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Resumo
A presente dissertação explora o tópico de reticulados construídos sobre corpos de funções
algébricas de grau de transcendência 1. Primeiramente são estabelecidas as bases da teoria
de corpos de funções, da teoria de reticulados e a conexão entre curvas algébricas e corpos
de funções. Depois disso, a construção e as propriedades básicas (distância mínima, kissing
number, bem arredondado, determinante) dos reticulados sobre corpos de funções são
apresentadas e os exemplos conhecidos na literatura são explorados: corpos de funções
elípticos e Hermitianos. Por fim, introduzimos uma nova construção: reticulados sobre a
curva de Fermat, que apresentam propriedades um tanto distintas dos exemplos até então
documentados. Por exemplo, distância mínima maior do que o esperado e kissing number
fixo.

Palavras-chave: curvas elípticas. curvas Hermitianas. curvas de Fermat. distância mínima.
número de vizinhos. reticulados bem arredondados.



Abstract
This dissertation explores the topic of lattices constructed from algebraic function fields
of transcendence degree 1. We start by establishing the basics of function field theory,
lattice theory, and the connection between algebraic curves and function fields. After
that, the construction and general properties (minimum distance, kissing number, well-
roundedness, determinant) of function field lattices are given before the known examples
in literature are explored: the elliptic and Hermitian function fields. Finally, we introduce
a new construction: lattices over the Fermat curve, which exhibit different properties to
all the known examples. For instance, a larger than expected minimum distance and a
fixed kissing number.

Keywords: elliptic curves. Hermitian curves. Fermat curves. minimum distance. kissing
number. well rounded lattices.
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Introdução

This text explores the topic of lattices constructed from algebraic function
fields of one variable. First, the basics of function field theory are established using
(STICHTENOTH, 2009) as a foundation. Lattice theory essential definitions and param-
eters are defined using (COSTA et al., 2017). Also, the connection between algebraic
curves and function fields is explored, along with several equivalent formulations of the
Riemann-Roch problem as described in (GOPPA, 1988).

After the basics have been laid out, the construction method and results regarding
the minimum distance, kissing number, well-roundedness and determinant of function field
lattices, according to (ATEŞ, 2017), are presented. This is followed by an examination
of the parameters of all the currently known examples of lattices over function fields
in literature: the elliptic and Hermitian function fields, presented in (FUKSHANSKY;
MAHARAJ, 2014) and (BÖTTCHER et al., 2016), respectively.

Finally, using (ROHRLICH, 1977) as a base, the construction of the Fermat function
field lattice is introduced. This construction proves to be interesting, seeing as it exhibits
different properties to the currently known examples of function field lattices: the lower
bound

?
2γ for the minimum distance is never attained and the kissing number is fixed

for Fermat curves of degree n ¥ 5.
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1 Preliminaries

In this first chapter we provide the basic definitions of both lattice theory and
algebraic function field theory which will be used for the construction of lattices. The first
subsections will discuss topics such places, valuations, divisors, adeles, Weil differentials,
as well as the gonality and genus of a function field.

The main reference for this chapter are chapters 1 and 3 of (STICHTENOTH,
2009), which provide all the required basics on algebraic function field theory. For the sake
of brevity, some results have their proofs omitted. One can find the detailed arguments for
those results in the same reference.

For now, we use K to denote an arbitrary field. At later points we might assume
K has different properties, for example, being finite, which will be the most interesting
case for lattice construction.

1.1 Places

Definition 1. An algebraic function field F of one variable over K is an extension field
F � K such that F is a finite algebraic extension of Kpxq, where x P F is transcendental
over K.

We shall use the notation F |K to denote a function field F over K. Consider the
set K̃ :� tz P F : z is algebraic over Ku, which is a subfield of F , since the sums, products
and inverses of algebraic elements are also algebraic. K̃ is called the field of constants of
F |K. We have the following inclusions K � K̃ � F , and it is evident that we can consider
F a function field over K̃. We say K is algebraically closed in F (or K is the full constant
field of F ) if K � K̃.

Remark 1. The elements of F that are transcendental over K can be characterized by
examining the degree rF : Kpzqs. If it is finite, then z is transcendental.

Example 1. The first and simplest example of an algebraic function field is the rational
function field. F |K is called rational if F � Kpxq for some x P F transcendental over K.
The name comes from the fact that every element z P F � has a unique representation

z � a �
¹

i

pipxqni ,

in which a P K�, ni P Z and the polynomials pipxq P Krxs are monic, irreducible and
pairwise distinct.
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Using the previous example, we can represent a function field F |K as a simple
algebraic extension of the rational function field Kpxq, that is, F � Kpx, yq, where
φpyq � 0 for some irreducible polynomial φpT q P KpxqrT s. Consider now arbitrary
elements α1, . . . , αn P K and suppose we wish to find all rational functions fpxq P Kpxq
with zeroes or poles of prescribed order at α1, . . . , αn. In order to formulate this problem
for any function field, we introduce the notions of valuation rings and places.

Definition 2. A valuation ring of the function field F |K is a ring O � F such that

1. K � O � F , and

2. for all z P F , z P O or z�1 P O.

This definition is inspired by an observation in the rational function field: given
ppxq P Krxs a monic irreducible polynomial, consider the set

Oppxq �
"
fpxq
gpxq : fpxq, gpxq P Krxs, ppxq ∤ gpxq

*
,

which is a valuation ring of Kpxq|K. If qpxq is another irreducible monic polynomial, then
Oppxq � Oqpxq.

Proposition 1. Let O be a valuation ring of F |K. The following hold:

(a) O has a unique maximal ideal P � OzO�, where O� denotes the group of invertible
elements of O.

(b) x P F �. Then x P P ðñ x�1 R O.

(c) For the field of constants K̃ of F |K, we have K̃ � O and K̃ X P � t0u.

Proof. (a) We need only prove that P � OzO� is an ideal of O, since no proper ideal
can contain an invertible element and hence, cannot contain P .

First, let x P P, z P O. Then xz R O, since otherwise, there would exist v P O such
that xzv � 1, which would imply x�1 � zv P O, contradicting the fact that x P P .

Now, let x, y P P . Since x
y
P F , we can assume, without loss of generality that x

y
P O.

Then, 1 � x

y
P O and x � y � y

�
1� x

y



P P by the previous observation. This

proves P is an ideal of O.

(b) x P P ùñ x R O� ùñ x�1 R O. Conversely, x�1 R O ùñ x P O ùñ x P P .

(c) Let z P K̃. Assume z R O. Then, z�1 P O. Since z�1 is algebraic over K, there are
elements a1, . . . , ar P K with arpz�1qr�� � ��a1z

�1�1 � 0, implying z�1parpz�1qr�1�
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� � � � a1q � �1 and therefore z � �parpz�1qr�1 � � � � � a1q P Krz�1s � O, so z P O,
contradicting the assumption that z R O. Hence, K̃ � O.

Now, let z P K̃�. Since K̃ is a field, z�1 P K̃ � O, which implies z P O�. Therefore
K̃ X P � t0u.

Theorem 1. Let O be a valuation ring of F |K and let P be its maximal ideal. The
following hold:

(a) P is a principal ideal.

(b) If P � tO, then each z P F � has a unique representation of the form z � tnu for
some n P Z and u P O�.

(c) O is a principal ideal domain. More precisely, if P � tO and t0u � I � O is an
ideal, then I � tnO for some n P N.

A ring that has the above properties is called a discrete valuation ring. In order to
prove the preceding theorem, we will need the following lemma:

Lemma 1. Let O be a valuation ring of F |K, let P be its maximal ideal and x P P �.
Let x1, . . . .xn P P such that x1 � x and xi P xi�1P for i � 1, . . . , n � 1. Then we have
n ¤ rF : Kpxqs   8.

Proof. It follows from Remark 1 and Proposition 1(c) that F |Kpxq is a finite extension,
so we only need to show that x1, . . . , xn are linearly independent over Kpxq. Assume there

is a non-trivial linear combination
ņ

i�1
φipxqxi � 0 with φipxq P Kpxq. By considering the

least common multiple of all the polynomials, we may suppose all φipxq are polynomials
in x and x does not divide any of them. Set ai :� φip0q and define j P t1, . . . , nu by the
condition aj � 0, but ai � 0 for all i ¡ j. We have

�φjpxqxj �
¸
i�j

φipxqxi (1.1)

with φipxq P O for i � 1, . . . , n, since x � x1 P P , xi P xjP for i   j and φipxq � xgipxq
for i ¡ j with gpxq P Krxs. Dividing (1.1) by xj yields

�φjpxq �
¸
i j

φipxqxi

xj

�
¸
i¡j

x

xj

gipxqxi.

All the elements on the right side belong to P , therefore φpxq P P . On the other hand,
φjpxq � aj�xgjpxq with gjpxq P Krxs � O and x P P , so that aj � φjpxq�xgjpxq P PXK.
Since aj � 0 by definition, we have a contradiction to Proposition 1(c). Hence, x1, . . . , xn

are linearly independent over Kpxq.
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Proof of Theorem 1. (a) Assume P is not principal and choose x1 P P �. There exists
x2 P P zx1O. Then x2x

�1
1 R O, implying x�1

2 x1 P P by Proposition 1(b), so x1 P x2P .
By induction, we can produce a sequence x1, x2, x3, . . . of elements of P such that
xi P xi�1P for all i ¥ 1, contradicting Lemma 1.

(b) Since z or z�1 is in O, we can assume z P O. If z P O�, z � t0z. If z P P , there is a
maximal m ¥ 1 such that z P tmO, because the length of the sequence

x1 � z, x2 � tm�1, . . . , xm � t

is bounded by Lemma 1. Let z � tmu with u P O. Note that u has to be invertible,
since otherwise, u P P � tO and u � tw with w P O, implying z � tm�1w P tm�1O,
which contradicts the maximality of m.

As for uniqueness, suppose z � tnu � tmv with m,n P Z and u, v P O�. We have

tnu� tmv � 0
tnpu� tm�nvq � 0

tm�nv � u

tm�n � uv�1 P O�.

If m � n, then t P O� and t R P , a contradiction. Hence, m � n and by extension,
u � v.

(c) Let I � O be a non-zero ideal. The set A :� tr P N : tr P Iu is non-empty, because
if x P I�, then x � tru, u P O� and tr � xu�1 P I. Set n :� minpAq. We claim
that I � tnO. Since tn P I, the inclusion I � tnO follows. Now suppose y P I�. We
know y � tsw with w P O� and s ¥, which means ts P I and s ¥ n. It follows that
y � tn � ts�nw P tnO.

Definition 3. (a) A place P of the function field F |K is the maximal ideal of some
valuation ring O of F |K. An element t P P such that P � tO is called a prime
element of P .

(b) PF :� tP : P is a place of F |Ku.

If O is a valuation ring of F |K and P its maximal ideal, then O is uniquely defined
by P by using Proposition 1: O � tz P F : z�1 R P u. This means we can write OP :� O is
called the valuation ring of the place P . We can also describe places in terms of certain
functions called valuations.

Definition 4. A discrete valuation of F |K is a function v : F Ñ ZY t8u satisfying the
following properties for all x, y P F :
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1. vpxq � 8 ðñ x � 0.

2. vpxyq � vpxq � vpyq.

3. vpx� yq ¥ mintvpxq, vpyqu.

4. There exists an element z P F such that vpzq � 1.

5. vpaq � 0 for all a P K�.

The symbol 8 denotes an element not in Z such that 8 ¡ n and 8�8 � 8�n �
n � 8 for all n P Z. Properties 2 and 4 imply v is surjective. Property 3 is called the
triangle inequality. A stronger version os this inequality can be derived from the axioms
and will be frequently utilized:

Lemma 2 (Strict Triangle Inequality). If v is a discrete valuation of F |K, let x, y P F
with vpxq � vpyq. Then vpx� yq � mintvpxq, vpyqu.

Proof. By properties 2 and 5, vpayq � vpyq for all a P K�. In particular, vp�yq � vpyq.
We can assume vpxq   vpyq. Suppose vpx� yq ¡ mintvpxq, vpyqu, so vpx� yq ¡ vpxq. We
obtain vpxq � vppx� yq � yq ¥ mintvpx� yq, vpyqu ¡ vpxq, a contradiction.

Definition 5. To a place P P PF , we can associate a function vP : F Ñ ZX t8u, which
we will prove to be a discrete valuation, in the following way: pick a prime element t for
P . Every z P F � has a unique representation z � tnu with u P O�

P and n P Z. Define
vP pzq :� n and vP p0q :� 8.

This definition depends only on P , and not on the choice of t. Taking s another
prime element for P , then P � tO � sO, so t � sw for w P O�

P . Therefore tnu � pswqnu �
snpwnuq with wnu P O�

P .

Theorem 2. Let F |K be a function field.

(a) For a place P P PF , vP is a discrete valuation of F |K. Moreover

OP � tz P F : vP pzq ¥ 0u,
O�

P � tz P F : vP pzq � 0u,
P � tz P F : vP pzq ¡ 0u.

(b) x P F is a prime element for P if and only if vP pxq � 1.

(c) Suppose v a discrete valuation of F |K. The set P :� tz P F : vpzq ¡ 0u is a place of
F |K, and OP � tz P F : vpzq ¥ 0u is its corresponding valuation ring.

(d) Every valuation ring of F |K is a maximal proper subring of F .
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Proof. (a) vP evidently has properties 1, 2, 4 and 5. For the triangle inequality, take
x, y P F with vP pxq � n, vP pyq � m. It is safe to assume n ¤ m   8, and thus
x � tnu1, y � tmu2 with u1, u2 P O�

P . We have x� y � tnpu1 � tm�nu2q � tnz with
z P OP . If z � 0, vP px � yq � 8 ¡ mintn,mu. Otherwise, z � tku with u � O�

P .
Then,

vP px� yq � vP ptn�kuq � n� k ¥ n � mintvP pxq, vP pyqu.
To prove the set equalities, take z P OP . If z � 0, then vP pzq � 8 ¡ 0. Otherwise,
z � tnu with u P O�

P and vP pzq � n ¡ 0. Now, if z P F and vP pzq ¥ 0, we have
vP pzq � 0 ðñ z P O�

P � OP . Also, vP pzq � n ¡ 0 ðñ z � tnu, u P O�
P ðñ

z P OP . Finally, vP pzq � 8 ðñ z � 0 P OP , proving that OP � tz P F : vP pzq ¥
0u. The fact that vP pzq � 0 ðñ z P O�

P proves O�
P � tz P F : vP pzq � 0u and the

set equality for P follows directly from the fact that P � OP zO�
P .

(b) Let P � tO. Since the valuation does not depend on the choice of t, x P F is another
prime element for P if and only if vP pxq � vP ptq � 1.

(c) Firstly, OP as defined by the valuation v is a valuation ring of F |K. Take z P F .
If vpzq ¥ 0, there is nothing to prove. If vpzq   0, by property 2 of the discrete
valuations, 0 � vp1q � vpzz�1q � vpzq � vpz�1q, that is, vpz�1q � �vpzq. Hence,
vpz�1q ¡ 0 and z�1 P OP . Since OP � tz P F : z�1 R P u, it follows that tz P F :
vP pzq ¡ 0u is the maximal ideal of OP , and hence, a place of F |K.

(d) Let O be a valuation ring of F |K, P its maximal ideal, vP the discrete valuation of
P and z P F zO. We must show that F � Orzs. The inclusion Orzs � F is trivial. In
order to prove the reverse inclusion, consider any y P F . Since z R O, vP pz�1q ¡ 0,
which means vP pyz�kq ¥ 0 for sufficiently large k. Therefore, w � yz�k P O and
y � wzk P Orzs.

If P is a place of F |K and OP is its valuation ring, the fact P is maximal implies
the quotient OP {P is a field. For x P OP , we define xpP q P OP {P to be the residue class
of x modulo P . For x P F zOP , we define xpP q :� 8. By Proposition 1, we know K � OP

and K X P � t0u, so the map x ÞÑ xpP q induces a canonical embedding of K into OP {P .
Therefore, from this point onward, we shall consider K a subfield of OP {P . This reasoning
also works for K̃ and we consider it a subfield of OP {P as well.

Definition 6. (a) FP :� OP {P is the residue class field of P . The map x ÞÑ xpP q from
F to FP is called the residue class map with respect to P . We can also use the
notation x� P � xpP q if x P OP .

(b) degP :� rFP : Ks is called the degree of P . If degP � 1, P is called a rational place
of F |K.
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The degree of a place is always a finite number. More precisely, we have the
following:

Proposition 2. If P is a place of F |K and x P P �, then

degP ¤ rF : Kpxqs   8.

Proof. We already know that rF : Kpxqs   8 from Remark 1. So we just need to show
that any elements z1, . . . , zn P OP whose residue classes z1pP q, . . . , znpP q are linearly
independent over K are linearly independent over Kpxq. So suppose there is a nontrivial
linear combination

ņ

i�1
φipxqzi � 0 (1.2)

with φipxq P Kpxq. By the same reasoning used previously, we might assume φipxq P Krxs
are polynomials not all divisible by x, that is, φipxq � ai�xgipxq for ai P K and gi P Krxs,
not all ai � 0. Since x P P and gipxq P Krxs � OP :

φipxqpP q � aipP q � xgipxqpP q � aipP q � ai.

Applying the residue class map to (1.2), we get

0 � 0pP q �
ņ

i�1
φipxqpP qzipP q �

ņ

i�1
aizipP q,

a contradiction to the linear independence of z1pP q, . . . , znpP q over K.

Corollary 1. The field of constants K̃ of F |K is a finite field extension of K.

Proof. We make use of the fact that PF � H, which we shall prove shortly. Choose P P PF .
K̃ is embedded in FP via the residue class map OP Ñ FP . Therefore, rK̃ : Ks ¤ rFP :
Ks   8.

Remark 2. If degP � 1, then FP � K and the residue class map sends FP to K Y t8u.
In particular, if K is algebraically closed, then all places of F |K are rational and we can
interpret an element z P F as a function

z : PF Ñ K Y t8u (1.3)
P ÞÑ zpP q.

This is the reason why F |K is called a function field. The elements of K interpreted as
functions in the sense of (1.3), are constant functions. For this reason, K is called the
constant field of F . This remark also justifies the following terminology:

Definition 7. Let z P F and P P PF . P is a zero of order m of z if vP pzq � m ¡ 0, and
P is a pole of order m of z if vP pzq �m   0.
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We shall now prove that PF � H for any function field F |K.

Theorem 3. Let F |K be a function field and R a subring of F such that K � R � F .
Suppose I � R is a proper ideal of R. Then there exists a place P P PF such that I � P

and R � OP .

Proof. Consider the set

F :� tS : S is a subring of F with R � S and IS � Su,

where IS is the set of all finite sums
¸

aksk with ak P I, sk P S, which is an ideal of S.
We wish to use Zorn’s Lemma. To this end, note that F is non-empty as R P F , and F is
inductively ordered by inclusion. In fact, take H � F a totally ordered subset of F . Then,
T :�

¤
tS : S P Hu is a subring of F with R � T . We must prove that IT � T . Suppose

this is false, then 1 �
ņ

k�1
aksk, ak P I, sk P T . Since H is totally ordered, there is S0 P H

such that s1, . . . , sn P S0, so 1 �
ņ

k�1
aksk P IS0, which is a contradiction.

Applying Zorn’s Lemma, F contains a maximal element O � F such that R �
O � F , IO � O and O is maximal with respect to these properties. It only remains to
show that O is a valuation ring of F |K.

As I � t0u and IO � O, it follows that O � F and I � OzO�. Suppose there
exists z P F with z R O and z�1O. Then IOrzs � Orzs and IOrz�1s � Orz�1s, and there
exists a0, . . . , an, b0, . . . , bm P IO, m, n ¥ 1 such that

1 � a0 � a1z � � � � � anz
n (1.4)

1 � b0 � b1z
�1 � � � � � bmz

�m. (1.5)

We can assume m and n are chosen minimally and m ¤ n. Multiplying (1.4) by 1 � b0

and (1.5) by anz
n, we obtain

1� b0 � p1� b0qa0 � p1� b0qa1z � � � � � p1� b0qanz
n

0 � pb0 � 1qanz
n � b1anz

n�1 � � � � � bmanz
n�m.

Adding these equations produces 1 � c0 � c1z � � � � � cn�1z
n�1 with coefficients ci P IO,

contradicting the minimality of n. This proves z P O or z�1 P O, which means O is a
valuation ring of F |K.

Corollary 2. Let F |K be a function field, and z P F transcendental over K. Then z has
at leas one zero and one pole in F . In particular, PF � H.

Proof. Consider the ring R � Krzs and the ideal I � zKrzs. By Theorem 3, there is a
place P P PF with z P P , hence P is a zero of z. The same reasoning proves z�1 has a zero
Q P PF , which means Q is a pole of z.
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The preceding corollary can be interpreted in the following way: each z P F zK̃
yields a non-constant function in the sense of Remark 2.

1.2 The Rational Function Field
In order to better understand places and valuations in arbitrary function fields,

it is essential to thoroughly understand these concepts in the simplest case, the rational
function field F � Kpxq for x P F transcendental over K. Given an irreducible monic
polynomial ppxq P Krxs, take the valuation ring

Oppxq :�
"
fpxq
gpxq : fpxq, gpxq P Krxs, ppxq ∤ gpxq

*

of Kpxq|K whose maximal ideal is

Pppxq �
"
fpxq
gpxq : fpxq, gpxq P Krxs, ppxq | fpxq, ppxq ∤ gpxq

*
.

In the case where ppxq is linear, that is, ppxq � x� α with α P K, we write Pα :� Px�α P
PKpxq.

There is another valuation ring of Kpxq|K, namely

O8 :�
"
fpxq
gpxq : fpxq, gpxq P Krxs, deg fpxq ¤ deg gpxq

*

with maximal ideal

P8 :�
"
fpxq
gpxq : fpxq, gpxq P Krxs, deg fpxq   deg gpxq

*
.

This place is called the infinite place of Kpxq. These labels depend on the choice of
the generating element x of Kpxq. For example, Kpxq � Kp1{xq, but the infinite place of
Kp1{xq is equal to P0 in Kpxq.

Proposition 3. Let F � Kpxq be the rational function field.

(a) Let P � Pppxq P PKpxq with ppxq P Krxs an irreducible polynomial. Then ppxq is
a prime element of P , and the corresponding valuation vP is given as follows: if
z P Kpxq� is written in the form z � ppxqn � pfpxq{gpxqq with n P Z and fpxq, gpxq P
Krxs, then vP pzq � n. The residue class field KpxqP � OP {P is isomorphic to
Krxs{xppxqy with isomorphism given by

ϕ : Krxs{xppxqy Ñ KpxqP
fpxq pmod ppxqq ÞÑ fpxqpP q.

Consequently, degP � deg ppxq.
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(b) If ppxq � x � α with α P K, the degree of P � Pα is 1, and the residue class
map is given by zpP q � zpαq for z P Kpxq. We define zpαq in the following way:
if z � fpxq{gpxq with fpxq, gpxq P Krxs relatively prime polynomials, then zpαq �
fpαq{gpαq if gpαq � 0 and zpαq � 8 if gpαq � 0.

(c) If P � P8 is the infinite place of Kpxq, then degP8 � 1 and t � 1{x is a prime
element for P8. The discrete valuation v8 is given by

v8pfpxq{gpxqq � deg gpxq � deg fpxq
where fpxq, gpxq P Krxs. The residue class map is defined by zpP8q � zp8q for
z P Kpxq in the following way: if

z � anx
n � � � � � a0

bmxm � � � � � b0
, an, bm � 0,

then

zp8q �

$'''&
'''%

an

bm

if n � m

0 if n   m

8 if n ¡ m.

(d) K is the full constant field of Kpxq|K.

Proof. (a) The fact that ppxq | fpxq directly implies P is generated by ppxq, hence it is
a prime element for P . To prove the claim about the residue class map, first consider
the ring homomorphism

φ : Krxs Ñ KpxqP
fpxq ÞÑ fpxqpP q.

Notice that fpxq P kerφ ðñ ppxq | fpxq ðñ fpxq P xppxqy, meaning kerφ �
xppxqy. φ is also surjective: take z P Oppxq and write z � upxq{vpxq with upxq, vpxq P
Krxs such that ppxq ∤ vpxq. Since ppxq and vpxq are coprime, there are apxq, bpxq P
Krxs such that apxqppxq � bpxqvpxq � 1, therefore

z � 1 � z � apxqupxq
vpxq ppxq � bpxqupxq,

and zpP q � pbpxqupxqqpP q is in the image of φ. Hence, φ induces an isomorphism
from Krxs{xppxqy to KpxqP . Seeing as rKpxqP : Ks � rKrxs{xppxqy : Ks � deg ppxq,
we conclude degP � deg ppxq.

(b) Let P � Pα, α P K. For fpxq P Krxs, we have px � αq | pfpxq � fpαqq. Hence
fpxqpP q � pfpxq � fpαqqpP q � fpαqpP q � fpαq. An arbitrary z P OP can be
written as z � fpxq{gpxq with fpxq, gpxq P Krxs and px � αq ∤ gpxq, therefore
gpxqpP q � gpαq � 0 and

zpP q � fpxqpP q
gpxqpP q �

fpαq
gpαq � zpαq.
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(c) If P � P8, it is clear that 1{x P P . Consider an element z � fpxq{gpxq P P8. We
have deg fpxq   deg gpxq, then

z � 1
x
� xfpxq
gpxq , with degpxfpxqq ¤ deg gpxq.

This proves z P p1{xqO8, hence 1{x generates P8 and is a P8-prime element. Finally,
since P8 with respect to x is P0 with respect to 1{x, we have KpxqP8 � Kp1{xqP0 �
Kr1{xs{xxy, implying degP8 � degP0 � 1.

(d) Choose a rational place P of Kpxq|K. The field K̃ of constants of Kpxq is embedded
into the residue class field KpxqP , meaning K � K̃ � KpxqP � K.

Theorem 4. All places of the rational function field are either of type Pppxq or P8.

Proof. Let P be a place of Kpxq|K. We split the proof into two cases:

Case 1. Assume x P OP . Then, Krxs � OP . Define I :� Krxs X P . This is a
prime ideal of Krxs. The residue class map induces an embedding Krxs{I ãÑ KpxqP ,
consequently, I � t0u by Proposition 1. It follows there is a unique irreducible monic
polynomial ppxq P Krxs such that I � Krxs X P � ppxq �Krxs. Every gpxq P Krxs with
ppxq ∤ gpxq is not in I, so gpxq R P and 1{gpxq P OP by Proposition 1. Thus we conclude

Oppxq :�
"
fpxq
gpxq : fpxq, gpxq P Krxs, ppxq ∤ gpxq

*
� OP .

Since valuation rings are maximal proper subrings of Kpxq (Theorem 2), we see that
OP � Oppxq.

Case 2. Now assume x R OP . We conclude Krx�1s � OP , x
�1 P P XKrx�1s and

P XKrx�1s � x�1Krx�1s. Like in the previous case,

OP �
"
fpx�1q
gpx�1q : fpx�1q, gpx�1q P Krx�1s, x�1 ∤ gpx�1q

*

�
"
a0 � a1x

�1 � � � � � anx
�n

b0 � b1x�1 � � � � � bmx�m
: b0 � 0

*

�
"
a0x

m�n � � � � � anx
m

b0xm�n � � � � � bmxn
: b0 � 0

*

�
"
upxq
vpxq : upxq, vpxq P Krxs, deg upxq ¤ deg vpxq

*
� O8.

