� nσ y�n pϕ0q � nσ P1pϕ0q � P2pϕ0q � P2pnσ � ϕ0q

� P2pnσ � ϕ0q � P2pϕ0q � nP2pσq
� P1pσqpnpϕ0 � n� 1

2
qq

� 0,

because P1pσq � 0. Also,

φ�3 pnσ, ϕ0, 0, y
�
n pϕ0qq � 	nσ � y�n pϕ0q � P1pϕ0q � P1pnσ � ϕ0q

� 	nσ � nσ

2
� P1pϕ0q � P2pσq

σ
� P1pϕ0q � P1pnσ � ϕ0q

� 	nσ
2
� P1pϕ0q � P2pσq

σ

� y	n pϕ0q.

Hence, relationship (5.14) holds.

Σ1
γ�n γ�n

φ�

φ�

ϕ

x

y

Figure 22 – For n P N satisfying (5.8) and (5.9) , the flow φ� takes γ�n into γ	n .
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Accordingly, we notice that

Sn :� S�
n Y S�

n , where

S�
n :� tφ�pt, ϕ0, 0, y

�
n pϕ0qq : t P r0, nσs, ϕ0 P Ru,

is an invariant surface of (5.2) whose intersections with Σ1 correspond to the curves γ�n and γ�n given
by (5.10) (see Figure 22). Now, by solving the system of equations

φ�1 pt, ϕ, 0, y�n pϕqq � ϕ0,

φ�3 pt, ϕ, 0, y�n pϕqq � y0,

in the variables pt, ϕq we have

t � 	y0 � nσ

2
	 P2pσq

σ
� P1pϕ0q,

ϕ � ϕ0 � y0 	 nσ

2
� P2pσq

σ
	 P1pϕ0q,

which, after substituting the solutions pt, ϕq into φ�2 pt;ϕ, 0, y�n pϕqq, provides us Sn � Tn. Furthermore,
T �
n � Tn X tx ¥ 0u and T �

n � Tn X tx ¤ 0u are homeomorphic to

Dn :� tpϕ0, y0q : ϕ0 P R, y0 P ry�n pϕ0q, y�n pϕ0qsu,

because they are graphs of Ψ�
n and Ψ�

n , respectively. This in turn implies that T �
n and T �

n are simply
connected surfaces and, consequently, Tn is an invariant cylinder of (5.2).

Now, let U � Λ0 be the set of initial conditions in Λ0 for which the corresponding maximal
solutions of (5.2) are transversal to Σ1. As discussed in Section 5.1.1, such solutions are unique and
defined for every t P R. Thus, consider the time-σ-map Pσ defined on U into Λσ:

Pσ : U ÝÑ Λσ

p0, x0, y0q ÞÝÑ φpσ; 0, x0, y0q.

Since Λ0 and Λσ coincide in the quotient space Sσ � R2 and taking into account that PσpUq � Λσ

corresponds to the set of initial conditions in Λσ for which the maximal solutions of (5.2) are transversal
to Σ1, it follows that Pσ can be seen as an automorphism on U .

Let C0
n and Cσ

n denote the intersections between the invariant cylinder Tn with the time
sections Λ0 and Λσ, respectively. Notice that, from the considerations above, C0

n � U . In addition,

C0
n :�Tn X Λ0 � C�n,0 Y C�n,0, where

C�n,0 :�tp0,Ψ�
n p0, y0q, y0q : y0 P ry�n p0q, y�n p0qsu

(5.15)

and
Cσ
n :�Tn X Λσ � C�n,σ Y C�n,σ, where

C�n,σ :�tpσ,Ψ�
n pσ, y0q, y0q : y0 P ry�n pσq, y�n pσqsu.

(5.16)
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In what follows, we show that C0
n is invariant under the map Pσ. For this purpose, we will

examine the parametrizations of C0
n and Cσ

n given by (5.15) and (5.16), respectively. We first observe
that the functions y�n and y�n are σ-periodic, thus Ψ�

n p0, �q and Ψ�
n pσ, �q have the same domain, namely,

In � ry�n p0q, y�n p0qs. Then, it is sufficient to show that

Ψ�
n p0, y0q �Ψ�

n pσ, y0q � 0 for all y0 P In.

In fact,

Ψ�
n p0, y0q �Ψ�

n pσ, y0q �n
P2pσq
2

� P2

�
nσ

2
� P2pσq

σ
� y0




�
�
P2

�
σ � nσ

2
� P2pσq

σ
� y0



� pn� 2qP2pσq

2




�nP2pσq
2

� P2pσq � pn� 2qP2pσq
2

�0.
The second equality above was obtained by the identity (5.12). Hence, it follows that the invariant
cylinder Tn corresponds to an invariant torus of (5.2) in the quotient space Sσ � R2 (see Figure 23),
which concludes this proof.

Σ1

Λ0

Λσ

T �
n

T �
n

Cσ
n

C0
n

x

y

ϕ

Figure 23 – Invariant torus Tn � T �
n Y T �

n provided by the Fundamental Lemma.

5.3 Proof of the main result

The proof of Theorem E will follow as a consequence of the next results. The first one,
Proposition 5.3.1, will provide the existence of n� P N such that the conditions (5.8) and (5.9) of the



Chapter 5. Analysis of the Case A3 99

Fundamental Lemma 5.2.1 are satisfied for every n ¥ n�. Accordingly, the sequence of invariant tori
stated by Theorem E will be given by Tn :� Tn�n� , n P N. Finally, Corollary 5.3.2 will provide that
each maximal solution of the differential system (5.2) is defined for every t P R and the ones starting
in pSσ � R2qzintpT1q are transversal to Σ1 and, consequently, unique.

Proposition 5.3.1. Let pptq be a Lebesgue integrable σ-periodic function such that p � 0. Then, there

exists n� P N such that Tn is an invariant torus of (5.2) for every n ¥ n�.

Proof. From lemma 5.2.3 we have that σP1pϕ0q � P2pσq is continuous σ- periodic in ϕ0 and conse-
quently bounded, thus there exists n0 P N such that the relationship (5.8) holds for every n ¥ n0.

In order to obtain (5.9), we define the functions

fptq :�tP2pσq � σP2pϕ0q � σP2pt� ϕ0q and

hnptq :�σ
2
tpnσ � tq, for n P N.

(5.17)

By Remark 5.2.3, we notice that f is continuously differentiable and σ-periodic. Besides that, hnptq ¡ 0

for every t P p0, nσq. We start by proving the following claim:

Claim 1. There exists n� ¥ n0 such that

|fptq|   hn�ptq for every t P p0, n�σq. (5.18)

Consider the functions

q�n ptq :� fptq � hnptq and q�n ptq :� fptq � hnptq.

Since, q�n0
pnσq � q�n0

pnσq � 0 , pq�n0
q1pn0σq ¡ 0 and pq�n0

q1pn0σq   0, then there exists ε0 ¡ 0 such
that q�n0

ptq ¡ 0 and q�n0
ptq   0 for every t P pn0σ � ε0, n0σq. This implies that

|fptq|   hn0ptq for every t P pn0σ � ε0, n0σq. (5.19)

Now, for each k P N, consider the following p2kn0σq-periodic function:

hkptq :�
¸
mPN

χImptqh2kn0
pt� 2kpm� 1qσq, (5.20)

where Im :� �
2kpm� 1qσ, 2kmσ� and χIm is the characteristic function of Im. Notice that h0ptq is

a n0σ-periodic extension of hn0 and that hk�1ptq ¥ hkptq for every t ¥ 0 and k P N (see Figure 24).
Taking (5.19) into account, this implies that

|fptq|   hkptq for every t P p2kn0σ � ε0, 2
kn0σq, (5.21)

for every k P N.
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h0

h1

h2

0 2n0σ 4n0σ 6n0σ 8n0σ

Figure 24 – Graphs of the functions hk constructed in (5.20) for k � 0, 1, 2.

