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It is well known that (possibly nonunique) suitable field dynamics can be prescribed in spacetimes with
timelike boundaries by means of appropriate boundary conditions. In [R. M. Wald, J. Math. Phys. 21, 2802
(1980)], Wald derived a conserved energy functional for each prescribed dynamics. This conserved energy
is related to the positive self-adjoint extensions of the spatial part A of the wave equation ∂2Φ=∂t2 ¼ −AΦ

(A may not be, in principle, essentially self-adjoint). This is quite surprising since the canonical energy is
not conserved in these cases. In this paper, we rederive this energy functional from an action principle (with
appropriate boundary terms) following [A. A. Saharian, Phys. Rev. D 69, 085005 (2004)] and consider
field dynamics arising from nonpositive self-adjoint extensions of A. The spectrum of the resulting theory
fails to be positive and unstable mode solutions for classical fields come to light. By studying fields in half-
Minkowski spacetime, we illustrate that these unstable classical solutions come as a consequence of an
inverted parabolic potential governing their dynamics. From the quantum mechanical point of view, this
leads to an effective inverted harmonic oscillator at the boundary. We then explore these unstable modes
behavior, as well as their instabilities, at the quantum level.

DOI: 10.1103/PhysRevD.109.105013

I. INTRODUCTION

In globally hyperbolic spacetimes, the Klein-Gordon
field equation (as well as any other linear, second-order
hyperbolic system) has a unique solution given initial data
ΦjΣ and nμ∇μΦjΣ on a Cauchy hypersurface Σ normal to
the unitary vector nμ [1]. This is not the case for non-
globally hyperbolic spacetimes, where no Cauchy hyper-
surface can be found. Nevertheless, it is possible to define
at least one suitable field dynamics (given by the so-called
Friedrichs extension) on static nonglobally hyperbolic
spacetimes with timelike Killing field ξ ¼ ∂t. However,
as pointed out by Wald and Ishibashi [2,3], any boundary
condition (at the boundary) corresponding to a positive
self-adjoint extension of the spatial part of the wave
operator A on an appropriate L2 space, gives rise to a
sensible dynamics.
Given any positive self-adjoint extension Aγ parametrized

by γ, we can extract a family of complete orthonormal modes

solutions fuγi ; u
γ�
i g satisfying £ξu

γ
i ¼ −iωu

γ
i , with ω > 0.

Thesemodes characterize free states (here, we emphasize the
modes dependence on the boundary condition γ) which spam
the field solution as

ϕðt;xÞ ¼
X

i

½aiuγi ðt;xÞ þ a†i u
γ�
i ðt;xÞ�: ð1Þ

By imposing the usual equal time commutation relations
between ϕ and its corresponding conjugated field, we arrive
at the usual commutation relations between ai and a

†
i . These

turn out to be operators acting on an appropriate Fock space
with the vacuum state j0i satisfying

aij0i ¼ 0; ∀ i: ð2Þ

In this paper, we study the quantization of the Klein-
Gordon field on half-Minkowksi spacetime (z > 0) satisfy-
ing (at z ¼ 0) a boundary condition corresponding to a
nonpositive self-adjoint extension of A. As a result, modes
with imaginary energy, i.e., ImðωÞ ≠ 0 give rise to unstable
dynamics. Furthermore, the decomposition into positive
and negative frequencies given by Eq. (1) is meaningless
for this class of mode solutions. Hence, the usual quan-
tization procedure based on the construction of a Fock
space with j0i as its vacuum state breaks down.
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The aim of this paper is to study and interpret this
pathological bound state solution. We will restrict our
analysis to the half-Minkowski spacetime H̊.1 This space-
time is described by the line element

ds2 ¼ gμνdx
μdxν ¼ −dt2 þ dx2 þ dy2 þ dz2; ð3Þ

where t; x; y∈R and z∈Rþ. Suppressing the coordinates x
and y, its conformal diagram is given in Fig. 1, where we
see that the “wall” z ¼ 0 affects every event on the
spacetime bulk. The appropriate boundary conditions at
z ¼ 0, i.e., those for which Aγ is self-adjoint are the usual
Robin boundary conditions (RBC). In Ref. [4], Saharian
showed that these boundary conditions can be extracted
from a variational principle with appropriate boundary
terms in the action S ¼ Sbulk þ Sboundary. This generalized
action leads to a conserved energy E ¼ Ebulk þ Esurface

which turns out to be equivalent to Wald’s energy [2].
When the extension Aγ fails to be positive, the

wave equation also has a “bound state” ϕbðt;xÞ ¼
χðx; yÞψ γðzÞeð�iReðωÞ∓ImðωÞÞt, with

Z
∞

0

jψ γðzÞj2dz < ∞: ð4Þ

In Ref. [5], a zero-mode solution ϕðt; θÞ ¼ qðtÞ derived
from a nonusual (Neumann) boundary condition on a
cylindrical spacetime was studied. By incorporating this
solution back into the total action, Martin-Martinez et al.

