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RESUMO

Vibração excessiva é normalmente acompanhada por fenômenos indesejados ou, ocasional-

mente, catastróficos. Seja para minimizar a propagação de ruídos, seja para evitar falhas

mecânicas devido a esforços elevados, controlar o comportamento dinâmico de estruturas é

um aspecto importante em projetos de engenharia. Esta tese tem como objetivo desenvolver

e melhorar técnicas de otimização topológica em problemas dinâmicos estruturais e acústico-

estruturais. A otimização de separação de frequências naturais em alta frequência é formulada

e resolvida pelo método Bi-directional Evolutionary Structural Optimization (BESO). Um al-

goritmo de rastreamento de autovetores é proposto para evitar instabilidades devido a modos

locais e para uma melhor organização dos modos. Este problema de otimização resulta em

topologias quase-periódicas com alternância de materiais, em acordo com a teoria de cristais

fonônicos. Para viabilizar esse problema em formulações com um material e vazio, um método

garantidor de conectividade, o Virtual Flux Method (VFM) é proposto. O VFM utiliza a solução

de um problema auxiliar como medida de conectividade. Essa formulação foi validada experi-

mentalmente através da medição da resposta harmônica de uma topologia otimizada. O modelo

acústico-estrutura é baseado na formulação de Helmholtz e nas equações da elasticidade linear.

Dois diferentes casos de interação acústico-estrutura são analisados. O primeiro é a otimização

de frequências naturais em sistemas fortemente acoplados. Neste caso, a análise de sensibil-

idade teve que ser expandida para contemplar os novos termos. O segundo é a maximização

da isolação acústica por impactos em pisos. Neste caso, devido ao acoplamento fraco entre

os domínios acústico e estrutural, um acoplamento unilateral é usado. O campo de pressão no

domínio acústico é considerado como difuso. A minimização da transmissão sonora de im-

pactos indicou uma sinergia entre a estrutura otimizada e mecanismos convencionais de laje

flutuante.

Palavras–chave: Otimização topológica, Vibração, Acústica, Isolamento acústico.



ABSTRACT

Excessive vibration is usually accompanied by undesirable or sometimes catastrophic phenom-

ena. Whether to minimize the propagation of excessive noise or avoid failure due to high me-

chanical loads, controlling the dynamic behavior of structures is a substantial aspect of engi-

neering design. This thesis aims at developing and improving topology optimization techniques

for structural and acoustic-structural dynamic problems. The optimization for natural frequency

separation in the high-frequency domain is formulated and solved with the Bi-directional Evo-

lutionary Structural Optimization (BESO) method. An eigenvector tracking algorithm is pro-

posed to avoid instabilities due to local modes and for more proper management of modes. This

optimization problem leads to quasi-periodic topologies of alternating material, following the

phenomena behind phononic crystals. To make this problem work on one-material and void for-

mulations, a method to enforce connectivity, the Virtual Flux Method (VFM), is proposed. The

VFM uses the solution of an auxiliary problem as a connectivity measure. This formulation was

validated experimentally by measuring the harmonic response of an optimized topology. The

acoustic-structure model is based on the Helmholtz formulation and the linear elastic equations.

Two different instances of acoustic-structure interaction problems are analyzed. The first one is

the natural frequency optimization of natural frequencies of strongly coupled systems. In this

case, the sensitivity analysis had to be expanded to include terms introduced by this formula-

tion. The second type of problem is the maximization of impact sound insulation on floors. In

this case, due to the weak coupling between the acoustic and the structural domains, a one-way

coupling formulation is used. The pressure field in the acoustic domain is assumed to be diffuse.

The minimization of sound impact transmission indicated the synergy between the optimized

structure and the transmissibility properties of conventional floating floor mechanisms.

Keywords: Topology optimization, Vibration, Acoustics, Acoustic insulation.
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1 INTRODUCTION

1.1 Motivation

Excessive vibration of mechanical components is usually associated with undesir-

able consequences, such as failure. Likewise, it can also cause the excessive propagation of

sound, which could be a nuisance or unhealthy to occupants of a vehicle or a building. To mit-

igate these effects, engineers either: apply active control, modify the boundary conditions of

these components, or modify their stiffness or mass characteristics. With the advancement of

computational methods, such as the Topology Optimization (TO) method, we can produce light

and efficient structures that satisfy those dynamic restrictions.

In high-frequency optimization problems, difficulties may arise when simulating

them. Particularly, the high modal density of this frequency domain may prevent the use of

traditional TO algorithms. Additionally, for elongated structures such as aircraft wings, bridges,

and rockets, the optimization can degenerate into trivial solutions that reduce the length of the

component or can converge to local optima with disconnected regions.

Finally, when optimizing acoustic-structure systems, there are challenges in mod-

eling the interaction between both phases accurately and efficiently. For example, the type of

coupling can be completely different depending on the materials for the structural and fluid

domains.

This thesis investigates some of these challenges regarding topology optimization

of dynamic systems for structural and acoustic-structural applications.

1.2 Scientific literature review

Designing more efficient structures for dynamic and acoustic applications has been

a widely studied field in engineering. This section aims to briefly review studies in this area,

focusing on topology optimization procedures. The following sections are divided according to

their subjects, and their reviews are chronological.
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1.2.1 Topology optimization method

The Topology Optimization (TO) method is a procedure based on designing an

optimal structure by changing both its shape and topology within a given design domain (Figure

1.1). Introduced by Bendsøe and Kikuchi (1988), it was initially based on Homogenization,

although its application has been widely extended ever since.

Figure 1.1 – Example of a structure optimized by the Topology Optimization method.

Unlike shape optimization methods, which can only optimize certain features of a

predefined structure, TO requires few assumptions before being applied. These are usually the

dimensions of the design domain, its boundary conditions, and external forces. As such, its

application is usually limited to the initial steps of the design process.

This method was then adapted by Bendsøe (1989) to function based on the interpo-

lation schemes of the material properties. It not only widened the possibilities of application but

also simplified its theoretical and numerical analyses. However, it also came with the downside

of often generating “gray” areas, that is, sections neither filled with material nor void. This chal-

lenge, though, was mostly solved by Zhou and Rozvany (1991), who proposed penalizing the

stiffness of these areas, causing the algorithm to prefer full and void elements. Rozvany et al.

(1992) formalized this procedure, calling it Solid Isotropic Material with Penalization (SIMP).

Although the implementation of penalization parameters was usually enough to

solve the problem of “gray” elements, they still appear throughout the procedure. This led

to the development of discrete TO algorithms, such as the Evolutionary Structural Optimization

(ESO) method. Proposed by Xie and Steven (1993), the ESO is a method that, although based

on the SIMP, only allows the presence of fully solid or void elements. At each iteration, some

finite elements are removed, based on a given user-inputted parameter. The procedure stops

after reaching the desired final volume.

The ESO was subsequently extended to its bidirectional successor, the Bidirectional

Evolutionary Structural Optimization (BESO) algorithm (Querin et al., 1998). This method

presents the advantages of the ESO while also allowing the addition of previously removed

elements. Although the ESO and BESO are purely heuristic, their results are comparable to

those obtained by the SIMP.
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Among all the aforementioned methods, some numerical errors are usually found.

The main problem is the appearance of a “checkerboard pattern” due to shear locking in bilinear

elements or elements connected solely by one node (Díaz; Sigmund, 1995). Based on image

filtering techniques, Sigmund (1994) proposed a filter that helps to mitigate this problem and

guarantees mesh independence of the final solution (Sigmund, 1997). Despite its heuristic

features, the proponents of this method show that solutions obtained with this method are similar

to those obtained by other optimization methods. Huang and Xie (2007) then adapted this

procedure and implemented it on the ESO and BESO algorithms.

These methods have since been widely used in a variety of problems. The works

presented in the next sections mostly apply one of the above-mentioned methods. The BESO

method has become one of the main algorithms for TO procedures, even being the inspiration

of other discrete optimization methods, such as the Floating Projection Topology Optimization

(FPTO) (Huang, 2020) and the Topology Optimization of Binary Structures (TOBS) (Sivapu-

ram; Picelli, 2018).

1.2.2 Optimization of dynamic systems

The optimization problem for natural frequencies is usually a way to produce a

system whose dynamics must be passively controlled in a certain way, such as attenuating its

vibration. To achieve this goal in a TO framework, a sensitivity analysis on natural frequencies

must be performed. Haug and Rousselet (1980) were the first to develop such a study, by

differentiating the Rayleigh quotient. This procedure is used to assign a value to each element

that represents the estimated change in the eigenvalues given a small change in the topology.

They also note the difficulty of working with systems that have eigenvalues with geometric

multiplicity higher than one. In this case, these eigenvalues are not Fréchet differentiable, only

Gateaux differentiable. That is, whenever an eigenvalue has a geometric multiplicity higher

than one, it only has directional derivatives.

Regarding the repeated eigenvalues problem, Seyranian et al. (1994) showed that

their sensitivities cannot be defined similarly to the simple eigenvalue case, requiring an alter-

native procedure. Krog and Olho (1999) then proposed a solution by imposing an additional

constraint, subsequently used by Xia et al. (2011) to optimize the first natural frequency, simple

or repeated.

However, according to Sun (1990), performing the sensitivity analysis as if the re-
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peated eigenvalues were single, has the meaning of using the directional derivative in a di-

rection represented by unitary vectors for all variables. Torii and Faria (2017) uses a smooth

p-norm approximation for the smallest eigenvalue to obtain a differentiable expression for the

first eigenvalue of a system. Discussions regarding the sensitivity analysis of eigenvalues are

summarized in Lin et al. (2020).

Parallel to the development of sensitivity analyses was its application on topology

optimization. As discussed previously, topology optimization methods such as the SIMP and

BESO methods are powerful tools to obtain lightweight efficient structures. Díaz and Kikuchi

(1992) maximized the first natural frequency of select linear elastic structures. Ma et al. (1993)

proposed another method for dynamic system optimization, by minimizing the response of

harmonically excited systems. Subsequently, Ma et al. (1994) proposed an efficient procedure

for either optimizing one natural frequency or a combination of multiple ones. Although a

complete and efficient proposition, this procedure has since been abandoned by the following

researchers, being replaced by simpler and less extensive approaches.

With the advancement of topology optimization procedures, so did the formulation

for natural frequency maximization. Xie and Steven (1994) performed the maximization of nat-

ural frequencies using the ESO method, which was further explored by Xie and Steven (1996).

Zhao et al. (1997) analyzed the influence of non-structural mass on the optimization results.

They concluded that, while their addition can be used in some cases to maintain connectivity, it

is not guaranteed. They also formulated a mathematical approach to estimate the influence of

lumped non-structural mass on the natural frequencies. Finally, Yang et al. (1999) extended the

optimization of eigenvalues to the BESO method.

Besides the aforementioned problem of repeated eigenvalues, topology optimiza-

tion can also present problems due to void finite elements. These elements can either alter the

natural frequencies or the mode shapes in a non-physical way. Pedersen (2000) explored this

phenomenon, proposing an interpolation scheme for stiffness and mass properties to avoid this

problem. Huang and Xie (2010) then adapted this procedure for the BESO method. Zuo et

al. (2011) implemented this procedure with periodicity constraints introduced by Huang and

Xie (2008). Zuo et al. (2010) proposed another procedure for avoiding local modes from void

elements, based on altering the element removal procedure.

Most initial works maximize the first few natural frequencies or by implemented

simpler mathematical models for the structure. Jensen and Pedersen (2006) optimized the nat-
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ural frequency separation of one and two-dimensional structures, the latter being modeled by

the Helmholtz equation. Their results indicated periodicity in optimal topologies for high-

frequency ranges. Olhoff et al. (2012) extended this analysis, optimizing Euler-Bernoulli beams

and verifying the resulting periodicity. Their study also showed the presence of a band gap in the

maximized interval. These assessments indicate that periodic optimization might be sufficient

in frequency separation maximization problems.

These results sparked the area of TO of phononic crystals, which are periodic elastic

components made of two or more materials, that prevent the propagation of elastic waves at

certain frequency intervals (Brillouin, 1953; Kittel, 1976). These methods are highly inspired

by the optimization of photonic crystals (Joannopoulos et al., 1997). They are based on Bloch’s

Theorem, which asserts that, for infinitely periodic structures, any variable that is a function

of position (such as displacement or pressure) can be solely described by a periodic function

with the same period as the repeated cell (Sigalas; Economou, 1992; Kushwaha et al., 1993).

Structures such as these present frequency bands where wave propagation is prohibited, which

are known as band gaps (Vasseur et al., 1998).

Sigmund and Jensen (2003) performed the first TO assessment of a phononic crys-

tal, obtaining structures that attenuated wave propagation at a given frequency. Since then, a

large number of TO studies on this methodology have been performed (Li et al., 2019). De-

spite that, there is a recent tendency of trying to avoid the perspective of phononic crystals,

as it limits the applicability of the method, due to the hypothesis of an infinitely periodic do-

main. For instance, Liu et al. (2020) studied a method to control the propagation of waves in a

one-dimensional structure, not only increasing the band gap width but also decreasing the wave

propagation speed.

Parallel to the phononic crystal analysis is the dynamic compliance study. The dy-

namic response of the structure has been recently used as a way to avoid the eigenproblem that

must be solved at each iteration (Andreassen et al., 2018; Ferrari et al., 2018). This type of

analysis is mainly motivated by the high computational costs of solving eigenproblems com-

pared to the costs of solving linear systems. Although it is only being applied, to this moment,

to the fundamental frequency or a few frequencies above it, it is an important alternative to

natural frequency optimization. Olhoff and Du (2016) uses the TO method to optimize the

dynamic compliance of structure up to the 6th natural frequency. They implemented an incre-

mental method, updating the frequency at which the compliance is calculated by following the
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movement of the resonance.

Finally, Li et al. (2021) proposed a methodology for adding frequency band con-

straints. That is, they maximized the fundamental frequency of structures while imposing that

no natural frequency is within given frequency bands. They then extended their work for the

maximization of nonlinear eigenvalue problems (Li et al., 2022).

1.2.3 Fluid-structure modeling

Be it an oil applied for lubrication purposes or water completely engulfing the struc-

ture, engineering devices usually involve some fluid-structure interaction. Though important, it

is not necessarily easy to take this phenomenon into account, as at least two different equations

are required to describe it. As proposed by Zienkiewicz and Bettess (1978), both systems can

be solved simultaneously, coupling them by their common boundaries via the inclusion of a

coupling matrix. As this method involves the solution of the system by dividing it into two

different domains, it is usually identified as the segregated formulation.

As the aforementioned method requires a clear boundary between domains, it is not

readily available for the SIMP method. Wang and Bathe (1997) proposed a solution for this

in the mixed formulation. With this method, the elastic stiffness matrix is defined by its bulk

and shear moduli, and the fluid stiffness matrix is defined solely by the bulk modulus (as fluids

can only resist compression forces). This modeling strategy not only enables solving both do-

mains with the same equation, but also makes it possible to interpolate between solid and fluid

phases since they are defined by the same properties: density, bulk, and shear moduli. With this

formulation, Yoon et al. (2007) optimized acoustic-structure coupled systems using the SIMP

method. It proved to be effective in pressure and vibration minimization problems, despite

presenting some fluctuation due to local modes. Sigmund and Clausen (2007) used this for-

mulation on pressure load compliance optimization problems. Kook and Jensen (2017) applied

it in the optimization of periodic microstructures, minimizing their loss factor. Kook (2019)

performed the optimization of the mean pressure using the BESO method. Hu et al. (2020)

optimized the mean pressure, displacement of a degree of freedom, and sound transmission loss

of acoustic-structure interaction domains using the FPTO method.

Alternatively, the segregated formulation also showed its viability in studies paral-

lel to the mixed formulation. Chen and Kikuchi (2001) presented a technique to apply design-

dependent hydro-static loads. This way, the fluid-structure boundary is easily identified along
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with the iterations. Picelli et al. (2015a) then provided a simple implementation that automat-

ically assigns the correct values to the boundary matrices. Picelli et al. (2015b) then used this

coupling to optimize the first natural frequency of acoustic-structure coupled systems. Likewise,

Vicente et al. (2015) used this formulation on the harmonic response optimization of coupled

systems. They neglected, however, the sensitivity terms due to the acoustic and coupling matri-

ces. Jensen (2019) presented an interpolation scheme for structural and acoustic elements in the

segregated u/p formulation. They implement this methodology in the optimization of dynamic

compliance.

Regarding the optimization of dynamic fluid-structure systems, there are many dif-

ficulties in optimizing their natural frequencies. The mixed u/p formulation mass matrix is

singular, and the fluid domain is highly susceptible to local modes. The first point could cause

problems on eigenproblem solvers that require a positive definite mass matrix, while the second

one can cause instabilities in the evolutionary procedure.

These approaches work very effectively in low frequency, however, they are not

viable in high frequency domains. In this type of formulation, the modal density may become

too high, requiring the calculation of an immense number of eigenvalues and eigenvectors; fur-

thermore, more refined finite element meshes are required, due to lower wavelengths (Hopkins,

2007).

For the structural domain, as mentioned before, one may use a periodic wave propa-

gation analysis. However, an alternative formulation involving an additional kinematic hypoth-

esis for the sound pressure field or the velocity field can be employed. One such methodology

is to assume a diffuse pressure field, meaning that it is composed of several independent plane

waves, all propagating towards random directions and with random phases. This hypothesis

vastly simplifies the calculations in high frequency, but its main drawback is its lack of accu-

racy in lower frequency domains (Reynders et al., 2019). One of the common applications for

this methodology is the Statistical Energy Analysis (SEA) (Lyon et al., 1995; Fahy, 1994).

The diffuse field model has been applied in cases involving the simulation of either

airborne or structure-borne excitation systems. Reynders et al. (2019) presents the formulation

for impact sound transmission between two rooms. This work is validated by Wang et al.

(2020), where they verify this model numerically and analytically for lightweight timber joist

floors. Gao et al. (2019) uses a Boundary Element-Statistical Energy Analysis procedure (Gao

et al., 2018) to minimize the sound pressure level by redistributing sound-absorbing materials



36

within a vibroacoustic domain. Gao et al. (2020) optimizes the ensemble average energy of

both single excitation and frequency band systems. Van den Wyngaert et al. (2020) models

a double-leaf wall system with the SEA and minimizes their airborne sound transmission by

designing their acoustic studs. Then, they expanded this work for multi-objective formulations

that consider material usage (Van den Wyngaert et al., 2021). Yao et al. (2019) maximized the

sound transmission loss in floating floor railway systems. Giannini et al. (2023) used the diffuse

formulation to optimize single and double panels for minimum airborne sound transmission.

1.2.4 Connectivity constraint

When optimizing the natural frequency, the process often results in structures with

no physical meaning or that violate certain geometric restrictions. For instance, if we decrease

the length of a cantilever beam, we will increase its fundamental frequency. However, that is

usually not a possible solution for many applications. Furthermore, optimizing higher natural

frequencies usually leads to disconnected isles of solid regions. These cases are illustrated in

Figure 1.2.

Figure 1.2 – Examples of an optimization leading to impractical solutions.

Several propositions have been made in the literature to avoid this behavior. The first

alternative is to use a multi-objective function, with a term to minimize compliance. Zuo et al.

(2010) applied this method by subtracting the compliance into the function that is maximized.

Since disconnected regions are associated with low-frequency local modes, it could also be

used for that end. Leon et al. (2015) added stress constraints to the optimization to avoid hinges

on the topology. They later expanded this analysis considering both geometric and material

nonlinearities (Leon et al., 2020). Pereira and Cardoso (2018) assessed stress constraints on this

kind of problem, comparing both local and global stress constraints. Finally, Emmendoerfer et
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al. (2022) implemented these stress constraints to the optimization of multi-material compliant

mechanisms to avoid hinges.

The second method is to include additional masses to the structure (Zhao et al.,

1997). For instance, if we add a mass at the free edge of a cantilever beam, the optimization

process will not disconnect it, as it would decrease the first natural frequency. This method,

however, changes the dynamic behavior of the system. It is also difficult to control its influence

over the optimization process.

The third alternative is to perform changes to the optimization algorithm itself.

Munk et al. (2017) proposed a connectivity matrix to guarantee connectivity between all solid

elements. This is done by creating a square matrix whose size is the number of solid elements

at that iteration. If it is filled with 1 wherever there is a connected pair and 0 elsewhere, con-

nectivity can be directly seen from this matrix. This method manages to guarantee connectivity

in rough meshes, such as the Zhou-Rozvany problem (Zhou; Rozvany, 2001), but not for prac-

tical applications. It is highly mesh-dependent, and could often result in connections with one

element of width.

Du et al. (2018) proposed a way to calculate a connectivity index for multi-scale

optimization studies. They presented a methodology to guarantee connectivity at the interfaces

between distinct cells. Xiong et al. (2020) used graphs to identify the location of enclosed voids

(which can be troublesome to manufacture). A hierarchical graph scheme is used to identify the

shortest path between these enclosed voids and the boundaries. Tunnels are generated between

them and are chosen based on the ones which affect the least the objective function.

More recently, Nejat et al. (2022) performed modifications to the level-set optimiza-

tion method to guarantee connectivity and a stable evolution. They illustrate this by minimizing

the compliance of an elongated cantilever beam.

The last possibility involves performing an auxiliary Finite Element Analysis (FEA).

Enclosed voids can be identified by solving a heat conduction problem where void elements

generate heat and are conductive, while solid ones are insulators. This is the basis of the Virtual

Temperature Method (VTM) proposed by Liu et al. (2015), which can also be known as the

Virtual Scalar Field (VSF) method (Li et al., 2016). The VTM has been since studied and ex-

tended; Luo et al. (2020) proposed its nonlinear variant, the N-VTM, which limits the maximum

temperature, rendering the process more stable.

The VTM has also been widely used in the literature, Wang et al. (2021) applied
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it on electric fields and studied its effects when it is imposed alongside volume and stress con-

straints. Pereira et al. (2022) used the VTM in acoustic optimization to avoid the presence of

holes in rigid structures and to facilitate the manufacturing of poro-rigid structures.

1.3 Goals and contributions

The main goal of this work is to contribute to methods of structural optimization

in problems of natural frequency optimization in low and medium to high-frequency domains.

Four different optimization problems are studied:

• Topology optimization of natural frequency separation of high natural frequencies;

• Development of a connectivity constraint to avoid convergence to trivial solutions or dis-

connected topologies;

• Topology optimization of natural frequencies of acoustic-structure interaction problems;

• Optimization of sound insulation of ribbed floors using a diffuse pressure field formula-

tion.

The following conference presentations were derived from this research:

• Topology optimization of frequency gap for composite materials. In 14th World Congress

on Computational Mechanics;

• Topology optimization with connectivity constraint to separate natural frequencies of a

ring structure. In 8th International Symposium on Solid Mechanics;

• Broadband optimization of ribbed floors for impact sound insulation. In 16th World

Congress on Structural and Multidisciplinary Optimization.

The following journal papers have been derived from the work presented in this

thesis:

• High natural frequency gap topology optimization of bi-material elastic structures and

band gap analysis. Structural and Multidisciplinary Optimization, v. 63, n. 5,

2325–2340, Lopes et al. (2021);
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• Numerical and experimental investigation on topology optimization of an elongated dy-

namic system. Mechanical Systems and Signal Processing, v. 165, 108356, Lopes et

al. (2022b).

At the time of writing this thesis, another paper is under review at Building and

Environment.

Furthermore, three papers have also been co-authored by the author. They con-

tributed to the programming of the BESO algorithm, as well as complementing the vibroacous-

tic optimization analyses from this work. The papers are the following:

• Finite variation sensitivity analysis for discrete topology optimization of continuum struc-

tures. Structural and Multidisciplinary Optimization, v. 64, 3877–3909, Cunha et al.

(2021);

• Topology optimization of acoustic systems with a multiconstrained BESO approach. Fi-

nite Elements in Analysis and Design, v. 201, p. 10370, Pereira et al. (2022);

• Multi-domain acoustic topology optimization based on the BESO approach: applications

on the design of multi-phase material mufflers. Structural and Multidisciplinary Opti-

mization, v. 66, n. 1, p. 25, Pereira et al. (2023).

1.4 Layout of the thesis

This thesis is divided into six chapters. The first chapter introduces the motivation

of this work, describes the state of the art in problems of Topology Optimization, and presents

the goals of this work.

Chapter 2 discusses natural frequency optimization without acoustic domain. The

formulation for two-material natural frequency separation optimization is presented. Finally,

some results are examined.

Chapter 3 presents a way to perform the natural frequency optimization for one

material and void domains. This is done by introducing a novel method, entitled the Virtual

Flux Method (VFM).