On the other hand, from Lemma 5.2.3, it follows that P1 is bounded, so let M ¡ 0 satisfy
}P1}8 �M . Then,

|fptq| ¤ t

» σ

0

|P1psq|ds� σ

» t

0

|P1ps� ϕ0q|ds ¤ 2σMt, @ t P R. (5.22)

Consequently,
|fptq|   hkptq for all t P p0, 2kn0σ � 4Mq. (5.23)

In addition, since fptq is σ-periodic, (5.22) also implies that

|fptq| ¤ 2σ2M for every t P R. (5.24)

Assume, by reduction to absurdity, that (5.18) does not hold. In particular, for each
k P N, there exists tk P p0, 2kn0σq such that |fptkq| � hkptkq. From (5.23), it follows that tk P
r2kn0σ � 4M, 2kn0T q, which means that tk Ñ 8 when k Ñ 8. Moreover, from (5.24), one has

|tk � 2kn0σ| � hkptkq
|tk| � |fptkq|

|tk| ¤ 2σ2M

|tk| Ñ 0, when k Ñ 8.

Then, there exists k0 P N such that |tk � 2kn0σ|   ε0 for every k ¥ k0, with ε0 ¡ 0 being the one
satisfying (5.19). This is contradiction with (5.21).

Thus, there must exists k� P N, for which |fptq|   hk�ptq for all t P p0, 2k�n0σq. Hence,
Claim 1 follows by defining n� � 2k

�
n0.

Finally, the proof of the proposition will follow by proving the next claim:

Claim 2. Condition (5.9) holds for every n ¥ n�.

We notice that

|fptq|   hn�pt� σq for all t P pσ, pn� � 1qσq.
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Taking into account that hn�ptq and hn�pt� σq coincide for t � pn� � 1qσ{2, we can define

h̃n�ptq :�
#

hn�ptq if t P r0, pn��1qσ
2

s,
hn�pt� σq if t P p pn��1qσ

2
, pn� � 1qσs.

Now, since hn�ptq ¤ hn��1ptq for all t P p0, n�σq and hn�pt � σq ¤ hn��1ptq for all
t P pσ, pn� � 1qσq, we have that |fptq|   h̃n�ptq ¤ hn��1ptq for all t P p0, pn� � 1qσq. The proof of
the claim follows, then, by repeating this procedure recursively.

Hence, Lemma 5.2.1 ensures that, for each n ¥ n�, Tn is an invariant torus of (5.2).

Corollary 5.3.2. Let pptq be a Lebesgue integrable function with vanishing average. Then, all the

maximal solutions of (5.2) are defined for every t P R and the ones whose initial conditions lie on

pSσ � R2qzintpT1q are unique and transversal to Σ1.

Proof. We start by proving that, for each pϕ0, x0, y0q P pSσ � R2qzintpT1q, there exists a unique
maximal solution passing through pϕ0, x0, y0q which is transversal to Σ1 and it is defined for every
t P R.

Notice that a maximal solution with initial condition pϕ0, x0, y0q may intersect the plane
Σ1 or not. If such an intersection does not occur, then such a solution is unique as a maximal solution
of one the differential systems in (5.5). On the other hand, if φpt, ϕ0, x0, y0q intersects Σ1, then such an
intersection must be transversal. Otherwise, there would exist a time t� ¡ 0 such that

φ2pt�, ϕ0, x0, y0q � 0 and φ3pt�, ϕ0, x0, y0q � d

dt
φ2pt�, ϕ0, x0, y0q � 0,

which implies that such a solution would cross T1 (from outside to inside) contradicting the fact that
T1 is invariant and that the solutions there defined are unique. Thus, as noticed in Section 5.1.1, this
transversality implies the uniqueness of all solutions starting in pSσ � R2qzintpT1q which, therefore,
are defined for every t P R.

For the remaining initial conditions, as a consequence of the invariance of T1, the maximal
solutions starting in the set intpT1q are confined in the compact set intpT1q. Therefore, they must be
defined for all t P R because of Theorem 2.1.22. This concludes the proof of the corollary.

5.3.1 A simpler approach for L8-forcing term

In the next result, we shall see that the proof of Proposition 5.3.1 simplifies a lot by
assuming p to be an L8-function on r0, σs, instead of just Lebesgue integrable. In this case, we will
show that the surface Tn provided in (5.7) is an invariant torus of (5.2) for every n P N bigger than
2}p}L8 .
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Proposition 5.3.3. Let p be a σ-periodic function with vanishing average and suppose that there

exists M ¡ 0 such that }p}L8  M . Then, the surface Tn is an invariant torus of (5.2) for all n P N
satisfying n ¥ 2M .

Proof. We recall that in order to obtain this result, it is sufficient to show that conditions (5.8) and
(5.9) hold for all n P N such that n ¥ 2M .

Define αpϕ0q :� σP1pϕ0q � P2pσq. Notice that α is σ-periodic by Remark 5.2.3, which
restricts our analysis to ϕ0 P r0, σs. Then, taking into account that

|P1pϕ0q � P1ptq| �
����
» ϕ0

0

ppsqds�
» t

0

ppsqds
���� �

����
» ϕ0

t

ppsqds
���� ¤ }p}L8 |ϕ0 � t|

and assuming that }p}L8  M , we see that

|αpϕ0q| �
����
» σ

0

P1pϕ0q � P1ptqdt
����

¤
» σ

0

}p}L8 |ϕ0 � t|dt

 M

» σ

0

|ϕ0 � t|dt �M

�
σ2

2
� σϕ0 � ϕ2

0



¤M

σ2

2
¤ nσ2

4
,

(5.25)

whenever n P N satisfies n ¥ 2M . Therefore, condition (5.8) holds for every n P N satisfying
n ¥ 2M .

In order to obtain (5.9), we define the functions

dnptq :� nσ2

4
t and enptq :� �nσ

2

4
pt� nσq.

We notice that dnptq ¡ 0 for t ¡ 0; enptq ¡ 0 for t   nσ; and dnptq � enptq if, and only if t � nσ
2

.
Consider the functions

r�n ptq :� fptq � dnptq and s�n ptq :� fptq � enptq,

where fptq is the function defined in (5.17). We notice that r�n p0q � 0 and s�n pnσq � 0, since f is
σ-periodic. In addition, given that αpt� ϕ0q � �f 1ptq for every t P R, and taking (5.25) into account,
it follows that

pr�n q1ptq   0 and ps�n q1ptq ¡ 0 for all t P R,

and n ¥ 2M . This means that fptq   dnptq for all t ¡ 0, and fptq   enptq for all t   nσ. Thus, by
defining the function

g�n ptq :�
#
dnptq if t P p0, nσ

2
s,

enptq if t P pnσ
2
, nσq,
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and taking into account that g�n ptq ¤ hnptq1 for all t P p0, nσq, where hn is the function defined in
(5.17), it follows that fptq   hnptq for all t P p0, nσq and n ¥ 2M . In an analogous way, we can show
that �hnptq   fptq for all t P p0, nσq and n ¥ 2M . It concludes this proof.