Thus OP � O8 and P � P8.

Corollary 3. The rational places of Kpxq|K are in a 1� 1 correspondence with K Y t8u.
In particular, if K � Fq, then |PF | � q � 1.
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1.3 Independence of Valuations
In this section, we shall prove the Weak Approximation Theorem, which intuitively

states that given v1, . . . , vn pairwise distinct discrete valuations of F |K and z P F , knowing
the values v1pzq, . . . , vn�1pzq does not give us any information regarding vnpzq. This result
will be significantly improved in later sections and will be used when discussing function
field extensions.

Theorem 5 (Weak Approximation Theorem). Let F |K be a function field, P1, . . . , Pn P PF

pairwise distinct places of F |K, x1, . . . , xn P F and r1, . . . , rn P Z. Then, there exists some
x P F such that

vPi
px� xiq � ri for i � 1, . . . , n.

Proof. In order to simplify notation, we write vi instead of vPi
. First, we will prove there

exists some u P F such that v1puq ¡ 0 and vipuq   0 for i � 2, . . . , n. By induction, for
n � 2 we observe OP1 � OP2 and vice-versa, since valuation rings are maximal proper
subrings of F (Theorem 2). This means we can find y1 P OP1zOP2 and y2 P OP2zOP1 .
Then v1py1q ¥ 0, v2py1q   0, v1py2q   0, and v2py2q ¥ 0. Considering u � y1{y2, we have
v1puq ¡ 0 and v2puq   0.

For n ¡ 2, by the induction hypothesis, we have an element y such that v1pyq ¡ 0
and vipyq   0 for i � 2, . . . , n � 1. If vnpyq   0, there is nothing to prove. If vnpyq ¥ 0,
we choose z with v1pzq ¡ 0 and vnpzq   0 (whose existence is guaranteed by the n � 2
case) and define u :� y � zr, where r ¥ 1 is any integer such that r � vipzq � vipyq for
i � 1, . . . , n� 1. It follows that v1puq ¥ mintv1pyq, r � v1pzqu ¡ 0 and by the Strict Triangle
Inequality, vipuq � mintvipyq, r � vipzqu   0 for i � 2, . . . , n, proving our first claim.

Now we show there exists some w P F such that v1pw � 1q � r1 and vipwq ¡ ri

for i � 2, . . . , n. In order to prove this, first take u P F with v1puq ¡ 0 and vipuq   0 for
i � 2, . . . , n and put w :� p1� usq�1. Given a sufficiently large s P N, we have

v1pw � 1q � v1

�
� us

1� us



� s � v1puq �mintv1p1q, v1pusqu � s � v1puq ¡ r1

and
vipwq � �s � vipuq ¡ ri for i � 2, . . . , n.

Finally, we prove that given y1, . . . , yn P F , there exists z P F such that vipz�yiq ¡ ri

for i � 1, . . . , n. First, choose s P N such that vipyjq ¥ s for all i, j � 1, . . . , n. Previously,
we proved there are w1, . . . , wn with

vipwi � 1q ¡ ri � s and vjpwjq ¡ ri � s for j � i.
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The element z :�
ņ

j�1
yjwj has the desired property:

vipz � yiq � vi

�
�� ņ

j�1
j�i

yjwj � yipwi � 1q

�
�
¡ ri for i � 1, . . . , n.

We are now ready to finish the proof. We take z P F such that vipz � xiq ¡ ri, i �
1, . . . , n. If ti is a Pi-prime element, set zi :� tri

i , meaning vipziq � ri. Again, we can take
z1 such that vipz1 � ziq ¡ ri for i � 1, . . . , n. It follows that

vipzq � vippz1 � ziq � ziq � mintvipz1 � ziq, vipziq � riu.

Setting x :� z � z1:

vipx� xiq � vippz � xiq � z1q � mintvipz � xiq, vipz1qu � ri.

Corollary 4. Every function field has infinitely many places.

Proof. Suppose a function field F |K has only finitely many places P1, . . . , Pn. By Theorem
5, we find a non-zero element x P F such that vPi

pxq ¡ 0 for all i � 1, . . . , n. Since x has
zeroes, it is transcendental over K. However, it has no poles, contradicting Corollary 2.

Proposition 4. Let F |K be a function field and P1, . . . , Pr be the zeros of the element
x P F . Then

ŗ

i�1
vPi
pxq � degPi ¤ rF : Kpxqs.

Proof. We write vi in place of vPi
and set fi :� degPi, ei :� vipxq. Theorem 5 guarantees

for every i, there is an element ti such that viptiq � 1 and vkptiq � 0 for k � i. Newt,
take si1, . . . , sifi

P OPi
such that si1pPiq, . . . , sifi

pPiq form a basis of FPi
over K. Applying

Theorem 5, we find zij P F such that for all i, j:

vipsij � zijq ¡ 0 and vkpzijq ¥ ek for k � i.

We claim the elements

tai � zij, 1 ¤ i ¤ r, 1 ¤ j ¤ fi, 0 ¤ a   ei

are linearly independent over Kpxq. There are
ŗ

i�1
fiei �

ŗ

i�1
vPi
pxq �degPi of these elements,

so proving the linear independence will finish the proof.

Suppose there is a non-trivial linear combination
ŗ

i�1

fi̧

j�1

ei�1̧

a�1
φijapxqtai zij � 0 (1.6)
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over Kpxq. Without loss of generality, we can assume φijapxq P Krxs and not all are
divisible by x. Then there are indices k P t1, . . . , ru and c P t0, . . . , ei � 1u such that

x | φkjapxq for all a   c and all j P t1, . . . , fku, and
x ∤ φkjcpxq for some j P t1, . . . , fku. (1.7)

Multiplying (1.6) by t�c
k :

ŗ

i�1

fi̧

j�1

ei�1̧

a�1
φijapxqtai t�c

k zij � 0. (1.8)

Note that for all i � k, all summands of (1.8) are elements of Pk seeing as

vkpφijapxqtai t�c
k zijq � vkpφijapxqq � a � vkptiq � c � vkptkq � vkpzijq ¥ �c� ek ¡ 0.

For i � k and a   c

vkpφijapxqta�c
k zkjq ¥ ek � a� c ¥ ek � c ¡ 0,

since x | φkjapxq and therefore vkpφkjapxqq ¥ ek. For i � k and a ¡ c,

vkpφijapxqta�c
k zkjq ¥ a� c ¡ 0.

Combining these observations with (1.8) produces
fķ

j�1
φkjcpxqzkj P Pk. (1.9)

Notice that φkjcpxqpPkq P K and not all φkjcpxqpPkq � 0 by (1.7) so (1.9) yields a non-
trivial linear combination

fķ

j�1
φkjcpxqpPkq � zkjpPkq � 0

over K, which leads to a contradiction, as zk1pPkq, . . . , zkfk
pPkq is a basis for FPk

|K.

Corollary 5. In a function field F |K, every x P F � has only finitely many zeros and
poles.

Proof. If x is constant, it has neither zeros nor poles. If it is transcendental over K,
its number of zeros is bounded above by rF : Kpxqs in accordance with Proposition 4.
Applying the same argument, x�1 also has finitely many zeros, and thus, x has only finitely
many poles.

1.4 Divisors
The field of constants K̃ of F |K is a finite extension of K, as we have shown and

F can be regarded as a function field over K̃. Therefore, making the assumption that K
is always the full constant field of F will not limit the generality of the subsequent theory.
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Definition 8. The divisor group of F |K is defined as the additively written free abelian
group generated by the places of F |K. It is denoted by DivpF q and its elements are called
divisors of F |K. A divisor is a formal sum

D �
¸

PPPF

nPP, with nP P Z, almost all nP � 0.

The support of the divisor D is defined as supppDq :� tP P PF : nP � 0u. We shall often
write

D �
¸
PPS

nPP,

where S is a finite set with supppDq � S. A divisor D � P with P P PF is called a prime
divisor of F |K. The addition of divisors is done coefficient-wise: if D �

¸
nPP and

D1 �
¸

n1PP , then D �D1 �
¸
pnP � n1P qP . The zero element of the group is simply the

divisor where all coefficients are 0.

We can also define the discrete valuation of a divisor: for Q P PF and D �
¸

nPP P
DivpF q, we define vQpDq � nQ. This allows us to rewrite

supppDq � tP P PF : vP pDq � 0u and D �
¸

PPsupppDq

vP pDq � P.

A partial ordering can be defined in DivpF q by

D1 ¤ D2 ðñ vP pD1q ¤ vP pD2q for all P P PF .

If D1 ¤ D2 and D1 � D2, we write D1   D2. A divisor D ¥ 0 is called effective. The
degree of a divisor is defined as

degD :�
¸

PPPF

vP pDq � degP,

which yields a homomorphism from DivpF q to Z due to the way addition was defined.

Corollary 5 assures an element x P F � has only finitely many zeros and poles in
PF , thus allowing us to define the following:

Definition 9. Let x P F �. Denote by Z � PF the set of zeros of x and by N � PF the set
of poles of x. We define

pxq0 :�
¸
PPZ

vP pxqP, the zero divisor of x,

pxq8 :�
¸

PPN

�vP pxqP, the pole divisor of x,

pxq :� pxq0 � pxq8, the principal divisor of x.
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It follows from the definitions that pxq0 ¥ 0, pxq8 ¥ 0 and

pxq �
¸

PPPF

vP pxqP.

From Corollary 2, the constant elements x P F � are characterized by

x P K ðñ pxq � 0.

Definition 10. The set
PrincpF q :� tpxq : x P F �u

is called the group of principal divisors of F |K. It is a subgroup of DivpF q since for
x, y P F �:

pxyq �
¸

PPPF

vP pxyqP �
¸

PPPF

pvP pxq � vP pyqqP � pxq � pyq.

The factor group ClpF q :� DivpF q{PrincpF q is called the divisor class group of F . For
a divisor D P DivpF q, its corresponding element in ClpF q is denoted by rDs, the divisor
class of D. Two divisors D,D1 are said to be linearly equivalent, denoted by D � D1, if
rDs � rD1s, that is D � D1 � pxq for some x P F �. This is an equivalence relation.

Remark 3. We shall prove shortly that all principal divisors have degree 0. Thus,
considering the subgroup Div0pF q of degree 0 divisors, we obtain the quotient group
Cl0pF q :� Div0pF q{PrincpF q whose order h :� |Cl0pF q| is called the class number of F .
We shall later prove that if K is a finite field, then the class number h is always finite.

The next definition will play an important role in both the further study of function
fields and the construction of lattices.

Definition 11. For a divisor A P DivpF q, we define the Riemann-Roch space associated
to A as

LpAq � tx P F : pxq ¥ �Au Y t0u.

We can interpret this definition in the following way: if

A �
ŗ

i�1
niPi �

ş

j�1
mjQj

with ni,mj ¡ 0, then LpAq is the set of elements of F such that

• x has zeros of order bounded below by mj at Qj for j � 1, . . . , s, and

• x has poles only at P1, . . . , Pr with the order at Pi bounded above by ni for i �
1, . . . , r.

Remark 4. If A P DivpF q, then
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(a) x P LpAq ðñ vP pxq ¥ �vP pAq for all P P PF .

(b) LpAq � t0u ðñ DA1 P DivpF q such that A1 ¥ 0 and A1 � A.

These observations, although simple, will often be quite useful when discussing
Riemann-Roch spaces.

Lemma 3. (a) LpAq is a vector space over K.

(b) If A1 P DivpF q is such that A1 � A, then LpAq and LpA1q are isomorphic as vector
spaces over K.

Proof. (a) Let x, y P LpAq and a P K. For all P P PF :

vP px� ayq ¥ mintvP pxq, vP payqu � mintvP pxq, vP pyqu ¥ �vP pAq,

thus x� ay P LpAq by Remark 4(a).

(b) By hypothesis A � A1 � pzq with Z P F �. Consider the map

φ : LpAq Ñ F

x ÞÑ xz.

This is a K-linear map. Also, φpLpAqq � LpA1q since vP pxq ¥ �vP pA1 � pzqq �
�vP pA1q � vP pzq implies

vP pxzq � vP pxq � vP pzq ¥ �vP pA1q � vP pzq � vP pzq � �vP pA1q

and xz P LpA1q. In the same way, we can define

φ1 : LpA1q Ñ F

x ÞÑ xz�1,

which is another K-linear map. Its image is contained in LpAq. Since these two maps
are inverses of each other, φ is the desired isomorphism between LpAq and LpA1q.

Lemma 4. (a) Lp0q � K.

(b) If A   0, then LpAq � t0u.

Proof. (a) We know pxq � 0 for x P K�, which implies K � Lp0q. On the other hand, if
x P Lp0q is a non-zero element, then pxq ¥ 0. This means x has no poles, and thus
x P K by Corollary 2.



Chapter 1. Preliminaries 28

(b) Suppose there exists a non-zero x P LpAq. Then pxq ¥ �A ¡ 0, meaning x has at
least one zero, but no pole, which is impossible.

Our next objective will be to show that the dimension of LpAq as a K-vector spaces
is always finite.

Lemma 5. Let A,B P DivpF q with A ¤ B. Then LpAq � LpBq and

dimpLpBq{LpAqq ¤ degB � degA.

Proof. If x P LpAq, then pxq ¥ �A ¥ �B, and thus LpAq � LpBq. In order to prove the
other result, we may assume B � A�P for some prime divisor P P PF . Since we can reach
B from A by adding a finite number of prime divisors, the general case will then follow
by induction. Pick an element t P F such that vP ptq � vP pBq � vP pAq � 1. For x P LpBq:
vP pxq ¥ �vP pBq � �vP ptq, so vP pxtq ¥ 0 and xt P OP . Thus, we have a K- linear map

ψ : LpBq Ñ FP

x ÞÑ pxtqpP q.

Note that x P kerψ ðñ xt P P ðñ vP pxtq ¡ 0 ðñ vP pxq ¥ �vP pAq, since

vP pxtq � vP pAq � 1� vP pxq ¡ 0 ðñ vP pxq ¡ �vP pAq � 1 ðñ vP pxq ¥ �vP pAq,

meaning kerψ � LpAq. Therefore, ψ induces an injective K-linear map from LpBq{pAq to
FP , therefore

dimpLpBq{LpAqq ¤ dimFP � degP � degB � degA.

Proposition 5. For each A P DivpF q, LpAq is a finite-dimensional vector space over
K. More precisely, if A � A� � A� with positive divisors A� and A�, then dim LpAq ¤
degA� � 1.

Proof. Since A ¤ A�, LpAq � LpA�q and it is sufficient to show that dim LpA�q ¤
degA� � 1. A� being a positive divisor, we have 0 ¤ A� and Lemma 5 yields
dimpLpA�q{Lp0qq ¤ degA�. Since Lp0q � K, we conclude

dim LpA�q � dimpLpA�q{Lp0qq � 1 ¤ degA� � 1.

Definition 12. For A P DivpF q the integer ℓpAq :� dim LpAq is called the dimension of
the divisor A.
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Calculating the dimension of a divisor is a very important problem both in algebraic
function field theory and lattice construction. In order to build up to a result which will
allow us to compute this dimension, the Riemann-Roch Theorem, we start by proving the
following fact: an element x P F � has the same number of zeros and poles counted with
their multiplicities.

Theorem 6. All principal divisors have degree zero. More precisely, if x P F zK, then
degpxq0 � degpxq8 � rF : Kpxqs.

Proof. Take n :� rF : Kpxqs and

B :� pxq8 �
ŗ

i�1
�vPi

pxq degPi,

where P1, . . . , Pr are the poles of x. Then

degB �
ŗ

i�1
vPi
px�1q � degPi ¤ rF : Kpxqs � n

by Proposition 4. It only remains to show n ¤ degB. To this effect, choose a basis
u1, . . . , un of F |Kpxq and a divisor C ¥ 0 such that puiq ¥ �C for all i � 1, . . . , n. Given
an integer l ¡ 0, consider the elements xiuj for 0 ¤ i ¤ l and 1 ¤ j ¤ n. From pujq ¥ �C
and pxq ¥ �B, we have

pxiujq � i � pxq � pujq ¥ �iB � C ¥ �plB � Cq ùñ xiuj P LplB � Cq.

Furthermore, all xiuj are linearly independent over K, since u1, . . . , un are linearly indepen-
dent over Kpxq. Thus, ℓplB � Cq ¥ npl � 1q. Setting c :� degC and applying Proposition
5, we get npl � 1q ¤ ℓplB � Cq ¤ l � degB � c� 1, meaning

lpdegB � nq ¥ n� c� 1 (1.10)

for all l P N. Since the right side is independent of l, (1.10) is only possible when
degB ¥ n. This proves that degpxq8 � rF : Kpxqs, but since pxq0 � px�1q8, we conclude
degpxq0 � degpx�1q8 � rF : Kpx�1qs � rF : Kpxqs.

Definition 13. The degree of a function z P F zK is defined as

degpzq :� degpzq0 � degpzq8

and can be computed in the following ways:

degpzq �
¸

PPPF
vP pzq¡0

vP pzq � degP � 1
2

¸
PPPF

|vP pzq| � degP.

Definition 14. The positive integer γ :� mintrF : Kpxqs : x P F u is called the gonality
of F |K.
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In light of Theorem 6, the gonality can also be interpreted as the smallest degree
of a non-constant function of F .

Corollary 6. (a) Let A,A1 P DivpF q with A � A1. Then ℓpAq � ℓpA1q and degA �
degA1.

(b) If degA   0, then ℓpAq � 0.

(c) For A P DivpF q with degA � 0, the following are equivalent

1. A is a principal divisor.

2. ℓpAq ¥ 1.

3. ℓpAq � 1.

Proof. (a) ℓpAq � ℓpA1q follows from the fact that LpAq � LpA1q, as proved in Lemma
3. And from Theorem 6, for some x P F �: A � A1 � pxq ùñ degA � degA1 �
degppxqq � degA1.

(b) Suppose ℓpAq ¡ 0. Remark 4 implies there exists some divisor A1 ¥ 0 such that
A1 � A, hence degA � degA1 ¥ 0.

(c) p1q ñ p2q: if A � pxq, then px�1q � �A and x�1 P LpAq, so ℓpAq ¥ 1.
p2q ñ p3q: suppose degA � 0 and ℓpAq ¥ 1. By Remark 4(b), A � A1 for some
A1 ¥ 0. The conditions A1 ¥ 0 and degA1 � 0 imply A1 � 0. Therefore, ℓpAq �
ℓpA1q � ℓp0q � 1.
p3q ñ p1q: Suppose degA � 0 and ℓpAq � 1. Take a non-zero z P LpAq, then
pzq � A ¥ 0. Seeing as degppzq � Aq � degppzqq � degA � 0, it follows that
pzq � A � 0 and A � �pzq � pz�1q and A is principal.

Example 2. Consider the rational function field F � Kpxq. For a non-zero z P Kpxq, we
have z � a � fpxq{gpxq with a P K�, fpxq, gpxq P Krxs monic ans relatively prime with

fpxq �
r¹

i�1
pipxqri , gpxq �

s¹
j�1

qjpxqmj

where pipxq, qjpxq P Krxs are pairwise distinct, irreducible and monic. Then pzq P DivpF q
has the form

pzq �
ŗ

i�1
niPpipxq �

ş

j�1
mjPqjpxq � pdeg gpxq � deg fpxqqP8.

Therefore, in arbitrary function fields, the principal divisors can be considered as substitutes
for the decomposition into irreducible polynomials from the rational function field.
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For an arbitrary function field F |K, in Proposition 5 we have showed that

ℓpAq ¤ 1� degA (1.11)

for all A ¥ 0. However, (1.11) in fact holds for every divisor of positive degree. To
verify this, we may assume ℓpAq ¡ 0. Then A � A1 for some A1 ¥ 0 by Remark 4, so
ℓpAq � ℓpA1q ¤ 1� degA1 � 1� degA by Corollary 6.

Proposition 6. For all A P DivpF q there is a constant γ P Z, independent of A, such
that degA� ℓpAq ¤ γ.

Proof. Firstly, we observe that applying Lemma 5 for A1 ¤ A2 yields

degA1 � ℓpA1q ¤ degA2 � ℓpA2q. (1.12)

Fix x P F zK and set B :� pxq8. Like in the proof of Theorem 6, there exists a divisor
C ¥ 0 depending on x such that ℓplB � Cq ¥ pl � 1q � degB for all l ¥ 0. On the other
hand, ℓplB � Cq ¤ ℓplBq � degC according to Lemma 5. Combining these inequalities
produces

ℓplBq ¥ pl � 1q degB � degC � degplBq � rF : Kpxqs � degC.

In other words, degplBq � ℓplBq ¤ γ for all l ¡ 0 with some γ P Z. We wish to prove that
this inequality still holds if we substitute lB for any A P DivpF q with the same γ.

In order to achieve this, we first show that given A P DivpF q, there exists A1, D P
DivpF q and an integer l ¥ 0 such that A ¤ A1, A1 � D and D ¤ lB. Choose a positive
divisor A1 with A1 ¥ A. Then, for sufficiently large l,

ℓplB � A1q ¥ ℓplBq � degA1 ¥ degplBq � γ � degA1 ¡ 0,

where the first inequality follows from Lemma 5. Thus there is some non-zero z P LplB�A1q.
Setting D :� A1�pzq, we have proved the claim, since A1 � D and D ¤ A1�pA1� lBq �
lB.

Using this auxiliary result, the proposition follows:

degA� ℓpAq (1.12)¤ degA1 � ℓpA1q Cor.6� degD � ℓpDq (1.12)¤ degplBq � ℓplBq ¤ γ.

Definition 15. The genus g of a function field F |K is defined as

g :� maxtdegA� ℓpAq � 1 : A P DivpF qu.

Proposition 6 assures this definition makes sense. In fact, the genus is the single
most important invariant of a function field.
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Corollary 7. The genus g of F |K is a non-negative integer.

Proof. Taking A � 0 in the definition of g produces g ¥ degp0q � ℓp0q � 1 � 0.

Theorem 7 (Riemann’s Theorem). Let F |K be a function field of genus g. Then

(a) For all A P DivpF q, ℓpAq ¥ degA� 1� g.

(b) There is c P Z depending only on the function field such that ℓpAq � degA� 1� g if
degA ¥ c.

Proof. (a) Follows directly from the definition of the genus.

(b) Choose A0 P DivpF q with g � degA0�ℓpA0q�1 and set c :� degA0�g. If degA ¥ c,
then

ℓpA� A0q ¥ degpA� A0q � 1� g ¥ c� degA0 � 1� g � 1,

which means there is a non-zero z P ℓpA � A0q. Take A1 :� A � pzq, then A1 ¥ A0

and
degA� ℓpAq Cor.6� degA1 � ℓpA1q Lemma 5¥ degA0 � ℓpA0q � g � 1.

Therefore ℓpAq ¤ degA� 1� g.

Example 3. We will show the rational function field F � Kpxq has genus g � 0. Take
P8 the pole divisor of x and consider for r ¥ 0 the vector space LprP8q. For 0 ¤ i ¤ r we
have pxiq � i � pxq ¥ �iP8 ¥ �rP8, thus 1, x, . . . , xr P LprP8q. This observation yields

r � 1 ¤ ℓprP8q � degprP8q � 1� g � r � 1� g

if r is sufficiently large, implying g ¤ 0, and finally g � 0.

1.5 Functions Fields of Algebraic Curves
Up until now, we have studied functions fields as completely independent and

abstract mathematical objects. This section aims to establish the connection between the
theories of function fields and algebraic curves and provide different interpretations for
previously discussed concepts which will assist us during the construction of the Fermat
Function Field Lattice.

We begin by presenting some basic definitions from algebraic geometry.

Definition 16. Let K be a field. The n-dimensional affine space An � AnpKq is the set
of n-tuples of elements of K.
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If KrX1, . . . , Xns is the ring of polynomials in n variables over K, a subset V � An

is algebraic if there exists a set of polynomials M � KrX1, . . . , Xns such that

V � tP P An : F pP q � 0 for all F PMu.

Given an algebraic set V � An, the set of polynomials

IpV q � tF P KrX1, . . . , Xns : F pP q � 0 for all P P V u

is called the ideal of V . Evidently, it is an ideal of KrX1, . . . , Xns, and can be generated
by finitely many polynomials F1, . . . , Fr P KrX1, . . . , Xns. Thus

V � tP P An : F1pP q � � � � � FrpP q � 0u.

We denote the zero locus of these polynomials as V � V pF1, . . . , Frq. V is said to be
irreducible if it cannot be written as V � V1 Y V2 with V1, V2 proper algebraic subsets of
V . This corresponds to IpV q being a prime ideal. An irreducible algebraic set V � An is
called an affine variety.

Given an affine variety V , the residue class ring ΓpV q : KrX1, . . . , Xns{IpV q is
called the coordinate ring of V . Every f � F � IpV q P ΓpV q induces a function f : V Ñ K

by setting fpP q :� F pP q. Since IpV q is a prime ideal, ΓpV q is an integral domain and one
can consider the quotient field

KpV q :� QuotpΓpV qq,

called the function field of V . It contains K as a subfield and the dimension of V is the
transcendence degree of the field extension KpV q|K.

For a point P P V , define

OP pV q � tf P KpV q : f � g{h for g, h P ΓpV q and hpP q � 0u.

This is a local ring whose quotient field is KpV q, and unique maximal ideal is

MP pV q � tf P KpV q : f � g{h for g, h P ΓpV q, hpP q � 0 and gpP q � 0u.

OP pV q is called the local ring of V at P . For f � g{h P OP pV q, the value of f at P is
defined as fpP q :� gpP q{hpP q.

Definition 17. Take the set An�1ztp0, . . . , 0qu and define the equivalence relation � as

pa0, . . . , anq � pb0 . . . , bnq ðñ bi � λai for some λ P K�.

The equivalence class of pa0, . . . , anq with respect to � is denoted by pa0 : . . . : anq. The
n-dimensional projective space is the set of all equivalence classes

Pn � tpa0 : . . . : anq : ai P K, not all ai � 0u.
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A polynomial F P KrX0, . . . , Xns is said to be homogeneous of degree d if it is a sum
of monomials of the same degree d. An ideal I � KrX0, . . . , Xns generated by homogeneous
polynomials is called a homogeneous ideal.

Let P � pa0 : . . . : anq P Pn and let F P KrX0, . . . , Xns be a homogeneous polyno-
mial with degF � d. We say that F pP q � 0 if F pa0, . . . , anq � 0, which makes sense given
that

F pλa0, . . . , λanq � λd � F pa0, . . . , anq,
and thus F pa0, . . . , anq � 0 ðñ F pλa0, . . . , λanq � 0.

Projective algebraic sets, irreducibility and projective varieties are defined as in the
affine case.

Given a non-empty projective variety V � Pn, its homogeneous coordinate ring is

ΓHpV q :� KrX0, . . . , Xns{IpV q,

which is an integral domain containing K. An element f P ΓHpV q is called a form of
degree d if f � F � IpV q for some homogeneous F P KrX0, . . . , Xns with degF � d. The
function field of V is defined as

KpV q � tg{h : g, h P ΓHpV q are forms of the same degree and h � 0u.