Chapter 4 analyzes acoustic-structure optimization problems, describing the for-

mulation of the acoustic domain and its coupling with the structural one via the Helmholtz

equations. Here, a study on the sensitivity analysis, as well as on an optimization case are done.
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Chapter 5 presents the optimization formulation and optimization results of a weakly

coupled system, more specially, the maximization of impact sound insulation. Here, the base

floor is optimized, while the fluid domain is modeled via a diffuse field formulation.

Finally, Chapter 6 contains the conclusions of this thesis and suggestions for future

research.

Appendix A presents the validation of the Finite Element Analysis. Appendix B

shows the validation of the sensitivity analysis. Appendix C deduces the analytical expressions

for the heat flux of linear quadrilateral elements. Appendix D illustrates the assembly and

update process of the acoustic-structure coupling matrix.
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2 HIGH NATURAL FREQUENCY SEPARATION MAXIMIZATION

In the literature, it is quite common to optimize the first few natural frequencies of a

structure. However, additional procedures must be included to do the same in higher frequency

domains. An eigenvector tracking mechanism is added to avoid local modes and to stabilize

the optimization procedure. A less common objective function is chosen to account for the

contribution of several modes simultaneously. The computational costs of the eigenvalue solver

is studied in order to decrease it. The contribution from this section was presented at the 14th

World Congress on Computational Mechanics and published at Structural and Multidisciplinary

Optimization (Lopes et al., 2021).

2.1 Formulation of structural natural frequency problem

In this section, the structural domain is defined based on the theories of continuum

mechanics. The finite element formulation is presented, as well as the eigenproblem that returns

the natural frequencies and modes of the system. Finally, the dispersion analysis that is used to

study the numerical results is presented.

2.1.1 Structural domain formulation

The optimization problem presented here is initially performed on a solely structural

domain, indicated by Figure 2.1.

s•ns

Ωs

Γsd

Γsn

u(r)

f

u=u*

Figure 2.1 – Structural domain.
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The domain is modeled as linear elastic and isotropic, the dissipative and damping

effects are neglected. Its displacement field can be obtained from the solution of the Navier’s

equation, along with the appropriate Dirichlet and Neumann boundary conditions:


ρsü− (λ+ µ)∇ (∇ · u)− µ∇2u = bs , on Ωs

u(r) = u∗ , on Γsd

Tns = fsns , on Γsn,

(2.1)

where T is the Cauchy stress tensor, b is the body force vector, u is the displacement field, and

ü is the acceleration. The values λ and µ are the Lamé parameters, and ρs is the density of the

material. The surface forces are represented by fs and ns is the normal vector at the surfaces of

the domain.

The displacement field can be approximated via the Finite Element Method (FEM)

by discretizing the domain and applying the shape functions:

ue ≈ Nsa, (2.2)

where Ns is the matrix of shape functions, a is the nodal displacement vector and ue is the

displacement field within the domain of the eth element.

Applying the Weighted Residual Method of and the Galerkin method, Eq. (2.1)

becomes:

Mgä + Kga = fg, (2.3)

where Mg, Kg and fg are the global mass and stiffness matrices and the global force vector,

which are assembled from the elemental ones:

Mg =

Nel

A
e=1

Me, (2.4)

Kg =

Nel

A
e=1

Ke, (2.5)

fg =

Nel

A
e=1

fe, (2.6)

where Nel is the number of elements of the domain, and A is the assembly operator.
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The elemental matrices of the eth element can be obtained by integrating along its

domain:

Me =

∫
Ωe

ρsNs
TNsdΩ, (2.7)

Ke =

∫
Ωe

Bs
TCsBsdΩ, (2.8)

fe =

∫
Γsn

Ns
T (fs · ns) dΓ +

∫
Ωs

Ns
TbsdΩ, (2.9)

where Bs is the matrix of shape function derivatives and Cs is the linear elastic constitutive

matrix.

In this section, all problems are modeled either as two-dimensional under plane

stress hypothesis or under three-dimensional linear elastic hypothesis. For plane stress prob-

lems, the domain is discretized into 4-node isoparametric quadrilateral elements with the fol-

lowing matrices:

Ns =

N1 0 N2 0 N3 0 N4 0

0 N1 0 N2 0 N3 0 N4

 , (2.10)

Bs =


∂N1

∂x
0 ∂N2

∂x
0 ∂N3

∂x
0 ∂N4

∂x
0

0 ∂N1

∂y
0 ∂N2

∂y
0 ∂N3

∂y
0 ∂N4

∂y

∂N1

∂y
∂N1

∂x
∂N2

∂y
∂N2

∂x
∂N3

∂y
∂N3

∂x
∂N4

∂y
∂N4

∂x

 , (2.11)

Cs =
E

1− ν2


1 ν 0

ν 1 0

0 0 1−ν
2

 , (2.12)

where E is the Young’s modulus and ν is the Poisson’s ratio.

For the three dimensional cases, the mesh is discretized using 8-node hexahedral

elements with the following matrices:

Ns =


N1 0 0 N8 0 0

0 N1 0 · · · 0 N8 0

0 0 N1 0 0 N8

 , (2.13)
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Bs =



∂N1

∂x
0 0 ∂N8

∂x
0 0

0 ∂N1

∂y
0 0 ∂N8

∂y
0

0 0 ∂N1

∂z
0 0 ∂N8

∂z

∂N1

∂y
∂N1

∂x
0 · · · ∂N8

∂y
∂N8

∂x
0

∂N1

∂z
0 ∂N1

∂x
∂N8

∂z
0 ∂N8

∂x

0 ∂N1

∂z
∂N1

∂y
0 ∂N8

∂z
∂N8

∂y


, (2.14)

Cs =
E

(1− 2ν) (1 + ν)



1− ν ν ν 0 0 0

ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0 1−2ν
2

0 0

0 0 0 0 1−2ν
2

0

0 0 0 0 0 1−2ν
2


. (2.15)

The matrices are assembled via numerical integration using the Gauss-Legendre

quadrature, ensuring the necessary number of integration points for an exact integration on the

regular elements that are employed here.

2.1.2 Eigenvalue problem

The response of a dynamic system subjected to a harmonic excitation at a frequency

of ω is given by:

−ω2Mgaω + Kgaω = fω, (2.16)

where fω is the amplitude of the force and aω is the amplitude of the displacement, both at a

frequency ω.

In an undamped system, resonances occur when the excitation frequency is equal to

one of their natural frequencies. These natural frequencies can be obtained by finding the non-

trivial solutions of Eq. 2.3 when the force is zero. This leads to the following eigenproblem:

ω2
kMgφk = Kgφk, (2.17)

where ωk is the kth angular natural frequency and φk is the kth eigenvector.
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Eq. (2.3) can be rewritten in matrix representation as:

MgΦΛ = KgΦ, (2.18)

where the matrices Λ and Φ are the eigenvalue and eigenvector matrices, defined as:

Λ =


ω2

1 0 · · · 0

0 ω2
2 · · · 0

...
... . . . ...

0 0 · · · ω2
Ndof

 , (2.19)

Φ =
[
φ1 φ2 · · · φNdof

]
, (2.20)

where Ndof is the total number of eigenvalues and eigenvectors, also corresponding to the size

of the Mg and Kg matrices.

In this work, the eigenproblems are solved using the SLEPc (Scalable Library for

Eigenvalue Problem Computations) (Hernandez et al., 2005) open library, which is an extension

of the PETSc (Portable, Extensible Toolkit for Scientific Computation) (Balay et al., 2022) open

library. The Krylov-Schur algorithm is employed, and intermediate linear systems are solved

by the Cholesky factorization from the Intel® MKL PARDISO library. For faster computational

times during the optimization, the eigenvectors obtained from the previous iteration are used as

the initial space at the next iteration.

Additionally, the eigenvectors are normalized with respect to the mass matrix. There-

fore, the following properties are true:

INdof = ΦTMgΦ, (2.21)

Λ = ΦTKgΦ, (2.22)

where INdof is the identity matrix of size Ndof.

This FEA and eigenproblem was validated by comparing their results with the com-

mercial software COMSOL Multiphysics®. This validation is shown in Appendix A. Note that

it is done with the acoustic-structure formulation from Chapter 4.
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2.1.3 Dispersion analysis

The results from the optimization of high natural frequencies are usually periodic

or quasi-periodic (Jensen; Pedersen, 2006; Lopes et al., 2021). With that in mind, a way to

analyze these topologies is to perform a wave dispersion analysis. This type of analysis aims

to obtain the wave modes and their frequency of propagation on an infinitely periodic structure,

such as Figure 2.2.
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Figure 2.2 – Illustration of an infinitely periodic structure and dispersion analysis.

Due to this periodicity, Bloch’s theorem can be applied (Floquet, 1883; Sigalas;

Economou, 1992). It states that the free-vibration response of this system can be written as:

u(r, t) = uΥ(r)eik·reiωt, (2.23)

where i is the imaginary unit (
√
−1), k is the wave number (k = kxe1 + kye2 + kze3) and ω is

the natural frequency. uΥ(r) is a periodic displacement field in a given unit cell, that is, it has

the following property:

uΥ(r + nxLxe1 + nyLye2 + nzLze3) = uΥ(r), (2.24)

where e1, e2 and e3 are the unit vectors and Lx, Ly and Lz are the cell size at the X, Y and Z

directions. The values nx, ny and nz are integers.

This relation is substituted into the Navier’s Equation (Eq. (2.1)), and its solution is

approximated by the FEM using the same shape functions from Section 2.1.1:

uΥ(r) ≈ Nsd. (2.25)
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Applying the weighted residuals and Galerkin methods results in the following

eigenproblem (Sigmund; Jensen, 2003):

−ω2Mgd + KΥg(kx, ky)d = 0, (2.26)

where Mg is equal to the one previously obtained (Eq. (2.7)), and KΥg is assembled from the

corresponding elemental stiffness matrix KΥe . For a two-dimensional analysis, it is given as:

KΥe = Ke − i (K1kx + K2ky) + K3k
2
x + K4kxky + K5k

2
y, (2.27)

where Ke is given by Eq. (2.8) and the other components are given by:

K1 =

∫
Ωe

(
Ns

TL1
TCsBs −Bs

TCsL1Ns

)
dΩ, (2.28)

K2 =

∫
Ωe

(
Ns

TL2
TCsBs −Bs

TCsL2Ns

)
dΩ, (2.29)

K3 =

∫
Ωe

Ns
TL1

TCsL1NsdΩ, (2.30)

K4 =

∫
Ωe

(
Ns

TL1
TCsL2Ns −Ns

TL2
TCsL1Ns

)
dΩ, (2.31)

K5 =

∫
Ωs

Ns
TL2

TCsL2NsdΩ, (2.32)

where the L1 and L2 are localization matrices defined as:

L1 =


1 0

0 0

0 1

 , (2.33)

L2 =


0 0

0 1

1 0

 . (2.34)

With these matrices, the dispersion curve can be obtained by varying kx and ky

and solving the eigensystem on Eq. (2.26). Due to the periodicity of the system, we can

restrict the wave vector to the first Brillouin zone (Brillouin, 1953). Furthermore, assuming the
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symmetries of the unit cell allows us to reduce it even further, such as the triangle from Figure

2.2. Additionally, we can investigate only the edges of this region. This yields the frequencies

of the wave modes that can propagate within this domain. Intervals without wave modes are

called band gaps.

2.2 Formulation of the optimization problem

This section presents the overall formulation of the optimization problem, along

with the necessary procedures for this end. First, the optimization problem is formulated, then

the sensitivity analysis is performed by differentiating the objective function. An eigenvector

tracking procedure is presented to follow the modes throughout the optimization and to mitigate

the effects of local modes.

2.2.1 Objective function

Concerning the optimizing natural frequencies, different objective functions may

be desired, such as maximizing or minimizing a certain combination of natural frequencies,

maximizing the separation between consecutive ones, or assigning target values to them. Tra-

ditionally, the maximization of the kth natural frequency is formulated as (Xie; Steven, 1996):

max f(x) = ω2
k,

s.t. V ∗ −
∑Nel

e=1 Vexe = 0,

xe = 1 or xmin,

(2.35)

where ωk is the kth angular natural frequency. The vector x contains the design variables of

each element, being xe the design variable of the eth element. Each xe can be either 1, for full

elements, or xmin, for void elements. V ∗ is the final volume of the domain, Ve is the volume of

the eth element, and Nel is the number of elements in the domain.

Concerning the optimization of natural frequency separation, two common formu-

lations are (Jensen; Pedersen, 2006):

max f(x) = ω2
k − ω2

k−1,

s.t. V ∗ −
∑Nel

e=1 Vexe = 0,

xe = 1 or xmin,

(2.36)
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and:

max f(x) =
ω2
k

ω2
k−1
,

s.t. V ∗ −
∑Nel

e=1 Vexe = 0,

xe = 1 or xmin.

(2.37)

These formulations are extremely useful in continuous optimization methods. How-

ever, some undesirable effects may appear in high-frequency domain that must be addressed. In

discrete optimization algorithms, their presence is even more critical. Due to the higher modal

density around the kth mode, its natural frequency can cross with other ones, which is called

mode-shifting. As a result, two problems appear: the ordering of the modes gets scrambled,

and a discontinuity appears on the derivatives of the mode shapes (Haug; Rousselet, 1980).

To ensure proper consideration of the natural frequencies, an objective function that

encapsulates multiple modes simultaneously must be used. The formulation proposed by Ma et

al. (1994) is implemented, as it not only considers multiple modes but can also solve different

natural frequency optimization problems by changing a parameter n:

max f(x) = ω2
0 +

[
1

Nmodes

∑Nmodes
k=1 (ω2

k − ω2
0)
n
] 1

n
,

s.t. V ∗ −
∑Nel

e=1 Vexe = 0,

xe = 1 or xmin,

(2.38)

where ω0 is the angular operating frequency,Nmodes is the number of natural frequencies consid-

ered in the analysis. The parameter n is responsible for modifying the goal of the optimization.

This objective function allows different possibilities by altering the parameter n. If

it is an odd number, then it represents a natural frequency maximization problem. In this case,

if n is positive, the farthest eigenvalues from ω0 have the highest contribution. On the other

hand, if it is negative, the closest ones to ω0 have the highest contribution. If n is a negative

even number, then the function maximizes the distance of eigenvalues from ω0. The closest

eigenvalues from the operating frequency have the highest contribution. Increasing n magnifies

this effect. As the goal of this work is to analyze problems of maximization of natural frequency
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separation, the formulation with n = −2 is employed:

max f(x) = ω2
0 +

[
1

Nmodes

∑Nmodes
k=1

1

(ω2
k−ω

2
0)

2

]− 1
2

,

s.t. V ∗ −
∑Nel

e=1 Vexe = 0,

xe = 1 or xmin.

(2.39)

2.2.2 Sensitivity analysis

At each iteration of the topology optimization process, elements must have their

design variable changed according to its effect on the objective function. This study is done

based on a sensitivity analysis.

In discrete topology optimization procedures, such as the BESO method, ideally,

such an analysis would be made by comparing the values of the objective function at each

configuration. This is, however, not a computationally viable procedure. Nonetheless, studies

in the last few years have attempted to provide a feasible method for discrete sensitivity analyses

(Cunha et al., 2021).

The usual procedure followed by density-based topology optimization procedures

corresponds to relaxing the discrete objective function into a continuous one. That is, the design

variables xe are assumed to be in the interval [xmin,1] instead of the set {xmin,1}. This allows us

to perform a Taylor series expansion on the objective function:

f(x) = f(x∗) +

Nel∑
e=1

∂f(x)

∂xe

∣∣∣∣
xe=x∗e

(xe − x∗e) +O
(
‖∆x‖2) (2.40)

where x∗e indicates the current eth design variable, and O
(
‖∆x‖2) represents higher order

terms.

From the Taylor series, one way to measure the changes in the objective function is

by evaluating its derivatives. Traditionally, only the first derivative is used due to its simplic-

ity. Despite that, the feasibility of using higher-order terms has been studied in several works.

However, to the best of the authors’ knowledge, these terms cannot be feasibly calculated in

dynamic problems.

From this procedure, the sensitivity analysis can be performed by differentiating the
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objective function:

αe =
∂f(x)

∂xe
=

[
Nmodes∑
k=1

1

(ω2
k − ω2

0)
2

]− 3
2 Nmodes∑
k=1

1

(ω2
k − ω2

0)
3

∂(ω2
k)

∂xe
(2.41)

where the term ∂(ω2
k)

∂xe
is the derivative of the eigenvalue, which can be obtained from the Rayleigh

quotient (Haftka; Gürdal, 1993):

ω2
k =

φTkKgφk
φTkMgφk

(2.42)

With this expression, the derivative of the eigenvalue can be calculated as:

∂(ω2
k)

∂xe
= φTk

(
∂Kg

∂xe
− ω2

k

∂Mg

∂xe

)
φk (2.43)

where the derivatives of the system matrices ∂Kg

∂xe
and ∂Mg

∂xe
are defined from the material inter-

polation scheme that will be presented shortly. Moreover, this expression assumes the normal-

ization of the eigenvectors from Eq. (2.21).

From Eq. (2.41), the first term, despite being equal for all elements, is maintained

due to its influence on the historical average procedure, which will be discussed in Section

2.2.5. The coefficient inside the second summation functions as a weighting factor for each

mode. If the natural frequency ωk is less than the operating frequency ω0, this term is negative.

Otherwise, if it is greater than the operating frequency, this term is positive. Finally, the closer

it is to the operating frequency, the greater this coefficient, increasing the influence of the corre-

sponding mode. Numerically, the natural frequencies are assumed different from the operating

frequency.

To perform the differentiation of the system matrices, an interpolation scheme must

be defined between both configurations xe = 1 and xe = xmin. In this chapter, as only two-

material optimization problems are defined, only the interpolation scheme for this kind of sys-

tem is presented. The density and Young’s Modulus of a given element is defined as:

ρ(xe) = (ρ1 − ρ2)xe + ρ2 (2.44)

E(xe) = (E1 − E2)xpe + E2 (2.45)
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where E1 and E2 are the Young’s modulus, and ρ1 and ρ2 are the density of the first and sec-

ond materials. These materials are ordered so E1 > E2. The parameter p is the penalization

exponent and is usually defined based on the Hashin-Shtrikman bounds (Hashin; Shtrikman,

1963). On discrete optimization formulations, such as the BESO, this is a heuristically defined

parameter, whose value is chosen based on the user experience.

The derivatives of the mass and stiffness matrices with respect to the design vari-

ables are:

∂Mg

∂xe
=

(
1− ρ2

ρ1

)
M1

e (2.46)

∂Kg

∂xe
= pxp−1

e

(
1− E2

E1

)
K1
e (2.47)

where M1
e and K1

e are the mass and stiffness matrices of the eth element, assuming it is made

of material 1.

The sensitivity analysis was validated using the finite difference method, as shown

in Appendix B.

2.2.3 Treatment of repeated eigenvalues

In some cases, an eigenvalue can have a geometric multiplicity higher than one, that

is, multiple linearly independent eigenvectors can be attributed to a single eigenvalue. The main

drawback when that happens is that the eigenvalues become indifferentiable in the traditional

sense, meaning that Eq. (2.43) is no longer valid for those specific modes. Haug and Rousselet

(1980) explain that while they are not Fréchet differentiable, they are Gateaux differentiable;

that is, they have directional derivatives, but no gradient vector.

In this case, Seyranian et al. (1994) proposed a method to better estimate the di-

rectional derivative on a given topological change. That is, for the eth term of the sensitivity

vector, the directional derivative on the direction of xe is calculated. They propose applying an

infinitesimal perturbation on the structural matrices and substituting it into the original eigen-

problem (Eq. (2.17)). This results in another eigenproblem, indicated below:

(E− αeI) ζ = 0, (2.48)
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where αe are the eigenvalues of this system, representing the eth term of the sensitivity com-

ponent of the repeated modes. The vector ζ is the eigenvector of this system. Finally, E is a

square matrix of Nr×Nr, being Nr the multiplicity of the eigenvalue. This matrix is defined as:

E =


φT1

(
∂Kg

∂xe
− ω2 ∂Mg

∂xe

)
φ1 φT1

(
∂Kg

∂xe
− ω2 ∂Mg

∂xe

)
φ2 . . . φT1

(
∂Kg

∂xe
− ω2 ∂Mg

∂xe

)
φNr

φT2

(
∂Kg

∂xe
− ω2 ∂Mg

∂xe

)
φ1 φT2

(
∂Kg

∂xe
− ω2 ∂Mg

∂xe

)
φ2 . . . φT2

(
∂Kg

∂xe
− ω2 ∂Mg

∂xe

)
φNr

...
... . . . ...

φTNr

(
∂Kg

∂xe
− ω2 ∂Mg

∂xe

)
φ1 φTNr

(
∂Kg

∂xe
− ω2 ∂Mg

∂xe

)
φ2 . . . φTNr

(
∂Kg

∂xe
− ω2 ∂Mg

∂xe

)
φNr

 ,
(2.49)

where ω is the eigenvalue and φ1, φ2, · · · , φNr is a set of Mg-orthogonal eigenvectors.

For a set of repeated modes, we must solve the eigenproblem from Eq. (2.48), for

each finite element. The eigenvalues of this problem represent the derivatives of the natural

frequencies of the original problem. In the end, they are inserted into Eq. (2.41), alongside the

sensitivities from the single natural frequencies.

2.2.4 Eigenvector tracking algorithm

As mentioned in Section 2.2.1, the mode-shifting problem is an important aspect to

be considered during the optimization process. Additionally, local modes may appear during

the evolution. These usually correspond to thin bars and disconnected regions in the domain. If

a flexible or disconnected feature appears during an iteration, the algorithm would tend to add

mass to it, instead of removing it, further increasing the problem. This phenomenon is partic-

ularly more critical in discrete optimization analyses, as sudden removal of bars or creation of

isles of solid material are frequent. This is illustrated in Figure 2.3.

Iteration k Iteration k + 1
Figure 2.3 – Illustration of a topology optimization procedure adding mass to disconnected re-

gions.
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To avoid problems due to local modes and to ensure proper management of modes,

an eigenvector tracking procedure is implemented. In the first iteration, the modes are calcu-

lated, sorted according to their eigenvalues, and saved. From then on, however, they are sorted

based on their orthogonality with respect to the previous iteration. To this end, two possible

algorithms can be used: the Normalized Cross Orthogonality (NCO) and the Modal Assurance

Criterion (MAC) (Ewins, 2000). The NCO is based on checking the eigenvectors orthogonality

between themselves. Despite its quick evaluation, it is not precise, as the eigenvectors are not

necessarily orthogonal. To ensure correct sorting, the MAC is used. It functions similarly to

the NCO; however, instead of evaluating the orthogonality of the eigenvectors, it verifies their

Mg-orthogonality.

At each iteration, the orthogonality of the eigenvectors is checked by performing

the following procedure:

IMAC =
∣∣∣ΦT

(j−1)Mg(j)Φ(j)

∣∣∣ (2.50)

where the subscripts (j − 1) and j refer to the (j − 1)th and jth iterations. IMAC is the MAC

matrix.

The previous equation can be used to sort eigenvectors by comparing them to Eq.

(2.21). Assuming that, along with the iterations, the modes do not change significantly, the

MAC matrix should remain close to an identity matrix with permuted columns. These permu-

tations establish the ordering of the modes. The algorithm is defined in Algorithm 1.

With this algorithm, the modes from the current iteration are paired with the modes

from the previous one. These paired modes are sorted according to the calculated permutation

vector. Unpaired modes are treated as local modes and are not included in the objective func-

tion and sensitivity analysis. A parameter γ is defined to increase the number of calculated

eigenpairs in the current iteration, ensuring a proper pairing.

2.2.5 Topology optimization algorithm

With all intermediary steps defined, the whole topology optimization algorithm can

be described. The BESO method is a discrete topology optimization algorithm, based on suc-

cessive updates of the domain in accordance with a sensitivity analysis. Due to being a discrete

method, it allows for clear identification and definition of boundaries, which is especially im-
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Input: γNmodes eigenvectors φ(j) from current iteration, Nmodes eigenvectors
φ(j−1) from previous iteration, Mg(j) from current iteration

Calculate the MAC matrix: IMAC =
∣∣∣ΦT

(j−1)Mg(j)Φ(j)

∣∣∣
Create MAC permutation vector pMAC with size Nmodes × 1
Create empty lists for rows and columns (rMAC and cMAC)
Sort the MAC matrix in descending order and get the ordered indexes
i = 0
j = 0
while i < Nmodes do

row = row of jth term from sorted IMAC

column = column of jth term from sorted IMAC

if row not in rMAC and column not in cMAC then
pMAC(row) = column
Include row in rMAC

Include column in cMAC

i = i+ 1
j = j + 1

end
else

j = j + 1
end

end
Output: Permutation indexes for current iteration pMAC

Algorithm 1: Eigenvector tracking algorithm

portant for fluid-structure formulations. Moreover, topologies from every iteration are a valid

candidate for application, with little to no post-processing required.

