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Resumo

A presente dissertacao explora o topico de reticulados construidos sobre corpos de fungoes
algébricas de grau de transcendéncia 1. Primeiramente sao estabelecidas as bases da teoria
de corpos de fungoes, da teoria de reticulados e a conexao entre curvas algébricas e corpos
de fungoes. Depois disso, a construcao e as propriedades basicas (distdncia minima, kissing
number, bem arredondado, determinante) dos reticulados sobre corpos de fungdes sao
apresentadas e os exemplos conhecidos na literatura sao explorados: corpos de fungoes
elipticos e Hermitianos. Por fim, introduzimos uma nova construgao: reticulados sobre a
curva de Fermat, que apresentam propriedades um tanto distintas dos exemplos até entao
documentados. Por exemplo, distancia minima maior do que o esperado e kissing number

fixo.

Palavras-chave: curvas elipticas. curvas Hermitianas. curvas de Fermat. distancia minima.

numero de vizinhos. reticulados bem arredondados.



Abstract

This dissertation explores the topic of lattices constructed from algebraic function fields
of transcendence degree 1. We start by establishing the basics of function field theory,
lattice theory, and the connection between algebraic curves and function fields. After
that, the construction and general properties (minimum distance, kissing number, well-
roundedness, determinant) of function field lattices are given before the known examples
in literature are explored: the elliptic and Hermitian function fields. Finally, we introduce
a new construction: lattices over the Fermat curve, which exhibit different properties to
all the known examples. For instance, a larger than expected minimum distance and a

fixed kissing number.

Keywords: elliptic curves. Hermitian curves. Fermat curves. minimum distance. kissing

number. well rounded lattices.
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Introducao

This text explores the topic of lattices constructed from algebraic function
fields of one variable. First, the basics of function field theory are established using
(STICHTENOTH, 2009) as a foundation. Lattice theory essential definitions and param-
eters are defined using (COSTA et al., 2017). Also, the connection between algebraic
curves and function fields is explored, along with several equivalent formulations of the
Riemann-Roch problem as described in (GOPPA, 1988).

After the basics have been laid out, the construction method and results regarding
the minimum distance, kissing number, well-roundedness and determinant of function field
lattices, according to (ATES, 2017), are presented. This is followed by an examination
of the parameters of all the currently known examples of lattices over function fields
in literature: the elliptic and Hermitian function fields, presented in (FUKSHANSKY;
MAHARAJ, 2014) and (BOTTCHER et al., 2016), respectively.

Finally, using (ROHRLICH, 1977) as a base, the construction of the Fermat function
field lattice is introduced. This construction proves to be interesting, seeing as it exhibits
different properties to the currently known examples of function field lattices: the lower
bound /27 for the minimum distance is never attained and the kissing number is fixed

for Fermat curves of degree n > 5.
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1 Preliminaries

In this first chapter we provide the basic definitions of both lattice theory and
algebraic function field theory which will be used for the construction of lattices. The first
subsections will discuss topics such places, valuations, divisors, adeles, Weil differentials,

as well as the gonality and genus of a function field.

The main reference for this chapter are chapters 1 and 3 of (STICHTENOTH,
2009), which provide all the required basics on algebraic function field theory. For the sake
of brevity, some results have their proofs omitted. One can find the detailed arguments for

those results in the same reference.

For now, we use K to denote an arbitrary field. At later points we might assume
K has different properties, for example, being finite, which will be the most interesting

case for lattice construction.

1.1 Places

Definition 1. An algebraic function field F' of one variable over K is an extension field
F 2 K such that F is a finite algebraic extension of K(z), where x € F' is transcendental

over K.

We shall use the notation F|K to denote a function field F' over K. Consider the
set K := {z € F: z is algebraic over K}, which is a subfield of F', since the sums, products
and inverses of algebraic elements are also algebraic. K is called the field of constants of
F|K. We have the following inclusions K € K < F, and it is evident that we can consider

F a function field over K. We say K is algebraically closed in F (or K is the full constant
field of F) if K = K.

Remark 1. The elements of F that are transcendental over K can be characterized by

examining the degree |F : K(z)]. If it is finite, then z is transcendental.