5.4 Further directions: A glimpse of the non-vanishing average

case

The main results presented in this chapter are contingent upon the assumption that pptq
has a vanishing average. A natural question that emerges from this assumption is: What if pptq has a
non-vanishing average?

Enguiça and Ortega in [20] showed that (5.1) has infinitely many bounded solutions
provided the limit

lim
TÑ�8

1

T

» t�T

t

ppsqds,

uniformly exists with respect to t P R. Unlike Theorem E, this outcome is not global, in the sense that
not all solutions are necessarily bounded.

In this section, we present a work in progress to address the existence of invariant tori
and global stability of solutions of (5.2) in the cases where pptq has a non-vanishing average. Since
it consists in a perturbative approach, we reintroduce the perturbative parameter ε, transforming the
equation (5.1) into

:x� sgnpxq � ε pptq. (5.26)

Here we are assuming that pptq is analytic and σ-periodic.

Notice that in the unperturbed scenario, every solution is periodic and the extended phase
space pt, x, 9xq P Sσ � R2, except for the line tpt, 0, 0q : t P Ru, are foliated by invariant tori. The
intersection between these invariant tori and the switching manifold Σ1 results in the curves tpt, 0, y0q :
t P Ru, with y0 � 0 (see Figure 25). This implies that, if we consider the impact map (to be elaborated)
associated with the unperturbed equation defined on Σ1, every curve γy0 :� tψy0ptq � pt, 0, y0q : t P Ru,
with y0 ¡ 0, is invariant under such map.

We briefly explain the impact map associated with the differential equation (5.26). We
remind that (5.26) can be seen as the vector field (1.7).

We denote the solutions of (1.7) with initial condition pϕ0, x0, y0q and pϕ1, x1, y1q, if x ¡ 0

and x   0, respectively, by

φ�pτ, ϕ0, x0, y0; εq � pϕτ
�pϕ0, x0, y0; εq, xτ�pϕ0, x0, y0; εq, yτ�pϕ0, x0, y0; εqq, (5.27)

1 There is a typo in the definition of the function g�n ptq in the published paper [51]. Such typo does not compromise the
accuracy of the result.
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(a) (b) (c)

x

y

ϕ

x

y

y

ϕ

Σ1

Figure 25 – (a)-Intersection between the invariant tori and the time section tϕ0u � R2 (b)- Invariant
tori in Sσ � R2 (c)- Intersection between the invariant tori and the plane Σ1

and
φ�pτ, ϕ1, x1, y1; εq � pϕτ

�pϕ1, x1, y1; εq, xτ�pϕ1, x1, y1; εq, yτ�pϕ1, x1, y1; εqq,
respectively. The subsets

Σ� � tpϕ0, 0, y0q P Σ1 : y0 ¡ 0u and Σ� � tpϕ1, 0, y1q P Σ1 : y1   0u

play an important role in defining the domain of the half impact maps. For pϕ0, 0, y0q P Σ�, we denote
by τ�pϕ0, y0; εq the smallest positive time such that

x
τ�pϕ0,y0;εq
� pϕ0, 0, y0; εq � 0.

We note that τ�pϕ0, y0; εq is σ-periodic in ϕ0. The half positive impact map is given by

P�
ε : pϕ0, 0, y0q P Σ� ÞÑ pϕτ�pϕ0,y0;εq

� pϕ0, 0, y0; εq, 0, yτ
�pϕ0,y0;εq
� pϕ0, 0, y0; εq P Σ�.

The initial condition pϕ1, 0, y1q, with pϕ1, 0, y1q P Σ�, follows the negative flow given by (5.2).
We consider τ�pϕ1, y1; εq as the smallest positive time such that xτ

�pϕ1,y1;εq
� pϕ1, 0, y1; εq � 0, with

τ�pϕ1, y1; εq being σ periodic in ϕ1. Then, the half negative impact map is given by

P�
ε : pϕ1, 0, y1q P Σ� ÞÑ pϕτ�pϕ1,y1;εq

� pϕ1, 0, y1; εq, yτ
�pϕ1,y1;εq
� pϕ1, 0, y1; εqq P Σ�.

Thus, the complete impact map for equation (5.26) is provided by the composition of the negative with
the positive half impact map, respectively, i.e.,

Pε : pϕ0, 0, y0q P Σ� ÞÑ pt0, y0q � P�
ε � P�

ε pϕ0, 0, y0q P Σ�,
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with σ-periodic dependence in ϕ0, so that it can be read as a map of the annulus Sσ �R�. When ε � 0,
it is easy to check that

P0pϕ0, 0, y0q � pϕ0 � αpy0q, 0, y0q,
with αpy0q � 4y0 representing the period of the solution of the unperturbed autonomous system (5.26)
whose initial condition is pϕ0, 0, y0q. This implies that the curves γy0 are invariant under P0, for every
y0 ¡ 0. Moreover, for sufficiently small ε ¥ 0, the trajectories of (5.26) starting in Σ� cross Σ� again,
then, Pε is well defined and also analytic as the solutions (5.27) restrict to Σ�. Since α1py0q � 4 ¡ 0,
for all y0 ¡ 0, it follows that P0 is an integrable twist map of the annulus, which makes Pε a close to
integrable twist map. Then, the parametrization method turns out to be very useful to detect analytic
periodic curves of Pε in Σ�.

Σ1

pϕ0, 0, y0q

P�
ε pϕ0, 0, y0q

P�
ε pϕ1, 0, y1q � Pεpϕ0, 0, y0q

φ�pτ, ϕ0, 0, y0; εqφ�pτ, ϕ1, 0, y1; εq
x

Figure 26 – Impact map Pε.

Parametrization method: The understanding of the parametrization method comprehends the intro-
duction of some objects.

Let ω P R be a fixed Diophantine number (see Definition 2.3.1) and let F be a real analytic
and exact sympletic map defined on a cylinder Sσ � R endowed by the 2�form dϕ^ dI . We suppose
that ψ is a real analytic parametrization for a given torus T � Sσ � R, and we define the invariance
error associated with ψ

epθq :� F pψpθqq � ψpθ � ωq, θ P Sσ.

Hence, if for a given parametrization ψ�, the invariance error e� vanishes, it implies that ψ� corresponds
to an invariant torus of F .

Definition 5.4.1. Let f be a complex valued analytic function defined in an open set U � C2, which is

bounded in the closure of U . We introduce the norm

}f}U � sup
zPU

|fpzq|,
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where | � | is the sup-norm. In the case where f is defined on a torus Sσ and can be analytically extended

to the complex strip ∆pρq :� tϕ P C : |Impϕq|   ρu, then we refer to the size of this function with the

notation }f}ρ � }f}∆pρq.

The parametrization method consists in finding a sequence of parametrizations tψpnqun
that converges uniformly to a function ψ� that parametrizes an invariant torus T � under F . The idea
behind the construction of such sequence is start with a parametrization for a quasi- torus, ψp0q, in a
way that, for some 0   ρ   1, the associated invariance error is sufficiently small, i.e.,

∥∥ep0q∥∥
ρ
! 1.

Next parametrization, ψp1q, can be obtained by means of the quasi-Newton method, where we compute
the linear approximation of ep1q around ψp0q and we try to cancel out the resulting expression. This
process is interactively applied in order to improve the previous parametrization, in the sense that
the new associated error have quadratic size with respect to the previous one. The advantage in work
with this method lies in the fact that no change on the original system is needed, but only on the
parametrizations. This method was first introduced in [16] and was consistently applied in several
works as we can see in [27, 62, 63] and references therein. Besides that, the parametrization method is
very useful in computer assisted proofs, since we can obtain a better threshold for the size of the initial
error than methods based in transformation theory (see, for instance, [21]).