showed that the resulting Lagrangian for qðtÞ was equiv-
alent to a free particle one. This zero-mode component was
(first) quantized in a corresponding one-particle nonrela-
tivistic Hilbert space.
Following the procedure of the zero-mode solution given

in Ref. [5], we also incorporate the bound state solution
back into the generalized action. As a result, we find that
the surface action introduces a (inverted) parabolic poten-
tial for the time domain χðtÞ of the bound state. We interpret
the resulting Lagrangian for χðtÞ as an inverted harmonic
oscillator. By extending the concept of operators in
quantum mechanics from Hilbert space to the so-called
rigged Hilbert space, we establish a ground state for our
bound state and interpret it at the quantum level.
This paper is organized as follows. In Sec. II, we

introduce the action formalism with a surface term to
address the field dynamics in half-Minkowski spacetime.
We demonstrate how the RBC give rise to unstable modes
(bound states), governed by an inverted harmonic oscil-
lator-like potential. In Sec. III, we review the main
characteristics of the quantum inverted harmonic oscillator,
and then proceed to quantize the bound field using a direct
analogy with the canonical quantization procedure of free
fields. In the following section, IV, we show that this
approach is consistent with energy conservation in both
classical and quantum scenarios. Finally, our concluding
remarks are presented in Sec. V.

II. FIELD SOLUTION FROM THE ACTION

WITH A BOUNDARY TERM

Let Φ∶H̊ → R be a real massless scalar field in half-
Minkowski space defined by the line element (3). At the
“wall” z ¼ 0, one can define a smooth surface ∂H̊ with
the induced metric hμν ¼ diagð−1; 1; 1Þ and normal to the
unitary vector nμ ¼ δ

μ
z. Then, following Ref. [4], we can

construct the total action with both bulk and surface terms
in the form

S½Φ� ¼ −
1

2

Z

H̊

d4x∂μΦ∂μΦþ γ

2

Z

∂H̊

d3xΦ2: ð5Þ

Here, γ ≠ 0 represents a mass parameter of the field at the
surface ∂H̊.
Taking the variation of S with respect to the field, we

obtain

δΦS¼
Z

H̊

d4xð∂μ∂μΦÞδΦþ γ

Z

∂H̊

d3x

�

Φþ1

γ
Φ0
�

δΦ; ð6Þ

where we have integrated by parts and used Stoke’s
theorem. For any δΦ we have δΦS ¼ 0 iff

∂μ∂
μΦ ¼ 0 and

�

Φþ 1

γ
Φ0
��
�
�
�
z¼0

¼ 0; ð7Þ

FIG. 1. Conformal diagram of the 2-dimensional half-Minkow-
ski space with timelike boundary at z ¼ 0.

1We point out that H̊ is conformal to anti–de Sitter spacetime in
Poincaré coordinates (PAdS). Hence, our results fit equally well
to a conformal Klein-Gordon field in PAdS.

BRUNO S. FELIPE and JOÃO P. M. PITELLI PHYS. REV. D 109, 105013 (2024)

105013-2



with Φ0 denoting the field derivative with respect z, i.e.,
Φ0 ≡ ∂zΦ. Notably, both the equation of motion and
the Robin boundary condition are derived through the
variation principle from the action with the surface term (5).
In this notation, the Robin boundary condition recovers
the Dirichlet boundary condition (Φjz¼0 ¼ 0) and the
Neumann boundary condition (Φ0jz¼0 ¼ 0) when γ → ∞

and γ → 0, respectively.
Writing uðt;xÞ¼χðtÞXðxÞYðyÞψðzÞ¼e−iωteikxxeikyyψðzÞ,

the wave equation (7) yields

−
1

ψ

d2ψ

dz2
¼ −

1

χ

d2χ

dt2
þ 1

X

d2X

dx2
þ 1

Y

d2Y

dy2

¼ ω2 − k2x − k2y

¼ ω2 − k
2 ¼ q2; ð8Þ

which for the z-coordinate can be understood as a standard
Sturm-Liouville problem [6] where the eigenvalue is
denoted as λ≡ q2, subject to the Robin boundary condition
at z ¼ 0. In the case of a positive eigenvalue, λ ¼ q2 > 0,
the z-component solution is expressed as a linear
combination of the linearly independent base solutions
fsinðqzÞ; cosðqzÞg, given by

ψqðzÞ ¼ A sinðqzÞ þ B cosðqzÞ: ð9Þ

This solution satisfies the boundary condition (7) if
B ¼ −Aq=γ. The normalized mode solution takes the form

u
γ

k⃗
ðt;xÞ ¼

γeikx−iωt
�

sinðqzÞ − q
γ
cosðqzÞ

�

2π
3
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωγ2 þ ωq2
p ; ð10Þ

with k⃗¼ðq;kÞ¼ðq;kx;kyÞ, ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 þ k
2

p

and x¼ðx;yÞ.
For negative values of q2, an alternative linearly inde-

pendent solution satisfying the Robin boundary condition
emerges when λ ¼ −q2 ¼ γ2. This implies q ¼ �iγ, result-
ing in the z-component adopting a real exponential form.
This real exponential can be normalized in L2ðRþ; dzÞ to
yield ψ γðzÞ ¼

ffiffiffiffiffi
2γ

p
expð−γzÞ. The normalized solution for

modes with purely imaginary values of q can then be
expressed as

u
ðimÞ
γ ðt;xÞ ¼

ffiffiffiffi
γ

ω

r
eikx−iωt−γz

2π
; ð11Þ

where ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k
2 − γ2

p

. However, it is important to note that
for these states, two distinct kinds of solutions exist. For
values of k such that jkj > γ, the modes

u
γ
i ðxÞ ¼

�

u
γ

k⃗
; u

ðimÞ
γ<jkj

�

ð12Þ

are eigenvectors of the Killing field ∂t with corresponding
eigenvalues −iω where ω > 0. Therefore, the set fuγi ; u