Once again, the dimension of V is defined as the transcendence degree of KpV q|K. Given
f � g{h P KpV q, we can evaluate f at P � pa0 : . . . : anq P Pn by making f � pG �
IpV qq{pH � IpV qq, where G,H are polynomials of the same degree and setting fpP q �
Gpa0, . . . , anq{Hpa0, . . . , anq if HpP q � 0, since

Gpλa0, . . . , λanq
Hpλa0, . . . , λanq �

λd �Gpa0, . . . , anq
λd �Hpa0, . . . , anq �

Gpa0, . . . , anq
Hpa0, . . . , anq .

The ring
OP pV q � tf P KpV q : f is defined at P u

is a local ring with maximal ideal

MP pV q � tf P OP pV q : fpP q � 0u.

Given the two previous definitions, we notice that any projective variety can be
covered by affine varieties such that some properties are preserved. We do this in the
following way: for 0 ¤ i ¤ n, consider the mapping φi : An Ñ Pn given by

φipa0 : . . . : anq � pa0 : . . . : ai�1 : 1 : ai�1 : . . . : anq.

This is a bijection from An to Ui � tpc0 : . . . : cnq P Pn : ci � 0u, and Pn �
n¤

i�0
Ui, meaning

the n-dimensional projective space is covered (with overlap) by n� 1 copies of the affine
space An.
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Let V � Pn be a projective variety, then V �
n¤

i�0
pV X Uiq. Suppose V X Ui � H

and define
Vi :� φ�1

i pV X Uiq � An.

Vi is an affine variety whose ideal IpViq is given by

IpViq � tF pX0, . . . , Xi�1, 1, Xi�1, . . . , Xnq : F P IpV qu.

For convenience, we restrict ourselves to the case i � n and V X Un � H. The set
Hn � PnzUn � tpa0 : . . . : anq P Pn : an � 0u is called the hyperplane at infinity.

A notable consequence of this construction is that the function fields of the pro-
jective variety V and the affine variety Vn are isomorphic. Let f � g{h P KpV q, where
g, h P ΓHpV q are forms of the same degree and h � 0. Choose homogeneous poly-
nomials G,H P KrX0, . . . , Xns such that g � G � IpV q and h � H � IpV q. Define
G� :� GpX0, . . . , Xn�1, 1q, H� :� HpX0, . . . , Xn�1, 1q P KrX0, . . . , Xn�1s and denote their
residue classes in ΓpVnq by g� and h�, respectively. The isomorphism is given by

α : KpV q Ñ KpVnq
g

h
ÞÑ g�

h�
.

Under α, the local ring of a point P P V XUn is mapped onto the local ring of φ�1
n pP q P Vn,

hence the local rings are also isomorphic.

We can also construct the projective closure of an affine variety. In order to do that,
first consider a polynomial F � F pX0, . . . , Xn�1q P KrX0, . . . , Xn�1s of degree d. We can
turn it into a homogeneous polynomial of degree d in n� 1 variables by setting

F � :� Xd
n � F pX0{Xn, . . . , Xn�1{Xnq P KrX0, . . . , Xns.

Now consider an affine variety V � An and its corresponding ideal IpV q �
KrX0, . . . , Xn�1s. Define the projective variety V̄ as:

V̄ :� tP P Pn : F �pP q � 0 for all F P IpV qu.

The variety V̄ is called the projective closure of V . It is possible to recover V from V̄ by
the process we just outlined:

V � φ�1
n pV̄ X Unq � V̄n.

It follows that the function fields of V and V̄ are isomorphic, and both varieties have the
same dimension.

We now turn our attention to a specific class of maps between varieties.
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Definition 18. Let V � Pm and W � Pn be projective varieties. If F0, . . . , Fn P
KrX0, . . . , Xms are homogeneous polynomials such that

(a) F0, . . . , Fn have the same degree

(b) not all Fi are in IpV q

(c) HpF0, . . . , Fnq P IpV q for all H P IpW q.

Take a point Q P V such that FipQq � 0 for at least one i P t0, . . . , nu (by (b), such point
exists). Then, the point pF0pQq : . . . : FnpQqq P Pn lies in W by (c). If pG0, . . . , Gnq is
another n-tuple of polynomials satisfying (a), (b) and (c), we say that pF0, . . . , Fnq and
pG0, . . . , Gnq are equivalent if

(d) FiGj � FjGi P IpV q for all 0 ¤ i, j ¤ n.

The equivalence class of pF0, . . . Fnq with respect to this equivalence relation is ϕ �
pF0 : . . . : Fnq and ϕ is called a rational map from V to W .

A rational map ϕ � pF0 : . . . : Fnq is regular at the point P P V if there exist
homogeneous polynomials G0, . . . , Gn P KrX0, . . . , Xms such that ϕ � pG0 : . . . : Gnq and
GipP q � 0 for at least one i. Then we can set

ϕpP q � pG0pP q, . . . , GnpP qq P W,

which is well-defined by (a) and (d).

Two varieties V1 and V2 are birationally equivalent if there are rational maps
ϕ1 : V1 Ñ V2 and ϕ2 : V2 Ñ V1 such that ϕ1 � ϕ2 and ϕ2 � ϕ1 are the identity maps on the
points at which they are regular. Moreover, V1 and V2 are birationally equivalent if and
only if the function fields KpV1q and KpV2q are K-isomorphic.

A rational map ϕ : V Ñ W which is regular at all points P P V is called a morphism.
It is called an isomorphism if there is a morphism ψ : W Ñ V such that ϕ � ψ and ψ � ϕ
are the identity maps on W and V , respectively. In this case, the varieties V and W are
said to be isomorphic.

Definition 19. A projective (affine) algebraic curve V is a projective (affine) variety of
dimension 1. This implies that the field KpV q is an algebraic function field of one variable.

A point P P V is non-singular if the local ring OP pV q is a discrete valuation ring,
that is, a principal ideal domain with exactly one maximal ideal. In a given curve, there are
only finitely many singular points. The curve V is called non-singular if all of its points
are non-singular.



Chapter 1. Preliminaries 37

A plane affine curve is an affine curve V � A2. Its ideal IpV q � KrX0, X1s
is generated by a unique irreducible polynomial G P KrX0, X1s. Conversely, given an
irreducible polynomial G P KrX0, X1s, the set V � tP P A2 : GpP q � 0u is a plane affine
curve, and G generates IpV q. A point P P V is non-singular if and only of

BG
BX0

pP q � 0 or BG
BX1

pP q � 0.

Similarly, the ideal of a plane projective curve V � P2 is generated by an irreducible
homogeneous polynomial H P KrX0, X1, X2s. A point P P V is non-singular if at least one
of the partial derivatives of H at P is not zero.

If V � tP P A2 : GpP q � 0u is a plane affine curve with G P KrX0, X1s an
irreducible polynomial of degree d, then the projective closure of V̄ � P2 is the zero locus
of the homogeneous polynomial G� � Xd

2 �GpX0{X2, X1{X2q.

If we consider rational maps ϕ : V Ñ W between two projective curves, the
following hold

(a) ϕ is regular at all non-singular points of V . In particular, if V is non-singular, ϕ is a
morphism.

(b) If V is non-singular and ϕ is non-constant, then ϕ is surjective.

Singular points may present a problem when studying certain properties algebraic
curves. For this reason, we often make use of the non-singular model of a curve: given V a
projective curve, there exists a non-singular projective curve V 1 and a birational morphism
ϕ1 : V 1 Ñ V , that is, every projective curve is birationally equivalent to a non-singular
projective curve. The pair pV 1, ϕ1q is unique in the sense that if given another non-singular
curve V 2 and birational morphism ϕ2 : V 2 Ñ V , there exists a unique isomorphism
ϕ : V 1 Ñ V 2 such that ϕ1 � ϕ2 � ϕ. Therefore, the pair pV 1, ϕ1q is called the non-singular
model of V .

This is particularly useful when studying function fields. Since V and V 1 are
birationally equivalent, they have isomorphic function fields. This means one can always
consider the non-singular model of any given curve, eliminating the problem of singular
points.

The following theorem establishes a very important link between the theory of
algebraic curves and the theory of algebraic function fields.

Theorem 8. Let F |K be an algebraic function field of one variable. There exists a
non-singular projective curve V such that KpV q is (K-isomorphic to) F .
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Proof. One can construct V as follows: choose x, y P F such that F � Kpx, yq (every
algebraic function field is an extension of the rational function field). Let GpX, Y q P
KrX, Y s be the irreducible polynomial with Gpx, yq � 0. Let W � tP P A2 : GpP q � 0u
and W̄ � P2 be the projective closure of W . Then, denoting by V the non-singular model
of W̄ , it follows that KpV q � F .

Let V be a non-singular projective curve with KpV q � F . There is a 1 � 1
correspondence between the points P P V and the places of F |K, given by P ÞÑMP pV q,
the maximal ideal of the local ring OP pV q. In particular, the points in the set

V pKq � V X PnpKq � tpa0 : . . . : anq P V : ai P K for all i � 0, . . . , nu,

called K-rational points of V each correspond to a rational place of F .

These correspondences allow us to translate some concepts of function fields over
to algebraic curves and vice versa. For example

• The genus g of an algebraic curve is the same as the genus of its function field.

• If V is non-singular, a divisor of V is a formal sum of points D �
¸

PPV

nPP , where

nP P Z, almost all nP � 0. The degree of D is degD �
¸

PPV

nP .

• The order of a function f P KpV q at a point P P V is defined to be vP pfq, where vP

denotes the discrete valuation of KpV q corresponding to the valuation ring OP pV q.

• The principal divisor pfq of a non zero function f P KpV q is pfq �
¸

PPV

vP pfqP . The

degree of a principal divisor is 0.

• For D P DivpV q, the space LpDq is defined as in the function field case

LpDq � tf P KpV q : pfq ¥ �Du Y t0u.

It is a finite-dimensional K-vector space, whose dimension ℓpDq will be the main
focus of the next section.

1.6 The Riemann-Roch Theorem
For this section, we always assume F |K is an algebraic function field with genus g.

Definition 20. For A P DivpF q, the integer ipAq :� ℓpAq � degA � g � 1 is called the
index of specialty of A.

Theorem 7 states ipAq is a non-negative integer and ipAq � 0 if degA is sufficiently
large.
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Definition 21. An adele of F |K is a mapping

α : PF Ñ F

P ÞÑ αP ,

such that αP P OP for almost all P P PF . We consider an adele an element of the direct
product

¹
PPPF

F and use the notations α � pαP qPPPF
or α � pαP q. The set

AF :� tα : α is an adele of F |Ku

is called the adele space of F |K. Is will always be regarded as a vector space over K with
operations defined in the usual way.

The principal adele of an element x P F is the adele where all components are equal
to x. Since x has only finitely many poles, only finitely many components of the adele will
not be in OP , hence this definition makes sense. This gives us an embedding F ãÑ AF .
Valuations from F are also naturally extended to AF by setting vP pαq � vP pαP q, where αP

is the P -component of the adele α. From the definition, vP pαq ¥ 0 for almost all P P PF .

Definition 22. For A P DivpF q, we define the adele space of A as

AF pAq :� tα P AF : vP pαq ¥ �vP pAq for all P P PF u.

This is a K-subspace of AF .

Theorem 9. For every A P DivpF q, the index of specialty is

ipAq � dimpAF {pAF pAq � F qq.

Note that even though F, AF and AF pAq are infinite-dimensional vector spaces
over K, the theorem states the dimension of the quotient space AF {pAF pAq � F q over K
is finite.

Proof. First we prove that given A1, A2 P DivpF q with A1 ¤ A2, then AF pA1q � AF pA2q
and

dimpAF pA2q{AF pA1qq � degA2 � degA1. (1.13)

The first claim is evident, since α P AF pA1q implies for all P P PF :

vP pαq ¥ �vP pA1q ¥ �vP pA2q ùñ α P AF pA2q.

For the second claim, as in the proof of Lemma 5, we only need to establish a proof for
the case A2 � A1 � P, P P PF and the general case will follow by induction. Choose t P F
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such that vP ptq � vP pA2q � vP pA1q � 1 and consider the K-linear map

φ : AF pA2q Ñ FP

α ÞÑ ptαP qpP q.

Note that α P kerφ ðñ vP ptαP q ¡ 0 ðñ vP pαq ¥ �vP pA1q, since

vP ptαP q � vP pA1q�1�vP pαP q ¡ 0 ðñ vP pαP q ¡ �vP pA1q�1 ðñ vP pαq ¥ �vP pA1q,

meaning kerφ � AF pA1q. Furthermore, φ is surjective: take x P OP and define the adele

αQ �
$&
%
t
�vQpA2q�1
Q , if Q � P

x

t
, if Q � P

where tQ is a Q-prime element. For Q � P , we have

vQpαQq � vQ

�
t
�vQpA2q�1
Q

	
� �vQpA2q � 1 ¥ �vQpA2q,

and for Q � P

vP pαP q � vP pxq � vP ptq � vP pxq � vP pA2q ¥ �vP pA2q,

since vP pxq ¥ 0. Thus, α P AF pA2q and φpαq � xpP q. We then conclude that
AF pA2q{AF pA1q � FP and dimpAF pA2q{AF pA1qq � degP � degA2 � degA1.

Now we prove that if A1, A2 P DivpF q and A1 ¤ A2, then

dimppAF pA2q � F q{pAF pA1q � F qq � pdegA2 � ℓpA2qq � pdegA1 � ℓpA1qq. (1.14)

In order to prove this, consider the following sequence of linear mappings

0 Ñ LpA2q{LpA1q σ1Ñ AF pA2q{AF pA1q σ2Ñ pAF pA2q � F q{pAF pA1q � F q Ñ 0, (1.15)

where

σ1 : LpA2q{LpA1q Ñ AF pA2q{AF pA1q
x� LpA1q ÞÑ x�AF pA1q

and

σ2 : AF pA2q{AF pA1q Ñ pAF pA2q � F q{pAF pA1q � F q
x�AF pA1q ÞÑ x� pAF pA1q � F q.

It follows directly from the definitions that σ1 is injective and σ2 is surjective. We now
wish to show that Impσ1q � kerpσ2q.

Take α P AF pA2q with σ2pα�AF pA1qq � 0. Then α P AF pA1q�F and there is some
x P F with α�x P AF pA1q. Since AF pA1q � AF pA2q, we conclude x P AF pA2qXF � LpA2q.
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Therefore, α � AF pA1q � x � AF pA1q � σ1px � LpA1qq and α P Impσ1q. On the other
hand, if y P Impσ1q, then y � x�AF pA1q, but x�AF pA1q P AF pA1q�F . Thus σ2pyq � 0
and Impσ1q � kerpσ2q. This means the sequence (1.15) is exact and by using (1.13), we
conclude

dimppAF pA2q � F q{pAF pA1q � F qq � dimpAF pA2q{AF pA1qq � dimpLpA2q{LpA1qq
� pdegA2 � degA1q � pℓpA2q � ℓpA2qq.

Next we prove that if B is a divisor with ℓpBq � degB�1�g, then AF � AF pBq�F .
Observe that for B1 ¥ B, Lemma 5 yields

ℓpB1q ¤ degB1 � ℓpBq � degB � degB1 � 1� g.

Riemann’s Theorem then shows that

ℓpB1q � degB1 � 1� g for each B1 ¥ B. (1.16)

Let α P AF . We can find a divisor B1 ¥ B such that α P AF pB1q. By (1.14) and (1.16)

dimppAF pB1q � F q{pAF pBq � F qq � pdegB1 � ℓpB1qq � pdegB � ℓpBqq
� pg � 1q � pg � 1q � 0.

This means AF pB1q � F � AF pBq � F , and thus, α P AF pBq, proving our claim.

We are now ready to finish the proof. Take an arbitrary divisor A. By Theorem
7(b), there exists some A1 ¥ A such that ℓpA1q � degA1 � 1� g, then AF � AF pA1q � F .
Applying (1.14)

dimpAF {pAF pAq � F qq � dimppAF pA1q � F q{pAF pAq � F qq
� pdegA1 � ℓpA1qq � pdegA� ℓpAqq
� pg � 1q � ℓpAq � degA � ipAq.

This theorem can be restated as follows: for all A P DivpF q

ℓpAq � degA� 1� g � dimpAF {pAF pAq � F qq.

As a corollary, we obtain another characterization for the genus.

Corollary 8. g � dimpAF {pAF p0q � F qq.

Proof. ip0q � ℓp0q � degp0q � g � 1 � 1� 0� g � 1 � g.

We now introduce the concept of Weil differentials, which will provide a second
interpretation of the index of specialty of a divisor.
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Definition 23. A Weil differential of F |K is a K-linear map ω : AF Ñ K that vanishes
on AF pAq � F for some divisor A P DivpF q. The set

ΩF :� tω : ω is a Weil differential of F |Ku

is called the module of Weil differentials of F |K. For A P DivpF q let

ΩF pAq :� tω P ΩF : ω vanishes on AF pAq � F u.

We observe that ΩF is a K-vector space. Indeed, if ω1 vanishes on AF pA1q �F and
ω2 vanishes on AF pA2q � F , the ω1 � ω2 vanishes on AF pA3q � F for any A3 P DivpF q
with A3 ¤ A1 and A3 ¤ A2. Also, aω1, a P K vanishes on AF pA1q � F . With this, we
regard ΩF pAq a K-subspace of ΩF .

Lemma 6. For A P DivpF q, we have dim ΩF pAq � ipAq.

Proof. Let L denote the set of K-linear maps from AF {pAF pAq � F q to K and define

ψ : ΩF pAq Ñ L

ω ÞÑ ω1,

where ω1pα�pAF pAq�F qq � ωpαq for α P AF . From the definition of ΩF pAq, ψ is K-linear
and bijective. Thus, ΩF pAq � L. Since dim ΩF pAq � dimL � dimpAF {pAF pAq � F qq �
ipAq by Theorem 9, our lemma follows.

A direct consequence of this lemma is that ΩF � H. Choose A P DivpF q with
degA ¤ �2. Then

dim ΩF pAq � ipAq � ℓpAq � degA� g � 1 � 0� 2� g � 1 � g � 1 ¥ 1,

hence ΩF pAq � H.

Definition 24. For x P F and ω P ΩF , we define xω : AF Ñ K by pxωqpαq :� ωpxαq.

xω is indeed a Weil differential of F |K, since if ω vanishes on AF pAq � F , then xω
vanishes on AF pA� pxqq �F . This definition gives ΩF the structure of a vector space over
F .

Proposition 7. ΩF is a one-dimensional vector space over F .

Proof. Choose a non-zero ω1 P ΩF . We must show that for any non-zero ω2 P ΩF there
exists some z P F such that ω2 � zω1. Choose A1, A2 P DivpF q such that ω1 P ΩF pA1q
and ω2 P ΩF pA2q. For a divisor B, consider the K-linear injective maps

φi : LpAi �Bq Ñ ΩF p�Bq
x ÞÑ xωi.
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We claim that for an appropriate choice of B, Impφ1qX Impφ2q � t0u. From linear algebra,
we know that if U1, U2 are subspaces of a finite-dimensional vector space V , then

dimpU1,XU2q ¥ dimU1 � dimU2 � dim V. (1.17)

Applying Riemann’s Theorem, let B ¡ 0 be of sufficiently large degree such that

ℓpAi �Bq � degpAi �Bq � 1� g.

Set Ui :� Impφiq � ΩF p�Bq. From the fact that

dim ΩF p�Bq � ip�Bq � ℓp�Bq � degp�Bq � g � 1 � degB � 1� g,

we obtain

dimU1 � dimU2 � dim ΩF p�Bq � degpA1 �Bq � degpA2 �Bq � degB � 3p1� gq
� degB � pdegA1 � degA2 � 3p1� gqq.

Thus, if degB is sufficiently large, dimU1�dimU2�dim ΩF p�Bq ¡ 0. By (1.17), it follows
that U1 X U2 � t0u, proving the claim.

Having proved this intermediate result, the proposition now easily follows: choose
x1 P LpA1 �Bq and x2 P LpA2 �Bq such that x1ω1 � x2ω2 � 0. Then ω2 � px1x

�1
2 qω1 as

desired.

We now wish to attach a divisor to each non-zero Weil differential. To this end, for
a fixed ω P ΩF , define the set of divisors

Mpωq :� tA P DivpF q : ω vanishes on AF pAq � F u.
Lemma 7. Let 0 � ω P ΩF . There is a uniquely determined divisor W PMpωq such that
A ¤ W for all A PMpωq.

Proof. Riemann’s Theorem states there is a constant c depending only on the function field
F |K such that ipAq � 0 for all A P DivpF q with degA ¥ c. Since ipAq � dimpAF {pAF pAq�
F qq, we have that degA   c for all A P Mpωq. This means we can choose a divisor
W PMpωq of maximal degree.

Suppose W does not have the desired property. Then there exists a divisor A0 P
Mpωq with A0 ¦ W , that is, vQpA0q ¡ vQpW q for some Q P PF . We claim that if this
is the case, then W �Q P Mpωq, which would contradict the maximality of W . Indeed,
consider the adele α � pαP q P AF pW �Qq. Writing α � α1 � α2 with

α1P �
#
αP for P � Q

0 for P � Q
and α2P �

#
0 for P � Q

αQ for P � Q.

Then α1 P AF pW q and α2 P AF pA0q, therefore ωpαq � ωpα1q � ωpα2q � 0. Hence ω

vanishes on AF pW � Qq � F , proving that W � Q P Mpωq. The uniqueness of W is a
direct consequence of its properties.
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The preceding lemma now allows us to make the following definitions:

Definition 25. (a) The divisor pωq of a Weil differential ω � 0 is the uniquely deter-
mined divisor of F |K such that

1. ω vanishes on AF ppωqq � F

2. if ω vanishes on AF pAq � F , then A ¤ pωq.

(b) For 0 � ω P ΩF and P P PF , we define vP pωq :� vP ppωqq.

(c) A place P is a zero of ω if vP pωq ¡ 0, and it is a pole of ω if vP pωq   0. The Weil
differential is said to be regular at P if vP pωq ¥ 0, and ω is said to be regular if it is
regular for all P P PF .

(d) A divisor W is called a canonical divisor of F |K if W � pωq for some ω P ΩF .

Remark 5. From the preceding definitions, it follows that

ΩF pAq � tω P ΩF : ω � 0 or pωq ¥ Au and ΩF p0q � tω P ΩF : ω is regularu.

As a consequence of Lemma 6 and the definition of the index of specialty, we have

dim ΩF p0q � g.

Proposition 8. (a) For x P F � and 0 � ω P ΩF we have pxωq � pxq � pωq.

(b) Any two canonical divisors of F |K are equivalent.

Proof. (a) If ω vanishes on AF pAq�F , then xω vanishes on AF pA�pxqq�F , consequently
pωq � pxq ¤ pxωq. In the same manner, pxωq � px�1q ¤ px�1xωq � pωq. Combining
these inequalities:

pωq � pxq ¤ pxωq ¤ �px�1q � pωq � pωq � pxq.

(b) Given ω1, ω2 P ΩF two non-zero Weil differentials, Proposition 7 implies ω2 � xω1

for some x P F . By item (a): pω2q � pxq � pω1q and pω1q � pω2q.

From this proposition we conclude that all the canonical divisors of F |K are in the
same class rW s in the divisor class group ClpF q. Such class is called the canonical class of
F |K.
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Theorem 10 (Duality Theorem). Let A be any divisor of F |K and W � pωq be a canonical
divisor of F |K. The mapping

µ : LpW � Aq Ñ ΩF pAq
x ÞÑ xω

is an isomorphism of K-vector spaces. In particular, ℓpW � Aq � ipAq.

Proof. For x P LpW � Aq, we have pxωq � pxq � pωq ¥ �pW � Aq � W � A, hence
xω P ΩF pAq by Remark 5 and µ is well-defined. It is evident that µ is K-linear and
injective. In order to prove it is also surjective, take ω1 P ΩF pAq. By Proposition 7,
ω1 � xω for some x P F . Since

pxq �W � pxq � pωq � pxωq � pω1q ¥ A,

we get pxq ¥ �pW � Aq, so x P LpW � Aq and ω1 � µpxq. We have thus proved that
dim LpW � Aq � dim ΩF pAq. Applying Lemma 6, the result follows.

A direct implication of the Duality Theorem is the Riemann-Roch Theorem, the
most important theorem in the theory of algebraic function fields.

Theorem 11 (Riemann-Roch Theorem). If W is a canonical divisor of F |K and A P
DivpF q, then

ℓpAq � degA� 1� g � ℓpW � Aq.

Corollary 9. For a canonical divisor W , degW � 2g � 2 and ℓpW q � g.

Proof. Applying the Riemann-Roch Theorem for A � 0, Lemma 4 yields

1 � ℓp0q � deg 0� 1� g � ℓpW � 0q ùñ ℓpW q � g.

Setting A � W , we obtain

g � ℓpW q � degW � 1� g � ℓpW �W q � degW � 2� g ùñ degW � 2g � 2.

Riemann’s Theorem shows the existence of some constant c such that ipAq � 0
whenever degA ¥ c. We can now give a more precise description of this constant.

Theorem 12. If A P DivpF q is such that degA ¥ 2g � 1, then ℓpAq � degA� 1� g.

Proof. Since degA ¥ 2g � 1 and degW � 2g � 2 for a canonical divisor W , we have

degpW � Aq � degW � degA ¤ 2g � 2� p2g � 1q � �1   0.

By Corollary 6, we conclude that ℓpW �Aq � 0. Applying the Riemann-Roch Theorem, it
follows that ℓpAq � degA� 1� g.
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It is worth noting that the bound 2g � 1 is the best possible, as for a canonical
divisor W

ℓpW q ¡ degW � 1� g

by Corollary 9.

We shall now explore several consequences of the Riemann-Roch Theorem. Our
first aim is to show that this theorem characterizes both the genus and the canonical class
of F |K.

Proposition 9. If g0 P Z and W0 P DivpF q satisfy

ℓpAq � degA� 1� g0 � ℓpW0 � Aq (1.18)

for all A P DivpF q, then g0 � g and W0 is a canonical divisor.

Proof. Setting A � 0 in (1.18) yields ℓpW0q � g0, and setting A � W0, degW0 � 2g0 � 2.
Let W be a canonical divisor of F |K and choose A P DivpF q such that degA ¡ maxt2g�
2, 2g0 � 2u. Theorem 12 implies ℓpAq � degA � 1 � g. Since degpW0 � Aq   0, we have
ℓpW0 � Aq � 0 and by (1.18): ℓpAq � degA� 1� g0. Thus, g � g0. Finally, substituting
A � W in (1.18):

g � p2g � 2q � 1� g � ℓpW0 �W q ùñ ℓpW0 �W q � 1.

Since degpW0�W q � p2g0� 2q� p2g� 2q � 0, W0�W is principal according to Corollary
6, so W0 � W and W0 is canonical.

Proposition 10. A divisor B is canonical if and only if degB � 2g � 2 and ℓpBq ¥ g.