A strategy for establishing the existence of an infinite collection of invariant tori, as outlined
in Theorems A and E, involves considering an invariant curve γy0 , where y0 ¡ 0 satisfies αpy0q � ω.
Here, ω is a Diophantine number of type pζ, νq. The approach then applies the parametrization
method to γy0 to generate a sequence tψpnqy0

unPN of parametrizations, for which the associated invariant
errors satisfy

∥∥epn�1q∥∥
ρpn�1q � Op∥∥epnq∥∥2

ρpnqq, for every n P N. Under these conditions, the sequence
tψpnqy0

unPN converges to a parametrization of an invariant torus of Pε. Moreover, the upper bound for ε
ensuring the aforementioned convergence must be independent on the amplitude y0 initially chosen.
This fact together with Remark 2.3.2 enable the construction of a sequence of invariant curves of Pε,
and consequently a sequence of invariant tori of (5.26) (see Figure 27).

Certainly, there is still much work to be done, including the demonstration of the exact
symplectic nature of Pε. We believe that this is likely true given the piecewise Hamiltonian structure
of (5.26) noticed in (1.6). Additionally, it is imperative to precisely establish the bounds of Pε while
ensuring their independence on the initially chosen amplitude y0.
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ε
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ε
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ε
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ε

T k�1
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Figure 27 – (a)-Invariant curves of Pε (b)- Invariant tori of (1.7) obtained after the invariant curves Γk

(c)- Intersection between the invariant tori Tk,ε and the time section t0u � R2
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6 Melnikov analysis for detecting periodic
orbits

The results presented in this chapter are based on the manuscript [50].

This chapter is dedicated to exploring the existence of periodic solutions through a Mel-
nikov analysis for the more general class of second-order discontinuous differential equations (1.2),
which, recalling its definition, is given by

:x� µ sgnpxq � θx� εfpt, x, 9xq, (6.1)

where µ P t�1, 1u, and θ and ε are real parameters. The function f is assumed to be C1 and σ-periodic
in the variable t.

The Melnikov method [41] is one of the main tools for determining the persistence of
periodic solutions in planar smooth differential systems when subjected to non-autonomous periodic
perturbations. It basically consists in providing a bifurcation function, called Melnikov function,
whose simple zeros are associated with periodic solutions bifurcating from a period annulus of the
corresponding differential system. The Melnikov function is derived by expanding a Poincaré map,
typically the time-T -stroboscopic map, into Taylor series, since, in the smooth context, this map
inherits the regularity of the flow.

The Melnikov analysis has also been applied in the investigation of existence of crossing
periodic solutions in non-smooth differential systems in [8, 2, 23, 48, 49]. Therefore, in the same
direction of the former references, our main goal is to provide an explicit expression, through a
Melnikov procedure, for a function that controls the existence of periodic solutions in (6.1) for the
cases where the unperturbed equation admits a period annulus.

Since the discontinuous nature of (6.1) imposes challenges in verifying the regularity of
the time-σ stroboscopic map associated with it, we proceed by introducing the time as a variable
and using the discontinuous set generated by the sign function as a Poincaré section. This approach
allows the construction of a smooth displacement function, previously explored by J. Sotomayor in his
thesis [58] for autonomous differential equations. This function quantifies the distance between the
positive forward flow and the negative backward flow where both intersect the discontinuous set. A
Melnikov-like function will, then, be obtained by expanding this displacement function into Taylor
series.

This chapter is structured as follows: In section 6.1, we mainly discuss some additional
properties for the unperturbed Filippov system (6.2). By taking into account the classification done in
Chapter 1, we provide the statement of our main result (Theorem F) in Section 6.2. An application of
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our main result is also provided (see section 6.2.1). Finally, Section 6.3 is devoted for the proof of our
main result.

6.1 Additional properties on the unperturbed Filippov system

Taking y � 9x, we recall that (6.1) can be written as the differential system

Xθ,µpt, x, y; εq :
$&
% 9x � y,

9y � θx� µ sgnpxq � εfpt, x, yq.
(6.2)

for which we are adopting the Filippov convention for its solutions (see Section 2.1.2). Consequently,
the solutions of (6.1) are derived from the solutions of the Filippov system (6.2).

It is important to emphasize that the switching plane Σ1 corresponds to a crossing region
of (6.2) (see Example 2.1.23), and only maximal solutions of (6.2) intersecting Σ1 transversely are
considered in the subsequent analysis. Furthermore, we highlight that the existence and local uniqueness
of solutions, as discussed in Chapter 1 for the differential system (1.4), remain unaffected even when
considering the C1-function fpt, x, 9xq instead of pptq.

Before presenting our main results, some additional comments on the unperturbed Filippov
system are necessary. We remind that, for ε � 0, the differential system (6.2) becomes

Xθ,µpt, x, y; 0q � Xθ,µpx, yq :
$&
% 9x � y,

9y � θx� µsgnpxq,
which matches

X�
θ,µpx, yq :

#
9x � y,

9y � θx� µ,
and X�

θ,µpx, yq :
#

9x � y,

9y � θx� µ,

when restricted to x ¥ 0 and x ¤ 0, respectively. We notice that the line Σ � tpx, yq P R2 : x � 0u
represents the set of discontinuity of Xθ,µ. Additionally, if we consider the involution Rpx, yq �
p�x, yq, we notice that X�

θ,µpx, yq � �RX�
θ,µpRpx, yqq and FixpRq � Σ, which means that Xθ,µ is

R-reversible. In the classical sense, a planar vector field X is said to be R-reversible if it satisfies
Xpx, yq � �RpXpRpx, yqqq. The geometric meaning of this property is that the phase portrait of Xθ,µ

is symmetric with respect to FixpRq. Furthermore, by considering the involution Spx, yq � px,�yq,
we verify that both X�

θ,µ and X�
θ,µ are S-reversible. This indicates that the trajectories of X�

θ,µ and X�
θ,µ

exhibit symmetry with respect to FixpSq � tpx, yq P R2 : y � 0u (see Figures 2, 3, and 4).

Remark 6.1.1. Let us denote x � px, yq and a � p0, µq. Then, taking

A �
�
0 1

θ 0

�
,
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the vector fields X�
θ,µ and X�

θ,µ can be rewritten as follows

X�
θ,µpxq � Ax� a and X�

θ,µpxq � Ax� a,

for x P Σ� � tx ¡ 0u and x P Σ� � tx   0u, respectively. By denoting the solutions of X�
θ,µ and

X�
θ,µ, as Γ�pt, z0q and Γ�pt, z0q, respectively, with initial conditions z0 P Σ� and z0 P Σ�, respectively,

we notice that both solutions can be explicitly expressed by means of the variation of parameters as

follows

Γ�pt, z0q � eAtpz0 �
» t

0

e�As � a dsq and Γ�pt, z0q � eAtpz0 �
» t

0

e�As � a dsq,

where eAt is the exponential matrix of At given by

eAt �

$''''''''''''''&
''''''''''''''%

�
�� coshpt

?
θq sinhpt?θq?

θ?
θ sinhpt

?
θq coshpt

?
θq

�
�
 if θ ¡ 0,

�
1 t

0 1

�
if θ � 0,

�
� cospt

?
�θq sinpt?�θq?�θ

�
?
�θsinpt

?
�θq cospt

?
�θq

�

 if θ   0.

