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Abstract

Since the 1960s, the boundedness of solutions of the Duffing-type equations & + g(z) = p(t) has been
a significant research focus in dynamical systems. This is primarily attributed to mathematician John
E. Littlewood, who proposed investigating conditions on the functions g(x) and p(t) to determine
the boundedness of all solutions to the Duffing-type equation. In light of this, a crucial strategy is
to establish the existence of invariant tori in the extended phase space of the differential equation,

confining all the dynamics in the interiors of the regions delimited by them.

Assuming p(t) to be a o-periodic function, we aim to study the existence of invariant tori for the family

of second-order discontinuous differential equations
(F): &+ psen(z) =0x+ept),

where 0 and ¢ are real parameters, sgn(x) represents the usual sign function, and p € {—1, 1} is a modal
parameter. We focus on cases where the unperturbed equation (¢ = 0) admits a ring of periodic orbits.
More precisely, assuming 6 # 0, we employ KAM theory to investigate the existence of invariant
tori for (F). In this case, p(t) is required to be sufficiently differentiable. For § = 0, considering
p(t) as a Lebesgue-integrable function with vanishing average, we establish the existence of invariant
tori through a constructive and non-perturbative method. These results provide conditions for the
boundedness of solutions that initiate either on these tori or in the interiors of the regions delimited by

them, as well as conditions for the existence of periodic orbits.

Finally, for the sake of completeness, we perform a Melnikov analysis on a more general class of
differential equations given by & + « sgn(z) = 0x + ¢ f(t,x, &), where o # 0 and f(t,x,%) is a
function of class C' and o-periodic in ¢, aiming to detect bifurcating periodic orbits of the differential

equation.

Keywords: Non-smooth differential equations, Carathéodory equations, Filippov systems, KAM

Theory, Invariant tori, Boundedness of solutions, Melnikov method, Periodic solutions.



Resumo

Desde os anos 60, a limitagao das solugdes das equacdes de Duffing & + g(x) = p(t) tem sido um
importante objeto de pesquisa em sistemas dinamicos. Isso se deve, principalmente, ao matematico John
E. Littlewood, que propds a investigacdo de condi¢Ges sobre as fungdes g(x) e p(t) para determinar
a limitacdo de todas as solucdes da equacdo de Duffing. Nesse contexto, uma estratégia crucial é
determinar a existéncia de toros invariantes no espaco de fase estendido da equacdo diferencial,

confinando toda a dindmica na regido delimitada pelos mesmos.

Assumindo p(t) como uma fungdo o-periddica, pretendemos estudar a existéncia de toros invariantes

para a familia de equagdes diferenciais descontinuas de segunda ordem
(F): &+ psen(z) =0x+ept),

em que 6 e € sdo parAmetros reais, sgn () representa a fungdo sinal usual e o € {—1, 1} é um pardmetro
modal, nos casos em que a equacdo nao perturbada (¢ = 0) admite um anel de 6rbitas periddicas.
Mais precisamente, assumindo 6 # 0, recorremos a Teoria KAM para investigar a existéncia de toros
invariantes de (). Neste caso, é necessdrio que p(t) seja suficientemente diferencidvel. Para 6 = 0,
tomando p(t) como uma fun¢do Lebesgue integravel com média zero, constatamos a existéncia de
toros invariantes por meio de um método construtivo e ndo perturbativo. Tais resultados fornecem
condi¢des para a limitagc@o de todas as solucdes que se iniciam em tais toros ou nas regides delimitadas

pelos mesmos, bem como condi¢des para a existéncia de Orbitas periddicas.

Por fim, para efeito de completude, desenvolvemos uma andlise de Melnikov para a classe mais geral
de equacdes diferenciais dadas por & + « sgn(z) = 0z +¢ f(t,x,2),emque o # O e f(t,z, 1) é uma
funcio de classe C' e o-periédica em ¢, com o objetivo de detectar 6rbitas periddicas que bifurcam dos

anéis periddicos da equacgdo diferencial.

Palavras-chave: Equacdes diferenciais ndo-suaves, Equagdes de Catarathéodory, Sistemas de Filippov,

Teoria KAM, Toros invariantes, Limitacdo de solucdes, Método de Melnikov, Solucdes periddicas.
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1 Introduction

Since the 1960s, researchers have been investigating the boundedness of solutions of the
Duffing-type equations
Z + g(x) = p(t). (1.1)
The interest in such investigation is mainly due to Littlewood, who, after demonstrating in [38, 39] the
existence of unbounded solutions of (1.1) when p(¢) is assumed to be bounded and g(x) (saturation
function) satisfies specific asymptotic conditions, proposed in [40] to investigate conditions on p(t)
and g(x) that would ensure the boundedness of all solutions of (1.1). Morris, in [42], was the first
to provide an example to Littlewood’s proposal, assuming p(t) to be periodic and continuous, and
g(x) = 22°. Subsequently, Morris had its result extended by Dieckerhoff and Zehnder in [18] to the

class of equations
2n

i+ a* 4 Z w/p;(t) =0, n=1,
=0
under the assumption that p; are periodic C* functions. Also, by considering g(x) to be piecewise
smooth, boundedness of solutions has been analyzed in the non-smooth context in [20, 34, 53, 55] . It
is noteworthy that in the literature, boundedness of all solutions is also referred to as Lagrange stability,

as described in [67].

1.1 A class of non-smooth Duffing-type equations

In this work, considering sgn as the standard sign function defined as

1, if z>0,
sgn(z) =< 0, if x=0,
—1, if =<0,

we aim to study qualitative aspects of the class of differential equations
4 asgn(z) =0z +Ef(t, 2, 2),

where a # 0, # and ¢ are real parameters, and f (t, z, 2) is a function o-periodic in the variable ¢. It is
worthy mentioning that, by considering the change of variables z = |«/|z, the differential equation is
reduced to

T+ psgn(z) =0x +ef(t,x, 1), (1.2)
with e = &/|al, f(t,x, &) = f(t,|a|z, |a|i), and i = sgn(a) € {—1,1}. We notice that f (¢, z, &) and

f(t, z, 2) have the same periodicity in ¢. For this reason, we reduce our analysis to the differential

equation (1.2).



Chapter 1. Introduction 14

The most significant aspect of this work consists in determining the existence of invariant

tori (see Definitions 1.1.1 and 1.1.2) and the boundedness of solutions for the differential equation (1.2)

in the case f(¢,x,2) = p(t), with p(t) being a o-periodic function. Thus, we consider the subclass of
differential equations given by

T+ psgn(z) = 0z + ¢ p(t). (1.3)

For the the sake of completeness, we perform a Melnikov analysis on the equation (1.2) in order to

determine the existence of periodic orbits.

The importance in studying non-smooth differential equations primarily lies in understand-
ing phenomena observed in both natural and engineering domains characterized by sudden changes.
For instance, such study can be used to comprehend biological and climate models involving abrupt
changes [7, 13, 35, 56], collisions in mechanical systems [10, 31, 32], electronic circuits in the presence

of a relay [30], and automatic pilots for ships [3].

Important studies have been conducted on the family of differential equations (1.3). For
example, in [34], Kunze et al. showed that, for § = —1 and ;» = 1, all the solutions of (1.3) are bounded
provided that € is sufficiently small. Furthermore, they established the existence of infinitely many
periodic orbits. Regarding this matter, Silva et al. in [15] assumed p(t) to be periodically continuous
and provided conditions on p and 6 to ensure the existence of periodic solutions for (1.3) through
direct computations. In terms of practical applications, equation (1.3) is very useful in describing, for
instance, the states of a simple automatic pilot for ship [3] and a dry-friction oscillator [32] through the
interaction laws

I+ =sgn(r) and I+ x =sin(wt) — Apsgn(z),

respectively, where w is the frequency of the forcing term and A is the magnitude of the Coulomb

friction force.

As previously mentioned, this work focuses on investigating the boundedness of solutions
for the differential equation (1.3). To this end, the primary objective is to establish the existence of
a collection of invariant tori for equation (1.3), particularly in the scenarios where the unperturbed
equation (¢ = 0) admits a period annulus. For a better understanding of the concept of solution and
invariant torus of the differential equation (1.3), it is convenient to consider the change of variables
y = x, and, then, transform equation (1.3) into the differential system

T =y,
Xou(t,z,y;e) (1.4)
Y = 0x — psgn(x) + € p(t).
The solutions of the differential system (1.4) will be considered according to the Filippov convention,
which exists for every initial condition if p(t) is assumed to be, at least, a Lebesgue-integrable function

(see Section 2.1.1). Thus, we will refer to (1.4) as a perturbed Filippov system. Now, taking into
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account the function sgn(z), we notice that ¥’ = {(¢,z,y) € R* : z = 0} corresponds to the switching
plane of the Filippov system (1.4), which, in turn, can be decomposed into the differential systems
X, (t,x,y5€) x — Y and X, (t 7,y;¢): x — Y
y=0x—p+ept), y=0x+p+ept),
(1.5)
for x > 0 and x < 0, respectively. The regularities of X gf ., and X, depend on the regularity of the
function p(t). We shall see that, depending on the parameters 6 and 1, distinct regularities for p(t)
will be assumed in our study. In any case, local uniqueness of solutions is guaranteed if we assume
p(t) to be at least Lebesgue-integrable (see Example 2.1.12). We shall focus our attention on solutions
of the differential systems in (1.5) that intersect the region of discontinuity X’ transversely. Under
these conditions, solutions of (1.4) are obtained by concatenating solutions of (1.5) along ¥’, which

establishes the global uniqueness property in such cases.

Another important aspect of the Filippov system (1.4) to be used throughout this work is

its piecewise Hamiltonian structure associated with the function

2
Hp,(z,y,t;¢) = % + Gy u(x) — exp(t), (1.6)

2
where Gy ,(v) = —9% + pu|x|. We shall see that such characteristic plays a crucial role in constructing
coordinate changes that transform the Hamiltonian (1.6) into a nearly integrable one, which, roughly

speaking, consists in a perturbation of an integrable Hamiltonian.

Since p(t) is assumed to be o-periodic, the Filippov system (1.4) can be seen as the vector
field
¢ =1,
XG,M(¢7x7y;€) = , (17)
X = X@,u(¢7 X, 5)7
in the extended phase space (¢,x) € S, x R?, where S, = R/0Z. Let us denote the flow associated
with (1.7) by @7, with 7 being the time.

Definition 1.1.1. We say that A = S, x R? is an invariant set of X, ,, if " (a) € A, for every a € A

and T € 1,, where T, denotes the maximal interval of definition of " (a).

Definition 1.1.2. A set T = S, x R? is said to be a torus of (1.7), if the intersection of T with {¢} x R?
is homeomorphically a circle, for every ¢ € S,, and the intersections with {¢p} x R* and {¢ + o} x R?

coincide in the quotient space S, x R, for every ¢ € S,.

Therefore, when we refer to a set as an invariant torus of either (1.3) or (1.4), we essentially
regard it as an invariant torus of (1.7) (see Figure 1). Moreover, in cases where p(t) is a o-periodic

function of class C", we denote this property by p € C"(S,).
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{¢ =0}

{0 =0}

Figure 1 — 7 represents a torus of (1.7) in the quotient space S, x R? meaning that

T o ({0} xR*) =T n ({0} x R?).

In order to discuss the main results of this thesis concerning existence of invariant tori,

boundedness of solutions, and periodic orbits, we analyze the unperturbed Filippov system associated
with (1.4).

1.1.1  Unperturbed Filippov system

For ¢ = 0, the Filippov system (1.4) writes as

T = Y,
Xﬁ,u(xay) = X9,ﬂ(t7 z,Y, 0) : .
y = 0z — pusgn(x),

which matches

T = Y, _ T = Y,
X;’M(x,y) i and X(m(x,y) e
y=0x—p, y=0x+u,

when restricted to the semi-planes z > 0 and 2 < 0, respectively. The line ¥ = {(z,y) € R? :
x = 0} represents the set of discontinuity of Xy ,. Moreover, except for y = 0, it corresponds to a
crossing region of Xy ,, which means that the solutions of X, , with initial conditions distinct from
(z,y) = (0,0) are given by the concatenation of the solutions of X , and X, , along X. By varying

the parameters ;. and 6, we describe the phase portraits of X, ,, as follows:
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(C1) 6 > 0 and p = 1: In this case, the points py = (0,0), p* = (1/6,0), and p~ = (—1/p, 0) are the
singularities of X(c1), with py being an invisible fold-fold point and also a center-type. The

points p* and p~ are both admissible linear saddles (see Figure 2);

(C2) 0 > 0 and px = —1: In this case, the only singularity of X(cg) is po and it is a visible fold-fold
(see Figure 2);

(C3) 6 = 0 and p = 1: In this case, the only singularity of X(c3) is pg, which corresponds to an

invisible fold-fold as well as a center (see Figure 3);

(C4) 0 = 0 and pr = —1: In this case, py is a visible fold-fold of X(c4) and also its only singularity
(see Figure 3);

(CS) 0 < 0and p = 1: In this case, the point p, is an invisible fold-fold and also a center of X cs)
(see Figure 4);

< U an = —1: In this case, the point pg 1S a visible fold-told, and the points p™ and p  are
(C6) 0 < 0and p 1: In thi he poi i isible fold-fold, and the poi * and

both linear centers of X (cg). These points are the only singularities of X (cg) (see Figure 4).

<

(
(

Do

ZEEI

\
A\

)
)

(C1) (C2)
Figure 2 — Phase portraits of the cases (C1) and (C2).
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X

Po

A\

(C3) (C4)

Figure 3 — Phase portraits of the cases (C3) and (C4).

Y

N 2
=

(C5) (Ceé)

<

)
D))

€
H
S

=
(

o

Figure 4 — Phase portraits of the cases (C5) and (C6).

1.1.2 Cases of period annulus: Ay — Aj

We notice that in the cases (C1), (C3), (CS), and (C6), there is are regions known as

period annuli, consisting exclusively of periodic orbits (see Section 6.1 and Figure 5). Since we are
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only concerned with these cases, we rename them according to their appearance in this work in the

following way:

Ao =(C5):0 <0and p = 1;

Ay =(C6): 0 < 0and = —1;

Az = (C1): 0 > 0and p = 1;

Az =(C3):0 =0and u = 1.

We rename the case (C5) as A because, in the context of the existence of invariant tori

and boundedness of solutions, this case has already been studied in [34].

2
On the other hand, taking H 4, (x,y) = % + G, () = Hay(x,y,t;0) to be the unper-

turbed Hamiltonian associated with (1.3) in the case A2, we notice that Ly\{(0, 0)}, where

1 1
LG:: {(w7y)eR230<HA2(xay)<% and |I‘|<§}, (18)

corresponds to the period annulus in case As. It is noteworthy that the case A5 is the only case among
the aforementioned ones where the period annulus is bounded (see Figure 5). For € # 0, we adopt the

same labels for the corresponding cases.

INW NN NN
Ve )

/) =

Ao A As As

Figure 5 — Cases of the unperturbed equation (1.3) featuring period annuli.

1.2 Main goals

In [34], Kunze et al. demonstrated that, for sufficiently small € > 0, all solutions of (1.3)

in the case Ay are bounded, provided that p € C°(S, ). This result is a consequence of the existence
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of an infinite collection of closed curves of the time-o-map associated with (1.3), which is directly
related to the existence of a sequence of nested invariant tori for the differential equation (1.3) in the
extended phase space, confining any solution of the system. In order to obtain aforementioned closed
curves, some coordinate changes are necessary to overcome the lack of regularity of the time-o-map
and to fit it into the conditions of the Invariant Curve Theorem, a variant version of the Moser’s Twist

Map Theorem present in the KAM theory.

The main goal of our work is to provide conditions over p(t) that ensure the existence
of a family of invariant tori in the remaining cases A1, A2, and A3 of the differential equation (1.3),
and consequently the boundedness of solutions whose initial conditions lies within such invariant tori.
According to the nature of the unperturbed differential equation (1.3), we expect boundedness of all
solutions in the cases .4; and A3, but not in the case A5, since the period annulus, for £ = 0, in such a

case is bounded.

Specifically, by adopting the framework provided by Kunze et al. in [34], we address the
existence of invariant tori for the differential equation (1.3) in the case .4; by means of the Invariant
Curve Theorem, while case Aj is treated with Moser’s Twist Map Theorem. In both cases, p(t) is
required to be sufficiently smooth. In contrast to the former cases, we study the existence of invariant
tori for the differential equation (1.3) in case A3 through a simpler constructive method by assuming
p(t) to be a Lebesgue-integrable function with vanishing average. More specifically, we construct
an explicit family of invariant tori of (1.3) whose union of their interiors covers the enlarged three-
dimensional space (¢, z, %) € S, x R In this case, the Carathéodory theory for differential equations

must also be considered in order to address the uniqueness of solutions.

The reason for not using KAM theory in the study of case Aj is that, since § = 0, the
saturation g(x) as in (1.1) becomes a bounded function. This characteristic generates a subtle twist
at infinity, making it challenging to apply the standard versions of Moser’s Twist Map Theorem to
obtain global results regarding the existence of invariant tori. On the other hand, our reasoning for
case A3 allows us to significantly reduce the regularity of p(¢) by assuming a vanishing average for it.
This differs from cases A; and Az, where smoother conditions on p(t) are crucial for the techniques
employed. Additionally, the results obtained for case .43 have a non-perturbative character, meaning
that their accuracy is independent of <. For the non-vanishing average case, we present a work in
progress to deal with the existence of invariant tori and boundedness of all solutions of (1.3), primarily

relying on the parametrization method (see [27], for instance).

Besides the existence of invariant tori, we will use three distinct approaches to deal with
the existence of periodic solutions of (1.3). The first one is grounded on a topological method for
detecting fixed points in twist area-preserving maps, and it shall be applied to cases .4; and A5. The
second one consists in finding periodic solutions of (1.3) in the case A3 through direct computations.

Finally, the third one relies on the Melnikov method for detecting periodic orbits, which is going to be
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addressed to the general class of differential equations (1.2).

1.3 Structure of the thesis

Chapter 2 is dedicated to present some basic notions to be used throughout this work such

as Carathéodory equations, Filippov systems, Hamiltonian systems, and some results in KAM Theory.

In Chapter 3 we present a result concerning the existence of infinitely many invariant
tori of the differential equation (1.3) in the case A; provided p € C6(So) and ¢ is sufficiently small
(Theorem A). As a direct consequence of the main result of this chapter, we shall see that, under the
previous assumptions, all the solutions of (1.3) are bounded (Corollary 3.1.1). Furthermore, by means
of the Poincaré-Birkhoff Theorem, we will see that (1.3) has infinitely many periodic orbits (Theorem
B). The strategy followed to prove Theorem A is mainly based on [34], where the key idea is to obtain
closed curves for a Poincaré-map, which, in turn, is conjugated to the time-c-map of (1.3), fulfilling

the conditions of the Invariant Curve Theorem.

Chapter 4 is devoted to addressing the existence of invariant tori for (1.3) in case As.
Given that the period annulus is bounded in this case, we adopt a different approach than in case A;.
Here, we demonstrate the existence of a finite collection of invariant tori using Moser’s Twist Map
Theorem. Accordingly, for p € C*(S,) and K = Ly a compact subset, where Ly is the set defined in
(1.8), we prove the existence of an invariant torus of (1.3) whose intersection with the time section
{0} x R? encloses K and it is contained in Ly, whenever ¢ is sufficiently small (Theorem C). As an
immediate consequence of Theorem C, we have that every solution of (1.3) initiating in &K must be
bounded for sufficiently small values of ¢ (Corollary 4.1.1). Moreover, given n € N, Theorem C is
used to obtain a eZ‘n, p) > 0 and to construct a family of n invariant tori of (1.3), 0 < & < 52‘71, D),
whose the intersection of the n-th term of such a family with the time section {t = 0} converges to the
boundary of Ly, as n goes to infinity (Theorem D). Finally, for each n € N, we prove the existence of

n — 1 periodic solutions of (1.3) (Corollary 4.1.2).

In Chapter 5, which corresponds to the published manuscript [51], we present Theorem E
as the main result of the chapter, which addresses the existence of an infinite collection of invariant
tori for (1.3) in the case .A3. This result is a consequence of a Fundamental Lemma (Lemma 5.2.1)
that provides sufficient conditions for the existence of an invariant torus of (1.3) by assuming that p(t)
is a Lebesgue-integrable function with vanishing average. Furthermore, the invariant tori provided
by Theorem E are foliated by periodic orbits, representing a highly exceptional phenomenon. This
stands in contrast to the tori obtained through the KAM theory, which typically carry quasi-periodic
motions. As a final result of the chapter, Proposition 5.3.3 stands for a simple approach to the existence
of invariant tori of (1.3) in the case that p(t) is a L*-function, instead of just Lebesgue-integrable. The

chapter is ended with further directions concerning case .A3 when p(t) has a non-vanishing average.
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Finally, Chapter 6, corresponding to the manuscript [50], is dedicated to presenting a
Melnikov analysis applied to the more general class of differential equations (1.2). Specifically, by
considering f (¢, z, ) to be a C*-function and o-periodic in ¢, we provide a Melnikov function (Theorem
F) for each one of the cases Ag, A;, Az, and Az, whose simple zeros imply the existence of periodic

solutions bifurcating from the corresponding period annulus.
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2 Basic Concepts

This chapter is devoted to shortly introduce some important concepts and classical results
to be used throughout this work, such as discontinuous differential equations, Hamiltonian systems,
and KAM theory.

2.1  Some concepts and results of differential equations: contin-
uous, Carathéodory, and Filippov

When exploring differential equations with discontinuous right-hand side, different notions
of solutions may arise, creating a challenge in investigating fundamental mathematical concepts such

as existence and uniqueness of solutions.

Before we proceed with the discontinuous right-hand side differential equations, let us

revisit some crucial aspects of the continuous ones.
Consider the non-autonomous Cauchy problem

T = f(t,$)7

[L'(to) = X,

(t,x) el c R x R". (2.1)

A classical solution of (2.1) is a curve z(t) defined in an interval Z < R containing ¢y, which is
differentiable for every t € Z, (¢, x(t)) € U for every t € Z, and satisfies (2.1) for every ¢t € Z. In the
case that f is continuous in the open set I/, the Cauchy problem (2.1) is equivalent to the integral

equation
t
x(t) = zo + J f(s,x(s))ds, 2.2)
to

meaning that a differentiable curve ¢ : Z — U, whose graph is contained in ¥/, is a solution to (2.1) if

and only if it is a solution of (2.2).

Some of the basic results concerning the existence and uniqueness of solutions in the

classical sense are presented below.

Theorem 2.1.1. [59, Peano’s Theorem] Suppose that for (to, xo) € U there exist a and b positive
numbers such that R = R(tg, xo,a,b) < U, where

R(to, g, a,b) = {(t,x) e Rx R" : tn <t <ty + a and | — xo| < b}, (2.3)

and f is continuous on R. Then, there exists a solution to the Cauchy problem (2.1) defined on
[to, to + a], where a = inf{a,b/M} and M = ||f|| = sup {|f(t,z)|}.
(t,x)eR
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Theorem 2.1.2. [59, Theorem 3 §5] Suppose that U < R x R" is an open set and f : U — R" is
a continuous function. If x(t) is a solution to the Cauchy problem (2.1) on some interval, then there
exists a continuation of x(t) to a maximal interval of existence. Moreover, if (w_,w, ) is the maximal
interval of existence of x(t), then g(t) = (t, x(t)) tends to the boundary of U ast — w_ andt — w..
That is, for each compact K < U there exists a neighborhood V of w4 such that g(t) ¢ K for every
te.

Remark 2.1.3. As a direct consequence of the previous result, we have every maximal solution of (2.1)

confined in an invariant compact set of © = f(t, x) must be defined for every t € R.

Theorem 2.1.4. [59, Uniqueness of classical solutions] For (ty, xo) € U, suppose that there exist a
and b such that f is Lipschitiz continuous on R = R(to, xo,a,b). If | fllew < M in R, then there exists
a unique solution to (2.1) defined on [ty,ty + a], where a = inf{a,b/M}.

For the purposes of this work, our focus lies specifically on the concepts of Carathéodory
and Filippov solutions for differential equations with discontinuous right-hand sides, which are

intrinsically related with the concept of absolutely continuous functions.

2.1.1 Carathéodory differential equations

The essence of Carathéodory’s theory of differential equations is to extend the concept of

a solution to a wider class of initial value problems of the form

@ = f(t ),
(t,x) el c R x R", (2.4)
Jf(to) = X,

and investigate their properties under less restrictive assumptions over f.

In what follows, we present the concept of absolutely continuous function, as well as the

definition of a Carathéodory differential equation.

Definition 2.1.5. A function u : [a,b] = R — R" is called absolutely continuous on the closed interval

[a,b], if there exists a Lebesgue-integrable function v : |a,b] — R" satisfying

T

uw(z) = u(a) + J v(s)ds,

for every x € [a,b]. In such cases, we say that u is differentiable for almost every x € [a,b] and

u'(x) = v(x) almost everywhere.

Remark 2.1.6. Every absolute continuous function is continuous, but the converse is not true. For

1
tsin{—), if t+#0,
u(t) = : (t) 4
0, if t=0,

instance, the function
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is continuous, but not absolute continuous.

Definition 2.1.7. Let 7 x V < R x R" be an open set. We say that a function f : T xV — R" satisfies
the Carathéodory conditions if:

(i) For every x € V, the function t — f(t,x) is measurable;
(ii) For almost everyt € I, x — [(t,x) is continuous;

(iii) For every (to, o) € Z x V, there exist positive numbers a and b, and a non-negative summable

function p, z0) © [to, to + a] — R satisfying

(a) R(to,xo,a,b) cU;
(b) || f(t,2)| < preo,z0)(t) for every (t,x) € R(to, xo, a,b);

with R(ty, o, a,b) being the set defined in (2.3).

Then, if f satisfies the Carathéodory conditions, we call (2.4) a Carathéodory differential equation.

Definition 2.1.8. A Carathéodory solution of (2.4) is an absolutely continuous function satisfying
(2.2) whose graph is contained in U.

Evidently, every classical solution is a Carathéodory solution.