γ�
i g

can form a basis for the “free” field in the structure of
Eq. (1), allowing for the standard quantization procedure.
When jkj < γ, the frequency becomes purely imaginary,

ω ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2 − k
2

p

, leading the solution (11) to be time-
divergent for larger values of t. Additionally, the decom-
position (1) loses its interpretation, and no vacuum states
can be associated with these modes at the quantum level. To
overcome this situation, we will avoid solving explicitly its
time dependence χðtÞ and express the total classical
solution as

Φðt;xÞ ¼ ϕðt;xÞ þ ϕbðt;xÞ; ð13Þ

where ϕðt;xÞ represents the free field written in the form of
Eq. (1) for the modes uγi , while

ϕbðt;xÞ ¼
ffiffiffiffiffi

2γ
p

e−γz
Z

jkj<γ

d2k

2π
eikxχkðtÞ; ð14Þ

defines what we call the bound state field solution,

characterized by the integration over all bound states uðinÞ
γ>jkj.

In order to find the precise potential that causes the time-
divergence of the bound field, let us reintroduce ϕbðt;xÞ
into the total action (5) and perform the spatial integration
as follows (we denote the time derivative by a dot)

S½ϕb� ¼−
1

2

Z
t2

t1

dt

Z

d3x½−ϕ̇2
bþϕ02

b þð∂xϕbÞ2þð∂yϕbÞ2�

þ γ

2

Z
t2

t1

dt

Z

d2xϕ2
b

¼
Z

t2

t1

dt

Z

d2k

�
χ̇kχ̇

�
k

2
þðγ2 −k

2Þχkχ
�
k

2

	

; jkj< γ:

ð15Þ

By recovering the conventional Lagrangian expression
as L ¼ T − V and defining ω2

k
≡ γ2 − k

2, the last line of
the above equation shows that the behavior of χk for the
bound states resembles a massive particle subjected to
the potential V ¼ −ω2

k
jχkj2=2—often referred to as the

inverted harmonic oscillator (IHO). Essentially, the bound
field ϕbðt;xÞ evolves in time as a collection of inverted
harmonic oscillators satisfying jkj < γ. Moreover, in
Eq. (15), we can find the physical origin of the time-
divergence issue. The bulk term generates the potential of a
standard harmonic oscillator ðγ2 þ k

2Þjχkj2=2, while the
surface action generates the term −γ2jχkj2. For values
of jkj > γ, the combined potentials result in standard
oscillators with dislocated frequencies (characterizing the

modes uðimÞ
γ<jkj). Conversely, for values jkj < γ, the potential
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coming from the surface exceeds the bulk contribution,
giving rise to the inverted harmonic oscillator behavior.
It is worth noting that the case V ¼ 0, which implies

ω2
k
¼ γ2 ¼ k

2 ¼ 0, corresponds to the Neumann boundary
condition. This results in a nonrelativistic free particle
behavior, namely the zero-mode solution (as extensively
discussed in Ref. [5]). For the general case of V ≠ 0, the
system consistently exhibits an IHO behavior—even in the
simplest scenario of a bi-dimensional spacetime where
k ¼ 0 and ω ¼ γ. In this paper, we focus on investigating
states where the time domain manifests this unconventional
dynamics of an inverted harmonic oscillator. As the
potential V is unbounded from below, classical solutions
suggest time divergence when particles interact with this
parabolic barrier. However, as elaborated in the subsequent
section, at the quantum level, subtle intricacies emerge,
providing an opportunity for a profound understanding of
this peculiar phenomenon.

III. THE BOUND STATE FIELD AS INVERTED

HARMONIC OSCILLATOR

Let us first summarize the quantum aspects of the
inverted harmonic oscillator, as this system is not com-
monly covered in standard textbooks. Subsequently, we
will apply the same quantization techniques used for the
IHO to the bound state field in a manner consistent with the
canonical quantization procedure.
The starting point is the Hamiltonian

HIHO ¼ p2

2
−
ω̃2x2

2
; ð16Þ

which corresponds to the Hamiltonian of a standard
harmonic oscillator with its frequency changed as
ω → �iω̃. Here, ω̃ is understood as the decay rate, while
x is a generalized coordinate, and p is its conjugate
momentum. In the theory of IHO, various basis, and
consequently, various interpretations for the above
Hamiltonian, can be used (e.g., HIHO can be understood
as a generator of squeeze in quantum optics [7], as well
describe resonant states [8,9] or even a way to quantize
damped systems [10,11]). Each choice of basis allows us to
extract specific meanings from the system, and in the
context of our analysis in field theory, we emphasize the
importance of two distinct bases as follows.