The current implementation of the BESO is based on the formulation defined by

(Huang; Xie, 2010). The BESO was programmed using Python and Cython (Behnel et al.,

2011). The algorithm is shown in Algorithm 2.

The BESO requires defining several parameters, some have already been presented,

the others will be explained shortly. Regarding the interpolation scheme, the void design vari-

able (xmin) and the penalization exponent (p) must be defined (Section 2.2.2). The variables

Nmodes is the number of calculated natural frequencies, which, as previously discussed, must be

set by taking into account the contribution of each mode (Section 2.2.1). The final volume (V ∗)

is set by the user and is based on design constraints.

This implementation requires the application of a sensitivity filter. It is done after

the sensitivity analysis and is used to avoid mesh dependency in the final topology and checker-

board patterns (Huang; Xie, 2007). This procedure is divided into two steps: averaging the

elemental sensitivities into the nodes and averaging them back into the elements. The first step
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Input: Define parameters: xmin, p, ER, ARmax, V ∗, rmin, τ , N , Nmodes

Define boundary conditions and mesh
Start iteration counter: j = 0
Calculate eigenvalues and eigenvectors
while ε < τ or V (j) 6= V ∗ do

j = j + 1
Evaluate sensitivities α(j)

e (Eq. (2.41))
Filter sensitivities (Eqs. 2.51 and 2.52)
Perform historical average (Eqs. 2.53)
BESO update (Algorithm 3)
Calculate eigenvalues and eigenvectors (Eq. (2.17))
Perform eigenvector tracking (Algorithm 1)

Calculate ε =

∣∣∣∣∣ j−N∑
o=j−2N

f(x
(o)
e )−

j∑
o=j−N

f(x
(o)
e )

∣∣∣∣∣
j∑

o=j−N
f(x

(j)
e )

end
Output: Optimized topology x(j)

e

Algorithm 2: BESO topology optimization algorithm

is defined as:

α(nd)
n =

Neln∑
e=1

1

Neln − 1

(
1− ren∑Neln

e=1 ren

)
αe (2.51)

whereNeln is the number of elements that have the node n. The value ren is the distance between

the center of the eth element and the nth node, and αe is the elemental sensitivity calculated in

Eq. (2.41). If Neln is equal to 1, then α(nd)
n is defined as equal to αe.

The nodal sensitivities are averaged back into the elements as follows:

αe =

∑Nnd
n=1 max(0, rmin − ren)α

(nd)
n∑Nnd

n=1 max(0, rmin − ren)
(2.52)

where Nnd is the total number of nodes. The parameter rmin is the filter thickness (or radius).

Finally, these sensitivities are averaged with the ones from the previous iteration

(unless the current iteration is the first one), performing what is known as the historical average

of the sensitivities:

αe =
α

(j)
e + α

(j−1)
e

2
(2.53)

The historical average is used as a stabilization process. This is needed as an ele-

ment can change between solid and void, and therefore, its sensitivity might vary significantly

between iterations, potentially destabilizing the procedure.
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The update procedure is done based on these filtered and stabilized sensitivities.

Elements are changed to xmin or to 1 according to the sorted sensitivities while also respecting

the two parameters ER and ARmax. The Evolutionary Rate (ER) gives the volume change of each

iteration while the current volume is different from the final one V ∗. The maximum Addition

Ratio ARmax defines the maximum number of elements added in the current iteration. Algorithm

3 shows how the update procedure is done.

Input: Filtered and stabilized sensitivities αe, ER, ARmax, final volume V ∗,
current volume V (j)

Estimate the next iteration volume: V (j+1) = V (j)(1− ER)
if V (j+1) < V ∗ then

V (j+1) = V ∗

end
Define number of solid elements nsolid required to obtain volume V (j+1)

Sort elements according to αe in descending order
Calculate AR by counting void elements with e ≤ nsolid

if AR > ARmax then
Get number of added elements: nadd = ARmax · V (j+1)

Get number of removed elements: nrem = nadd + ER · (V (j+1) − V (j))
Turn the nadd void elements with the greatest αe to solid
Turn the nrem solid elements with the smallest αe to void

end
else

xe = 1, e ≤ nsolid

xe = xmin, e > nsolid
end
Re-calculate V (j+1)

Output: Updated topology x(j)
e

Algorithm 3: BESO update procedure

2.2.6 Imposing periodicity constraint

Whenever periodic structures are desired, the method proposed by Zuo et al. (2011)

is applied. It is based on constructing a list of elements that are equivalent for each periodic

cell, as shown in Figure 2.4.

To ensure that every cell will be equal, the sensitivity of every corresponding ele-

ment is changed by:

αe =

∑Ncell
c=1 αec
Ncell

(2.54)

where e is the element numbering according to the cell, c is the cell number, and Ncell is the

number of cells.
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αi1 αi2 αi3

αi4 αi5 αi6

Figure 2.4 – Example of a periodic domain with 6 cells. Thick lines represent the edges of the
cell, thin lines represent the elements. The highlighted elements are equivalent for
each cell.

With these sensitivities, the update procedure can be done. Some important aspects

to note are: this procedure must be the last one before updating the topology, these changes

are not saved at the historical average of the sensitivities, and the number of removed/added

elements must be divisible by the number of periodic cells.

2.3 Numerical results

This section presents the results from the analysis presented in this Chapter. The

beam optimization results were published at Structural and Multidisciplinary Optimization

(Lopes et al., 2021), and the square domain was presented at the 14th World Congress on Com-

putational Mechanics.

2.3.1 Optimization of a clamped-clamped beam

Initially, a clamped-clamped beam is studied. The domain comprises 400 x 40

bilinear quadrangular elements with equal size at the domain from Figure 2.5.

1 m

0.
1

m 0.1 m
f

0.1 m
u

x

y

Figure 2.5 – Design domain for clamped beam optimization.

Material 1 is a steel with Young’s Modulus E1 = 210 GPa, density of ρ1 =
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7800kg/m3 and Poison’s ratio of ν1 = 0.3. Material 2 is a hypothetical material with E2 = 21

GPa, ρ2 = 780kg/m3 and ν2 = 0.3. The properties of the second material were chosen as such

to remove any effects due to changes in the stiffness-to-mass ratio between both materials.

The BESO parameters are: ER = 2%, ARmax = 2%, final volume V ∗ = 50%, rmin =

10 mm, penalty factor p = 5 and number of modes Nmodes = 40. The operating frequency is

set to 17 kHz, corresponding to a frequency between the 20th and 21st natural frequencies of the

initial topology.

After 44 iterations the optimization stops, resulting in the topology from Figure

2.6a.

(a)

(b)

Figure 2.6 – Optimized topologies (a) without periodicity constraint (b) with periodicity con-
straint.

Though no periodicity constraint is imposed, the procedure obtained at a quasi-

periodic configuration, resembling a phononic crystal. The main deviation from actual period-

icity is the mass concentrations at the clamped boundaries.

To analyze the optimization process, the evolution of natural frequencies is shown

in Figure 2.7.
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Figure 2.7 – Evolution of the natural frequencies closest to 17 kHz for clamped beam case.
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The resulting interval corresponds to 15.4 kHz between 8.6 kHz and 24.0 kHz.

Here, we see that not prescribing which eigenvalues must be maximized and which must be

minimized is essential for obtaining this kind of topology. For instance, natural frequency 22

starts at 17.7 kHz (greater than the operating frequency) and ends at 6.8 kHz (less than the

operating frequency).

To perform a dispersion analysis, we need to obtain a single periodic cell that opti-

mizes the topology. To that end, the optimization procedure is repeated, while imposing peri-

odicity constraints. Based on the previous topology, the domain is divided into 8 identical cells.

This result is presented in Figure 2.6b.

This topology is similar to the previous one, except for the clamped boundaries. In

the previous result, there is a concentration of material 1 around this area, while in this one,

it is absent. Additionally, there is a slight change to the dimensions of the periodic disk-like

features.

Such as before, we study the frequency separation by visualizing the behavior of the

natural frequencies (Figure 2.8). The separation was 15.8 kHz, between 9.4 kHz and 25.25 kHz.

This separation is slightly greater than the one obtained before, indicating that the differences

in the boundaries do not result in increases to it.
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Figure 2.8 – Evolution of the closest natural frequencies to 17 kHz for the periodic optimization
problem.

To compare both results, the Frequency Response Functions (FRFs) of both topolo-

gies are calculated and shown in Figure 2.9. The measurement and force application points are

indicated in Figure 2.5.

As just mentioned, the difference between the lengths of the intervals is not notable.

However, there is an observable offset between both of them. The interval from the non-periodic
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Figure 2.9 – Frequency response functions of the periodic and non-periodic optimized topolo-
gies on the 17 kHz optimization case.

optimization starts and ends at lower frequencies, while the periodic one starts and ends at

higher frequencies.

With the cell obtained from the periodic optimization, a dispersion analysis is per-

formed to better interpret the physical phenomenon behind this increased performance. Note

that this topology, consisting of alternating stiff and flexible material is consistent with the

literature of phononic band-gap optimization (Sigmund; Jensen, 2003). Assuming an infinite

domain composed of this cell repeated indefinitely in the X and Y axes, Figure 2.10 shows the

dispersion curve of this cell.
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Figure 2.10 – Cell with edges of the first irreducible Brillouin zone and its dispersion curve.
Band gaps are shown in gray.

This analysis shows a band gap on the interval spanning from 15.1 kHz to 26.1

kHz and a partial band gap on the x direction between 9.4kHz and 13.1 kHz. Interestingly,

despite presenting wave modes between these band gaps and within the partial band gap interval,

the structural response yielded no modes of vibration. This is due to the different hypotheses

between wave propagation and vibration analyses.

Nonetheless, although performed exclusively on a structural scale, the topology op-
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timization procedure produced results with characteristics commonly seen in band gap studies.

That is, the optimized topology is composed of cells whose length is of the same order of mag-

nitude as the wavelength of a wave with 17 kHz propagating through the material.

2.3.2 Optimization of a simply supported beam

Noting the material concentration on the final topology from Figure 2.6a around the

clamped end, a second analysis is done to assess the influence of the boundary conditions. Here,

both ends are supported as illustrated in Figure 2.11.
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Figure 2.11 – Design domain for simply supported beam optimization.

The same optimization algorithm is run once again, keeping the same parameters as

before. In the end, the topology from Figure 2.12a is obtained after 70 iterations.

(a)

(b)

Figure 2.12 – Optimized topologies for supported case (a) without periodicity constraint (b)
with periodicity constraint.

This topology is similar to the previously obtained one (Figure 2.6a), aside from

two main differences. First, the number of stiff discs inside the topology is greater here, with

eight discs instead of seven. Also, the optimizer left the region around the boundary conditions

flexible, creating a stiff feature with a circular hole around the supports.

We can visualize the natural frequency evolution of the natural frequencies around

17 kHz in Figure 2.13. Here, the separation interval is 15.4 kHz, from 11.3 kHz to 26.7 kHz.

Once again, the optimizer is able to open a wide separation around the operating frequency,

granted it took it some additional iterations for that.
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Figure 2.13 – Evolution of the natural frequencies closest to 17 kHz for simply supported beam
case.

The same way that the previous study was repeated while imposing periodicity, this

one is run while imposing 10 equal cells. Note that the number of cells is chosen by counting the

features on the non-periodic topology (also counting the two irregular features). Figure 2.12b

shows the final topology of this analysis.

The evolution of natural frequencies is shown in Figure 2.14. The natural frequency

separation interval here is 16.6 kHz, from 10.5 kHz to 27.1 kHz. Note that, despite the addi-

tional constraint, the separation here is greater than the previous one. We should not draw any

design conclusions, especially due to the high number of local minima that this problem pos-

sesses. However, this indicates that even if gains could be obtained by considering the boundary

conditions, it would not lead to a significant increase.
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Figure 2.14 – Evolution of the natural frequencies closest to 17 kHz for simply supported peri-
odic beam case.

Finally, given this low dependence on the boundary conditions, one could ponder
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what would happen when comparing the results from the same topology but with different

boundary conditions. For this end, the topology from the previous 8 cell periodic case (Figure

2.6b) is simulated under both clamped and simply supported boundary conditions. The FRFs

from both cases are calculated and shown in Figure 2.15.
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Figure 2.15 – Frequency response functions of 8-cell topology under supported and clamped
boundary conditions.

Comparing both curves shows a very small difference when altering the boundary

conditions. There is a small decrease on the start and end of the separation interval when

applying supported boundary conditions, but it is minor, when compared to the total size of the

interval.

In the end, the elements in the boundary condition regions have significant sen-

sitivities, resulting in topologies with boundary condition dependent features. However, any

change to the separation interval size is negligible when compared to the effects of the periodic

components in the middle of the structure.

2.3.3 Optimization at a higher operating frequency

Now that an analysis involving the change of boundary conditions has been done,

a study on the operating frequency is performed. For this end, the operating frequency is in-

creased to 30 kHz. The domain is considered clamped, much like in Section 2.3.1. Every BESO

parameter is kept the same as before, except for the number of modes, which is increased to

Nmodes = 200. This is due to the 200th natural frequency being 63.8 kHz, more than double the

operating frequency.

Running the optimization yields the topology from Figure 2.16a. Once again, it is a

quasi-periodic topology. Note, however, how the periodic cell has significantly decreased when
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compared to the previous cases. This is expected, as a higher frequency of vibration implies in

the propagation of waves with lower wavelength. In this case, however, the optimized does not

keep stiff material around the boundary condition, and seems to just ignore it.

(a)

(b)

Figure 2.16 – Optimized topologies at 30 kHz (a) without periodicity constraint (b) with peri-
odicity constraint.

The evolution of natural frequencies is shown in Figure 2.17. The natural frequency

separation interval here is 22.3 kHz, between 20.9 kHz and 43.2 kHz. Note the more unstable

evolution compared to the 17 kHz optimization cases. As the modes of vibration here tend to be-

come periodic, they become increasingly more sensitive to single element topological changes;

thus, this instability is seen. Finally, we can note that, in the end, the closest natural frequencies

from 30 kHz start greater than 30 kHz, even those that end below this value. This is yet another

indication of the importance of using Eq. (2.39) as the objective function, not imposing which

natural frequencies to maximize or minimize.
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Figure 2.17 – Evolution of the natural frequencies closest to 30 kHz for the clamped beam case.

As before, this optimization is run once again, but while imposing a periodicity

constraint. A grid of 14× 2 cells is used here, in accordance to the topology from Figure 2.16a.

In the end, the topology from Figure 2.16b is obtained. The cells here seem to be misaligned,
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that is, instead of having their boundaries exclusively on soft material, it seems to break the stiff

discs in two parts. This can be better visualized by looking at the boundaries of the structure.

Figure 2.18 shows the evolution of the natural frequencies. Compared to Figure

2.17, the interval here seems to be displaced to a higher frequency, from 24.3 kHz to 43.3 kHz,

a total of 19 kHz.
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Figure 2.18 – Evolution of the natural frequencies closest to 30 kHz for the periodic clamped
beam case.

Much like Section 2.3.1, this periodic cell is used to perform a dispersion analysis

(Figure 2.19). A band gap is seen here from 26.2 kHz to 47.7 kHz, as well as a partial one from

17.1 kHz to 20.8 kHz. Once again, both the dispersion and the structural results had the same

tendency, presenting, respectively, a band gap and a natural frequency separation around the

same interval. Granted, some changes due to their different hypotheses were seen. However,

both models seem to agree with each other.
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Figure 2.19 – Cell with edges of the first irreducible Brillouin zone and its dispersion curve.
Band gaps are shown in gray.
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2.3.4 Optimization of a frame domain

In the previous cases, the initial domain was a beam-like structure whose modes

could be classified as longitudinal or transversal. In this current analysis, we are interested in

a structure with no symmetries and whose modes can not be easily categorized. The proposed

domain is shown in Figure 2.20, along with its degrees of freedoms for the FRFs.

125 mm

f

750 mm

100 mm

100 mm

300 mm

150 mm

u
150 mm

y

x

Figure 2.20 – Design domain for the frame topology optimization case.

As we are interested in a case where the optimized structure is comparable to those

from Section 2.3.1, the operating frequency is maintained as 17 kHz. All other BESO parame-

ters are kept unchanged.

The optimization study in this domain is performed without periodicity constraints

and results in Figure 2.21a after 42 iterations.

Once again, the topology is quasi-periodic. While the features on the long horizon-

tal part are mostly centered and equidistant, those on the edges are more offset from the center,

connecting to the boundaries of the domain. This might be due to boundary effects, such as the

reflection of waves from a horizontal direction to a vertical one and vice versa. Nonetheless, it

is mainly composed of disks resembling those from Figure 2.6a.

The evolution of natural frequencies is shown in Figure 2.22. The separation span

from 11.9 kHz to 24.3 kHz, a total of 12.4 kHz. Despite being less stable than the previous cases,

the evolutionary procedure obtained a feasible topology that separates the natural frequencies.

Due to its similarity with the results from the preceding analysis, its cell is inserted

in this domain to study how it would behave if it were periodic (Figure 2.21b). With both

topologies, their FRFs can be compared (Figure 2.23).
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(a)

(b)

Figure 2.21 – Optimized topologies for frame domain (a) without periodicity constraint (b) in-
serting unit cells from Section 2.3.1.
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Figure 2.22 – Evolution of the closest natural frequencies to 17 kHz for the frame domain opti-
mization problem.

Despite not being optimized for this case, the periodic structure presents a separa-

tion of 11.5 kHz, from 13.3 kHz to 24.8 kHz. This indicates that only assembling a cell with a

band gap in this range is enough to obtain a satisfactory frequency separation in the structure.

However, as the non-periodic topology provides a separation roughly 7.8 % greater than the

periodic one, it indicates that the aforementioned changes to the placement of certain disks can

increase the separation of the natural frequencies.
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Figure 2.23 – Comparison between frequency responses for 17 kHz frame periodic and non-
periodic domains.

2.3.5 Optimization with varying domain

For this analysis, the operating frequency is once again maintained at 17 kHz. The

other BESO parameters are also unchanged. The domain, however, is defined with two chang-

ing dimensions Lx and Ly, as illustrated in Figure 2.24.

Lx/4 Lx/4

Lx

Ly
fu

Figure 2.24 – Design domain for the varying topologies case.

All cases are composed of a mesh with quadrangular elements of 2 mm x 2 mm,

and the number of elements is changed accordingly. The BESO parameters and the material

parameters are kept the same from the previous two sections.

In total, six cases are optimized. Their dimensions are: 100 mm x 100 m, 200 mm

x 100 m, 200 mm x 200 m, 400 mm x 100 m, 400 mm x 200 m and 400 mm x 400 m. The

resulting topology for each case is shown in Figure 2.25.

A glance at these topologies shows that the periodic pattern previously observed in

Sections 2.3.1 and 2.3.4 appear here once again. Also, these topologies are not strictly periodic,
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(a) (b)

(c)

(d)

(e)

(f)

Figure 2.25 – Optimized topologies for clamped domain with (a) 100 x 100 mm2, (b) 200 x 100
mm2, (c) 200 x 200 mm2, (d) 400 x 100 mm2, (e) 400 x 200 mm2 and (f) 400 x
400 mm2.

as the position and number of cells change. Given the dimensions of case f, one would expect

a 4x4 grid of cells, but instead, there are two columns with 3 cells separated by a column with

4 cells. Additionally, two tiny disks appear between both cells in case d. Finally, case a differs

significantly from the other ones, resulting in a connected structure instead of disconnected

cells. All topologies have reinforced the area around the boundary conditions. For further

analysis, the FRFs for all optimized topologies are calculated in Figure 2.26.

We see an increase in the frequency separation for all cases, being more significant

for larger domains. In these cases, we see that the quasi-periodic disk distribution is once again

an optimal configuration, similar to the previous section (Figure 2.10). As the dimensions are

increased, the natural frequencies are reduced, and thus, the number of natural frequencies

below and around the operating frequency drastically raises.

Despite increasing the number of relevant modes in the objective function, the ob-

tained frequency separation is large. When larger domains are involved, the effects that dic-

tate the band gap phenomenon for periodic structures become more relevant. Thus, the final
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Figure 2.26 – FRFs of initial and final topologies for clamped domain with (a) 100 x 100 mm2,
(b) 200 x 100 mm2, (c) 200 x 200 mm2, (d) 400 x 100 mm2, (e) 400 x 200 mm2

and (f) 400 x 400 mm2.

topologies only add disks and redistribute them. For smaller domains, such as the first one, the

structural vibration phenomenon is more important, and thus, the topology tends to a beam-like
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structure connected at both ends.

2.3.6 Optimization of a 3D clamped-clamped beam

Finally, a clamped-clamped domain, similar to that of Section 2.3.1, is studied. The

domain is illustrated in Figure 2.27. It is discretized in a mesh of 100 x 10 x 10 hexahedric

finite elements.

1000 mm

100 m
m

10
0 

m
m

Figure 2.27 – Design domain for 3D clamped-clamped beam optimization.

The optimization is, once again, defined as the maximization of the natural fre-

quency separation around 17 kHz. Most BESO parameters and material properties are the same

from Section 2.3.1: ER = 2%, ARmax = 2%, rmin = 10 mm, p = 5, E1 = 210 GPa, E2 = 21

GPa, ρ1 = 7800kg/m3, ρ2 = 780kg/m3, and ν1 = ν2 = 0.3. The final volume is reduced to

V ∗ = 40%, and the number of calculated modes is Nmodes = 80.

The final topology is shown in Figure 2.28. Once again, a quasi-periodic pattern

emerges during the optimization. Furthermore, it is very similar to that from Figure 2.6a, even

sharing the same number of stiff material concentration. Still, they are not all equal here, not

even being the same geometric shape. Some of them are roughly spheres, while others seem

closer to cuboids with a square hole.

The performance of this structure, compared to the full topology, can be seen in

Figure 2.29. Once again, a clear natural frequency separation can be seen here, when comparing

the initial and the optimized topologies. This shows, not only that this methodology is able to

obtain this kind of frequency separation in 3D, where additional modes appear, such as torsional

modes; but also that the quasi-periodic pattern obtained in 2D optimization is also optimal in

3D.
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(a)

(b)

(c)

Figure 2.28 – Final topology of 3D clamped-clamped beam optimization (a) 3D view (b) view
from x-y plane (c) view from x-z plane.

2.4 Conclusions

In this chapter, a topology optimization procedure to maximize the natural fre-

quency separation of two-material structures was presented. In these cases, mode-shifting is

an important problem, which is solved by using an objective function that takes into account

several modes and by using an eigenvector tracking procedure. Although more critical in one

material and void, local modes can also be a nuisance in the two-material optimization of natural

frequencies. The eigenvector tracking procedure also helped to confront this challenge.

To illustrate the functioning of this method, distinct domains were optimized us-

ing the same parameters. In all cases, the non-periodic optimization study resulted in simi-

lar topologies composed of a quasi-periodic pattern. This pattern was shown to result in the

band gap phenomenon when infinitely repeated. Therefore, despite not strictly following the

infinitely periodic hypothesis required for the dispersion study, an optimal topology obtained

from such cases still improves the desired natural frequency separation. Then, when we change
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Figure 2.29 – Frequency response function for 3D clamped-clamped beam optimization.

boundary conditions, different topologies may be obtained, especially around the boundaries.

Nevertheless, very little quantitative difference is seen on the separation interval.

Finally, a 3D optimization case was presented, illustrating the behavior of this type

of problem when this dimension is added.
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3 TOPOLOGY OPTIMIZATION WITH CONNECTIVITY CON-

STRAINT

As seen in Chapter 2, optimization results from frequency separation problems are

usually periodic with alternating stiff and flexible materials. As such, when we try to perform a

topology optimization which admits void elements, it results in disconnected topologies. This

chapter presents a methodology for maintaining connectivity based on a heat conduction prob-

lem. This contribution was published at Mechanical Systems and Signal Processing (Lopes et

al., 2022b) and presented at (Lopes et al., 2022a). This section was done in collaboration with

Prof. Jarir Mahfoud from INSA Lyon, in France.

3.1 Virtual Flux Method

In this section, the Virtual Flux Method (VFM) will be described. Initially, a method

for measuring the connectivity of a point is described. Then, it is used to define an elemental

connectivity parameter. Finally, an update procedure for the BESO is defined. Alternatively, an

approach that reuses the factorization from the optimization is presented.