Example 2.1.9. Consider f : R — R the piecewise function defined by

1, if >0,
1
f(‘l') = ga lf xr = 07
-1, if =z<0.
The differential equation © = f(x) has no classical solutions at xy = 0. However, there exist

two Carathéodory solutions initiating in 0 and having |0, +0) as the interval of definition, namely,
x1(t) =t and x5(t) = —t.

Now, we provide some sufficient conditions for the existence and uniqueness of Carathéodory
solutions. We emphasize that different assumptions over f may be considered in order to establish

such properties (see [14], for instance).

Theorem 2.1.10. [22, Existence of Carathéodory solutions] For a given (to, xo) € I x V, let us assume
that f satisfies the Carathéodory conditions on R(ty, xo,a,b) < I x V for some positive number a

and b. Then, on a closed interval [ty, to + d| there exists a Carathéodory solution to the initial value
to+d
problem (2.4), where d is a constant satisfying Of Potomo) (1)dE < b.

to
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Theorem 2.1.11. [22, Uniqueness of Carathéodory solutions] Given (ty, zo) € Z x V, let us assume
that R(to, xg,a,b) < T x V, for some positive numbers a and b, and that there exists an integrable

function A 20y : [to, to + a] — R satisfying

[F(t20) = £t 22) | < Awoao) ()21 = 2], (2.5)

for every (t,x1),(t,x2) € R(to,o,a,b). Then, there exists a unique Carathéodory solution to the

initial value problem (2.4).

In the following example, we study the uniqueness of solutions of the differential systems
in (1.5).

Example 2.1.12. Assuming p(t) to be Lebesgue integrable, let us revisit the differential systems in
(1.5). Assume that xo > 0, and take b = /2. Then, for each (t,x,y) € R = R(to,xo, Yo, a, b), we
have that 0 < x0/2 < x < 310/2, for any yo € R and a > 0. This implies that X ,(-;¢) : R — R? is
well defined. Besides that, for each (t, x1,y1), (t, z2,y2) € R = R(to, xo, Yo, a, b) and for a fixed ¢ > 0,

we get
| X5, z1yise) — Xg, (8 w2, y26) | < (1 — 92, 0(21 — 22))| < max{1, 0[}(z1, y1) — (22, 92)]

which means that, by defining X,.z,.0)(t) = max{1,|0|}, relationship (2.5) holds. We conclude that,

forany xo > 0, yo € R, and ty € R, there exists a unique local solution to the initial value problem

(:B?y) = X;:u(t,l‘,y;é'),
(z(t0), y(t)) = (z0; Yo)-

The proof of the uniqueness of the local trajectories of X, , (t,x,y;¢€) is entirely analogous to that of
X;:M(t7 .ZC, y’ 6)‘

2.1.2 Filippov differential equations

We saw in the previous section that when (2.4) exhibits discontinuities in ¢, we can use
Carathéodory’s theory for differential equations to understand the flow generated by it in such case.
Nevertheless, when such discontinuities occurs with respect to x, the associated vector field may
undergo substantial variations near a specific point, making it impossible to construct a Carathéodory
solution in this situation. The Filippov theory for differential equations with discontinuous right-hand

side aims to describe the solutions of a equation of the form
= f(t,z), (t,x)elUd cRxR" (2.6)

by considering the behavior of the associated vector field in a neighborhood of each point (¢, x) in its

domain U.
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In this section, we briefly introduce the Filippov formalism and discuss some important

results concerning this theory. For further details on this topic, we recommend [22].

For x € R" and § > 0, let us denote by (z, d) the ball centered in x of radio . Assume
that the differential equation (2.6) is discontinuous in = in a set of measure zero and define the

set-valued map

FIAItx) =) () @®{f(t Bz 6)\S)},

6>0 p(S)=0
with ¢o standing for the convex closure and p for the Lebesgue measure. We notice that, if f(¢,-) is
continuous in z, then F[f](t,x) = {f(t,x)}.

Definition 2.1.13. Let F' : U < R x R" — R" be a set-valued function. A function p : [ — U is

called a solution of the differential inclusion
t € F(t,x), 2.7

if it is absolutely continuous and it satisfies (2.7) for almost every t € I.

More informations about differential inclusions can be found in [57].

Definition 2.1.14. A curve x(t) defined in some interval Z R containing t is said to be a Filippov

solution of
z = f(t,z),

[L'(to) = X,

(t,x) el c R x R", (2.8)

if (t,z(t)) € U for every t € U and it is a solution to the differential inclusion

foUWJ%

(2.9)
z(tog) = wo.

In general, Carathéodory and Filippov solutions are not related, as we shall see in the

following example.

Example 2.1.15. Assume that to = 0 and xoy = 0, and consider the initial value problem (2.8) with

ﬂm@:ﬂ@={1y$¢&

0 if z=0.

There are two Carathéodory solutions to the initial value problem with the maximal interval of definition
being |0, +00). Namely, z1(t) = 0 and x5(t) = t. When we adopt the Filippov convention for the initial
value problem, we have that F[f] : R — 2% is given by F[f](x) = {1}, and consequently, x5(t) = t

is the only solution to the initial value problem (2.8).



Chapter 2. Basic Concepts 28

In what follows, we present a definition that extends the concept of continuity of vector-

valued functions to set-valued functions.

Definition 2.1.16. Let F : U ¢ R x R" — 2%" be a set-valued map, that is, each point (t,x) eU
is assigned to a subset F(t,x) < R". We say the F' is upper semi-continuous (resp. lower semi-
continuous) on x € R" if for every ¢ > 0, there exists 6 > 0 such that F'(y) < F(x) + B(0,¢) (resp.
F(z) c F(y) + B(0,¢)) for every y € B(x, ). The set-valued function F is said to be continuous if it

is both upper and lower semi-continuous.

Sufficient conditions for the existence of solutions for a given differential inclusion of the

form & € F(t, z) is given in the following result.

Theorem 2.1.17. [22, Theorem 1 §1 ] Assume that for each (t,x) € U, the set F(t,x) < R" is
non-empty, closed, convex, and bounded. If F' is upper semi-continuous in U, then for each (ty, x¢)
there exists a solution to the problem

te F(t,x),

I(to) = Xy-.

Back to the differential equation (2.4), some conditions over f can be assumed in order to

the associated Filippov set-valued function F| f] fulfills the conditions of Theorem 2.1.17.

Definition 2.1.18. A function f : U < R x R" — R" is called locally essentially bounded in U if, for
each (to, xo) € U, there exist 1 > 0, 0o > 0, and a positive integrable function m, 4,y : [t,t+02] = R
satisfying

£ )] < meg w0 (F)

for almost every t € [to, to + 02| and almost every x € B(xq, 01) in the sense of Lebesgue measure.

Proposition 2.1.19. /22, §7] Let f : U < R x R" — R" be a locally essentially bounded function.
Then, for each (t,x) € U, the set F[f](t,x) is non-empty and bounded. Moreover, the set-valued

function F|f] is upper semi-continuous.

As direct consequence of the previous result, we have the following.

Theorem 2.1.20. /22, Theorem 8 §7] Let f : U < R x R" — R" be a locally essentially bounded

function. Thus, for each (ty, xo) € U, there exists a solution to the initial value problem (2.8).

Example 2.1.21. Let us consider the differential system Xy ,(t,z,y;€) = (y, 0z — psgn(x) + € p(t))
introduced in (1.4), with 0 and ¢ being real parameters, and 1 € {—1,1}. We notice that

[Xo,u(t, 2, 558)| < [yl + [0ll] + 1 + [el[p(t)].
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Then, given (ty, o, %) € R x R?, it follows that, for any &, > 0,
| Xou(t, 2, y5 )l < 61+ [yol + [601(31 + [ol) + 1+ [ellp(t)];

for every (z,y) € B((xo, o), 61). Therefore, by taking p(t) to be Lebesgue-integrable, it follows that
M(to.w0.90) (L) = 01 + Yol + |0](01 + |zo]) + 1 + |e|[p(t)| is a positive Lebesgue-integrable function
defined on [ty, to + 03], for any 65 > 0. This implies that Xy ,(t, x,y; €) is locally essentially bounded
provided p(t) is a Lebesgue-integrable function. It results from Theorem 2.1.20 that, for any given
initial condition (ty, 2o, yo) € R x R? there exists a local solution of Xy ,(t, z,y; €) passing through
it.

In the Filippov context of solutions, there exists a similar result concerning continuous

extension to the boundary of maximal solutions.

Theorem 2.1.22. [22, Theorem 9 §7] Under the conditions of Theorem 2.1.20, any maximal solution
existing within a specified closed and bounded domain is extended on both sides until it reaches the

boundary of the domain.

The task of describing the trajectories of a differential equation is significantly facilitated
when the set of discontinuity of a given vector-valued function corresponds to a codimension one
smooth manifold being the preimage of a regular value. For instance, let us assume that f : V <
R™ — R" is a Filippov vector field discontinuous on X = {x € V : h(x) = 0}, where h is a smooth

submersion. Then, X separates the set ) into two subsets, namely
Vi={reV:h(r) >0} and V ={zeV:h(zx) <0}
and the vector-valued function f(x) can be expressed as follows

Fr(@) if hz) =0,
£ (x) if h(z) <O0.

fx) =

If zg € V* (resp. o € V™), then the local trajectory of f having point x( as initial condition is
determined by the trajectory of f* (resp. f ) passing through (. For 25 € X, we use the geometrical
characteristics of X to determine the local trajectory passing though a given point. The set X can be

separated into three disjoint subsets
Ye:={zxeX: fth(x)- f~h(z) > 0},
Y :={xeX: fth(z) >0, f h(z) <0},
YWi={reX: fth(z) <0, f h(z) > 0},

where fTh(z) := (f*(x), Vh(z)) denotes the Lie derivative of h in the direction of the vector fields

f*. The sets above are usually referred as crossing, escaping, and sliding regions, respectively. If
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xo € X°, the local trajectory of f having x as initial condition is given by the concatenation of the
local trajectories of f™ and f~ passing through zq. When z € X°UX?, then it is necessary to study the
sliding vector field given by
f~h(p) () = fTh(p) S~ ()

f=h(p) = f+h(p)

to understand the local behavior of solutions of the vector field f, and in such case, uniqueness is not

f(p) =

expected for the local solutions. The points € 3 where either f"h(x) = 0 or f~h(x) = 0 are called

tangency points and are one of the singular points of Filippov vector fields.

Since we are primarily concerned with crossing solutions in our work, we are not extending
the discussion on Filippov vector fields having smooth manifolds as their set of discontinuity. For the

readers interested in this topic, we recommend [22, 24].

Example 2.1.23. We revisit the vector field (1.4). Let us denote Xy ,(¢, x,y;¢) = (1, Xo ,(¢, x,y;€))
the Filippov vector field associated with (1.4). The set of discontinuity of X ,.(¢, x, y;€) is X' = h=1(0),
where h : R®> — R is defined by h(¢p,x,y) = x. Taking into account the decomposed differential

systems in (1.5), we have that

Xpr(dw,y56) = (1L, Xy, (0, 2, y5¢)), if >0,

X@,u(¢ax>y;€) =
Xy (9, 2,y58) = (1, Xy (9,2, y5€)), if 2 <0.

Thus, for a fixed ¢, it follows that
XOi“uh(gba x,y, 5) =Y,

which implies that, except for y = 0, the plane %' corresponds to a crossing region of Xy (¢, x,y; €),
since X, W, x,y;€) - Xy Wb, 2,y €) = y? > 0.

2.2 Hamiltonian systems

Hamiltonian differential systems are a powerful mathematical tool for describing mechan-
ical dynamics, especially those related to celestial mechanics. Its development is mainly attributed
to the Irish mathematician W. R. Hamilton, who in [26] proposed a new way of dealing with the
interaction laws of I. Newton introduced in [45]. In this section, we briefly introduce Hamiltonian
systems and present some interesting properties concerning these objects. For further details on this

theory, we suggest consulting [6].

Let us consider the differential system

. oH
T = a—y(ﬂﬁay),

. oH
Y= —%(l@y),

(x,y) e R" x R", (2.10)
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where H : U < R*™ — R, with U being open, is a function of class C", r > 1. We refer to (2.10) as
Hamiltonian system with n-degrees of freedom associated with the Hamiltonian /. The variables z

and y are usually referred to as position and conjugated momentum, respectively.

A distinctive characteristic of Hamiltonian systems is the invariance of the level surfaces of
the Hamiltonian function under its generated flow. In other words, if (z(t), y(t)) is an integral curve of
(2.10), then, for some h € R, H(z(t),y(t)) = h for every t € I, with I denoting the maximal interval
of definition of (x(¢), y(t)). In the case of a Hamiltonian system with one degree of freedom, the level
curves of [ carry the solutions of the originating differential system, providing a full description of its

phase portrait.

Hamiltonian systems are also at the core of symplectic geometry, a branch of differential
topology and differential geometry that deals with symplectic manifolds. This area of mathematics
provides a modern language to study classical mechanics through the Hamiltonian formulation. More

on this theory can be found in [61].

For our purposes, we concentrate on the exact sympletic character of Poincaré maps asso-
ciated with Hamiltonian systems. Therefore, we only present some aspects concerning the symplectic

geometry.

Let V be a 2n-dimensional vector space and w : V x V — R a 2-form. We say that the pair
(V,w) is a sympletic vector space if w is a closed skew-symmetric form satisfying a non-degeneracy
condition given by

w(ui,up) =0 forevery wu; €V, then wuy=0.

The pair (M, w) is called symplectic manifold, if M is a 2n-dimensional manifold and w is closed

2-form for which (7, M, w,) is a symplectic vector space for every x € M.

Definition 2.2.1. A diffeomorphism f between two symplectic manifolds (M, w) and (M, w,) is
called symplectomorphism if it satisfies f*ws = wy. Under this condition, (M,,w,) and (M, w,) are
said to be symplectomorph.

Let us consider (R*,7) with the 2-form 7 = 3" dp; A dg and
(q1,- -, @us D1, - - -, Pn) € R?™ the usual coordinates of R*". The pair (R?", ) is a symplectic manifold,
with 7 being called canonical symplectic form. According to Darboux theorem (see [12, p.40]), if

(M, w) is a symplectic manifold, then, for every z € M there exist 4, = M and V, = R*" open

*
x

neighborhoods of = and 0, respectively, and a symplectomorphism @, : U, — V, such that D n = w.

In what follows, we provide a way to define Hamiltonian systems in the context of

symplectic geometry.

Definition 2.2.2. Let (M, w) be a sympletic manifold and H : M — R a smooth function. The function

H defines a 1-form in M denoted dH. From the non-degeneracy of w, there exists a unique vector field
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Xy satisfying
(A)(XH, ) =dH.

The triple (M, w, H) is called Hamiltonian system with n-degree of freedom.

Remark 2.2.3. From Darboux Theorem, it follows that, in local coordinates, a Hamiltonian vector
field X i assumes the form (2.10).

Let p/ : M — M denotes the flow generated by a Hamiltonian system (M, w, H). Assume
that p/’ is complete. Then, for every t € R, (p/)*w = w, meaning that the flow associated with a

Hamiltonian system (M, w, H) defines a group of symplectomorphisms on M.

Hamiltonian systems can indeed depend on time. In such cases, the extended phase space
of a Hamiltonian system is considered as M x R, or M x S, when the Hamiltonian is o-periodically

dependent on time. We refer to this as a nl/2- degree of freedom Hamiltonian system.

Notice that when the symplectic structure w is exact, meaning there exists a 1- form v for
which w = dv, any symplectomorphism f : (M,w) — (M,w) defines a closed 1-form v = v — f*v. If
v is exact, then f is called an exact symplectic map. On this subject, we have the following interesting

result.

Proposition 2.2.4. [61, Proposition 1.1] Let (M,w, H) be a o-periodic non-autonomous Hamiltonian
system, and let Py : M x {10} — M x {19 + o} denote the time-c-map associated with (M ,w, H),

for some 1y € R. If w is exact, then Py is an exact sympletic map.

As a consequence of the previous result we have that Poincaré maps associated with

periodic non-autonomous Hamiltonian systems are volume preserving.

In the following sections, we present important results concerning planar Hamiltonian sys-
tems, such as the period function for closed trajectories and canonical transformations for Hamiltonian

systems featuring period annuli.

2.2.1 Period function for symmetric one degree of freedom Hamiltonian
systems
For Hamiltonian differential systems whose trajectories exhibit symmetry with respect to

the z-axis expressed by H(x,y) = % + G(x), the period of a closed trajectory lying on the level curve

H(z,y) = h, with h € R, can be determined using the function

“ du
Tih) = ZL V2 —G)’

with (a,0) and (b,0), b < 0 < a, representing the points resulting from the intersection between the

corresponding level curve and the x-axis (see [25, p. 203]). If G(z) = G(—x) for every x € R, then the
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level curves of H are also symmetric with respect to the y-axis. This implies that the period function
T'(h) can be simplified to

@ du
Tih) = 4L V2 —G@)

since b = —a.

2.2.2 Action-angle coordinates for non-autonomous planar Hamiltonian sys-
tems

In this section, we will outline a procedure involving the action-angle transformation for
planar time-dependent Hamiltonian systems. This technique is a common method used to modify the
original Hamiltonian into a version where the main component depends only on the action variable.
The discussion present in this section is mainly based on [36, §2]. It is also important to mention [5] as

a standard literature on this subject.

The formal definition of the action-angle variables is as follows: By taking time as a
parameter, we consider the Hamiltonian
y?
H(z,y,t) = 3+G(af,t). (2.11)
Assume that ho(/,t) corresponds to the value of H on the level curve that encloses the area [ in the

(x, y)-plane. Implicitly, the function ho(7,t) can be expressed by the following integral
I = § ydz.
H(I,y,t):ho(f,t)

Remark 2.2.5. Let ho(I,t) = h be the energy for which the corresponding level curve encloses the
region with area I, and let A(h,t) be the inverse of hg in 1, that is, for a fixed t, A(ho(I,t),t) = I. As
discussed in [5, p. 282], the derivative of A with respect to h corresponds to the period of the level
curve H(x,y,t) = h in terms of h, which yields

1

By considering 7 as the curve connecting the y-axis to the point (x, y) on the level curve

H(z,y,t) = ho(I,t) oriented clockwise, we define the generating function

S(x,I,t) = §ydx.
v

Then, the action-angle transformation (¢, I,t) — (z,y,t) is defined through the relations

y=0;5(x,I,t) and ¢ = 0;S(x,1,1). (2.12)
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We notice that (2.12) defines a sympletic transformation, since

A A dl = d(8;8(x, 1,8)) A dl = 0,0,8(x, I, £)dz A dI,
de Ady =dz A d(0,5(x,I,t)) = 010, S(x, I, t)dx A dI.

This implies that the transformation provided by (2.12) between (x, y,t) and (¢, I, t) does not change
the Hamiltonian character of H, now given by

H(p, I, t) = ho(I,t) +Hi(p, I,1),

where H; (¢, I,t) = 0,S(x, I,t) and x = (¢, I,t) is implicitly given by (2.12).

For the Hamiltonian (2.11), we notice that, for y > 0,

y=2(ho(l,1) = Gz,1)),

which means that the curve 7 defining the generating function S(z, I, t) can be parameterized by
v(s) = (5,4/2 (ho(I,t) — G(s,1))), with s € [0, z], yielding

S, 1,1) = J V2 (ho(1,1) — G(s, £))ds.

Consequently, from the Leibniz Integral rule, the angle variable is given by
’ ds 1 * ds
o(x,h, 1) = drho(L, 1) f _ J ,
T VR G(T = Gls,t) Tt )y /2 (h=G(5.0)

with the second equality above resulting from Remark 2.2.5.

2.13)

2.2.3 Time and energy as the new position and momentum

For the following coordinate transformation, we employ the well-known technique in-
troduced by Arnold in [4], which has been consistently reiterated in works such as [34, 36, 37, 64].
Roughly speaking, this coordinate transformation consists in exchange the roles of position and time in
the Hamiltonian systems in the region where the derivative of the corresponding Hamiltonian function

with respect to the momentum variable does not vanish.

In order to establish such coordinate change, let us first consider V < R? as an open set and
H : V — R a non-autonomous Hamiltonian function of class C'. The Hamiltonian system associated

with H in its extended form is given by

. O0H
- = t
1= (¢,p.1),
oH
o (2.14)
P 0 (¢,p,1),
t=1,

\
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with dot denoting the derivative with respect to s.

. oH
We assume that there exists an open set «/ < V such that —(q,p,t) > 0 for every

dp
(q,p,t) € U. Then, we have that (2.14) is equivalent with

(¢ =1,
oH oH

< p, = _a_q(Qap7t)/a_p(q7pvt)v (2.15)
oH

t=1/==(q,p,t
/ P (¢,p,1),

\

0
where ' = d/1q. Fixing ¢ and ¢ as parameters and taking account a—H(q, p,t) > 0, it follows that
p
H(q, -, t) is invertible, for every (g, p, t) € U. This leads us to the following coordinate change
D - U — o(U)
(¢.p,1) — (Q,P7),
where Q(q,p,t) = t, P(q,p,t) = H(q,p,t), and 7(q,p,t) = q. Let us denote by J2(Q, P,t) the

inverse of H in p, that is, H(7, 77(Q, P,7),Q) = P, for every (Q, P,t) € ®(U). By performing & to
the differential system (2.15), we have that

0
Q- 1/%@,%@, P1).Q).

l., o oH

P = 5(7—7%(Q7P7 T)?Q)/a_p(7-7%(Q7P7 T)’Q)’

/
T =1,

\
which is Hamiltonian with the function 57 (Q, P, T), since

oN 1 o G(r, 2(Q,P,7),Q)

e 2 N RN B AL (e G X )

2.3 KAM theory

The KAM theory comprises a collection of results concerning the persistence of quasi-
periodic motions in nearly integrable systems under specific Diophantine and non-degeneracy con-
ditions. It is named in honor of the Russian mathematicians Kolmogorov, Arnold, and Moser, who,
in the 1950s and 1960s, introduced a novel approach to tackle the n-body problem initially posed by
Newton. This problem remained unsolved for almost two centuries, primarily due to issues arising
from the appearance of the so-called “small divisors” when attempting to solve functional equations

through series expansions.

Among the most celebrated results in this theory are the KAM Theorem [6], which

addresses the existence of invariant tori in nearly integrable Hamiltonian systems; Arnold’s Theorem
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[66], dealing with the existence of analytical conjugacies between pure rotations and close to pure
rotations on the circle; and Moser’s Twist Map Theorem [43], addressing the existence of invariant
curves for twist regular maps defined on the annulus. The main idea behind the proof of the KAM
results mainly relies on two points: The first one involves linearizing the functional equation around an
approximate solution and solving the linearized problem, and the second is based on an adaptation of
Newton’s method to approximate the solution of the original problem by the solutions of the linearized
one. This procedure, together with the symplectic structure and the Diophantine character required in
the KAM results, enables the construction of a convergent sequence with a square rate of convergence,

overcoming the harmful effects of the “small divisors”.

In this section, our primary focus is on Moser’s Twist Map Theorem and its variations. For

readers interested in KAM theory, we recommend consulting [19].

2.3.1 Diophantine numbers

This section is devoted to briefly introduce a special class of irrational numbers called

Diophantine.

Definition 2.3.1. We say that a number w € R\Q is Diophantine if there exist two positive constants
v > 2 and ~y > 0 such that
>

lal”

q

d
for every p € Z and q € 7.*.

Remark 2.3.2. A direct consequence of the previous definition is that if w € R\Q is a Diophantine

number, then so it is w + k for every k € 7Z.

In what follows we present a particular class of Diophantine numbers.

Definition 2.3.3. A number w € R\Q is said to be of constant type if the quantity

Q) :=inf {q2

w—]—g‘: p€Z and qu}
q
is positive. In such cases, () is called Markoff constant associated with w.

Equivalently, irrational numbers of constant type can be characterized through their contin-

ued fraction expansions. In particular, for a given w € R\Q, we express it as

1
w = lag; a1, as,...] =ag + ———
a1+ o

This continued fraction expansion is unique for every real number, and w is irrational if, and only if the

terms a; are infinitely determined. Such characterization leads to the following result.
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Proposition 2.3.4. [28, §3.5] An irrational number w = |ag; a1, as, . . .| is of constant type if, and only
if sup{a; : i € N} = C < oo. The Markoff constant Q) associated with w satisfies

1 1
<0< .
C+2 C

The previous proposition is crucial for finding irrational numbers of constant type in any

real interval and determine the bounds for their Markoff constants.

Proposition 2.3.5. [53, Lemma 4.4] For each interval |a,b] < [0, 1] with b — a = € > 0, there exists
an irrational number o* € |a,b| of constant type such that the corresponding Markoff constant 2*
satisfies €/16 < Q* < /4.

2.3.2 Moser’s Twist Map Theorem

Let A denote an annulus defined by A = {(6,7) : 6 € S; and a < r < b}, whose univer-
sal cover is the strip A = {(0,7) : 0 € R and a < r < b}.

Definition 2.3.6. The maps of the form

M:A—>Sl XR,
@,r) (é—l—ﬁ—i—a(?"),r),

where « : [a, b] — R is a smooth function with o/ (r) > 0 for every r € |a, b|, are called twist maps.

Definition 2.3.7. Let ¢ : S; — Sy be an orientation preserving diffeomorphism. The rotation number
of ¢ is defined as the limit
. OMx)—=x
p(6) = tim ST

n—ao0 n

when such a limit exists.

Remark 2.3.8. Important aspects regarding the rotation number include the independence of the
limit in Definition 2.3.7 on the choice of x € S, and its invariance under topological conjugations.
Furthermore, if f is a C"-diffeomorphism, with r = 2, defined on a curve topologically equivalent to a
circle and possessing an irrational rotation number w, then f is topologically conjugated to a pure
rotation of the circle
R,: §§ — Sy
0 — O+w.

The term “twist maps”, as defined in Definition 2.3.6, is appropriate because, for fixed
angles 0y € S, the lines %5, := {6p} x [a, b] are twisted when subjected to the map M. Additionally, it
is noteworthy that the curves %, := S; x {rq}, where ¢ € [a, b], remain invariant under M. Moreover,

the restriction M

. has rotation number p(M ‘Cp ) = B+ a(ro). A natural question arising from these
Org Org
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points is: What happens if M is slightly perturbed? Is there any invariant curve for such perturbation?