A. Energy eigenstates of the IHO

The quantum formulation of the IHO can be accom-
plished by directly imposing the canonical commutation
relation ½x; p� ¼ i (using ℏ ¼ 1), ensuring that the
Hamiltonian (16) represents a self-adjoint operator in the
Hilbert space H. Its energy eigenstates, denoted as jXE

�i,
are doubly degenerated in the eigenvalue E ∈R, satisfying

HIHOjXE
�i ¼ E jXE

�i; ð17Þ

where the symbols � indicate the analogy with in(out)-
scattering states.
Realizing the Hilbert space in x, i.e., H ¼ L2ðRxÞ, the

above eigenvalue equation becomes

d2XE
�

dx2
þ ðω̃2x2 þ 2E ÞXE

� ¼ 0; ð18Þ

with XE
�ðxÞ ¼ hxjXE

�i. The solution to Eq. (18) is provided
by a linear combination of parabolic cylinder functions
along with an appropriate boundary condition. In our case,
and extremely important for future definition, a suitable
solution (discussed in Ref. [11]) can be written as

XE
�ðxÞ¼

C0
ffiffiffiffiffiffiffiffiffi
2πω̃

p
ffiffi

i
p

νþ1=2
Γðνþ1ÞD−ν−1ð∓

ffiffiffiffiffiffiffiffiffiffiffi

−2iω̃
p

xÞ; ð19Þ

where we identify

C0 ¼
�

ω̃

2π2

�
1=4

and ν ¼ −

�

i
E

ω̃
þ 1

2

�

:

Furthermore, there is another linearly independent base
solution for Eq. (18), identified by the conjugate elements
of XE

�. By considering the conjugation relationships

νþ 1 ¼ −ν and
ffiffi

i
p

νþ1=2 ¼
ffiffi

i
p

νþ1=2;

we can express the conjugate states YE
�ðxÞ ¼ XE

�ðxÞ as

YE
�ðxÞ ¼

C0
ffiffiffiffiffiffiffiffiffi
2πω̃

p
ffiffi

i
p

νþ1=2
Γð−νÞDνð∓

ffiffiffiffiffiffiffiffi

2iω̃
p

xÞ: ð20Þ

In other words, these new states define the energy eigen-
state HIHOjYE

�i ¼ −E jYE
�i—a direct consequence of

νþ 1 → −ν which corresponds E → −E .
The fundamental point to observe here is that the states

XE
þ and XE

− satisfy

Z
∞

−∞

XE
�ðxÞXE 0

� ðxÞdx ¼ δðE − E 0Þ; ð21Þ

which identify their nonsquare normalized nature. Since
this family of four states XE

þ; X
E
−; Y

E
þ, and YE

− are not
normalizable, they cannot be elements of the Hilbert space
H. Instead, they are distribution functions belonging to the
dual Schwartz space SðRxÞ×, which can be defined through
the Gelfand triplet (also known as rigged Hilbert space)

SðRxÞ ⊂ L2ðRxÞ ⊂ SðRxÞ×; ð22Þ

where S denotes the Schwartz space—the space of test
functions. In other words, the quantum prescription of the
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bound field requires an enlargement of the Hilbert spaceH
to the space S× to accommodate the IHO energy eigen-
states. The triplet of spaces defined above can be precisely
read in the following way: given a Hilbert space H with
topology τH, we identify a subspace S with a stronger
topology τS compared to τH. Subsequently, we define its
dual S× which is endowed with τS× , a topology weaker
than τH, in order to characterize the space of energy,
now called generalized eigenvectors, i.e., jXE

�i∈S×.
Additionally, as extensively discussed by A. Bohm
[12–15], the Dirac formalism of brackets works completely
the same way within the Gelfand triplet,2 with the inter-
pretation that the bra elements belong to the smallest space,
S, such that it forces the braket operation to converge.

B. Decay and growth states

Similar to the standard harmonic oscillator, where the
usual coordinate transformation ðx; pÞ → ða; a†Þ is per-
formed, a comparable procedure can be applied in the
context of the inverted harmonic oscillator. One can
perform a canonical transformation of x and p to define

the new operators as b� ≔

ffiffiffi
ω̃
2

q

ðx� 1
ω̃
pÞ. Now, the com-

mutation relation for bþ and b− writes

½bþ; b−� ¼ −i and ½b�; b�� ¼ 0: ð23Þ

Here, b� are both essentially self-adjoint operators in the
Schwartz space S [18]. Expressing the Hamiltonian (16) in
terms of these new coordinates, we get

HIHO ¼ −
ω̃

2
ðbþb− þ b−bþÞ: ð24Þ

Then, we can define the ground states jf�0 i, such that

b∓jf�0 i ¼ 0; ð25Þ

meaning that bþ annihilates jf−0 i and b− annihilates jfþ0 i.
With these states in hands, it becomes possible to construct
new states by applying b� n-times to their respective
nonannihilated states, defining jf�n i ¼ ðb�Þnjf�0 i. The
action of the Hamiltonian (24) on these states [by direct
using the commutation relations (23)] results in

HIHOjf�n i ¼ ∓Enjf�n i; ð26Þ

where

En ¼ iω̃ðnþ 1=2Þ; n∈R
þ
0 : ð27Þ

This implies that jf�n i are generalized eigenvectors ofHIHO

with complex eigenvalues En—a direct consequence of the
potential in HIHO not being bounded from below.
The nature of these states can be understood in terms of

representatives. For f�n ðxÞ ¼ hxjf�n iwe find (see Refs. [11]
and [18] for details)

f�n ðxÞ ¼ N�
n e

∓iω̃x2=2Hnð
ffiffiffiffiffiffiffiffiffi

�iω̃
p

xÞ; ð28Þ

where N�
n is a normalization constant andHn stands for the

nth Hermite polynomial. Therefore, these solutions are
tempered distributions, i.e., they are not elements of the
Hilbert space L2ðRxÞ but they do belong to the dual of the
Schwartz space SðRxÞ×. To distinguish the spaces of fþn
and f−n , one usually introduces two dual of the Schwartz
spaces denoted as S�ðRxÞ×, where jfþn i∈S×