3.1.1 Point-wise measure of connectivity

The VFM is a method that operates in two steps: first, it measures the importance

of each element in keeping the connectivity between two regions; then, it updates their sensi-

tivities to prevent them from turning to void. To measure which regions are essential for the

maintenance of connectivity, an analogy to the heat conduction problem is used (Figure 3.1).

Γin

Γout

S1

S2 S3

Figure 3.1 – Domain with heat flux flowing between an input surface Γin and an output surface
Γout.
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The main considerations are: solid regions are thermally conductive while void ones

are insulators, and a unitary transfer rate enters the domain through a subdomain Γin and exits

through another one Γout. Under these conditions, at every section that divides Γin and Γout (such

as S1, S2 and S3), a unitary heat flux must pass. This way, the thinner the bars that connect these

two regions are, the greater the heat flux per unit area must be in these sections. Therefore, this

formulation measures the importance of a region for connectivity. To compute this heat flux,

the following heat conduction system is solved:

∇ · (k(r)∇T (r)) = −qV(r) , for r ∈ Ω

∇T (r) · n(r) = 0 , for r ∈ ∂Ω,
(3.1)

where T (r) is the temperature field in a spatial point r, n(r) is the unit normal vector to the

boundary surfaces, the conductivity k(r) is adopted as either 1, for solid regions, or xmin for

void ones. The volumetric heat source qV (r) is defined as:

qV (r) = 0, for r ∈ Ω/(Γin ∪ Γout)∫
Γin

qV (r) dV = 1∫
Γout

qV (r) dV = −1,

(3.2)

This definition ensures that the total energy that enters and exits the system is equal

to 1 W. Furthermore, it can only do it through the subdomains Γin and Γout.

For any section S that divides the system in such a way that both Γin and Γout are

fully in each one of them, the following equilibrium must hold true:

∫
S

q′′(r) · n(r) dA =

∫
Ss

q′′(r) · n(r) dA+

∫
Sv

q′′(r) · n(r) dA = 1, (3.3)

where q′′(r) is the heat flux per unit area, which is obtained with Fourier’s law.

Which, in turn, can be rewritten as:

Asms + Avmv = 1, (3.4)

where As and ms are the surface of area of the section and the mean value of q′′(r) ·n(r) within

the solid domain, and Av and mv are the same but for the void domain.
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Assuming that the conductivity of void elements is small enough so that any flux

flowing through them is negligible, the following expression can be obtained:

ms =
1

As
. (3.5)

One could use the surface area As as a measure of connectivity; but, to avoid divi-

sions by zero in void elements, the inverse measure ms is adopted instead.

To measure the connectivity of a point r∗, two hypotheses are applied: the mean

value ms can be approximated as its value evaluated at r∗, and the surface S is normal to

q′′(r∗). This last hypothesis can be interpreted as the surface S tending towards the isothermal

plane that passes through r∗ in its close neighborhood. With those hypotheses, then:

ms(r
∗) =

1

As

∫
Ss

q′′(r) · n(r) dA ≈ q′′(r∗) · n(r∗) = q′′(r∗) · q′′(r∗)

‖q′′(r∗)‖
= ‖q′′(r∗)‖. (3.6)

These hypotheses may cause an overestimation or an underestimation of the mean

value. Although undesirable, an underestimation is still acceptable when the main goal is pre-

venting disconnection. However, one of the main advantages of the thermal conduction prob-

lem is that, whenever a component gets thinner, the flux not only increases in all points, but

also tends to become uniform. Conveniently, those are the critical parts of the domain where

the connectivity constraint should be activated.

3.1.2 Elemental connectivity measure

With a general connectivity measure, we can define an elemental value by calculat-

ing its mean along the element domain. For a given element e with volume Ve, a parametric

extensive inverse measure of connectivity can be defined as:

qe =
[

1
Ve

∫
Ωe
‖q′′(r)‖m dV

] 1
m
, m ∈ R∗+, (3.7)

where the previous expression describes the generalized mean of the function ‖q′′(r)‖ over the

domain of the element. The parameter m sets the degree of the mean. In the case where m →

∞, the mean becomes the maximum operator. The other case used in this thesis corresponds to

when m = 2. These two special cases are convenient for bilinear square elements, as m = 2

can be integrated analytically, and m → ∞ can be calculated by evaluating the heat flux at the

four nodes of the element. These properties are presented in Appendix C.
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To apply the connectivity constraint in the BESO, two parameters must be defined.

The first one is the limit area Alim, representing the minimum admissible area. The second one

comes from the fact that the BESO is a discrete optimization method; as such, to make the

constraint activate softly, an activation area Aact ≥ Alim is also defined. With both parameters,

and based on Eq. (3.5), the following inverse activation parameters can be defined:

qact =
1

Aact
, (3.8)

qlim =
1

Alim
. (3.9)

On two-dimensional problems, since one of the dimensions that compose this area

is the out of plane thickness, both areas will be referred as widths. This way, an activation

parameter can be defined as a polynomial activation function:

ce =


0 , qe ≤ qact(

qe−qact
qlim−qact

)s
, qact < qe < qlim

1 , qe ≥ qlim,

(3.10)

where s is an exponent which determines the degree of the activation.

With this parameter, we can define the degree in which the method is activated

for each element. If it is close to 1, then the element is necessary to maintain the desired

connectivity. If it is between 0 and 1, then it is not yet indispensable, but it is still important for

this connectivity and some consideration has to be done. If it is 0, then there are no connectivity

issues in this region, and it can be continued to be treated normally by the optimizer. This

activation parameter is used in the sensitivity update, shown in Section 3.1.5; but before that,

some more details on the finite element formulation of this problem are shown.

With this method, we can measure the connectivity between to subdomains Γout and

Γin. Nonetheless, it can be applied in a more general setting, maintaining multiple connectiv-

ity constraints active. For a set of Ncon desired imposed connectivities, there is a set of sub-

domain pairs
{(

Γ
[1]
in ,Γ

[1]
out

)
,
(

Γ
[2]
in ,Γ

[2]
out

)
, ...,

(
Γ

[Ncon]
in ,Γ

[Ncon]
out

)}
, each with their own limit area

(A[1]
lim, A

[2]
lim, ..., A

[Ncon]
lim ) and activation area (A[1]

act, A
[2]
act, ..., A

[Ncon]
act ). We can define a total activation

parameter with the maximum operator:

ce = max
(
c1
e, c

2
e, ..., c

Ncon
e

)
, (3.11)
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where each of the cNcon
e is calculated from Eq. (3.10) for each set of imposed connectivity.

By using this total activation parameter, we guarantee that every connectivity is

observed on every element.

3.1.3 Finite Element formulation of the Virtual Flux Method

Starting from the system from Eq. (3.1), we can apply the FEM similarly to the

procedure from in Section 2.1.1, leading to the following equation:

Rgt = qhg (3.12)

where Rg is the global thermal conductivity matrix, qhg is the global thermal heat flux vector,

and t is the nodal temperature vector. This vector is given by:

T (r) ≈ Ntt (3.13)

where Nt is the matrix of shape functions for the heat conduction problem, which, for a 4-node

isoparametric quadrilateral element is given by:

Nt =
[
N1 N2 N3 N4

]
(3.14)

The global matrix Rg is assembled from elemental ones:

Re = ke

∫
Ωe

Bt
TBtdΩ (3.15)

where ke is the thermal conductivity of element e and is assumed constant and equal to xe. The

matrix of the derivatives of the shape functions Bt is defined as:

Bt =

∂N1

∂x
∂N2

∂x
∂N3

∂x
∂N4

∂x

∂N1

∂y
∂N2

∂y
∂N3

∂y
∂N4

∂y

 (3.16)

This system, however, has two main problems. It lacks Dirichlet boundary condi-

tions, so the stiffness matrix is non-invertible. There is also a difficulty in defining the heat flux

vector qhg, as the total heat flux must be equal to 1 W. To solve this problem, two nodes are

added to the domain, and each is connected to every node of each surface (Figure 3.2).
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1W

1W

Γout

Γin

Tin

Tout

Figure 3.2 – Two nodes added to the VFM domain for the input and output flux.

The link between an additional node and a node of the domain is done via a one-

dimensional heat conductor element with conductivity ξ. This element adds the following equa-

tions:

qi = ξ (Tin − Ti) , i ∈ {1, ... , Nin} (3.17)

qi = ξ (Ti − Tout) , i ∈ {1, ... , Nout} (3.18)

where Nout and Nin are the number of nodes in the output and input surfaces, respectively.

Assuming that the conductivity of all one-dimensional elements tends to infinity,

then the temperature of all nodes connected to the same virtual node become equal ( Tout or Tin).

Regarding the absence of a Dirichlet boundary condition, we can impose a temper-

ature value for any single degree of freedom. For instance, we can impose Tout = 0. Choosing

either the input or output temperature simplifies the formulation, as it leads to fewer calcula-

tions for assembling the matrices). This can be done since we are only interested in the flux,

not in the temperature values. The main drawback from this is that, in the event of multiple

connectivity constraints, each matrix will be different; and, as such, we cannot reuse the matrix

factorization from one problem to solve the other one.

Regarding the input surface, we impose that all nodes have the same temperature.

This implies adding all rows and columns of the stiffness matrix corresponding to these nodes.

This leads to the following system:

R̃gt̃ = q̃g (3.19)
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where q̃g is a vector with 1 at the location of the input temperature and 0 elsewhere. The matrix

R̃g is the stiffness matrix with the Dirichlet boundary conditions applied.

By solving this system, we obtain the nodal temperature vector t, which can be used

to get the heat flux per unit area of each element:

q′′e(r) = −keBt(r)t. (3.20)

Which is the value used in 3.7 to obtain the inverse connectivity parameter, and

then, the activation.

3.1.4 Morphological filtering

With the aforementioned techniques, only the total connectivity between both do-

mains is constrained. That is, a domain with only one singular connection or with many thin

connections are equally valid (Figure 3.3). However, such connections are not desired, as they

may bring the same problems that motivated the use of filtering techniques (Section 2.2.5), such

as mesh dependency and checkerboard designs.

Γin Γout

(a) Capillary connection.

Γin Γout

(b) Singular connection.

Figure 3.3 – Two different types of connection with similar connectivity measure.

Furthermore, should the connection between both regions become thinner thanAlim,

the method does not guarantee an increase of this connection until this minimum threshold.

To correct both problems, a morphological “dilate” filter (Sigmund, 2007) is applied

to the topology before simulating the heat conduction:

x̂e =
1

ι
ln

(
1

Ni

∑
i

eιxi

)
, (3.21)

where i refer to elements inside a filter radius rdil, and ι is a filtering parameter. In the examples

presented here, it is used as ι = 0.5. In order to maintain the limit area, it is increased by

considering two dilation radii.
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Note that on the heat conduction mesh, gray elements may be present, and their

conductivity is interpolated via SIMP (Section 3.2). The procedures from Section 3.1.3 are then

performed on this configuration.

3.1.5 Sensitivity update scheme

Given a certain activation parameter for each element of the mesh, their sensitivities

can be updated via the following formulation:

αce = αe + ce [max(αe)− αe] (3.22)

With this formulation, if the heat flux of an element is equal to or greater than

qlim, then its sensitivity is changed to the highest sensitivity of that iteration. This way, this

element will not be removed, ensuring connectivity. For every other case, the VFM is activated

according to the activation function (Eq. (3.10)).

Since this procedure may drastically change the sensitivities of some elements and

since it is needed to maintain the connectivity, it must be the last operation on the BESO proce-

dure. Therefore, the updated BESO algorithm is illustrated in Algorithm 4.

Input: Define parameters: xmin, p, ER, ARmax, V ∗, rmin, τ , N , Nmodes, Alim,
Aact, rdil, ι

Define boundary conditions and mesh
Start iteration counter: j = 0
Calculate eigenvalues and eigenvectors
while ε < τ or V (j) 6= V ∗ do

j = j + 1
Evaluate sensitivities α(j)

e (Eq. (2.41))
Filter sensitivities (Eqs. 2.51 and 2.52)
Perform historical average with α(j−1) without VFM (Eqs. 2.53)
Perform the VFM update (Eq. (3.22))
BESO update (Algorithm 3)
Calculate eigenvalues and eigenvectors (Eq. (2.17))
Perform eigenvector tracking (Algorithm 1)

Calculate ε =

∣∣∣∣∣ j−N∑
o=j−2N

f(x
(o)
e )−

j∑
o=j−N

f(x
(o)
e )

∣∣∣∣∣
j∑

o=j−N
f(x

(o)
e )

end
Output: Optimized topology x(j)

e

Algorithm 4: BESO topology optimization algorithm with VFM
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3.2 Interpolation scheme between solid and void structural elements

As previously mentioned in Section 2.2.2, a continuous function that interpolates

the material properties must be defined. In this chapter, an interpolation between solid and void

elements will be used. The most common interpolation scheme is the SIMP:

ρ(xe) = ρ0xe (3.23)

E(xe) = E0x
p
e (3.24)

where ρ1 and E1 are the density and the Young’s modulus of the base material.

This interpolation scheme, however, is not suited for dynamic optimization, as it

produces local modes with no physical meaning in void regions (Pedersen, 2000). An alterna-

tive interpolation scheme was proposed by Huang and Xie (2010) to circumvent this problem

in the BESO:

ρ(xe) = ρ0xe (3.25)

E(xe) = E0

[
xmin − xpmin

1− xpmin
(1− xpe) + xpe

]
(3.26)

This formulation does not generate spurious changes on the eigenvalues and eigen-

vectors of the system, as it does not change the stiffness to mass ratio of solid and void elements.

With this definition, the derivatives of the mass and stiffness matrices are obtained:

∂Mg

∂xe
= M0

e (3.27)

∂Kg

∂xe
=

1− xmin

1− xpmin
pxp−1

e K0
e (3.28)

where M0
e and K0

e are the mass and stiffness matrices of the eth element assuming it is made of

the base material.

3.3 Numerical results

In this section, the optimization results using the VFM will be presented. The BESO

is implemented as shown in Algorithm 4, with the procedures shown in Chapter 2. The opti-
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mization and experimental results of the cantilever beam were published at Mechanical Systems

and Signal Processing (Lopes et al., 2022b).

3.3.1 Optimization of first natural frequency

A first case of a cantilever beam is run to illustrate the functioning of the VFM.

The optimization domain is similar to the one in Figure 2.5, except that the right end is free.

The optimization parameters and material parameter are also similar to the ones from Section

2.3.1. In this case, however, the one material and void interpolation scheme is used, with

xmin = 10−6 and p = 5. Additionally, the objective function is the maximization of the first

natural frequency. The final volume is set to 40%.

Without the VFM, the final topology is the one shown in Figure 3.4a. This result is

expected, as the trivial solution to the maximization of the first frequency of a cantilever beam

is reducing its length, which is exactly what the optimizer did in every iteration.

(a)

(b)

Figure 3.4 – Cantilever beam with maximized first frequency (a) without VFM (b) with VFM.

In contrast, we can impose a connectivity between the left surface and the right

central node of the domain by classifying them as, respectively, output and input domains for

the VFM. The activation length is defined as 100 mm and the limit one is 20 mm. The dilation

radius is rdil = 7 mm. The final topology of the optimization is shown in Figure 3.4b. Note that,

in this case, connection between both edges of the domain is maintained during the entirety of

the optimization procedure.

Without the VFM, the first natural frequency increased from 83 Hz to 224 Hz. With

the VFM, it increased only to 126 Hz. The increased in the constrained case is evidently much

lower than the one on the unconstrained problem, however, this is one of the expected conse-

quences of imposing the geometric restriction.
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This example shows that the method is effective in guaranteeing the connectivity

in one of its motivation problems. Further analyses on the method itself will be done in the

following examples.

3.3.2 Optimization of a compliant mechanism

This section illustrates the robustness of the VFM by applying it to a different kind

of problem. Here, it is used for maximizing a compliant mechanism, more specifically, the

inverter mechanism. While it may seem an abrupt change of subject, the goal of this section is

to study the behavior of the VFM when applied in a different setting, not to extensively analyze

compliant mechanisms.

The main difficulty in the optimization of compliant mechanism is the appearance

of thin hinges, which destabilizes the methodology. Several ways to avoid them have been

developed in the literature. Such as using an additional compliance term on the objective func-

tion, effectively penalizing any sort of drastic loss of stiffness (Li et al., 2014). Also, the use of

morphological filters can also help, by applying the robust optimization formulation (Sigmund,

2009). It consists of simulating three topologies: the current one, an eroded one and a dilated

one. These three configurations are considered in the optimization analysis. Any thin hinge

is broken on the eroded design, and thus, it is reinforced. In this work, the VFM is used to

illustrate its effectiveness in maintaining connectivity.

The inverter mechanism consists of the domain from Figure 3.5. Its functioning is

characterized by its behavior when applying a horizontal force at the center of its left end. The

desired response is a horizontal displacement at the other end on the opposite direction. Note

that, for a fully solid topology, the response is on the same direction of the force. Therefore, the

optimizer must be able to invert the sign of the displacement.

The optimization problem here is, thus, described as follows:

max f(xe) = uout,

s.t. V ∗ −
∑Nel

e=1 Vexe = 0,

xe = 1 or xmin,

(3.29)

where uout is the output displacement on the degree of freedom whose behavior we desire to

control.

An important aspect to notice is that, usually, using only the displacement as the ob-

jective function is not feasible. That is, TO algorithms usually only work with other objective
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Figure 3.5 – Design domain of compliant mechanism optimization.

functions, such as the mechanical advantage (Sigmund, 1997; Ansola et al., 2010), using geo-

metrical advantage and compliance (Li et al., 2014) or using a mutual potencial energy (Ansola

et al., 2007). The VFM, in this case, makes using this objective function possible.

The sensitivity analysis of this problem can be perfomed by differentiating Eq.

(3.29):

αe = −1

2
uTj

∂Kg

∂xe
u, (3.30)

where uj is a virtual displacement vector, obtained by considering a unit virtual load on the

output degree of freedom.

Finally, since this is a static problem, the regular interpolation scheme from SIMP

is used (Eq. (3.24)).

The optimization is run with the BESO, following the Algorithm 2. The BESO

parameters are chosen as: ER = 2%, ARmax = 2%, V ∗ = 15%, xmin = 10−3, p = 3, N = 5,

τ = 0.01%. The domain is discretized in a 200× 200 mesh. The domain is composed of steel,

with: E = 210 GPa and ν = 0.3.

Without the VFM, the optimization does not lead to a feasible design. The optimizer

is even unable to obtain a topology that inverts the displacement. Note that this is due to the

objective function being only the displacement (Eq. (3.29)). Solutions of this problem can be

obtained with the BESO using different techniques.

Here, two VFM problems are defined, one connecting the boundary conditions

nodes to the output displacement node and another one connecting the force-application node

to the output displacement node (Figure 3.5). They are imposed simultaneously by employing



87

the strategy from Eq. (3.11). For both VFM definitions rdil = 2 mm (two elements), and Aact =

40 mm and Alim = 10 mm.

The optimization leads to the topology in Figure 3.6a. The evolution of the dis-

placement is shown in Figure 3.7. At the start of the optimization, the displacement is slightly

negative, meaning that the displacement is on the same direction as the force. The evolution is

very unstable up to about iteration 40. At this point, a traditional inverter mechanism topology

has already been achieved, the optimization is just fine-tuning its shape. Note that on iteration

94, the output displacement is at its maximum value with a feasible volume fraction, meaning

that this should be the optimal solution. However, due to the influence of the VFM, the shape

keeps changing, decreasing the output displacement. Figure 3.6b shows the design at iteration

94.

(a) (b)

Figure 3.6 – Compliant mechanism optimization (a) Final topology (b) Iteration 94.
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Figure 3.7 – Evolution of output displacement of compliant mechanism.

Finally, we can check the activation parameter. Figure 3.8 shows it for the final
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topology. In this case, the volume constraint is tighter than in the previous results. Thus, the

activation is close to one in the whole topology. On each of the components, we can clearly see

the path that the heat flows from one subdomain to the other.

(a) (b)

(c)

Figure 3.8 – Compliant mechanism activation parameter (a) Connection to force (b) Connection
to supports (c) Both connectivities.

In the end, we can measure the width of each of the bars in this topology, to verify

whether the geometric constraint of 10 mm was met. These sizes are estimated as the necessary

dilation filter diameter necessary to make the feature disappear. First, the central bars (the ones

in red in Figure 3.8b), have a 5 mm width each. The very thin bars (beige in Figure 3.8b and

red in Figure 3.8a) have a 2 mm width, and the bar above it has 4 mm, totaling about 6 mm on

each side. In the end, adding the connection widths on both sides yield at least 10 mm. This

means that the constraint is met.

This analysis showed that the VFM worked in the design of compliant mechanisms.

However, in order to be used in practical applications, further studies must be done. For exam-

ple, while a minimal thickness was maintained, no hinges are seen in the final topology. Note
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that only thin single-element hinges are a problem in this type of problem, hinges themselves

are usually necessary to ensure the large displacement of the system.

3.3.3 Optimization of a cantilever beam

In this section, the VFM is applied once again to the optimization of an elongated

cantilever beam. The dimensions for this problem are shown in Figure 3.9.

200 mm18
 m

m

x

y

Γin

Γout

Figure 3.9 – Domain for optimization of cantilever beam with VFM.

The structure is modeled using the properties of Polylactic Acid (PLA), which has

the following properties: E = 3.5 GPa, ν = 0.36 and ρ = 1250 kg/m3. The BESO parameters

are set to: ER = 2%, ARmax = 2%, final volume V ∗ = 60%, rmin = 2 mm, penalty factor p = 5

and number of modes Nmodes = 10.

The operating frequency is set to f0 = ω0/2π = 400 Hz, which is, for the initial

topology, between the first and second modes.

To apply the VFM, an input and an output surfaces are defined, which are illustrated

in Figure 3.9. The activation area is based on the width of the domain (Aact = 18 mm2), while

the limit area is defined as Alim = 4 mm2, which means we desire a minimum width of 4 mm.

With these parameters, the optimization procedure is performed. After 40 iterations,

the stop criterion is met, yielding the topology from Figure 3.10.

Figure 3.10 – Optimized cantilever beam with VFM.

In this topology, the two main regions where the VFM operates the most are circled.

These two locations have a width of roughly 3.7 mm, which is around the imposed minimum

width. For further investigation, the connectivity parameter of the final topology is presented in

Figure 3.11.

The contrast of this parameter along the topology shows the functionality of this

process. The parameter is high in the regions where it is necessary to maintain connectivity, but
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Figure 3.11 – Connectivity parameter for optimized cantilever beam.

it remains low elsewhere, meaning it doesn’t compromise the optimization process outside the

critical regions.

The frequency response of this structure is calculated to evaluate its performance

and is shown in Figure 3.12. The natural frequency separation around f0 is increased by 28%,

going from 611.3 Hz to 785.4 Hz.
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Figure 3.12 – Frequency response of the initial and final topologies of the cantilever beam opti-
mization with VFM.

3.3.4 Optimization and experimental analysis of a cantilever beam

In the previous section, the topology optimization procedure with VFM generated

a feasible topology that maximized the natural frequency separation. In this section, another

topology is generated and tested experimentally to validate the optimization process.

The optimization domain for this case is the same as the previous one. To guarantee

standardized testing for both initial and final topologies, a layer of non-design domain of thick-
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ness 2 mm is added to the outer surfaces of the domain. Additionally, the sensitivity filter radius

rmin is changed to 1.5 mm. All other parameters are kept unchanged from the previous result.

Due to the non-design domain layer, one could assume that the VFM would be

unnecessary in this case, due to the impossibility of loss of connection. To prove otherwise, an

initial optimization procedure is performed without the VFM (Figure 3.13).

Figure 3.13 – Optimized cantilever beam with non-design domain layer without VFM.

This topology is not a feasible solution. Its thin connections would make the man-

ufacturing process challenging and could lead to structural problems in practical applications.

Thus, the VFM is necessary even when adding this layer.

To be consistent with the filter radius, the limit connectivity area Alim is changed to

1.5 mm2. After 33 iterations, the optimized topology is shown in Figure 3.14. Additionally, the

connectivity parameter is shown in Figure 3.15.

Figure 3.14 – Optimized cantilever beam with non-design domain layer with VFM.

Figure 3.15 – Connectivity parameter for optimized cantilever beam with layer.

In this case, the connectivity parameter values are not as high as those from the

previous optimization. Even so, they significantly affect the topology. There are three regions

where the VFM activated the most, which are circled in Figure 3.15. Therefore, despite not

being necessary to maintain connectivity in this case, the VFM guarantees that we obtain a

feasible topology.

The evolution of natural frequencies is shown in Figure 3.16.