The answer for the second question, in general, is no, as noticed in the following example.

Example 2.3.9. Consider the map M (0,r) = (0 +r,(1—¢)r), defined on the annulus Sy x (0,T), with
e €(0,1) and ¥ > 0. The map M does not have any invariant curve in Sy x (0, 7). Indeed, suppose
that there exists an invariant curve € for M in'Sy x (0, 7). Then, there would exist r1,r5 € (0, ) such
that € is contained in the region enclosed by the curves 6,, and 6,,, which is going to be denoted D.
However, when we apply M iterativelly to D, this region is shrunk to S x {0}, and, thus, the curve €

cannot be invariant. This implies that M cannot have invariant curves.

Definition 2.3.10. A map M : S; x [a,b] — R? has the intersection property in' S; x [a,b] if
M(T) nT # & for any Jordan curve T' = Sy X [a, b], which is homotopic to 6,,, for rq € |a, b].

Certainly, the map provided in Example 2.3.9 does not have the intersection property.
On the other hand, in certain maps, such a property follows from previously assumed geometric
conditions, such as area-preserving maps and Poincaré-maps derived from Hamiltonian systems. For
the latter, we present the following result, provided by R. Dieckerhoff and E. Zehnder in [18], which is

a consequence of the exact symplectic character presented in Proposition 2.2.4.

Theorem 2.3.11. [I8, Lemma 5] Let P : S; x [a,b] — R? be a Poincaré map associated to a

non-autonomous periodic Hamiltonian system. Then P has the intersection property.

It is not difficult to see that the intersection property is a topologically invariant condition,

as stated in the following proposition.

Proposition 2.3.12. Consider the maps P : D — D and P : D — D, along with a conjugation
U : D — D between P and P. If P exhibits the intersection property, then such a property also holds
for P.

In order to present the Moser’s Twist Map Theorem, let us introduce the C"- norm. For
f e C"(A), we denote by || f

cra) the norm

B aernf 2.16
1 llercay = 0<mn<r o7 dy ||, o
o8]
where
‘ omn g ap |21, @/)‘
&Tag o (zyeA a;nﬁg | |

Theorem 2.3.13. [44, Moser’s Twist Map Theorem] Let M : S| x [a,b] — R? be a twist map with the

intersection property. We assume that its lift can be written in the form
MR x [a,b] — R x R,
O,r) +—(0+0+a(r)+pi(0,r),r+pa(0,7)),
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where o € C*([a, b)) is a function satisfying o/ (r) > 0 for every r € |a, b], and ¢, and o, are of class

C*inR x [a,b] and 1-periodic in 0. Then, there exists . > 0 depending on b — a and « such that if

H<P1Hc4(glx[a,b]) + H<P2Hc4(slx[a,b]) <K,
then M has invariant curves.

Remark 2.3.14. As noticed in [44, Thereom 2.11], the invariant curves mentioned in the previous
result are directly associated with irrational numbers satisfying the Diophantine condition 2.3.1.
Specifically, if the map M satisfies the conditions of Moser’s Twist Map Theorem, then there exist an
invariant curve I' of M and a Diophantine number w such that M ‘F is conjugated to the pure rotation
of the circle R,,. Furthermore, any irrational number within the image of the function o(r) satisfying

the same Diophantine condition as w leads to the existence of an invariant curve of M distinct of T'.

2.3.3 Invariant Curve Theorem

As one of the variations of Moser’s Twist Map Theorem, the following theorem was
presented by Kunze et al. [34], and it builds upon the results established by M. Herman in [29]. As a
particular case of the Diophantine numbers, this result requires that the associated rotation number
to be irrational of constant type. Additionally, we will notice that a small condition on the twist is
allowed in this case, justifying the alternative name that this result can be referred to: Small Twist Map

Theorem.

Theorem 2.3.15. [34, Invariant Curve Theorem] Consider the map P : R x [—6, —3] — R? defined
as
P(u,v) = (u+ B + 6v+ 0Fi(u,v),v + 0F5(u,v)), (2.17)

where Fy and F, are both C® functions defined in R x [—6, —3], and § lies within the interval (0, 2).
It is also assumed that P satisfies the intersection property, it is one-to-one, and 1-periodic in u.
Furthermore, let us assume that (3 is an irrational number of constant-type with Markoff constant ()
that fulfills the condition

Q<6< MQ, (2.18)

for some fixed positive number M. Then, there exists a constant M*, depending only on M, such that if

| F1

3 (Rx[6,-3]) T 1£5 CO(Rx[—6,-3]) S M7, (2.19)

then there exists a function v € C*(S,) that parameterizes a closed curve ' = {(u,v(u)) : u € S;}

which is invariant under P and for which p ( P|.) = .
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2.4 Periodic points for maps on the annulus

In this section, we present a specific condition for a twist map to have periodic points. We
shall see that the existence of such points is guaranteed by a version of the Poincaré-Birkhoff Theorem,

concerned with maps with the intersection property satisfying a twist condition on the boundaries.

Definition 2.4.1. Let f : S; x [a,b] — Sy % [a, b] be an area-preserving homeomorphism. We say that
f leaves the boundaries of Sy x |a, b| invariant if f(Sy x {a}) = Sy x {a} and f(S; x {b}) = Sy x {b}.

Definition 2.4.2. Let F' = (Fy, F,) : Rx [a,b] = Rx[a,b] bealiftof f : Sy x[a,b] — S; x [a, b]. The
map f satisfy a twist condition on the boundaries of S1 x [a, b] if either Fy(u,a) > u and Fp(u,b) < u
or Fy(u,b) > uwand Fy(u,a) < u, for every u € R.

Theorem 2.4.3. [9, Poincaré Birkhoff Theorem] Suppose that f : Sy x [a,b] — S; x [a,b] is an
area-preserving homeomorphism that leaves the boundaries of Sy x [a, b] invariant and satisfies a

twist condition on the boundaries. Then, f has at least two fixed points in Sy x |a, b].

Recently, in [65], the Poincaré-Birkhotf Theorem was extended to maps with the intersec-

tion property.

Theorem 2.4.4. [65, Theorem 1] Let f : Sy x [a,b] — S; x [a,b] be a homeomorphism with the
intersection property and satisfying the twist condition on the boundaries. Then, f has at least one

fixed point in'S; x [a,b].

The following theorem is an adaptation of the result presented in [18, Proof of Theorem 3].

Theorem 2.4.5. Assume that G : S, x [0,1] — S; x [0, 1] is a diffeomorphism of class C* with the
intersection property, leaving the boundaries of S; x [0, 1] invariant. Suppose that p (G ‘Sl y {0}) = w

and p (G‘Slx{l}) = Wo, with wy,wy € R\Q, satisfying wy > wy. Then, there exists q* € N such that,
for each q € N satisfying q = q*, the map G has at least one periodic point of period q.

Proof. From assumption, both G ‘Slx ) and GG ‘Slx (1) are C?-diffeomorphisms on the circle having
irrational rotation numbers. From Denjoy’s Theorem ([17]), there exists two orientation preserving
homeomorphisms h; : S; — Sy and hy : S; — S; that conjugate G‘slx{o} and G‘Slx{l} to the pure
rotations of the circle R, and R,,, respectively, that is,

Glg, gy = Mo Ry ohy' and Gl =hao Ry, 0hy ',

Since the group of orientation preserving homeomorphisms of the circle is path connected, it follows

that there exists a path of orientation preserving homeomorphisms p, : S; — S;, with r € [0, 1],
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between hy and h satisfying po = hy and p; = hy. We define the transformation

X: Sy x[0,1] — Sy x]0,1]
@,r)  — (pe(8),7),

which is a homeomorphism from S; x [0, 1] onto itself, as it is a continuous bijection between a compact
and a Hausdorff space. Now, let us consider the conjugated map G = x ' o Gox :S; x [0,1] —
S1 x [0, 1]. We notice that

G(Q,O) = Xil oGo X(Q,O) = Xil © G(hl(e)ao) = Xﬁl(hl © Rw1(9)70) = (9 + w170)7
@(9, 1) = X_l oGo X(67 1) = X_l © G(hQ(e)a 1) = X_l(hQ © sz(e)ﬂ 1) = (9 + wo, 1)7

with wy, wy € R\Q satisfying wy — w; > 0. This implies that there exists ¢* € N such that, for every
q=q*, q(wy—wy) > 1. Letus fix ¢ = ¢*. Then, by denoting |qw | as the integer part of qw;, we notice
that (quw; — |qwi1 ], qwa — |qw1]) is a positive interval, satisfying (quw; — |qw1], qw2 — |qw1]) N Z # &.
Take p € (qw; — [qwi ], qws — |gw1]) N Z and define the induced function G, := s P 1%l o G4, where

s: S x[0,1] — S; x[0,1]

(ulyu2) — (ul + 17“2)‘

The map G, leaves the boundary of S; x [0, 1] invariant. Indeed,

Gy(ug,0) = sP~law] 5 G (uy,0) = (u1 + qui; — p — |qus],0),

and
Gq(ul, 1) = sP~lawn] 5 G(uy, 1) = (u1 + quy — p — |qwi], 1).

Moreover, from equations above and taking g; , and ga , to be the components of G, we have that
G1,4(u1,0) —up = —p + qui — [qwi| <0 < —p + qwa — [qu1] = G14(u1, 1) — u,

because qw; — |qwi| < p < qwa — |qwi . This implies that G, is satisfying the twist condition on the
boundaries of S; x [0, 1]. Moreover, the map G, has the intersection property, since it is conjugated
with G (Proposition 2.3.12). Thus, from Theorem 2.4.4, it follows that C_T’q has at least one fixed point,

which is associated with a periodic point of GG of period q. This concludes the proof of the theorem. [
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3 Analysis of the Case A;

In this chapter, our focus is to study the existence of invariant tori and boundedness of all

solutions for the subclass of differential equation
T —sgn(z) = 0z + ep(t), 3.1)

where # < 0 and p(t) is a o-periodic function of class C°. This equation corresponds to the particular
case A; of (1.3).

As previously mentioned, a similar case of equation (3.1) was considered in [34], where,

under the same assumptions for p(¢), the authors showed that all solutions of
I+ +sgn(z) = ep(t), (3.2)

are bounded when ¢ is sufficiently small. The equation (3.2), when non-perturbed, features two virtual
linear centers, in contrast to the two admissible linear centers for the unperturbed equation (3.1).—,.
In both equations, (3.1) and (3.2), a symmetric behavior can be observed in the unperturbed scenario
(see Figure 4). By taking p € C*(S;), the boundedness of solutions is also investigated in [53] for the
forced asymmetric oscillator

T+art —bx” =1+p(),

where 2% := max{+x, 0}, and a and b are distinct positive real numbers. Thus, the investigation

presented in this chapter complements the findings from [34] and [53].

It is worthy mentioning that unbounded solutions arise in (3.2) under a Landesman-Lazer-
like condition on p(t). This condition is explored in [33], where a differential inclusion analysis
demonstrates that all solutions of (3.2) become unbounded if the first Fourier coefficient of p(¢)
satisfies

3

o it
J p(t)ert‘ > 40.
0

We believe that a similar analysis can be conducted on (3.1) in order to determine unbounded solutions.

This chapter is structured as follows: Section 3.1 introduces our main result (Theorem
A) and the corollaries resulting from it. Section (3.2) is devoted to present some preliminary results
concerning the unperturbed equation (3.1).—. In Sections 3.3 and 3.4, we provide some coordinate
changes in order to fit our problem into the conditions needed to apply the Invariant Curve Theorem.
The proof of Theorem A is done in Section 3.5. Finally, we devote Section 3.6 to present the proofs of

the technical lemmas mentioned in the preceding sections.
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3.1 Main results

The main result of this chapter stands for the existence of a family of nested invariant tori

of (3.1) whose union of their interiors cover all the extended phase space S, x R?, as follows.

NN

Figure 6 — Trajectories of (3.1) when € = 0.

Theorem A. For each p € C°(S,) and 0 < 0, there exists E(poy > 0 such that, if 0 < € < €(,, o) then
there exists an infinity collection {T}icn of nested invariant tori of (3.1), carrying quasi-periodic

motion and satisfying

|Jint(T2) = S, x R?,

€N

where int(T_') corresponds to the open region in S, x R? enclosed by the torus T

The proof of Theorem A primarily relies on the techniques and results presented in [34].

As can be noticed in the unperturbed scenario, the trajectories of (3.1).—( are either singular
points or periodic orbits (see Figure 6). This implies that every solution of (3.1) is bounded when
€ = 0. From Theorem A, it follows that, even under regularly small periodic perturbations, the
boundedness property of the solutions of (3.1) persists. In fact, given p € C°(S,) and # < 0, there exists
E(p0y > 0 such that for each 0 < € < 7, ) there exists a sequence of nested invariant tori {T }ien of
(3.1) whose union of their interiors cover all the phase space S, x R?. Consequently, for any initial
condition (0, 2(0),2(0)) € S, x R?, there exists k € N such that (0, z(0),#(0)) € int(7F+1)\int(7F).
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Since int(7X+1)\int(7F) is invariant under the flow of (3.1), it follows that the trajectory whose initial

condition is (0, z(0), 2(0)) must perpetually remain in int(7%+1)\int(7%), which, in turn, is a bounded

set of S, x R?. This leads us to the following result.

Corollary 3.1.1. For every p € C%(S,) and § < 0, there exists Epoy > O such that if 0 < e < e, ),
then all solutions of (3.1) are bounded.

By using Theorems A and 2.4.5, we get the existence of infinitely many periodic orbits of

(3.1). This result is stated below, and its proof is deferred to Section 3.5.

Theorem B. For any p € C%(S,) and 0 > 0, there exists an E(poy > 0 such that equation (3.1) has

infinitely many periodic solutions whenever 0 < € < 62},,9).

In order to illustrate the main result of this chapter (Theorem A), we present some numerical
simulations concerning the solutions of the differential equation (3.1). Specifically, assuming ¢ = —1
and p(t) = cos(2wt) + 3sin(27t), and choosing a specific value for € in (3.1), we consider several
initial conditions for the differential equation (3.1). Subsequently, we plot 1000 points for each of them

on the time section ({t = 1} x R?), as p(t) is 1-periodic in this case.

Figure 7 — The existence of invariant curves for the time-1-map, and consequently invariant tori for the
differential equation (3.1), is indicated by the concentration of colors in the figure.
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e=1/5

Figure 8 — The existence of invariant curves for the time-1-map, and consequently invariant tori for the
differential equation (3.1), is indicated by the concentration of colors in the figure.

Figure 9 — The existence of invariant curves for the time-1-map, and consequently invariant tori for the
differential equation (3.1), is indicated by the concentration of colors in the figure.

3.2 Preliminary results

This section is dedicated to the study of some objects related to the unperturbed equa-
tion (3.1).—¢. Such objects play a crucial role in constructing the transformations needed to fit our

problem into the conditions of the Invariant Curve Theorem.
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For the sake of simplicity, we are assuming that § > 0 and changing its sign at the

corresponding system, that is,

T =y,
. (3.3)
{ y = sgn(x) — Ox + € p(t).

Additionally, since § remains constant, we will omit its dependence on the subsequent elements. In

this configuration, we remind that (3.3) is Hamiltonian with

2
H(z,y,t;e) = Hu, (x,y,t;¢) = % + G () — exp(t) (3.4)

2
where G(x) = G4, (z) = —|z| + 6%. We notice that H (x, y, t; £) is continuous but not smooth on the
plane {x = 0}. By taking ¢ = 0, we notice that the Hamiltonian H becomes an one degree of freedom
piecewise smooth Hamiltonian to be denoted H(z,y) = H(x,y,t;0). Thus, in the unperturbed sce-

nario, the trajectories of (3.3).-0 lie in the level curves
Ch = {(x,y) e R* : H(z,y) = h}, for b > —1/(20) (see Figure 6).

The points resulting from the intersection between C; and the xz-axis are given by
{—a (h),—a"(h),a (h),a*(h)}, where a*(h) = (1 £ +/2h0 + 1)/6. In order to compute the pe-
riod of a trajectory that lies in the level curve Cj, we consider the value

1+ V2h0+ 1

a(h) = a*(h)
0
for h > 0, which corresponds to the maximum value among {—a™ (h), —a*(h),a” (h),a™ (h)}, for

h > 0.

By selecting the values h > 0, we effectively eliminate the possibility of level curves for
H being completely situated within the half-planes x > 0 and x < 0 (see Figure 11). This scenario

can be more precisely outlined by considering the complement in R? of the region
D:={(z,y) e R*: —1/(20) < H(x,y) < 0}. (3.5)

Remark 3.2.1. It is important to mention that the intersections between the invariant tori provided by
Theorem A and the section time {t = 0} must be closed curves contained in the set {(0,x,y) : (z,y) €
R*\D}. This is fact will be clarified along the proof of Theorem A.

Period function. Since H(—x,y) = H(z,y) and H(z, —y) = H(x,y) for every (z,y) € R?, we
notice that the energy curves of the Hamiltonian H(x, y) exhibits symmetry with respect to both x-axis

and y-axis. Thus, as a consequence of the discussion provided in Section 2.2.1, we find that the period
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)

—a*t(ha) —at(h) U hl) *(h1) +(hz

Figure 10 — Intersection between the level curves C;,, and C;, with the x—axis. We notice that, if
—1/(20) < hy < 0, then the intersection results in four points, while for hy € (0, 00), then
the intersection must consist in only two points, since the other two are virtual.

Y

Figure 11 — The shaded area corresponds to the set D.

of a solution lying on the level curve Cj, for h > 0, is given by

a(h)
T(h) = 4f du

4 <z + arcsin (—1 )) (3.6)
Vo \ 2 \20h + 1

4 1

R (arccos <_W+1)> ’
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where we are using the identity 7/2 + arcsin(z) = arccos(—z).

In the next result, we provide some properties of the period function 7" and we postpone

their proofs to Section 3.6.

Lemma 3.2.2. Let T : (0,00) — (27/v/0, 47 /V/0) be the period function given by (3.6). Then, T is a

strictly decreasing smooth function and its inverse is given by

T Yp) = %tamQ (@) :

In addition, for h > 0 sufficiently large and |21 — \/§p| sufficiently small, we have

ch P < |D'T(h)| < C;h= 270 i1, (3.7)
ci|2m —Vop| T2 < T p) < Cyl2m — Vop| 2, (3.8)
ci|2m — Vop|~D < DT (p)| < Ci|21 — Vop|m D, i1, 3.9

where ¢; and C; are universal positive constants depending on 0 , and D' denotes the i-th total

derivative of the corresponding function.

Remark 3.2.3. Let us consider a positive geometric sequence {\,}nen with ratio strictly smaller than
1/2. By defining the numbers b := T~ (21/v0 + X, /2) and b, := T~ (27/v/0 + \,), we notice that,
for eachn € N, the interval Z,, := [b,,b}] is well defined and satisfies the properties

ni»-'n

(i) b, br bF —b, — +oo;
n— -+

(ii) Foreachne N, I, nZ,,1 = .

These properties essentially ensure that the intervals Z,, are pairwise disjoint and their lengths increase

as n approaches to infinity.

3.3 Action-angle transformation

For the construction of the so-called action-angle variables, we adhere to the procedure
discussed in Section 2.2.2. Then, by noticing that the level curves of H(z, y) are piecewise smooth, we
partition the process of obtaining the generating function into zones where this approach is applicable.

Hence, the angle-function is given by

o1(z, h) if
T — ¢1(x, h) if
T+ ¢ (—x,h) if
21 — ¢y (—x, h) if

=

8 R 8 8
N < V=
N =2 WV

<
N
o

¢($7 h) =

o
< o
\Y
o
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where

2t (* du
d1(z,h) = T(h) L v/2(G(a(h)) — G(w))
- \/;Tﬁ(h) (arcsin (\/ﬁ) + arcsin (\/%)) 5

as given in (2.13). The action-function is then given by

a(h)
A(h) :=4 V2h — 2z — 0z2dx
0 (3.10)
_ m+27h + 2v/2h6 + 2(1 + 2hf)arcesc(v/1 + 2h0)

6°F
The value A(h) corresponds to the area of the region enclosed by the level curve Cy,, while ¢(x, h) is
bijectively equivalent to the angle formed between the positive part of the y-axis and the line connecting

the origin with the point (x, y) that lies on the level curve C;, as we can see in the Figure 12.
Y

Figure 12 — The shaded area enclosed by the level curve Cy, is represented by the value A(hg). The
value ¢(xo, ho) uniquely corresponds to the angle between the positive y-axis and the line
originating at (0, 0) and passing through (g, 3o).

Lemma 3.3.1. Ler us consider the functions A : (0,+0) — (27/0%% +0) and
T:(0,+0) — (27?/\/5, 4%/\/5) defined in (3.10) and (3.6), respectively. Then, A is an invertible
smooth function and satisfies A'(h) = T(h) for h € (0,+00). Moreover, if we denote by hy :
(21 /6°?, +0) — (0, +0) the inverse of A, then hy is smooth, and for h and I = A(h) sufficiently

large, the following estimates holds

coh < A(R) < Coh, ¢ < A'(h) <Cy, ¢h™ P < D'A(R) < CR'P™H =2, (3.11)

col <ho(I) <Col, ¢y <hy(I)<Cy, |Dho(D)| < CIP 0 ix2. (3.12)
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Next lemma provides a homeomorphism between the complementary of D (see equation
(3.5)) and the infinite cylinder S, x (27/60°, +0).

Lemma 3.3.2. Let H(x,y) be the unperturbed Hamiltonian associated with (3.4). The transformation
1 RN\D — Sy, x (27r/93/2, +00), defined by

®y(z,y) = (¢ (v, H(z,y)) , A(H(z,9))) = (¢(z, h), A(h)),

is a homeomorphism. Furthermore, if (¢,1) and y(¢,1) are the ones satisfying ®7 (¢, 1) =
(x(o, 1), y(¢, I)), then x is smooth in I and, for I sufficiently large, we have

0%x(p, )| < C; I for 0= 0, (3.13)

with C; > 0 being constants.

As outlined in Section 2.2.3, the transformation ¢, applied to H does not change the

Hamiltonian character of (3.3), leading us to a new Hamiltonian

H(9, I, t;€) = ho(I) — (¢, Dp(t), (3.14)

which is smooth in I, continuous and 27-periodic in ¢, and of class C® and o-periodic in ¢.

3.4 Angle and energy as new time and position

We notice that, by differentiating (3.14) with respect to I, while keeping ¢ and ¢ fixed, we
have
OrM (9,1, t;€) = ho(I) — edra (o, Dp(t).
Then, taking into account (3.12) and (3.13), it follows that
617‘[(¢, Ia ta 5) > Oa

for sufficiently large I and sufficiently small €. This implies that, with ¢ and ¢ fixed, H (¢, -, t;¢) is

invertible for sufficiently large values of /. This leads us to the following transformation:
Dy : (@, 1, 1) = (B,7,7) = (£, H(9, I, 1;€), §).
Thus, by performing ®, to H (¢, I,t; ), we have the new Hamiltonian
H(B,r, 1) = [H(r, -, Bie)] 7 (1),
which, in turn, can be written in the form
H(B,r,my6) = A(r) + € J4(B, 1, T3 €), (3.15)

with 7] being defined implicitly by the formula above. It is worthy noting that r plays the role
previously attributed to the energy h.
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Lemma 3.4.1. For r sufficiently large and sufficiently small €, we have
0501 AR (B, T3 )| < Cogr'* - for 0<itj <6,

where C; ; are positive constants depending on |pl|cs(s, and 6.

We recall that A’(r) = T'(r) for all r € (0, +00). Thus, the Hamiltonian system originating
from (3.15) is given by

(3-_6 - aaz( 7T777€) = T(T) +56T¢74601(ﬁ,7°,7';5),

T T

dr oA ¢
dr _%(5”77;6) = —e0s (B, 7,75 ).

The functions 0,741 and 03.741 are C% and C® function, respectively, in /3, smooth in 7, and
continuous in 7. Furthermore, Peano’s Theorem (see Theorem 2.1.1) ensures that, for each initial
condition (f3y, 79, 70) € Sy X R X So,, with rq sufficiently large, there exists a solution of (3.16) passing

through (5, 70, 7o), as follows.

Lemma 3.4.2. There exists r* > 0 and a constant C* € (0, 1) such that if ro = r*, then the solution
with initial condition (3(0, Bo,ro;€),7(0, Bo,r0;€)) = (Bo,70) of (3.16) is defined on the interval
[0, 27] and satisfies

[1—C*]ro <r(r) <[C* + 1] ro.

Proof. We appeal to the quantitative character provided by Peano’s theorem (Theorem 2.1.1) to prove
this lemma. We define G(7, 8,7;¢) = (T'(r) + €0,74(B,r,T;€), —€03 543, r, T; €)) as the function
associated to the non-autonomous differential equation (3.16). For sufficiently large r, it follows from
Lemma 3.4.1 that

il/—%rl/Q + 60071 + 501707“1/2
|Gl < [T(r) + e0-74] + |eds 4] < 7
r

By taking a = 27 and b = C*rg, with C* € (0, 1), we define R = R(0, 5o, ro, a,b) as in (2.3). We

have that GG is continuous on R and , for sufficiently small ¢, it satisfies

A1+ C*) o] + Co + Cro[(1+ C*) o] ?
0 | P AL et el Lo AL
(r,8,r)eER ((1 _ C*) TO)

Consequently, we have

b C* (1= )i
M M7 B[4 0% ] P+ G + Cro[(1+ C) o]

We notice that b/M — +o0 as ry — +o0. Thus, there exists * > 0 such that inf{b/M, a} = 27 if

ro > r*, and this concludes the proof. [
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Let C* be the constant provided by Lemma 3.4.2. There exists n} € Nsuch thatb, /(1 + C*)—

b, /(1 —C*) > 0, for every n = nj. Hence, we can define the intervals

A IS S (A (3.17)
R E SR Brer ik ‘

for n = n]. Notably, n] can be chosen so that the properties provided in Remark 3.2.3 still hold for
the intervals 7,,, and, then, we construct a sequence of coordinate changes between S, x 7, and

x [1/2,1], for every n = nf, in the following way

O3, 2 (B,7) — (B, p) = <E,M>, (3.18)

o An

with {\, },.en being the sequence introduced in Remark 3.2.3. Therefore, upon applying the coordinate

changes ®; ,, to the system of differential equations (3.16), we obtain

s A\, 27 T3 =
g_—p —9+5f1,n(57p77;5)7

o (3.19)
dp

dT - 5f2n(ﬁ>/077_ 8)

where we are introducing
I 1 I -
fin(B,p,m56) = =054 | 0B, T | Mup+ —= |, T3¢ |,
o

and

Fan(B, p,m8) 1= =AM T ( (A + 3—%)) 54 (o—B,T1 (Anﬁ+ \2/—%) ,T;€) .