Example 1. The first and simplest example of an algebraic function field is the rational
function field. F|K is called rational if F' = K(x) for some x € F transcendental over K.

The name comes from the fact that every element z € F* has a unique representation
o= o[ Inle)™,
i

in which a € K*, n; € Z and the polynomials p;(x) € K[z] are monic, irreducible and

pairwise distinct.
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Using the previous example, we can represent a function field F|K as a simple
algebraic extension of the rational function field K(x), that is, FF = K(x,y), where
©(y) = 0 for some irreducible polynomial ¢(7T) € K(z)[T]. Consider now arbitrary
elements ay, ..., qa, € K and suppose we wish to find all rational functions f(x) € K(x)
with zeroes or poles of prescribed order at ag, ..., a,. In order to formulate this problem

for any function field, we introduce the notions of valuation rings and places.

Definition 2. A valuation ring of the function field F|K is a ring O € F such that

1. KcOcF, and

2. forallze F,ze O or 27 € O.

This definition is inspired by an observation in the rational function field: given

p(z) € K[x] a monic irreducible polynomial, consider the set

Op(z) = {f(x) : f(x),g(x) € K|z], p(z) J(g(x)} ,

9(@)
which is a valuation ring of K (z)|K. If ¢(x) is another irreducible monic polynomial, then

Op(z) # Og(a)-

Proposition 1. Let O be a valuation ring of F|K. The following hold:

(a) O has a unique mazimal ideal P = O\O*, where O™ denotes the group of invertible

elements of O.
(b)) xe F*. Thenze P < 27 ¢ O.

(¢) For the field of constants K of F|K, we have K € O and K ~n P = {0}.

Proof.  (a) We need only prove that P = O\O™ is an ideal of O, since no proper ideal

can contain an invertible element and hence, cannot contain P.

First, let x € P, z € O. Then zz ¢ O, since otherwise, there would exist v € O such

1

that xzv = 1, which would imply 7" = zv € O, contradicting the fact that x € P.

x x
Now, let z,y € P. Since — € F, we can assume, without loss of generality that — € O.
Y

Then, 1 + Te OQandx+y =y <1 + m) € P by the previous observation. This
)

proves P is an ideal of O.
b) zeP = 2¢O = 2 '¢O. Conversely, v ' ¢ 0 =— 2¢O = x¢€P.

(¢) Let z € K. Assume z ¢ O. Then, 27! € O. Since 2! is algebraic over K, there are

elements ay, ..., a, € K with a,(z7")"+---+a;27'+1 = 0, implying 2~ " (a,(z7")" "'+
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-+++ay) = —1 and therefore z = —(a,(z )" '+ +a)) e K[z7'] S O, 50 2z € O,
contradicting the assumption that z ¢ @. Hence, K < O.

Now, let z € K*. Since K is a field, 2~! € K < O, which implies z € O*. Therefore
K~ P ={0}.

]

Theorem 1. Let O be a valuation ring of F|K and let P be its mazximal ideal. The
following hold:

(a) P is a principal ideal.

(b) If P = tO, then each z € F* has a unique representation of the form z = t"u for

somenéeZ and ue OF.

(¢c) O is a principal ideal domain. More precisely, if P = tO and {0} # I < O is an
ideal, then I =t"O for some n € N,

A ring that has the above properties is called a discrete valuation ring. In order to

prove the preceding theorem, we will need the following lemma:

Lemma 1. Let O be a valuation ring of F|K, let P be its mazximal ideal and x € P*.

Let xq,....x, € P such that v1 = v and x; € v; 1P fori=1,...,n— 1. Then we have
n<|[F:K(x)] <oo.