The first natural frequency barely changes during the evolution; however, the second

one increases more. At iteration 5, we observe that the process rapidly removed elements from

two of the marked regions, which remained connected due to the VFM. Around iteration 25,
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Figure 3.16 – Evolution of the first two natural frequencies for cantilever beam with VFM and
non-design domain.

a large decrease in the second natural frequency is observed as a consequence of the removal

of internal bars. Despite that, the procedure manages to increase it again by reinforcing other

regions of the topology. The final natural frequency separation is also observed in Figure 3.17.
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Figure 3.17 – Harmonic response of cantilever beam with VFM and non-design domain.

The natural frequency separation changed from 610 Hz to 703 Hz, an increase of

15%. This topology presents a satisfactory trade-off between the imposed design constraints

and performance. Therefore, it is chosen for the experimental analysis.

To manufacture and experiment on this topology, it must be extended into a three-
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dimensional model. It is done by extruding it along the Z axis by a thickness of 20 mm (Figure

3.18). Some small adjustments have been done to it, including the smoothing of sharp edges

and the removal of small features.

t

40 mm

X

Y

Z

A

B

Figure 3.18 – Three-dimensional model of the optimized structure with VFM. A and B repre-
sent the points of force application and displacement measurement, respectively.

The commercial software Ansys® Workbench 17.0 was used to simulate the system

and to generate the appropriate STL files for the 3D printing. The responses of both initial and

optimized structures are shown in Figure 3.19.
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Figure 3.19 – Simulated FRFs from 3D initial and optimized structures.

Comparing this response with the optimized two-dimensional one, no significant

difference is seen around the first resonance, which is still around 104.5 Hz. The two resonances

at 789.2 Hz and 850.2 Hz are still present; however, their values have slightly changed here. Two

new peaks are observed at 551.1 Hz and 716.0 Hz. These are due to out-of-plane modes, as can

be seen in the mode shapes of the 3D model (Figure 3.20).
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Mode 1 - 104.5 Hz Mode 2 - 118.5 Hz 

Mode 3 - 551.1 Hz Mode 4 - 716.0 Hz 

Mode 5 - 789.2 Hz Mode 6 - 850.2 Hz 

Figure 3.20 – Mode shape for the simulated model.

With this three-dimensional topology, we can print the samples. For that, a Lulzbot®

Taz 6 printer was used. The two manufactured structures are shown in Figure 3.21.

(a)

(b)

Figure 3.21 – Initial (a) and optimized (b) structures.

To perform the experiments, they were clamped at one end and excited by an elec-

tromagnetic shaker 40 mm from the clamped end (Figure 3.22). A force transducer was placed

between the push-rod and the structure. The shaker was suspended by elastic links.

The laser vibrometer was set to sweep through several points of the structure. These

points correspond to a 13 × 5 grid along the surface (Figure 3.23). The vibrometer was placed

1.5 m from the surface of the samples and its lens was aligned at 50 mm from the clamped
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Figure 3.22 – Representation of the experimental setup of cantilever experiment.

end. White noise from 0 to 2000 Hz, with a sampling frequency of 2.5 kHz, was used for

measurement. The process was repeated ten times for each point, and the final responses were

obtained by averaging each measurement. The list of equipment is shown in Table 3.1, and a

general view of the setup is illustrated in Figure 3.23.

Table 3.1 – List of equipment for VFM experiment

Equipment Model
Laser Doppler Vibrometer Polytec PSV-400

Force Shaker TIRA Vibration Exciter S 50018
Power Amplifier TIRA Power Amplifier BAA 60
Force Transducer Bruel & Kjaer Type 8200

Signal Conditioner
Nexus Charge Conditioning

Amplifier 2692-A

The experimental response had a more complex behavior than the simulation and

several modes that had not been observed previously emerged. Those were due to the supports

and equipment. At the considered frequency range, numerical and measured resonances of the

optimized structure were similar, as shown in Table 3.2. Furthermore, their harmonic responses

were also similar, as indicated in Figure 3.24.

With the results, the mode shape of the resonances that were measured can be
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Figure 3.23 – General view of the experimental setup of cantilever beam.

Table 3.2 – First two bending frequencies (Hz) for experimental analysis with VFM

Numerical
Simulation Experiment Difference

104.5 107.0 2.4%
789.2 790.0 0.1%
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Figure 3.24 – Comparison between experimental and simulated FRFs of optimized structure.

graphed, as indicated in Figure 3.25.

Comparing the mode shapes obtained experimentally with those from the simula-

tion indicates a good agreement between themselves. The modes that are perpendicular to the

direction of the measurement can not be seen in this experimental setup.

Finally, the measured responses from both initial and optimized structures are com-
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Resonance 2 - 567.2 Hz Resonance 1 - 107.0 Hz 

Resonance 3 - 790.0 Hz Resonance 4 - 889.1 Hz 

Figure 3.25 – Mode shape of the studied resonances.

pared in Figure 3.26.
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Figure 3.26 – FRFs of the optimized and the initial structures.

The topology optimization method produced a clear improvement on the desired dy-

namic behavior on these manufactured structures, the first resonance frequency changed from

110.2 Hz to 107.0 Hz, while the second one increased from 660.2 Hz to 790.0 Hz. This corre-

sponds to a 24% increase in the frequency separation.

3.3.5 Optimization of a clamped-clamped beam

Finally, a system equivalent to the one from Section 2.3.1 is optimized. As evi-

denced then, when optimizing this problem, the procedure leads to a quasi-periodic and dis-

connected topology. This means that a one material and void optimization would lead to a

non-physical solution, as islands of solid material would form.
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Thus, the optimization from Section 2.3.1 is done here with one material and void.

The final volume here is changed to 70%, considering that the amount of solid material here

will be greater, as we expect the islands of solid material to be connected. To obtain a smoother

optimization, the parameters ER and ARmax are also changed to 1%. The interpolation param-

eters xmin and p are set to 10−6 and 5. The other parameters are kept the same from the two

material optimization.

The VFM is used to connect both clamped edges of the structure. The activation

and limit widths are 60 mm and 20 mm, respectively. The dilation radius is rdil = 5 mm. The

final topology is shown in Figure 3.27.

Figure 3.27 – Final topology in frequency separation problem with VFM.

A direct comparison between Figure 3.27 and Figure 2.6a shows great similarity

between both topologies. Pointedly, the quasi-periodic pattern is present in both topologies,

and both present the same number of disks. The only notable difference is the presence of

connections between them.

The resulting frequency separation interval corresponds to 8.7 kHz between 12.5

kHz and 21.2 kHz. The evolution of some frequencies can be seen in Figure 3.28.

This frequency separation is significantly lower than the one obtained in Section

2.3.1. This was, nonetheless, expected, as the alternation between stiff and flexible material

is the optimal way to induce this kind of behavior. Despite this, connectivity was maintained,

and only one material is used in this design. Additionally, this design is much stiffer than the

two-material one, as we can see by comparing their FRFs (Figure 3.29).

3.3.6 Optimization of a ring structure

This next structure is a ring structure, as shown in Figure 3.30. Its radii are R1 =

270 mm and R2 = 370 mm. Note the similarity of this structure from the one from Section

3.3.5, they have the same widths and this one has roughly double the length of the previous

one. The domain is discretized by a mesh of elements defined along the polar coordinates of

this ring. The mesh is composed of 600 x 30 elements, and, for the sensitivity analysis, they are

assumed to have roughly the same areas.
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Figure 3.28 – Evolution of the natural frequencies closest to 17 kHz for clamped beam case
with VFM.
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topologies on the 17 kHz optimization case.

Figure 3.30 – Design domain of ring structure optimization.
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Due to the circularity of this domain, it may not be clear which surfaces to use for

the VFM. For that, the domain for the heat conduction problem is similar, apart from having a

duplicate section, which are considered disconnected (Figure 3.31). That is, the input heat in

one of them has to go all the all around the ring to reach the other one. One could also argue

about using the inner and outer radii of the ring as input and output surfaces. However, this

would only connect those two surfaces, not guaranteeing a full connection all around the disk.

Figure 3.31 – VFM domain with duplicate section.

Finally, due to the perfect symmetry of this domain, the optimization would have

difficulties in starting the procedure. Every single element along a given radius would have the

same sensitivity. Thus, the optimization would either only ever remove all elements of a radius

simultaneously, leaving only a thinner disk; or remove random elements based on numerical

errors until the axissymmetry is lost, removing the deterministic nature of the method. To solve

this, a non-symmetric initial topology is adopted, in this case, the one from Figure 3.32, with

four holes of 30 mm of diameter.

D

D

D

D

Figure 3.32 – Initial design for ring structure optimization.

The first optimization case is with an operating frequency of 17 kHz. The BESO

parameters are kept the same from the previous cases. This optimization is done with two

materials, with similar properties to Section 2.3.1. The final volume is 60%. Without the VFM,
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the final topology is shown in Figure 3.33a. When applying the VFM, the activation length is

50 mm, and the limit one is 20 mm, leading to the final topology from Figure 3.33b.

(a) (b)

Figure 3.33 – Final design in 17 kHz ring domain optimization (a) Without VFM (b) With VFM.

Once again, a set of periodic disks is obtained, both with and without the VFM.

With is, all of them are connected by bars. We can verify the VFM activation parameter in this

case in Figure 3.34.

Figure 3.34 – VFM activation parameter for the optimization of ring structure.

Without the VFM, the final natural frequency separation is 14.7 kHz, while with it,

it becomes 9.9 kHz. Expectedly, when adding a new constraint, the objective function increases

less after the optimzaition.

Finally, we can verify how the optimization performs in lower operating frequen-

cies. The process is repeated for both 12 kHz and 5 kHz. The topologies with and without VFM

are shown, respectively in Figures 3.35 and 3.36.
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(a) (b)

Figure 3.35 – Final design in 12 kHz ring domain optimization (a) Without VFM (b) With VFM.

(a) (b)

Figure 3.36 – Final design in 5 kHz ring domain optimization (a) Without VFM (b) With VFM.

In general, when decreasing the operating frequency, the number of periodic cells

decrease, as previously discussed in Chapter 2. This phenomenon repeats here.

Curiously, for the operating frequency of 12 kHz, both topologies are equal. That

is, even without the VFM, the final topology is already connected. In that case, if we activate

the VFM, it should continue giving the same result. Fortunately, that is what we observed here.

This means that the VFM does not interfere with the optimization unless it is necessary. For

this frequency, the obtained separation interval is 3.9 kHz.

Finally, for an operating frequency of 5 kHz, the structure is, once again, discon-

nected. With the VFM, a similar topology is obtained, only with connections between the solid

regions. Nevertheless, note that these connections are not strictly lines connecting these re-

gions, showing that even if the VFM seems to just connect the regions, the performance of this

connection is also taken into account. In the end, the separation intervals are 3.0 kHz and 2.2

kHz for the topologies without and with the VFM, respectively.
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3.3.7 Optimization of a 3D clamped-clamped beam

In this last case, a 3D clamped-clamped beam is optimized. The domain corre-

sponds to a 3D structure clamped at both ends (Figure 3.37). It is discretized into a 500 x 60 x

24 mesh of hexahedral elements.

Γout

Γin

250 mm
10 mm4 m

m

x

y

z

Figure 3.37 – Domain for optimization of 3D clamped-clamped beam with VFM.

The material properties are of a maraging steel alloy: E = 150 GPa, ν = 0.3 and

ρ = 8000 kg/m3. The BESO parameters are set to: ER = 2%, ARmax = 2%, final volume V ∗ =

40%, rmin = 0.5 mm and penalty factor p = 5. It is desired to maximize the natural frequency

separation around 5 kHz. For this frequency range, the number of calculated eigenvalues Nmodes

is set to 60. The input and output surfaces of the VFM are set as both extremities. The activation

and limit areas are set to Aact = 40 mm2 and Alim = 10 mm2.

The optimization ends after 54 iterations, at the topology from Figure 3.38.

In this topology, the main places where the VFM activated were the center and

the thin connections throughout the topology. Without the connectivity constraint, the system

would become disconnected, much like the previously presented cases.

The evolution of the closest natural frequencies from the operating frequency can

be seen in Figure 3.39. This clearly shows that, despite the constraint, a clear separation was

opened on the natural frequencies. Furthermore, it is important to note that, unlike the results

from Sections 3.3.3 and 3.3.4, every single mode is considered here. That is, all transversal

modes, from the x-y and x-z planes, and the torsion modes. Thus, it is expected that the ex-
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(a)

(b)

(c)

Figure 3.38 – Optimized topologies for clamped-clamped domain: (a) isometric view, (b) view
from x-y plane, (c) view from x-z plane.

perimental result will preset less error regarding unexpected appearance of modes within the

separation range.
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Figure 3.39 – Evolution of the closest natural frequencies to 5 kHz for the 3D clamped-clamped
optimization with VFM.

Finally, the FRF from this structure is evaluated (Figure 3.40). The increase in
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the natural frequency separation around 5 kHz was of roughly 2835 from 392 Hz to 3227 Hz.

This is a significant increase in the interval without resonance, which is clearly seen in both

Figure 3.39 and Figure 3.40. Furthermore, unlike the previous cases, all modes are considered

here, even torsional ones and out of plane ones; thus, there is lower risk of unaccounted modes

appearing, as they did in Section 3.3.4.
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Figure 3.40 – Frequency response of the initial and final topologies for the 3D clamped-clamped
optimization with VFM.

3.4 Conclusions

In this chapter, a connectivity algorithm designated as the Virtual Flux Method was

proposed. It functions by guaranteeing that two regions defined by the user are maintained

connected throughout the optimization. Their connectivity was preserved by bars whose areas

are proportional to the user-given parameters.

To show this method in action and to validate it, seven problems were presented.

The first one was the optimization of the first natural frequency of a cantilever beam. Here, we

showed that the VFM was able to stop the optimization into going towards the trivial solution

of reducing the length of the beam. In the second one, we changed the physics and the objective

function, showing how the VFM can be extended to other kinds of problem. The third one
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was the optimization of the natural frequencies of a cantilever beam. In this case, the optimiza-

tion procedure would tend to reduce its length and disconnect it close to the clamped region.

The VFM guaranteed its connectivity. The fourth case was similar, however, it was optimized

considering the appropriate parameters and constraints for an experimental analysis, which was

subsequently carried out to validate the numerical procedures. The fifth case corresponds to

the same problem as Section 2.3.1. Here, a similar topology was obtained, compared to the

two-material optimization counterpart, but the VFM guaranteed that the connectivity between

the two clamped ends was maintained. Similarly, for the sixth case a different domain was cho-

sen for the optimization, a ring structure. The VFM showed to be able to connect the structure

here, but it also showed that it did not interfere with the optimization when it is not required for

maintaining connectivity. Finally, a full 3D optimization case was presented, illustrating how

the VFM works in a higher dimension.
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4 OPTIMIZATION OF ACOUSTIC-STRUCTURE COUPLED SYS-

TEMS

Given a successful implementation of high natural frequency optimization for con-

nected structures, we now focus on including a fluid phase, to extend the results to acoustic

applications. Thus, this chapter presents the acoustic-structure formulation necessary so solve

these kinds of problems and some analyses on the coupling between both phases.

4.1 Formulation of the acoustic-structure domain

This section presents the formulation for the acoustic domain used in this work. It

is then combined with the structural formulation from Chapter 2 to obtain a coupled system.

4.1.1 Acoustic domain

The acoustic domain is indicated in Figure 4.1.

Ωf

Γfd

Γfn p(r)

q=∇p •nf

p=p*

Figure 4.1 – Acoustic domain.

The acoustic domain is composed of an incompressible, inviscid fluid with negligi-

ble convective acceleration effects. When applied to the Navier-Stokes equation, these hypothe-

ses lead to the following wave equation:


1
c2f
p̈−∇ · (∇p) = bf , on Ωf

p(r) = p∗ , on Γfd

q = ∇p · nf , on Γfn,

(4.1)
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where cf is the speed of sound on the medium, and p∗ is the set pressure for the Dirichlet

boundary condition.

After applying the Finite Element Method, the acoustic domain system becomes:

Qgp̈ + Hgp = qpg, (4.2)

where Qg and Hg are, respectively, the compressibility and kinetic matrices, which can be

assembled from their elemental counterparts:

Qg =

Nel∑
e=1

Qe, (4.3)

Hg =

Nel∑
e=1

He, (4.4)

qpg =

Nel∑
e=1

qpe, (4.5)

He =

∫
Ωs

1

c2
f

Nf
TNfdΩ, (4.6)

Qe =

∫
Ωs

Bf
TBfdΩ, (4.7)

fe =

∫
Γsn

Ns
T (∇p · ns) dΓ +

∫
Ωs

Ns
TbfdΩ, (4.8)

where Nf is the matrix of shape functions, and Bf is the matrix of shape function derivatives

for the acoustic domain.

Once again, problems are modeled either as two-dimensional or three-dimensional.

Two-dimensional cases are discretized in 4-node isoparametric quadrilateral elements with the

following matrices:

Nf =

N1 N2 N3 N4

N1 N2 N3 N4

 , (4.9)

Bf =

∂N1

∂x
∂N2

∂x
∂N3

∂x
∂N4

∂x

∂N1

∂y
∂N2

∂y
∂N3

∂y
∂N4

∂y

 . (4.10)
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For the three dimensional cases, the matrices are:

Nf =


N1 N2 N7 N8

N1 N2 · · · N7 N8

N1 N2 N7 N8

 , (4.11)

Bf =


∂N1

∂x
∂N2

∂x
∂N7

∂x
∂N8

∂x

∂N1

∂y
∂N2

∂y
· · · ∂N7

∂y
∂N8

∂y

∂N1

∂z
∂N2

∂z
∂N7

∂z
∂N8

∂z

 . (4.12)

The matrices are assembled via numerical integration using the Gauss-Legendre

quadrature.

4.1.2 Acoustic-structure interaction

The coupled acoustic-structure problem is represented by Figure 4.2.

Γn

Ωs

Γns

Γds

Γb

ΩfΓnfq=∇p •nf

u=u0

p=p0

Γdf

u(r)

p(r)

fs•ns

nb

Figure 4.2 – Acoustic-structure domain.

This coupled system is formulated by using the segregated u/p model (Zienkiewicz;

Bettess, 1978), where each domain is separately modeled by the formulation from either Section

2.1.1 or Section 4.1.1. The interactions between both domains are represented by forces:

ffs = pnb, (4.13)

gsf = −ρfnb · ü, (4.14)
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where ffs and qsf are, respectively, the force the fluid exerts on the structure and the force the

structure exerts on the fluid. This relation leads to the following Finite Element formulation:

ffs =

∫
Γb

Ns
TnbNfdΓb p = Lp = −Lpp, (4.15)

gsf = −
∫

Γb

ρfNf
Tnb

TNsdΓb ä = −ρfLT ä = −Luä. (4.16)

Applying these forces on the models from the solid and fluid domains, Eq. (2.3)

and Eq. (4.2), the following system results:

 Mgä + Kga− Lp = fg

Qgp̈ + Hgp + ρfL
T ä = qpg

. (4.17)

This equation can be rewritten in a matricial form:

Mg 0

Lu Qg

ä

p̈

+

Kg Lp

0 Hg

a

p

 =

 fg

qpg

 , (4.18)

Ggÿ + Agy = wg. (4.19)

With this equation, we can obtain the corresponding eigenproblems by assuming a

free-response:

ω2
kGgφk = Agφk, (4.20)

ω2
kψk

TGg = ψk
TAg, (4.21)

where ψk is the kth left eigenvector. As the matrices are non-hermitian, in this case, the eigen-

vectors from the left and the right are different. These equations can be rewritten in a matricial

form:

GgΦΛ = AgΦ, (4.22)

ΛΨTGg = ΨTAg, (4.23)
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where Ψ is the left eigenvector matrix, defined as:

Ψ =
[
ψ1 ψ2 · · · ψn

]
. (4.24)

In this case, the eigenvectors can be normalized so that:

INdof = ΨTGgΦ, (4.25)

Λ = ΨTAgΦ. (4.26)

This eigenproblem, is once again, solved using the SLEPc library using the Krylov-

Schur algorithm. The intermediate linear systems are solved by the LU factorization from the

Intel® MKL PARDISO library. For faster computational times during the optimization, the

pairs of eigenvectors obtained from the previous iteration are used as the initial space at the

next iteration.

The eigenvectors from this system represent both the pressure field for the acoustic

domain and the displacement for the structural one. Regarding the assembly of the coupling

matrix, despite it only existing at the Γb surface, it does not require a boundary identification

algorithm. Appendix D shows how this process can be conducted via an assembly procedure

on the entire domain.

When compared to the mixed u/p formulation (Wang; Bathe, 1997), the most sig-

nificant drawback of the segregated formulation is the asymmetry of the matrices Gg and Ag,

which increases the computational cost of both linear system and eigenvalue solvers. Its ad-

vantage, however, is the non-singularity of the mass matrix, and the clear separation between

elastic and fluid phases.

4.2 Formulation of the acoustic-structure optimization

In this section, the main differences between solely structural optimization and

acoustic-structure integrated one will be presented.

4.2.1 Changes to the sensitivity analysis

In the acoustic-structure optimization formulation, the objective function remains

the same that was presented in Eq. (2.39). This way, the sensitivity analysis can be performed



112

similarly to what was done in Section 2.2.2, aside from the two different eigenvectors and the

new terms.

The sensitivity analysis of this objective function is given by Eq. (2.41), which is

repeated here:

αe =
∂f(xe)

∂xe
=

[
Nm∑
k=1

1

(ω2
k − ω2

0)
2

]− 3
2 Nm∑
k=1

1

(ω2
k − ω2

0)
3

∂(ω2
0)

∂xe
. (4.27)

The derivatives of the eigenvalues are given by the Rayleigh quotient:

ω2
k =

ψTk Agφk
ψTk Ggφk

. (4.28)

Unlike the previous optimization studies, there is a difference between left and right

eigenvectors. Thus, the derivative becomes:

∂(ω2
k)

∂xe
= ψTk

(
∂Ag

∂xe
− ω2

k

∂Gg

∂xe

)
φk. (4.29)

This expression can be expanded into a form with the structural and acoustic matri-

ces:

∂(ω2
k)

∂xe
= ψks

T

(
∂Kg

∂xe
− ω2

k

∂Mg

∂xe

)
φks + ψkf

T

(
∂Hg

∂xe
− ω2

k

∂Qg

∂xe

)
φks

− ω2
kψkf

T ∂Lu

∂xe
φks + ψks

T ∂Lp

∂xe
φkf

, (4.30)

where the eigenvectors with the subscript s refer to the displacement degrees of freedom and

the ones with the subscript f refer to the pressure degrees of freedom.

This shows that the sensitivities for an acoustic-structure interaction system possess

terms corresponding to each characteristic of the fluid, the solid material, and their interface.

4.2.2 Modifications for void enclosed holes

In some cases, the optimization analysis is done considering that the fluid is only on

the exterior part of the design domain. That is, if an enclosed hole appear during the optimiza-

tion procedure, it is neither solid nor fluid, instead, it is void. Numerically, this can be done by

setting the properties of this element to so that both the solid and the acoustic domains possess

void properties (xe = xmin for solid and xe = 1 for void).
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Nonetheless, the main challenge in this formulation, is finding which elements are

within an enclosed void, and which ones are directly connected to the fluid domain. To do so,

the Breadth-first search algorithm is employed (Cormen et al., 2022). It functions by recursively

checking the neighboring elements from the starting seed ones, stopping when a barrier is en-

countered. In the end, all elements not separated by the seed by barriers are detected. Figure

4.3 Illustrates the procedure.

seed element

barrier elements

Figure 4.3 – Breadth-first search algorithm done to detect connected elements from seed.

From the point of view of the mathematical formulation of the system, a second

design variable ye is added. Whenever the Breadth-first search algorithm is employed, this

variable is set to ye = 1 on fluid elements, and to ye = xmin on solid or void ones. On the other

hand, when performing a fluid-structure optimization with no voids, the Breadth-first search

algorithm is not used and ye is defined as:

ye = 1− xe + xmin. (4.31)

In the end, this design variable is used to interpolate the fluid-related parameters.

4.2.3 Interpolation scheme between structural and acoustic materials

The sensitivity analysis of an acoustic-structure system depends on the differenti-

ation of several matrices, as previously shown in Eq. (4.30). Thus, an interpolation scheme

for each one of them must be formulated (Jensen, 2019). The elastic properties are formulated
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similar to Section 3.2. The fluid properties are interpolated based on the aforementioned fluid

design variable ye:

Me(xe) = M1
exe, (4.32)

Ke(xe) = K1
e

[
xmin − xpmin

1− xpmin
(1− xpe) + xpe

]
, (4.33)

Lue(xe) = L1
ue

1− xe
1− xmin

= L1
ue

ye − xxmin

1− xmin
, (4.34)

Qe(xe) = Q1
e (1 + xmin − xe) = Q1

eye, (4.35)

He(xe) = H1
e (1 + xmin − xe) = H1

eye, (4.36)

Lpe(xe) = L1
pe

1− xe
1− xmin

= L1
pe

ye − xxmin

1− xmin
, (4.37)

where M1
e and K1

e are the elemental matrices assuming the element is structural, while Q1
e

and H1
e are the elemental matrices assuming the element is acoustic. L1

ue and L1
pe are the ma-

trices considering an interface at every border of the element, following the formulation from

Appendix D.