Proof. The forward direction has already been proven. Now suppose degB � 2g � 2 and
ℓpBq ¥ g. Choose a canonical divisor W , then

g ¤ ℓpBq � degB � 1� g � ℓpW �Bq � g � 1� ℓpW �Bq.
Thus, ℓpW � Bq ¥ 1. The fact that degpW � Bq � 0 now implies W � B by Corollary
6.

Proposition 11. A function field F |K is rational if and only if F |K has genus 0 and
there is some A P DivpF q with degA � 1.

Proof. pñq: proven in Example 3.
pðq: Let g � 0 and degA � 1. Then degA ¥ 2g � 1 and ℓpAq � degA � 1 � g � 2 by
Theorem 12. Thus A1 � A for some A1 ¥ 0 by Remark 4(b). Since ℓpA1q � 2, there exists
some x P LpA1qzK, so pxq � 0 and A1 � pxq ¥ 0. As A1 ¥ 0 and degA1 � 1, this is only
possible if A1 � pxq8. Now

rF : Kpxqs � degpxq8 � degA1 � 1

by Theorem 6, so F � Kpxq.
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Remark 6. There exist non-rational function fields of genus 0, although these cannot
have a divisor of degree 1 by the preceding proposition. However, if K is algebraically
closed or finite, there will always exist a divisor of degree 1. Hence, in these cases, g � 0
is equivalent to F |K being rational.

Next, we give an improved version of the Weak Approximation Theorem.

Theorem 13 (Strong Approximation Theorem). Let S � PF and P1, . . . , Pr P S. Given
x1, . . . , xr P F and n1, . . . , nr P Z, there is an element x P F such that vPi

px� xiq � ni for
i � 1, . . . , r and vP pxq ¥ 0 for P P SztP1, . . . , Pru.

Proof. Take the adele α � pαP qPPPF
with

αP �
#
xi for P � Pi

0 otherwise.

Choose Q P PF zS. For a sufficiently large m P N

AF � AF

�
mQ�

ŗ

i�1
pni � 1qPi

�
� F

by Theorems 9 and 12. So there is an element z P F with z�α P AF

�
mQ�

ŗ

i�1
pni � 1qPi

�
.

This means

vPi
pz � xiq ¡ ni for i � 1, . . . , r and

vP pzq ¥ 0 for P P SztP1, . . . , Pru. (1.19)

Now we choose y1, . . . , yr P F with vPi
pyiq � ni. In the same manner we construct y P F

with

vPi
pz � xiq ¡ ni for i � 1, . . . , r and (1.20)
vP pzq ¥ 0 for P P SztP1, . . . , Pru. (1.21)

Then for i � 1, . . . , r
vPi
pyq � vPi

ppy � yiq � yiq � ni (1.22)

by (1.20) and the Strict Triangle Inequality. Setting x �: y � z, we get

vPi
px� xiq � vPi

py � pz � xiqq � ni

by (1.22). For P P SztP1, . . . , Pru, vP pxq � vP py � zq ¥ 0 by (1.19) and (1.21).

Proposition 12. Let P P PF and n P N with n ¥ 2g. There exists an element x P F such
that pxq8 � nP .
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Proof. By Theorem 12, we know ℓppn � 1qP q � pn � 1q degP � 1 � g and ℓpnP q �
n �degP �1�g hence, Lppn�1qP q � LpnP q. Thus every element x P LpnP qzLppn�1qP q
has pole divisor nP .

Definition 26. Let P P PF . An integer n ¥ 0 is called a pole number of P if there is an
element x P F such that pxq8 � nP . Otherwise, n is called a gap number of P .

From the previous proposition, n is a pole number of P if and only if ℓpnP q ¡
ℓppn� 1qP q. Moreover, the set of pole numbers of P is a sub-semigroup of the additive
semigroup N, since px1x2q8 � pn1 � n2qP if pxq8 � n1P and px2q8 � n2P .

Theorem 14 (Weierstrass Gap Theorem). Let F |K be a function field of genus g ¡ 0 and
P P PF with degP � 1. Then there are exactly g gap numbers i1   � � �   ig of P where
i1 � 1 and ig ¤ 2g � 1.

Proof. By Proposition 12, each gap number of P is bounded above by 2g � 1 and 0 is a
pole number. We can characterize gap number by the following equivalence

i is a gap number of P ðñ Lppi� 1qP q � LpiP q.

Take the sequence of vector spaces

K � Lp0q � LpP q � � � � � Lpp2g � 1qP q, (1.23)

where dim Lp0q � 1 and dim Lpp2g�1qP q � g according to Theorem 12. Applying Lemma
5, we observe that for all i

dim LpiP q ¤ dim Lppi� 1qP q � 1,

so in (1.23) there are exactly g� 1 numbers 1 ¤ i ¤ 2g� 1 such that Lppi� 1qP q � LpiP q.
The remaining g numbers are the pole numbers of P . In order to show that 1 is a gap
number, suppose the converse, that is, 1 is a pole number of P . But since the pole numbers
form an additive subgroup, this would imply every n P N is a pole number of P and there
are no gaps, a contradiction since g ¡ 0.

Remark 7. If K is algebraically closed, it can be shown that almost all places of F |K have
the same gap sequence. Such places are called ordinary places of F |K. The non-ordinary
places are called Weierstrass points of F |K. If g ¥ 2, there exists at least one Weierstrass
point.

If A is a divisor of negative degree, we know that LpAq � t0u and ℓpAq � 0. On
the other hand, if degA ¡ 2g � 2 then ℓpAq � degA� 1� g. So ℓpAq depends on degA
and g in these cases. We shall now consider the case where 0 ¤ degA ¤ 2g � 2, which is
significantly more complex.
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Definition 27. A divisor A P DivpF q is called non-special if ipAq � 0. Otherwise A is
called special.

Remark 8. (a) A is non-special ðñ ℓpAq � degA� 1� g.

(b) degA ¡ 2g � 2 ùñ A is non-special.

(c) A being special or non-special depends only on the class rAs on the divisor class
group.

(d) Canonical divisors are special.

(e) Every divisor A with ℓpAq ¡ 0 and degA   g is special.

(f) If A is non-special and B ¥ A, then B is non-special.

Proof. (a) Direct consequence of the definition of ipAq.

(b) This is a restatement of Theorem 12.

(c) Follows from the fact if A1 � A, then degA � degA1 and ℓpAq � ℓpA1q.

(d) For a canonical divisor W , ipW q � ℓpW �W q � 1 from the Duality Theorem, hence
W is special.

(e) 1 ¤ ℓpAq � degA� 1� g � ipAq ùñ ipAq ¥ g � degA ¡ 0, since degA   g.

(f) Bt Theorem 9, A is non-special ðñ AF � AF pAq � F . If B ¥ A, we know
AF pAq � AF pBq, so the claim follows.

Proposition 13. Suppose T � PF is a set of rational places with |T | ¥ g. Then there
exists a non-special divisor B ¥ 0 with degB � g and suppB � T .

Proof. First we prove that given g distinct places p1, . . . , pg P T and a divisor A ¥ 0 with
ℓpAq � 1 and degA ¤ g � 1, there is an index j P t1, . . . , gu such that ℓpA� Pjq � 1.

Suppose the claim is false, that is, ℓpA� Pjq ¡ 1 for all j. Then there are elements
zj P LpA� PjqzLpAq. Since

vPj
pzjq � �vPj

pAq � 1 and vPi
pzjq ¥ �vPi

pAq for i � j,

the Stirct Triangle Inequality implies there are g � 1 elements 1, z1, . . . , zg are linearly
independent over K. Pick a divisor D ¥ A � P1 � � � � � Pg with degD � 2g � 1. Then
1, z1, . . . , zg P LpDq, hence ℓpDq ¥ g � 1. On the other hand, ℓpDq � degD � 1 � g � g

by the Riemann-Roch Theorem, a contradiction.
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Using this claim we find divisors 0   Pi1   Pi1 � Pi2   � � �   Pi1 � � � Pig :� B

with iv P t1, . . . , gu not necessarily distinct such that ℓpPi1� � � ��Pijq � 1 for j � 1, . . . , g.
In particular ℓpBq � 1. The divisor B is non-special since

degB � 1� g � g � 1� g � 1 � ℓpBq

according to Remark 8(a).

Lemma 8. If A and B are divisors with ℓpAq ¡ 0 and ℓpBq ¡ 0, then

ℓpAq � ℓpBq ¤ 1� ℓpA�Bq.

Proof. Since ℓpAq ¡ 0 and ℓpBq ¡ 0, we can find A0, B0 ¥ 0 with A � A0 and B � B0.
Consider the set

X :� tD P DivpF q : D ¥ A0 and LpDq � LpA0qu.

We have X � H since A0 P X. Furthermore, degD ¥ 0 for all D P X, so there must be
D0 P X of minimal degree. It follows that

ℓpD0 � P q   ℓpD0q for all P P PF . (1.24)

We wish to show that
ℓpD0q � ℓpB0q ¤ 1� ℓpD0 �B0q, (1.25)

since the lemma follows immediately from this:

ℓpAq � ℓpBq � ℓpD0q � ℓpB0q ¤ 1� ℓpD0 �B0q
¤ 1� ℓpA0 �B0q
¤ 1� ℓpA�Bq.

In order to prove (1.25), we make the additional assumption that K is infinite. It will later
be shown in this text that the lemma still holds for finite fields. Let suppB0 � tP1, . . . , Pru.
Then LpD0 �Piq is a proper subspace of LpD0q for every i � 1, . . . , r. Since a vector space
over an infinite field is not the union of finitely many proper subspaces, we find an element

z P LpD0qz
r¤

i�1
LpD0 � Piq.

Consider the K-linear map

φ : LpB0q Ñ LpD0 �B0q{LpA0q
x ÞÑ xz � LpA0q.

We wish to show that kerφ � K. The inclusion K � kerφ follows directly from the fact
that LpD0q � LpA0q is a K-vector space. In order to show kerφ � K, we first prove that
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vPi
pzq � �vPi

pD0q for all i � 1, . . . , r. Indeed, z P LpD0q ùñ vP pzq ¥ �vP pD0q for all
P P PF . In particular,

vPi
pzq ¥ �vPi

pD0q for all i � 1, . . . , r.

Supposing that vPk
pzq ¡ �vPk

pD0q for some k � 1, . . . , r, we get:

vPk
pzq ¡ �vPk

pD0q ùñ vPk
pzq ¥ �vPk

pD0q � 1 � �pvPk
pD0q � 1q � �vPk

pD0 � Pkq.

Since vQpD0q � vQpD0�Pkq for Q � Pk, it follows that z P LpD0�Pkq, which contradicts
our choice of z.

Now, given x P LpB0qzK, we show that xz R LpA0q. If x P LpB0q, we know that
vP pxq ¥ 0 for all P R supppB0q. And seeing as x R K, x has at least one pole P 1 P PF

where vP 1pxq   0. Combining these two observations, we conclude that P 1 P supppB0q,
that is, P 1 � Pj for some j � 1, . . . , r. Therefore,

vPj
pxzq � vPj

pxq � vPj
pzq   vPj

pzq � �vPj
pD0q,

which implies xz R LpD0q � LpA0q. Hence, kerφ � K and

ℓpB0q � 1 ¤ ℓpD0 �B0q � ℓpA0q,

proving (1.25) an our lemma.

Theorem 15 (Clifford’s Theorem). For all divisors A with 0 ¤ degA ¤ 2g � 2

ℓpAq ¤ 1� 1
2 � degA.

Proof. If ℓpAq, the theorem follows immediately. Likewise, if ℓpW � Aq � 0 for some
canonical divisor W , then

ℓpAq � degA� 1� g � 1� 1
2 degA� 1

2pdegA� 2gq   1� 1
2 degA,

since degA ¤ 2g� 2. Finally, if ℓpAq ¡ 0 and ℓpW �Aq ¡ 0, we apply Lemma 8 to obtain

ℓpAq � ℓpW � Aq ¤ 1� ℓpW q � 1� g.

On the other hand,
ℓpAq � ℓpW � Aq � degA� 1� g.

Adding these equations finishes the proof.
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1.7 Equivalent Formulations of the Riemann-Roch Problem
This section is mostly based on chapter 3 of (GOPPA, 1988), although some results

are stated slightly differently in order to facilitate their use in later chapters.

Having studied the Riemann-Roch space of a divisor in the case of algebraic function
fields, we now use the definitions and results of Section 1.5 to re-frame the problem of
describing this vector space in the context of algebraic curves and present some results
that will be helpful when constructing the Fermat Function Field Lattice.

Up until now, we have studied how to compute the dimension ℓpDq of the Riemann-
Roch space associated with a divisor D. There are, however, two problems equivalent
to this which when investigated will not only yield different ways to compute ℓpDq, but
produce an explicit base for LpDq in some cases.

Let F be a projective curve over a field K and D a divisor of F . The Riemann-Roch
problem is equivalent to finding all effective divisors D1 which are linearly equivalent to D:
D1 � D � pfq for some f P KpFq. Since D1 is effective, D � pfq ¥ 0 and hence pfq ¥ �D.
The set of functions f whose divisors satisfy this inequality is exactly LpDq.

The other formulation of the problem deals with intersections of algebraic curves.
In order to state it, we first define the intersection divisor of two curves:

Definition 28. Let F , G be two algebraic curves and Q be a non-singular point on both
curves. The positive integer IpF X G, Qq denotes the intersection multiplicity of F and G
at Q. In addition, if F is not a component of G, then F X G � tQ1, . . . , Qmu and

F � G :�
m̧

i�1
IpF X G, Qiq �Qi

is the intersection divisor of F and G. In this case, we say that F ‘cuts out’ the divisor
F � G on G.

Let f0, . . . , fr�1 be linearly independent forms of the same degree, λ0, . . . , λr�1 P K
and consider the following equation, called a linear system of curves

λ0f0pX, Y, Zq � � � � � λr�1fr�1pX, Y, Zq � 0. (1.26)

By the preceding definition, all the curves of the linear system cut out effective divisors
on the initial curve C. The set of these divisors with λ0, . . . , λr�1 running over the field K
is called a linear series.

We note that C and the curves f0, . . . , fr�1 may pass through a common set of
points (a divisor). Apart from this, the remaining divisors are all distinct, since if two
divisors of the linear series coincided, the corresponding curves would differ only by a
constant multiplier, contradicting the assumption that f0, . . . , fr�1 are linearly independent.
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Therefore, all divisors of the linear series are in a 1� 1 correspondence with the points of
Pr�1. It is evident that all divisors of a linear series are linearly equivalent, and thus have
the same degree. We use the notation gr

n to refer to a linear series whose divisors have
degree n.

Dividing (1.26) by f0, for example, we obtain a linear system of functions

λ0 � λ1ϕ1 � � � � � λr�1ϕr�1 � 0.

If D is the divisor of f0, then all functions of this system belong to LpDq. If the system
coincides with LpDq, the system is said to be complete. In this case, t1, ϕ1, . . . , ϕr�1u is a
base for LpDq.

Thus, the notions of Riemann-Roch space of a divisor and of the complete linear
system are equivalent. We now examine how one may construct such a linear system.

Theorem 16 (Bézout’s Theorem). Let F and G be plane algebraic curves of degree m
and n, respectively. If F is not a component of G, then

¸
PPFXG

IpF X G, P q ¤ mn.

Definition 29. Let F be an algebraic curve of degree m whose singular points are
Q1, . . . , Qs with respective multiplicities r1, . . . , rs. A curve G of degree n is said to be an
adjoint curve of F if

IpF X G, Qiq ¥ ri � 1 for all i � 1, . . . , s.

In the case that F is non-singular, any curve is an adjoint curve of F and by
Bézout’s Theorem, the intersection divisor consists of mn distinct points. This is the only
case we consider going forward. Under this condition, we have the following theorem:

Theorem 17 (Noether’s Theorem). Let F � V pF q and G � V pGq be curves of degree m
and n, respectively such that all mn intersection points are different. Then, all curves of
degree d that pass through the divisor F � G can be written as

D � AF �BG,

where A,B P KrX, Y, Zs with degA � d�m and degB � d� n.

Let F � V pF q be a non-singular algebraic curve of degree m. If two divisors D and
D1 of C are linearly equivalent, there exist two forms H and H 1 of the same degree such
that D � pHq � D1 � pH 1q. Let G � V pGq be an adjoint curve of F of degree n. We have

pGHq � pGq � pHq � D1 � pH 1q �D � pGq.
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If G also passes through D, that is, pGq � D�R for some divisor R, then pGHq � pH 1q �
D1�R. The curve GH passes through the intersection divisor of F and H 1, so by Noether’s
Theorem, it can be represented as

GH � FF 1 �G1H 1

for some forms F 1, G1. Since pFF 1q � 0, it follows that

pG1q � pGHq � pH 1q � D1 �R.

Hence G1 is an adjoint curve of F of the same degree as G. We have thus proved the
following:

Theorem 18. Let D be a divisor of the curve F and D � D1. If G � V pGq is an adjoint
of F of degree n such that pGq � D �R, where R is called the residue divisor, then there
exists an adjoint curve H � V pHq of degree m such that

pHq � D1 �R.

This gives another way to compute the dimension of a Riemann-Roch space. Given
D a divisor of F , find an adjoint curve G � V pGq of degree m passing through the divisor
D, that is, pGq � D �R. Now, find all adjoint curves of degree m that pass through the
residue divisor R. The complete linear system gr

n of divisors cut out on F by the adjoint
curves found correspond to the space LpDq. This is because all the curves we found pass
through the common set of points defined by R, thus this divisor can be omitted and gr

n

contains D and all of its equivalent divisors.

We can summarize our findings with the following lemma:

Lemma 9. Let F be a non-singular curve, D an effective divisor of F , and G an adjoint
curve of F of degree m such that

G � F � D �R.

Then, the dimension ℓpDq is the dimension of the linear system of adjoint curves of degree
m passing through R.

Finally, we give another useful interpretation for the index of specialty of a divisor.

Definition 30. Let F be an algebraic curve of degree m. The adjoint curves of F that
have degree m� 3 are called canonical adjoints of F .

Given D an effective divisor of F , the number of linearly independent canonical
adjoints of F passing through D is the index of specialty of D, denoted by ipDq. This
allows us to present an alternative formulation for the Rieman-Roch theorem discussed
previously
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Theorem 19 (Riemann-Roch). Let D be an effective divisor of F , then

ℓpDq � degD � g � 1� ipDq,

where g is the genus of F , which is the same as the genus of KpFq.

1.8 Algebraic Extensions of Function Fields
In order to study function field extensions, in the following sections we assume that

given a function field F |K, the base field K is perfect, that is, every finite extension of K
is separable. Furthermore, we fix F̄ an algebraic closure of F and consider only extensions
F 1 � F such that F 1 � F̄ .

Definition 31. (a) An algebraic function field F 1|K 1 is an algebraic extension of F |K
if F 1|F is an algebraic extension and K � K 1.

(b) The algebraic extension F 1|K 1 of F |K is a constant field extension if F 1 � FK 1.

(c) The algebraic extension F 1|K 1 of F |K is finite if rF 1 : F s   8.

Lemma 10. If F 1|K 1 is an algebraic extension of F |K, then

(a) K 1|K is algebraic and F XK 1 � K.

(b) F 1|K 1 is a finite extension of F |K if and only if rK 1 : Ks   8.

(c) FK 1|K 1 is a constant field extension of F |K, and F 1|K 1 is a finite extension of
FK 1|K 1 with the same field of constants.

Definition 32. Given an algebraic extension F 1|K 1 of F |K, a place P 1 P PF 1 lies over
P P PF if P � P 1. We also say that P 1 extends P and write P 1|P .

Proposition 14. Let F 1|K 1 be an algebraic extension of F |K. If P P PF and P 1 P PF 1,
denote by OP � F and OP 1 � F 1 the respective valuation rings and by vP and vP 1 the
respective discrete valuations. The following are equivalent:

1. P 1|P .

2. OP � OP 1.

3. There exists an integer e ¥ 1 such that vP 1pxq � e � vP pxq for all x P F .

Besides that, if P 1|P , then P � P 1 X F and OP � OP 1 X F .
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Proof. 1.ñ 2. : Suppose P 1|P and OP � OP 1 . Then there is some u P F with vP puq ¥ 0
and vP 1puq   0. Since P � P 1, we have vP puq � 0. Choose t P F a P -prime element, then
t P P 1 and r :� vP 1ptq ¡ 0. Consequently,

vP purtq � r � vP puq � vP ptq � 1, vP 1purtq � r � vP 1puq � vP 1ptq � 1 ¤ �r � r � 0.

Thus urt P P zP 1, contradicting P � P 1.
2.ñ 1. : First we show that

OP � OP 1 ùñ OP � F XOP 1 . (1.27)

We see that F X OP 1 is a subring of F with OP � F X OP 1 , therefore F X OP 1 � OP 1

or F X OP 1 � F by Theorem 2(c). Assume F X OP 1 � F , that is, F � OP 1 . Choose
z P F 1zOP 1 . As F 1|F is algebraic, there is an equation

zn � cn�1z
n�1 � � � � � c1z � c0 � 0

with ci P F . We have vP 1pznq � n � vP 1pzq   0 since z R OP 1 , therefore

vP 1pzq   vP 1pciz
iq for i � 1, . . . , n� 1.

By the Strict Triangle Inequality

vP 1pzn � cn�1z
n�1 � � � � � c1z � c0q � n � vP 1pzq � vP 1p0q,

contradicting the original equation and proving (1.27). Now, assuming OP � OP 1 , let
y P P . Then y�1 R OP by Proposition 1, therefor y�1 R P 1 by (1.27). Using Proposition 1
again yields y � py�1q�1 P P and hence P � P 1.
2.ñ 3. : Let u P F be such that vP puq � 0. Then u, u�1 P OP by 2., so vP 1puq � 0. Now
choose t a P -prime element and set e :� vP 1ptq. The inclusion P � P 1 implies e ¥ 1. Let
x P F � and r :� vP pxq P Z, then vP pxt�rq � 0 and

vP 1pxq � vP 1pxt�rq � vP 1pt�rq � 0� r � vP 1ptq � e � vP pxq.

3.ñ 2. : This follows from Theorem 2(a) and the fact that e ¥ 1.
Finally, P � P 1 X F since given x P P , we know x P P 1, and given x P P 1 X F , using 3.
shows that x P P .

If P 1|P , this proposition implies there is a canonical embedding between the residue
class fields FP � OP {P and F 1

P 1 � OP 1{P 1 given by xpP q ÞÑ xpP 1q for x P OP . We thus
consider FP as a subfield of F 1

P 1 .

Definition 33. Let F 1|K 1 be an algebraic extension of F |K and P 1|P .

(a) The integer epP 1|P q :� e such that vP 1pxq � e � vP pxq for all x P F is called the
ramification index of P 1 over P . We say the extension P 1|P is ramified if epP 1|P q ¡ 1
and unramified if epP 1|P q � 1.
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(b) fpP 1|P q :� rF 1
P 1 : FP s is called the relative degree of P 1 over P .

Proposition 15. Let F 1|K 1 be an algebraic extension of F |K and P 1|P .

(a) fpP 1|P q   8 ðñ rF 1 : F s   8.

(b) If F 2|K2 is an algebraic extension of F 1|K 1 with P 2 P PF 2 lying over P 1, then

epP 2|P q � epP 2|P 1q � epP 1|P q and fpP 2|P q � fpP 2|P 1q � fpP 1|P q.

Proposition 16. Let F 1|K 1 be an algebraic extension of F |K.

(a) For each P 1 P PF 1, there is exactly one P P PF such that P 1|P , namely P � P 1 X F .

(b) Every place P P PF has at least one, but only finitely many extensions P 1 P PF 1.

Proof. (a) First we prove there is some z P F � with vP 1pzq � 0. Assume it is false and
choose t P F 1 with vP 1ptq ¡ 0. F 1|F being algebraic means

cnt
n � � � � � c1t� c0 � 0

for some ci P F, c0 � 0 and cn � 0. By assumption, vP 1pc0q � 0 and vP 1pcit
iq �

vP 1pciq � i � vP 1ptq ¡ 0 for i � 1, . . . , n, contradicting the Strict Triangle inequality.
We now set O :� OP 1 X F and P :� P 1 X F . O is a valuation ring of F |K by what
was just shown and P is its corresponding place. Since P is a maximal ideal, the
uniqueness follows.

(b) Given P P PF , choose x P F zK such that the only zero of x is P (possible by
Proposition 12). For P 1 P PF 1 , we show that P 1|p ðñ vP 1pxq ¡ 0. If P 1|P ,
vP 1pxq � epP 1|P q � vP pxq ¡ 0. Conversely, if vP 1pxq ¡ 0, denote by Q the place lying
under P 1. Then vQpxq ¡ 0, meaning Q � P given that P is the only zero of x. Since
x has at least one, but only finitely many zeros in F |K, the claim follows.

This propositions gives us the final tool we need to prove that the class number, as
defined in Remark 3, is always finite if K is a finite field. To this end, we first prove the
following lemma:

Lemma 11. Let F |Fq be an algebraic function field of genus g. For every n ¥ 0, there
exist only finitely many positive divisors of degree n.

Proof. Since every positive divisor is a sum of prime divisors, it suffices to prove that the
set S :� tP P PF : degP ¤ nu is finite. Take x P F zFq and consider S0 :� tP0 P PFqpxq :
degP0 ¤ nu. By Proposition 16, we know that P X Fqpxq P S0 for all P P S and each
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P0 P S0 has only finitely many extensions in F , meaning it suffices to show that S0 is
finite. Aside from the pole of x, every place of Fqpxq corresponds to an irreducible monic
polynomial ppxq P Fq of the same degree. Thus, the finiteness of Fq implies S0 is also finite,
finishing the proof.

Proposition 17. Under the same conditions as Lemma 11, the order h :� hF :� |Cl0pF q|
is finite.

Proof. Choose a divisor B P DivpF q such that n :� degB ¥ g and consider the set of
divisor classes

ClnpF q :� trCs P ClpF q : degrCs � nu.
The map

ψ : Cl0pF q Ñ ClnpF q
rAs ÞÑ rA�Bs

is a bijection, since

• for some x P F zFq, rA1 � Bs � rA2 � Bs ùñ A1 � B � A2 � B � pxq ùñ A1 �
A2 � pxq ùñ rA1s � rA2s, and

• given rDs P ClnpF q, rD �Bs P Cl0pF q and ψprD �Bsq � rDs.

So we only need to verify that ClnpF q is finite. In order to do this, we prove that for each
rCs P ClnpF q, there exists a divisor A P rCs with A ¥ 0. Indeed, since degC � n ¥ g, the
Riemann-Roch Theorem implies

ℓpCq � ℓprCsq ¥ n� 1� g ¥ 1,

proving our claim. By Lemma 11, there are only finitely many divisors A ¥ 0 of degree n,
so our claim implies ClnpF q is finite.

We now define a homomorphism between the divisor groups of F and F 1.

Definition 34. Let F 1|K 1 be an algebraic extension of F |K. For a place P P PF , its
conorm with respect to F 1|F is defined as

ConF 1|F pP q :�
¸

P 1|P

epP 1|P q � P 1.