(6.3)

The R-reversibility of Xθ,µ implies that Γ�pt, z0q � RpΓ�p�t, R � z0qq and

eAt � Re�AtR. (6.4)

Now let us consider x0 � p0, y0q, with y0 ¡ 0. For the sake of simplicity, we denote
by Γ�pt, y0q � pΓ�1 pt, y0q,Γ�2 pt, y0qq and Γ�pt, y0q � pΓ�1 pt, y0q,Γ�2 pt, y0qq the solutions of X�

θ,µ and
X�

θ,µ, respectively, having x0 as the initial condition. Taking Remark 6.1.1 and the expression for eAt

given in (6.3), the solutions of X�
θ,µ having x0 as initial condition are given by

Γpt, y0q �

$'''''''''&
'''''''''%

�
µp1� cosh

�?
θt
�q � ?

θy0 sinh
�?

θt
�

θ
, y0 cosh

�?
θt
	
� µ sinh

�?
θt
�

?
θ

�
, θ ¡ 0,

�
ty0 � µt2

2
, y0 � µt



, θ � 0,

�
µpcospζtq � 1q � ζy0sinpζtq

ζ2
, y0cospζtq � µsinpζtq

ζ



, θ   0,

(6.5)
where ζ �

?
�θ. As previously mentioned, the R-reversibility of Xθ,µ allows us to easily obtain the

expressions of Γ�pt, y0q just by considering the relations

Γ�pt, y0q � Γpt, y0q and Γ�pt, y0q � RpΓ�p�t, y0qq. (6.6)
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The following presents a reminder of the cases in which the unperturbed Filippov system
Xθ,µ features a period annulus (see Figure 5):


 A0: θ   0 and µ � 1;


 A1: θ   0 and µ � �1;


 A2: θ ¡ 0 and µ � 1;


 A3: θ � 0 and µ � 1.

For each one of these cases, there exist a half–period function, τ�py0q (resp. τ�py0q), providing the
smallest (resp. greatest) time for which the solution Γ�pt, y0q (resp. Γ�pt, y0q), p0, y0q P Ai, reaches
the discontinuous line Σ again. In each of these cases, the function is given by τ�py0q � τ0py0q and
τ�py0q � �τ0py0q, where, using the S-reversibility of X�

θ,µ, the function τ0py0q is the solution of the
boundary problem $'&

'%
Γp0, y0q � p0, y0q,
Γ2

�
τ0py0q
2

, y0



� 0.

The expression for τ0 is given by

τ0 :

$''''''''''''&
''''''''''''%

p0,8q Ñ
�
0,
π

ζ



for A0,

p0,8q Ñ
�
π

ζ
,
2π

ζ



for A1,

�
0,

1?
θ



Ñ p0,8q for A2,

p0,8q Ñ p0,8q for A3,

and τ0py0q �

$''''''''''''&
''''''''''''%

2

ζ
arctan pζy0q for A0,

2

ζ
pπ � arctan pζy0qq for A1,

1?
θ
log

�
1� y0

?
θ

1� y0
?
θ

�
for A2,

2y0 for A3.

(6.7)

It is noteworthy that in cases A0 and A1 the boundary problem above provides infinitely many solutions.
However, due to the dynamics of the unperturbed system near y0 � 0, the ones to be considered must
satisfy the conditions lim

y0Ñ0�
τ0py0q � 0 in case A0 and lim

y0Ñ0�
τ0py0q � 2π{ζ in case A1.

Taking into account the the S-reversibility of X�
θ,µ and X�

θ,µ, and equation (6.6), it follows
that

Γ�p�τ0py0q, y0q � Γ�pτ0py0q, y0q � p0,�y0q. (6.8)

Remark 6.1.2. We notice that the points p� � p�1{η, 0q and p� � p1{η, 0q in case A1 correspond to

linear centers, which have been consistently studied in the literature (see, for instance, [47]). For this

reason, we are not considering these centers in our study.
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For i P t0, 1, 2, 3u, we denote by Di, the interval of definition of τ0, and by Ii the image
of τ0. From the possible expressions of τ0 in (6.7), it can be observed that τ 10py0q ¡ 0 in Di, for
i P t0, 2, 3u, and τ 10py0q   0 in D1. Consequently, τ0 is a bijection between Di and Ii for i P t0, 1, 2, 3u.
Its inverse is given by

v :

$''''''''''''&
''''''''''''%

�
0,
π

ζ



Ñ p0,8q for A0,

�
π

ζ
,
2π

ζ



Ñ p0,8q for A1,

p0,8q Ñ
�
0,

1?
θ



for A2,

p0,8q Ñ p0,8q for A3,

and vpσq �

$''''''''''''&
''''''''''''%

1

ζ
tan

�
ζ σ

2



for A0

�1

ζ
tan

�
ζ σ

2



for A1,

1?
θ
tanh

�?
θ σ

2

�
for A2,

σ

2
for A3.

(6.9)

6.2 Main result

As usual, the Melnikov method applied for determining the persistence of periodic solutions
provides a bifurcation function, whose simple zeros are associated with periodic solutions bifurcating
from a period annulus. In what follows we are going to introduce this function for system (6.1).

Let fpt, x, 9xq be the σ�periodic function in t constituting the differential equation (6.1).
Consider Γpt, y0q and vpσq the functions defined in (6.5) and (6.9), respectively. We define the
Melnikov–like function M : RÑ R as

Mpϕq �
» σ

2

0

U
�
t,
σ

2

	�
f
�
ϕ� t,Γ

�
t, v

�σ
2

			
� f

�
ϕ� t, RΓ

�
t, v

�σ
2

				
dt, (6.10)

where

Upt, σq �

$''''''''&
''''''''%

� 1?
θ

sech

�?
θ σ

2

�
sinh

�?
θ p2t� σq

2

�
θ ¡ 0,

�2t� σ

2
θ � 0,

�µ
ζ
sec

�
ζ σ

2



sin

�
ζ p2t� σq

2



θ   0.

(6.11)

with ζ �
?
�θ. Notice that, since fpt, x, 9xq is σ-periodic in t, the Melnikov–like function M is

σ-periodic. We derive the expression of M in the proof of our main result, which concerns periodic
solutions of the differential equation (6.1). Its proof is postponed to Section 6.3.

Theorem F. Suppose that for some i P t0, 1, 2, 3u the parameters α and θ of the differential equation

(6.1) satisfy the condition Ai and that σ{2 P Ii. Then, for each ϕ� P r0, σs, such that Mpϕ�q � 0 and

M 1pϕ�q � 0, there exists ε ¡ 0 and a unique smooth branch xεptq, ε P p�ε, εq, of isolated σ-periodic

solutions of the differential equation (6.1) satisfying px0pϕ�q, 9x0pϕ�qq � p0, vpσ{2qq.
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Remark 6.2.1. It is important to emphasize that periodic solutions obtained in Theorem F bifurcate

from the interior of the period annulus Ai for i P t0, 1, 2, 3u. In case A1, the two homoclinic orbits

joining p � p0, 0q constitute the boundary of A1. Therefore, their persistence are not being considered

in Theorem F, which is elucidated by the conclusion vpσ{2q P D1 � p0,8q.

6.2.1 Example

In order to illustrate the application of Theorem F, we examine the following differential
equation

:x� sgnpxq � θx� ε sinpβ tq, with θ ¡ 0. (6.12)

This equation was previously studied in [15], where the authors provided conditions on θ and β in order
to determine the existence of a discrete family of simple periodic solutions of (6.12). By assuming
fpt, x, 9xq � sinpβtq in (6.1), we reproduce a similar result as in [15, Theorem 2.1.1], as follows.