With this definition, if xe = 1, then the structural properties are solid, and the

acoustic ones are rigid. If xe = xmin (and ye = 1), then the structural properties are void and

the acoustic ones are fluid. When considering the possibility of fully void elements, the direct

relationship between xe and ye is lost, and void elements have xe = ye = xmin.

With these, the derivatives of the matrices can be calculated:

∂Mg

∂xe
= M1

e, (4.38)

∂Kg

∂xe
=

1− xmin

1− xpmin
pxp−1

e K1
e, (4.39)

∂Lu

∂xe
= − 1

1− xmin
L1
ue , (4.40)
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∂Qg

∂xe
= −Q1

e, (4.41)

∂Hg

∂xe
= −H1

e, (4.42)

∂Lp

∂xe
= − 1

1− xmin
L1
pe . (4.43)

Once again, when we consider void elements, the sensitivity terms of the coupling

matrices and of the acoustic matrices change. Since most solid elements change to void ele-

ments in this case, these terms are not computed on the sensitivity when ye = xmin.

With these expressions, we have all the necessary terms for the sensitivity analysis.

4.3 Sensitivity analysis on different components

In this section, the different terms of sensitivity are calculated for different types of

structures and materials for the elastic and fluid phases. The domain of analysis is shown in

Figure 4.4 is chosen.

p = 0

800 mm

10
00

 m
m

100 mm

60
0 

m
m

Figure 4.4 – Sensitivity analysis domain. Blue region represents fluid and gray region repre-
sents the design domain, which is initially solid.

Two studies are performed considering different fluids in the acoustic domain. In

the first case, the fluid is air, with cf = 343 m/s and ρf = 1 kg/m3. The structural material has
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the properties: E = 70 GPa, ρs = 2700 kg/m3 and ν = 0.3. This type of configuration may

sometimes be referred to as a system with “weak coupling”. This means that the modes from

the system can be easily divided into acoustic and structural. In other words, the interactions

between each domain can be treated as happening in one-way.

To verify the weakly-coupled behavior of the system, the 80 first eigenvalues are

calculated under two conditions. In the first one, the system is purely acoustic, that is, modeled

by the formulation of Section 4.1. In the second one, it is modeled with the acoustic-structure

formulation (Section 4.2) with the aforementioned elastic properties. Table 4.1 shows the eigen-

values from both systems.

Table 4.1 – Comparison between natural frequencies of acoustic and acoustic-structure for
weak coupling. The four modes without fluid values are structural.

Mode Coupled Fluid Difference Mode Coupled Fluid Difference Mode Coupled Fluid Difference Mode Coupled Fluid Difference
1 24.9 21 862.5 862.5 0.00% 41 1287.5 1287.5 0.00% 61 1589.7 1589.7 0.00%
2 27.2 22 868.2 868.2 0.00% 42 1288.7 1288.7 0.00% 62 1626.4 1626.4 0.00%
3 32.5 23 887.4 887.4 0.00% 43 1309.8 1309.8 0.00% 63 1653.7 1653.7 0.00%
4 84.9 84.8 0.08% 24 909.9 909.9 0.00% 44 1333.0 64 1665.4 1665.4 0.00%
5 193.3 193.3 0.00% 25 978.6 978.6 0.00% 45 1344.9 1344.9 0.00% 65 1684.5 1684.5 0.00%
6 270.8 270.7 0.03% 26 992.7 992.7 0.00% 46 1353.0 1353.0 0.01% 66 1695.7 1695.7 0.00%
7 347.7 347.6 0.01% 27 1007.4 1007.4 0.00% 47 1383.4 1383.4 0.00% 67 1709.6 1709.6 0.00%
8 355.8 355.8 0.00% 28 1013.2 1013.2 0.00% 48 1406.3 1406.3 0.00% 68 1720.0 1720.0 0.00%
9 427.2 427.2 0.01% 29 1024.9 1024.9 0.00% 49 1407.5 1407.4 0.01% 69 1722.8 1722.8 0.00%

10 521.7 521.7 0.00% 30 1051.4 1051.4 0.00% 50 1436.4 1436.4 0.00% 70 1740.4 1740.4 0.00%
11 525.6 525.6 0.01% 31 1063.1 1063.1 0.00% 51 1456.0 1456.0 0.00% 71 1744.0 1744.0 0.00%
12 526.5 526.5 0.00% 32 1098.3 1098.3 0.00% 52 1461.0 1461.0 0.00% 72 1757.0 1757.0 0.00%
13 604.5 604.5 0.00% 33 1128.2 1128.2 0.00% 53 1473.9 1473.9 0.00% 73 1762.8 1762.8 0.00%
14 610.0 610.0 0.00% 34 1143.9 1143.9 0.00% 54 1484.1 1484.1 0.00% 74 1791.8 1791.8 0.00%
15 693.2 693.2 0.00% 35 1187.5 1187.5 0.00% 55 1540.1 1540.0 0.00% 75 1809.5 1809.5 0.00%
16 698.6 698.5 0.00% 36 1188.4 1188.4 0.00% 56 1549.9 1549.9 0.00% 76 1817.1 1817.1 0.00%
17 747.8 747.8 0.00% 37 1220.5 1220.5 0.00% 57 1552.2 1552.2 0.00% 77 1829.7 1829.7 0.00%
18 757.1 757.1 0.00% 38 1222.1 1222.1 0.00% 58 1561.4 1561.4 0.00% 78 1837.1 1837.1 0.00%
19 792.6 792.6 0.00% 39 1236.5 1236.5 0.00% 59 1581.5 1581.5 0.00% 79 1861.1 1861.1 0.00%
20 804.7 804.7 0.00% 40 1271.7 1271.7 0.00% 60 1586.0 1586.0 0.00% 80 1861.9 1861.9 0.00%

The comparison between fluid and coupled domains shows clearly that the modes

from both cases are the same. The only four differences seen in Table 4.1 are related to structural

modes (which evidently don’t appear in the fluid analysis). The first three modes are the rigid-

body modes of the structure, whose eigenvalues are not zero here because of the fluid.

The sensitivity analysis of the acoustic-structure interaction system is performed to

evaluate the influence of each term from Eq. (4.30). In this study, the operating frequency is

adopted as 900 Hz. These terms are presented separately in Figure 4.5.

A quick analysis of these sensitivities indicate that, for this system, the influence

of the structural and coupling terms are negligible compared to the acoustic ones. This can be

understood as a logical conclusion from the modes being nearly identical to the purely acoustic

ones, as it would also imply that they are not dependent on the elastic properties of the structure

(as long as they remain within the weak-coupling hypothesis).
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Figure 4.5 – Sensitivity terms corresponding to each component of the stiffness and mass ma-
trices for weak coupling.

This, however, should not be understood as if this will always be the case for any

configuration with those materials. Figure 4.6 shows an example where these terms are not

negligible, despite using these same fluid and elastic properties. This is due to the thin com-

ponents of this topology, which vibrate locally with lower natural frequencies, compared to the

previously presented full topology.

Thus, since there is no way to know ahead of time whether the topology will extrap-

olate this hypothesis throughout the evolution, we have two possibilities: either we adopt the

hypothesis and verify it at the end of the optimization, or we don’t adopt it and consider fluid-
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Figure 4.6 – Some sensitivity terms for a structure with thin components.

structure interaction. A lot of works in topology optimization of acoustic-structure systems do

the first one (Picelli et al., 2015a; Pereira et al., 2022), assuming that the system will remain

weakly-coupled throughout the optimization. However, that may not be necessarily the case, as

illustrated here.

Finally, there is a different kind of problem, often called a “strongly-coupled” sys-

tem, where the elastic and acoustic properties are so that the interactions between solid and

fluid cannot be ignored, and therefore, the modes can not be separated between acoustic and

structural. In this case, the fluid has the properties cf = 1450 m/s and ρf = 1000 kg/m3. The

structural material has the properties: E = 70 GPa, ρs = 2700 kg/m3 and ν = 0.3.

As before, the 80 first eigenvalues are calculated considering a purely acoustic sys-

tem and an acoustic-structure one. The results are shown in Table 4.2.

Since the first three modes on the coupled system are very small, they are assumed to

be rigid-body modes, and thus, are not counted for the comparison. Despite that, the differences
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Table 4.2 – Comparison between natural frequencies of acoustic and acoustic-structure for
strong coupling.

Mode Coupled Fluid Difference Mode Coupled Fluid Difference Mode Coupled Fluid Difference Mode Coupled Fluid Difference
1 18.1 21 3363.6 3645.2 8.37% 41 5148.6 5442.6 5.71% 61 6600.9 6871.1 4.09%
2 40.9 22 3504.0 3669.9 4.74% 42 5231.4 5446.2 4.11% 62 6671.1 6990.4 4.79%
3 47.6 23 3652.4 3751.0 2.70% 43 5295.1 5535.5 4.54% 63 6727.8 7037.7 4.61%
4 445.8 358.6 19.57% 24 3656.5 3845.6 5.17% 44 5438.1 5685.1 4.54% 64 6793.4 7118.8 4.79%
5 841.6 817.2 2.91% 25 3875.1 4136.8 6.75% 45 5476.2 5717.1 4.40% 65 6811.4 7167.7 5.23%
6 1083.8 1144.2 5.57% 26 3906.8 4195.6 7.39% 46 5515.1 5845.1 5.98% 66 7009.5 7225.1 3.08%
7 1331.1 1469.5 10.40% 27 3924.4 4257.9 8.50% 47 5547.2 5943.0 7.13% 67 7012.3 7264.2 3.59%
8 1505.6 1503.9 0.11% 28 4161.0 4282.9 2.93% 48 5747.7 5947.7 3.48% 68 7098.4 7278.7 2.54%
9 1526.1 1805.8 18.33% 29 4247.7 4332.0 1.99% 49 5765.2 6070.3 5.29% 69 7125.8 7350.5 3.15%
10 1939.3 2205.2 13.71% 30 4298.6 4444.3 3.39% 50 5901.7 6152.6 4.25% 70 7197.8 7365.8 2.33%
11 2204.1 2221.6 0.79% 31 4308.1 4492.7 4.29% 51 5917.7 6175.3 4.35% 71 7205.6 7425.9 3.06%
12 2306.6 2225.5 3.52% 32 4388.6 4642.8 5.79% 52 6008.4 6229.4 3.68% 72 7264.0 7450.3 2.56%
13 2318.5 2555.2 10.21% 33 4449.5 4768.1 7.16% 53 6070.6 6272.7 3.33% 73 7346.6 7567.9 3.01%
14 2532.6 2578.7 1.82% 34 4557.7 4834.2 6.06% 54 6151.2 6509.8 5.83% 74 7350.5 7642.6 3.97%
15 2661.6 2929.9 10.08% 35 4697.5 5019.7 6.86% 55 6213.1 6547.3 5.38% 75 7384.3 7681.4 4.02%
16 2736.4 2952.7 7.91% 36 4762.7 5021.7 5.44% 56 6214.4 6559.9 5.56% 76 7498.0 7732.8 3.13%
17 2939.8 3160.7 7.51% 37 4800.2 5157.4 7.44% 57 6290.4 6598.4 4.90% 77 7522.1 7761.1 3.18%
18 3146.7 3200.3 1.70% 38 4991.4 5165.3 3.48% 58 6491.5 6681.3 2.92% 78 7553.6 7864.4 4.11%
19 3198.4 3350.6 4.76% 39 5017.2 5226.4 4.17% 59 6547.5 6702.6 2.37% 79 7642.6 7868.2 2.95%
20 3250.2 3401.4 4.65% 40 5136.3 5375.4 4.65% 60 6569.2 6719.7 2.29% 80 7732.8 7898.2 2.14%

between coupled and fluid modes are so significant that there is no easy way to directly correlate

them. This shows that the solid domain influences every eigenvalue, and thus, we must perform

the full fluid-structure analysis.

Once again, we perform the sensitivity analysis of the acoustic-structure interaction

system. In this analysis, the operating frequency is adopted as 3600 Hz. This frequency was

chosen because it is around the same mode (at least when counting them in ascending order)

from the previous analysis. The terms from the sensitivity are presented separately in Figure

4.7.

Here, we see that the sensitivity terms from the elastic and interaction properties are

not irrelevant, when compared to the fluid ones. Admittedly, they are not as close as one would

expect; however, they indicate that throughout the optimization (where these other parameter

might increase in importance) we must account for these terms.

Thus, in theory, one should account for the full sensitivity terms. However, while

these analyses indicated a higher accuracy on the sensitivity estimation, the only way to see

how they perform during optimization is testing.

4.4 Optimization of sliding-fixed beam

In this section, some optimization results are presented. The acoustic-structure for-

mulation from chapter, and the optimization algorithms from Chapters 2 and 3 are used. The

following domain is taken from Jensen (2019). On their work, they perform the optimization of

dynamic compliance of a sliding-fixed domain Figure 4.8, with two identical harmonic forces
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Figure 4.7 – Sensitivity terms corresponding to each component of the stiffness and mass ma-
trices for strong coupling.

at the edges of the sliding end. Additionally, they consider the fluid boundary conditions as

absorbing surfaces. For simplicity (to maintain an undamped system), we consider them as

surfaces with an imposed pressure.

The design domain is the beam-like region, which, once again, starts fully structural

in the optimization study. The elastic region is made of a hypothetical material with Es = 500

MPa, ρs = 1200 kg/m3, and ν = 0.4. The acoustic region is filled with water, with ρf = 1000

kg/m3, and cf = 1450 m/s. These properties are enough for the coupling to be strong. The

design domain is discretized in a 400 × 80 mesh. Finally, the BESO parameters are set to: ER



121

p = 0

1000 mm

20
0 

m
m

p = 0

50
0 

m
m

f

f

Figure 4.8 – Design domain for sliding-fixed problem surrounded by fluid.

= 1%, ARmax = 1%, final volume V ∗ = 40%, rmin = 12 mm, penalty factor p = 3.

Much like Jensen (2019) does in his work, we start with the pure static compliance

optimization. On this case and the subsequent dynamic compliance case, there are two vertical

forces, applied on the edges of the sliding end (as indicated in Figure 4.8), and only the design

domain is simulated.

After 117 iterations, the topology from Figure 4.9a is obtained. Furthermore, the

evolution of the compliance and volume are shown in Figure 4.9b.
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Figure 4.9 – Compliance optimization of sliding-fixed beam. (a) Final topology (b) Objective
function.
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This optimization is very stable, and the topology is similar to the one from Jensen

(2019). Despite the non-symmetric boundary conditions, the final topology is symmetrical.

Furthermore, very little instability is seen on the objective function during the optimization.

The second optimization case is a dynamic compliance optimization case, consid-

ering an excitation frequency of 30 Hz (note that the first natural frequency of the fully solid

design is about 33.8 Hz). The final topology is shown in Figure 4.10a. Additionally, the objec-

tive function and volume are in Figure 4.10b.
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Figure 4.10 – Dynamic compliance optimization of sliding-fixed beam. (a) Final topology (b)
Objective function.

Once again, a great level of similarity can be drawn between this topology and the

one from Jensen (2019). When employing a dynamic model, the symmetry is lost during the

optimization (at least one of them). The left part in the end is made more compliant, while the

right one is stiffened.

Now, the same domain is used for the optimization of the first natural frequency.

Much like the optimization from Section 3.3.1, connectivity between both edges is lost at some

point during the optimization, leaving only a cantilever beam. Then the optimization goes

towards the trivial solution of reducing its length. For this reason, the VFM is employed here

and on all subsequent cases. The activation length is set to 100 mm, and the critical one to 50
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mm. The connectivity is imposed between the right and left extremities, and the dilation radius

is rdil = 6 mm. The final topology and objective function are shown in Figures 4.11a and 4.11b.
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Figure 4.11 – Fundamental frequency optimization of sliding-fixed beam. (a) Final topology
(b) Objective function.

The first natural frequency increased from 33.8 Hz to 43.1 Hz. Much like the pre-

vious case, there is a concentration of material on the right side of the structure, leaving the

left one more flexible. Nevertheless, compared to the previous topologies, this one has a much

rounder shape.

Looking at Figure 4.11b, we can also see that the imposed volume fraction is ac-

tually hindering the performance of the structure. If one desired a topology with maximum

fundamental frequency no matter the volume, this curve indicates that using around 60% of

material would be better. Although a precise assessment would require complete optimization

analyses with different volume constraints. Note also that the VFM parameters are also very

influential in this case, as the external outline of the structure is mostly maintained by it.

Having performed the preliminary analyses of this case, we can now run some

acoustic-structure optimization studies. Initially, we consider the presence of void elements

with the Breadth-first search algorithm (Section 4.2.2). The fluid phase is imposed at the top

and bottom of the design domain (as shown in Figure 4.8). Any enclosed voids that end up
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appearing inside the solid domain is considered as void. In all subsequent cases of this section,

the optimization will be done in the first natural frequency. Note that the inclusion of the fluid

domain decreases the initial value of the natural frequency to 23.6 Hz.

Initially, we perform an optimization case considering only the structural terms of

the sensitivity (Eqs. (4.38) and (4.39)). With this in mind, after 102 iterations, the topology

from Figure 4.12a is obtained. The objective function is shown in Figure 4.12b.

(a)

0 20 40 60 80 100
Iteration

116.87

126.10

135.33

144.56

153.79

163.02

Ob
je

ct
iv

e 
Fu

nc
tio

n

0

20

40

60

80

100

Vo
lu

m
e 

fra
ct

io
n

(b)

Figure 4.12 – Fundamental frequency optimization of sliding-fixed beam with acoustic-
structure interaction, enclosed voids and solid sensitivities. (a) Final topology
(b) Objective function.

This topology is very similar to the previous one (Figure 4.11a). However, unlike

it, the natural frequency actually decreases from 23.6 Hz to 20.7 Hz. The objective function

behaves as a curve with similar shape to Figure 4.11b, although below the initial value. In the

end, a very stable evolution is seen, with very little points of sudden changes in the objective

function throughout the optimization procedure.

We can compare this result to one obtained with the full sensitivity of the acoustic-
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structure interaction. Note that, due to the enclosed-voids, we only consider the fluid and in-

teraction terms of the sensitivity on the acoustic domain (as explained in 4.2.3). In the end, the

topology from Figure 4.13a and evolution from Figure 4.13b are obtained.

(a)

0 20 40 60 80 100
Iteration

116.05

125.59

135.13

144.67

154.20

163.74

Ob
je

ct
iv

e 
Fu

nc
tio

n

0

20

40

60

80

100

Vo
lu

m
e 

fra
ct

io
n

(b)

Figure 4.13 – Fundamental frequency optimization of sliding-fixed beam with acoutic-structure
interaction, enclosed voids and full sensitivities. (a) Final topology (b) Objective
function.

Once again, very little change on the topology, apart from the reinforcement of the

central region. In this case, the evolution of the objective function is not as smooth, but the

tendency of the curve can still be seen and is similar to both previous ones. Finally, the natural

frequency decreases from 23.6 Hz to 20.7 Hz. Essentially, adding these sensitivity terms did

not produce much quantitative change to the results, only altering the final topology and the

evolutionary process.

Another way to verify these effects is by analyzing the FRF of these structures.

In these FRFs the force is applied similarly to the compliance cases, and the displacement is

measured at the central node of the left extremity. Four topologies are compared: the initial fully
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solid one, the one from the purely structural natural frequency optimization, and both from the

acoustic-structure optimization with enclosed voids. The curve is shown in Figure 4.14.
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Figure 4.14 – Frequency response function of the four different topologies considering enclosed
void.

Note that in this case, the topology from the purely structural optimization (Figure

4.11 (a)) also has a lower natural frequency than calculated before, now it is 20.5 Hz. From this

case, we can see that the three optimized cases have very similar responses at the frequency of

interest. If we consider the very small quantitative differences between them, we could conclude

that very small gains were obtained with the successive additions in the formulation, but they

are indeed negligible for this case. However, these effects could become more evident when

increasing the frequency of optimization. Even though the second natural frequency was not

considered here, we can see a substantial difference on the second resonances of each case.

Finally, the same study is repeated, but for an acoustic-structure optimization case

without enclosed voids. All elements are either solid or fluid. Once again, we start with only the

elastic sensitivity terms. Figure 4.15a shows the final topology, and Figure 4.15b, the objective

function evolution.

Once again, a somewhat stable evolution is seen, with a similar final topology than

the previous studies. There is a sudden drop in the objective function around iteration 100.

This is due to some redistribution of material around the right side of the topology. In this

case, the first natural frequency reduces from 23.6 Hz to 18.0 Hz. Note that this is an even



127

(a)

0 20 40 60 80 100 120 140 160
Iteration

28.3

53.9

79.5

105.0

130.6

156.2

Ob
je

ct
iv

e 
Fu

nc
tio

n

0

20

40

60

80

100

Vo
lu

m
e 

fra
ct

io
n

(b)

Figure 4.15 – Fundamental frequency optimization of sliding-fixed beam with acoustic-
structure interaction, and solid sensitivities. (a) Final topology (b) Objective func-
tion.

greater decrease from the structural optimization, compared to the case with enclosed voids.

The fact that the fluid also contributes to increasing the effective mass of the modes, but not as

much to the effective stiffnesses, makes it increasingly harder for the optimizer to increase the

natural frequencies. Note that while there is a slight increase in the objective function in the

two previous cases (Figures 4.12b and 4.13b) roughly up to iteration 20, in this case, it already

decreases from the start.

Lastly, an optimization with the full sensitivity can be performed. Unfortunately,

no feasible topologies could be obtained for such case. Hence, we instead considered a similar

case as before, considering the acoustic and interaction sensitivity terms only on the acoustic

elements. Note that, unlike before, the internal holes here are fluid, and thus these terms are

considered here. In the end, the topology and evolution from Figure 4.16a are obtained.

The most glaring characteristic of the topology is the presence of some appendix-
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Figure 4.16 – Fundamental frequency optimization of sliding-fixed beam with acoustic-
structure interaction, and full sensitivities. (a) Final topology (b) Objective func-
tion.

like solid regions on the left part. Additionally, we can see on the curve that the evolution is

extremely unstable. The first natural frequency decreased from 23.6 Hz to 17.7 Hz.

In this case, the MAC (Section 2.2.4) has a lot of difficulties in identifying the local

modes (there is an abundance of low-frequency acoustic modes in the holes), and thus these

peaks are incorrectly identified on the curve. Thus, even though there are some points where

it seems that the design improved significantly, it is not representative of what really happens.

These problems with the acoustic modes also explains the appearance of these irregular sur-

faces.

We can compare the performance of the final topologies, once again, with an FRF.

Figure 4.17 shows the response of the four topologies: initial topology, purely structural opti-

mization, and the latest two ones.

As mentioned before, all three optimized results have a lower natural frequency than
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Figure 4.17 – Frequency response function of the four different topologies.

those with void holes. This is due to the additional mass of the fluid domain. The difference

between the three optimized curves is even less noticeable. Their three natural frequencies are,

respectively (following the order from the legend), 17.9 Hz, 18.0 Hz, and 17.7 Hz.

4.5 Conclusions

In this chapter, the formulation for acoustic-structure coupled systems is presented.

The mathematical formulation for a similar kind of optimization as the ones done in Chapters

2 and 3 is presented. The sensitivity analysis for an acoustic-structure interaction optimization

problem is derived. A preliminary analysis on the sensitivities and eigenvalues of different

types of fluid-structure interaction problems illustrates that the level of interaction between

both phases is dependent on the properties of both materials and on their topology. In some

cases, the two phenomena (fluid and structure) can be treated separately and optimization can

be done with only one formulation (as usually done in the literature). However, there may be

cases where the coupling terms are not negligible, and thus, they must be fully implemented.

This is tested in the optimization of the first natural frequency of a sliding-fixed beam. First,

the optimization is done on a purely structural domain. The VFM from Chapter 3 had to be

employed here to avoid loss of connectivity. Then, a first assessment was done considering void

enclosed holes. Here, a small improvement was seen from the structural optimization. An even
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smaller improvement was seen when also considering the acoustic and coupling sensitivities.