We can deduce that both f;,, and f,,, are of class C° with respect to 3, while they are smooth with
respect to p. Furthermore, they exhibit a 1-periodicity in terms of 3 and a 27-periodicity in the variable

7. The subsequent lemma provide the bounds for such functions.

Lemma 3.4.3. There exists a constant C' > 0 depending only on |p|ces,) and 0, but not on n, and a

natural ni € N such that, for sufficiently small ¢,

[fra(s e 7ie)

es(x[pa]) + 1 f2n (s 7i) )< O (3.20)

C5(R>< [%,1

for everyn = nj.

3.4.1 Time-27-map

Let us consider (3(7; €), p(7;¢)) = (B(7, Bo, po; €), (T, Bo, po; €)) as the solution of (3.19)
whose initial conditions is (5(0;¢), p(0;¢)) = (B, po). For the sake of simplicity in the following
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notations, we will omit the dependence of \,,, fl,n, and fQ,n on n until explicitly needed. The integral
equation for the solutions of a differential equation provides us

btrie) = ot [ (Sptsie) + 20 el o) plsic) sie) ) .

0 o

prie) = o+ | (R 2)plsio).510)) .

0
Thus, for sufficiently small ¢,

B(T;€)=5o+()\po+2—ﬂ0>7+€( f ffz pE:2), € 2)deds

g

f f(ﬁ(sss),ﬁ(S;e),ssa)ds), (3.21)
0
p(75€) = po +5J f2(B ,p(s:€),85€)ds.

As a consequence of Lemma 3.4.2, the solutions of (3.19) are defined in the interval [0, 27],
which enables us to construct the Poincaré map (time-27-map) associated with the system (3.19). This
map consists in the function that takes (3, o) as input and returns the point where the solution with
(Bo, o) as the initial condition will be at time 7 = 27. Let us denote itby P : R x [1/2,1] > R x R

the Poincaré map associated with (3.19), then
P(Bo, po; €) = (B(2m, Bo, po; €), p(2, Bo, po; €)).
Based on the solutions expressed in (3.21), we can establish asymptotic expressions for P, as follows
P(Bo, po;€) = (Bo + & + Apo + AePi(Bo, po; €), po + Ae Pa(fo, po; €)), (3.22)

with & = 472/(0v/) and A\ = 27\ /o, and P, and P, being expressed by

)\Pl(ﬂg,po, J J f2 f 8) f 15 dgdS +J fl ) (S 5) S;E)dS

and
27

APy (Bo, po; €) = fa(B(s;€), p(s;€), 55¢)ds,

0
respectively. We notice that P is 1-periodic with respect to (3, and it is of class C” in the variables
(Bo, po). Additionally, we remind that P, P, Py, and A depend on n. Next result provides a uniform

bound for the functions ]517,1 and ]52,”, for sufficiently large n and sufficiently small €.

Lemma 3.4.4. There exists n € N such that, for each n = nj and for sufficiently small £, we have the

bounds
le,n(y 5)

with C' > 0 depending on p(fy) and 6, but not on n.

+ Hpgm(';f-:)

< C,

C5(Rx[1/2,1]) C5(Rx[1/2,1])
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We notice that (3.22) is not currently in the required format for the Invariant Curve
Theorem, as the irrationality of & as a number of constant type is unknown. In order to overcome this
hindrance, we will conjugate (3.22) with a map that satisfies the conditions of the Invariant Curve
Theorem, specially those related to irrational numbers of constant type. To this end, we provide a
technical result that offers approximations of & using irrational numbers of constant type along with

their associated Markoff constants.

Lemma 3.4.5. Let us consider & = 47 /(o/0). There exists n} € N such that, for every natural

n = nj, there exist an irrational number of constant type, denoted as o,,, with Markoff constant €),,,

satisfying
< 13

I, < oy — @ < ?Xm (3.23)
and _ _
M Q, <= (3.24)
16 " T4 '

Proof. Let us denote the fractional part of & = 472/(cv/0) as o = @ — |a/|. For n € N, we define
the numbers a, := o + 4\, and b,, := a + 1—235\71- We notice that there exists ny € N such that
[an,bn] < [0, 1] for every n > nj. Then, from Proposition 2.3.5, it follows that there exists an
irrational number !, € [ay,, b,] of constant-type with the corresponding Markoff constant €2, satisfying
relation (3.24). As a consequence of Remark 2.3.2, we can deduce that for n € N satisfying n > nj,
a, = a, + |a] is also an irrational number of constant type with the same Markoff constant ,,.

Furthermore, from definition of «,,, a,, and b, relationship (3.23) holds. OJ

Let us define n* := max{n],n3,n3, n}}. Then, taking into account Lemma 3.4.5, we
construct, for n > n*, a sequence of transformations between R x [1/2,1] and R x [—6, —3] in the

following way

= = = = o — Qy
Wy 2 (Bos po) = (u(Bo, po), v(Bos po)) := (50750 + 3 ) : (3.25)
By performing ¥,, to P, as given in (3.22), the conjugate map P, = ¥,, 0 P, o U ' is
given by
Po(u,v;€) = (U4 i + M0+ MePrp(u,v;€), 0 + M\ePop(u, v €)), (3.26)
where

Pjn(u,vie) = Pjn (u,v + anj\ a;e) , for j57=12.

n

Furthermore, under the same assumptions, the bounds presented in Lemma 3.4.4 naturally extend to
the functions P ,, and P; ,,. In the following, we show that, for sufficiently large n, P, satisfies the

intersection property condition.

Proposition 3.4.6. For each n > n* = max{n],nj, n3,n}}, the map P, has the intersection property.
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Proof. Let & be the Poincaré map corresponding to the Hamiltonian system (3.16). From Theorem
2.3.11, it follows that &2 has the intersection property. By considering the transformation W, =
v, o &3, where @3, and ¥, are the transformations given in (3.18) and (3.25), respectively, we see
that, for n > n*, the maps & and P, are conjugated. Then, according with Proposition 2.3.12, it

follows that, for n > n*, the map P, also exhibits the intersection property. 0

3.5 Proof of the main results

Proof of Theorem A. Let us consider the maps P,, obtained in (3.26). We are interested in applying

the Invariant Curve Theorem to these maps, which are in the same form presented in (2.17).

Let us remind that n* = max{nj,n3,nj,ny}. Then, for each n > n*, the irrational
number «,, is of constant-type with corresponding Markoff constant €2, satisfying relationship (3.24).
Moreover, if necessary, the natural n* can be chosen sufficiently large such that \,, = 2w\, /o€ (0,2)
for every n > n*, satisfying the inequality

Q, < 2 An = 1620 < 16Q,.
16

Therefore, by taking M = 16, the relation (2.18) is satisfied. In addition, Proposition 3.4.6 guarantees
that the maps P,, has the intersection property. Also, due to the uniqueness of solutions of (3.19), they
are one-to-one maps having 1-periodicity in the variable u. This enables the application of the Invariant

Curve Theorem to P,,. Hence, the constant M ™ in (2.19) can be selected independently of n > n*. By

defining F = eP;,, for j = 1,2, and &, ) = M*/C, where C is the constant depending on |p|cs s, )

and 6 as provided in Lemma 3.4.4, we can deduce that

1E s mn—s,—3p T 1F2llesrxi—6,-a7) = € (le,n(?g) C5(Rx[-6,-3])) T HPM('?5)Hc5(Rx[—6,—3]))

< eC.

Thus, relationship (2.19) is satisfied for every 0 < € < 5&79) and for every n > n*. We can therefore
conclude that, for every 0 < ¢ < 52;,’9) and for each n > n*, the map P,, has an invariant closed curve,
denoted by I'?, carrying quasi-periodic motion, since the rotation number of P, restricted to I' is the

irrational «,,.

Upon transforming the system back to its original form, we notice that the curves cor-
responding to I'” in the plane (z,y) € R? give rise to nested invariant tori of (3.1) in the extended
phase space S, x R?. These tori, to be denoted 7, carry quasi-periodic solutions of (3.1). Finally, the
sequence of nested invariant tori introduced in Theorem A is obtained by defining 7" = tiJrn* , for
1 e N. [

Proof of Theorem B. Let us consider the invariant curves ', of P,, provided in the proof of Theorem

A along with their parametrizations 7" € C*(S;), forn > n* and 0 < € < E(p0)- By performing the
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inverse transformations given in (3.25) and (3.18) to P,, that is, \il; 1= <I>?:711 oW ! (see Proof of
Proposition 3.4.6) we get the Poincaré map & associated with (3.16) and defined on the sequence of
disjoint annuli {S, x J,, }n=n* < (¥, +00). Besides that, the invariant curve I'” of P,, in Sy x [—6, —3]
are transformed into an invariant curve I'" = U 1(T'") of & in the annulus S, x 7, for each n > n*

{(B,72(P)) : B €8s}

Taking (3.26) into account, we notice that p (P”‘rn> = a,, with a,, being the irrational

and 0 < e < 52‘1)79). We denote the parametrizations of f‘? by 77, that is, f?

number of constant type provided in Lemma 3.4.5. This implies that p (9 F) = oqy,. From the

relation (3.23), it can be shown that, for each ¢ = n* there exists 7 > ¢ such that a; > «;. These values

are assumed to be fixed from now on.

Given that the annuli S, x J; and S, x J; are pairwise disjoint, we have that the curves

f; and fg are also pairwise disjoint, implying that 5(3) # 77(8), for every 3 € S,.

Now, let us denote by R(m’) the invariant region of &2 comprised between the invariant
curves f"g and fg This region can be described by means of the parametrizations of fé and fg as

follows
Riy ={(B,1)eSe xR:B€eS, and F(B) <r<7F(B)}

By taking into account the diffeomorphism

)Z : R(i,j) —_—> Sl X [0, 1]

Br) — (é#—(ﬁm)

we notice that the conjugated map G = Yo Z o Y~ ' : S; x [0,1] — S; x [0, 1] matches all the
conditions of Theorem 2.4.5. Indeed, since G is conjugated with 22, it has the intersection property.

Besides that, it leaves the boundaries of S; x [0, 1] invariant and satisfies p (G ‘SIX {O}) = o; and

p <G‘Sl><{1}) = aj, with o;, a; € R\Q satisfying o;; — c; > 0. Thus, there exists ¢* € N such that for
each ¢ € N satisfying ¢ > ¢*, the map G has at least one periodic point of period ¢. This implies the
existence of periodic solutions for (3.19) and, consequently, for (3.1), whenever 0 < € < gfpﬁ).

By recursively applying this procedure to the sequence of invariant curves {I'" },>,, we

conclude the proof of the corollary. [

3.6 Proofs of the technical results

In this section, we are concerned with the proofs of the technical results previously
presented throughout the corresponding chapter, particularly those related to estimating functions.
Before we proceed with those proofs, we introduce an auxiliary lemma concerning higher-order

derivatives of composite functions (see, for instance, [1, 46] for more details).
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Lemma 3.6.1. Let F : R> —» Rand f, g : R?* — R be sufficiently differentiable functions. Then, for
1+ 7 = 1, we have

i = 2 Cop g @ABF(La)| @2 1) . (@eoy eenarg).. @k 2 rg)|
(k )eN2 1<k:+p<z+j
i=(i1, siggp), 1 =i

(i1,
J=01 dk+p); \j\=j

where the coefficients Cy, 7> are integers and satzsfy Copi;=0ifu=j=0forl <l<k+p,
meaning that when the | -th entrzes of vectors i i and ] are both zero, the corresponding coeﬁﬁczents will

also be zero.

In particular, if F : R — R and f : R* — R are sufficiently differentiable functions, then

GoiF o f]=Y i DEF(S)) [(a“ah f)... (0 )]. (3.27)
1<k<z+]
z=(117 7Zk)7 |;;|:%
=01, sdk)s 13]=7
Lemma 3.6.2 (General Leibniz rule [52]). Let f ang g be real function n-times differentiable. Then

the product f - g is n-times differentiable and its derivative is given by the formula

Proof of Lemma 3.2.2. In order to establish the relationship given in (3.7), we start by observing that

2v/2

TAR) = =31+ 20m)°

which also ensures the strictly decreasing character that 7" possess. Subsequently, by proceeding with
induction over i > 1, we verify that D'T'(h) = C;P,(R)h'"* (1 + 20h)"*, where C; is a positive
constant dependent on 6, and P, is a polynomial of degree ¢ — 1. Thus, relationship (3.7) holds for every
i = 1. The inverse of T is obtained by considering the relations 7'(h) = p, for p € (21/V0, 47 /\/6),
and 1/cos?(z) = 1 + tan®(z), for z € (—7/2, 7/2). We achieve relationship (3.8) by noticing that

. T-(p) 8
lim ——————— = —.
p—21/5/0 |21 — \0p|~2 0

The bounds stated in (3.9) are obtained through an induction approach over ¢. For the base

case i = 1, we derive the equation 7'(T~*(p)) = p to obtain
DT *(p) = (DT(T *(p))) "

Therefore, for the case where 7 = 1, the bounds in (3.9) holds by considering those from (3.7) and

(3.8). From the induction step, we assume that for : = n — 1 relationship (3.9) holds. From Lemma
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3.6.1, we have
prr D'T D™T(T~Y(p)) - - D™ T (T~ 2
(k) = (DTT1 Wy 24 Cr DT7H0) (DT (T () (T (). (328)
m=(|nj1l..,mr)

for n = 2. To conclude the proof, it is sufficient to show that each therm of the sum (3.28) satisfies the

bounds in (3.9). By considering relationships (3.7) and (3.8), we find
cl2m = VOp|™*" < [(DT(T~ ()™ < CJ2m — Vop| ™,

and
|2 — VOp|"2 < | D™T(T Y (p)) - -- D™ T(T~ 1 (p))| < C|21 — Vbp| ",

since my + - -+ + m, = n, for every 1 < r < n — 1. By the induction hypothesis, we deduce
cl2m = Vop| " < DT (p)] < Cl2m — Vop| .

Consequently, for 1 <7 <mn,

DT~ (p)|
(DT (p)))"

This completes the induction step, as (3.28) consists in a finite sum, thereby completing the proof of

C|27T — \/§p|*(n+2) < (DmlT(Tfl(p)) . DmrT(Til(p))) < C|27T . \/§p|f(n+2)'

the lemma. O

Proof of Lemma 3.3.1. 1t is not difficult to see that A is a smooth function, since it consists in a
combination of elementary smooth functions. Direct computations and also Remark 2.2.5 provide us
A'(h) = T(h) for every h € (0, 4+00), and, since T'(h) > 0 for any h € (0, +0), we conclude that A is

invertible. Furthermore, this fact in combination with

lim —A(h) _
h—+w h N \/5

and the bounds in (3.7) yield relationship (3.11).

In order to establish the estimates stated in (3.12), we start by noticing that hg is an

increasing smooth function, and that the differentiation of the equality A(ho(I)) = I provides

1
Dh(l) = —————.
= DA
Hence, for sufficiently large /,
00] < ho([) < C()[ and 1 < Dho(]) < Cl. (329)

In order to complete the proof of the lemma, it only remains to show that

|D'ho(I)| < CiI*7" for i > 2.



Chapter 3. Analysis of the Case A 59

To this end, we proceed by induction over . For the base step, ¢ = 2, we notice that

2 Dho(I) D2A(ho(I))
Do) = =D AT

which, in conjunction with (3.11) and (3.29), yields
|D%ho(I)| < C|D*A(ho(I))| < CT™.

Therefore, relationship (3.12) holds for 7 = 2. Now, as induction step, we assume that relationship also
holds for 2 = n — 1. Then, by invoking Lemma 3.6.1, we can establish the following for ¢ = n :

1
—_ Chrm D"ho(I) | D™ A(ho(I))... D™ A(ho(I))] . 3.30
DA 2 O Do) [0 Alho(1) (ho(D)]. (330)

2<r<n

D"ho(I) =

Similar to what was done in Lemma 3.2.2, we demonstrate that each term from the sum
(3.30) is bounded by C'I'”~". However, we must distinguish between the case where 77 has coordinates
of the form m; = 1, with 1 < 7 < r, and the case where does not. Then, for 2 < r < n, we consider

the cases:
The vector 17 does not have coordinates of the form 1 ; = 1: The bounds in (3.11) and the induction
hypothesis imply that

D"ho(I)

o (DA (1))

| D" A(ho(I)) ... D™ A(ho(1))]| < C|D"ho(I)| | D™ A(ho(1)) ... D™ A(ho(I))|
< Oll/Q—TIT/Q—n
< Cll/Q—T/2—n

011/2—71’

N

for sufficiently large 1.

The vector 72 has 1 < M < r coordinates of the form m; = 1: Once again, from the relation (3.11)

and the induction hypothesis, we can deduce that, for sufficiently large 7,

D holl) 1 pm ahg(1)) ... D™ A(ho(1))]] < O 10~ =0

o (D A(ho(D))

< C[(l —r+M)p—n
< cvjl/zfn7
since 1 —r 4+ M < 1. Then we conclude that for : = n relationship (3.12) holds, and this completes

the proof of the lemma. [

Proof of Lemma 3.3.2. The transformation ®, is onto by construction. Injectivity is shown using
the level curves C, for h > 0, of the Hamiltonian H. Suppose that (¢1,11) = (¢2, [2) € Sor X
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(21/6**, +o0). Since A is a bijection between (0, +00) and (27/8°*, +c0), there exist hy = hy €
(0, +o0) such that A(h;) = I, for i = 1, 2. For fixed values of h, we have that ¢(x, h) is one-to-one
in the interval [0, a(h)], which implies that, if ¢; = ¢(x1, hy) = ¢(xa, he) = ¢o, then z; = x5. We
conclude that y; = y, by considering the definition of ¢(z, h). The continuity of ®; follows from the
fact that each term of the function is continuous. In order to show that its inverse is continuous, we

state the relation
x(p,I) = &(p, ho(1)) = T(9, h). (3.31)
Then, if ¢ € (0, 7/2), we have ¢ = ¢1(Z, h), that is,

0= Ty (onein () +ovein ()

which implies that

27 V2h8 + 1 V2h8 + 1

Therefore, considering [v2h6 +1| > 1 when h > 0, and using the relationship
sin(z + arcsin(y)) = /1 — y?sin(z) + ycos(z) for y € [0, 1] and z € R, we obtain

1_(;>2Sm T(h)\/% IR N T(h)\/éq5 0F(¢,h) — 1
V2hO + 1 2m V2hO + 1 2w V2R 1

and consequently,

. (T(h)\/5¢ . ( 1 )) _ 0o, h) — 1

(¢, h) = %—I— %sin (T(;?:/gﬁﬁ) — %COS (T(h;\/gqb) .

Reapplying the previous argument to the remaining angles, we get

() (8 e

L i (T“;)f@(w - ¢>> ~ Jeos (W@ - ¢>> it oc[3m)

A RN (T(Zﬂ(«p - w)) + Lcos <T(Z7)/§<¢ - w)) it ge[r, %),
—é _ %sin <W(2W - ¢)> + %cos (W(ZW _ ¢)> it ¢ e[ 2n].

(3.32)
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We observe that, for all h > 0, (ﬁllrg Z(p,h) = Z(po,h) holds for every

—@0
¢o € {0,7/2,m, 31/2,27}. Consequently, & exhibits continuity over Sy, x (0, +00), and this con-
tinuity extends to x (regarded as a function) over Sy, x (27/ 0", +00) through the relationship (3.31),

and this concludes that ®; is a homeomorphism.

The smoothness of x(¢, ) with respect to the variable I is also achieved from relationship
(3.31) and the smoothness of the function h( provided in the Lemma 3.3.1. In order to verify the
bounds for (3.13), let us begin by checking that, for a fixed ¢ and i > 0,

|01 2(6, h)| < CihM* (3.33)
As seen in (3.32), Z(¢, h) is a piecewise smooth function. However, within each quadrant
of the plane R?, (¢, h) is composed by functions of the same nature when considering their asymptotic

behavior. For this reason, we will demonstrate that the relationship (3.33) holds for ¢ € [0, 7/2), and
this result will be naturally extended to the remaining angles. Specifically, for ¢ € [0, 7/2) and i = 0,

(o, h) = %—I— %sin (T(h)\/é¢> — 1cos. (Mqﬁ) :

we have

0 27 0 2

Consequently, for sufficiently large A, it follows that
[#(¢,h)] < Ch'”.

For i > 1, the higher-order derivatives of Z(¢, h) with respect to h are given by
i | 2n . [T(R)VE 1 T(h)Vo
LT(P,h) = 0}, [ 5 5in <Tgb>] — 0 [5COS (TQS : (3.34)

Claim 1. For i > 1 and sufficiently large h, the following estimate holds

o |g (—T(hw¢>

< Ch71/27i
2 ’

where G(x) is either cos(x) or sin(x).

Proof of Claim 1. By considering the formula provided in Lemma 3.6.1, we are led to

ol [g (T(h)\/aqﬁ)] =3 Cra(D"G(H ) [D™T(h) ... D™ T(h)]. (3.35)

2 .
1<r<s

h=(m1 - my
|m|=1

We observe that in the sum (3.35), if the constant C..; # 0 ,then m; > 1 forevery 1 < j < 7.
Therefore, for + > 1 and sufficiently large h, any non-zero term in the sum (3.35) is bounded by

CrnD"G (%:)(b) [D™T(h)...D™T(h)]| < Ch~"7" < Ch™"27,
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where we have considered the bounds in (3.7) and the fact that |D"G (%gﬁ) | < 1. This completes
the proof of Claim 1.

Claim 2. For i > 1 and sufficiently large h, we have that

o [ %sin (T(Z;\/gqb)” < Ch'P.

Proof of Claim 2. We first observe that, for sufficiently large h and k € N,
2h
DF [ A=
Then, after applying the General Leibniz rule to (3.34), we have
| oh [TV N o (3 20 e (. [TV
6h[ 7;5H1<——75;——¢>] ——;;)(j)l) 7; D Sin o ¢
i—1 .
: 2 . T . 2
= (Z) pi (42 i i sin (h)\/% o (42
=\ 0 21 0

By applying the bounds provided in Claim 1, it follows that

7 [ %sin (T(Z;\/%)

for sufficiently large h, which concludes the proof of Claim 2.

< COh'PF,

< Ch™ '+ Ch'P < Ch'A T,

Therefore, from Claims 1 and 2 we conclude that, for sufficiently large A and ¢ > 0,
relationship (3.33) holds. Back to our initial goal, we now consider the composite function (¢, I) =
z(, ho(I)). For i = 0, taking into account the bounds (3.33), (3.31), and (3.12), we have that

(6, DI = |2(6, ho(1))] < Coho(1))'"* < Col*,
for sufficiently large /. For ¢ > 1, it follows from Lemma 3.6.1 that

orx(p, I) = d7[E (¢, ho(1))] = Z Cran [ 0420, ho(D)] [D™ ho() ... D™ ho(I)]

1<k<i

with C?,k = (,if 7; = 0 for any 1 < [ < k. Thus, each term of the sum (3.36) is of the form
Chi [05 (0, ho(I))] [D™ ho(I) ... D™ ho(I)] .
The bounds in (3.33) and (3.12) yields

052 (6, ho(1))] < Ci(ho(1))* * < CT™F,
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for sufficiently large /. In order to provide estimations for the term D™ hy(I) ... D™ hy(I), we need
to distinguish between two cases: the case where m does not have coordinates of the form m; = 1,

and the case where it does.

The vector 17 does not have coordinates of the form m; = 1: In this case, we take into account
(3.12), and then
|D"ho(I) ... D*ho(I)| < CI'A0 TP~ = CT%,
hence
1020, ho(1))[D ho(I) ... D*ho(I)]| < CA = "2k~
) e
< Crh,

sincel —k < 1,forany 1 < £k < 4.

The vector 77i has coordinates of the form m; = 1: Suppose that 1 has 1 < M < k coordinates of

the type m; = 1, then for such coordinates | D" ho(A)| < C. In this way,

(k—M) (k+M) _

D™ ho(I) ... D™ ho(I)| < CA = M =CI 2

which implies that

K0, ho(I)[D™ ho(T) ... D™ ho(D)]| < T 57
—CrE
< Crr,

given that 1 — k£ + M < 1. Then, each term of the sum (3.36) is less or equal to C' "2~ in absolute
values for every ¢ > 1 and sufficiently large /, which means that relationship (3.13) holds under the

same conditions. This concludes the proof of the lemma. 0

Proof of Lemma 3.4.1. For the sake of simplicity, we are going to omit the dependence of H; on 3, r,

7, and ¢, unless necessary. It follows from (3.14) and (3.15) that

r=H(r,H(B,r,T;¢),5;¢€)
H(r, A(r) + €54, B)
ho

(A(r) + ed) — ex(1, A(r) + e76)p(B).

Since A() = hy'(+), we obtain

e = A(r + ex(r, A(r + e74))p(B)) — A(r).
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Thus, by defining F(p)

= A(r + pex(1, A(r + €54))p(5)), we have F(1) = A(r + ex(r, A(r +
e1))p(P)) and F(0) = A(r)

. Additionally,
F'(p) = ex(r, A(r) + esA)p(B)T (r + pex(r, A(r) + e74)p(B)),

since A’ = T. Therefore, by the Fundamental Theorem of Calculus, we can rewrite £.74] as

1

S = x(r, Alr) + e0)p(B) f T(r + pe(r, A(r) + e8)p(8))dp. (3.36)

0

In order to avoid repetitive arguments, we will assume that r is sufficiently large and

e < 1/2 throughout this proof. The lemma is proved by induction over i + j.