− and
jf−n i∈S×

þ. Precisely, two Gelfand triplets are required to
denote these spaces:

S�ðRxÞ ⊂ L2ðRxÞ ⊂ S�ðRxÞ×; ð29Þ

where Sþ ∩ S− ¼ f∅g and S ¼ Sþ ∪ S−.
The key focus of the IHO in this new basis, which will be

crucial later, lies in the precise definition stated by
Chruściński in Ref. [11] for the spaces S�. He demon-
strates that when the solutions XE

�; Y
E
� are extended to the

complex plane, the complex eigenvalues En appears as
poles on the imaginary axis, while f�n emerge as the
residues. This outcome leads to the exact definition of
the two Schwartz spaces in the following form:

S− ¼ fφ∈SðRxÞjhXE
�jφi∈SðRE Þ ∩ H 2

−ðRE Þg
and

Sþ ¼ fφ∈SðRxÞjhYE
�jφi∈SðRE Þ ∩ H 2

þðRE Þg; ð30Þ

where H 2
þ (H 2

−) denotes the Hardy class space [19] for
the upper (lower) half-plane. In other words, the space Sþ
represents well-behaved functions, which are boundary
values of analytic functions in the upper half complex
E -plane, vanishing faster than any power of E at the upper
semicircle. Meanwhile, S− is the analogous for the lower
complex E -plane.
As a consequence, the two spaces S�—which accom-

modate the two sets of solutions (denoted by �)—impose
constraints on operators previously defined in the Hilbert
space H. Hence, this breaks the system’s symmetry, as
for each IHO, there exist two identical and indistinguish-
able states which are not symmetric. This constraint is
notably manifested in the unitary time evolution operator
UðtÞ ¼ e−iHIHOt, which splits into two semigroups:

2It is essential to recognize that different types of endowed
topology yield different triplets. Therefore, identifying S as the
Schwartz space is specific to the case of IHO. For various
examples and a comprehensive introduction to rigged Hilbert
spaces, we refer to [16,17].
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UþðtÞ ¼ UðtÞjSþ
∶ Sþ → Sþ for t ≤ 0;

U−ðtÞ ¼ UðtÞjS−
∶ S− → S− for t ≥ 0: ð31Þ

As a result, the vectors fþn ∈S−ðRxÞ× exist only for t ≥ 0,
while f−n ∈SþðRxÞ× exist only for t ≤ 0, defining the so-
called “decay states” fþn ðt; xÞ ¼ UþðtÞfþn ðxÞ and “growth
states” f−n ðt; xÞ ¼ U−ðtÞf−n ðxÞ. The temporal reflection
operator (T) connects these states, such that Tf�n ðt; xÞ ¼
f∓n ðt; xÞ. Furthermore, in terms of decay theory, the mean
life depends on the complex energy as τ ∼ ðnþ 1=2Þ−1,
defining f�0 as the most “stable” state, i.e., the state with the
largest mean life.
For completeness, let us highlight some properties of

these generalized states f�n that follow directly from the
definitions (30):
(1) They are conjugated to each other as

f�n ðxÞ ¼ f∓n ðxÞ;

(2) They are orthogonal

hf�n jf∓mi ¼ δnm;

(3) They are complete in the following way

1 ¼
X∞

n¼0

jf�n ihf∓n j:

C. Bound field as a collection of quantum IHOs

Now, let us redirect our attention back to the bound state
field ϕbðt;xÞ expressed in the form of Eq. (14) and quantize
it by following a procedure similar to the canonical
quantization of free fields. From the action (15), we have
a collection of inverted harmonic oscillators satisfying
jkj < γ. Then we can anticipate that, at the quantum level,
χkðtÞ can be interpreted as an operator in the rigged
Hilbert space.
By considering the transformation

b�
k
≔

ffiffiffiffiffiffi
ωk

2

r �

χk � 1

ωk

χ̇k

�

; ð32Þ

withωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2 − k
2

p

, we quantize the collection of IHO by
imposing the commutation relations

½bþ
k
; b−

k
0 � ¼ −iδðk − k

0Þ and ½b�
k
; b�

k
0 � ¼ 0: ð33Þ

Each IHO mode solution satisfying jkj < γ (now charac-
terized by b�

k
) evolves in time with (24) as its generator of

time evolution. In the Heisenberg picture, this evolution can
be found as

d

dt
b�ðtÞ ¼ −i½b�ðtÞ; HIHO�⇒ b�ðtÞ ¼ b�e�ω̃t; ð34Þ

where we have used the commutation relations (23) and
considered the initial condition b�ð0Þ ¼ b�. Similarly, for
xðtÞ, we obtain

xðtÞ ¼ 1
ffiffiffiffiffiffi
2ω̃

p ðbþeω̃t þ b−e−ω̃tÞ: ð35Þ

In a complete analogy, we expect that each IHO
satisfying jkj < γ evolves in time like (35), i.e., χkðtÞ ¼

1ffiffiffiffiffiffi
2ωk

p ðbþ
k
eωkt þ b−

k
e−ωktÞ. Substituting this expression

into (14), the bound state field solution in the new base
coordinates is finally given by