In the second study, the holes were considered to be filled with fluid. A negligible quantitative

difference was seen between the structurally optimized, and the acoustic optimized ones. In the

latter, a lot of instability was also seen during the optimization procedure. Future works should

assess this unstable evolution, as well as assess its effect on an increasing frequency domain.
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5 BROADBAND OPTIMIZATION OF SOUND PROPAGATION OF

FLOORS UNDER STRUCTURE-BORNE EXCITATION

Given the two types of problems presented in Chapter 4, we can now analyze a

branch of problems in the weakly coupled formulation. Consider, for example, the first case

from Section 4.3. If we consider that the fluid domain is a large room, then the number of

natural frequencies in this domain might increase immensely, making a finite element modeling

unfeasible. As an alternative, we can model the fluid domain with another model; in this case,

the diffuse pressure field hypothesis can be adopted. The work presented in this chapter was

done in KU Leuven, Belgium, in a collaboration with Prof. Mattias Schevenels and Prof. Edwin

Reynders.

5.1 Diffuse field model

5.1.1 Acoustic system

In this chapter, we are interested in optimizing an acoustic-structure system in a

higher frequency domain. To avoid having to calculate the eigenvalues of the acoustic domain, it

is modeled using the diffuse pressure field model. Furthermore, the optimization problem to be

solved is no longer the natural frequency separation, but one closer to the physical application of

the system. More specifically, we minimize the sound transmission in a room due to an impact

source on the floor of the room above. The vibration of the floor generates a diffuse pressure

field in the receiving room directly below it, as illustrated in Figure 5.1.

This structural domain is once again modeled as linear elastic and isotropic, much

like in Section 2.1.1. However, a hysteretic damping factor is added, to account for the energy

that is dissipated before entering the room. Furthermore, two forces appear due to the interaction

between the fluid and the structure. The equation that models the structure is shown below:

[
Kg (1 + iβ)− ω2Mg

]
a = fext(ω)− fdir(ω)− frev(ω), (5.1)

where β is a hysteretic damping, modeled by adding an imaginary factor to the stiffness. On the

right side there are three terms: fext(ω) refers to the external mechanical forces applied to the

domain, fdir(ω) and frev(ω) are the reaction forces from the acoustic domain. These forces are

divided in two terms, fdir(ω) is the direct field forces, and frev(ω) is the reverberant field forces.
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Figure 5.1 – System composed of a vibrating floor, generating a diffuse pressure field in the
room below.

The direct field refers to the components of the pressure field that would occur assuming no

reflection or scattering from the sound waves. The reverberant forces are the sum of all other

components from the complete field.

Using the eigenmodes from the undamped structural domain (Section 2.1.2), we

can rewrite the this system as:

ΦT [K (1 + iβ)− ω2M
]
Φq + f̃dir(ω) + f̃rev(ω) = ΦTfext(ω), (5.2)

where q is the modal displacement vector, and f̃dir(ω) and f̃rev(ω) are the direct field forces and

the reverberant forces projected on the eigenvectors.

The reverberant forces are given from the acoustic domain:

D̃dir(ω)q = f̃dir(ω), (5.3)

where Ddir(ω) is the direct field dynamic stiffness matrix. This matrix is a result of the Rayleigh

integral (Rayleigh, 1894), which can be numerically evaluated in many ways; in this thesis, the

wavelet formulation (Langley, 2007) is used. Decraene et al. (2018) gives a simple description

on how to calculate it (illustrated in Section 5.1.2). In this work, the most important aspect of

this matrix is its independence on the thickness of the floor. This makes it so that it does not

change throughout the optimization that will be done.

Regarding the reverberant forces, the diffuse field hypothesis makes it so that their

mean value become zero.
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The system is, thus, rewritten as:

D̃tot(ω)q =
[
D̃s(ω) + D̃dir(ω)

]
q = ΦTfext(ω), (5.4)

where D̃tot is the total dynamic stiffness matrix, and D̃s is its structural part of this matrix. From

here on, the dependence on ω is suppressed for the sake of a simpler notation.

To aid in the energetic formulation that will be done in the following sections, we

define the cross-spectrum of the response:

Sqq = qqH = D̃−1
tot Sff,extD̃

-H
tot, (5.5)

where Sff,ext the cross-spectrum of the external force.

Usually, the cross-spectrum of the external force is a function of the frequency,

and can be obtained experimentally or by employing a mass-impedance model (Reynders et al.,

2019; Wang et al., 2020). For concrete floors, however, these values are mostly constant (within

the frequency domain we are studying), thus, a constant value is adopted.

5.1.2 Wavelet formulation

To calculate the matrix D̃dir(ω) from Eq. (5.3), we start from the solution of a

vibrating baffled planar structure into an acoustic halfspace, which is given by the Rayleigh

integral (Rayleigh, 1894):

p(r) = −
(
ρfω

2

2π

)∫
Ωe

(
etextikaR

R

)
un(r′)dr′, (5.6)

where p(r) is the complex pressure amplitude in the acoustic field at a location r, due to a

normal displacement of un(r′) in the planar structure at the location r′. The value ka is the

acoustic wave number, and R is:

R = ‖r− r′‖ . (5.7)

The numerical integration of Eq. (5.6) is done by assigning a set of linear indepen-

dent shape functions, similar to Eq. (2.2):

un(r) ≈
∑
j

ϕj(r)aj, (5.8)

where ϕj is the jth shape function.
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One could use as shape functions a set of Lagrange polynomials, as commonly

done in FEA. However, this does eventually lead to a complicated expression that must be

numerically integrated. Langley (2007) proposed using a wavelet approach, using a set of

radially symmetric jinc functions:

ϕj(r) = ϕ(r− rj) =
2J1(ksRj)

ksRj

= 2jinc(ksRj), (5.9)

where J1 represents the Bessel function of the first kind and first order, and rj represents the

coordinates of the point where that shape function has its maximum value. These points are

distributed in a rectangular grid with equal spacing between points in both directions (a spacing

of ∆r). The values of ks and Rj are given by:

ks =

√
2π

∆r
, (5.10)

Rj = ‖r− rj‖ . (5.11)

With this definition, substituting back into the Rayleigh integral, the direct field

dynamic stiffness matrix is obtained as:

Dmn(ω) =
i8πωρfcfk2

a

k4
s

(sinc(karmn) + ig(karmn)) , (5.12)

g(x) =
cos(x)− 1

x
+

2

x

∞∑
k=1

J2k+1

(
x
ks
ka

)
, (5.13)

rmn = ‖rm − rn‖ , (5.14)

where the indices m and n refer to the shape functions and their center points. The expression

J2k+1 represent the (2k + 1)th order Bessel function of first kind.

Finally, to obtain the matrix D̃dir(ω) from Eq. (5.3), we must project the matrix

Dmn(ω) (Eq. (5.12)) onto the eigenspace from the modal displacements q.
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5.1.3 Energy balance

Assuming that the system from Figure 5.1 is in stationary conditions, the energy

that enters the receiving room must be equal to the energy dissipated in it:

Wdiss = Win, (5.15)

where Wdiss and Win are, respectively, the dissipated and input powers. This formulation as-

sumes that no energy exits the acoustic domain from its boundaries.

The dissipated power is formulated as a hysteretic damping inside the room:

Wdiss = ωηEtot, (5.16)

where Etot is the total mean acoustic energy in the receiving room, and η is the loss factor

(Vigran, 2008):

η =
6 ln(10)

ωTf
, (5.17)

where Tf is the acoustic reverberation time.

The input power comes from the work of the direct field force:

Win =
1

2
Re
{

iωqHfdir
}

=
ω

2
〈Im {Ddir} ,Sqq〉F , (5.18)

where the operator 〈�,�〉F represents the Frobenius inner product of two matrices.

Combining Eqs. 5.15, 5.16 and 5.18, we get the following expression for the total

mean energy:

Etot =
1

2η
〈Im {Ddir} ,Sqq〉F . (5.19)

Acoustic calculations are usually done in band-integrated values. We can approxi-

mate the total energy of the bth frequency band with numerical integration, leading to:

E
(b)
B =

∆ωb
2ηb
〈Im {Ddir} ,Sqq〉F , (5.20)

where ∆ωb is the band, and ωb is the center frequency of the b band.
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Finally, the normalized SPL in the receiving room can be described as (Reynders et

al., 2019):

L
(b)
n,B = 10 log

(
E

(b)
B ρfc

2
f

V p2
0

)
+ 10 log

(
A

A0

)
, (5.21)

where ρf is the density of the fluid, V and A are the volume and the total absorption area of the

receiving room, p0 = 2 × 10−5 Pa is the reference pressure, and A0 = 10 m2 is the reference

absorption area.

5.1.4 Floor modeling

The floor is modeled via the FEM by using four-node polyhedral shell elements

coupling the membrane and plate components. Thus, each element has two components: a

quadrilateral membrane part (Section 2.1.1), and a plate one, modeled with Kirchhoff plate

theory. More specifically, the Discrete Kirchhoff Triangle (DKT) element formulated by Jey-

achandrabose and Kirkhope (1986). In order to turn this triangle element into a square element

(considering the symmetries), four triangle elements, each with a different combination of three

nodes from the square, are added together. Thus, their matrices are added and then divided by

two, to account for the overlap of the triangles.

To simulate ribbed floors, we intend to keep one of the surfaces flat. However, as

we vary the thicknesses of the elements, they remain centered with respect to each other. Thus,

a coordinate change is done to account for the offset between their local coordinates and the

global one. For an element e, we define a fixed base b and a variable section he, totaling the

thickness te (Figure 5.2).

b

he te

x y

z

(a)

b

he te

x y

z

(b)

Figure 5.2 – Mesh of shell elements. Dimensions are illustrated for the eth element. (a) Single
slab floor (b) Floating floor.
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For a regular shell element, the elemental matrices can be written as:

Kshell =



Kxx Kxy 0 0 0

Kyx Kyy 0 0 0

0 0 Kzz Kzθ Kzφ

0 0 Kθz Kθθ Kθφ

0 0 Kφz Kφθ Kφφ


, (5.22)

Mshell =



Mxx Mxy 0 0 0

Myx Myy 0 0 0

0 0 Mzz Mzθ Mzφ

0 0 Mθz Mθθ Mθφ

0 0 Mφz Mφθ Mφφ


, (5.23)

where each node has 5 degrees of freedom. The terms with the subscripts x and y refer to the

membrane effects, and the ones with z, θ and φ refer to the plate effects.

We can transform this matrix by applying a change of coordinates so that the new

coordinate system is centered in the middle of the fixed base b (Figure 5.2). Compared to the

center of an element with thickness te, this implies applying an offset of:

e =
te − b

2
. (5.24)

This results in the following transformation matrix:

T =



I 0 0 0 − te−b
2

I

0 I 0 te−b
2

I 0

0 0 I 0 0

0 0 0 I 0

0 0 0 0 I


(5.25)

Applying this coordinate change on the stiffness and mass matrices:

Ke = TTKshellT, (5.26)



138

Ke =



teK̂xx teK̂xy 0 t2e−bte
2

K̂xy − t2e−bte
2

K̂xx

teK̂yx teK̂yy 0 t2e−bte
2

K̂yy − t2e−bte
2

K̂yx

0 0 t3eK̂zz t3eK̂zθ t3eK̂zφ

t2e−bte
2

K̂yx
t2e−bte

2
K̂yy t3eK̂θz t3eK̂θθ + t3e−2t2eb+teb

2

4
K̂yy t3eK̂θφ − t3e−2t2eb+teb

2

4
K̂yx

− t2e−bte
2

K̂xx − t2e−bte
2

K̂xy t3eK̂φz t3eK̂φθ − t3e−2t2eb+teb
2

4
K̂xy t3eK̂φφ + t3e−2t2eb+teb

2

4
K̂xx


, (5.27)

Me = TTMshellT, (5.28)

Me =



teM̂xx teM̂xy 0 t2e−bte
2

M̂xy − t2e−bte
2

M̂xx

teM̂yx teM̂yy 0 t2e−bte
2

M̂yy − t2e−bte
2

M̂yx

0 0 teM̂zz teM̂zθ teM̂zφ

t2e−bte
2

M̂yx
t2e−bte

2
M̂yy teM̂θz teM̂θθ + t3e−2t2eb+teb

2

4
M̂yy teM̂θφ − t3e−2t2eb+teb

2

4
M̂yx

− t2e−bte
2

K̂xx − t2e−bte
2

M̂xy teM̂φz teM̂φθ − t3e−2t2eb+teb
2

4
M̂xy teM̂φφ + t3e−2t2eb+teb

2

4
M̂xx


, (5.29)

where the symbol ˆ(�) represents the matrix with unitary thickness.

In this chapter, the design variable of the optimization will be the thickness of each

element. As such, we need the derivatives of the matrices with respect to them, which is given

by:

∂Ke

∂te
=



K̂xx K̂xy 0
(
te − b

2

)
K̂xy −

(
te − b

2

)
K̂xx

K̂yx K̂yy 0
(
te − b

2

)
K̂yy −

(
te − b

2

)
K̂yx

0 0 3t2eK̂zz 3t2eK̂zθ 3t2eK̂zφ(
te − b

2

)
K̂yx

(
te − b

2

)
K̂yy 3t2eK̂θz 3t2eK̂θθ + 3t2e−4teb+b2

4
K̂yy 3t2eK̂θφ − 3t2e−4teb+b2

4
K̂yx

−
(
te − b

2

)
K̂xx −

(
te − b

2

)
K̂xy 3t2eK̂φz 3t2eK̂φθ − 3t2e−4teb+b2

4
K̂xy 3t2eK̂φφ + 3t2e−4teb+b2

4
K̂xx


, (5.30)

∂Me

∂te
=



M̂xx M̂xy 0
(
te − b

2

)
M̂xy −

(
te − b

2

)
M̂xx

M̂yx M̂yy 0
(
te − b

2

)
M̂yy −

(
te − b

2

)
M̂yx

0 0 M̂zz M̂zθ M̂zφ(
te − b

2

)
M̂yx

(
te − b

2

)
M̂yy M̂θz M̂θθ + 3t2e−4teb+b2

4
M̂yy M̂θφ − 3t2e−4teb+b2

4
M̂yx

−
(
te − b

2

)
M̂xx −

(
te − b

2

)
M̂xy M̂φz M̂φθ − 3t2e−4teb+b2

4
M̂xy M̂φφ + 3t2e−4teb+b2

4
M̂xx.


. (5.31)

Finally, a floating floor model is also used. It is composed of a base floor and a

floating slab, connected by a resilient interlayer. The base floor is a heavy structural component,

while the floating slab is usually a light load-bearing screed (Hongisto et al., 2020).

In this thesis, floating floors are modeled as follows: the base floor is simulated as

just described, with ribbed polyhedral shell elements; the floating slab is composed of plate
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elements; and the interlayer are a series of springs connecting the vertical degrees of freedom of

both slabs. These springs have their properties defined based on the geometry of the floor and

the material properties of the interlayer material. This formulation was verified with Cremer’s

model (Cremer et al., 2005; Schiavi, 2018):

Dp + gPpp −gPpb

−gPbp Db + gPbb

qp

qb

 =

f̃ext

0

 , (5.32)

where Dp and Db are the normalized dynamic stiffness matrices of the floating screed and the

base floor, respectively. Both layers are connected by springs with stiffness g. This value is

calculated based on the dynamic stiffness s′ of the resilient layer (ISO 9052-1, 1989). The

coupling matrices P are given by:

Pij =
∑
n

φ(i)
n ⊗ φ(j)

n , (5.33)

where the indices i and j can be p or b. The term φ
(i)
n is the row of the eigenvector matrix that

refer to the values for the nth degree of freedom.

5.2 Optimization of impact sound rating

5.2.1 Single number rating for impact floor sound propagation

There are several ways to assess the impact sound insulation of floors. ISO 717–

2 (2012) describes several Single-Number Quantity (SNQ), among which, one is used as an

objective. The one used here is an unweighted normalized impact pressure level with a spectral

adaptation term (CI). The SNQ is denoted as Ln,ω + CI and is given by:

CI = Ln,sum − 15− Ln,ω, (5.34)

with:

Ln,sum = 10 log

(∑
b

10
L
(b)
n,B
10

)
, (5.35)

calculated for one-third-octave bands from 100 Hz to 2500 Hz.

This SNQ is used when defining the impact sound insulation standards of some

European countries, like Switzerland and the Netherlands (Rasmussen; Machimbarrena, 2014).

Also, compared to other SNQs, it is much more convenient to implement in gradient-based
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optimization schemes, as it is defined from a continuous function. In the end, the optimization

is defined as:

Min Ln,ω + CI

S. t. tmin ≤ te ≤ tmax

V ≤ V ∗,

(5.36)

where tmin and tmax are the minimum and maximum admissible thickness for each element. In

this case, the volume is defined so that, if every element has te = tmin, then V = 0; likewise,

if every element has te = tmax, then V = 100%. For every other configuration, it is defined

linearly based on every thickness.

To make this optimization independent on the location of the excitation, the SNQ

is calculated by averaging the value obtained by putting the force on every vertical degree of

freedom of the system, that is:

Ln,sum = 10 log

(
Np∑
p=1

∑
b

1

Np
10

L
(b,p)
n,B
10

)
= 10 log

(
Np∑
p=1

∑
b

E
(b,p)
B ρfc

2
fA

NpV p2
0A0

)
, (5.37)

where p refers to the pth vertical degree of freedom, and Np is the number of such degrees of

freedom.

Unlike the previous case, this optimization procedure admits intermediary values

for the design variable, and thus a continuous optimization method is used. The Globally Con-

vergent Method of Moving Asymptotes (GC-MMA) is chosen for this case (Svanberg, 1987;

Svanberg, 2002), more precisely, the publicly available implementation from NLopt (Johnson,

2024).

5.2.2 Filtering scheme

To avoid getting mesh-dependent structures, as well as to avoid getting thin com-

ponents, a filtering technique is employed. Unlike the previous cases, a filtering of the design

variables is done. In this case, each thickness passes through the following filtering expression

(Sigmund, 1997):

t̂e =

∑
i

max (rmin − rei, 0) ti∑
i

max (rmin − rei, 0)
, (5.38)
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where t̂e is the filtered thickness, which is employed on the FEA. Such as before rmin is a

parameter from the user, and rei is the distance between the centroid of elements e and i.

5.2.3 Sensitivity analysis

To calculate the sensitivity of this objective function, we start by differentiating Eq.

(5.37):

∂Ln,sum

∂t̂e
=

10

ln 10

(∑
b,p

E
(b,p)
B

) ∂
(∑
b,p

E
(b,p)
B

)
∂t̂e

, (5.39)

where the sums were put together for simplicity.

Likewise, the total average mean energy can differentiated from Eq. (5.20). This

process is similar to what has been done by Van den Wyngaert et al. (2020) when they differen-

tiated the coupling loss factor of airborne sound transmission:

∂

(∑
b,p

E
(b,p)
B

)
∂t̂e

= −
∑
b,p

∆ωb
ηb

Re

{〈
Im
{

D̃dir

}
b
,

(
D̃−1

tot
∂D̃s

∂t̂e
Sqq

(p)

)
b

〉
F

}
. (5.40)

Note that, since D̃dir does not depend on the thickness of the elements, its derivative

is zero. Additionally, we don’t consider the derivatives of the eigenvectors in this differentiation

as they only represent a change of basis. That is, we could perform this differentiation in nodal

basis and only then pass it to a modal one, resulting in the same expression. However, this is

only exact when a full modal basis is adopted, which is evidently not possible. When using an

approximate basis, this sensitivity will be approximated. To this author’s knowledge, there is

no analysis done on the errors from doing this. Nonetheless, every analysis performed in this

study resulted in acceptable numbers for this error.

This expression can be further changed by using some properties from the Frobenius

inner product:

∂

(∑
b,p

E
(b,p)
B

)
∂t̂e

= −
∑
b,p

∆ωb
ηb

Re

{〈[
D̃-H

totIm
(
D̃dir

)
Sqq

H(p)
]
b
,

(
∂D̃s

∂t̂e

)
b

〉
F

}
. (5.41)
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We can substitute the terms of the derivative of D̃s, based on the structural matrices:

∂D̃t

∂t̂e
= ΦT

[
∂Kg

∂t̂e
(1 + iβ)− ω2∂Mg

∂t̂e

]
Φ, (5.42)

where the expression of the derivatives are given in Section 5.1.4.

∂

(∑
b,p

E
(b,p)
B

)
∂t̂e

= −Re

{〈[∑
b

∆ωb (1 + iβb)
ηb

Yb

]
,

(
∂K

∂t̂e

)〉
F

}

+ Re

{〈[∑
b

∆ωbω
2
b

ηb
Yb

]
,

(
∂M

∂t̂e

)〉
F

}
, (5.43)

where the matrix Yb is added for simplicity:

Yb = D̃-H
totIm

(
D̃dir

)(∑
p

Sqq
H(p)

)
. (5.44)

Note that this expression simplifies the calculation of this sensitivity. On each

Frobenius inner product, only the term on the right depend on e, meaning that, for each iteration

of the optimization process, the left term only has to be calculated once. This is specially con-

venient as the sums of the different force locations and the different frequencies are all on this

left term. Finally, since the derivatives of the matrices have the size of the elemental matrices

(in this case, 20 x 20); then, for each element, the increase in computational time (with respect

to eigenvalue derivative) is only up to 400 scalar multiplications.

This derivative is done with respect to the filtered thicknesses. To convert it back

into sensitivities of the design variable, we use the chain rule in Eq. (5.38). In the end, it means

that we apply the same scheme from Eq. (5.38) to this sensitivity vector.

5.3 Numerical results

5.3.1 Optimization of single slab

The aforementioned optimization process is initially done for a single slab floor. It

is formulated as linear elastic isotropic and homogeneous polyhedral shell structure, based on

the formulation from Figure 5.1. The floor is composed of a reinforced concrete with E = 34

GPa, ν = 0.2 and ρ = 2427 kg/m3. The damping factor is adopted as β = 0.02. The floor has
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dimensions of 3 m x 3 m, and the thickness of each element can vary from tmin = 80 mm to

tmax = 400 mm.

The receiving room is formulated with the diffuse pressure field model. It is con-

sidered to have dimensions of 4.15 m x 4.12 m x 5.1 m, totaling a volume of 87.2 m3. The air

inside it has cf = 343 m/s e ρf = 1.2 kg/m3. The reverberation time is Tf = 1.5 s.

The discretization of both the FEA and the wavelet formulation for the integration

of the acoustic matrices is a 50 x 50 mesh of identical square elements. The acoustic simulation

is done inside the interval of 63 Hz to 4 kHz, with a discretization of 48 frequencies per octave

band. The force is such that Sff,ext = 4 N/Hz. A maximum volume of V ∗ = 0.3 is adopted in the

optimization, as well as a filter radius of rmin = 100 mm. A two-fold symmetry is imposed dur-

ing the optimization process; additionally, a relative tolerance of 10−5 on the objective function

is used. The optimization starts with a flat design with volume V ∗.

The optimization ends after 515 inner iterations of the GC-MMA. The evolution of

the objective function is shown in Figure 5.3. The iteration number is counted based on inner

iterations (evaluations of objective function), but the markers only represent outer iterations. In

this case, no significant improvements are seen, as the objective function only decreased from

66.4 dB to 64.7 dB.

0 100 200 300 400 500
Iteration

64.0

64.6

65.2

65.8

66.4

67.0

Ob
je

ct
iv

e 
Fu

nc
tio

n

Figure 5.3 – Objective function of outer iterations throughout the optimization of single slab.

The objective function showed a peculiar behavior around iteration 406, where we

see a steep drop. Around this iteration, there are some significant design changes, which helps

to explain this behavior. Shortly after that, on iteration 515, the optimization reaches its stop
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criterion. To confirm that no other abrupt changes would happen, we let the optimization run

further, but no significant changes were seen beyond this point.

Figure 5.4 shows the final design. It is clear that this design is not physically viable,

even if it resulted in significant decreases in the objective function. Its small features indicate

that high frequency phenomena played an important role in the optimization process. The

behavior of each frequency domain can be seen in Figure 5.5. There is a consistent decrease

on most one-third-octave bands, indicating that the optimization procedure is able to consider

all of them during the optimization. However, due to this broadband behavior, the decrease on

each frequency was very low. For this reason, the objective function decreases very little.

(a) (b)

Figure 5.4 – Final design in single slab optimization (a) 3D view and (b) bottom view.
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Figure 5.5 – Sound pressure level curves for single slab flat and optimized designs. (a) Har-
monic values and (b) 1/3 octave values.

5.3.2 Optimization of floating floor

A floating floor is added to the domain. It is modeled as described in Section 5.1.4.