For the base step, that is, for ¢ + j = 0, we notice that (3.36), (3.13), and the boundedness
of T imply that
74| < Cla(r, )| < ClA|”,

with C being a constant depending on p. Since |A(r)| < C', it follows that |74 | < Cr'~, as desired.
Before we proceed with the proof, we notice that, from (3.14) and (3.11), we have
cr < or— Cr'? < |A(r)| — |74) < |#) < |A(r)| + |74] < Cr + Cr' < Cr, (3.37)
and this together with (3.13) imply that

0k (T, )| < Cr'2F for k= 0. (3.38)

Now, let us assume that the bound in Lemma 3.4.1 holds for ¢ + 7 = n. We will show that

it also holds for ¢ + 5 = n + 1. For this purpose, we define the auxiliary functions

U(ﬂ,?‘,T;é‘) = x(T,%(ﬁ,T,T;E))P(ﬂ),
T(p) := T(r + pea(r, A(r) + e/4)p(B)) = T(r + pU (8,7, 7)),

and we provide bounds for them in distinct claims.

Claim 1.For0 <7+ j <n+1,

10509 [x(r, H6)]| < C(r~P|05095| + r'P7). (3.39)

Proof of Claim 1. In order to prove the estimate (3.39), we will use (3.27) from Lemma 3.6.1, thus

3s3i[a(r, H)] = C (Ora(r, #)) (3500H) + Y Cpzz (Bhalr, ) (G260 ) ... (i)
2<k<ity,

(G100 77;k)’3‘7?_|’=7;:

(Jsdk)s 131=d

(3.40)
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Let us observe that the absolute value of the first term in the equation (3.40) is smaller than C'r "/ 0500,
due to (3.38). Therefore, to conclude the proof of this first claim, it suffices to demonstrate that each
non-zero term in the sum (3.40) is smaller in absolute value than Cr?77. To this end, we start by

noticing that, from Lemma 3.6.1, each non-zero term in the expression

D1 Cozz (Ofa(r, o)) (B ) ... (0o ) (3.41)
2<k<z+]
=i in)
F=G i) 1i1=d

should have 1 < 4, + 5; < n forevery 1 < [ < k + p, otherwise if there exists 1 < [ < k such
that 7; + j; = n + 1, then, since i and j must have at least two components, it would follow that
111+ J1-1 = 0ori1 + jir1 = 0, which contradicts Lemma 3.6.1. Thus, we can apply the induction
hypothesis to &} 7.7, yielding |00/ | < Cr'”* 7" for such indices. Consequently, if i; > 1, then
from (3.11), (3.38), and the induction hypothesis, it follows that

C+Cr'# it g =1,
CriP=iey Cr't i i g =1,

_Jc it g =1,
D e T N

61| = | DA + ed | < {

which implies that

C if  (i,51) = (0,1),

) forevery 1 <[ < k. 3.42
O it (i) £ (0,1), Y (42

040l A | < {
Therefore, if a non-zero term in the sum (3.40) does not have pairs of indices of the form (i;, j;) = (0, 1),

it follows from (3.38) and (3.42) that

‘(aﬁﬁ(ﬂ '%ﬂ)) (alﬂl a£1%) - (azﬂkaﬁkt%”)‘ < C,rl/2fk,r1/27j1 N rl/Q,jk
— Cfr(l 7k)/2_j

Now, let us consider a non-zero term from the sum (3.41) that has 1 < M < k pairs of indices of the

form (i, j;) = (0, 1). In such a scenario,

(k— J\/I)_A (1—k+M) k+M) )
ky irM = Cr -

|(OFa(r, ) (0ol ) ... (000 )| < Cr'P™
< Crl/Q—j7

where the last inequality follows from the fact that 1 — k£ + M < 1. This concludes the proof of the

claim.

As a consequence of Claim 1 and the induction hypothesis, we have, for 0 < i 4+ j < n,

10509 [z(r, H)]| < C(r™Pr'P=0 4970y < Cr'P . (3.43)
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Claim2.For0 <i+j5<n+1,

050U | < C(r~"2|0509 | + r'279). (3.44)
Proof of Claim 2. From the general Leibniz rule, we have

i-1 .
i A i . 7 i . i~
B0 = elletr. W) = 3 () D pB)0kalelr A + Sy0llalr, )L
k=0
The above equality combined with the bounds (3.39) and (3.43), yield the claim.
Claim 3. For a fixed p € [0, 1] and for 0 < i + j < n + 1, we have

0L [T (r + epU)]| < C(r2| a5 H] + r~279).

Proof of Claim 3. We start the proof of the claim by noticing that
U| < C(r= 2| +r'2) < C(r~Pr +r'2) = Or'”,
where we have used (3.44) and (3.37). Thus, for sufficiently small €, we have the bounds
Ir +epU| =1 —eplU| =7 — Cr'’ = cr. (3.45)

Hence, relation (3.45) combined with the bounds for the derivatives of 1" provided in (3.7), gives us,
for k = 1, the following:

|D*T(r 4 epU)| < Clr + epU| 2k < Cr 27k, (3.46)
Now, let us consider, for ¢ + 7 = 1, the higher order derivatives of r 4+ pU, which are given by:

Lt ep(@U) if (i,5) = (0,1),

S ) T (3.47)
ep(02U) if  (i,7) # (0,1).

%@[r +epU] = {
Thus, for (7, j) = (0, 1), it follows from (3.44) and (3.46) that

0T (r + epU)]| = |T'(r + epU)|(1 + £pl0,U])
< C’r’3/2(1 + 7"’1/2|(9r</“i”| + 7"’1/2)
< O(r 20,52 + 7”*3/2).

On the other hand, if (7, j) # (0, 1), we take into account the bounds (3.44) and (3.46) to show that

T (r + pU) (8561[r + epU])| < Cr—"P(r="P|8500 5| + r'P 77y < C(r2|0500 | + v~ 7).



Chapter 3. Analysis of the Case A 67

We notice that in both cases, for (i, j) = (0,1) and (4, j) # (0, 1), the first term of the sum

LT (r 4 epU)] = CT'(r + epU) (050 [r + epU])

+ Z Cri7 (DPT(r +2pU)) (0503 [r + epU]) ... (0 &4 [r + epU]) .
2<k<z+]
)

(3.48)

is smaller than C(r 2|09 7| + r~"*77), for j > 1, in absolute values. Thus, it only remains to show
that the remaining terms of the sum (3.48) are bounded by Cr~ 277 In fact, it is known that each

non-zero term of the sum (3.48) is of the form
ijj (DkT(r + 5pU)) (82_} M r + 8pU]) . (823"87% [r+ €pU])

with 2 < k <7 + j. We divide the analysis in two cases, namely
There are no pairs of indices of the form (i;, j,) = (0, 1) in the vectors i and ;: In this situation, for
2 < k <1+ j, equation (3.47) and the induction hypothesis yield

[ (DM + p0)) (83017 + <pU]) . (G20 + 2pU]) | < C kvt

< Cp '

There exist M/, with 1 < M < k, pairs of the form (i;, j,) = (0, 1) in the vectors 7 and 77: In such
case, from equation (3.47) and the induction hypothesis, it follows that

| (D*T(r + pU)) (0500 [r + epU]) ... (0 0¥ [r + epU]) | < Oy~ ekt olk=M)=(i=M)
< Oy RO—k+M)—j

Cr— P,

N

since 1 —k + M < 1. Thus, Claim 3 holds. We observe that the induction hypothesis implies, for
0<i+j<n,that
0502 [T (r + epU)]| < Cr=77
We are now in position to complete the proof of Lemma 3.4.1, as we have established

1
bounds for all the components involved in the higher-order derivatives of 1, = U f T'(p)dp. From
0
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Lemma (3.6.1), the Integral Leibniz Rule, and Claims 1, 2, and 3, we obtain
50148, )| < 105010+ | 1T + 2pU)dp
0

1
+ CZ 0508 U | UO |05 "o T (r + €pU)]|dp)

p=0,...,%
k=0,...,7

(p.)#(0,0), (k) £ (i)
< C | rmPas0i | + P e T2 05N | 4T T )y R R
(p,k)
< O(r"P|05e | + '), (3.49)
We observe that, when (7, j) = (0, 1), then

(r="210, 2] + 1)

|ar%| < C(r
< O(r "P(|A'(r)| + €lo,.74]) +r )
< Cr ' Cr'?0.04),

where we have used (3.11) to bound A. On the other hand, for (4, j) # (0,1) and i + j > 1, it follows
from (3.11) and the sum (3.49) that

050054 | < C(r="P|obal |+ r'P77)
< Or "P|8,01A(r)| + eCrP|0500 76| + Cr'P
< Cr"P|oydl A + Cr'

Therefore, for sufficiently large r such that Cr 't <1 /2, we have
|0h0l 4| < Cr'P,
and this completes the proof by induction. 0

Proof of Lemma 3.4.3. In order to provide the bounds (3.20), we define the auxiliary function

ra(p) =T <Anp + %) ,

which allows us to rewrite an and fg,n as
— 1 _
fin(B,pym38) = —0. (0B, 7a(p), 75 €)

and

fQ,n(Ba ﬁ7 T, 6) = _)\T_LlT, (Tn(ﬁ)) aﬁ% (0'67 Tn(ﬁ)a T, 2’3‘) .
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Thus, the most significant task in this case is to determine the bounds for r,,(p) and subsequently apply
Lemma 3.4.1 to derive the bounds for f1,n and f27n. Since bounding the functions fl,n and f_‘gvn meet a
finite number of conditions, we can assume that there exists n5 € N, for which the bounds provided in
(3.9) hold for every n = nj

We start by stating that, for > 0,

D' [ra(p)]] < OA2.

n

Indeed, when 7 = 0, it follows that

A < e dapl P < ra(p) < Cp 2 < ON

n

since p € [1/2,2] and T~ is bounded. For i > 1, we consider the bounds in (3.9) to obtain
D' [ra(p)]| = AL |D'T " (Aap + 2)| < OX[M\p| 2 < CA2, (3.50)
and it is a immediate consequence of (3.7) and (3.50) that
[D'T(ra(p))] < CAH,

for every ¢ > 1 and every n > nj, which leads us to the following claim.

Claim 1. For every 7 > 0, the following bounds hold

DT (ru ()] < O

Proof of Claim 1. For © = 0, it is evident from the estimates above. Now, let us assume that ¢ > 1.
Then, from Lemma 3.6.1 and the bounds provided in (3.50), we have that

DT (@]l = | 3 Cef(DH T () (D 1p) .- D (2)) |
F—tiurm i =i

SONTHENZ A2 < ON,
which concludes the proof of the claim.
Taking into account Lemmas 3.6.1 and 3.4.1, we are in position to provide bounds for flﬁn
and f,,,. We notice that, fori + j > 0,
105050574 (0 B, 1 () T3 9)]| = 010057 A (9B, (), 7|
— 0| O3 AP, 7). 759)) (D7) . D ra(p)) |
1<k<j,

TGty i)y 1=

OZ Tn 1/2 k)\ 2 )\ CZ)\ 1+2k)\ 2k O)\n 7



Chapter 3. Analysis of the Case A 70

which allows us to conclude that

|0505[05 76 (03, 0(p), T1)]| < CA (3.51)
In an analogous way,
|0503[0:A4(0 5,70 (p), 73 )| = 0'|0}[050, 74 (0B, 7)), 73 €]

— | Ck,;- oA (0B, ra(9),7:2)) (D7) . DPra(p)) |

1<k<y,
7=01, k), ||
FIEIRAESES
Z 1/2 (k+1)/\ 2 ) )\—2 < CZ Ai+2k)\;2k < C)\na
which implies that
| fin(B,p.7i€)] < CAn. (3.52)

Finally, by taking into account the general Leibniz rule, the bounds provided in (3.51), and

Lemma 3.4.1, we have that

U PO, = | 3 G M LA () 730

k=0
<CONN
= O\,

and consequently,
| fom(B, B, T36)| < CN2ATE = O,

which concludes the proof of the lemma. [

Proof of Lemma 3.4.4. Let us remind that A\ = 27)\/o and & = 472/ (0\/5), which allows us to

rewrite (3.21) as

_ _ b _ _ _ _
(B(T3€),p(T3¢)) = (50 + =7 + gﬁoT + XeA(Bo, po; T3 €), po + AeB(Bo, po 7';5)> ,  (3.53)

2T
where
_ 22 (T _
MA(Bo, po, T;€) = %J B(fo, po, 5;€)ds —i—j f1(B(s;€), p(s;€), s;¢)ds, (3.54)
0
AB(By, po, T; €) f f2(B(s;€), p(s;€), s;€)ds, (3.55)

and (B, po) is the initial condition of the solution (3(;¢), p(7;€)), which has the maximal interval
of definition containing the interval 7 € [0, 27]. We notice that P, (B, po; €) = A(Bo, po, 27; ) and
Py (Bo, po; €) = B(Bo, po, 27; €). For the sake of simplicity, let us denote the norms of A and B by

[Ally = l[Allex and By = |[Bllx,



Chapter 3. Analysis of the Case A 71

where ||| . is the norm introduced in (2.16). Thus, in order to proof the desired lemma, we provide
the bounds for the auxiliary functions A and B using an inductive step over /N. Subsequently, we
extend this result to P, and P,. We should mention that A depends on n, and this proof specifically
addresses cases where n is sufficiently large, that is, there exists n; € N such that all the bounds used
in this proof are valid if n > n}. This implies \ is sufficiently small, when n is sufficiently large. We

also remind that C' > 0 is recursively defined in order to meet a finite number of conditions.

For the base step i + j = N = 0, we first notice that cA < A < C\. Then, taking into
account (3.55) and Lemma 3.4.3, we obtain
J Chds <

181, = 5| f(As9. 520 5)

and consequently, by considering (3.54), we have

A2 (T _
41, = 355 [ B m e as+ [ RBs2).pt59), 59 0

< %(0}2 L ON)

o}

<CA+C
< Cl

Thus, for the base step ¢ + 7 = 0, the bounds for A and B holds. Now, let us assume as induction step
that

[Aly + 1Blly < €

for some N e N. By differentiating equations (3.53), we get

850[6(7, Bo, po;e)] =1+ 5\8(5@014), O, 1p(, Bo, po; €)] = 5\8(6503), (3.56)
aﬁo [B(T, BO7§0;€)] = %7— + 5\8(65014), po[ (T 507p07 )] =1+ 5“C’:(aﬁoA) (3.57)

62’06/)'0[6(7-7 507/70;5)] = )\8(6%06%014)7 al 4 [ (T BOvaJ )] = \e (a;j aﬁo )7 Z+] = 2.

The expressions above implies that, for? + j > 1,
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Then, by setting either F' = f, or F' = f5, it follows from Lemma 3.6.1 that

Y Crpii(@EF(B(rie), p(ri), 712))
(k,p)eNZ: 1<k+p<i+j,
Z:(ilv"Wik'-Fp)ﬂ |;|=i7
F=(1 dhap)s 171=3

< | @ RIB o) .. (@ ABIB(s2)))
< (@ p(me)) . (@ an e ||
< C1a3, F(B(r:), (7€), 73)0%, 0L, [B(m: )]
+ Clon F(B(r), plrse). 7€)% 3 [o(rs )|
4 \2 Croii(RF(B(rie), plrie), 136))  (3.59)

(k, )GNO 2<k+p<i+y,
i=

105,05, [F (B(73€), p(736), T3 €)]| =

(i1 k), 1],
F=Gie ). (713

x [(agoﬁzéz [B(r; o)) ... (0L A [B(r;)])
x (@t lpme)) . @ o lpme)) |

We recall that if C 777 0in(3.59),then 1 <4, +j < N forevery 1 < [ < k+ p. Then,
taking into account the induction hypothems, it follows that each non-zero term in the sum (3.59) must
have, for 1 <1 <k,

198,05 B Il < COA+ A, + 1Bl i5) < CU+ [[Ally + 11Blly) < €

R
and, similarly, for k + 1 <1 < k + p,

|04 0% [p(5 )] < C.
Consequently, Lemma 3.20 yields

> Crpij(GEF(B(rie), p(rie), i6)) X [(5’15J1[5( ). (0 axlB(rie)])

(k, )eN2 2<k+p<i+j,
=)
7= Jk4)s U\:j

<@ plri)) . (@ e < OX

which implies that (3.59) is bounded as follows

05,0 [F(B(7:2). p(: ), 7: ]| < CX(L+ 135,05, [B(: )| + 10,5 [a(7:€)])).

for either F' = f; or F' = f,. By considering (3.56), (3.57), (3.58), and the fact that 7 € [0, 27], we

have

|8z 6][ (3 (7 €), p(T;E),T;E)]|<05\ (1+5\H

ot o AHOO

Bo PO

8| ) e
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Thus, from (3.55), (3.60), and the integral Leibniz rule, it follows that

0% 23 Bl < C (1 + A H

o ol AHOO +‘

Bo PO

208 ])- (3.61)

Hence, for sufficiently small )\, we obtain ‘
(3.61), we obtain

and for sufficiently small ),

9%05%03“ < (. Taking into account (3.54), (3.60), and
e 0]

oAl <crer(1+4]]

This concludes the proof by induction over ¢ + j, since [|A|| v, + || B|| y,; < C, and consequently

oL & AHOO +|

Bo PO

o ol BHOO]) <C,

Bo PO

Bo PO

o ol AHOO +‘

B <c

the proof of the lemma. [
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4 Analysis of the Case A5

This chapter is dedicated to investigate the existence of invariant tori, boundedness of

solutions, and periodic orbits of the differential equation
I+ sgn(x) = 0z + € p(t), “4.1)

with § > 0, corresponding to case A in (1.3). This case presents a very rich dynamics, featuring
phenomena such as the existence of heteroclinic connections, periodic orbits, unbounded solutions,

and chaos (see Figure 13).

The persistence of heteroclinic connections and periodic orbits is explored in [23], where
the Melnikov method is employed, and bifurcating functions are provided to verify the existence of
such objects in a family of impact systems that comprises the differential equation (4.1). The authors
in [23] also suggested the possibility of investigating the existence of two-dimensional invariant tori of
(4.1) by means of the techniques employed in [34]. This suggestion was one of the motivations of the

study presented in this chapter.

This chapter is organized as follows: Section 4.1 provides the main results of this chapter
(Theorems C and D). Section 4.2 is devoted to present preliminary results concerning the unperturbed
differential equation (4.1), which is very useful in constructing the coordinates changes, discussed in
Section 4.3, that fit our problem into the Moser’s Twist Map Theorem conditions. Finally, Section 4.5

is dedicated to the proofs of the main results.

4.1 Main results

In order to present the main results of this chapter, we recall some aspects concerning
the differential equation (4.1). We start by considering the additional variable y = = and writing the
corresponding differential system

T = ’
Y 4.2)
y = 0x —sgn(z) + ¢ p(t).

The differential system (4.2) is Hamiltonian with

2
H(z,y,t;e) = Hu,(z,y,t;€) = % + G(x) — exp(t), (4.3)
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(
«

)
)

Figure 13 — Trajectories of (4.1) for e = 0.

2
where G(z) := G4, (z) = —0% + |z|. We stress that H is sufficiently smooth on ¥, ¢, and £, but only

continuous on . When ¢ = 0, the differential system (4.2) simplifies to

T =y,

(4.4)
y = b0z —sgn(z),

while the Hamiltonian H simplifies to H(z, y) := % + G(z) = H(z,y,t;0). Taking into account the
set Ly, whose definition is reminded below

1 1
Ly := {(w,y)€R2:0<H(w,y) < 55 and |z] < 5}>

we state our first main result of this chapter concerning the existence of an invariant torus of (4.2). The

proof is postponed to Section 4.5.

Theorem C. Given a compact K < Ly and a function p € C*(S,), there exist 52‘ K,p) > 0 such that, for
each 0 < € < 52‘K’p), there exists an invariant torus T of (4.2) whose intersection with the time section
t = 0, to be denoted A., satisfies

K c int(A.) c Ly,

where int(A.) denotes the open region in R? enclosed by A..
Since 7: is an invariant torus of (4.2) it follows that any solution initiating in int(A.) must

perpetually remain in int(7Z). This property leads us to following result concerning boundedness of

solutions whose initial conditions lie within a compact set X' < L.
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Corollary 4.1.1. For each compact K < Ly and for each p € C°(S,), there exist E(kp) > 0 such that,

orevery 0 < e < €/, all solutions of (4.2) with initial conditions (xy, yo) € K are bounded.
0 EkK,P) Il soluti (4.2) with initial conditi K bounded.

Theorem C is very useful in constructing a family of nested invariant tori of (4.2), as given

in the next result.

Theorem D. Given n € N and p € C*(S,), there exists E(np) > 0 such that, for each 0 < € < ¢, ),
the differential system (4.2) admits a family of nested invariant tori {T}!",. In addition, A" — 0L,

when n — 400, with A" = ’7;%2 Na ({t = 0} x R?).

The construction of a family of nested invariant tori for (4.2) implies the existence of
periodic orbits for (4.2), as observed in the following result. The proof is entirely analogous to
Theorem B.

Corollary 4.1.2. Givenn € N and p € C°(S,), there exists 52‘n’p) > 0 such that, for each 0 < ¢ < 52‘,1@),

the differential system (4.2) admits at least n — 1 periodic solutions.

In order to illustrate the main result of this chapter (Theorem C), we present some numerical
simulations concerning the solutions of the differential equation (4.1). Specifically, assuming 6 = 1
and p(t) = sin(2nt), and choosing a specific value for € in (4.1), we consider several initial conditions
for the differential equation (4.1). Subsequently, we plot 1000 points for each of them on the time

section ({t = 1} x R?), as p(t) is 1-periodic in this case.

Figure 14 — The existence of invariant curves for the time-1-map, and consequently invariant tori for
the differential equation (4.1), is indicated by the concentration of colors in the figure.
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e=1/10

Figure 15 — The existence of invariant curves for the time-1-map, and consequently invariant tori for
the differential equation (4.1), is indicated by the concentration of colors in the figure.

Figure 16 — The existence of invariant curves for the time-1-map, and consequently invariant tori for
the differential equation (4.1), is indicated by the concentration of colors in the figure.
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4.2 Preliminary results

This section provides important results concerning the unperturbed differential system
(4.4), which is very useful in constructing coordinate changes that allow the application of Moser’s

Twist Map Theorem to a differential system equivalent to (4.2).

As previously remarked, the unperturbed Hamiltonian satisfies H(—xz,y) = H(z,y),
which implies that the level curves C, := {(z,y) € R? : H(xz,y) = h}, with h € R, exhibit symmetry
with respect to y-axis. We study these level curves by considering = > 0 in the Hamiltonian H, and
using the aforementioned symmetry to derive geometrical properties of Cj, across the whole plane. For
x = 0, the Hamiltonian H(z, y) can be expressed as

H () = L~ (1w 1),

with r being used to denote the Hamiltonian on the right side of the y-axis. We notice that, for i # 1/,
the energy level C;, is a hyperbola having Ci,, as its asymptotes and the point (16,0) as its focus. For
h > 1/, the vertices of C; lie on the line {z = 1/s}, while, for h < 1/ the vertices of C; lie on the

x-axis. In the former case, the connected components of C; are given by the sets

= {(ey) e Gt le] > o) and L= {(z.y) € C - [x] < ).

Cr,

c

1/9

\&

o T r r
hi hs) r ha h1

Figure 17 — Example of some level curves of H" (z, y), with h; < 0,0 < hy < /29, and hz > 1/20.

When h < 0, the subsets R}, and L}, are entirely contained in the half-planes {z > 0}
and {x < 0}, respectively. On the other hand, if 0 < h < 1/, then £} n {z > 0} # ¢ and
» N {x > 0} = R} . Moreover, L£; n {x > 0} is bounded, while R}, is unbounded (see Figure 17).
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Back to the Hamiltonian H, we notice that, for 0 < h < 1/, the level curve Cj, restricted
to the band |z| < /s is a closed curve carrying a periodic solution of (4.4). The set Ly can, then, be

described as follows '
Lo = U0<h<1/2ech'

Remark 4.2.1. Given a compact K < Ly, there exists hy € (0,1/20) such that H(x,y) < hg for every

(x,y) € K. In other words, the level curve Cy,,. encloses the set K.

The points of intersection between Cj, and the x-axis, when 0 < h < /20 and |z| < /b, are
given by {(—a(h),0), (a(h),0)}, where

Period function: Let us consider G(z) = —; F(z) = 2 — 8%. Given that G is an even function, the

period of the solution in (4.2)._, on the level curve Cy,, for 0 < h < 120, is determined by the function

4 VOa(h)—1E du

a(h)
T(h) = 4J de _ 4 B
0 «/Q(h — G(u)) \/@ YN 2h99—1 + 2

Voa(h)—1/N8
4 llog L1 2]
= — U U
Vo 0 s
_2 (1 +1/2h0
Vo 1—2h0 )

We notice that 7 is a strictly increasing function over [0, /20) and smooth in the interval

(0, 1/20).

4.3 Action-angle transformation

In this Section we follow the procedure outlined in Section 3.3 to provide a transformation
that puts the Hamiltonian (4.3) into action-angle variables. We recall that the angle-function is given
by

o1(z, h), if z,y>0,

— h if x>0, y<0,
e B N
7T+Q51(—ZE,h), if x7y<07

21 — ¢1(—x,h), if z<0,y>=0,
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2
for 0 < h < 1heand |x| < /6. For the case Aj, with x = 0, we have that G(z) = —0% + z, and the

function ¢y (x, h) is given as follows

QZ51(I, h) =

2 (" du
T(h) fo 2(h — G(u))

Voz—1/6
2m 2h6 — 1
= log | u + 7 + u?
—1/\/g

VOT(h)
27 log. (91: —1+4+/2h0 — 1 + (0 — 1)2>

~ VT (h) 1 —v2ho

[ log(fz — 1+ /2h0 — 1 + (0 — 1)%) — log(1 — v/2h0)
- log(1 + v/2h8) — log(1 — v/2hf) ’

whereas the action-function is given by

a—(h)

A(h) =4 V2(h —G(x))dx

4 (VOa-W=NE - opg ]
= — + u?du
VO J i 0
_ A fu faRe-1 o 12m6-1
— a2V e 2 ¢ ®

_ 2v/2h0 . (1 —2h0) o 1+ +/2h0
0°r 6°F 1—+2h0 )"

2h0 — 1
0

+ u?

u +

] VBa_(h)=1)N8

,1/\/5

We remind that A(h) corresponds to the area enclosed by the level curve C;, when 0 < h < 1/29 and
|z| < /6.