This map extends to a homomorphism between DivpF q and DivpF 1q by setting

Con
�¸

nP � P
	

:�
¸

nP � ConF 1|F pP q.
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By Proposition 15(b), the conorm behaves well in towers of function fields F 2 �
F 1 � F , that is,

ConF 2|F pAq � ConF 2|F 1pConF 1|F pAqq
for every A P DivpF q. The conorm also preserves principal divisors:

Proposition 18. Let F 1|K 1 be an algebraic extension of F |K. Then

ConF 1|F ppxqF0 q � pxqF 1

0 , ConF 1|F ppxqF8q � pxqF 1

8 and ConF 1|F ppxqF q � pxqF 1

,

where the superscripts F and F 1 denote under which divisor group the divisor is considered.

Proof. From the definition of the principal divisor:

pxqF 1 �
¸

P 1PPF 1

vP 1pxq � P 1 �
¸

P 1PPF 1

¸
P 1|P

epP 1|P q � vP pxq � P 1

�
¸

P 1PPF 1

vP pxq � ConF 1|F pP q � ConF 1|F

� ¸
PPPF

vP pxq � P
�

� ConF 1|F ppxqF q.

Considering only the positive or negative components of the principal divisor, the other
assertions follow.

This proposition means the conorm also induces a homomorphism between divisor
class groups

ConF 1|F : ClpF q Ñ ClpF 1q.

Lemma 12. Let K 1|K be a finite extension and x transcendental over K. Then

rK 1pxq : Kpxqs � rK 1 : Ks.

Using this lemma, we can now prove the most important result of this section:

Theorem 20 (Fundamental Equality). Let F 1|K 1 be a finite extension of F |K. Given
P P PF , let P1, . . . , Pm be all places of F 1 lying over P . If ei : �epPi|P q and fi :� fpPi|P q,
then

m̧

i�1
eifi � rF 1 : F s.

Proof. Take x P F such that P is the only zero of x in F |K and set r :� vP pxq ¡ 0.
The places P1, . . . , Pm P PF 1 are the zeros of x in F 1|K 1. We compute rF 1 : Kpxqs in two
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different ways:

rF 1 : Kpxqs � rF 1 : K 1pxqsrK 1pxq : Kpxqs

�
�

m̧

i�1
vPi
pxq � degPi

�
� rK 1 : Ks

�
m̧

i�1
pei � vP pxqq � rF 1

Pi
: K 1s � rK 1 : Ks

� r �
m̧

i�1
ei � rF 1

Pi
: FP s � rFP : Ks

� r � degP �
m̧

i�1
eifi.

On the other hand,

rF 1 : Kpxqs � rF 1 : F srF : Kpxqs � rF 1 : F s � r � degP,

since pxqF0 � rP . Comparing the two equalities yields the result.

Corollary 10. Let F 1|K 1 be a finite extension of F |K and P P PF . Then

(a) |tP 1 P PF 1 : P 1 � P u| ¤ rF 1 : F s.

(b) If P 1|P , then epP 1|P q ¤ rF 1 : F s and fpP 1|P q ¤ rF 1 : F s.

We can now give the following definition

Definition 35. Let F 1|K 1 be an extension of F |K with n :� rF 1 : F s and P P PF .

(a) P splits completely in F 1|F if there are exactly n distinct places of F 1 lying over P .

(b) P is totally ramified in F 1|F if there is a place P 1 P PF 1 with P 1|P and epP 1|P q � n.

The Fundamental equality implies that P P PF splits completely in F 1|F if and
only if epP 1|P q � fpP 1|P q � 1 for all P 1|P . And if P is totally ramified, there is only one
place P 1 P PF that extends it.

Corollary 11. Let F 1|K 1 be a finite extension of F |K. For each A P DivpF q

deg ConF 1|F pAq � rF 1 : F s
rK 1 : Ks � degA.
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Proof. It suffices to prove the result for a prime divisor A � P P PF . We have

deg ConF 1|F pP q �
¸

P 1|P

epP 1|P q � rF 1
P 1 : K 1s

�
¸

P 1|P

epP 1|P q � rF
1
P 1 : Ks

rK 1 : Ks

� 1
rK 1 : Ks �

�¸
P 1|P

epP 1|P q � rF 1
P 1 : FP s

�
� rFP : Ks

� rF 1 : F s
rK 1 : Ks � degP.

Finally, we present a criterion for polynomial irreducibility.

Proposition 19 (Eisenstein Criterion). Let F |K be an algebraic function field and

φpT q � anT
n � � � � � a1T � a0

be a polynomial with ai P F . Assume there is a place P P PF such that one of the following
conditions hold

1. vP panq � 0, vP paiq ¥ vP pa0q ¡ 0 for i � 1, . . . , n� 1, and gcdpn, vP pa0qq � 1.

2. vP panq � 0, vP paiq ¥ 0 for i � 1, . . . , n� 1, vP pa0q   0, and gcdpn, vP pa0qq � 1.

Then φpT q is irreducible in F rT s. If F 1 � F pyq with φpyq � 0, then P has a unique
extension P 1 P PF 1 and epP 1|P q � n, fpP 1|P q � 1.

1.9 Subrings and Integral Bases

Definition 36. A subring of a function field F |K is a ring R such that K � R � F and
R is not a field. In particular, K � R � F .

Some examples of subrings are the valuation ring OP of a place P P PF and the
polynomial ring Krx1, . . . , xns with x1, . . . , xn P F zK.

Definition 37. Given H � S � PF , let OS :� tz P F : vP pzq ¥ 0 for all P P Su be the
intersection of all valuation rings OP with P P S. A ring of the form R � OS is called a
holomorphy ring of F |K.

For example, Krxs is a holomorphy ring of Kpxq|K since Krxs �
£

P�P8

OP .
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Lemma 13. (a) Every valuation ring OP is a holomorphy ring: OP � OS for S � tP u.

(b) Every holomorphy ring OS is a subring of F |K.

(c) For P P PF and H � S � PF , OS � OP ðñ P P S. Consequently, OS � OT ðñ
S � T .

Definition 38. Let R be a subring of F |K.

(a) An element z P F is said to be integral over R if fpzq � 0 for some monic polynomial
fpT q P RrT s. The equation fpzq � 0 is called the integral equation of z over R.

(b) The set icF pRq :� tz P F : z is integral over Ru is called the integral closure of R in
F .

(c) If F0 � F is the quotient field of R, then the ring R is called integrally closed if
icF0pRq � R.

Proposition 20. If OS is a holomorphy ring of F |K, then

(a) F is the quotient field of OS.

(b) OS is integrally closed.

Theorem 21. Let R be a subring of F |K and SpRq :� tp P PF : R � OP u. Then
H � SpRq � PF and the integral closure of R in F is OSpRq.

Corollary 12. A subring R of F |K with quotient field F is integrally closed if and only
if it is a holomorphy ring.

Proposition 21. If OS is a holomorphy ring of F |K, there is a bijection between S and
the set of maximal ideals of OS given by P ÞÑMP :� P XOS for P P S. Furthermore, the
following map is an isomorphism

φ : OS{MP Ñ FP

x�MP ÞÑ x� P.

Proposition 22. If H � S � PF is finite, then OS is a principal ideal domain.

We now consider F |K a function field with K its full constant field and F 1|K 1 a
finite field extension of F |K.

Proposition 23. Let R be a holomorphy ring of F . For z P F 1, if φpT q P F rT s denotes
its minimal polynomial over F , then z is integral over R if and only if φpT q P RrT s.

Corollary 13. Let TrF 1|F : F 1 Ñ F denote the trace map from F 1 to F and x P F 1 be an
integral element over R. Then TrF 1|F pxq P R.
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Proposition 24. Let M |L be a separable finite field extension with basis tz1, . . . , znu.
Then there are unique elements z�1 , . . . , z�n P M such that TrM |Lpziz

�
j q � δij, where δij

denotes the Kronecker delta. The set tz�1 , . . . , z�nu is also a base for M |L called the dual
base of tz1, . . . , znu with respect to the trace.

Theorem 22. Let R be an integrally closed subring of F |K with quotient field F and
F 1|F be a separable field extension of degree n. If R1 denotes the integral closure of R in
F 1, then

(a) For every base tx1, . . . , xnu of F 1|F there are elements ai P R� such that a1x1� � � ��
anxn P R1. It follows that there are bases of F 1|F which are contained in R1.

(b) If tz1, . . . , znu � R1 is a base of F 1|F and tz�1 , . . . , z�nu is its dual with respect to the
trace, then

ņ

i�1
Rzi � R1 �

ņ

i�1
Rz�i .

(c) If R is also a principal ideal domain, there exists a base tu1, . . . , unu of F 1|F such

that R1 �
ņ

i�1
Rui.

Corollary 14. If F 1|F is a finite separable extension of and P is a place of F , then the
integral closure O1

P of OP is O1
P �

£
P 1|P

OP . Also, since OP is a principal ideal domain,

there is a base tu1, . . . , unu of F 1|F such that O1
P �

ņ

i�1
OP � ui. In this case, tu1, . . . , unu

is called an integral base of P or of O1
P over OP .

Theorem 23. Let F 1|F be a finite separable extension. Then each base tz1, . . . , znu of
F 1|F is an integral base for all but finitely many places.

We will now prove a theorem that will help with determining all the extensions
of a place P P PF in an extension F 1|F . In the sequel, we use the notation F̄ :� FP

for the residue class field of P , ā :� apP q P F̄ the residue class of a P OP and if
ψpT q �

¸
ciT

i P OP rT s, we set ψ̄pT q :�
¸

c̄iT
i P F̄ rT s. Also, we can represent every

polynomial γpT q P F̄ rT s as γpT q � ψ̄pT q with ψpT q P OP rT s and degψ � deg γ.

Theorem 24 (Kummer). Suppose F 1 � F pyq for some y integral over OP , and consider the

minimal polynomial φpT q P OP rT s of y over F . Let ψ̄pT q �
r¹

i�1
γipT qεi be the decomposition

of ψ̄ into irreducible factors over F̄ . Choose monic polynomials ψipT q P OP rT s with
ψ̄ipT q � γipT q and degψi � deg γi. Then, for 1 ¤ i ¤ r, there are places Pi P PF 1 such
that Pi|P , ψipyq P Pi and fpPi|P q ¥ deg γi. Moreover Pi � Pj if i � j.

If we suppose at least one of the following conditions is satisfied
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(i) εi � 1 for i � 1, . . . , r.

(ii) t1, y, . . . , yn�1u is an integral basis for P .

Then there exists, for 1 ¤ i ¤ r, exactly one place Pi P PF 1 with Pi|P and φipyq P Pi. The
places P1, . . . , Pr are all the places of F 1 lying over P and we have

ConF 1|F pP q �
ŗ

i�1
εiPi,

that is, εi � epPi|P q. The residue class field F 1
Pi

is isomorphic to F̄ rT s{xγipT qy, hence
fpPi|P q � deg γi.

Proof. Set F̄i :� F̄ rT s{xγipT qy. Since γi is irreducible, F̄i|F̄ has degree

rF̄i : F̄ s � deg γi. (1.28)

Consider the ring OP rys �
n�1̧

j�0
OP � yj, where n � degφ � rF 1 : F s. There are ring

homomorphisms

ρ : OP rT s Ñ OP rys¸
cjT

j ÞÑ
¸

cjy
j

and

πi : OP rT s Ñ F̄i¸
cjT

j ÞÑ
¸

c̄jT
j mod γipT q.

We see that ker ρ � xφpT qy. Since πipφpT qq � φ̄pT q mod γipT q � 0, it follows that
ker ρ � kerπi. Therefore, there is a unique homomorphism σi : OP rys Ñ F̄i with πi � σi�ρ,
given explicitly by

σi : OP rys Ñ F̄i

n�1̧

j�0
cjy

j ÞÑ
n�1̧

j�0
c̄jy

j mod γipT q,

which is also surjective. We show that

kerσi � P �OP rys � φipyq �OP rys. (1.29)

From the definition of σi, the inclusion P �OP rys�φipyq�OP rys � kerσi follows. Conversely,

take
n�1̧

j�0
cjy

j P kerσi. Then
n�1̧

j�0
c̄jT

j � φ̄ipT q � ψ̄pT q for some ψpT q P OP rT s, hence

n�1̧

j�0
cjT

j � φipT q � ψpT q P P �OP rT s.
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Setting T � y yields
n�1̧

j�0
cjy

j � φipyq � ψpyq P P �OP rys,

proving (1.29).

Using Theorem 3, there exists a place Pi P PF such that kerσi � Pi and OP rY s �
OPi

, implying Pi|P and φipyq P Pi. The residue class field OPi
{Pi contains OP rys{ kerσi,

which is isomorphic to F̄i via σi. From (1.28), we see that

fpPi|P q ¥ rF̄i : F̄ s � deg γi.

For i � j, the polynomials γipT q � φ̄ipT q and γjpT q � φ̄jpT q are coprime in F̄ rT s, meaning
there exists λipT q, λjpT q P OP rT s such that

1 � φ̄ipT q � λ̄ipT q � φ̄jpT q � λ̄jpT q,

and thus
φipT q � λipT q � φjpT q � λjpT q � 1 P P �OP rys.

This means 1 P kerσi � kerσj by (1.29). Since Pi � kerσi and Pj � kerσj, it is proved
that Pi � Pj for i � j.

Now, assume that condition (i) is fulfilled, that is, φ̄pT q �
r¹

i�1
γipT q. Then

rF 1 : F s � degφ �
ŗ

i�1
degφi

¤
ŗ

i�1
fpPi|P q ¤

ŗ

i�1
epPi|P q � fpPi|P q

¤
¸

P 1|P

epP 1|P q � fpP 1|P q � rF 1 : F s

by the Fundamental Equality. This is only possible if epPi|P q � 1, fpPi|P q � degφi and
the only places that extend P are P1, . . . , Pr.

If condition (ii) is satisfied, choose Pi P PF 1 such that Pi|P and φipyq P Pi. First we
show that P1, . . . , Pr are the only extensions of P in F 1. Take P 1 P PF 1 with P 1|P . Since

0 � φpyq �
r¹

i�1
φipyqεi mod P �OP rys,

we have
r¹

i�1
φipyqεi P P 1 (1.30)

P 1 is a prime ideal of OP 1 , so φipyq P P 1 for some i P t1, . . . , ru and

P �OP rys � φipyq �OP rys � P 1 XOP rys (1.31)
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by (1.30). The left side is a maximal ideal of OP rys by (1.29), meaning equality holds in
(1.31). Since we also know that

P �OP rys � φipyq �OP rys � Pi XOP rys,

it follows that

P 1 XOP rys � Pi XOP rys � P �OP rys � φipyq �OP rys. (1.32)

Since OP rys is the integral closure of OP in F 1 by condition (ii), Proposition 21 implies
P 1 � Pi and our claim is proved. Having showed this, an immediate consequence of
applying 14 is

OP rys �
r£

i�1
OPi

. (1.33)

Using the Approximation Theorem, we find elements t1, . . . , tr P F 1 such that

vPi
ptiq � 1 and vPj

ptiq � 0 for i � j.

Choose a P -prime element t P F , then

ti P OP rys X Pi � φipyq �OP rys � t �OP rys

by (1.32) and (1.33). Thus, there exists aipyq, bipyq P OP rys such that

ti � φipyq � aipyq � t � bipyq.

From this we get
r¹

i�1
tεi
i � apyq �

r¹
i�1

φipyqεi � t � bpyq (1.34)

for some apyq, bpyq P OP rys. Since
r¹

i�1
φipyqεi � φpyq mod t �OP rys

and φpyq � 0, (1.34) implies that
r¹

i�1
tεi
i � t � upyq for some upyq P OP rys. (1.35)

Therefore

εi � vPi

�
r¹

j�1
t
εj

j

�
¥ vPi

ptq � epPi|P q. (1.36)

On the other hand,
fpPi|P q � deg γi (1.37)
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by (1.28), (1.29), (1.32) and Proposition 21. Finally, applying the Fundamental Equality
yields

rF 1 : F s �
ŗ

i�1
epPi|P q � fpPi|P q

¤
ŗ

i�1
εi � deg γi � degφ � rF 1 : F s,

proving that εi � epPi|P q for all i � 1, . . . , r.

Corollary 15. Let φpT q � T n � fn�1pxqT n�1 � � � � � f0pxq P KpxqrT s be an irreducible
polynomial over the rational function field Kpxq. Consider the extension Kpx, yq|K where
φpyq � 0 and an element α P K with fjpαq � 8 for all j � 0, . . . , n � 1. Suppose the
polynomial

φαpT q :� T n � fn�1pαqT n�1 � � � � � f0pαq P KrT s

decomposes as
r¹

i�1
ψipT q over KrT s with irreducible, monic and pairwise distinct polyno-

mials ψipT q P KrT s. Then the following hold

(a) For every i � 1, . . . , r there is a unique place Pi P PKpx,yq such that x� α P Pi and
ψipyq P Pi. The element x�α is a prime element of Pi, that is, epPi|Pαq � 1 and the
residue class field of Pi is K-isomorphic to KrT s{xψipT qy, hence fpPi|Pαq � degψi.

(b) If degψi � 1 for at least one i P t1, . . . , ru, then K is the full constant field of
Kpx, yq.

(c) If φαpT q has degφ distinct roots β in K, then there is for each β a unique place
Pα,β P PKpx,yq such that x� α P Pα,β and y � β P Pα,β. Also, Pα,β is a rational place
of Kpx, yq.

Proof. Set F :� Kpxq and F 1 :� Kpx, yq. The assumption fjpαq � 8 means y is integral
over OPα , and φαpT q is merely φ̄pT q using the notation from Kummer’s Theorem. Therefore,
condition (i) is satisfied and the corollary follows.

1.10 The Hurwitz Genus Formula
This most important result of this section is the Hurwitz formula for the genus

of a function field extension. In order to prove this, we first introduce the notions of the
cotrace of a Weil differential, as well as the different of a function field extension.

Definition 39. For P P PF , let O1
P denote the integral closure of OP in F 1. The set

CP :� tz P F 1 : TrF 1|F pz �O1
P q � OP u

is called the complementary module over OP .
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Proposition 25. (a) CP is an OP -module with O1
P � CP .

(b) If tz1, . . . , znu is an integral basis of O1
P over OP , then

CP �
ņ

i�1
OP � z�i ,

where tz�1 , . . . , z�nu is the dual basis of tz1, . . . , znu with respect to the trace.

(c) There is an element t P F 1 depending on P such that CP � t�O1
P . Moreover, vP 1ptq ¤ 0

for all P 1|P and for every t1 P F 1, CP � t1 �O1
P if and only if vP 1pt1q � vP 1ptq for all

P 1|P .

(d) CP � O1
P for almost all P P PF .

Definition 40. Let P be a place of F and O1
P be its integral closure in F 1. If CP � t �OP ’,

then the different exponent of P 1|P is dpP 1|P q :� �vP 1ptq. By Proposition 25, dpP 1|P q is
well-defined and non-negative. And since CP � 1 �O1

P , dpP 1|P q � 0 for almost all P P PF .
This means the following divisor, called the different of F 1|F is well-defined:

DiffpF 1|F q :�
¸

PPPF

¸
P 1|P

dpP 1|P q � P 1.

Remark 9. From the definitions, we can characterize the complementary module by the
following equivalence

z P CP ðñ vP 1pzq ¥ �dpP 1|P q for all P 1|P.
Definition 41. The adele space of a function field extension F 1|F is

AF 1|F :� tα P AF 1 : αP 1 � αQ1 if P 1 X F � Q1 X F u.

This is an F 1-subspace of AF 1 . We can also extend the trace map TrF 1|F : F 1 Ñ F

to an F -linear map from AF 1|F to AF setting

pTrF 1|F pαqqP :� TrF 1|F pαP 1q for α P AF 1|F

where P 1 is any place of F 1 that extends P . We notice that αP 1 P OP 1 for almost all P 1 P PF 1 ,
meaning TrF 1|F pαP 1q P OP for almost all P P PF by Corollary 13. Hence TrF 1|F pαq is an
adele of F |K. Furthermore, the trace of a principal adele z P F 1 is the principal adele of
TrF 1|F pzq. Given a divisor A1 P DivpF 1q, we set AF 1|F pA1q � AF 1pA1q XAF 1|F .

Theorem 25. For every Weil differential of F |K, there exists a unique Weil differential
ω1 of F 1|K 1 such that

TrK1|Kpω1pαqq � ωpTrF 1|F pαqq
for all α P AF 1|F . This is called the cotrace of ω in F 1|F , denoted by CotrF 1|F pωq. If ω � 0
and pωq is the divisor of ω, then

pCotrF 1|F pωqq � ConF 1|F ppωqq �DiffpF 1|F q.
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A particularly noteworthy case of this theorem is

Corollary 16. Let F |K be a function field and x P F be an element such that F |Kpxq
is separable. If η is the Weil differential of the rational function field with pηq � �2P8
(�2P8 is canonical by Proposition 10), then

pCotrF |Kpxqpηqq � �2pxq8 �DiffpF |Kpxqq.

Some useful properties of the cotrace are

Proposition 26. If ω, η are Weil differentials of F |K and x P F , then

(a) CotrF 1|F pω � ηq � CotrF 1|F pωq � CotrF 1|F pηq.

(b) CotrF 1|F pxωq � x � CotrF 1|F pωq.

Corollary 17. If F 2 � F 1 � F are finite separable extensions, then

(a) DiffpF 2|F q � ConF 2|F 1pDiffpF 1|F qq �DiffpF 2|F 1q.

(b) dpP 2|P q � epP 2|P 1q � dpP 1|P q � dpP 2|P q, if P P PF , P
1 P PF 1 and P 2 P PF 2.

Finally, we can prove the main result of this section:

Theorem 26 (Hurwitz Genus Formula). If F |K is a function field of genus g and F 1|K 1

is a finite seperable extension of F with genus g1. If K 1 is the full constant field of F 1, then

2g1 � 2 � rF 1 : F s
rK 1 : Ksp2g � 2q � deg DiffpF 1|F q.

Proof. Take ω � 0 a Weil differential of F |K. From Theorem 25:

CotrF 1|F pωq � ConF 1|F ppωqq �DiffpF 1|F q.

The canonical divisors of F and F 1 have degree 2g � 2 and 2g1 � 2, respectively. Applying
Corollary 11 to the above equation yields

2g1 � 2 � deg ConF 1|F ppωqq � deg DiffpF 1|F q

� rF 1 : F s
rK 1 : Ksp2g � 2q � deg DiffpF 1|F q.

Since every function field can be regarded as a finite extension of the rational
function field, this special case of the Hurwitz genus formula is of great utility:

Corollary 18. Let F |K be a function field of genus g and x P F zK be an element such
that the extension F |Kpxq is separable. Then

2g � 2 � �2rF : Kpxqs � deg DiffpF |Kpxqq.
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1.11 The Different
Given the Hurwitz genus formula discussed previously, a more in-depth investigation

of the different divisor of an extension is warranted. The main result of this section is
Dedekind’s Different Theorem, which gives a more precise characterization to the different
exponent of a place extension.

In order to prove the theorem, we make use of two lemmas:

Lemma 14. Let F 1|F be an algebraic extension of function fields and P P PF , P 1 P PF 1

such that P 1|P . If σ is an automorphism of F 1|F , then σpP 1q :� tσpzq : z P P 1u is a place
of F 1 and

(a) vσpP 1qpyq � vP 1pσ�1pyqq for all y P F 1.

(b) σpP 1q|P .

(c) epσpP 1q|P q � epP 1|P q and fpσpP 1q|P q � fpP 1|P q.

Proof. First we notice that σpOP 1q is a valuation ring of F 1 with σpP 1q being its maximal
ideal. Therefore, a place of F 1 with corresponding valuation ring OσpP 1q � σpOP 1q. If t1 is
a P 1-prime element, then σpP 1q � σpt1q � σpOP 1q, meaning σpt1q is a σpP 1q-prime element.

(a) Take a non-zero element y P F 1, say y � σpzq. Then z � t1ru with r :� vP 1pzq and
u P OP 1zP 1, thus y � σpt1qr � σpuq with σpUq P OσpP 1qzσpP 1q and σpt1q is a prime
element for σpP 1q. We then conclude that vσpP 1qpyq � r � vP 1pzq � vP 1pσ�1pyqq.

(b) Since P 1 � P and σpP q � P , it follows that σpP 1q � σpP q � P , meaning σpP 1q|P .

(c) Take x a P -prime element. Then

epσpP 1q|P q � vσpP 1qpxq � vP 1pσ�1pxqq � vP 1pxq � epP 1|P q.

The automorphism σ induces an automorphism σ̄ between the residue class fields
F 1

P 1 and F 1
σpP 1q given by σ̄pz � P 1q � σpzq � σpP 1q. This application is the identity

over FP , hence fpP 1|P q � fpσpP 1q|P q.

Lemma 15. Let P P PF and P1, . . . , Pr P PF 1 be all extensions of P in F 1|F . Consider
the residue class fields FP :� OP {P , F 1

Pi
:� OPi

{Pi � FP and their respective residue class
maps π : OP Ñ FP and πi : OPi

Ñ F 1
Pi

. Then, for every u P icF 1pOP q, we have

πpTrF 1|F puqq �
ŗ

i�1
epPi|P q � TrF 1

Pi
|FP
pπipuqq.
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Theorem 27 (Dedekind’s Different Theorem). Given F 1|K 1 a finite separable extension
of F |K, for all P P PF , P 1 P P1F such that P 1|P , the following are valid

(a) dpP 1|P q ¥ epP 1|P q � 1.

(b) dpP 1|P q � epP 1|P q� 1 if and only if epP 1|P q is not divisible by charK. In particular,
if charpKq � 0, then dpP 1|P q � epP 1|P q � 1.

Proof. (a) Let O1
P denote the integral closure of OP on F 1 and CP denote its comple-

mentary module. We wish to prove that

TrF 1|F pt �O1
P q � OP (1.38)

for all t P F 1 such that

vP 1ptq � 1� epP 1|P q for all P 1|P. (1.39)

The inclusion (1.38) implies t P CP and the characterization of CP given in Remark
9 yields 1� epP 1|P q ¥ �dpP 1|P q, implying dpP 1|P q ¥ epP 1|P q � 1.

In order to prove (1.38), take a finite Galois extension F 2|F such that F � F 1 � F 2

and choose n � rF 1 : F s automorphisms σ1, . . . , σn of F 2|F who are all distinct when
restricted to F 1. For z P O1

P :

TrF 1|F ptzq �
ņ

i�1
σiptzq. (1.40)

Fix a place P 2 of F 2 lying over P . Set P 2
i :� σ�1

i pP 2q and P 1
i :� P 2

i X F 1. We see
that σipzq is integral over OP , since z P O1

P , and thus vP 2pσipzqq ¥ 0. Then

vP 2pσiptzqq � vP 2pσiptqq � vP 2pσipzqq
¥ vP 2pσiptqq 14paq� vP 2

i
ptq

(1.39)� epP 2
i |P 1

i qp1� epP 1
i |P qq

¡ �epP 2
i |P 1

i q � epP 1
i |P q

� �epP 2
i |P q 14pcq� �epP 2|P q.

Using (1.40) we conclude

�epP 2|P q   vP 2pTrF 1|F ptzqq � epP 2|P q � vP pTrF 1|F ptzqq,

meaning vP pTrF 1|F ptzqq ¥ 0, and hence (1.38).