Proposition 6.2.2. Given n P N, there exists εn ¡ 0 such that, for every ε P p�εn, εnq, the equation

(6.12) has n isolated 2π
β
p2k � 1q-periodic solutions, for k P t1, . . . , nu, whose initial conditions are

pxkεp0q, 9xkεp0qq �
�
0,

1?
θ
tanh

�
π
?
θ p2k � 1q
β

��
�Opεq.

The main difference between both results is that Proposition 6.2.2 is based on perturba-
tion theory, while Theorem 2.1.1 in [15] provides a precise upper bound for ε by means of direct
computations.

Proof. Since θ ¡ 0, the unperturbed equation (6.12) represents the case A2. Let us define σi � 2πβ�1i,
for i P N. Since fpt, x, 9xq � sinpβtq is σ1-periodic in t, it is natural that fpt, x, 9xq is also σi-periodic
in t. Besides that, for every i P N, we have σi{2 P I1. Then, for i P N, we compute the Melnikov
function, defined as (6.10), corresponding to the period σi. This function takes the form

Mipϕq � 2p1� p�1qi�1qsinpβ ϕq
β2 � θ

.

Notice that if i is odd, then

Mipϕq � 4sinpβ ϕq
β2 � θ

,

while for even values of i, Mipϕq � 0. Given n P N, we observe that M2k�1p0q � 0 and M 1
2k�1p0q � 0

for each k P t1, . . . , nu. Applying Theorem F, it follows that, for each k P t1, . . . , nu, there exists
εk ¡ 0 and a unique branch xkεptq, ε P p�εk, εkq, of isolated σk-periodic solutions of the differential
equation (6.12) satisfying pxkεp0q, 9xkεp0qq � p0, νpσk{2qq �Opεq, where σk � σ2k�1. We see that, for
each k P t1, . . . , nu, the periods σk are pairwise distinct, indicating that νpσk1{2q � νpσk2{2qwhenever
k1 � k2. Therefore, by considering εn � min

1¤k¤n
tεku, we conclude the proof of the proposition.
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6.3 Proof of the main result

In order to prove Theorem F, we consider the vector field associated to the differential
system (6.2), given by $''&

''%
9ϕ � 1,

9x � y,

9y � θx� µ sgnpxq � εfpϕ, x, yq.
(6.13)

The differential system (6.13) matches$''&
''%

9ϕ � 1,

9x � y,

9y � θx� µ� εfpϕ, x, yq,
and

$''&
''%

9ϕ � 1,

9x � y,

9y � θx� µ� εfpϕ, x, yq,
(6.14)

when it restricted to x ¥ 0 and x ¤ 0, respectively. The solutions for the differential systems in (6.14)
with initial condition pϕ0, 0, y0q, for y0 ¡ 0, are given by the functions

Φ�pτ, ϕ0, y0; εq � pτ � ϕ0, φ
�pτ, ϕ0, y0; εqq, (6.15)

and
Φ�pτ, ϕ0, y0; εq � pτ � ϕ0, φ

�pτ, ϕ0, y0; εqq, (6.16)

respectively, where φ�pτ, ϕ0, y0; εq � pφ�1 pτ, ϕ0, y0; εq, φ�2 pτ, ϕ0, y0; εqq is the solution for the Cauchy
problem #

9x � Ax	 a� εF pt� ϕ0,xq,
xp0q � x0,

(6.17)

with x0 � p0, y0q and F pt,xq � p0, fpt,xqq. Since the discontinuous plane Σ1 � tpϕ, x, yq P R3 : x �
0u, with y � 0, is a crossing region for the differential system (6.13), it follows that solutions of (6.13)
arise from the concatenation of Φ� and Φ� along Σ1 when these solutions intersect Σ1 transversely, as
previously mentioned. We denote this concatenated solution by Φpτ, ϕ0, y0; εq.

6.3.1 Construction of the displacement function

We notice that, for y0 ¡ 0,

φ�1 pτ�0 py0q, ϕ0, y0; 0q � Γ�1 pτ�0 py0q, y0q � 0,

and

Btφ�1 pτ�0 py0q, ϕ0, y0; 0q � φ�2 pτ�0 py0q, ϕ0, y0; 0q � Γ�2 pτ�0 py0q, y0q � �y0 � 0, (6.18)
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with the last equality being given in equation (6.8). According to the Implicit Function Theorem, there
exist smooth functions τ� : Upϕ0,y0;0q Ñ V�

τ�0 py0q
and τ� : Upϕ0,y0;0q Ñ V�

τ�0 py0q
, where Upϕ0,y0;0q and

V�
τ�0 py0q

are small neighborhoods of pϕ0, y0; 0q and τ�0 py0q, respectively. These functions satisfy

τ�pϕ0, y0; 0q � τ�0 py0q and φ�1 pτ�pϕ, y; εq, ϕ, y; εq � 0, (6.19)

for every pϕ, y; εq P Upϕ0,y0;0q.

Thus, the functions τ�pϕ0, y0; εq and τ�pϕ0, y0; εq, combined with the solutions (6.15)
and (6.16) of the vector field (6.13), allow us to construct a displacement function, ∆pϕ0, y0; εq, that
“controls” the existence of periodic solutions of (6.1) as follows

∆pϕ0, y0; εq � Φ�pτ�pϕ0, y0; εq, ϕ0, y0; εq � Φ�pτ�pϕ0 � σ, y0; εq, ϕ0 � 2σ, y0; εq
� Φ�pτ�pϕ0, y0; εq, ϕ0, y0; εq � Φ�pτ�pϕ0, y0; εq, ϕ0 � σ, y0; εq,

since τ�pϕ0, y0; εq is σ-periodic in ϕ0. The displacement function ∆pϕ0, y0; εq computes the difference
in Σ1 between the points Φ�pτ�pϕ0, y0; εq, ϕ0, y0; εq and Φ�pτ�pϕ0, y0; εq, ϕ0 � σ, y0; εq (see Fig. 28).
Thus it is straightforward that if ∆pϕ�0 , y�0 ; ε�q � 0 , for some pϕ�, y�0 ; ε�q P r0, σs � R� � R, then the
solution Φpτ, ϕ�0 , y�0 ; ε�q is σ-periodic in τ , meaning that Φpτ, θ�0 , y�0 ; ε�q and Φpτ � σ, θ�0 , y

�
0 ; ε

�q are
identified in the quotient space Sσ � R2. Furthermore, from the definition of Φ� and Φ� in (6.15) and
(6.16), respectively, we have that

∆pϕ0, y0; εq � p∆1pϕ0, y0; εq, 0,∆3pϕ0, y0; εqq
:� pτ�pϕ0, y0; εq � τ�pϕ0, y0; εq � σ, 0,

φ�2 pτ�pϕ0, y0; εq, ϕ0, y0; εq � φ�2 pτ�pϕ0, y0; εq, ϕ0 � σ, y0; εqq.

In what follows, we provide preliminary results concerning the main ingredients constitut-
ing the displacement function ∆pϕ0, y0; εq.

6.3.2 Preliminary results

This section is dedicated to presenting preliminary results regarding the solutions of (6.17)
and the time functions τ�pϕ0, y0; εq and τ�pϕ0, y0; εq mentioned earlier. We begin by providing a result
concerning the behavior of the solutions of (6.17) as ε approaches to zero.