Remark 4.3.1. The functions T : (0,120) — (0,00) and A : (0,1/20) — (0,2/6*2) are smooth, and
A'(h) = T(h) for every h € (0,/20). Since T'(h) > 0 for every h € (0,1/20), it follows that A has a
smooth inverse function, to be denoted by h,.

Lemma 4.3.2. The transformation

®y: Lo\{(0,0)} —> Sar x (0,2/6%)
(z,y) > (¢(z,H(z,y)), AH(2,y))) = ((z, h), A(h))

is a homeomorphism. Furthermore, if (¢, I) is the one satisfying ®7' (¢, 1) = (x(¢, 1), y(¢, 1)), then
x(p, I) is smooth on I.

Proof. In order to show that the transformation ®; is onto, let us consider (¢*, I*) € Sy, x (0,2/ 03/2).
Since A is a bijection between (0,1/(26)) and (0,2/6°?), there exists h* € (0,1/(20)) such that
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A(h*) = I*. The value for z* is given by z* = Z(¢*, h™) (see equation (4.6)), while y* is obtained
through the relation h* = H(x*, y*). The injectivity of ®; is demonstrated using the same procedure
as outlined in Lemma 3.3.2. Continuity is clear from the explicit expressions of ¢(x, h) and A(h). In

order to show that its inverse is continuous, we state the relation
z(¢, 1) = Z(¢, ho(I)) = (9, h). (4.5)
Then, if ¢ € (0,7/2), we have ¢ = ¢1(Z, h), that is,

o <1og(egz(¢, h) — 1+ +/2h0 — 1 + (0%(¢, h) — 1)%) —log(1 — ¢m>

log(1 + v/2h0) — log(1 — +/2h0)

From the properties of the Logarithm function, we have the relation

K(¢,h) = (03(p,h) — 1) —A/2h0 — 1 + (02 (o, h) — 1)2,

where K(¢, h) := (1 + V2h0)""(1 — v/2h6)" ~“. This implies that

—(0(p, h) — 1) + K(¢, h) = —+/2h0 — 1 + (02 (o, h) — 1)2,

and consequently

The relation above leads us to

i 1 1 1—vana\ " 1+ v\
2(0.h) =5~ 55 (W) <1+m>+<m> (1—+2100)|. (4.6

In analogous way, we obtain the expression for Z(¢, h) when ¢ € [, 27]. Thus, as a complete

expression for Z(¢, h), we have

qb/ﬂ- 45/71'
11 1 —+/2h0 1+ v2ho :
5" 2 (W) (1 + V2h0) + <m> (1—\/%) if ¢e|0,7),
j(¢7 h) = 9 Sfr—1 ¢fr—1
1 1 1—+/2h6 1++/2h6 .

Notice that, for each 0 < h < 1/, qslirgo (¢, h) = Z(bo, h) holds for every ¢g € {0, 7,27}. Con-
sequently, & exhibits continuity over So, x (0, 1/26), and this continuity extends to x (regarded as a
function) over Sy, x (0, 2/p*2) through the relationship (4.5), and therefore ®; is a homeomorphism. In
addition, for fixed values of ¢, we observe that (¢, I') is composed only by smooth functions, which

concludes the proof of the lemma.

]
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By performing ®, to the Hamiltonian (4.3), we have

H(g, I, t;e) = ho(I) — ex (o, I)p(t),

which is defined on Sy, x (0,2/6°2) x S,, for every € € R. Notice that the Hamiltonian # is continuous
in ¢, smooth in /, and of class C® in t. Besides that, taking Ix = A(hg), where hy is the energy

provided in Remark 4.2.1 for a given compact K < Ly, the following lemma holds.

Lemma 4.3.3. Given a compact set K c Ly, there exists € > 0 and Iy, Iy € (Ix,%/e?), with
I, < I, such that OrH (¢, I, t;e) > 0 for every I € [I1, 1] and 0 < € < g(x ).

Proof. From Remark 4.2.1, it follows that there exists hx € (0, 1/26) such that H(z, y) < hg. As the
sequence Cj, converges to 0Ly as h tends to 120", there exist distinct values hy and hy in (hg,1/0),
with hy < ho, satisfying

D(hi,hy) :=={(x,y) € Ly : hy < H(x,y) < ha} & Ly, 4.7

with each level curve C, < D(hy, hy) enclosing the compact set K (see Figure 18). The action-
angle transformation ®; provided in Lemma 4.3.2 transforms the annulus D(h4, hs) into the annulus
Sor % [I1, 5], where I; = A(h;), for i = 1,2. For fixed values of ¢ and ¢ in the Hamiltonian
H(p, 1,t;¢), and taking into account Lemma 4.3.2, we have that

OrH(9, 1, t;¢) = ho(I)(1 — dn(9, ho(1))p(t)),

where we have used relationship (4.5). Since hy(I) > 0 for every I € [I1, I5] and 0,% (¢, ho(1))p(t) is

continuous on Sy, x [[1, I5] x S,, there exists £(x ) > 0 such that

1 — 0u@ (6, ho(1)p(t) > 0,

for every (¢, 1,t) € Sy x [11, 5] x S, and for each ¢ € [0, (k) ]. This completes the proof of the

lemma. O]

4.4 Angle and energy as new time and position

In order to overcome the lack of regularity of the Hamiltonian H in the angle variable, we
follow the method presented in Section 2.2.3 to construct another coordinate change that turns H into
a sufficiently smooth Hamiltonian in both angle and action variables. From Lemma 4.3.3, we have
that, for fixed ¢ € Sy, and t € S, and for each ¢ € [0, £ p)), the function #(¢, -, t; €) is invertible in

[11, I5]. Thus, for every € € [0, £(x )], the transformation

Gy Sop x [[1, 2] xS, —> Sy x [r1,72] X Sor
(¢7 I’ t) — (t7H(¢7 I’ t; 8)’¢)7
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g

Figure 18 — The shaded gray area corresponds to the annulus D(hq, hs), where each level curve
Cn < D(hy, ho) encloses the compact set K.

with r; = ho(1;), for i = 1,2, defines a diffeomorphism on the extended phase space that pre-
serves the Hamiltonian character of H, as mentioned in Section 2.2.3. Taking into account that
H(p, 1,t;0) = ho(I) and denoting the new variables as (5,7, 7) € S, X [r1,79] X Sar, Wwe can express
the new Hamiltonian as follows:

H(B,r,7:8) = Alr) + e H4(B, 7,73 €), (4.8)
where 7] is defined by the relation above.

Remark 4.4.1. The Hamiltonian 7 (3, r,7;€) is of class C° in (3, smooth in r, and continuous on T.
In addition, the compactness of S, x [r1, 73] x Sar ensures the boundedness of 7 (B, r, ;) and all
its partial derivatives with respect to 5 and r, which means that there exists C' depending on K and
p(5), such that

‘5}3@¥%(5,T,T;6)‘ <C for 0<i+7j<5.

Since A'(r) = T'(r), it follows that, for every ¢ € [0, £k p)), the Hamiltonian differential

system associated with (4.8) is given by

g X

dr — or
dr 07

E = _%(677077—;5) = —Saﬁﬁ(ﬁ,T,T;E).

(B,r,136) =T(r) + €0, 74(B, 7,75 ¢),
(4.9)
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Moreover, the existence and uniqueness of solutions for (4.9) are established due to their smoothness
in the respective components. We denote by (5(, 7o, B0, ro; €), 7(T, To, So, T0; €)) the solutions of (4.9)
satisfying (5(70, 70, o, 70; €), (70, 70, Bo, 70; €)) = (Bo,70) € Sar X [r1,72], and we state that such

solutions are defined for every 7 € R, as noticed in the following result.

Lemma 4.4.2. For every € € 0, ¢k )| and for each (5o, 70) € Sor % [r1,72], the maximal solution of

(4.9) having (o, 10) as initial condition has R as its maximal interval of definition.

Proof. We first notice that the differential system (4.9) 1is defined for every
(B,7,7) € Sy x [r1,72] x Sar and for every € € [0,e(x ] Thus, proceeding by reduction to ab-
surdity, let us assume that there exists ¢, € [0,k ] and (Bo,70) € S, x [r1,72] for which the
corresponding solution (3(7, 7o, Bo, 7o; €«), 7 (T, To, Bo, To; €+)) of (4.9) is not defined for every 7 € R.
In other words, there exists 79 < 71 < o0 such that (5(7, 70, Bo, ro; €), 7(7, To, Bo, ro; €)) cannot be

continuously extended to an interval that properly contains [y, 71].

Since (5(7, 70, Bo, 705 €), (T, To, Bo, T0; €+)) 1s a solution of (4.9), it follows that
(7, To, Bo, 0} €x) € [r1,73] for every T € [70,71], which implies that
T(r(r, 70, Bo,T0;€%)) € [T(r1),T(r2)] for every 7 € |19, 71]. In addition, 5(7, 79, 5o, 70; €+) must
satisfy the integral equation

T

B(T, 70, BosT0i€x) = Bo +J T(r(s, 70,00, 705€x))

70

+ 5*67”%(/8(& 70, /807 To; 5*)7 T(S> 70, BO? To; 6)7 S; 5*)d8'

From the comments above and Remark 4.4.1, it follows that, there exists a constant K > 0 depending
on T'(ry), T(rs), and 0,741 such that

|6(7, 70, Bo, To; €4)| < Bo + Ko(11 — 70)-

This implies that the curve described by the function ¢g(7) = (7, B(7, 70, Bo, T0; €x), T(T, Tos Bo, T0; €x))
is entirely contained in the compact [79, 71| % [— 8o — Ko(T1 — T0), Bo + Ko(71 — 70)] X [r1, 2], which

contradicts Theorem 2.1.2. This completes the proof of the lemma. [

In order to simplify the expressions of the differential system (4.9), we propose the

following change of variables:
@3 : So X [7”177“2] B SQW X [ﬁlaﬁQ]

Br) (2—%, Q_Wm)) ,

o o
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2 _
where p; = —WT(TZ'), for i = 1, 2. Thus, by denoting (3, p) = ®3(/3, ), the differential system (4.9) is
g

equivalent to

da o
& = p BT
i (4.10)
d_i = 572(B7ﬁ77'35)
with
f1(B,p,75¢) = 0,56(ZB,7(p), T )
and

Fa(B.p.718) = =T (7(0)) 057 (£ 5.7(p) 73 ).
where 7(p) = T~ (% ﬁ) . In this setup, it follows that f, and f, are C* and 27-periodic in 3, and
smooth in p. Furthermore, the bounds provided in the Remark 4.4.1 extend to f, and f,, yielding the

lemma.

Lemma 4.4.3. There exists a positive constant C depending on K, p and 0 such that

6%6%71(67 ﬁa T 5)‘ +

0505 f5(B, p,mie)| < C for 0<i+j<4,

for every (B, p, ) € Sar x [p1, o] x [0,27], and for each € € [0, )]
Let us denote by (3(7; ), p(7;€)) = (B(Bo, po, T; €), p(Bo, po, T; €)) the solution of (4.10)
whose initial condition is (3(0;¢), p(0;€)) = (5o, po). We see that for ¢ = 0, the solutions of (4.10)
are explicitly given by
(B(750), p(750) = (Bo + poT, po)-

Then, for 0 < € < £(x ), where we redefine €k ;) to be the one given in Lemma 4.3.3 and also allows

the Taylor expansion of (3(7;¢), p(7;¢)), it follows that
B(r;e) = Bo + 7po + eA(Bo, po, 7€) and  p(7;€) = po + eB(Bo, po, T; €), (4.11)

where
.

B(Bo, pos7:) = J Fo(B(r:e), pls: ), 5 €)ds

0
and

T

A(Bo, po, Ti€) = J B(fo, po, 5;€) + f1(B(s;€), p(s;€), s;¢)ds

0

For ¢ € [0, g(k )|, we define the Poincaré-map P : Sy, x [p1, p2] — R? associated with

(4.10) in the following way:

P(BOaﬁO;g) = (5(507;50727T§5)7ﬁ(ﬂ0750727§5))7
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which, by considering relationship (4.11), can be expressed as
P(Bo, po; ) = (Bo + 2mpo + ePy(Bo, po; €), po + €Pa(Bo, poi €)),

with Py (B, po;€) = A(Bo, po, 27; ) and Py (Bo, po; €) = B(fo, po, 2; €). One can see that P is 27-
periodic in (3, and of class C* in Sy, x [p1, p2]. Besides that, the bounds in Lemma 4.4.3 naturally

extend to P, and P, yielding the following.

Lemma 4.4.4. There exists a positive constant C > 0 depending on p(Bo) and K such that

HPl(.;6)HC4(SQ,,><[;71,ﬁ2]) + HPQ(';8)HC4(SQ,T><[ﬁ1,f)2]) < C,

foreverye € [0,k ).

4.5 Proofs of the main results

We start by proving Theorem C.

Proof of Theorem C. Let us begin by defining a(p) = 27p. We notice that o € C*([py, p2]) and
o' (p) = 27 > 0, for every p € [p1, p2]. The map P has the intersection property since it is conjugated
to a Poincaré-map originating from a Hamiltonian system (Proposition 2.3.11), and its lift can be
written in the same form presented in Moser’s Twist Map Theorem due to its 1-periodicity in 3. Hence,

there exists xk > 0, depending on p, — p; and «, such that if

||6P1”C4(Sz7r><[ﬁ1,ﬁz]) + ||6P2||C4(S27r><[ﬁ1,/32]) < K,
then P has invariant curves.

By taking (k) = min{r/ 2C, £(xcp)}» Where C' > 0 is the constant provided in Lemma
4.4.4 and (g ) > 0 is provided in Lemma 4.3.3, it follows that for each 0 < € < £ ), there exists an
invariant closed curve I'. of P. This implies that the saturation of I'. by the flow of (4.10) correspond
to an invariant torus of (4.10), which is going to be denoted 7T;. By reversing all the transformations
applied so far, we have that 7. is transformed into an invariant torus of (4.2), to be denoted 77, whose
intersection with the time section ¢ = 0 is a Jordan curve A. entirely contained in the annulus D(hy, ho)
(see (4.7)). Since every closed curve contained in D(hy, hy) encloses the compact set K, we conclude
this proof. [

As previously mentioned, Corollary 4.1.1 follows as a direct consequence of Theorem C,

while Theorem D is proved by recursively applying Theorem C, as we shall see in the sequel.

Proof of Theorem D. Let n € N and p € C°(S,) be fixed. We define K| = Cj,,, with h; = 0, and we

notice that K| is compact set contained in Lgy. Then, from Theorem C, there exists 52‘[(1 » > 0, such that
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for each 0 < & < ey, ). there exists an invariant torus 7_' of (4.2) such that Al := T ({t = 0} xR?)
satisfies
K, < int(Al) < Ly.

From Remark 4.2.1, there exists hy € (0,1/20) such that the level curve Cy, encloses A!. By defining
K5 := Cp,, we can apply Theorem C and, then, obtain an 0 < 52‘ Kop) S EZ‘Kl oy such that for each
0 < € < €[k, ), there exists an invariant torus T2 of (4.2) such that A2 := T2 n ({t = 0} x R?)
satisfies

int(Al) < int(Cp,) < int(A2) < Ly.

By taking Remark 4.2.1 into account and recursively applying Theorem C, we obtain an increasing
sequence of energies 0 = hy < hy <--- < h, <1/20and 0 < (g, y = () < *** < E(k, > Such
that for each 0 < € < €, ) there exists a sequence {7_'};_; of invariant tori of (4.2). Furthermore, by
defining A" := 7;7(,.2”717) A ({t = 0} x R?), we have that, for n € N,

Ch, < int(A') € int(Cp,) < int(A?) S -+ -int(Cp,) < int(A™) < L.

Since C,, — 0Ly when h — 1/(26), it follows from the construction above that A" — 0L,

when n — 400, and this completes the proof of the theorem. [
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5 Analysis of the Case Aj

The findings presented in this chapter are based on the paper [51].

In this chapter, we investigate the existence of invariant tori and the boundedness of

solutions for the differential equation
i + sgn(z) = ep(t),

which corresponds to case As. For such a case, our analysis is non-perturbative, meaning that the
results presented in this chapter holds for every value of €. Consequently, the perturbative parameter ¢

in (1.3) is absorbed by the function p(t), simplifying the differential equation above to
T+ sgn(x) = p(t). (5.1)

Furthermore, by assuming p(t) to be a periodic function with a vanishing average, we employ a
constructive method to obtain results similar to those in Chapters 3 and 4. In addition to not using
KAM theory for case .43, a notable difference between the approach used in this chapter and the former

ones lies in the fact that the regularity of p(¢) can be significantly reduced to Lebesgue-integrable.

As mentioned in [37], Ortega in a talk [54] at Academia Sinica in 1998 suggested the
question of whether all solutions of (1.1), when g(z) = arctan(x) and p(t) is periodic, are bounded or
not. In this case, the saturation function is bounded and generates a small twist at infinity, which makes
it difficult to apply the standard versions of the Moser’s Twist Map Theorem. It fell to Li [37] to first
answered this question, in the case that p(t) is a C* periodic function with vanishing average. In [64],
Wang improved the result of Li by considering p(t) as a C® periodic function with some smallness
condition on its average. The non-smooth forced oscillator (5.1) represents a limit scenario to the case
introduced by Ortega in [54]. Particularly, the differential equation (5.1) provides models of electronic

circuit in the presence of a relay as noticed by [30].

The goal of this chapter is to provide a simple proof for the boundedness of every solutions
of the differential equation (5.1) in the case that p(t) is a Lebesgue-integrable periodic function with
vanishing average. Despite of the vanishing average restriction, equation (5.1) still presents a rich
dynamics, for instance, periodic solutions [30] and chaotic behaviour [11, 60]. Our reasoning is based
on a simple constructive approach that allows us to prove the existence of a sequence of invariant tori
such that the union of their interiors covers all the (¢, z, &)-space, (t,7,2) € S, x R?. In addition, we

will see that these tori are foliated by periodic solutions, representing a highly exceptional phenomenon.

This chapter is structured as follows. In Section 5.1, we define some objects to be used

throughout this chapter and we state our main result (Theorem E) concerning the existence of infinitely
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many invariant tori. Section 5.2 is dedicated to provide a sufficient condition for the existence of an
invariant torus of (5.2), while Section 5.3 is devoted to the proof the main result of this chapter. In
Section 5.4, we explore further directions for this study, particularly addressing an approach to handle

cases where p(t) has a non-zero average.

5.1 Main result

In order to address the properties of the solutions of the differential equation (5.1), it is
convenient to consider it written as the following first-order autonomous differential system in the

extended phase space, by takingy = 2/, t = ¢ and ¢’ = 1

1

¢ =1,
x' ,

5.2)

y
Yy = —sgn(z) + p(9),

(6, 2,y) € R x R?,

5.1.1 Existence and uniqueness of solutions

The differential system (5.2) has two kinds of discontinuities, namely, the ones generated
by the sgn function and the ones possibly generated by the Lebesgue-integrable function p(t). We
recall that, by taking y = 2, the differential equation (5.1) can be written as the following first-order

differential system:

!
o (5.3)
y' = —sgn(z) + p(t).
As previously mentioned, Filippov convention will be assumed for solutions of the differential system
(5.3) (see Definition 2.1.14), which exist for every initial conditions (see Example 2.1.21). As usual,
solutions of the differential system (5.2) are given in terms of solutions of the Filippov system (5.3)

and, therefore, also exist for every initial conditions.

The solutions of (5.3) can be investigated by considering the following differential systems:

! /
r =Y, r =Y,
r =0, and x

y' = —1+p(t), y =1+p(t),

N

0, 5.4

which match (5.3) restricted to x > 0 and = < 0, respectively. Since p(t) is a Lebesgue integrable
function, the differential systems in (5.4) correspond to Carathéodory differential systems for which

all the conditions for the existence and uniqueness of solutions are satisfied (see Example 2.1.12). In
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the extended phase space, such differential systems become:

gb, = 17 QZS/ = ]-)
T = Y, x>0, and r = Y, rz < 0. (5.5)
y' =—1+p(¢), y' =1+ p(¢).

We remind that, except for 5o = 0, the switching plane X' = {(¢, z,y) € R x R? : = 0} is a crossing
region of (5.2) (see Example 2.1.23). In addition, we have seen in Example 2.1.12 that each one of the
system in (5.5) satisfy the conditions for local uniqueness of solutions. These facts allow to conclude
that, for each initial condition (¢g,0,y0) € X' with yo # 0, the unique maximal solutions of the
differential systems in (5.5) are transversal to X' at (¢, 0, yo) and concatenate in order to form a (local)
solution of the differential system (5.2) that is unique around (¢, 0, yo). The explicit expressions of

the solutions of the differential systems in (5.5) will be provided below in Section 5.2.

5.1.2 Main result

Let us define
t

Pu(t) = fp(s)ds and  Pyt) i j Py(s)ds,

0 0

and, as usual, let p denote the average of p(t), i.e.

Notice that the function P, (¢) is continuous and the function P»(t) is continuously differentiable.

Our main result provides the existence of a sequence of invariant tori for (5.2) under the

assumption p = 0.

Theorem E. Suppose that p(t) is a Lebesgue integrable o-periodic function satisfying p = 0. Then,
there exists a sequence {T,}nen © Sy x R? of nested invariant tori of the differential system (5.2)

foliated by periodic solutions and satisfying:
Se x R? = | ] int(T,),
neN

where int(T,,) denotes the open region enclosed by T,. In addition, all the maximal solutions of (5.2)

are defined for every t € R and the ones starting at (S, x R*)\int(T,) are unique and transversal to
Y.

Since T, is invariant for each n € N, the uniqueness property provided by Theorem E

implies that a solution starting at int(T,,) cannot leave it for all ¢ € R. This leads us to the following

corollary.
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Corollary 5.1.1. Suppose that p(t) is a Lebesgue integrable o-periodic function satisfying p = 0. Then,
all the solutions of the differential system (5.3) are bounded.

In order to illustrate the main result of this chapter (Theorem E), we present some numerical
simulations concerning the solutions of the differential equation (5.1). Specifically, p(t) = esin(2xt),
and choosing a specific value for €, we consider several initial conditions for the differential equation
(5.1). Subsequently, we plot 2500 points for each of them on the time section ({t = 1} x R?), as p(t)

is 1-periodic in this case.

Figure 19 — The existence of invariant curves for the time-1-map, and consequently invariant tori for
the differential equation (4.1), is indicated by the concentration of colors in the figure. On
the other hand, the black curves represent the intersection between the tori T,, provided by
Theorem E and the time section ({t = 1} x R?).
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Figure 20 — The existence of invariant curves for the time-1-map, and consequently invariant tori for
the differential equation (4.1), is indicated by the concentration of colors in the figure. On
the other hand, the black curves represent the intersection between the tori T,, provided by
Theorem E and the time section ({t = 1} x R?).

Figure 21 — The existence of invariant curves for the time-1-map, and consequently invariant tori for
the differential equation (4.1), is indicated by the concentration of colors in the figure. On
the other hand, the black curves represent the intersection between the tori T,, provided by
Theorem E and the time section ({t = 1} x R?).
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5.2 Fundamental Lemma

This section is devoted to provide a sufficient condition for the existence of invariant tori
of (5.2).

For each n € N, define the functions y," : [0,0] — Rand y, : [0,0] — R by

no Py(o
Ui (@) = £=- + Pi(eo) — 2o) (5.6)
and, for each n € N, such that y;, (¢g) < v, (¢o) for every ¢ € [0, o], define the surface
Tn:="T, VT, , where
5.7

5= {0, Ui (B0, 0), o) : b0 € R, o € [y, (d0),u; (¢0)]},

and

‘I’f(%yyo) =

no B(o
(in202$4y§—8P2 (Tiy0$P1(¢o)i 2(0) +<Z50)

g
Py(0)
0-2

0|

+ 4P2(O') (n + ) — 4P1(¢0)(ipl(¢0) + 2y0) + 8P2(¢0)) .
The following result provides sufficient conditions for which the surface 7,,, for some

n € N, corresponds to an invariant torus of (5.2).

Lemma 5.2.1 (Fundamental Lemma). Let n € N be fixed and suppose that p = 0. Assume that, for

every ¢ € [0, o],
2

0Py (¢h0) — Pa(0)| < % (5.8)
and
[tPs(0) + 0 Pa(ho) — o Pa(t + )| < %t(na — 1), te (0,n0). (5.9)

Then, T, is an invariant torus of the differential system (5.2). Moreover, T, is foliated by 2no-periodic

solutions.

Before we proceed with the proof of Lemma 5.2.1, we define some important objects to

help us along the process. Consider the following sequence of curves in the plane X':

Y = 1(¢0,0, 45 (¢0)) : ¢o € So} and 7, = {(¢o, 0,9, (d0)) : do € Ss}, (5.10)

where y," and y;, are the continuous functions defined in (5.6).

We observe that the solutions of the differential systems in (5.5) are given, respectively, by

2
T (t, o, xo, Yo) = (t + o, —% + 20 + tyo — tP1(do) — Pa(o) + Po(t + ¢o),

—t+ g0 — Pi(o) + Po(t + 60) )
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and
2

0~ (t, ¢o, 0, Yo) = (t + o, % + 2o + tyo — tP1(¢o) — Pa(do) + Pa(t + ¢o),

t+ 30— Pi(00) + Palt + 60)).

which are obtained via direct integration. As mentioned in Section 5.1.1, if a solution ¢(t) of the

differential system (5.2) is transversal to X', then it writes as concatenations of ¢ and ¢~

Remark 5.2.2. Expressions for y" and y,, are obtained by forcing a solution initiating in X' to firstly

return to ' after a time no.

Also, the next lemma concerning the primitives P; and P, plays an important role through-

out this work.

Lemma 5.2.3. The following identities hold for every t € R and n € N:
Pi(t + no) = Pi(t) + nP(0) (5.11)

and )
n°—n

Py(t 4+ no) = Py(t) + nP (o)t + oPi(0) + nPy (o). (5.12)

In particular, if p(t) has vanishing average, then P, is o-periodic.