(b) Using the notation of Lemma 15, set ei :� epPi|P q, P 1 :� P1 and e :� epP 1|P q. We
must prove that

dpP 1|P q � e� 1 ðñ charK does not divide e. (1.41)
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First suppose e is not divisible by charK and dpP 1|P q ¥ e. Then there exists some
w P F 1 with

vP 1pwq ¤ �e and TrF 1|F pw �O1
P q � OP . (1.42)

Since K is a perfect field, the extension F 1
Pi
|FP is separable, and we can find y0 P OP 1

with TrF 1

Pi
|FP
pπ1py0qq � 0. By the Approximation Theorem, there is some y P F 1

such that vP 1py � y0q ¡ 0 and

vPi
pyq ¥ maxt1, ei � vPi

pwqu for 2 ¤ i ¤ r. (1.43)

Then y P O1
P and applying Lemma 15 yields

πpTrF 1|F pyqq � e � TrF 1

P1
|FP
pπ1pyqq �

ŗ

i�2
ei � TrF 1

Pi
|FP
pπipyqq

� e � TrF 1

P1
|FP
pπ1py0qq � 0,

since charK not dividing e implies e � 0 in FP . We conclude that vP pTrF 1|F pyqq � 0.
Now take x P F a P -prime element. Then

TrF 1|F px�1yq � x�1 � TrF 1|F pyq R OP . (1.44)

On the other hand, x�1yw�1 P O1
P , since

vP 1px�1yw�1q � �e� vP 1pyq � vP 1pwq ¥ 0

and
vPi
px�1yw�1q � vPi

pyq � pei � vPi
pwqq ¥ 0

for i � 2, . . . , r by (1.42) and (1.43). Thus, x�1y P w �O1
P and TrF 1|F px�1yq P OP by

(1.42), which contradicts (1.44). This proves the reverse implication of (1.41).

In order to prove the direct implication, assume charK divides e and we must show
that dpP 1|P q ¥ e. Choose u P F 1 such that

vP 1puq � �e and vPi
puq ¥ �ei � 1 for i � 2, . . . , r. (1.45)

If x P F is a P -prime element, for every z P O1
P , we have vP 1pxuzq ¥ 0 and

vPi
pxuzq ¡ 0 for i � 2, . . . , r. Therefore, xuz P O1

P , and by Lemma 15:

πpTrF 1|F pxuzqq � e � TrF 1

P1
|FP
pπ1pxuzqq �

ŗ

i�2
ei � TrF 1

Pi
|FP
pπipxuzqq

� e � TrF 1

P1
|FP
pπ1pxuzqq � 0.

We conclude that x�TrF 1|F puzq � TrF 1|F pxuzq P P � x�OP , implying TrF 1|F puzq P OP

for all z P O1
P . Thus, u P CP and �e � vP 1puq ¥ �dpP 1|P q by (1.45) and Remark

9.
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Definition 42. Let F 1|F be an algebraic extension of function fields and P P PF .

(a) An extension P 1 of P is said to be tamely ramified if epP 1|P q ¡ 1 and charK ∤ epP 1|P q.
If charK | epP 1|P q, the extension is wildly ramified.

(b) P is said to be ramified in F 1|F if there exists some P 1 P PF 1 for which P 1|P is
ramified. P is unramified otherwise. Furthermore, P is tamely ramified if no extension
of P in F 1 is wildly ramified. If there is at least one wildly ramified extension P 1|P ,
P is said to be wildly ramified.

(c) P is totally ramified in F 1|F if there is only one extension P 1 P PF 1 of P in F 1 and
the ramification index is epP 1|P q � rF 1 : F s.

(d) F 1|F is ramified if at least one place P P PF is ramified in F 1|F . Otherwise, F 1|F is
said to be unramified.

(e) The extension F 1|F is tame if no P P PF is wildly ramified in F 1|F .

Corollary 19. If F 1|F is a finite separable extension

(a) The extension P 1|P is ramified if and only if P 1 ¤ DiffpF 1|F q. If P 1|P is ramified, then
dpP 1|P q � epP 1|P q�1 if and only if P 1|P is tamely ramified, and dpP 1|P q ¥ epP 1|P q
if and only if P 1|P is wildly ramified.

(b) Almost all places P P PF are unramified in F 1|F .

Corollary 20. If F 1|F is a finite separable extension such that K is the full constant field
of F and F 1, denoting their respective genera by g and g1, we have

2g1 � 2 ¥ rF 1 : F s � p2g � 2q �
¸

PPPF

¸
P 1|P

pepP 1|P q � 1q � degP 1,

where equality holds if and only F 1|F is tame.

Corollary 21. If F 1|F is a finite separable extension of function fields with the same
constant field. Then g ¤ g1.

Corollary 22. Let F |Kpxq be a finite separable extension of the rational function field of
degree rF : Kpxqs ¡ 1 such that K is the full constant field of F . Then F |Kpxq is ramified.

Theorem 28. Suppose F 1 � F pyq is a finite separable extension of F with rF 1 : F s � n.
Let P P PF be such that the minimal polynomial φpT q of y has coefficients in OP , and let
P1, . . . , Pr P PF be all extensions of P . The following hold

(a) dpPi|P q ¤ vPi
pφ1pyqq for 1 ¤ i ¤ r, where φ1 denotes the formal derivative of φ in

the polynomial ring F rT s.
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(b) t1, y, . . . , yn�1u is an integral base of F 1|F at P if and only if dpPi|P q � vPi
pφ1pyqq

for 1 ¤ i ¤ r.

Corollary 23. Let F 1 � F pyq be a finite separable extension of F with rF 1|F s � n. If
φpT q P F rT s is the minimal polynomial of y over F and P P PF is such that y is integral
over OP and vP 1pφ1pyqq � 0 for all P 1|P , then P is unramified in F 1|F and t1, y, . . . , yn�1u
is an integral base of F 1|F at P .

Proposition 27. Let F 1|F be a finite separable extension of function fields and P P PF ,
P 1 P PF 1 be such that P 1|P . If P 1|P is totally ramified, that is, epP 1|P q � rF 1 : F s � n

and t P F 1 is a P 1-prime element with minimal polynomial φpT q P F rT s over F , then
dpP 1|P q � vP 1pφ1ptqq and t1, t, . . . , tn�1u is an integral base of F 1|F at P .

1.12 Galois Extensions
We now study a particularly useful case of algebraic function field extensions. An

extension M |L is said to be Galois if the automorphism group

AutpM |Lq � tσ : M ÑM | σ is an automorphism with σ|L � idu
has order rM : Ls. In this case, AutpM |Lq is called the Galois group of M |L and denoted
by GalpM |Lq. We shall restrict our study to Galois extensions of finite degree.

Let F 1|F be a Galois extension of function fields of finite degree. Given a place
P P PF , the group GalpF 1|F q acts on the set of all extensions tP 1 P PF 1 : P 1|P u via
σpP 1q � tσpxq : x P P 1u, and we have proved in Lemma 14 that the valuation vσpP 1q is
given by

vσpP 1qpyq � vP 1pσ�1pyqq for y P F 1.

Theorem 29. Let F 1|K 1 be a Galois extension of F |K and P1, P2 P PF 1 be place extensions
of P P PF . Then P2 � σpP1q for some σ P G :� GalpF 1|F q. In other words, G acts
transitively on the set of extensions of P .

Proof. Suppose the assertion is false, that is, P2 � σpP1q for all σ P G. By the Approxi-
mation Theorem, there is some z P F 1 such that vP2pzq ¡ 0 and vQpzq � 0 for all other
Q P PF 1 with Q|P . Let NF 1|F : F 1 Ñ F be the norm map, then

vP1pNF 1|F pzqq � vP1

�¹
σPG

σpzq
�
�

¸
σPG

vP1pσpzqq

�
¸
σPG

vσ�1pP1qpzq �
¸
σPG

vσpP1qpzq � 0, (1.46)

since by assumption, P2 is not equal to any σpP1q. On the other hand,

vP2pNF 1|F pzqq �
¸
σPG

vσpP2qpzq ¡ 0. (1.47)
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But NF 1|F pzq P F , thus vP1pNF 1|F pzqq � 0 ô vP pNF 1|F pzqq � 0 ô vP2pNF 1|F pzqq � 0,
which contradicts (1.46) and (1.47).

Corollary 24. With the same notation as in Theorem 29, let P1, . . . , Pr be all place
extensions of P in F 1. Then

(a) epPi|P q � epPj|P q and fpPi|P q � fpPj|P q for all i, j. Therefore, we set epP q :�
epPi|P q, fpP q :� fpPi|P q, and call them the ramification index and relative degree
of P , respectively.

(b) epP q � fpP q � r � rF 1 : F s.

(c) dpPi|P q � dpPj|P q for all i, j.

Proof. (a) This is a direct consequence of Theorem 29 and Lemma 14(c).

(b) Follows from (a) and the Fundamental Equality.

(c) Consider the integral closure

O1
P �

r£
i�1

OPi

of OP in F 1 and the complementary module

CP � tz P F 1 : TrF 1|F pz �O1
P q � OP u.

Let σ P GalpF 1|F q. We know that TrF 1|F pσpuqq � TrF 1|F puq for u P F 1, so σpO1
P q �

O1
P and σpCP q � CP . Writing CP � t �O1

P , we get σptq �O1
P � σpCP q � CP � t �O1

P ,
so

�dpPi|P q � vPi
ptq � vPi

pσptqq for 1 ¤ i ¤ r

by Proposition 25(c). Now take two places Pi, Pj lying over P and take an automor-
phism σ P GalpF 1|F q such that σpPjq � Pi. Then

�dpPi|P q � vPi
pσptqq � vσ�1pPiqptq � vPj

ptq � �dpPj|P q.

We now discuss a class of Galois extensions called Kummer extensions.

Proposition 28 (Kummer Extensions). Let F |K be an algebraic function field such that
K contains a primitive n-th root of unity, where n ¡ 1 is coprime with charK. If u P F
satisfies

u � wd for all w P F and d | n, d ¡ 1. (1.48)

Let
F 1 � F pyq, with yn � u. (1.49)

The extension F 1|F is called a Kummer extension of F . It has the following properties:
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(a) ΦpT q � T n � u is the minimal polynomial of y over F . The extension F 1|F is Galois
of degree rF 1 : F s � n. Its Galois group is cyclic generated by σpyq � ζy, where
ζ P K is a primitive root of unity.

(b) Let P P PF and P 1 P PF 1 be an extension of P . Then

epP 1|P q � n

rP

and dpP 1|P q � n

rP

� 1,

where rP � gcdpn, vP puqq ¡ 0.

(c) If K 1 is the constant field of F 1 and g, g1 are the genera of F and F 1, respectively,
than

g1 � 1� n

rK 1 : Ks

�
g � 1� 1

2
¸

PPPF

�
1� rP

n

	
� degP

�
.

Proof. (a) This is a well-known fact from Galois Theory.

(b) If rP � 1, (1.49) implies n �vP 1pyq � vP 1pynq � vP 1puq � epP 1|P q �vP puq, which means
epP 1|P q � n, because n and vP puq are coprime. Since charK ∤ n, Dedekind’s Different
Theorem yields dpP 1|P q � n� 1. If rP � n take l P Z such that vP puq � l � n, choose
t P F with vP ptq � l and set y1 :� t�1y, u1 :� t�nu. Then yn

1 � u1, vP 1py1q � vP pu1q
and the minimal polynomial of y1 over F is ψpT q � T n � u1 P F rT s, thus y1 is
integral over OP and Theorem 28 yields

0 ¤ dpP 1|P q ¤ vP 1pψ1py1qq.

Since ψ1py1q � nyn�1
1 , vP 1pψ1py1qq � pn � 1q � vP 1py1q � 0 and dpP 1|P q � 0. By

Dedekind’s Theorem, epP 1|P q � 1, finishing the proof of this case.

Finally, if 1   rP   n, consider the intermediate field F0 :� F py0q where y0 :� yn{rP .
Then rF 1 : F0s � n{rP and rF0 : F s � rP . The element y0 satisfies

yrP
0 � u (1.50)

over F . Set P0 :� P 1 X F0. The second applies to F0|F , and thus epP0|P q � 1. By
(1.50), vP0py0q � vP puq{rP , which is coprime with n{rP , so the first case applies to
F 1 � F0pyq. Consequently, epP 1|P0q � n{rP and

epP 1|P q � epP 1|P0q � epP0|P q � n

rP

.

(c) The degree of DiffpF 1|F q is

deg DiffpF 1|F q �
¸

PPPF

�
n

rP

� 1


�
¸

P 1|P

degP 1. (1.51)
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Since the ramification index epP q depends only on P , we have

¸
P 1|P

degP 1 � 1
epP q � deg

�¸
P 1|P

epP 1|P q � P 1

�

� 1
epP q � deg ConF 1|F pP q � rP

n
� n

rK 1 : Ks � degP

� rP

rK 1 : Ks � degP

by (b) and Corollary 11. Substituting this into (1.51) proves that

deg DiffpF 1|F q �
¸

PPPF

n� rP

rP

� rP

rK 1 : Ks � degP

� n

rK 1 : Ks �
¸

PPPF

�
1� rP

n

	
� degP.

Applying the Hurwitz Genus Formula finishes the proof.

Corollary 25. Let F |K be a function field and F 1 � F pyq with yn � u P F , where
charK ∤ n and K contains a primitive n-th root of unity. If there is a place Q P PF such
that gcdpn, vQpuqq � 1, then K is the full constant field of F 1, the extension F 1|F is cyclic
of degree n and

g1 � 1� npg � 1q � 1
2

¸
PPPF

pn� rP q � degP.

Example 4. Let F � Kpx, yq with charK � 2 and

y2 � fpxq � p1pxq � � � pspxq P Krxs,

where p1pxq, . . . , pspxq are distinct irreducible polynomials. Then K is the full constant
field of F and if m :� deg f , then F |K has genus

g �

$'&
'%
m� 1

2 if m is odd
m� 2

2 if m is even.

Proof. Note that F � F0pyq, where F0 � Kpxq is the rational function field. If Pi P PKpxq

denotes the zero of pipxq and P8 denotes the pole of x in Kpxq, then vPi
pfpxqq � 1 and

vP8pfpxqq � �m. From Corollary 25, we obtain that F |F0 is cyclic of degree 2 and K is
the full constant field of F . The numbers rP for P P PKpxq are

rPi
� 1 for i � 1, . . . , s

rP8 � 1 if m is odd
rP8 � 2 if m is even.

Our last claim now follows from Corollary 25.
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1.13 Lattice Theory
In this section we follow chapter 2 of (COSTA et al., 2017) and give the basic

definitions and results of lattice theory which will be used for the construction of function
field lattices.

Definition 43. Let v1, . . . , vm be linearly independent over Rn. A lattice Λ with basis
tv1, . . . , vmu is defined as

Λ :� ta1v1 � � � � � amvm : a1, . . . , am P Zu.

The integer m is called the rank of Λ, denoted by rankpΛq. If m � n, we say Λ has full
rank. Equivalently, a subset of Rn is a lattice if and only if it is a discrete subgroup of Rn

with respect to vector addition.

Definition 44. A generator matrix B for the lattice Λ is a matrix whose columns are the
basis vectors of Λ:

B � rv1| � � � |vms .

It is clear from these two definitions that the rank of the matrix B is m. Also, this
matrix is not unique, as multiple basis can generate the same lattice.

Example 5. Two of the simplest examples of lattices in the plane are the square lattice
and the hexagonal lattice, displayed below. The square lattice is nothing more than Z2:

Z2 � tpa1, a2q : a1, a2 P Zu.

A natural basis for this lattice is the canonical basis te1 � p1, 0q, e2 � p0, 1qu. The hexag-
onal lattice has a basis tp1, 0q, p1{2,

?
3{2qu. We can also visualize different examples of

lattices simply by coming up with basis for them. For example, the lattice with basis
B � tp1, 1{2q, p2, 0qu is also shown below.

Figure 1 – Examples of lattices in the plane

(a) Square lattice (b) Hexagonal lattice (c) Lattice generated by B
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Definition 45. The volume of the lattice Λ, denoted by V pΛq is the positive real number

V pΛq :�
a

detpBTBq,

where B is a generator matrix of Λ.

Definition 46. The minimum distance of a lattice is the minimum norm among its
non-zero vectors, that is

dpΛq :� min
0�xPΛ

||x||,
where || � || denotes the euclidean norm.

Definition 47. The kissing number KpΛq is defined as the number of lattice vectors that
attain the minimum distance

KpΛq :� |tx P Λ : ||x|| � dpΛqu|.

Definition 48. If Λ is a lattice of rank n, we say it is well-rounded if it contains n linearly
independent minimum length vectors over R.

Note that the previous definition asks for linear independence over R. This means
that well-roundedness is not equivalent to having a base of minimum length vectors. The
equivalence holds for lower dimensions, but for all other cases, being generated by minimum
length vectors is a strictly stronger condition.

Example 6. Another example of a lattice that will be quite useful is the root lattice in Rn,
denoted by An�1. It is defined as

An�1 :�
#
px1, . . . , xnq P Zn :

ņ

i�1
xi � 0

+
.

Considering the vectors vi � e1 � ei for i � 2, . . . , n, we have a basis for An�1. Hence,
rankpAn�1q � n � 1   n and An�1 is not a full-rank lattice. Taking B � rv2| � � � |vns, we
find

V pAn�1q �
a

detpBTBq �

∣∣∣∣∣∣∣∣∣∣∣∣

2 1 � � � 1
1 2 � � � 1
... ... . . . ...
1 1 � � � 2

∣∣∣∣∣∣∣∣∣∣∣∣

1{2

� ?
n.

The vectors of An�1 achieving minimum distance are of the form ei � ej for i, j P
t1, . . . , nu, i � j. Hence the minimum vector length is dpAn�1q �

?
2. From this charac-

terization of minimum length vectors, we can also conclude

KpAn�1q � npn� 1q.

Finally, since ||vi|| �
?

2 for all i � 1, . . . , n, An�1 has a basis of minimum length vectors,
implying is it also well-rounded.
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Theorem 30. Let Λ be a lattice of rank n and Λ1 a sublattice of Λ of the same rank. Then
the quotient group Λ{Λ1 has finite order given by

|Λ{Λ1| � V pΛ1q
V pΛq .

This positive integer is called the index of Λ1 in Λ.
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2 Function Field Lattices

Having laid out all the essentials, we now finally turn our attention to the topic of
function field lattices. We start by presenting the method used for all constructions and
outline some essential properties every function field lattice must satisfy. After that, we
explore a couple of known examples and their properties.

2.1 Construction and Basic Properties
The general results of this section are taken from (ATEŞ, 2017).

Let F be a function field over the finite field Fq, where q � ph for some prime
number p and h ¥ 1. Denote its genus by gpF q � g and its set of places by PF . Take n
distinct degree 1 (rational) places of F , form the set of places

P � tP1, . . . , Pnu � PF

and define the set of functions

O�
P :� tz P F � : supppzq � Pu.

Proposition 29. O�
P is an abelian group with respect to multiplication.

Proof. Multiplication is evidently commutative since F is a field.

• 1 P O�
P , since suppp1q � H � P

• Given x, y P O�
P , we know pxyq � pxq�pyq. Hence supppxyq � supppxqYsupppyq � P

and xy P O�
P .

• Since px�1q � �pxq, it follows that supppx�1q � supppxq � P and x�1 P O�
P .

Define the map

φP : pO�
P , �q Ñ pZn,�q
z ÞÑ pvP1pzq, . . . , vPnpzqq.

The following proposition will allow us to properly define function field lattices:

Proposition 30. φP is a group homomorphism.
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Proof. This is an immediate consequence of the fact that vP pxyq � vP pxq � vP pyq for any
P P PF :

φPpxyq � pvP1pxyq, . . . , vPnpxyqq
� pvP1pxq � vP1pyq, . . . , vPnpxq � vPnpyqq
� pvP1pxq, . . . , vPnpxqq � pvP1pyq, . . . , vPnpyqq
� φPpxq � φPpyq.

Definition 49. The set ΛP :� ImpφPq is a discrete additive subgroup of Rn by the previous
proposition and thus is called the function field lattice of F generated by P.

For an element z P O�
P , the fact that supppzq � P implies we can identify its

principal divisor pzq with its image φPpzq P ΛP in the natural way. In addition, we define
the length of z as the vector length of φPpzq:

||z|| :� ||φPpzq||.

We now discuss some general properties of function field lattices regarding first
rank and volume, followed by minimum distance, kissing number and well-roundedness.

Proposition 31. If h is the class number of F |Fq, then

(a) ΛP is a sublattice of the root lattice An�1.

(b) rankpΛPq � n� 1.

(c) The index |An�1{ΛP | is equal to some positive integer h0 that divides h.

(d) The volume of ΛP is V pΛPq �
?
n � h0.

Proof. (a) By Theorem 6, all principal divisors have degree 0, thus

degppzqq �
ņ

i�1
vPi
pzq � 0 ùñ φPpzq P An�1.

(b) Consider the degree 0 divisors of F given by P1 � Pi for i � 2, . . . , n. Since h is the
class number of F , hP1 � hPi P PrincpF q and hP1 � hPi � pziq for some zi P O�

P .
The corresponding images of these functions are

φPpz2q � ph,�h, 0, . . . , 0q
φPpz3q � ph, 0,�h, . . . , 0q

...
φPpznq � ph, 0, . . . , 0,�hq.
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Thus, we find n � 1 vectors of ΛP which are linearly independent over R. Hence,
rankpΛPq ¥ n�1. But seeing as rankpΛPq ¤ rankpAn�1q � n�1 from (a), our claim
follows.

(c) Seeing as An�1 and ΛP have the same rank, Theorem 30 implies the index h0 �
|An�1{ΛP | is finite. In order to prove that h0 | h, consider the group homomorphism

ψ : An�1 Ñ Cl0pF q
px1, . . . , xnq ÞÑ rx1P1 � � � � � xnPns

and notice that

px1, . . . , xnq P kerψ ðñ x1P1 � � � � � xnPn P PrincpF q
ðñ x1P1 � � � � � xnPn � pzq, z P O�

P

ðñ px1, . . . , xnq � φPpzq, z P O�
P .

Thus kerψ � ΛP and h0 | h.

(d) Applying Theorem 30 and Example 6 yields

V pΛPq � V pAn�1q � |An�1{ΛP | �
?
n � h0.

Remark 10. Since the value of h0 is often unknown, the previous proposition serves to
establish at least an upper bound for the volume of all function field lattices:

V pΛPq ¤
?
n � h,

where h is the class number of F .

Example 7. As a first example, let us examine the lattice from a rational function field
F � Fqpzq. Take

P � tP1, . . . , Pn�1, P8u,
where P8 is the pole of z and Pi :� Pz�ai

for ai P Fq, i � 1, . . . , n� 1. We have the vectors

φPpz � a1q � p1, 0, . . . , 0,�1q
φPpz � a2q � p0, 1, . . . , 0,�1q

...
φPpz � an�1q � p0, . . . , 0, 1,�1q

in ΛP . By Proposition 31, ΛP can have no more than these n � 1 linearly independent
vectors. Since we know from Example 6 that these vectors generate An�1, it follows that
ΛP � An�1.



Chapter 2. Function Field Lattices 84

Proposition 32. (a) If z P O�
PzFq, then ||z|| ¥

a
2 degpzq. Equality holds if and only

if the zero and pole of z in Fqpzq split completely in the extension F |Fqpzq.

(b) dpΛPq ¥
?

2γ, where γ is the gonality of F .

(c) Let z P O�
PzFq. Then ||z|| � ?

2γ if and only if degpzq � γ and the zero and pole of
z in Fqpzq split completely in F |Fqpzq.

Proof. (a) Since z is transcendental over Fq, degpzq is finite. Let the principal divisor of
z be

pzq � pb1Q1 � � � � � bsQsq � pc1R1 � � � � � ctRtq,
where Qi, Rj P P are distinct places and bi, cj P N for i � 1 . . . , s and j � 1 . . . , t.
Then

||z||2 �
ş

i�1
b2

i �
ţ

j�1
c2

j ¥
ş

i�1
bi �

ţ

j�1
cj � 2 degpzq.

Equality holds if and only if bi � cj � 1 for all i, j, which is equivalent to saying the
zero and pole of z split completely in the extension F |Fqpzq.

(b) Since γ ¤ degpzq for all z P F zFq by definition, it follows from (a) that ||z|| ¥ ?
2γ

for all z P O�
PzFq and thus

dpΛPq ¥
?

2γ.

(c) This follows directly from part (a).

As a consequence of this proposition, we can now precisely determine the conditions
under which a function field lattice attains the lower bound

?
2γ for the minimum distance:

Corollary 26. dpΛPq �
?

2γ if and only if there exists a rational subfield E � F with
rF : Es � γ and at least two places P and Q of E such that:

1. P and Q split completely in F |E.

2. P � PF contains all extensions of P and Q.

Proof. pñq: If dpΛPq �
?

2γ, there exists z P O�
P with ||z|| � ?

2γ. Setting E :� Fqpzq
and applying Proposition 32(c) implies first rF : Es � degpzq � γ, and also P0, P8 the
zero and pole of z in E, respectively, split completely in F |E. Since supppzq � P , all the
extensions of P0 and P8 must be contained in P .
pðq: Let P,Q P PE be distinct rational places that satisfy conditions 1 and 2. We can find
an element z P E such that P is the zero of z in E and Q is the pole of z in E. Condition
1 yields rF : Fqpzqs � γ � rF : Es, and thus E � Fqpzq. Since all extensions of P and Q

are contained in P by condition 2, it follows that supppzq � P and z P O�
P . Proposition

32(c) now assures ||z|| � ?
2γ and dpΛPq �

?
2γ.
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Lemma 16. Let E be a rational subfield of F with rF : Es � γ and dpΛPq �
?

2γ. Define
the set SpEq � PE as the set of rational places of E satisfying conditions 1 and 2 of
Corollary 26. If m :� |SpEq| ¥ 2, then:

(a) If z P E XO�
P , the vectors φPpzq P ΛP of minimum length span a sublattice ∆P of

ΛP such that rankp∆Pq � m� 1.

(b) The number of minimum length vectors φPpzq P ΛP with z P E XO�
P is mpm� 1q.

Proof. By Corollary 26, there exists a rational subfield E � F with rF : Es � γ and
|SpEq| ¥ 2. Let SpEq � tP1, . . . , Pmu.

(a) If z P E X O�
P with ||z|| � ?

2γ, Proposition 32 implies rF : Fqpzqs � γ, and thus
E � Fqpzq and the zero and pole of z satisfy conditions 1 and 2. Denoting by pzqE
the principal divisor of z in E, we have

pzqE � Pi � Pj for i, j P t1, . . . ,mu, i � j.

Denoting z by zi,j if pzqE � Pi � Pj, we have

pzi,jqE � Pi � Pj � pPi � P1q � pPj � P1q � pzi,1qE � pzj,1qE for i, j P t2, . . . ,mu.

Also notice that pz1,jqE � P1 � Pj � �pPj � P1q � �pzj,1qE. Identifying principal
divisors with images via φP yields

φPpzi,jq � φPpzi,1q � φPpzj,1q and φPpz1,jq � �φPpzj,1q.

Therefore, all vectors φPpzi,jq, i, j P t1, . . . ,mu, i � j are spanned by the set

tφPpzj,1q : j � 2, . . . ,mu.