Proof. 1t follows from Remark 1 and Proposition 1(c) that F'|K(x) is a finite extension,

so we only need to show that z1, ..., x, are linearly independent over K (z). Assume there
n

is a non-trivial linear combination Z i(x)x; = 0 with ¢;(x) € K(x). By considering the
i—1
least common multiple of all the polynomials, we may suppose all @;(x) are polynomials

in z and x does not divide any of them. Set a; := ¢;(0) and define j € {1,...,n} by the
condition a; # 0, but a; = 0 for all ¢ > j. We have

—p;(z)z; = Y i) (1.1)
i#]

with p;(z) € O fori =1,...,n, since x = z; € P, z; € x;P for i < j and ¢;(z) = xg;(x)

for i > j with g(x) € K[z]. Dividing (1.1) by x; yields

ZT; X

—pj(x) = Z pi(z)— + Z —gi()z;.

i<j Ly i>j Ly
All the elements on the right side belong to P, therefore ¢(x) € P. On the other hand,
pi(x) = aj+xgj(x) with g;(z) € K[z] € O and x € P, so that a; = ¢;(x)—xg;(z) € PN K.
Since a; # 0 by definition, we have a contradiction to Proposition 1(c). Hence, 1, ..., z,

are linearly independent over K (z). O
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Proof of Theorem 1. (a) Assume P is not principal and choose x; € P*. There exists

1y € P\2,0. Then zox7* ¢ O, implying 25 'z, € P by Proposition 1(b), so x; € z5P.
By induction, we can produce a sequence 1, xs, T3, ... of elements of P such that

x; € x; .1 P for all © = 1, contradicting Lemma 1.

Since z or 27! is in @, we can assume z € O. If z€ O, z =t%2. If z € P, there is a

maximal m > 1 such that z € t™ O, because the length of the sequence

_ gm—1
= ¢t

T =2, T ey T =1

is bounded by Lemma 1. Let z = t™u with u € O. Note that u has to be invertible,
since otherwise, u € P = tO and u = tw with w € O, implying z = t""w e t" 1O,

which contradicts the maximality of m.

As for uniqueness, suppose z = t"u = t"v with m,n € Z and u,v € O*. We have

t"u —t"v =0
t"(u—t"""v) =0
t"m " =u

" =~ e O,

If m # n, then t € O* and t ¢ P, a contradiction. Hence, m = n and by extension,

u ="v.

Let I € O be a non-zero ideal. The set A := {r € N:¢" € I} is non-empty, because
if # € I*, then v = t"u, u € O and t" = zu~" € I. Set n := min(A4). We claim
that I = t"O. Since t" € I, the inclusion I < t"O follows. Now suppose y € I*. We
know y = t*w with w e O™ and s =, which means t* € [ and s > n. It follows that
y=t"-t"""wet"O.

]

Definition 3. (a) A place P of the function field F|K is the mazimal ideal of some

valuation ring O of F|K. An element t € P such that P = tO is called a prime
element of P.

(b) Pp:={P: P is a place of F|K}.

If O is a valuation ring of F|K and P its maximal ideal, then O is uniquely defined

by P by using Proposition 1: O = {z € F : 2~ ' ¢ P}. This means we can write Op := O is

called the valuation ring of the place P. We can also describe places in terms of certain

functions called valuations.

Definition 4. A discrete valuation of F|K is a function v: F — Z U {0} satisfying the

following properties for all x,y € F':
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1. v(x) =00 <= x=0.

2. v(zy) = v(z) + v(y).

3. v(z +y) = minf{v(z),v(y)}.

4. There exists an element z € I such that v(z) = 1.

5. v(a) =0 for allae K*.

The symbol oo denotes an element not in Z such that oo > n and coc4+0w = w+n =
n + o for all n € Z. Properties 2 and 4 imply v is surjective. Property 3 is called the
triangle inequality. A stronger version os this inequality can be derived from the axioms

and will be frequently utilized:

Lemma 2 (Strict Triangle Inequality). If v is a discrete valuation of F|K, let x,y € F
with v(x) # v(y). Then v(x +y) = min{v(z),v(y)}.

Proof. By properties 2 and 5, v(ay) = v(y) for all a € K*. In particular, v(—y) = v(y).
We can assume v(z) < v(y). Suppose v(z + y) > min{v(z), v(y)}, so v(z +y) > v(z). We
obtain v(z) = v((z + y) —y) = min{v(xz + y),v(y)} > v(x), a contradiction. O

Definition 5. To a place P € Pr, we can associate a function vp : F' — 7Z n {oo}, which
we will prove to be a discrete valuation, in the following way: pick a prime element t for
P. Every z € F* has a unique representation z = t"u with u € Op and n € Z. Define

vp(2) :=n and vp(0) := co.