Proof. The identity (5.11) is obtained through elementary properties of the Lebesgue integral, as

follows:

t+no t t+no

p(s)ds + J p(s)ds

t

Pi(t+no) = J

0

p(s)ds = L

no

= Pi(t) + J p(s)ds

0

:Pl(t)+f

0
NG

g g

p(s)ds +--- + L p(s)ds

J

= Pi(t) + nPi(0).

In order to derive the identity (5.12), we define the auxiliary function

n2—n

On(t) := Py(t + no) — (Pg(t) + nP(o)t + oPi (o) + nPQ(a)) ,

which is continuously differentiable for every n € N and every ¢ € R. Considering (5.11), we notice
that
6, (t) = Pi(t + no) — Pi(t) —nPy(c) =0,

for every n € N. This means that 6,,(¢) is constant over R. Proceeding by induction over n, we are
going to show that ¢,,(0) = 0 for every n € N, and, then, conclude that relationship (5.12) holds for

everyt e Randn € N.
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For the base step n = 1, we have that
51(0) = PQ(O') — PQ(O') = O,
which means that the identity (5.12) holds for n = 1. Now, as induction step, let us assume that
0x(0) = 0. Then, for n = k + 1, we have

(k+1)—(k+1)
2

5k+1(0):P2((l€+1)0')— ( UP1(0)+(I€+1)P2(U))

- L e Py(s)ds — <k22+ koPl(a) + (k + 1)Pz(0))

-[ " Py(s)ds + [ (f“)” Py(s)ds — (’“; Lonio) + (k+ DPo))

k? + k

=5@®+f

0

= Py(ko) + Py(0) + ko Py(o) — (

Pi(s + ko)ds — ( oPi (o) + (k+ 1)P2(a)>

k? + k
2

oP (o) + (k+ 1)P2(a)>

K —k
= Py(ko) — ( oPi(o) + kag(U)) + Py(0) — Py(0)
= 04(0)
= 0.
This completes the proof of the lemma. [

5.2.1 Proof of the Fundamental Lemma

Let us first prove that ™ takes the curves 7 into v (see Figure 22), that is
0t (t, ¢0, 0,y (¢g)) ¢ X forevery t e (0,no) (5.13)

and
w0t (no, o, 0,y (d0)) = (no + ¢o, 0,45 (¢0)). (5.14)

Indeed, condition (5.8) implies that

Yo (o) >0 and y, (¢o) <0,

which means that the points in 7, and ~,, follows the forward flows " and ™, respectively. From

now on, go;i, 1 = 1,2, 3, denotes the i-th coordinate of the function gpi, thus

2
SDQi(t@o,O,y:_{(%)) = _% +1 (i% + Pi(¢o) — @) —tPi(¢o) — Pal¢o) + Pa(t + ¢o)
2
= J_rt— + P2(0)t — Py(¢o) + Po(t + o).
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The condition (5.9) implies that

90; (t7 ¢07 0; y:L— (¢0)) >0 and §02_ (t7 ¢07 07 y; (¢0)) < 07

for every ¢ € (0, no), which provides that relationship (5.13) holds. Moreover, taking Lemma 5.2.3

into account, we have

)2
¢35 (no, ¢o,0,y; (o)) = $(n2) +n0 Y (¢o) —no Pi(do) — Pa(co) + Pa(no + ¢o)

= Py(no + ¢o) — Pa(¢o) — nPa(0)
— Pu(o)(n(do + “=1))

2
:O,

because P;(c) = 0. Also,

903i (na, ¢07 07 y;_r (¢0)) = +no + y:f (¢0) - P1(¢0) + Pl (TZO' + (bO)

= Fno £ % + Pi(¢o) — Palo) _ Py (¢o) + Pi(no + ¢o)
= yrf((bO)

Figure 22 — For n € N satisfying (5.8) and (5.9) , the flow ¢* takes v, into 7, .
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Accordingly, we notice that
S,:=8"uS,, where
S’f = {gpi(t7 ¢07 Oa yf(gb())) (te [Ov TLO'], ¢0 € R}a

is an invariant surface of (5.2) whose intersections with %’ correspond to the curves ;" and v, given

by (5.10) (see Figure 22). Now, by solving the system of equations

Spii(t’ beoays(ﬁb)) = Qb(),
903i(t7 Qb, 07 yi(qb)) = Yo,

in the variables (¢, ¢) we have

t=Fy = % + PQéa) + Py (¢o),
B _no  Pyo) _
¢—¢0iyo+7i T Pi(¢o),

which, after substituting the solutions (, ¢) into @ (¢; ¢, 0, 4= (¢)), provides us S,, = 7,,. Furthermore,
Tr=T,n{x>0}and T, =T, n {x <0} are homeomorphic to

Dy, = {(do,50) : $0 € R, o € [y, (d0), Y (¢0)]},

because they are graphs of W7 and W, respectively. This in turn implies that 7, and 7, are simply

connected surfaces and, consequently, 7,, is an invariant cylinder of (5.2).

Now, let U < A be the set of initial conditions in A, for which the corresponding maximal
solutions of (5.2) are transversal to X’. As discussed in Section 5.1.1, such solutions are unique and

defined for every ¢ € R. Thus, consider the time-o-map P, defined on U into A,:
P, : U — A,
(0733073/0) — 80(05075607%)-
Since Ay and A, coincide in the quotient space S, x R* and taking into account that P,(U) < A,

corresponds to the set of initial conditions in A, for which the maximal solutions of (5.2) are transversal

to X', it follows that PP, can be seen as an automorphism on U.
Let C° and C° denote the intersections between the invariant cylinder 7,, with the time

sections A and A, respectively. Notice that, from the considerations above, Cg < U. In addition,

n

Crro +={(0,%37(0,50),%0) : %o € [, (0), 51 (0)]}

CY =T, nNy=Cl,uC;, where
’ ’ (5.15)

and
Co:=TponA,=C,,uC,

n , 0

Crro =1(0, (0, 50). %0) + 0 € [, (0), ()]}

where
(5.16)
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In what follows, we show that C" is invariant under the map P,. For this purpose, we will
examine the parametrizations of C2 and C? given by (5.15) and (5.16), respectively. We first observe
that the functions ¥, and y,, are o-periodic, thus ¥:* (0, -) and ¥ (o, -) have the same domain, namely,
Z, = |y, (0),y,5(0)]. Then, it is sufficient to show that

W (0,90) — Uy (0,90) =0 forall yo € Z,.

In fact,
W Om) ~ Wi (o) =n 2y = (O P )
+ (Pz (J + % + Pgia) +yo ) — (n+ 2)P2§U)>
_n L 2;”) L Pyo) = (n+ ) 2;")

The second equality above was obtained by the identity (5.12). Hence, it follows that the invariant
cylinder 7, corresponds to an invariant torus of (5.2) in the quotient space S, x R? (see Figure 23),

which concludes this proof.

Figure 23 — Invariant torus 7,, = 7,7 U 7, provided by the Fundamental Lemma.

5.3 Proof of the main result

The proof of Theorem E will follow as a consequence of the next results. The first one,

Proposition 5.3.1, will provide the existence of n* € N such that the conditions (5.8) and (5.9) of the
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Fundamental Lemma 5.2.1 are satisfied for every n > n*. Accordingly, the sequence of invariant tori
stated by Theorem E will be given by T,, := 7,,.,,+, n € N. Finally, Corollary 5.3.2 will provide that
each maximal solution of the differential system (5.2) is defined for every ¢ € R and the ones starting

in (S, x R?)\int(T,) are transversal to 2’ and, consequently, unique.

Proposition 5.3.1. Let p(t) be a Lebesgue integrable o-periodic function such that p = 0. Then, there

exists n* € N such that T, is an invariant torus of (5.2) for every n = n".

Proof. From lemma 5.2.3 we have that o P;(¢o) — P2(0) is continuous o- periodic in ¢q and conse-

quently bounded, thus there exists 1y € N such that the relationship (5.8) holds for every n = ny.

In order to obtain (5.9), we define the functions

f(t) ZZtPQ(O) + O'PQ(¢0) — O'Pg(t + ¢0) and

(5.17)
ho(t) ;:%t(na —t), forne N,

By Remark 5.2.3, we notice that f is continuously differentiable and o-periodic. Besides that, h,,(t) > 0

for every ¢ € (0, no). We start by proving the following claim:

Claim 1. There exists n* = ng such that

|f()| < hpx(t) forevery te (0,n*0). (5.18)

Consider the functions

Gn (t) = f(t) = ha(t) and g, () := f(t) + ha(t).

Since, g, (no) = g, (no) =0, (q,) (noo) > 0 and (q;, )'(ngo) < 0, then there exists £y > 0 such

that ¢, (t) > 0 and g, (t) < 0 for every t € (ngo — o, n90). This implies that

|f ()| < hny(t) forevery t € (ngo —eg,ngo). (5.19)

Now, for each £ € N, consider the following (anoo)-periodic function:

Bi(t) := D X1y () gy (t — 2(m — 1)), (5.20)

meN

where I, := [2*(m — 1)0,2*mo ) and y;,, is the characteristic function of I,,. Notice that g(t) is
a noo-periodic extension of h,,, and that hy,1(t) > hy(t) for every t > 0 and k € N (see Figure 24).

Taking (5.19) into account, this implies that
|f(t)| < hi(t) forevery te (28ngo — g¢, 2"ng0), (5.21)

for every k € N.
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Figure 24 — Graphs of the functions hy, constructed in (5.20) for k = 0, 1, 2.

On the other hand, from Lemma 5.2.3, it follows that P; is bounded, so let M > 0 satisfy
| Pi] = M. Then,

o t
IF(1)] < tf Py (s)|ds + af |Pi(s + ¢o)|ds < 20Mt, ¥ t € R. (5.22)
0 0

Consequently,
|f(t)] < hi(t) forall te (0,250 —4M). (5.23)
In addition, since f(t) is o-periodic, (5.22) also implies that

|f(t)] <20*M forevery teR. (5.24)

Assume, by reduction to absurdity, that (5.18) does not hold. In particular, for each
k e N, there exists t, € (0,2"ngo) such that |f(t)| = hy(t). From (5.23), it follows that t; €
[2"ngo — 4M, 2°nyT), which means that ¢, — oo when k — oo. Moreover, from (5.24), one has

h 20° M
It) — 2" ngo| = () = /() <= 0, when k — o0.
|t |t [kl

Then, there exists ko € N such that |¢; — anoa| < gg for every k > kg, with g > 0 being the one
satisfying (5.19). This is contradiction with (5.21).

Thus, there must exists k* € N, for which | f(t)| < Ty (t) for all ¢ € (0,2 ngo). Hence,
Claim 1 follows by defining n* = 2" n.

Finally, the proof of the proposition will follow by proving the next claim:

Claim 2. Condition (5.9) holds for every n > n*.
We notice that

1f(t)| < hos(t — o) forall te (o, (n* + 1)o).
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Taking into account that h,x(t) and h,«(t — o) coincide for t = (n* + 1)o /2, we can define

bt hos (t) if ¢ € [0, 5],
T | hae(t =) if te (Y507 (0 4 1)0].
Now, since hpx(t) < hyx,1(t) for all t € (0,n*c) and hyx(t — o) < hyxq(t) for all
t e (o, (n* + 1)o), we have that | f(t)| < hpx(t) < hps.1(t) forall t € (0, (n* + 1)o). The proof of

the claim follows, then, by repeating this procedure recursively.
Hence, Lemma 5.2.1 ensures that, for each n > n*, 7, is an invariant torus of (5.2). [

Corollary 5.3.2. Let p(t) be a Lebesgue integrable function with vanishing average. Then, all the
maximal solutions of (5.2) are defined for every t € R and the ones whose initial conditions lie on

(Sy x R*)\int(T,) are unique and transversal to ',

Proof. We start by proving that, for each (¢g, 2o, 40) € (S, x R*\int(T,), there exists a unique
maximal solution passing through (¢, 7, yo) which is transversal to ¥’ and it is defined for every
teR.

Notice that a maximal solution with initial condition (¢, o, yo) may intersect the plane
>’ or not. If such an intersection does not occur, then such a solution is unique as a maximal solution
of one the differential systems in (5.5). On the other hand, if ¢ (¢, ¢g, %o, yo) intersects ', then such an

intersection must be transversal. Otherwise, there would exist a time ¢* > 0 such that

d
©a(t*, @0, 20, 90) =0 and  @3(t*, do, T, yo) = a@z(t*ﬁo,l’o,yo) =0,

which implies that such a solution would cross T; (from outside to inside) contradicting the fact that
T, is invariant and that the solutions there defined are unique. Thus, as noticed in Section 5.1.1, this
transversality implies the uniqueness of all solutions starting in (S, x R?)\int(T;) which, therefore,
are defined for every ¢ € R.

For the remaining initial conditions, as a consequence of the invariance of T, the maximal
solutions starting in the set int(T;) are confined in the compact set int(T; ). Therefore, they must be

defined for all ¢ € R because of Theorem 2.1.22. This concludes the proof of the corollary. [

5.3.1 A simpler approach for L*-forcing term

In the next result, we shall see that the proof of Proposition 5.3.1 simplifies a lot by
assuming p to be an L™ -function on [0, o], instead of just Lebesgue integrable. In this case, we will
show that the surface 7, provided in (5.7) is an invariant torus of (5.2) for every n € N bigger than

2|pllz-
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Proposition 5.3.3. Let p be a o-periodic function with vanishing average and suppose that there
exists M > 0 such that |p| = < M. Then, the surface T, is an invariant torus of (5.2) for alln € N
satisfying n = 2M.

Proof. We recall that in order to obtain this result, it is sufficient to show that conditions (5.8) and

(5.9) hold for all n € N such that n = 2M.
Define a(¢g) := o Pi(¢g) — Py(0). Notice that « is o-periodic by Remark 5.2.3, which

restricts our analysis to ¢ € [0, o]. Then, taking into account that

o) t @0
Pu(on) = Pr(o)] = | [ po)ds = | w1 =| [ p)ds| < Iplielen o
0 0 t
and assuming that ||p|.» < M, we see that
ool =| [ Faton) = Prttar
0
< [ Wl 100 — tha (5.25)
0
7 o2 o? no?
<Mf |¢o—t|dt=M(——a¢0+¢§) <M— < —,
o 2 2 4

whenever n € N satisfies n > 2M. Therefore, condition (5.8) holds for every n € N satisfying
n=2M.

In order to obtain (5.9), we define the functions

n02 n02

dn(t) := Tt and e,(t) := _T(t —no).

We notice that d,,(t) > 0 for t > 0; e,(t) > 0 for ¢ < no; and d,,(t) = e,(t) if, and only if ¢ = =7.

Consider the functions

rE(l) = f(0) — da(t) and sE(t) = () - en(t),

where f(t) is the function defined in (5.17). We notice that " (0) = 0 and s, (no) = 0, since f is
o-periodic. In addition, given that a(t + ¢g) = — f'(t) for every ¢ € R, and taking (5.25) into account,
it follows that

(r")(t) <0 and (s;)'(t) >0 forall teR,

n n

and n > 2M. This means that f(t) < d,(t) for all t > 0, and f(t) < e,(¢) for all ¢ < no. Thus, by

deﬁning the function
d,(t) if te (0, %],

en(t) if te (%, no),
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and taking into account that g (¢) < h,,(t)" for all t € (0, no), where h,, is the function defined in
(5.17), it follows that f(t) < h,(t) forall t € (0,no) and n = 2M. In an analogous way, we can show
that —h,,(t) < f(t) forall t € (0,no) and n = 2M. It concludes this proof. O

5.4 Further directions: A glimpse of the non-vanishing average
case

The main results presented in this chapter are contingent upon the assumption that p(t)
has a vanishing average. A natural question that emerges from this assumption is: What if p(¢) has a

non-vanishing average?

Enguica and Ortega in [20] showed that (5.1) has infinitely many bounded solutions
provided the limit

uniformly exists with respect to ¢ € R. Unlike Theorem E, this outcome is not global, in the sense that

not all solutions are necessarily bounded.

In this section, we present a work in progress to address the existence of invariant tori
and global stability of solutions of (5.2) in the cases where p(t) has a non-vanishing average. Since
it consists in a perturbative approach, we reintroduce the perturbative parameter ¢, transforming the
equation (5.1) into

T +sgn(z) = p(t). (5.26)

Here we are assuming that p(¢) is analytic and o-periodic.

Notice that in the unperturbed scenario, every solution is periodic and the extended phase
space (t,z,7) € S, x R?, except for the line {(¢,0,0) : ¢ € R}, are foliated by invariant tori. The
intersection between these invariant tori and the switching manifold X' results in the curves {(¢,0, yo) :
t € R}, with yo # 0 (see Figure 25). This implies that, if we consider the impact map (to be elaborated)
associated with the unperturbed equation defined on X', every curve 7, := {0y, (t) = (¢,0,v0) : t € R},

with yy > 0, is invariant under such map.

We briefly explain the impact map associated with the differential equation (5.26). We
remind that (5.26) can be seen as the vector field (1.7).

We denote the solutions of (1.7) with initial condition (¢, 2o, yo) and (¢1, 1, 41), if z > 0
and z < 0, respectively, by

(l0+(7-7 ¢U) Lo, Yo, 6) = (Qb:_(gbo, Lo, Yo, 6)) .ZU:_(¢0, Lo, Yo; 6)7 yi(¢07 Lo, Yo; 6))a (527)

There is a typo in the definition of the function g;' (¢) in the published paper [51]. Such typo does not compromise the
accuracy of the result.

1
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Figure 25 — (a)-Intersection between the invariant tori and the time section {¢g} x R? (b)- Invariant
tori in S, x R? (¢)- Intersection between the invariant tori and the plane Y

and
(P_(T, ¢17 T1, Y1, 5) = (¢Z(¢1, T1,Y1s 5)7 397;(¢1, L1, Y1; 8)7 yz(¢1a L1, Y1; 8))7
respectively. The subsets

Z+ = {(¢0707y0)62/:y0 >O} and X7 :{(¢1a07y1)62,:y1 <0}

play an important role in defining the domain of the half impact maps. For (¢, 0, 30) € X%, we denote

by 7F (o, yo; €) the smallest positive time such that
2 @1 (0,0, y0;€) = 0.
We note that 77 (¢, yo; €) is o-periodic in ¢o. The half positive impact map is given by
PX: (00,0,90) € TF > (6 @ (0, 0,90:2), 0,57 @ (0,0, 90;) € T

The initial condition (¢1,0,y1), with (¢1,0,y;1) € X7, follows the negative flow given by (5.2).
We consider 7 (¢1,41;€) as the smallest positive time such that xz‘(¢1,y1;€)(¢h 0,y1;¢) = 0, with

T (¢1,y1; €) being o periodic in ¢;. Then, the half negative impact map is given by
Pg : (¢17 07 yl) €N — (¢zi(¢hy1;a) (d)l? 07 Y1, 5)7 yzf(¢1,y1;€) (¢17 Oa Y13 8)) € E+'

Thus, the complete impact map for equation (5.26) is provided by the composition of the negative with

the positive half impact map, respectively, i.e.,

Ps : (¢0707y0) € 2+ — (%ano) = ,P&: OP;(¢0707y0) € Z+7
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with o-periodic dependence in ¢y, so that it can be read as a map of the annulus S, x R*. When ¢ = 0,

it is easy to check that
7DO(gbOv 07 yO) = (¢0 + a(yO)a 07 y0)7

with a(yo) = 4y representing the period of the solution of the unperturbed autonomous system (5.26)
whose initial condition is (¢, 0, yo). This implies that the curves ,, are invariant under Py, for every
Yo > 0. Moreover, for sufficiently small € > 0, the trajectories of (5.26) starting in X" cross ©* again,
then, P. is well defined and also analytic as the solutions (5.27) restrict to 7. Since o/(y9) = 4 > 0,
for all yy > 0, it follows that Py is an integrable twist map of the annulus, which makes P. a close to
integrable twist map. Then, the parametrization method turns out to be very useful to detect analytic
periodic curves of P, in X7,
S

(%0, 0, 9o)
Pe_(gblvovyl) = PE(¢0707y0) ’ ’

SO_(Ta ¢17079135) SO+(7—7 ¢0707y0;6)
> U

Pe—i_ (¢07 07 yO)

Figure 26 — Impact map P-.

Parametrization method: The understanding of the parametrization method comprehends the intro-

duction of some objects.

Let w € R be a fixed Diophantine number (see Definition 2.3.1) and let F' be a real analytic
and exact sympletic map defined on a cylinder S, x R endowed by the 2—form d¢ A dI. We suppose
that ¢ is a real analytic parametrization for a given torus 7 < S, x R, and we define the invariance

error associated with 1

e(0) == F((0)) — (0 +w), 0€S,.

Hence, if for a given parametrization ¢*, the invariance error ¢* vanishes, it implies that )™ corresponds

to an invariant torus of F'.

Definition 5.4.1. Let f be a complex valued analytic function defined in an open set U < C?, which is

bounded in the closure of U. We introduce the norm

[ fllee = sup [ f(2)],
zel
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where | -| is the sup-norm. In the case where f is defined on a torus S, and can be analytically extended

to the complex strip A(p) := {¢p € C : [Im(¢)| < p}, then we refer to the size of this function with the

notation | f|, = | f|ac-

The parametrization method consists in finding a sequence of parametrizations {¢(”)}n
that converges uniformly to a function ¢* that parametrizes an invariant torus 7 * under F'. The idea
behind the construction of such sequence is start with a parametrization for a quasi- torus, ¥(”), in a
e(o)”p « 1.

Next parametrization, ¥, can be obtained by means of the quasi-Newton method, where we compute

way that, for some 0 < p < 1, the associated invariance error is sufficiently small, i.e.,

the linear approximation of e(!) around 1/(*) and we try to cancel out the resulting expression. This
process is interactively applied in order to improve the previous parametrization, in the sense that
the new associated error have quadratic size with respect to the previous one. The advantage in work
with this method lies in the fact that no change on the original system is needed, but only on the
parametrizations. This method was first introduced in [16] and was consistently applied in several
works as we can see in [27, 62, 63] and references therein. Besides that, the parametrization method is
very useful in computer assisted proofs, since we can obtain a better threshold for the size of the initial

error than methods based in transformation theory (see, for instance, [21]).

A strategy for establishing the existence of an infinite collection of invariant tori, as outlined
in Theorems A and E, involves considering an invariant curve 7,,, where y, > 0 satisfies a(yg) = w.
Here, w is a Diophantine number of type ((,v). The approach then applies the parametrization
method to ,, to generate a sequence {wg)}neN of parametrizations, for which the associated invariant
D o = O™

o) ), for every n € N. Under these conditions, the sequence
{ngj)}neN converges to a parametrization of an invariant torus of P.. Moreover, the upper bound for £

errors satisfy He Sn41)
ensuring the aforementioned convergence must be independent on the amplitude y, initially chosen.
This fact together with Remark 2.3.2 enable the construction of a sequence of invariant curves of P.,

and consequently a sequence of invariant tori of (5.26) (see Figure 27).

Certainly, there is still much work to be done, including the demonstration of the exact
symplectic nature of P.. We believe that this is likely true given the piecewise Hamiltonian structure
of (5.26) noticed in (1.6). Additionally, it is imperative to precisely establish the bounds of P, while

ensuring their independence on the initially chosen amplitude y.
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(@ (b) (c)

Figure 27 — (a)-Invariant curves of P. (b)- Invariant tori of (1.7) obtained after the invariant curves '
(¢)- Intersection between the invariant tori 7. and the time section {0} x R?
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6 Melnikov analysis for detecting periodic
orbits

The results presented in this chapter are based on the manuscript [50].

This chapter is dedicated to exploring the existence of periodic solutions through a Mel-
nikov analysis for the more general class of second-order discontinuous differential equations (1.2),

which, recalling its definition, is given by
I+ psgn(z) =0z +cf(t,x, x), (6.1)

where 1 € {—1,1}, and 6 and ¢ are real parameters. The function f is assumed to be C' and o-periodic

in the variable ¢.

The Melnikov method [41] is one of the main tools for determining the persistence of
periodic solutions in planar smooth differential systems when subjected to non-autonomous periodic
perturbations. It basically consists in providing a bifurcation function, called Melnikov function,
whose simple zeros are associated with periodic solutions bifurcating from a period annulus of the
corresponding differential system. The Melnikov function is derived by expanding a Poincaré map,
typically the time-7-stroboscopic map, into Taylor series, since, in the smooth context, this map

inherits the regularity of the flow.

The Melnikov analysis has also been applied in the investigation of existence of crossing
periodic solutions in non-smooth differential systems in [8, 2, 23, 48, 49]. Therefore, in the same
direction of the former references, our main goal is to provide an explicit expression, through a
Melnikov procedure, for a function that controls the existence of periodic solutions in (6.1) for the

cases where the unperturbed equation admits a period annulus.

Since the discontinuous nature of (6.1) imposes challenges in verifying the regularity of
the time-o stroboscopic map associated with it, we proceed by introducing the time as a variable
and using the discontinuous set generated by the sign function as a Poincaré section. This approach
allows the construction of a smooth displacement function, previously explored by J. Sotomayor in his
thesis [58] for autonomous differential equations. This function quantifies the distance between the
positive forward flow and the negative backward flow where both intersect the discontinuous set. A
Melnikov-like function will, then, be obtained by expanding this displacement function into Taylor

series.

This chapter is structured as follows: In section 6.1, we mainly discuss some additional
properties for the unperturbed Filippov system (6.2). By taking into account the classification done in

Chapter 1, we provide the statement of our main result (Theorem F) in Section 6.2. An application of



Chapter 6. Melnikov analysis for detecting periodic orbits 109

our main result is also provided (see section 6.2.1). Finally, Section 6.3 is devoted for the proof of our

main result.

6.1 Additional properties on the unperturbed Filippov system

Taking y = x, we recall that (6.1) can be written as the differential system

T =y
X@,M(t7 x,Y; 5) : . (62)
y = 0x — M sgn(:v) + €f(t, x,y)
for which we are adopting the Filippov convention for its solutions (see Section 2.1.2). Consequently,

the solutions of (6.1) are derived from the solutions of the Filippov system (6.2).