The floating slab is a 70 mm thick concrete screed with E = 34 GPa, ν = 0.2, ρ = 1500 kg/m3,
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and β = 0.02. The interlayer connecting both slabs is a group of springs, composed of a layer

of polyethylene foam, with s′ = 70 MN/m3 for a thickness of 5 mm, and a structural damping

of 20%. The sum of their cross-section areas is assumed to be the surface area of the slabs.

To optimize this problem, only the thicknesses of the base floor are considered

as design variables. Furthermore, the forces are only applied on the floating screed. Every

optimization parameter is kept the same as the previous section. The evolution of the objective

function in this optimization is shown in Figure 5.6. This case is much stabler than the previous

one, going towards a certain design without difficulties. It needs some more inner iterations at

the end because, since it is already close to the local minimum, the step has to be very small.
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Figure 5.6 – Objective function of outer iterations throughout the optimization of floating floor.

Compared to the previous case, a much more significant decrease is observed. The

SNQ decreased from 57.9 dB to 50.7 dB. We note that not only it is a significant decrease, but

it also satisfies the building requirements of countries that adopt this descriptor: the Nether-

lands (54 dB), Switzerland (53 dB) (Rasmussen; Machimbarrena, 2014) and Brazil (55 dB)

(Associação Brasileira de Normas Técnicas, 2013).

The final design is shown in Figure 5.7. Here, a much more discrete design is

observed, as opposed to the previous section. We also see that, despite only imposing a two-fold

symmetry, the optimizer opted to roughly maintain a four-fold one. The material concentration

seen at the four edges is due to the boundary conditions of the system. Further discussion about

this region is done in the next section.

Finally, we can more closely analyze the SPLs from both the flat and optimized de-

signs (Figure 5.8). In this case, the reduction in SPL is seen only for low frequencies. However,
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(a) (b)

Figure 5.7 – Final design in floating floor optimization (a) 3D view and (b) bottom view.

this does not negatively affect this design as much, since the floating floor reduces the transmis-

sion in high frequencies. Thus, there is combination from the effects of both phenomena: the

floating floor minimizes the response in high frequency; while the optimization reduces it for

low frequency, albeit sacrificing a bit of performance on higher ones. In this case, both curves

cross at about 800-1000 Hz. Above this frequency, the optimized design performs worse than

the flat one.
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Figure 5.8 – Sound pressure level curves for floating floor, flat and optimized designs. (a) Har-
monic values and (b) 1/3 octave values.

To further assess this behavior, a unitary force is applied on coordinates (0.9, 1.2)

m on the floating floor. The harmonic response of the structure at 600 Hz, 880 Hz and 1200 Hz

are shown in Figure 5.9. Below 880 Hz, the base floor vibrates mostly on the reinforced regions

(Figure 5.9a); while above it, vibration on the thin regions of the structure start to dominate its

dynamic behavior(Figures 5.9b and 5.9c).
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(a) (b)

(c)

Figure 5.9 – Harmonic response of the floor for a point-load excitation at: (a) 600 Hz, (b) 880
Hz, (c) 1200 Hz.

5.3.3 Analysis over different ribbed floors

For the next analysis, the dimensions of the floor are increased to 6 m x 6 m. The

number of elements in the mesh is increased to 100 x 100, as well as the number of evaluated

modes, which is increased to 1000 on the floating screed and to 800 on the base floor. Finally,

another polyethylene layer is added on the interlayer, totaling 10 mm, with half the stiffness.

To save on computational time, the next optimization cases are run only for one-

third-octave bands between 100 Hz and 1000 Hz. Because of the floating floor, the total aver-

age energy in the room for high frequency bands is order of magnitudes lower than for lower

frequency. The initial and final simulations, however, are done in the larger band. The volume

constraint, as well as all other parameters are kept unchanged.

The optimization, in this case, leads to the evolution of objective function shown in

Figure 5.10. The SNQ reduces from 58.0 dB on the flat design to 52.6 dB on the optimized one.

Once again, the rating starts above the minimum requirements for the Netherlands, Switzerland

and Brazil; but the optimization reduces it to an admissible value. The final design is shown in

Figure 5.11. In this case, the four-fold symmetry is lost around iteration 70.

Before studying the SPL of this floor, other designs are simulated to enhance the

analysis. Regular floors composed of a grid of perpendicular beams (Figure 5.12) are simulated
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Figure 5.10 – Objective function of outer iterations throughout the optimization of floating floor
with larger domain.

(a) (b)

Figure 5.11 – Final design in floating floor optimization with larger domain (a) 3D view and (b)
bottom view.

for a varied number of beams between 1 and 10. The thickness of the beams and their height

are chosen so that the same amount of material is used for all designs.

Figure 5.12 – Regular floor with a grid of beams. Example with four beams.

The one-third-octave SPLs from all the previous designs are shown in Figure 5.13.

From the curves we see a clear pattern on the crossing of the regular designs with the flat one. As
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the number of beams increase, the crossing frequency also increases; this is due to the vibration

of the thin regions in between the beams.
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Figure 5.13 – Sound pressure level of regular, optimized, and flat designs.

The SNQ for each design is calculated and presented in Table 5.1. As the number

of beams increase, the SNQ decreases. However, this is only true up to a certain point, above

which, an inverse relationship is seen. From Figure 5.13, since the improvement on the increase

of number of beams is on higher frequency, it is less significant the higher the frequency. On the

other hand, if the structure becomes less stiff on low frequency domain, then the SNQ increases.

We can see this for eight, nine, and ten beams.

Finally, the first natural frequency for supported and clamped plates with the same

dimension as the edge thin plates (red region in Figure 5.12) is calculated. Table 5.2 shows the

natural frequency values.

Looking at the values from Table 5.2 and the crossing frequencies and the peak

right next to them on the curves from Figure 5.13, one could note that they occur roughly at

the same frequencies for the same number of beams, that is, the peak occurs at a frequency

between the supported and clamped analytical natural frequencies. This is another evidence

for the importance of the vibration of those thin plates and the optimization of ribbed floors.

Furthermore, this also indicates that a simple analysis on the natural frequencies of those regions

could be a good indicator on the impact sound insulation performance of those floors.
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Table 5.1 – Performance of designs with different number of beams

Number
of beams

Single Number
Quantity (dB)

Flat 58.0
1 65.3
2 61.9
3 57.5
4 54.2
5 53.2
6 53.2
7 53.5
8 53.5
9 54.0

10 54.9
Optimized 52.6

Table 5.2 – First natural frequency of plates

Beams Supported frequency (Hz) Clamped frequency (Hz)
1 56.0 102.4
2 114.5 209.5
3 197.3 361.2
4 303.7 555.8
5 433.3 793.2
6 586.2 1073.1
7 762.4 1395.6
8 961.8 1760.6
9 1184.5 2168.2

10 1430.4 2618.3

Finally, from Table 5.1 result with the lower SNQ is with five beams. To see if we

can obtain better results starting with it, it is used as the initial design for an optimization study.

The evolution of the objective function is shown in 5.14. The SNQ decreases from the starting

53.2 dB to 52.3 dB. In practice, it is not a meaningful improvement, compared to the previous

optimization study.

The final design is shown in Figure 5.15. The main changes to the design compared

to the initial one are at the edges of the structure. Material is removed at the four edges; this is

due to the boundary conditions being supported instead of clamped, meaning that the structure

is free to rotate at the extremities. For this region, material at those regions do not add to the

general stiffness of the structure. The other main change is the addition of some material at the

four vertices. This is because the four thin regions at the vertices are the most flexible ones, as
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Figure 5.14 – Objective function of outer iterations throughout the optimization of floating floor
with regular starting design.

two of their sides are free to rotate. These changes amount to very little change on the SPL,

apart from at around 500 Hz, as indicated in Figure 5.16. This is mostly due to the material at

the vertices.

(a) (b)

Figure 5.15 – Final design in floating floor optimization with regular initial design (a) 3D view
and (b) bottom view.

5.4 Conclusions

In this chapter, an optimization procedure for minimizing the SNQ related to impact

sound insulation was presented and analyzed. A simple yet efficient expression is shown for

calculating the sensitivities of this expression.

Optimizing a single slab did not result in good performance, as the optimizer was

unable to find a good trade-off for low-frequency and high-frequency vibration that decreased
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Figure 5.16 – Sound pressure level of regular and optimized designs.

both of them significantly. The addition of a floating floor, however, changed this scenario. As

this component, by itself, already helps in decreasing high-frequency transmission, the opti-

mizer was able the focus on lower ones, albeit sacrificing performance in high-frequency.

Analyses over the harmonic response of the structures indicated that the vibration

of the thin sections made the response of the optimized structures in high frequency greater than

the one in a flat structure with same amount of material. While this might seem troublesome,

it should only be seen as a problem if this crossing frequency is too low, as in impact sound

insulation systems with floating floor, the low frequency transmission is the most critical one.

This is seen on the optimization of different regular designs, where gains were only seen up to

a certain frequency.
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6 CONCLUSIONS

In this work, methods for topology optimization of natural frequencies for systems

in the low, medium and high frequency domain were presented. Different topics were addressed,

each one of them related to a given challenge for these kinds of problem. Accordingly, this

research was divided in four different chapters, in each one the problem was formulated, solved

and discussed. A brief summary with concluding remarks and next steps are presented for each

chapter as follows:

• Chapter 2: High natural frequency separation maximization: This chapter focused on

formulating and discussing the general natural frequency separation maximization prob-

lem. An appropriate objective function was chosen, in which the phenomenon of mode

shifting does not interfere with the arrangement of eigenvalues. Additionally, it manages

to swap whether a given frequency is maximized of minimized based on its value rela-

tive to the operating frequency. Finally, a mode tracking procedure based on the MAC

is introduced, in order to identify and remove local modes before they impair the evo-

lutionary process. Several results were implemented to analyze this method. Initially, a

clamped-clamped beam was optimized, showing that the proposed procedure managed

to maximize the objective function, and that the final topology is quasi-periodic. Given

this last result, a periodic optimization was performed, and with its resulting cell a disper-

sion analysis was performed, showing the presence of a band-gap within the separation

interval. This indicates a correlation between the results from periodic dispersion analy-

ses and finite structural ones. This conclusion was further corroborated by analyzing the

responses from an optimized irregular domain and one assembled from repeated cells. Fi-

nally, a study of topologies with varying dimensions was performed. Except the smallest

geometry, all the results were mostly variations of the same pattern: a number of disks

with a fixed size spread within a flexible material.

• Chapter 3: Topology optimization with connectivity constraint: With two material opti-

mization successfully performed at the last chapter, a way to do it with only one material

was proposed here. With two materials, any combination of them has, in theory, a phys-

ical meaning. However, for one material, one should be concerned with disconnected

islands of rigid material and disconnected regions. With this in mind, a connectivity pro-
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cedure based on the heat flux of an auxiliary heat conduction problem was introduced,

and named as Virtual Flux Method (VFM). It functions by assigning a limit and acti-

vation value for the heat flux per unit area for each element, which is used to penalize

the sensitivities of these elements accordingly. Some numerical results are presented to

exemplify this method. Initially, a cantilever beam is optimized for a low operating fre-

quency. The VFM allows for the acquisition of a feasible optimized topology where the

regions that would be disconnected without it remain connected. Then, a variation of this

system is optimized, printed and tested experimentally, with the measurement from a laser

doppler vibrometer. The experimental results showed an accordance between simulation

and measured responses.

• Chapter 4: Optimization of acoustic-structure coupled systems: In this chapter, the for-

mulation used in the natural frequency separation of structural domains was extended to

a problem with acoustic-structure interaction. Additional terms appear in the simulation

and on the sensitivity analysis. In this chapter, some assessments were done to show the

difference between weakly coupled problems and strongly coupled ones. Finally, a study

on a sliding-fixed beam indicated very little quantitative differences on the results when

considering different sensitivity terms.

• Chapter 5: Broadband optimization of sound propagation of floors under structure-borne

excitation: This chapter dealt with the optimization of floors when subjected to structure-

borne impact excitation. To do so, a ribbed shell element formulation is presented, to

better simulate ribbed floors. To model floating floors, an additional layer of plate ele-

ments, coupled with the base floor by spring elements, was added. To measure the impact

sound insulation, a standardized single number rating was used. Results with a single slab

did not show significant improvement. When adding a floating slab, we see that the com-

bination of the high-frequency reduction from the floating floor and the low-frequency

reduction from the optimization leads to better overall performance. Further analyses

on waffle slabs indicate that the vibration on the regions between the ribs are the main

source of sound transmission in high-frequency. Thus, one has to properly ponder that

the structure should be stiff enough to reduce transmission in lower frequencies, while

also mitigating the local vibration in high frequency.

In conclusion, this project approached the problem of maximizing the separation
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between natural frequencies, proposing a solution to each one of the main challenges. Efficient

and effective solutions were proposed and tested, showing that they are viable.

As a natural continuation of this project, the author proposes the assessment of the

following challenges.

On the results from Chapter 2, the inclusion of either substructuring methods or of

the dispersion analysis results could significantly reduce the computational costs and/or improve

the results.

On Chapter 3, one could expand the VFM for maintaining separating walls between

fluid and void phases. Furthermore, the removal of the morphological filter should be studied:

if the auxiliary topology is the same as the optimization topology, we could potentially reuse

the FEA results from the physics of the objective function on the VFM.

On Chapter 4, further studies on the instability observed during the optimization

process should be done. Furthermore, analyses with increasing frequency should be done, as-

sessing both the contribution from each sensitivity term and the stability of the process.

Finally, on Chapter 5, additional constraints could be added for improved manufac-

turability of the final designs. Additionally, one could study the effect of different interlayer

composition, either by changing between traditional configurations and materials, or by per-

forming a topology optimization study on it.
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APPENDIX A – VALIDATION OF FINITE ELEMENT ANALYSIS

The methodology presented in Section 4.1.2 is tested to confirm its validity via

comparison with the commercial software COMSOL Multiphysics®. This software was chosen

as it possesses the same formulation for structural, acoustic, and acoustic-structure domains as

presented in Section 4.1.2.

The first validation problem is shown in Figure A.1. The acoustic domain is made of

water, with ρf = 1000 kg/m3 and cf = 1450m/s. The structural domain is modeled as aluminum,

with E = 70 GPa, ρs = 2700 kg/m3 and ν = 0.3. Due to this geometry (the fluid domain is

divided in two by the structural one) and to the material properties, this system is classified as a

strongly coupled system; thus, its modes cannot be divided into structural or acoustic.

1000 mm

50
0 

m
m

50 mm

p = 0p = 0

Figure A.1 – Acoustic-structure domain for finite element validation.

For the reference result from COMSOL Multiphysics®, the analysis is created by

generating a component with both “Solid Mechanics” and “Pressure Acoustics, Frequency Do-

main” physics. They are coupled with an “Acoustic-Structure Boundary” multiphysics analysis.

Elements are defined as quadrangular, with first-order Lagrange polynomials. The study is set

to “Eigenfrequency Analysis” with 20 desired eigenfrequencies.

Table A.1 compares the results from COMSOL Multiphysics® (denoted as "Refer-

ence Frequency") and the calculated by the program developed for this thesis. Frequency errors

are defined as the relative error between calculated and reference frequency. Eigenvector errors

are defined as the Euclidean norm of the error.
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Table A.1 – Comparison between reference and calculated frequencies

Mode
Reference

frequency [Hz]
Calculated

frequency [Hz]
Frequency
error [%]

Eigenvector
error [%]

1 361.728 361.728 2.48 × 10−4 3.58 × 10−5

2 762.099 762.099 3.86 × 10−6 2.18 × 10−6

3 1282.418 1282.418 2.55 × 10−5 2.17 × 10−5

4 1308.225 1308.225 4.34 × 10−5 5.39 × 10−5

5 1636.159 1636.159 8.43 × 10−7 2.19 × 10−6

6 2124.765 2124.765 1.26 × 10−5 4.74 × 10−5

7 2286.501 2286.501 4.29 × 10−7 8.35 × 10−7

8 2401.054 2401.054 5.47 × 10−6 2.01 × 10−5

9 2706.073 2706.073 3.09 × 10−7 1.14 × 10−6

10 2994.647 2994.647 2.56 × 10−7 2.20 × 10−6

11 2997.923 2997.923 5.18 × 10−6 1.90 × 10−5

12 3008.855 3008.855 4.22 × 10−6 2.00 × 10−5

13 3401.976 3401.976 3.10 × 10−6 3.19 × 10−5

14 3689.749 3689.749 1.66 × 10−7 1.13 × 10−6

15 3811.512 3811.512 1.55 × 10−7 6.46 × 10−7

16 4052.305 4052.305 1.01 × 10−6 6.64 × 10−6

17 4065.590 4065.590 2.12 × 10−6 2.57 × 10−5

18 4076.015 4076.015 1.43 × 10−7 7.33 × 10−7

19 4213.611 4213.611 3.39 × 10−6 2.81 × 10−5

20 4411.207 4411.207 1.22 × 10−7 2.21 × 10−6

The errors are significantly low, which indicates that they are due to numerical

errors, instead of systematic ones. With this in mind, the finite element model is validated.
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APPENDIX B – VALIDATION OF SENSITIVITY ANALYSIS

The Finite Difference Method is a numerical method for estimating the derivatives

of a function without explicit differentiation. For instance, the first derivative of a function f(x)

evaluated at x = x∗ can be estimated as:

df

dx

∣∣∣∣
x=x∗

≈ f(x∗ + ∆x)− f(x∗)

∆x
≈ f(x∗)− f(x∗ −∆x)

∆x
≈
f(x∗ + ∆x

2
)− f(x∗ − ∆x

2
)

∆x
(B.1)

where ∆x is a small step.

In theory, convergence should be inversely proportional to this variation, providing

a better approximation for lower values of ∆x. In practice, however, computational errors can

create noisy results if this parameter is excessively low. Therefore, an appropriate value must be

chosen based on this trade-off. The three distinct approximations shown in Eq. B.1 are known

as forward, backward, and centered differences, respectively. The centered difference provides

lower error than the forward and backward ones, and therefore, is chosen.

The sensitivity analysis developed in Section 2.2.2 is validated by comparing its

values with the Finite Difference Method. Figure B.1 shows the domain chosen to perform this

analysis.

p = 0

800 mm

10
00

 m
m

100 mm

60
0 

m
m

Figure B.1 – Acoustic-structure domain for sensitivity validation. The blue area a fluid non-
design domain and the gray area is the design domain.
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The domain is discretized in a 80 x 100 mesh of identical quadrilateral elements.

The fluid is set to water, which has the properties ρf = 1000 kg/m3 and cf = 1450 m/s. The

structure is set to a steel with E = 70 GPa, ν = 0.3 and ρs = 2700 kg/m3 and is modeled using

the plane stress hypothesis.

The operating frequency is chosen as 2500 Hz, and the number of analyzed frequen-

cies is set to 40, as the 40th natural frequency is 5162 Hz. The interpolation parameters xmin and

the penalization exponent p are set to 10−6 and 5, respectively.

Initially, we perform the analytical and numerical sensitivity analyses for a fully

solid design domain. The behavior of the Finite Difference Method convergence is studied by

sweeping through different values of ∆x, as illustrated in Figure B.2.
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Figure B.2 – Influence of the error as a function of ∆x.

This behavior of the error is expected. As previously mentioned, lowering ∆x

provides a better approximation up to a certain point. Lowering it further causes an increase in

computational errors. The value with the smallest error occurs when ∆x = 10−7, and therefore,

it is chosen for the subsequent analyses.

The numerical and analytical sensitivity maps for ∆x = 10−7 are shown in Figure

B.3.

Two other cases are analyzed to check the validity of the sensitivity analysis. The
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(a) (b)

Figure B.3 – Sensitivity maps for fully solid (a) numerical analysis and (b) analytical analysis.

first one is with a fully fluid design domain. Every parameter is kept the same as before. The

sensitivity maps are shown in Figure B.4.

(a) (b)

Figure B.4 – Sensitivity maps for fully fluid (a) numerical analysis and (b) analytical analysis.

The Euclidean norm of the error is 0.0330%. This small value and the similarity

between the two sensitivity maps indicate the validity of the analytical analysis.

Finally, the last analyzed case is a solid domain with a fluid hole with dimensions

of 60 mm x 200 m. The sensitivity maps are shown in Figure B.5.

The Euclidean norm of the error is 0.304%. This small value and the similarity

between the two sensitivity maps indicate the validity of the analytical analysis.

All three results show that the analytical development of the sensitivity analysis

corresponds to the numerical calculation via the Finite Difference method.
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(a) (b)

Figure B.5 – Sensitivity maps for domain with hole: (a) numerical analysis and (b) analytical
analysis.
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APPENDIX C – ANALYTICAL SOLUTIONS FOR HEAT FLUX OF

BILINEAR SQUARE ELEMENT

The norm of the heat flux per unit area of an element (Eq. 3.7) must usually be

calculated via numerical integration, via the Gauss-Legendre quadrature. However, for a square

element, we can deduce some analytical formulations that will reduce computational costs of

the VFM.

Given a square element with local coordinates x̄ and ȳ (Figure C.1), where the

local coordinates are only translated with respect to the global ones, the shape functions can be

written as:

x

y

l

l

1 2

34

Figure C.1 – Square element in local coordinates.

N1(x̄, ȳ) =
1

l2
(l − x̄)(l − ȳ) (C.1)

N2(x̄, ȳ) =
1

l2
x̄(l − ȳ) (C.2)

N3(x̄, ȳ) =
1

l2
x̄ȳ (C.3)

N4(x̄, ȳ) =
1

l2
ȳ(l − x̄) (C.4)

where l is the length of the element.
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The matrix of the derivatives of the shape functions is given by:

Bt =

∂N1

∂x
∂N2

∂x
∂N3

∂x
∂N4

∂x

∂N1

∂y
∂N2

∂y
∂N3

∂y
∂N4

∂y

 =
1

l2

−(l − ȳ) (l − ȳ) ȳ −ȳ

−(l − x̄) x̄ x̄ (l − x̄)

 (C.5)

Then, the heat flux per unit area of an element can be written as:

qe(x̄, ȳ) = −keBtt = −ke
1

l2

(T1 − T2 + T3 − T4)ȳ + l(T2 − T1)

(T1 − T2 + T3 − T4)x̄+ l(T4 − T1)

 = −ke
l2

Aȳ + lB

Ax̄+ lC


(C.6)

where A, B and C are constants that are defined to simplify the expressions that will follow.

The norm with m = 2 is given by:

qe =

√
1

l2

∫ l

0

∫ l

0

[
k2
e

l4
(Aȳ + lB)2 +

k2
e

l4
(Ax̄+ lC)2

]
dx̄dȳ (C.7)

Integrating this expression analytically:

qe =
ke
l

√
2

3
A2 + AB + AC +B2 + C2 (C.8)

With this, we have a simple expression for the m = 2 norm of a square element.

Likewise, for m→∞, the norm is equivalent to the maximum value of ‖qe(x̄, ȳ)‖,

which must be at the same point as the maximum of ‖qe(x̄, ȳ)‖2. For that, we analyze it expres-

sion:

‖qe(x̄, ȳ)‖2 = (Ãȳ + B̃)2 + (Ãx̄+ C̃)2 (C.9)

where the constants Ã, B̃ and C̃ are used for simplicity.

Considering f(x, y) = ‖qe(x̄, ȳ)‖2 a function to be maximized, we can easily verify

that it is convex, via its hessian matrix:

H =

2Ã2 0

0 2Ã2

 (C.10)

This matrix can be quickly verified as semi-positive definite, which implies that the

function f(x, y) is convex. Since the element is a square, problem of finding the maximum value

of f(x, y) is equal to maximizing it along a convex domain. In this case, the maximum value of
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this function is equal to the maximum value between the vertices of the domain. Therefore, for

each element, it is enough to evaluate the heat flux per unit area at the four nodes and use the

highest value.
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APPENDIX D – ASSEMBLING AND UPDATING THE COUPLING

MATRIX

To assemble the coupling L matrix presented in Eq. (4.18), one would require the

identification of the Γb surface. A simpler procedure, however, is presented here.

In an element-by-element analysis, assume that the surfaces of all acoustic elements

are an acoustic-structure interface, while the surfaces of structural elements are not. This is

illustrated in Eq. (D.1).

Fluid elementStructural element

Figure D.1 – Representation of acoustic and structural elements according to their coupling ma-
trix. The red arrows represent the presence of non-zero L.

This way, the coupling matrix terms will cancel themselves wherever elements of

the same type are connected (Figure D.2).

Figure D.2 – Representation of a mesh with acoustic and structural elements. Arrows represent
the presence of non-zero L.

With this procedure, the interaction effects can be taken into account correctly via

a simple assembly process. This also simplifies the update of matrices due to changes from

the topology optimization method, as these effects can be inserted in the material interpolation

scheme.
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