Proposition 6.3.1. For sufficiently small |ε|, the function φ�pt, ϕ0, y0; εq writes as

φ�pt, ϕ0, y0; εq � Γ�pt, y0q � εψ�pt, ϕ0, y0q �Opε2q, (6.20)

where Γ�pt, y0q and Γ�pt, y0q are the functions given in (6.5) and (6.6), respectively, and

ψ�pt, ϕ0, y0q � eAt

» t

0

e�AsF ps� ϕ0,Γ
�ps, y0qqds. (6.21)
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y

y0

y0

ϕ0

ϕ0 � σ

x

t

∆pϕ0, y0; εq

Φ�pτ�pϕ0, y0; εq, ϕ0 � σ, y0; εq

Φ�pτ�pϕ0, y0; εq, ϕ0, y0; εq

Figure 28 – Representation of the points Φ�pτ�pϕ0, y0; εq, ϕ0 � σ, y0; εq and
Φ�pτ�pϕ0, y0; εq, ϕ0, y0; εq, which originate the displacement function ∆.

Proof. Since φ�pt, ϕ0, y0; εq is the solution to the Cauchy problem (6.17), then it must satisfy the
integral equation

φ�pt, ϕ0, y0; εq � x0 �
» t

0

�
Aφ�ps, ϕ0, y0; εq 	 a� εF ps� ϕ0, φ

�ps, ϕ0, y0; εq
�
ds,

which, by expanding in Taylor series around ε � 0, gives us

φ�pt, ϕ0, y0; εq � p0, y0q �
» t

0

�
AΓ�ps, y0q 	 a

�
ds� ε

» t

0

�
Aψ�ps, ϕ0, y0q

�F ps� ϕ0,Γ
�ps, y0qq

�
ds�Opε2q.

Then, taking into account the expression for φ�pt, ϕ0, y0; εq in (6.20) and the computations above, we
have that

ψ�pt, ϕ0, y0q �
» t

0

�
Aψ�ps, ϕ0, y0q � F ps� ϕ0,Γ

�ps, y0qq
�
ds,

which implies that ψ� is the solution to the Cauchy problem$&
% 9x � Ax� F pt� ϕ0,Γ

�ps, y0qq,
xp0q � p0, 0q.
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Then, the general formula for solutions of linear differential equations yields relationship (6.21).

In what follows, we describe the behavior of the time functions τ�pϕ, y; εq and τ�pϕ, y; εq
satisfying (6.19).

Proposition 6.3.2. Let τ�pϕ0, y0; εq be the time satisfying equation (6.19). Then, for sufficiently small

|ε| and y0 ¡ 0 we have

τ�pϕ0, y0; εq � τ�0 py0q � ετ�1 pϕ0, y0q �Opε2q,

with

τ�1 pϕ0, y0q � ψ�1 pτ�0 py0q, ϕ0, y0q
y0

.

Proof. By expanding (6.19) in Taylor series around ε � 0, we have

ε
�BtΓ�1 pτ�0 py0q, y0qτ�1 pϕ0, y0q � ψ�1 pτ�0 py0q, ϕ0, y0q

��Opε2q � 0,

which implies that

BtΓ�1 pτ�0 py0q, y0qτ�1 pϕ0, y0q � ψ�1 pτ�0 py0q, ϕ0, y0q � 0. (6.22)

Then equation (6.22) together with (6.18) conclude the proof of the proposition.

The following result plays an important role in describing the behaviour of φ�2 around
ε � 0. It is important to mention that, in our context, we identify vectors with column matrix.

Proposition 6.3.3. Let us consider v1ptq and v2ptq as the lines of the matrix eAt. Then for every y0 ¡ 0,

the following identity holds

µv1pτ0py0qq � y0v2pτ0py0qq � pµ y0q,

where τ0py0q is the half–period function defined in (6.7).

Proof. We define the auxiliary matrix-valued function

βptq � �
µ� θΓ�1 pt, y0q Γ�2 pt, y0q

� � eAt,

which is continuously differentiable for every t P R. By differentiating βptq, we have that

β1ptq � ��θΓ�2 pt, y0q θΓ�1 pt, y0q � µ
� � eAt � �

µ� θΓ�1 pt, y0q Γ�2 pt, y0q
� � AeAt

� ��θΓ�2 pt, y0q θΓ�1 pt, y0q � µ
� � eAt � �

θΓ�2 pt, y0q α � θΓ�1 pt, y0q
� � eAt

� p0 0q � eAt

� p0 0q.
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Computations above imply that βptq is a constant function in each one of its entries, that is,

βptq � βp0q � pµ y0q � Id � pµ y0q
for every t P R. In particular,

µv1pτ0py0qq � y0v2pτ0py0qq � βpτ0py0qq � pµ y0q,
and this concludes the proof of the proposition.

In the following discussion, we provide key relationships for the fundamental components
that appear in the expressions of φ�2 pτ�pϕ0, y0; εq, ϕ0, y0; εq and φ�2 pτ�pϕ0, y0; εq, ϕ0 � σ, y0; εq for
sufficiently small values of |ε|. We start by formulating a more detailed expression for ψ�pt, ϕ0, y0q.
By taking relation (6.21) into account, we have

ψ�pt, ϕ0, y0q �
�
ψ�1 pt, ϕ0, y0q
ψ�2 pt, ϕ0, y0q

�
� eAt

» t

0

e�AsF ps� ϕ0,Γ
�ps, y0qqds (6.23)

�
�
xv1ptqJ, I�pt, ϕ0, y0qy
xv2ptqJ, I�pt, ϕ0, y0qy

�
,

where

I�pt, ϕ0, y0q :�
» t

0

e�AsF ps� ϕ0,Γ
�ps, y0qqds. (6.24)

This remark leads us to the following result.

Lemma 6.3.4. For sufficiently small |ε|, the function φ�2 pτ�pϕ0, y0; εq, ϕ0, y0; εq writes as

φ�2 pτ�pϕ0, y0; εq, ϕ0, y0; εq � �y0 � ε

y0
xpµ, y0q, I�pτ0py0q, ϕ0, y0qy �Opε2q.

Proof. By expanding φ�2 pτ�pϕ0, y0; εq, ϕ0, y0; εq in Taylor series around ε � 0, we have that

φ�2 pτ�pϕ0, y0; εq, ϕ0, y0; εq � Γ�2 pτ0py0q, y0q � εξ�pϕ0, y0q �Opε2q,
where

ξ�pϕ0, y0q � BtΓ�2 pτ0py0q, y0qτ�1 pϕ0, y0q � ψ�2 pτ0py0q, ϕ0, y0q

� �
θΓ�1 pτ0py0q, y0q � µ

� ψ�1 pτ0py0q, ϕ0, y0q
y0

� ψ�2 pτ0py0q, ϕ0, y0q

� � 1

y0

�
µψ�1 pτ0py0q, ϕ0, y0q � y0ψ

�
2 pτ0py0q, ϕ0, y0q

�
.

Thus, by considering the relationship (6.23), the function ξ�pϕ0, y0q can be rewritten as follows

ξ�pϕ0, y0q � � 1

y0

�
µxv1pτ0py0qqJ, I�pτ0py0q, ϕ0, y0qy � y0xv2pτ0py0qqJ, I�pτ0py0q, ϕ0, y0qy

�
� � 1

y0

�xµv1pτ0py0qqJ � y0v2pτ0py0qqJ, I�pτ0py0q, ϕ0, y0qy
�

� � 1

y0

�xpµ, y0q, I�pτ0py0q, ϕ0, y0qy
�
,
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where the last equality above is obtained after Proposition 6.3.3. Then, taking into account (6.8), the
proof of the lemma is completed.