ϕbðt;xÞ ¼
ffiffiffi
γ

p Z
d2k

2π

eikx−γz
ffiffiffiffiffiffi
ωk

p ðbþ
k
eωkt þ b−

k
e−ωktÞ: ð36Þ

Here, we are just considering the time domain of ϕbðt;xÞ as
a collection of inverted harmonic oscillators respecting
their own Hamiltonian. The formal prescription will be
given by the total Hamiltonian of the bound field as a sum
over all individual IHOs (this will be discussed later in the
next section). However, Eq. (36) shows an apparent
classical time divergence that seems to persist in the
ϕbðt;xÞ solution. Nevertheless, at the quantum level, the
right-hand side (rhs) always comes in pairs such that
the action of the bound field on the quantum states will
be constrained only for a specific domain of the time
parameter t.
Therefore, let us introduce the generalized ground states

j0�i, defined as

b∓
k
j0�i ¼ 0; ∀k such that jkj < γ: ð37Þ

In direct analogy with the states f�0 , these new states belong
to the dual of the Schwartz space, i.e., j0�i∈S×

∓, defined
by the triplet

S� ⊂ H ⊂ S×
�; ð38Þ

where S� are precisely defined by the relation (30).
It is important to note that analogously to a complex

field, the bound field ϕbðt;xÞ is associated with two kinds
of states (�), with the subtle difference, the states j0þi and
j0−i exist only for t ≥ 0 and t ≤ 0, respectively. In this way,
we can define the one-quantum of decay (growth) state as
j1�

k
i ¼ b�

k
j0�i. By applying b�

k
n-times, the state contain-

ing n-quanta with momentum k will be given by

jn�
k
i ¼ 1

ffiffiffiffiffi
nk

p ðb�
k
Þnj0�i; ð39Þ

where 1=
ffiffiffiffiffi
nk

p
is the normalization. As t represents the time

coordinate of the half-Minkowski space, the quantum
solution ϕbðt;xÞ defines two kinds of “particles” in differ-
ent time domains of the spacetime. As a consequence, the
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time reflection symmetry of H̊ is not preserved by the
bound solution—in agreement with the noninvariance of
the solution (36) when setting t → −t. Since this solution
originates from a nonpositive self-adjoint extension of the
operator A, it is not surprising that certain assumptions
concerning dynamics, established in Ref. [3], are no longer
applicable. Specifically, Assumption 2(ii)—time reflection
invariance—does not hold for the bound state field
solution.
In order to establish a Fock representation for the states

(39), we represent the n-fold tensor product of Hilbert
spaces as H⊗n ¼ H ⊗ … ⊗ H, and then define the Fock
space as the infinite direct sum

FðHÞ≡ ⊕
∞

n¼0

H⊗n: ð40Þ

Similarly, for the space S, we can represent the n-fold
tensor product as S⊗n ¼ S ⊗ … ⊗ S, leading to the direct
sum

FðSÞ≡ ⊕
∞

n¼0

S⊗n; ð41Þ

which is understood as the union ofFþðSþÞ andF−ðS−Þ.
Considering the dual elements of these spaces, we can re-
present the rigged Fock space by the following triplet [20]

FðSÞ ⊂ FðHÞ ⊂ FðSÞ×: ð42Þ

Equation (37) ensures the existence of two generalized

Fock vacua, which are elements of the larger Fock space
FðSÞ× ¼ FþðSþÞ× ∪ F−ðS−Þ×. Thus, we can simple
write jn�

k
i∈FðSÞ×. Yet, it is possible now to define the

generalized ground state for the total field Φðt;xÞ ¼
ϕðt;xÞ þ ϕbðt;xÞ as

jΩ�i ¼ j0i ⊗ j0�i∈FðSÞ×; ð43Þ

with j0i being the vacuum of the free field ϕðt;xÞ.

IV. THE TOTAL CONSERVED ENERGY

When dealing with fields in nonglobally hyperbolic
spaces such as H̊ and using the standard action formulation
(i.e., the action containing only the bulk contribution), the
total energy, derived from the stress-energy tensor, is not a
conserved quantity over time. To address this issue, Wald
introduced a new functional energy (see Eq. (11) in
Ref. [3]), which, in principle, is unrelated to the standard
definition of the stress-energy tensor. However, in this
section, we will recover the same conserved energy through
the stress-energy tensor derived from the total action with
the surface term (5). This derivation remains valid even for
fields with bound states.

A. Stress tensor from the action and conserved energy

To obtain the stress-tensor from the total action, we
express the off-shell action explicitly in terms of its
dependence on both the bulk metric gμν and the induced
metric hμν. This is achieved by rewriting Eq. (5) in the
following manner

S ¼ −
1

2

Z

H̊

d4x
ffiffiffiffiffi

jgj
p

gμν∂μΦ∂νΦþ γ

2

Z

∂H̊

d3x
ffiffiffiffiffiffi

jhj
p

Φ2: ð44Þ

By taking the variation of the above action with respect
to the metric tensor, we get

δgS ¼ −
1

2

Z

H̊

d4x
ffiffiffiffiffi

jgj
p

�

∂μΦ∂νΦ −
1

2
gμν∂

αΦ∂αΦ

�

δgμν þ γ

2

Z

∂H̊

d3x

�

−
1

2

ffiffiffiffiffiffi

jhj
p

hμνδh
μν

�

Φ2

¼ −
1

2

Z

H̊

d4x
ffiffiffiffiffi

jgj
p

�

∂μΦ∂νΦ −
1

2
gμν∂

αΦ∂αΦþ 1

2
gμνδðx; ∂H̊ÞγΦ2

�

δgμν; ð45Þ

where we first took the variation of the surface term with
respect to hμν and then combined it with the bulk
contribution by introducing the Dirac delta function
δðx; ∂H̊Þ defined as [4]