Notice that vP pzj,1q � �1 for all P P PF such that P |P1, vQpzj,1q � 1 for all
Q P PF such that Q|Pj and all other valuations are zero. Since every place of
F extends exactly one place of E by Proposition 16(a), no other vector besides
φPpzj,1q will have non-zero entries at the places corresponding to the extensions of
Pj. Therefore, the generating set of ∆P obtained previously is linearly independent
and rankp∆Pq � m� 1.

(b) Using part (a), we simply have to count the elements zi,j for i, j P t1, . . . ,mu and
i � j. This number is mpm� 1q.

We now consider multiple rational subfields of F and give an interval on which
rankp∆Pq must lie.
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Theorem 31. Let Ei be rational subfields of F with rF : Eis � γ for i � 1, . . . , s
and dpΛPq �

?
2γ. Define the set SpEiq � PEi

in the same way as Lemma 16. Setting
mi :� |SpEiq| and m :� max

1¤i¤s
mi, the following statements hold:

(a) m ¥ 2.

(b) rank ΛP ¥ mγ � 1.

(c) m� 1 ¤ rankp∆Pq ¤ spm� 1q.

Proof. (a) Since the lower bound for the minimum distance is attained, Corollary 26
guarantees at least one of the SpEiq has 2 or more places, hence m ¥ 2.

(b) From Proposition 31(b), rankpΛPq � |P | � 1. By condition 1, every place of SpEiq
splits completely in the extension F |Ei, thus there are γ � rF : Eis rational places
of F lying over each one. From condition 2, all these extensions are contained in P ,
therefore

|P | ¥ mγ ùñ rankpΛPq ¥ mγ � 1.

(c) Let φPpzq be a minimal vector. Applying Corollary 26, we get Fqpzq � Ei for some
i � 1, . . . , s and mi ¥ 2. Thus, z P Ei X O�

P . Lemma 16(a) now implies there are
mi�1 linearly independent vectors φPpzq of minimal length. This means the number
of linearly independent minimal length vectors in ΛP must satisfy

mi � 1 ¤ m� 1 ¤ rankp∆Pq ¤
ş

i�1
pmi � 1q ¤ spm� 1q.

Corollary 27. If the hypothesis of Theorem 31 hold along with g ¡ 0 and s ¤ γ, then ΛP

is not well-rounded.

Proof. First notice that g ¡ 0 implies γ ¡ 1, since if γ � 1, then F would be rational and
its genus would be 0. Thus,

rankp∆Pq ¤ spm� 1q ¤ γpm� 1q � γm� γ   γm� 1 ¤ rankpΛPq,

meaning there are less linearly independent minimal length vectors than the rank of ΛP .
Therefore, it cannot be well-rounded.

Example 8. Let F |Fq be a hyperelliptic function field, that is, an extension of Fqpxq
with rF : Fqpxqs � 2 � γ and g ¥ 2, where Fqpxq is the unique rational subfield of F of
degree 2, thus s � 1. If at least two places of Fqpxq split completely in F |Fq, then we are
under the hypothesis of Corollary 27 and the function field lattice associated to F is never
well-rounded.

Finally, we can give an exact expression for the kissing number:
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Corollary 28. Under the same assumptions as Theorem 31, the kissing number of ΛP is

KpΛPq �
ş

i�1
mipmi � 1q.

Proof. Applying Corollary 26 shows that any minimal length vector must be the image of
some z P Ei XO�

P such that mi ¥ 2. By Lemma 16(b), there are mipmi � 1q such vectors,
hence

KpΛPq �
ş

i�1
mipmi � 1q.

2.2 Known Examples
This section is dedicated to examining the existing examples of function field lattices

with particular emphasis being placed on the minimum distance, kissing number and
well-roundedness. The first part is based on (FUKSHANSKY; MAHARAJ, 2014) and the
second part on (BÖTTCHER et al., 2016) with some needed properties regarding function
fields taken from chapter 6 of (STICHTENOTH, 2009).

2.2.1 Elliptic Function Fields

Definition 50. An Algebraic function field F |K with K the full constant field of F is
said to be elliptic if its genus is g � 1 and there exists some A P DivpF q with degA � 1.

Elliptic function fields can be characterized explicitly via the following proposition:

Proposition 33. Let F |K be an elliptic function field.

(a) If charK � 2, there exist x, y P F such that F � Kpx, yq and y2 � fpxq for some
square-free polynomial fpxq P Krxs of degree 3.

(b) If charK � 2, there exist x, y P F such that F � Kpx, yq and y2 � y � fpxq P Krxs
with deg f � 3 or y2 � y � x� 1

ax� b
where a, b P K and a � 0.

We now present some results that allow us to induce a group structure on the set
of rational places of an elliptic function field.

Proposition 34. Let F |K be an elliptic function field. If P denotes the set of all rational
places of F , then

(a) For each divisor A P DivpF q with degA � 1, there is a unique place P P P with
A � P . In particular, P � H.
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(b) Given a fixed place P0 P P, the following map is a bijection

Φ : P Ñ Cl0pF q
P ÞÑ rP � P0s.

Proof. (a) Let A P DivpF q with degA � 1. Since degA ¡ 2g � 2, the Riemann-Roch
Theorem implies ℓpAq � degA� 1� g ¡ 0 and by Remark 4(b), there is a divisor
A1 � A with A1 ¡ 0. Since degA � degA1 � 1, it follows that A1 � P P P. To
prove uniqueness, suppose A � P and A � Q for distinct places P,Q P P. Then,
P � Q and there exists x P F with P �Q � pxq. Applying Theorem 6:

rF : Kpxqs � degpxq8 � degQ � 1,

hence F � Kpxq, which is impossible, since F |K is elliptic.

(b) First suppose ΦpP q � ΦpQq for P,Q P P . Then P �P0 � Q�P0, and hence P � Q.
If P � Q, Theorem 6 produces a contradiction, so P � Q and Φ is injective. To show
that it is surjective, take rBs P Cl0pF q. We know that degpB�P0q � 1, so (a) implies
the existence of a unique P P P with B�P0 � P . Hence, rBs � rP�P0s � ΦpP q.

Using the bijection Φ, we can carry over the group structure from Cl0pF q to P by
defining, for P,Q P P :

P `Q :� Φ�1pΦpP q � ΦpQqq. (2.1)

This definition has the following properties:

Proposition 35. Let F |K be an elliptic function field. Then:

(a) P with the operation ` as defined in (2.1) is an abelian group.

(b) The place P0 is the zero element of the group pP ,`q.

(c) For P,Q,R P P: P `Q � R ðñ P �Q � R � P0.

(d) The map Φ : P Ñ Cl0pF q is a group isomorphism.

The group law of P is dependent on the choice of P0. Since we will represent an
elliptic function field F |K as F � Kpx, yq according to Proposition 33, we set P0 :� Q8,
the common pole of x and y, which is a rational place. We also note that if P,Q P P , then
P �Q is a principal divisor if and only if P � Q. Hence ℓpP �Qq ¡ 0 ðñ P � Q.

Let E be a curve over Fq such that FqpEq � F (Theorem 8). Each Fq-rational point
of E corresponds to a rational place of F , so we denote a place by P and its corresponding
point in E by P. This means P �Q is a divisor of F , while P�Q is another point of E.
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Let the set of rational places of F be P � tP0 :� Q8, P1, . . . , Pn�1u. For a place
P P P, P 1 will denote the place corresponding to the additive inverse of P, that is,
P�P1 � Q8. In this case, xpPq � xpP1q.

Define mpP,Qq as the line through P and Q if P,Q � Q8, meaning mpP,Qq �
ax � by � c for some a, b, c P Fq. If P � Q � Q8, then mpP,Qq is the tangent line of E
at the point P. If Q � P 1 � Q8 then mpP,Qq � x � xpPq � x � xpQq. If P � Q8 or
Q � Q8, we define mpP,Qq :� 1 P Fq.

If P,Q � Q8 and P�Q � R, then mpP,Qq intersects E at points P,Q and R1,
and thus has the principal divisor

pmpP,Qqq � P �Q�R1 � 3Q8.

If R1 � Q8, then Q � P 1. In this case,

pmpP,Qqq � P � P 1 � 2Q8.

Therefore, if P�Q � R and R � Q8, it follows that�
mpP,Qq
x� xpRq



� pP �Q�R1 � 3Q8q � pR �R1 � 2Q8q � P �Q�R �Q8.

Supposing P�Q � R, we define

F pP,Qq :�

$'''''&
'''''%

x� xpRq
mpP,Qq if P,Q,R � Q8

1
mpP,Qq if P,Q � Q8 and R � Q8

1 if P � Q8 or Q � Q8.

In any case, the divisor of F pP,Qq is

pF pP,Qqq � �P �Q�R �Q8.

Lemma 17. If F |K is a function field, f P F and D P DivpF q, then

fLpDq � LpD � pfqq.

Proposition 36. Let P,Q,R P P. Then P�Q � R if and only if LpP�Q�R�Q8q � t0u,
in which case

LpP �Q�R �Q8q � spanFq
pF pP,Qqq.

Proof. pñq : If P�Q � R, then P �Q�R�Q8 is the principal divisor of p1{F pP,Qqq.
Hence LpP �Q�R �Q8q � t0u by our previous observation.
pðq : In order to show that P�Q � R, first suppose P,Q � Q8, then

1
F pP,QqLpP �Q�R �Q8q � LpS �Rq,
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where S is the third point of intersection of the line mpP,Qq and the curve E. By
assumption, LpS �Rq has positive dimension, so R � S and LpS �Rq � Fq, implying

LpP �Q�R �Q8q � spanFq
pF pP,Qqq.

If P � Q8, then P�Q � Q and LpP �Q�R �Q8q � LpQ�Rq � t0u by assumption
and it follows that P � Q and R � P�Q. Finally, LpP �Q� R �Q8q � spanFq

p1q �
spanFq

pF pP,Qqq. The Q � Q8 case is proven in the same manner.

Theorem 32. For an integer i ¥ 1, iP � Q8 if and only if

LpiP � iQ8q � spanFq
pF pP,PqF pP, 2Pq � � �F pP, pi� 1qPqq.

Proof. For i � 1, the result follows immediately. For k ¥ 1, set Pk :� kP. So, if k ¥ 1,
P�Pk�1 � Pk and by Proposition 36:

LpP � Pk�1 � Pk �Q8q � spanFq
pF pP,Pk�1qq.

Now suppose iP � Q8, meaning P�Pi�1 � Q8 and

LpP � Pi�1 � 2Q8q � spanFq
pF pP,Pi�1qq.

Also, P�Pi�j�1 � Pi�j for j � 1, . . . , i� 2, so the following identities hold:

LpP � Pi�2 � Pi�1 �Q8q � spanFq
pF pP,Pi�2qq

LpP � Pi�3 � Pi�2 �Q8q � spanFq
pF pP,Pi�3qq

...
LpP � P � P2 �Q8q � spanFq

pF pP,Pqq.

Now, if LpD1q � spanFq
pf1q and LpD2q � spanFq

pf2q, then LpD1 � D2q � spanFq
pf1f2q.

Combining this with the equalities above yields

LpiP � iQ8q � spanFq
pF pP,PqF pP,P2q � � �F pP,Pi�1qq.

Now assume the above equation holds. The divisor of g :� F pP,PqF pP,P2q � � �F pP,Pi�2q
is

pgq �
i�2̧

j�1
pF pP,Pjqq �

i�2̧

j�1
r�P � Pj � Pj�1 �Q8s � �pi� 1qP � Pi�1 � pi� 2qQ8,

so we conclude that

1
g

LpiP � iQ8q � LpP � Pi�1 � 2Q8q � t0u.

Applying Proposition 36 shows that P�Pi�1 � Q8, that is, iP � Q8.
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Theorem 33. Let D P DivpF q define as

D :� rQ8 �
n�1̧

i�1
aiPi

be a divisor of degree 0. Then D is a principal divisor if and only if
n�1̧

i�1
aiPi � Q8.

In this case, D � pfq, where f is a product of functions of the form F pP,Qq with
P,Q P P. The group O�

P of functions with support in P is generated by the functions
F pP,Qq. Consequently, the lattice ΛP is generated by vectors of the form P �Q�R�Q8

where P�Q � R.

Proof. First we observe that it may be assumed that ai ¥ 0 for 1 ¤ i ¤ n� 1. Indeed, for
a place P P P and an integer k ¥ 2, define

TkpPq :� F pP,PqF pP, 2Pq � � �F pP, pk � 1qPq.

Suppose aj   0 and let kj be such that kjPj � Q8. By Theorem 32: pTKj
pPjqq �

�kjPj � kjQ8. Therefore �
1

Tkj
pPjq


l

LpDq � LpD1q,

where

D1 :� D � l � pTkj
pPjqq � pr � lkjqQ8 �

n�1̧

i�1
i�j

aiPi � paj � lkjqPj

and aj � lkj ¥ 0 for a sufficiently large l. Also, D1 is a principal divisor if and only if D is
also a principal divisor and

n�1̧

i�1
i�j

aiPi � paj � lkjqPj �
n�1̧

i�1
aiPi.

Write D � rQ8 �Q1 � � � � �Qt with repetitions possibly occurring among the places Qi

and t � �r. Define
Ti :� Qt�i �Qt�i�1 � � � � �Qt

and
f :� F pQt�1,QtqF pQt�2,T1qF pQt�3,T2q � � �F pQ1,Tt�2q.

Note that �
1
f



� rQt�1 �Qt � T1 �Q8s �

t�2̧

i�1
rQt�i�1 � Ti � Ti�1 �Q8s

� Qt �Qt�1 � � � � �Q1 � Tt�1 � pt� 1qQ8.
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And D � p1{fq � �Q8 � Tt�1. So

1
f

LpDq � Lp�Q8 � Tt�1q.

The result now follows since �Q8 � Tt�1 is principal if and only if Tt�1 � Q8, that is,
Q1 �Q2 � � � � �Qt � Q8. Furthermore, �Q8 � Tt�1 is a principal divisor if and only if
1
f

Lp�Q8 � Tt�1q � Fq, that is, LpDq � spanFq
pfq.

For the remaining statement, note that each function F pP,Qq belongs to O�
P .

Furthermore, O�
P is the union of all LpDqzt0u for all principal divisors D with support

in P . From what was just proved, LpDq is spanned by products of functions F pP,Qq for
P,Q P P , which finishes the proof.

We can now prove results concerning some parameters of the lattice ΛP from an
elliptic function field.

Theorem 34. If n ¥ 4, dpΛPq � 2 and the minimal vectors of ΛP are of the form
P � Q � R � S, where P,Q,R, S P P are distinct places and P � Q � R � S. If
n � 3 and P � tP,Q,Q8u, then dpΛPq �

?
6 and the minimal vectors have the form

�pP �Q� 2Q8q, �pP � 2Q�Q8q and �p�2P �Q�Q8q.

Proof. P �Q is a principal divisor if and only if P � Q, so γ ¡ 1. F pP,Qq is a function
of degree 2, meaning γ � 2. First assume n ¥ 4. There are two distinct points P,Q
not equal to Q8 such that P � Q1. This means P � Q � R for R � P,Q,Q8. Since
pF pP,Qqq � �P �Q�R�Q8, dpΛPq ¤ 2. On the other hand, Proposition 32(b) implies
dpΛPq ¥ 2, so dpΛPq � 2.

A minimal vector v of ΛP must have the form P �Q�R� S where P,Q,R, S P P
are all distinct. Also, P �Q � R � S is a principal divisor. Suppose P �Q � R1, then
P �Q � R1 �Q8 is a principal divisor as is pP �Q � R1 �Q8q � pP �Q � R � Sq �
R�S�R1�Q8. It follows from Proposition 36 that R�S � R1. Therefore, the minimal
vectors of ΛP have the form P �Q�R � S where P�Q � R� S.

Finally, if n � 3, then Z3 � P � tQ8, P,Qu, where P � 2Q. We have the following
vectors of ΛP : 3P � 3Q8, 3Q � 3Q8, 2P � Q � Q8, P � 2Q � Q8. This means that if
a1P � b1Q� c1Q8 is a lattice vector, then a2P � b2Q� c2Q8 with a2 � a1 mod 3, b2 � b1

mod 3 and c2 � �a2 � b2. A vector with minimal length is obtained when a2 � b2 � 1 and
c2 � �2, implying dpΛPq �

?
6.

We now give a formula for the kissing number of ΛP .

Theorem 35. If n ¥ 4 and e is the number of points of P such that 2P � Q8, then

KpΛPq � n

e
� pn� eqpn� e� 2q

4 �
�
n� n

e

	
� npn� 2q

4 .
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Proof. Define the homomorphism τ : E Ñ E by τpPq � 2P. Then | ker τ | � e and
| Im τ | � |E{ ker τ | � n{e. Fix some point A of E. We first count the number of solutions
to the equation P �Q � A for P and Q distinct points of E. Note that P � Q if and
only if A P Im τ . In the case that A P Im τ , each element of the kernel gives a solution to
2P � A, so there are e of them. Thus, there are n� e points P such that Q :� A�P � P,
so there are pn� eq{2 pairs P,Q such that P�Q � A and P � Q. Therefore, the number
of pairs R,S disjoint from P,Q such that R� S � A is pn� e� 2q{2. We conclude that
the number of minimal vectors P � Q � R � S such that P � Q � A � R � S with
A P Im τ is n

e
� pn� eqpn� e� 2q

4 .

If A R Im τ , there are no solutions to 2P � A. A similar argument shows there
are

�
n� n

e

	
� npn� 2q

4 minimal vectors P �Q� R � S such that P�Q R Im τ , which
concludes the proof.

Finally, we show that ΛP has a base of minimal vectors.

Theorem 36. If E has at least 5 points, then ΛP is generated by minimal vectors. In
particular, ΛP is well-rounded.

Proof. From Theorem 33, ΛP is generated by vectors of the form v :� �P �Q�R�Q8

where P�Q � R. We need only to prove that v is generated by minimal vectors. Suppose
v does not have minimum length, that is, P,Q,R,Q8 are not all distinct. Since v is a
nonzero principal divisor, P,Q � Q8. Also, P,Q � R, so either P � Q or R � Q8.

If P � Q, v � �2P �R �Q8 and 2P � R. Since E has at least 5 points, we can
choose a rational place U such that U is different from Q8,P, 2P and �P. Set S :� P�U
and notice that

�2P �R �Q8 � p�P � U � S �Q8q � pP � S �R � Uq.

We claim �P �U �S�Q8 and P �S�R�U are minimal vectors. By choice, U � P,Q8

and U � S, otherwise P � Q8. Also, S � P otherwise U � Q8. Finally, S � Q8 as
equality would imply P�U � Q8 and U � �P, which is false. Thus �P � U � S �Q8

is a minimal vector.

Observe that P � S � 2P � U � R � U, so P � S � R � U is a lattice vector.
We know P, S, U are distinct, so we must show that S, U � R. If R � S, then U � P,
which is impossible. If R � U then U � R � 2P, which is also not possible. Therefore,
P � S � R � U is a minimal vector. This shows that v is the difference of two minimal
vectors if P � Q.

Now assume R � Q8, meaning v � �P�Q�2Q8 and P�Q � Q8. Since E has at
least 5 rational points, choose a rational point U � P,Q, 2P,Q8. Set S :� Q�U and note
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that U � S as Q � Q8. Also, Q�U�S�Q8 is a lattice vector and P�S � P�Q�U � U
so that P � S � U �Q8 is also a lattice vector. Writing v as

v � �pQ� U � S �Q8q � pP � S � U �Q8q

we notice that it is a sum of two lattice vectors, so we only need to show that Q�U�S�Q8

and P � S � U �Q8 are minimal vectors.

For the first vector we show that Q,U, S,Q8 are all distinct places. By choice,
U � Q,Q8 and we have already observed that U � S. If Q were equal to S, then
Q � S � Q � U, implying U � Q8 and U � Q8, which contradicts the choice of
U. Finally, S � Q8 as otherwise, U � �Q � P, another contradiction. Therefore,
Q� U � S �Q8 is a minimal vector.

Finally, to show that P � S � U �Q8 is a minimal vector, we once again prove all
of its places are distinct. From the previous argument, S, U,Q8 are all distinct. If P � U

or P � Q8, then the vector P � S �U �Q8 would have length 1, contradicting Theorem
34. And if P � S, then U � P � S � 2P, contradicting the choice of U. Therefore
P � S � U � Q8 is a minimal vector and the vectors that generate ΛP are themselves
generated by vectors of minimal length, implying ΛP is also generated by vectors of
minimum length.

2.2.2 Hermitian Function Fields

Definition 51. The Hermitian function field over Fq2 is defined as

H :� Fq2px, yq where yq � y � xq�1.

One of the reasons why the Hermitian function field is of particular interest is the
fact that it contains many rational places. The following results make this notion more
precise:

Theorem 37 (Hasse-Weil bound). If F |Fq is a function field of genus g and N is the
number of rational places of F , then

|N � pq � 1q| ¤ 2g?q.

Lemma 18. The Hermitian function field H|Fq2 has the following properties:

(a) H has genus g � qpq � 1q{2 and gonality γ � q.

(b) H has q3 � 1 Fq2-rational places, namely

• the common pole Q8 of x and y, and
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• for each α P Fq2, there are q elements β P Fq2 such that βq � β � αq�1, and
for all such pairs pα, βq there is a unique place Pα,β such that xpPα,βq � α and
ypPα,βq � β.

(c) H attains the upper Hasse-Weil bound, that is, H|Fq2 is a maximal function field.

(d) For each pair pd, eq P F2
q2 with eq�e � dq�1, there is an automorphism σ P AutpH|Fq2q

with σpxq � x� d and σpyq � y � dqx� e.

Let K :� tpα, βq P F2
q2 : βq � β � αq�1u and let P be the set of all rational places

of H, that is, the common pole Q8 of x and y, and the places Pα,β indexed by K. For
each pair pα, βq P K, define the function

τα,β :� y � β � αqpx� αq � y � αqx� βq,

which is the tangent line to the Hermitian curve at the point pα, βq.
Interpreting H as a Kummer extension of the rational function field Fq2pyq, the

rational places of Fq2pyq satisfy

• For each γ P Fq2 with γq�γ � 0, the place Py�γ is totally ramified, and if γq�γ � 0,
the place Py�γ splits completely in H|Fq2 .

• The pole of y is totally ramified.

We note that
τ q

α,β � τα,β � px� αqq�1, (2.2)

therefore H � Fq2px, yq � Fq2pτα,β, xq and H|Fq2pτα,βq is a Kummer extension. It follows
that

pτα,βq � pq � 1qPα,β � pq � 1qQ8.

We denote the rational places of Fq2pτα,βq by their corresponding monic irreducible polyno-
mials, except for the place at infinity, denoted by P8pτα,βq. For any γ P Fq2 with γq�γ � 0,
we have τα,β � γ � τα,β�γ.

Functions of the type ax � by � c with a, b, c P Fq2 and a, b � 0 will be referred
to as lines. By points on the line, we mean intersection points between the line and the
Hermitian curve. The following lemma allows us to determine the divisor of every line,
and thus obtain the points of K which lie on a line.

Lemma 19. Let H|Fq2 be the Hermitian function field and γ P Fq2.

(a) If γq � γ � 0, the place τα,β � γ � τα,β�γ is totally ramified in H|Fq2pτα,βq and the
divisor of τα,β � γ is

pτα,β � γq � pq � 1qPα,β�γ � pq � 1qQ8
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and the line τα,β � γ is a tangent line.

(b) The pole P8pτα,βq of τα,β is totally ramified in the extension H|Fq2pτα,βq.

(c) If γq � γ � 0, the place τα,β � γ of Fq2pτα,βq splits completely in H|Fq2pτα,βq, and the
divisor of τα,β � γ is

pτα,β � γq �
q̧

i�0
Pα�δζi,β�γ�αqδζi � pq � 1qQ8 (2.3)

with ζ a primitive pq�1qst root of unity in Fq2 and δ P F�q2 is such that γq�γ � δq�1.
The points of K lying on the line τα,β � γ are

pα � δζ i, β � γ � αqδζ iq, 0 ¤ i ¤ q.

The line τα,β � γ is not a tangent line.

(d) Let f :� y � bx� c and δ P Fq2 be such that δq�1 � bq�1 � pcq � cq. The points of K
lying on the line f are

p�bq � δζ i, bq�1 � c� bδζ iq, 0 ¤ i ¤ q.

In this case, f is a tangent line ðñ δ � 0 ðñ p�bq, cqq P K ðñ p�b, cq P K.
If f is a tangent line, then f � τ�bq ,cq . If δ � 0, then f contains exactly q � 1 points
of K.

(e) If f � x� c, the divisor of f is

pfq �
¸
d

Pc,d � qQ8, (2.4)

where the sum is done over the q solutions d P Fq2 of dq � d � cq�1.

Proof. One can view H as a Kummer extension of Fq2pτα,βq, so parts (a), (b), (e) and the
first statement of (c) all follow from Proposition 28.

(c) In order to determine the divisor of τα,β � γ, we apply Theorem 24. Over Fq2pτα,βq,
the minimal polynomial of x is ϕpT q :� pT � αqq�1 � τ q

α,β � τα,β P Fq2pτα,βqrT s.
The place τα,β � γ is rational in Fq2pτα,βq, so its residue class field is isomorphic to
Fq2 . Using notation as in Theorem 24, we will study the decomposition of ϕ̄pT q �
pT � αqq�1 � pγq � γq P Fq2rT s. The trace map from Fq2 to Fq is z ÞÑ zq � z and the
norm map from F�q2 to F�q , given by z ÞÑ zq�1 is surjective, so there exists δ P F�q2

with γq � γ � δq�1. If ζ P Fq2 is a primitive pq� 1qst root of unity, using the notation
of Theorem 24, we can write

ϕ̄pT q � pT � αqq�1 � δq�1 �
q¹

i�0
pT � α � δζ iq.
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Therefore, the place τα,β � γ splits completely in the extension H|Fq2pτα,βq, and the
function τα,β � γ has q � 1 zeros in H, say, Z0, Z1, . . . , Zq with x� α � δζ i P Zi for
i � 0, . . . , q. Since

τα,β � γ � y � αqx� βq � γ � py � β � δαqζ iq � αqpx� α � δζ iq,

a common zero of the functions τα,β�γ and x�α� δζ i is also a zero of y�β� δαqζ i.
The functions x�α� δζ i and y� β � δαqζ i have Pα�δζi,β�δαqζi as a unique common
zero in H, that means Zi � Pα�δζi,β�δαqζi for i � 0, . . . , q. From the fact that
τα,β � γ � y � αqx � βq � γ, any pole of τα,β � γ must be a pole of x or y. This
means Q8 is the only pole of τα,β � γ, with order q � 1.

(d) Seeing as bq�1 � pcq � cq P Fq2 , there exists δ P Fq2 such that δq�1 � bq�1 � pcq � cq.
Set α � �bq, then b � �αq. If β P Fq2 is such that βq � β � αq�1 � bq�1, then
f � y�αqx� c � τα,β �γ with γ � βq� c. Note that γq�γ � bq�1�pcq� cq � δq�1.
By part (c), the points on f are pα� δζ i, β�γ�αqδζ iq � p�bq� δζ i, bq�1� c� bδζ iq.
Now, f is a tangent to the Hermitian curve at pB,Cq P K ðñ f � τB,C �
y � Bqx � Cq for some pB,Cq P K ðñ pb, cq � p�Bq, Cqq for some pB,Cq P K.
Since b � �Bq ðñ B � �bq and c � Cq ðñ C � cq, f is a tangent
ðñ p�bq, cqq P K ðñ p�b, cq P K ðñ δ � 0.