In order to obtain analogous results as those achieved for φ�2 pτ�pϕ0, y0; εq, ϕ0, y0; εq in the
context of the function φ�2 pτ�pϕ0, y0; εq, ϕ0 � σ, y0; εq, we follow the previously outlined procedure.
Then, by taking into account that F is a σ-periodic function and relationship (6.4), we notice that

ψ�p�t, ϕ0 � σ, y0q �
�
ψ�1 p�t, ϕ0 � σ, y0q
ψ�2 p�t, ϕ0 � σ, y0q

�

� e�At

» �t

0

e�AsF ps� ϕ0 � σ,Γ�ps, y0qqds

� �ReAtR

» t

0

eAsRRF p�s� ϕ0, RΓ
�ps, y0qqds

� �R

�
���
xv1ptqJ,

» t

0

e�AsRF p�s� ϕ0, RΓ
�ps, y0qqdsy

xv2ptqJ,
» t

0

e�AsRF p�s� ϕ0, RΓ
�ps, y0qqdsy

�
��


�
�
xv1ptqJ, I�pt, ϕ0, y0qy
x�v2ptqJ, I�pt, ϕ0, y0qy

�
,

where

I�pt, ϕ0, y0q :�
» t

0

e�AsRF p�s� ϕ0, RΓ
�ps, y0qqds. (6.25)

Similarly proceeding as in Lemma 6.3.4, we provide the following result concerning the
behavior of φ�2 pτ�pϕ0, y0; εq, ϕ0 � σ, y0; εq around ε � 0.

Lemma 6.3.5. For sufficiently small |ε|, the function φ�2 pτ�pϕ0, y0; εq, ϕ0 � σ, y0; εq writes as

φ�2 pτ�pϕ0, y0; εq, ϕ0 � σ, y0; εq � �y0 � ε

y0

�xpµ, y0q, I�pτ0py0q, ϕ0, y0qy
��Opε2q.

Before we proceed with the proof of Theorem F, let us perform some essential computations
which will play an important role in deriving the desired Melnikov-like function. Let I�pt, ϕ0, y0q and
I�pt, ϕ0, y0q be the integrals defined in (6.24) and (6.25), respectively. We remind that F pt, x, yq �
p0, fpt, x, yqq. Taking uptq � pu1ptq, u2ptqq to be the second column of e�At, that is,

uptq �

$''''''&
''''''%

�
�sinhpt?θq?

θ
, coshpt

?
θq
�

if θ ¡ 0,

p�t, 1q if θ � 0,�
�sinptζq

ζ
, cosptζq



if θ   0,
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with ζ �
?
�θ, it follows that

I�pt, ϕ0, y0q � I�pt, ϕ0, y0q �
» t

0

e�As

�
0

gps, ϕ0, y0q

�
ds (6.26)

�

�
���
» t

0

u1psqgps, ϕ0, y0qds» t

0

u2psqgps, ϕ0, y0qds

�
��
,

where we are defining gps, ϕ0, y0q :� fpϕ0 � s,Γ�ps, y0qq � fpϕ0 � s, RΓ�ps, y0qq. Notice that
gps, ϕ0, y0q is σ-periodic in ϕ0.

6.3.3 Conclusion of the proof

The task of obtaining a point pϕ0, y0; εq that directly makes the function ∆ vanish is quite
challenging. Thus, in our approach, we proceed with a Melnikov–like method, which basically consists
in computing the Taylor expansion of ∆p�, �; εq � 0 around ε � 0 up to order 1 and solving the
resulting expression. In this direction, we start by examining the first component of the function ∆,
which, after its Taylor expansion around ε � 0, is given by

∆1pϕ0, y0; εq � τ�pϕ0, y0; εq � τ�pϕ0, y0; εq � σ � 2τ0py0q � σ �Opεq.

Let i P t0, 1, 2, 3u be fixed such that the parameters µ and θ satisfy condition Ai and
σ{2 P Ii. Since τ0 is a bijection between Di and Ii, there exist y�0 P Di such that τ0py�0 q � σ{2.
Additionally, as discussed in Section 6.1, By0∆1py�0 ; 0q � 2τ 10py�0 q � 0, for every ϕ0 P Sσ. Therefore,
from the Implicit Function Theorem and the compactness of Sσ, there exist ε1 ¡ 0, δ1 ¡ 0, and a unique
C1-function y : Sσ � p�ε1, ε1q Ñ py�0 � δ1, y

�
0 � δ1q such that ypϕ0, 0q � y�0 and ∆1pypϕ0, εq; εq � 0,

for every ε P p�ε1, ε1q and every ϕ0 P Sσ.

By substituting ypϕ0, εq into ∆3pϕ0, y0; εq, and taking into account Lemmas 6.3.4 and
6.3.5, we have, for sufficiently small |ε|,

∆3pϕ0, ypϕ0, εq; εq � �2ε

y�0

�A
pµ, y�0 q, I�

�σ
2
, ϕ0, y

�
0

	
� I�

�σ
2
, ϕ0, y

�
0

	E	
�Opε2q,

where I�pσ, ϕ0, y
�
0 q and I�pσ, ϕ0, y

�
0 q are the integrals defined in (6.24) and (6.25), respectively. We

can then define the function, for |ε| sufficiently small,

∆̃3pϕ0; εq :� �y
�
0

2ε
∆3pϕ0, ypϕ0, εq; εq,

which, after being expanded in Taylor series around ε � 0, gives us

∆̃3pϕ0; εq �Mpϕ0q �Opεq,
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with
Mpϕ0q �

A
pµ, y�0 q, I�

�σ
2
, ϕ0, y

�
0

	
� I�

�σ
2
, ϕ0, y

�
0

	E
.

The identity (6.26) and the fact that y�0 � vpσ{2q, allow us to rewritten Mpϕ0q as follows

Mpθ0q �
» σ

2

0

A�
µ, v

�σ
2

		
, upsq

E
g
�
s, ϕ0, v

�σ
2

		
ds,

and this lead us to the expression stated in (6.10), with the auxiliary functionUpt, σq � xpµ, vpσqq, uptqy
expressed in (6.11).

Notice that the σ-periodicity of g ps, ϕ0, v pσ{2qq in ϕ0 implies that M is σ-periodic, which
enables us to restrict our analysis to the interval r0, σs. Now suppose that ϕ� P r0, σs is such that
Mpϕ�q � 0 and M 1pϕ�q � 0. Then, by the Implicit Function Theorem, there exist 0   ε   ε1 and a
branch ϕpεq of simple zeros of M satisfying ϕp0q � ϕ� and Mpϕpεqq � ∆̃3pϕpεq; εq � 0, for every
ε P p�ε, εq. Back to the solution of the differential system (6.13), we have that Φpτ, ϕpεq, ypϕpεq, εq; εq
is a σ-periodic solution of (6.13), whenever ε P p�ε, εq.

Notice that, by defining

xεptq :� Φ2pt� ϕpεq, ϕpεq, ypϕpεq, εq; εq,

and taking into account that 9xεptq � Φ3pt� ϕpεq, ϕpεq, ypεq; εq, where Φ2 and Φ3 are the second and
third entries of Φ, respectively, we have that

x0pϕ�q � Φ2p0, ϕ�, y�0 ; 0q � 0 and 9x0pϕ�q � Φ3p0, ϕ�, y�0 ; 0q � y�0 � v
�σ
2

	
.

It concludes the proof of Theorem F.
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