Z

H̊

d4x
ffiffiffiffiffi

jgj
p

δðx; ∂H̊Þ ¼
Z

∂H̊

d3x
ffiffiffiffiffiffi

jhj
p

: ð46Þ

The classical stress tensor is conventionally defined in
relation to the action S as

Tμν ¼
−2
ffiffiffiffiffi

jgj
p

δS½Φ; gμν�
δgμν

: ð47Þ

Comparing with Eq. (45), we have

Tμν ¼ ∂μΦ∂νΦ −
1

2
gμν∂

αΦ∂αΦ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

T
ðVÞ
μν

þ 1

2
gμνδðx; ∂H̊ÞγΦ2

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

T
ðSÞ
μν

: ð48Þ

In the above stress-tensor, two distinct contributions can be

identified: one originating from the bulk action T
ðVÞ
μν ; and
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the other arising from the surface action T
ðSÞ
μν , which is

characterized by the Dirac delta function. The contribution

T
ðVÞ
μν agrees with the standard definition, allowing us to

understand the total stress-energy tensor Tμν as an
“improved” tensor, distinguishing it from the standard
stress tensor by the surface term. Now, the energy density
is written as

T00 ¼
1

2
ðΦ̇2 þ ∂iΦ∂

iΦÞ − 1

2
δðx; ∂H̊ÞγΦ2; ð49Þ

with i ¼ 1; 2; 3. That is, unlike the standard energy density,
half-Minkowski space exhibits a flow density contribution
from its timelike surface ∂H̊. Thus, for the total energy
we get

E ¼ 1

2

Z

d3x½Φ̇2 þ ∂iΦ∂
iΦ − δðx; ∂H̊ÞγΦ2�: ð50Þ

The energy expression (50) plays a crucial role in
comprehending the approach developed in this work.
The surface action introduced in (5) gives rise to an

additional parabolic potential term γΦ2

2
originating from

the boundary of the space. Indeed, the boundary condition
problem for the field at z ¼ 0 is analogous to the problem
of a semi-infinite string with a boundary condition at the
origin. In this scenario, the RBC characterizes a string
coupled with a spring (with a negative constant −γ) at this
point. Consequently, the total conserved energy of the
system becomes a combination of “string energy” and
“spring energy.”
Similarly, for the total field, taking the derivative of E

with respect to time yields

dE

dt
¼

Z

d3xðΦ̇ Φ̈þ∂
iΦð ˙∂iΦÞÞ −

Z

d2xγΦΦ̇

¼
Z

d3xΦ̇ðΦ̈ − ∂i∂
iΦÞ −

Z

d2xΦ̇ðΦ0 þ γΦÞ; ð51Þ

where we used integration by parts from the first to the
second line. Utilizing Eq. (7), we immediately obtain
dE=dt ¼ 0. Thus, the total energy is conserved over time.
It is crucial to note that in the absence of the surface

action, the imposition of a boundary condition does not
lead to conserved energy—except for the trivial Dirichlet
boundary condition, which represents the particular case of
γ → ∞. Moreover, Eq. (50) provides a controlled flow of
energy density at the boundary ∂H̊, induced by the surface
action (5).

B. Expectation values

We usually have to be careful when dealing with expected
values of physical quantities that depend on quadratic forms
of quantum fields—specifically, the quantity hψ jΦðt;xÞ2jψi

becomes ill-defined at specific points in spacetime. As a
consequence, even in the usual Minkowski spacetime, the
Hamiltonian H commonly exhibits ultraviolet divergence.
To address this issue, various regularization methods can be
applied to the expected value of the stress-tensor hTμνi to
obtain the regularized energy (e.g., cutoff function, zeta
function regularization, point-splitting technique).
In this paper, the Hamiltonian can be decomposed into

two components: H ¼ HðfreeÞ þHðbÞ, where HðfreeÞ is the
Hamiltonian associated with the free field and can be
computed by directly inserting ϕðt;xÞ into (50). On the
other hand, HðbÞ is the Hamiltonian for the bound field,
obtained by inserting ϕbðt;xÞ into the same equation. In
Ref. [21], Romeo and Saharian provided a detailed study of
the regularization for the free field contribution. Precisely,
as the divergence in this term comes from the bulk
component of the stress tensor, and H̊ is a flat space, the
implemented regularization involves a direct subtraction of
the Minkowski vacuum contribution from the volume term:

hTðVÞ
μν ireg ¼ hTðVÞ

μν i − h0MjTðVÞ
μν j0Mi; ð52Þ

where j0Mi denotes the Minkowski vacuum. Subsequently,
the obtained result can be combined with the surface

term hTðSÞ
00 i to derive the corresponding energy. As this

particular case was studied in detail in the aforementioned
reference, we will concentrate on the contribution from the
bound state.
By directly substituting (36) into (50), we get the bound

field Hamiltonian

HðbÞ ¼ −

Z

d2kωk

�

b�
k
b∓
k
∓

1

2
½bþ

k
; b−

k
�
�

; ð53Þ

which characterizes an integration over all individual HIHO

satisfying jkj < γ.
Similar to the standard Hamiltonian in the Minkowski

vacuum, the above expression has a divergence due to the
commutation relation. This can be observed precisely by
acting HðbÞ on the ground states j0�i, yielding