It is important to emphasize that the switching plane Y’ corresponds to a crossing region
of (6.2) (see Example 2.1.23), and only maximal solutions of (6.2) intersecting Y’ transversely are
considered in the subsequent analysis. Furthermore, we highlight that the existence and local uniqueness
of solutions, as discussed in Chapter 1 for the differential system (1.4), remain unaffected even when

considering the C'-function f (¢, z, 1) instead of p(t).

Before presenting our main results, some additional comments on the unperturbed Filippov
system are necessary. We remind that, for € = 0, the differential system (6.2) becomes
T =y,
Xou(t, 2, y;0) = Xou(z,y) 1
y = Oz — psgn(z),

which matches

T = Y, _ T = Y,
Xt (z,9) : and X, (z,v):
let( y) { y — Or — 1, G,H( y) { y = Or + L,

when restricted to z = 0 and = < 0, respectively. We notice that the line ¥ = {(z,y) € R* : x = 0}
represents the set of discontinuity of X, ,. Additionally, if we consider the involution R(z,y) =
(—,y), we notice that X, (z,y) = —RX, (R(r,y)) and Fix(R) < ¥, which means that Xy, is
R-reversible. In the classical sense, a planar vector field X is said to be R-reversible if it satisfies
X(z,y) = —R(X(R(x,y))). The geometric meaning of this property is that the phase portrait of Xy ,
is symmetric with respect to Fix(R). Furthermore, by considering the involution S(z,y) = (z, —y),
we verify that both X; , and X, are S-reversible. This indicates that the trajectories of X; ,and X

exhibit symmetry with respect to Fix(S) = {(z,y) € R?* : y = 0} (see Figures 2, 3, and 4).

Remark 6.1.1. Let us denote x = (x,y) and a = (0, ). Then, taking

A:Ol,
6 0
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the vector fields X;ﬁ . and X, can be rewritten as follows
Xy, (x)=Ax—a and X, (x)= Ax+a,

forx e X" = {r > 0} and x € ¥~ = {x < 0}, respectively. By denoting the solutions of X , and
Xy, as T (t,20) and T (1, zo), respectively, with initial conditions zy € X" and zo € ¥, respectively,

we notice that both solutions can be explicitly expressed by means of the variation of parameters as
follows

t t
I (t,z0) = e(zg — f e .ads) and T7(t,z9) = e (2o + J e . ads),
0

0
where et is the exponential matrix of At given by

-

cosh(tV/h) M

Vo if 6>0,
VO sinh(tv0) cosh(tV)
At 1 ¢ )
= g = 6.3
e $ 0 1) if 0, (6.3)

sin(ty/—0)
cos(tv/—0) 7
—/—0sin(tv/—0)  cos(tv/—0)

e = Re™R. (6.4)
Now let us consider xo = (0, o), with yo > 0. For the sake of simplicity, we denote
by I'"(t,40) = (I' (t,%0), T3 (t,50)) and T (¢, 40) = (I'y (t,%0), T (¢, 40)) the solutions of X and
Xy, .- respectively, having x, as the initial condition. Taking Remark 6.1.1 and the expression for e

At
given in (6.3), the solutions of Xg i having x, as initial condition are given by

<u(1 — cosh (\/ét))g—i- VByo sinh (\/ét) 4o cosh (\/ét) _ %ﬂ) , 0>0,
Pt o) = 4 (tyo—%tz,yo—ﬂt) ; 0 =0,
(M(COS(Ct) - 2)2+ C0sInC)  cos(ct) — “8“2(@)) , 0 <0,

(6.5)
where ¢ = v/ —0. As previously mentioned, the R-reversibility of Xy , allows us to easily obtain the

expressions of I'" (¢, yo) just by considering the relations

T7(t,yo) = T(t,y0) and T (t,y0) = R(I'"(—t,y0))- (6.6)
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The following presents a reminder of the cases in which the unperturbed Filippov system

Xy,,, features a period annulus (see Figure 5):

e Ag: 0 <0Oand u = 1;

e A;:0 <0and = —1,;

e Ay:0 >0and u =1,

o As:0=0and = 1.
For each one of these cases, there exist a half—period function, 77 (yo) (resp. 7~ (o)), providing the
smallest (resp. greatest) time for which the solution T'" (¢, yo) (resp. T~ (¢, 40)), (0, o) € A;, reaches
the discontinuous line ¥ again. In each of these cases, the function is given by 77 (o) = 70(yo) and

7 (Y0) = —70(%0), where, using the S-reversibility of X, ,, the function 74(yo) is the solution of the

boundary problem
F(07 ?JO) = (07 y0)7

T, <To(y0)7y0) —0.

2

The expression for 7y is given by

( e 2
(0,00) — (0, g) for Ao, Zarctan (CYo) for Ao,
2
(0, 50) — (z, 21) for Ay, ¢ (m —axctan (Cyo))  for As,
To : < ¢ ¢ and 7y(yo) = < i (6.7)
1 1 1+ o 0
L —log | —IVTN for A,
<0, \/5) (0,00) for As, NG og <1 ~ yo\/§> or A
L (0,90) — (0,0) for As, L 20 for As.

It is noteworthy that in cases .4y and .4; the boundary problem above provides infinitely many solutions.
However, due to the dynamics of the unperturbed system near y, = 0, the ones to be considered must

satisfy the conditions lim (yo) = 0in case Ag and lim To(yo) = 27/C in case Aj;.
yo—0 yo—0

Taking into account the the S-reversibility of X;r’ , and X, and equation (6.6), it follows
that
= (=70(%0), ¥0) = T (10(%0), v0) = (0, —¥0)- (6.8)

Remark 6.1.2. We notice that the points p* = (—1/1,0) and p~ = (1/n,0) in case Ay correspond to
linear centers, which have been consistently studied in the literature (see, for instance, [47]). For this

reason, we are not considering these centers in our study.
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For i € {0, 1,2, 3}, we denote by D;, the interval of definition of 7y, and by Z; the image
of 9. From the possible expressions of 7y in (6.7), it can be observed that 7)(yo) > 0 in D;, for
i € {0,2,3}, and 7(yo) < 0in D;. Consequently, 7 is a bijection between D; and Z; for i € {0, 1,2, 3}.
Its inverse is given by

( o
(0, %) — (0,0)  for Ay, —tan (% for Ap
(o
— f
) or A,
0
%) for A,,

o
— f .
5 or Ajs

T 27
—, =] —(0,0) for Aj, ——tan
(C C) o and v(o) = < ¢

(
(0,00) — (0, \%) for As, \%tanh(

(0,00) — (0, 0) for As,

6.9)

6.2 Main result

As usual, the Melnikov method applied for determining the persistence of periodic solutions
provides a bifurcation function, whose simple zeros are associated with periodic solutions bifurcating

from a period annulus. In what follows we are going to introduce this function for system (6.1).

Let f(t,x, %) be the c—periodic function in ¢ constituting the differential equation (6.1).
Consider I'(¢,yo) and v(o) the functions defined in (6.5) and (6.9), respectively. We define the
Melnikov-like function M : R — R as

o = [[0w3) (r(ernr (e (3)) #1 (o-trr (to(3)) @ 610

—L sech <\/§0> sinh <M> 0 >0,

NG, 2

U(t, o) = 3 _2—o 0_0 6.11)
2 )

f (o . (C(2t—0)
k —Z sec (7) sin (T) 0 < 0.

with ( = +/—0. Notice that, since f(¢,x,) is o-periodic in ¢, the Melnikov-like function M is

o-periodic. We derive the expression of M in the proof of our main result, which concerns periodic

solutions of the differential equation (6.1). Its proof is postponed to Section 6.3.

Theorem F. Suppose that for some i € {0, 1,2, 3} the parameters o and 0 of the differential equation
(6.1) satisfy the condition A; and that o /2 € Z;. Then, for each ¢* € |0, o], such that M (¢*) = 0 and
M'(¢*) # 0, there exists € > 0 and a unique smooth branch x.(t), € € (=%, %), of isolated o-periodic
solutions of the differential equation (6.1) satisfying (xo(¢*), 2o(¢*)) = (0,v(0/2)).
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Remark 6.2.1. It is important to emphasize that periodic solutions obtained in Theorem F bifurcate
from the interior of the period annulus A; for i € {0, 1,2, 3}. In case Ay, the two homoclinic orbits
joining p = (0, 0) constitute the boundary of Ay. Therefore, their persistence are not being considered

in Theorem F, which is elucidated by the conclusion v(c/2) € D; = (0, w0).

6.2.1 Example

In order to illustrate the application of Theorem F, we examine the following differential
equation
I +sgn(x) =0z +esin(ft), with 6> 0. (6.12)

This equation was previously studied in [15], where the authors provided conditions on # and 3 in order
to determine the existence of a discrete family of simple periodic solutions of (6.12). By assuming

f(t,z, &) = sin(5t) in (6.1), we reproduce a similar result as in [15, Theorem 2.1.1], as follows.

Proposition 6.2.2. Given n € N, there exists €, > 0 such that, for every ¢ € (—%,,,), the equation

(6.12) has n isolated 27“(2/{: — 1)-periodic solutions, for k € {1, ..., n}, whose initial conditions are

(zF(0), 2%(0)) = (0, \/Lgtanh (%)) + O(e).

The main difference between both results is that Proposition 6.2.2 is based on perturba-
tion theory, while Theorem 2.1.1 in [15] provides a precise upper bound for £ by means of direct

computations.

Proof. Since > 0, the unperturbed equation (6.12) represents the case As. Let us define 0; = 273 4,
for i € N. Since f(t, z, &) = sin(t) is oy-periodic in ¢, it is natural that f(¢, x, &) is also o;-periodic
in ¢. Besides that, for every ¢ € N, we have 0;/2 € Z;. Then, for i € N, we compute the Melnikov
function, defined as (6.10), corresponding to the period o;. This function takes the form

2(1+ (=1)")sin(B ¢)

Mi(¢) = e .

Notice that if 7 is odd, then ssin(8 )
sin
M;(¢) = YR
while for even values of i, M;(¢) = 0. Given n € N, we observe that My;,_1(0) = 0 and M, _,(0) # 0
for each k € {1,...,n}. Applying Theorem F, it follows that, for each k € {1,...,n}, there exists
ex > 0 and a unique branch 2% (t), £ € (—&y, x), of isolated 7;-periodic solutions of the differential
equation (6.12) satisfying (2"(0), ¥(0)) = (0, v(51/2)) + O(¢), where G}, = 09;_,. We see that, for

eachk € {1,...,n}, the periods G, are pairwise distinct, indicating that v(Gy, /2) # v(5},/2) whenever

ki # ko. Therefore, by considering €,, = lrr}ﬁin {er}, we conclude the proof of the proposition. O
<ksn
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6.3 Proof of the main result

In order to prove Theorem F, we consider the vector field associated to the differential

system (6.2), given by

¢ =1,
T =1, (6.13)
y =0z —psgn(x)+ef(o,z,y).

The differential system (6.13) matches

q.b: 5 925: )
T =1, and <z =y, (6.14)
y="0x—p+ef(oz,y), y="0x+p+ef(o zy),

when it restricted to x > 0 and = < 0, respectively. The solutions for the differential systems in (6.14)

with initial condition (¢, 0, yo), for yo > 0, are given by the functions

q)+(77 ¢an0;8) = (T+¢07¢+(T7 ¢073/055))7 (615)

and
(I)i(7—7 ¢an0§5) = (T+¢07907(T7 ¢07?1035))7 (616)

respectively, where = (7, ¢o, yo; €) = (71 (T, b0, Yo; €), ©5 (T, do, Yo; €)) is the solution for the Cauchy

problem

(6.17)

x=AxTFa+ el (t+ ¢o,x),
x(0) = xo,

with xo = (0,y0) and F(¢,x) = (0, f(¢,x)). Since the discontinuous plane ¥’ = {(¢, z,y) e R* : z =
0}, with y # 0, is a crossing region for the differential system (6.13), it follows that solutions of (6.13)
arise from the concatenation of ®* and @ along X’ when these solutions intersect Y’ transversely, as

previously mentioned. We denote this concatenated solution by ®(7, ¢, yo; €).

6.3.1 Construction of the displacement function

We notice that, for 3y > 0,

@1 (75 (0): @0, 103 0) = LT (75" (o), yo) = 0,

and

Ot (765 (W0), @0, ¥0; 0) = 3 (75 (v0), G0, Y0; 0) = I'5 (755 (o), Yo) = —o # 0, (6.18)
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with the last equality being given in equation (6.8). According to the Implicit Function Theorem, there

exist smooth functions 7 : Uy, yo:0) — V:_l

" (w0) and 77 : u((bo:yo;O) V;;(yo)’
Vi
+
75 (y

where U4, .0y and

)y are small neighborhoods of (¢, yo; 0) and 75" (30), respectively. These functions satisfy

Ti(¢07y0;0) = Toi(yﬂ) and ¢1i(7i(¢7y;5)7¢ay;€) = Oa (619)

for every (¢, y;¢) € U po,0;0)-

Thus, the functions 77 (¢, yo; €) and 7~ (P, ¥o; €), combined with the solutions (6.15)
and (6.16) of the vector field (6.13), allow us to construct a displacement function, A(¢y, yo; €), that

“controls” the existence of periodic solutions of (6.1) as follows

A(o, yo;€) = @7 (77 (do, Yo; €), G0, Y03 €) — (T (¢o + 0, Y03 €), G0 + 20, Yo; €)
= O (77 (0, Y03 €), G0, Yos €) — PT(T (0, Y03 €), G0 + T, Yo €),
since 7 (o, Yo; €) is o-periodic in ¢g. The displacement function A(¢y, yo; €) computes the difference

in X' between the points ™ (77 (¢, yo; €), ¢o, Yo; €) and (7~ (¢o, yo; €), do + 0, Yo; €) (see Fig. 28).
Thus it is straightforward that if A(¢g, yg; ™) = 0, for some (¢*, yg;€*) € [0,0] x R x R, then the

solution ®(7, ¢g, y;; ™) is o-periodic in 7, meaning that ®(7, 65, y;; ") and (7 + 0,05, y5;€*) are

identified in the quotient space S, x R?. Furthermore, from the definition of ® and ®~ in (6.15) and
(6.16), respectively, we have that

A(o, yo; €) = (A1(do, Yo €), 0, As(o, Yo €))
= (T+(¢07y0;6) - T_(¢07y0;5) - 0707
QP;(T+(¢0’ Yo, 5)a ¢07 Yo; 5) - (202_(7—_(¢07 Yo, 5)7 ¢0 + 0, Yo; 8))

In what follows, we provide preliminary results concerning the main ingredients constitut-

ing the displacement function A(¢g, yo; €).

6.3.2 Preliminary results

This section is dedicated to presenting preliminary results regarding the solutions of (6.17)
and the time functions 77 (4, yo; €) and 77 (o, yo; €) mentioned earlier. We begin by providing a result

concerning the behavior of the solutions of (6.17) as € approaches to zero.

, the function ™ (t, ¢, yo; €) writes as

Proposition 6.3.1. For sufficiently small |e

e (t, do,yos €) = TH(t, y0) + e (¢, do, yo) + O(€?), (6.20)

where T (t,yo) and T~ (t, yo) are the functions given in (6.5) and (6.6), respectively, and

t

VE(t, o, yo) = e f e M F (s + ¢o, T (s,90))ds. (6.21)
0
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.
.
-

O (7 (b0, Yo €), G0 + 7, Yo; €
"--b""ﬁ.
A(¢o, Yo; €) \’\

-~
N

O (7% (¢0, Y05 €), b0, Yo; €)

Yo

¢o+o

Figure 28 — Representation ~ of  the  points &7 (7 (o, v0;€), 00 + 0,%;¢)  and
O* (7% (o, Yo; €), Po, Yo; €), which originate the displacement function A.

Proof. Since @™ (t, ¢o,yo; €) is the solution to the Cauchy problem (6.17), then it must satisfy the
integral equation

t

gpi(t’ gbOvyO; 5) =Xy + J [Agpi(sa ¢07 Yo; 5) +a+ EF(S + ¢0a Soi(87 quayO; E)] dsa
0

which, by expanding in Taylor series around ¢ = 0, gives us
t

[Ari(& Yo) F a] ds + af [Awi(s, b0, Yo)
0

+F (s + ¢, I (s, 10)) | ds + O(£).

SOJ_F (ta ¢07 Yo; 5) = (07 yO) + J

0

Then, taking into account the expression for = (¢, ¢, yo; €) in (6.20) and the computations above, we
have that

¢i(t7¢0790) = J [A¢i(3a ¢07y0) + F(S + ¢07Fi(37y0))] ds,
0

which implies that )™ is the solution to the Cauchy problem

X = Ax + F(t + ¢o, (s, 40)),
x(0) = (0,0).
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Then, the general formula for solutions of linear differential equations yields relationship (6.21). [

In what follows, we describe the behavior of the time functions 77 (¢, y; ) and 7~ (¢, y; €)

satisfying (6.19).

Proposition 6.3.2. Let 75 (¢, yo; €) be the time satisfying equation (6.19). Then, for sufficiently small

le| and yo > 0 we have

(b0, yos €) = 75 (o) + €7 (b0, vo) + O(?),

with L
Tli-(gbO’yO) _ % (7_0 (ZOO)’ ¢07y0) '

Proof. By expanding (6.19) in Taylor series around € = 0, we have
€ (atr%(Tgi(yO)aZJO)T;L(%,ZJO) + U7 (157 (o), ¢07y0)) +0(e?) = 0,
which implies that
oLT (75 (Y0), Yo) 7" (0, Y0) + ¥1 (75 (¥0), b0, o) = 0. (6.22)

Then equation (6.22) together with (6.18) conclude the proof of the proposition. 0

The following result plays an important role in describing the behaviour of (3 around

e = 0. It is important to mention that, in our context, we identify vectors with column matrix.

Proposition 6.3.3. Let us consider v (t) and vy(t) as the lines of the matrix e, Then for every o > 0,
the following identity holds

1 (70(vo)) — Yov2(70(v0)) = (1 Yo),

where To(yo) is the half-period function defined in (6.7).

Proof. We define the auxiliary matrix-valued function

B(t) = (/L - HFT (t7 yO) F; (tv yO)) ) eAt’

which is continuously differentiable for every ¢ € R. By differentiating 3(¢), we have that
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Computations above imply that 5(t) is a constant function in each one of its entries, that is,
Bt)=p60)=(u y)-1d=(u o)
for every t € R. In particular,

1v1(70(v0)) — Yov2(10(y0)) = B(7o(y0)) = (11 Yo),

and this concludes the proof of the proposition. [

In the following discussion, we provide key relationships for the fundamental components
that appear in the expressions of oy (7" (¢, Yo; €), do, Yo; €) and @, (7~ (do, Yo; €), $o + 7, yo; €) for
sufficiently small values of |¢|. We start by formulating a more detailed expression for )™ (¢, ¢, yo).

By taking relation (6.21) into account, we have

W (t, do, yo) = (wf( ¢°’y°)> =M f e A F(s + ¢o, Tt (s, 10))ds (6.23)
( ®o, yo) 0
<<v1< )7 <t,¢o,yo>>>
(a(t) T, T (t, b0, 90)) )
where .
I (t, ¢o, yo) := L e M F(s+ ¢, I (s,90))ds. (6.24)

This remark leads us to the following result.

3 (T(00, Y03 €), G0, Yo; €) writes as

03 (77 (M0, Y03 ), G0, Yo; €) = —Yo — i<(u,yo), I (1o(y0), P, o)y + O(2).

Proof. By expanding ¢5 (77 (¢, Yo; €), ¢o, Yo; €) in Taylor series around & = 0, we have that

©3 (77 (0, Y05 €), b0, Y03 €) = I'3 (T0(Y0), Yo) + €€ (0, o) + 0(52)>

where

£ (0, y0) = '3 (10(y0), yo) 71 (Do, Yo) + 15 (T0(40), ¢o, Yo)

(07 (ulon) o) — ) 200D )., 0

- _i (1 (70(90): o, Y0) — Yots (T0(%0) Do, Y0)) -

Thus, by considering the relationship (6.23), the function £* (¢, 39) can be rewritten as follows

£ (d0, o) = —i (1vr(To(y0)) T I (70 (40), 0, ¥0)) — Yolva(To(y0)) T I (o(%0) b0, %0)))

=~ (Cpwr o)) = (o)) T (o). o )

1

- _% (<(,u,yo),f+(To(y0),¢0;yO)>) )
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where the last equality above is obtained after Proposition 6.3.3. Then, taking into account (6.8), the

proof of the lemma is completed. 0

In order to obtain analogous results as those achieved for 3 (77 (¢, Yo; €), ®o, Yo; €) in the
context of the function @5 (77 (¢o, yo; €), do + 0, Yo; €), we follow the previously outlined procedure.

Then, by taking into account that F' is a o-periodic function and relationship (6.4), we notice that
— 1/}7 _tv ¢ +0,U
w (_t7 ¢0 + 0, Z/O) = 1,( ’ 0)
w2 (_t> ¢0 + g, 3/0)

—t
= eAtJ e’AsF(s + ¢o + 0,1 (s,90))ds
0

t
= —ReAtRJ e RRF(—s + ¢o, RT" (s, y0))ds

=]

t

)", J M REF(—s + by, BT (s, yo))ds)

%

()", J M RE(=s + by, RT (s, yo))ds)

) ( Cor(®)T, I (£ do, 90)) )
(=oa ()T, T (t, 00, %0)) )

- -R

where .

I (t, 00,%0) := L e M RF(—s + ¢o, R (s,0))ds. (6.25)

Similarly proceeding as in Lemma 6.3.4, we provide the following result concerning the

behavior of ¢, (7™ (¢0, Yo; €), o + 7, Yo; €) around € = 0.

Lemma 6.3.5. For sufficiently small ||, the function v, (T~ (¢, Yo; €), Po + 0, Yo; €) writes as

@5 (T7 (G0, Yo; €), b0 + 0, Yo €) = —yo + i (1, y0), I~ (70(¥0), b0, 0))) + O(2).

Before we proceed with the proof of Theorem F, let us perform some essential computations
which will play an important role in deriving the desired Melnikov-like function. Let I (¢, ¢, 1) and
I (t, ¢o, yo) be the integrals defined in (6.24) and (6.25), respectively. We remind that F'(t, z,y) =
(0, f(t,2,y)). Taking u(t) = (uy(t), us(t)) to be the second column of e~, that is,

( < sinh(tv/6)

T,cosh(tx@)) it 0>0,

u(t) = 4 (—t,1) if 6=0,

(—Singo,cos(t()> if 0<o0,




Chapter 6. Melnikov analysis for detecting periodic orbits 120

with ( = v/ —0, it follows that

rt 0
I (t,do,y0) + I (t, ¢, y0) = | e ds (6.26)
JO g(sa ¢07y0)

f u1(s)g(s; ¢o, Yo)ds

0,

J us(5)g(5, do, yo)ds |

0

where we are defining g(s, 0. 50) == f(do + 5. T (5.0)) + f(60 — 5, RT"* (5, 1)). Notice that
9(s, b0, yo) is o-periodic in ¢y.

6.3.3 Conclusion of the proof

The task of obtaining a point (¢, 3o; €) that directly makes the function A vanish is quite
challenging. Thus, in our approach, we proceed with a Melnikov-like method, which basically consists
in computing the Taylor expansion of A(-,-;¢) = 0 around ¢ = 0 up to order 1 and solving the
resulting expression. In this direction, we start by examining the first component of the function A,

which, after its Taylor expansion around € = 0, is given by
A1(¢o, Y03 €) = 7" (do, Yo €) — 7 (d0, o; €) — 0 = 270(y0) — o + O(e).

Let i € {0,1,2,3} be fixed such that the parameters y and 6 satisfy condition .4; and
0/2 € T,. Since 79 is a bijection between D; and Z;, there exist y; € D; such that 75(y5) = o/2.
Additionally, as discussed in Section 6.1, d,, A1 (yg;0) = 27)(y5) # 0, for every ¢y € S,. Therefore,
from the Implicit Function Theorem and the compactness of S, there existe; > 0, 9; > 0, and a unique
C'-functiony : S, x (—ey1,&1) — (yi — 61, Y4 + 61) such that 7(¢g, 0) = y; and A, (F(¢o, €);€) = 0,

for every € € (—¢1,¢1) and every ¢ € S,.

By substituting 7(¢o, €) into As(¢o, yo; €), and taking into account Lemmas 6.3.4 and

6.3.5, we have, for sufficiently small |e

]

As(60, 760, )i ) = —5—;:' () 17 (So0008) + 1 (5:00.88) )) + O,

where 17 (0, ¢o,yg) and I (o, o, yg) are the integrals defined in (6.24) and (6.25), respectively. We
can then define the function, for |¢| sufficiently small,

*

Ag(¢o;5) = —g—zAs(%,@(%,@)ﬁ),

which, after being expanded in Taylor series around € = 0, gives us

As(%;g) = M(¢o) + O(e),
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with
M(gb()) :<(M7y0)a-[+ <§7¢an0) + 1 (§7¢0ay0)>'
The identity (6.26) and the fact that y; = v(c/2), allow us to rewritten M (¢) as follows

1) = [ (3)) 19 (s (3))

and this lead us to the expression stated in (6.10), with the auxiliary function U (¢, 0) = (i, v(0)), u(t))
expressed in (6.11).

Notice that the o-periodicity of ¢ (s, ¢o, v (0/2)) in ¢ implies that M is o-periodic, which
enables us to restrict our analysis to the interval [0, o]. Now suppose that ¢* € [0, o] is such that
M (¢*) = 0and M'(¢*) # 0. Then, by the Implicit Function Theorem, there exist 0 < Z < &7 and a
branch ¢(¢) of simple zeros of M satisfying $(0) = ¢* and M (¢(c)) = As(¢(e); ) = 0, for every
e € (—F, ). Back to the solution of the differential system (6.13), we have that ®(7, ¢(¢), 7(¢(c), €); €)

is a o-periodic solution of (6.13), whenever € € (—¢, €).

Notice that, by defining

|
N
™
N
Q|
—
-
N
™
N
™
N’
™
SN’

z.(t) == Oyt — ¢(e)

third entries of @, respectively, we have that

g

7o(6*) = 3(0,0%, 45 0) =0 and  g(6%) = @5(0,6%,550) = v = v (3 ).

It concludes the proof of Theorem F.
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