This lemma allows us to find the minimum distance of the lattice.

Theorem 38. The Hermitian function field lattice ΛP generated by P attains the lower
bound for the minimum distance: dpΛPq �

?
2q.

Proof. Pick a point P � pα, βq on the Hermitian curve and two distinct non-tangent lines
f1, f2 through P such that neither is of the form x�α. These can be constructed by picking
two distinct slopes M1,M2 P Fq2 which are not equal to �αq. We can find m1,m2 P Fq2

with M1 � mq
1 and M2 � mq

2. Defining f1 :� y�β�mq
1px�αq and f2 :� y�β�mq

2px�αq,
we see both lines pass through P and are not the tangent at this point since their slopes
are not �αq. Neither can these lines be tangential to the curve at any other point, because
every tangent passes only through its point of tangency.

Applying Lemma 19(c), we observe the intersection between the supports of pf1q
and pf2q consists of only the pole Q8 and Pα,β. Therefore pf1q � Pα,β �

q̧

i�1
Qi �pq� 1qQ8

and pf2q � Pα,β �
q̧

i�1
Ri � pq � 1qQ8, meaning

�
f1

f2



�

q̧

i�1
Qi �

q̧

i�1
Ri

and ||f1{f2|| �
?

2q.
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Having attained the lower bound for the minimum distance, we can now easily
determine a lower bound for the kissing number.

Theorem 39. KpΛPq ¥ pq3 � 1q � q2 � pq2 � 1q.

Proof. The function x has degree q, so rH : Fq2pxqs � q. There are q3� 1 rational subfields
E of H which are conjugate to Fqpxq, meaning rH : Es � q. In each of these extensions,
all places but the pole of the generating element split completely, that is, q2 in each one.
Applying Corollary 28, we conclude

KpΛPq ¥
q3�1̧

i�1
q2pq2 � 1q � pq3 � 1q � q2 � pq2 � 1q.

From Lemma 19 and Theorem 38, we have the following characterization for minimal
vectors:

Lemma 20. If f1, f2 are distinct lines, then f1{f2 and f2{f1 are minimal vectors if one
of the following conditions hold:

• f1 and f2 are of the form x� α.

• One of the lines is of the form x� α, the other is a non tangent line y � bx� c and
both intersect in exactly one point.

• Both lines are non tangent of the form y � bx� c with a point of intersection lying
in K.

Hiss proved in (HISS, 2004) that every function in the set O�
P can be represented as

a product of functions of the form ax�by�c and their inverses. Combining this result with
the previous lemma, we can prove that ΛP is not only well-rounded, but also generated by
minimal vectors.

Theorem 40. ΛP is generated by minimal vectors and is, thus, well-rounded.

Proof. Since ΛP is generated by the divisors of lines, we need only prove that every such
divisor is an integer linear combination of minimal vectors. We will call a line good if it is
an integer linear combination of minimal vectors. Denoting by ζ P Fq2 a primitive pq� 1qst
root of unity, the proof is split into cases.

Case 1: Let d, e P Fq2 be such that dq � d � eq�1. We first show that y � d and
x� e are good. Denote by d1 � d, d2, . . . , dq the solutions to yq � y � eq�1. Then

q¹
i�1

y � di � yq � y � eq�1 � xq�1 � eq�1 �
q¹

i�0
x� ζ ie,
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therefore,

x� e �
q¹

i�1

y � di

x� ζ ie
.

The lines y� di and x� ζ ie have only one point of intersection and y� di are non tangent
since dq

i � di � eq�1 � 0. By Lemma 20, y � di

x� ζ ie
is a minimal vector and x� e is a sum of

minimal vectors, proving the line x� e is good. On the other hand,

y � d � px� eqpx� ζeq
q¹

i�2

x� ζ ie

y � di

,

meaning y � d is also a sum of minimal vectors.

Case 2: We now prove every non tangent line f � y � bx� c is good. Since f is
non tangent, from Lemma 19 we get that p�b, cq R K, that is cq � c � p�bqq�1 � bq�1. Set
α � �bq so that b � �αq and αq�1 � bq�1. Let β P Fq2 be a solution to βq�β � αq�1 � bq�1.
Then

f � y � αqx� βq � c� βq � τα,β � d where d � βq � c.

Also, dq � d � βq � β � pcq � cq � bq�1 � pcq � cq � 0. Now choose e P Fq2 such that
dq�d � eq�1, so cq�c � bq�1�eq�1. It follows that e � 0. Defining d1 � d, d2, . . . , dq P Fq2

to be the solutions of yq � y � eq�1, we have:
q¹

i�1
τα,β � di � τ q

α,β � τα,β � eq�1 � px� αqq�1 � eq�1 �
q¹

i�1
x� αζ ie, (2.5)

and from this, it follows that

x� α � e �
q¹

i�1

τα,β � di

x� α � ζ ie
. (2.6)

Due to the fact that dq
i � di � eq�1 � dq � d � 0, we infer from Lemma 19 that the lines

τα,β � di are not tangent lines. Moreover, the line τα,β � di intersects x�α� ζ ie at exactly
one point, namely pα � ζ ie, β � di � eαqζ iq, which belongs to K, since

pβ � di � eαqζ iqq � β � di � eαqζ i � βq � β � dq
i � di � eqαζ iq � eαqζ i

� αq�1 � eq�1 � eqαζ iq � eαqζ i

� pα � ζ ieqq�1.

Thus, the vectors corresponding to τα,β � di

x� α � ζ ie
, i � 1, . . . , q are minimal vectors. From

equation (2.6), the line x�α� e is good. The same argument applies for x�α� ζe. From
equation (2.5):

f � τα,β � d � px� α � eqpx� α � ζeq
q¹

i�2

x� α � ζ ie

τα,β � di

, (2.7)

meaning f is a sum of minimal vectors and the line defined by f is good.
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Case 3: Now, we prove the line τ0,0 � y is good. Firstly, notice that

yq�1 � xq�1 � yq�1 � yq � y � py � 1qq�1 � 1 �
q¹

i�0
y � 1� ζ i.

But also yq�1 � xq�1 �
q¹

i�0
py � ζ ixq, so

q¹
i�0

y � 1� ζ i �
q¹

i�0
y � ζ ix.

Since �1 is a pq � 1qst root of unity, there is a unique j P t0, . . . , qu such that ζj � �1.
Then

y � py � ζjxq
q¹

i�0
i�j

y � ζ ix

y � 1� ζ i
. (2.8)

The points of K on the line y � p1� ζ iq are pp1� ζ iqζk, 1� ζ iq for k � 0, . . . , q, meaning
the line y � p1 � ζ iq for i � j intersects y � ζ ix in exactly one point of K, that being
pp1� ζ iqζq�1�i, 1� ζ iq, which belongs to K given that

pp1� ζ iqζq�1�iqq�1 � p1� ζ iqq�1 � p1� ζ iqqp1� ζ iq
� 1� ζ iq � ζ i � 1
� p1� ζ iqq � p1� ζ iq.

The lines y�ζ ix are not tangent since pζ iqq�1 � 1 � 0 and thus p�ζ i, 0q R K. Consequently,

the functions y � ζ ix

y � 1� ζ i
for i � 0, . . . , q and i � j correspond to minimal vectors. Since

y � ζjx is not a tangent, it is good by case 2, and from equation (2.8), y is good.

Case 4: For every pα, βq P K, the tangent line τα,β � y � αqx� βq is good. Note
that p�α, βqq P K. From Lemma 18(d), there is an automorphism σ P AutpH|Fq2q with
σpxq � x� α and σpyq � y � αqx� βq � τα,β. Applying σ to equation (2.8):

τα,β � pτα,β � ζjpx� αqq
q¹

i�0
i�j

τα,β � ζ ipx� αq
τα,β � 1� ζ i

. (2.9)

By Lemma 14, a place Q is a common zero of σpy � 1� ζ iq and σpy � ζ ixq if and only if
σ�1pQq is a common zero of y � 1� ζ i and y � ζ ix. Applying the results from case 3, the
line τα,β � 1� ζ i � σpy� 1� ζ iq intersects τα,β � ζ ipx�αq � σpy� ζ ixq at only one point.
Again, by Lemma 14, these lines are not tangents, both of the form y � ax� c. Applying
Lemma 20, the vectors from τα,β � ζ ipx� αq

τα,β � 1� ζ i
for i � 0, . . . , q and i � j all have length

?
2q. Since τα,β � ζjpx� αq is good, we conclude from equation (2.9) that τα,β is good.

Case 5: Finally, we show that x is good. First we observe

yq � y � pxq � xq � xq�1 � xq � x � px� 1qq�1 � 1 �
q¹

i�0
x� 1� ζ i.
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On the other hand

yq � y � pxq � xq � py � xqq � py � xq �
q¹

i�1
y � x� ρi,

with ρ1, . . . , ρq P Fq2 are the solutions to ρq � ρ � 0. Thus
q¹

i�0
x� 1� ζ i �

q¹
i�1

y � x� ρi. (2.10)

Denoting by z1, . . . , zq a numbering of 1 � ζ i for i � 0, . . . , q and i � j, since ζj � �1.
From equation (2.10):

x �
q¹

i�1

y � x� ρi

x� zi

. (2.11)

The two lines x � p1 � ζmq and y � x � ρi intersect at p1 � ζm, 1 � ζm � ρiq, which is a
point of K, since

p1� ζm � ρiqq � p1� ζm � ρiq � ρi � ρq
i � 1� ζmq � 1� ζm � p1� ζmqq�1.

The line y � x � ρi is non-tangent since p1,�ρiq R K. From Lemma 20, the functions
y � x� ρi

x� zi

generate minimal vectors, and from equation (2.11), x is good, finishing the
proof.
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3 Fermat Function Field Lattices

Finally, we construct some lattices associated to the Fermat function field. This
construction is based on the study made by David Rohrlich on the group of functions with
support at the “points at infinity” of the Fermat curve. See (ROHRLICH, 1977).

Techniques from algebraic geometry are employed to prove results concerning the
minimum distance, kissing number and well-roundedness of the lattice. We show that
the lower bound

?
2γ for the minimum distance is not attained. Furthermore, the kissing

number is low and fixed for the Fermat curves of degree n ¥ 5.

Let Fn denote the Fermat curve of degree n ¥ 4, that is, the non-singular plane
algebraic curve given by the projective equation

xn � yn � zn.

Denote its function field by

Fn :� Fqpx, yq where xn � yn � 1

and q � ph with p an odd prime number and h ¥ 1 such that 2n | q � 1. This implies Fq

contains ζ, a primitive n-th root of unity, and ε, a primitive n-th root of �1. Thus we
have 3n Fq-rational points on the curve for which exactly one of the coordinates is zero,
namely:

ai :� p0 : ζ i : 1q, bi :� pζ i : 0 : 1q, ci :� pεζ i : 1 : 0q for i � 0, . . . , n� 1.

For the sake of simplicity, we put A :� a0 � � � � � an�1, B :� b0 � � � � � bn�1, C :�
c0 � � � � � cn�1. The set P is the set of the places corresponding to these 3n points. Note
that all points of type ai are contained in the line x � 0, all points bi are on the line y � 0,
and all of the ci are on z � 0. Thus, we refer to them as lying on a triangle where each of
the lines corresponds to a side of this triangle.

Denoting by Λn the lattice from Fn|Fq and generated by P , we first investigate the
minimum distance dpΛnq and prove that it exceeds

?
2γ �

a
2pn� 1q for all n ¥ 4.

In order for a function to attain the minimum distance
a

2pn� 1q, it, in particular,
must have a pole divisor of the form p1� � � �� pn�1, where p1, . . . , pn�1 P P are all distinct.
Therefore, examining the Riemann-Roch space Lpp1 � � � � � pn�1q is very useful when
determining if the minimum distance lower bound is achieved.

Remark 11. Suppose notation as in Lemma 9. If D is the sum of j different points and
those points lie on k different sides (k � 2, 3), then there are at least n� j � k � 1 points
of R on each side.
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This is easily verifiable, since if k � 2, a side must have at least 1 point of D,
meaning the other can have at most j�1 points of D, and at least n�pj�1q � n� j�1 �
n� j � k � 1 points of R. For k � 3, two sides have at least 1 point of D and the other
has at most j � 2, meaning each side has at least n� pj � 2q � n� j � 2 � n� j � k � 1
points of R.

We have the following proposition:

Proposition 37. Let p1, . . . , pn�1 be any n� 1 distinct points of P.

1. If p1, . . . , pn�1 lie on one side, then ℓpp1 � � � � � pn�1q � 2.

2. If p1, . . . , pn�1 lie on two sides, then ℓpp1 � � � � � pn�1q � 1.

3. If p1, . . . , pn�1 lie on three sides, then ℓpp1 � � � � � pn�1q � 1.

Proof. For n � 4, consider the effective divisor D � p1 � p2 � p3. Its degree is degD � 3.
Furthermore, the genus of F4 is:

g � p4� 1qp4� 2q
2 � 3.

Hence, by the Riemman-Roch Theorem 19, we have ℓpDq � ipDq � 1. Since the canonical
adjoints of F4 are all lines, we have the cases:

1. If p1, p2 and p3 lie on one side of the triangle, then they determine a unique line that
passes through them, which implies ℓpp1 � p2 � p3q � 2.

2,3. If p1, p2 and p3 lie on more than one side of the triangle, there doesn’t exist a line
passing through all three points. Hence ℓpp1 � p2 � p3q � 1.

For n ¥ 5 we make use of Lemma 9.

1. Suppose all n � 1 points lie on one side of the triangle, say, x � 0. Take the line
L � V pxq. Bezout’s Theorem 16 guarantees that

L � Fn � A.

The residue divisor R always consists of one point, meaning ℓpp1 � � � � � pn�1q is the
dimension of the pencil of lines through a point, that is, ℓpp1 � � � � � pn�1q � 2.

2. If p1, . . . , pn�1 lie on two sides, say, x � 0 and y � 0, consider the conic G � V pxyq.
Then,

G � Fn � A�B.
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R now consists of n� 1 points. Applying Remark 11 with j � n� 1 and k � 2, we
see that at least 2 points of R are on each side. However, if a side has 3 or more
residue points, Theorem 16 implies that side must be a component of any conic
passing through the residue. If both sides satisfy this condition, the conic is uniquely
determined.

If one of the sides, say x � 0, contains only 2 residue points then y � 0 contains the
other n� 1 points, and thus, is a component of the conic. The 2 remaining points
define a unique line. As the conic must also pass through these points, there is only
one choice for such a conic.

Finally, observe that if both sides contain only 2 residue points each, the divisor D
would have 2n� 4 points. However, 2n� 4 ¡ n� 1 for n ¥ 5, so this configuration
is impossible and ℓpp1 � � � � � pn�1q � 1 in all cases.

3. For p1, . . . , pn�1 lying on all three sides, take the cubic C � V pxyzq, which cuts out
on Fn the divisor

C � Fn � A�B � C.

The residue consists of 2n� 1 points, and according to Remark 11 with j � n� 1
and k � 3, at least 3 of those are on each side. But if a side contains 4 or more
residue points, Bezout’s Theorem implies that side is a component of any cubic
passing through the residue. If all sides satisfy this condition, the cubic is unique.

In the case that only 2 sides have 4 or more residue points, the cubic is still unique,
since the 3 residue points on the last side are aligned, and thus define a unique line
through them.

Finally, note that two different sides cannot contain only 3 residue points each. If
this were the case, the last side would have to contain 2n� 5 residue points. Since
2n � 5 ¥ n for n ¥ 5, this is impossible and ℓpp1 � � � � � pn�1q � 1 in all cases,
finishing the proof.

This proposition shows there are no non-constant functions of degree γ � n� 1 in
Fn whose pole divisor has unaligned points of P . Thus, the only remaining possibility for
a function to have length

?
2γ is to have a pole divisor with all points aligned. We will

prove, however, that no functions in the Riemann-Roch spaces of case 1 of Proposition 37
attain the length

?
2γ. In order to prove that, we tabulate some functions and divisors

which will be useful:
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Function Divisor
x A� C

y B � C

x� ζj n � bj � C

y � ζj n � aj � C

x� εζjy n � cj � C.

From this table, we notice that�
y � ζj

x



� pn� 1q � aj � pA� ajq�

x� ζj

y



� pn� 1q � bj � pB � bjq�

x� εζjy
� � pn� 1q � cj � pC � cjq .

This gives us explicit bases for the Riemann-Roch spaces of type 1, as described in our
proposition: "

1, y � ζj

x

*
is a base for LpA� ajq"

1, x� ζj

y

*
is a base for LpB � bjq 

1, x� εζjy
(

is a base for LpC � cjq.

We can now prove our first major result concerning the Fermat function field lattice:

Theorem 41. dpΛnq ¡
?

2γ �
a

2pn� 1q.

Proof. According to Proposition 37, we only need to examine the Riemann-Roch spaces of
case 1. Given f P LpA� ajq, it has the form

f � a� b � y � ζj

x

with a, b P Fq. Note that we may assume a, b � 0, since if b � 0, f is constant, and if a � 0,

pfq �
�
y � ζj

x



, which has a zero of order n� 1 and thus does not have length

?
2γ. We

have
pfq �

�
ax� bpy � ζjq

x



� pax� bpy � ζjqq � pxq.

Notice that ax� bpy � ζjq � 0 defines a line ℓ which is not the tangent at aj � p0 : ζj : 1q.
It cannot coincide with x � 0 since b � 0. It also is not y � 0 or z � 0, given that it passes
through aj.

Therefore, ℓ can only possibly intersect the triangle at one point on each side. This
means that for n ¥ 5, ℓ must have at least one zero outside of P . In the case n � 4, three
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points of intersection is impossible. Indeed, if ℓ intersected all three sides, its zero divisor
would have the form pℓq0 � ai � bj � ck for some i, j, k P t0, . . . , n � 1u. But this means
p1{ℓq8 � ai � bj � ck, and thus 1{ℓ has three unaligned poles, contradicting Proposition
37. Now, the divisor of x has neither zeros nor poles outside the triangle thus subtracting
it means f still has at least one zero outside of P , meaning f R O�

P and f cannot achieve
length

?
2γ.

For a function g P LpB � bjq, the argument is similar. g has the form

g � a� b � x� ζj

y

with a, b P F�q . Its divisor is

pgq �
�
ay � bpx� ζjq

y



� pay � bpx� ζjqq � pyq.

The line m : ay � bpx� ζjq � 0 is not the tangent at bj � pζj : 0 : 1q. Neither is it y � 0,
given that b � 0. It also is not x � 0 or z � 0, as it passes through bj . The same argument
as the previous case now applies: since pyq has only zeros and poles in the triangle, g R O�

P .

Finally, if h P LpC � cjq:

h � a� bpx� εζjyq,

a, b P F�q . The line h � 0 cannot be z � 0, since it does not pass through cj. It also is not
x � 0 or y � 0, since

x � 0 ùñ y � a

bεζj

y � 0 ùñ x � �a
b
,

that is, the intersection points are uniquely determined. Once again, our argument applies
and the claim is proved.

Remark 12. This constitutes the first example known by the authors of a function field
lattice with arbitrarily large dimension that does not attain the lower bound for the minimum
distance. The only other instance in which this happens is in Theorem 34 if there are only
3 places in the set P.

Corollary 29. dpΛnq �
?

2n.

Proof: The lower bound
a

2pn� 1q isn’t attained, so dpΛnq ¥
a

2pγ � 1q �
?

2n. This
corresponds to functions with n simple zeros and n simple poles. Some examples of such
functions and their divisors are:
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Function Divisor
x A� C

y B � C

1{x C � A

1{y C �B

x{y A�B

y{x B � A

This also gives a lower bound for the kissing number: κpΛnq ¥ 6.

This lower bound turns out to be sharp for every n ¥ 5. In order to prove this, we
shall first prove an analogous version of Proposition 37:

Proposition 38. If n ¥ 5, let p1, . . . , pn be any n points of P.

1. If p1, . . . , pn lie on one side, then ℓpp1 � � � � � pnq � 3.

2. If p1, . . . , pn lie on two sides, then ℓpp1 � � � � � pnq � 2 if there is only one unaligned
point and ℓpp1 � � � � � pnq � 1 otherwise.

3. If p1, . . . , pn lie on three sides, then ℓpp1 � � � � � pnq � 1.

Remark 13. For the third case of this proposition, we must make a key observation about
the required number of residue points on a side that guarantees it is a part of the cubic.

If there is a side with 4 or more residue points, it is a component of the cubic by
Bézout’s Theorem, as previously established. However, if we have already determined a
side to be a component of the cubic, there is only the need to find a conic which passes
through the remaining residue points. This means that if a side already has 4 or more
points, finding a second component only requires a side to have 3 points. Finally, if two
components have already been determined, it suffices for the last side to have only 2 points,
which always happens.

Proof: 1. Suppose the points lie on L � V pxq. Then

L � Fn � A.

Hence R is the zero divisor. This means there are no restrictions imposed on the
lines of the linear system, that is, ℓpp1 � � � � � pnq is the dimension of the space of
all lines in the projective plane, implying ℓpp1 � � � � � pnq � 3.

2. If the points lie on sides x � 0 and y � 0, for example, we consider the conic V pxyq
which cuts out the divisor A�B on Fn. The residue R consists of n points with at
least 1 of them lying on each side by Remark 11. Thus, the possible distributions for
the residue points are:
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Side 1 Side 2
n� 1 1
n� 2 2
n� 3 3

... ...
1 n� 1

In the first and last lines of the table, since n�1 ¥ 4, one side is always a component
of any conic passing through the residue. The other component may be any line that
passes through the point lying on the other side, that is, ℓpp1 � � � � � pnq � 2.

For the second line, n� 2 ¥ 3 and side 1 is a component. The 2 points remaining
in side 2 define a unique line, which means ℓpp1 � � � � � pnq � 1. For all other lines
of the table, side 2 is always a component, and side 1 always has 2 or more points,
meaning the conic is always unique and ℓpp1 � � � � � pnq � 1 always holds.

3. Considering the cubic C � V pxyzq which cuts out the divisor A � B � C on Fn,
leaving 2n points on the residue divisor with at least 2 (Remark 11) and at most
n� 1 on each side, since n residue points on a side means that side has no points of
D. The first two possible distributions of residue points are

Side 1 Side 2 Side 3
2 n� 1 n� 1
3 n� 1 n� 2

If one side has only 2 residue points, the only way to distribute the other 2n � 2
is to have n � 1 be on each remaining side. The fact that n � 1 ¥ 4 then implies
these two sides must be components of the cubic. The last component is the line
determined by the two points on the first side and the cubic is unique.

Now, if one side has 3 residue points, one of the other sides must have n� 1 points,
and the other, n� 2. Seeing as n� 1 ¥ 4, this side is a component of the cubic. By
Remark 13, the side with 3 points now is also a component, implying the cubic is
always unique.

Finally, suppose there are k ¥ 4 residue points on the first side, implying it is a
component. Evidently, we must have n ¥ k�1. To conclude uniqueness, we will show
that at least one of the other sides must always be a component. The distribution of
points always has the form

k � pn� αq � pn� βq, with α � β � k.
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The most balanced distribution of residue points is

k �
�
n� k

2



�
�
n� k

2



, if k is even.

k �
�
n� k � 1

2



�
�
n� k � 1

2



, if k is odd.

Note that if we can prove uniqueness for the case of these distributions, all of the
other cases will follow, since other distributions will necessarily have more residue
points accumulated on one side. Hence, if that side was a component under the most
balanced distribution, it will also be a component under the other distributions.

If k is odd, we need only show that n� k � 1
2 ¥ 3. We have

n� k � 1
2 ¥ k � 1� k � 1

2 � k � 3
2 ¥ 4 ¡ 3

for k ¥ 5. And if k is even, we show that n� k

2 ¥ 3. We have

n� k

2 ¥ k � 1� k

2 � k � 2
2 ¥ 3.

for k ¥ 4. Hence, uniqueness is always guaranteed and ℓpp1 � � � � � pnq � 1 always
holds.

We can now determine the kissing number of the lattice for all n ¥ 5.

Theorem 42. KpΛnq � 6 for all n ¥ 5.

Proof: We will show that apart from the 6 functions presented, the minimum length is
not achieved by any other function in the Riemann-Roch spaces of Proposition 38 whose
the dimension is greater than 1. In case 1, we have the following bases:

LpAq :
"

1, 1
x
,
y

x

*

LpBq :
"

1, 1
y
,
x

y

*
LpCq : t1, x, yu .

A function f P LpCq has the form f � a� bx� cy with a, b, c P Fq. Note that at least two
of these scalars must be non-zero, since if b, c � 0, f is constant, if a, c � 0, pfq � pxq and
if a, b � 0, pfq � pyq.

In any case, is it clear that the line defined by f cannot coincide with any side of the
triangle. This means the same argument used in the proof of Theorem 41 applies, implying
f has at least one zero outside of P. For functions in LpAq or LpBq, we do the same as
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in the previous case, except with the subtraction of pxq or pyq which, as discussed in the
proof of Theorem 41, does not change the fact that the functions in these spaces have
zeros not in the triangle. Hence, there can be no minimum length functions in LpAq,LpBq
or LpCq, except for the non-constant basis elements.

In case 2 with p1, . . . , pn�1 lying on one side and pn on another, the situation is
the same as in the first case of Proposition 37. Suppose we take p1 � � � � � pn�1 � A� aj

for some j � 0, 1, . . . , n � 1 and pn � aj, then it is clear that y � ζj

x
P Lpp1 � � � � � pnq,

implying
"

1, y � ζj

x

*
is a base for Lpp1�� � ��pnq. Note that we can consider n�1 aligned

points over y � 0 or z � 0 and construct the same bases as we did for Theorem 41. We
have already shown that functions generated by those bases either are not in O�

P or have
length

a
pn� 1q2 � pn� 1q ¡

?
2n, proving the theorem.

Corollary 30. The lattice Λn is never well rounded for n ¥ 5.

Proof. For n ¥ 5, the rank of Λn is rankpΛnq � 3n�1 ¥ 14. Since there are only 6 minimal
vectors by Theorem 42, our claim follows.

For n � 4, we can apply the Riemann-Roch Theorem 19 to conclude

Proposition 39. Let p1, . . . , p4 be any 4 points of P.

1. If p1, . . . , p4 lie on one side, then ℓpp1 � � � � � p4q � 3.

2. If p1, . . . , p4 lie on two sides, then ℓpp1 � � � � � p4q � 2.

3. If p1, . . . , p4 lie on three sides, then ℓpp1 � � � � � p4q � 2.

Functions in the Riemann-Roch spaces of case 1 and case 2 with 3 aligned points
and 1 unaligned point do not achieve minimum length by the same arguments used in the
proof of Theorem 42. However, the remaining cases still require closer investigation, so for
Λ4 there is only the lower bound KpΛ4q ¥ 6 for the kissing number.
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