HðbÞj0�i ¼
�

∓
i

2

Z

d2kωkδð0Þ
	

j0�i; jkj < γ; ð54Þ

which is characterized by the infinity c-number δð0Þ. If we
consider placing the theory in a bidimensional box with
sides of length L, we can interpret

ð2πÞ2δð0Þ ¼ lim
L→∞

Z
L=2

−L=2

Z
L=2

−L=2

d2x eikxj
k¼0 ¼ A; ð55Þ

where A is the box’s area. Therefore, we recognize the
remaining term in (54) as the sum of ground state energies
for each IHO, which is not divergent in the ultraviolet since
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jkj < γ. However, it represents an infinite collection of
zero-point energies for the IHO (spread over a surface with
an infinite area).
In order to regularize the expectation value ofHðbÞ in any

state, we subtract the ground state divergent term from any
state using the following expression (note the change from
� to∓ to represent the transition from ket to bra elements)

hHðbÞireg ¼ hHðbÞi − h0∓jHðbÞj0�i: ð56Þ

This procedure is equivalent to subtracting the commuta-
tor relation from (53). For the resulting Hamiltonian, we

obtain ½HðbÞ
reg; b

�
k
� ¼ ∓iωkb

�
k
. By substituting this into the

Heisenberg equation, we generalize Eq. (34). Furthermore,
for an n-quanta of decay (growth) state, the regularized
Hamiltonian yields the purely imaginary eigenvalue [using
Eq. (33)]

H
ðbÞ
regjn�k i ¼ ∓inkωkΘðγ − jkjÞ; �t > 0; ð57Þ

where Θ is the Heaviside step function.
The above regularization procedure ensures that the

eigenvalues are well defined and avoids the divergence
associated with the ground state terms. With this result, we
can now fully interpret the meaning of the imaginary
energy in a physical context. Let jψi denote any excited
state of the free field ϕðt;xÞ with energy E0 (considering
any regularization procedure already performed). Then,
define the generalized state jΨ�i∈FðSÞ× in the following
manner

jΨ�i ¼ jψi ⊗ jn�
k
i: ð58Þ

This ket element jΨ�i represents a state containing stable
quanta with energy E0 and n-quanta of decay (growth)
states for t > 0 (t < 0). So, the action of the total
regularized Hamiltonian in this new state is

HregjΨ�i ¼ ðE0 ∓ iΓ=2ÞjΨ�i; �t > 0: ð59Þ

In the above equation, we have Γ ¼ 2nkωkΘðγ − jkjÞ.
Essentially, the state jΨ�i represents the so-called Gamow
vector [22,23]. This vector is an eigenstate of the regular-
ized Hamiltonian with a complex eigenvalue E0 ∓ iΓ=2.
Such states effectively encapsulate the resonance behavior
of the free and bound field combined system, which in
other scenarios is usually described by the well-established
Breit-Wigner distribution (see Ref. [24]). In simpler terms,
each field state jΨ�i∈FðSÞ× corresponds to a resonance
(or an unstable state) around zero energy, where the free
particle’s energy E0 characterizes the resonance energy.
Meanwhile, the complex energy, which emerges from the
bound field, defines the resonance width Γ, which, in turn,

determines the system’s mean life τ ∼ 1=Γ, i.e., the char-
acteristic time to the bound field change its state.

V. CONCLUSION

In this paper, we explored the solutions of fields arising
from nonpositive self-adjoint extensions of the spatial part A
of the wave operator in the specific case of a scalar field
propagating in (the nonglobally hyperbolic) half-Minkowski
space. The correspondingRobin boundary condition at z ¼ 0

gives rise to unstable classical solutions which were the focus
of this work. Our main goal was the elucidation of the bound
field as a set ofmode states represented (in their time domain)
as a collection of inverted harmonic oscillators—single
particles being scattered by a parabolic barrier due to the
potential originating in the timelike surface of H̊.
Through the canonical quantization of this bound field,

we demonstrated the quantum nature of the bound field,
shedding light on its quantum aspects and interpreting it as
an operator in the so-called rigged Fock space. As a result,
we showed that the bound field is not invariant under time
reversal, highlighting the nontrivial quantum behavior of
this system, which defines two distinct “particle” states—
growth and decay states. Specifically, this distinction is
more apparent in the Schrödinger picture, where the bound
field generates states at t → −∞ that grow in time until
t ¼ 0. Subsequently, these states transform into ones that
decay over time until they disappear at t → ∞.
By investigating the energy for the prescribed dynamics

(given the derivation of the energy functional from an
action principle), we demonstrate that both the free and
bound fields give rise to a conserved energy, consistent
with the Wald functional energy formulation. At the
quantum level, we showed the regularized expected value
of the bound Hamiltonian can be obtained by directly
subtracting its expected value in the ground states, i.e.,
hHðbÞireg ¼ hHðbÞi − h0∓jHðbÞj0�i. Consequently, the total
regularized Hamiltonian, comprising contributions from
both the free and bound fields, can be understood as the
Hamiltonian of a resonance system, where its eigenstates
jΨ�i represent Gamow vectors in the dual Fock space
FðSÞ×. Here, the regularized energy of the free field
defines the resonance energy, while the complex energy of
the bound field defines the state’s mean life.
In future work, we aim to extend the results of this paper

to any nonglobally hyperbolic spacetimes. Wewill focus on
examining the impact of reflection symmetry breaking in
the bound state field on its causal propagator. Additionally,
this exploration will enable us to understand the implica-
tions of resonant states through the response function of the
Unruh-DeWitt detector model.
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