This definition depends only on P, and not on the choice of t. Taking s another
prime element for P, then P = tO = sO, so t = sw for w € OF. Therefore t"u = (sw)"u =

s"(w"u) with w"u € OF.
Theorem 2. Let F|K be a function field.

(a) For a place P € Pr, vp is a discrete valuation of F|K. Moreover

Op ={z€ F:vp(z) = 0},
Op ={z€ F :vp(z) =0},
P={z€eF :vp(z) > 0}.
(b) x € F is a prime element for P if and only if vp(x) = 1.

(¢) Suppose v a discrete valuation of F|K. The set P := {z€ F :v(z) > 0} is a place of

FIK, and Op = {z € F : v(z) = 0} is its corresponding valuation ring.

(d) Every valuation ring of F|K is a maximal proper subring of F'.
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Proof.  (a) vp evidently has properties 1,2,4 and 5. For the triangle inequality, take

x,y € F with vp(z) = n, vp(y) = m. It is safe to assume n < m < oo, and thus
x =t"uy, y = t"uy with uj,us € Op. We have z + y = t"(uy + t"™ "ug) = t"z with
ze Op. If 2 =0, vp(x + y) = 00 > min{n, m}. Otherwise, z = t"u with u = O}.
Then,

vp(z +y) = vp(t"*u) = n+ k = n = min{vp(x),vp(y)}.

To prove the set equalities, take z € Op. If z = 0, then vp(z) = 0 > 0. Otherwise,
z = t"u with u € OF and vp(z) = n > 0. Now, if z € F' and vp(z) = 0, we have
vp(2) =0 < 2e€ Of € Op. Also, vp(2) =n>0 < z=1t"u, ue Op =
z € Op. Finally, vp(z) = 0 < z =0¢€ Op, proving that Op = {z € F : vp(z) =
0}. The fact that vp(z) =0 < z € Of proves OF = {z € F : vp(z) = 0} and the
set equality for P follows directly from the fact that P = Op\Of.

Let P = tO. Since the valuation does not depend on the choice of ¢, x € F' is another

prime element for P if and only if vp(z) = vp(t) = 1.

Firstly, Op as defined by the valuation v is a valuation ring of F'|K. Take z € F.
If v(z) = 0, there is nothing to prove. If v(z) < 0, by property 2 of the discrete
valuations, 0 = v(1) = v(2z7") = v(2) + v(z7"), that is, v(27') = —v(z). Hence,
v(z ') >0and 2z ' € Op. Since Op = {z € F : z ' ¢ P}, it follows that {z € F :

vp(z) > 0} is the maximal ideal of Op, and hence, a place of F|K.

Let O be a valuation ring of F'|K, P its maximal ideal, vp the discrete valuation of
P and z € F\O. We must show that F' = O[z]. The inclusion O[z] € F is trivial. In
order to prove the reverse inclusion, consider any y € F. Since z ¢ O, vp(z 1) > 0,
which means vp(yz’k) > 0 for sufficiently large k. Therefore, w = yz—* € O and

y=wz" e O[z].

]

If P is a place of F|K and Op is its valuation ring, the fact P is maximal implies

the quotient Op/P is a field. For x € Op, we define z(P) € Op/P to be the residue class
of x modulo P. For z € F\Op, we define z(P) := c0. By Proposition 1, we know K < Op

and K n P = {0}, so the map x — z(P) induces a canonical embedding of K into Op/P.

Therefore, from this point onward, we shall consider K a subfield of Op/P. This reasoning

also works for K and we consider it a subfield of Op/P as well.

Definition 6. (a) Fp := Op/P is the residue class field of P. The map x — x(P) from

F to Fp is called the residue class map with respect to P. We can also use the
notation x + P = x(P) if x € Op.

(b) deg P := [Fp : K] is called the degree of P. If deg P = 1, P is called a rational place

of F|K.
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The degree of a place is always a finite number. More precisely, we have the

following;:

Proposition 2. If P is a place of F|K and x € P*, then
deg P < [F: K(2)] < 0.

Proof. We already know that [F : K(z)] < oo from Remark 1. So we just need to show
that any elements zq,...,2, € Op whose residue classes z;(P), ..., z,(P) are linearly
independent over K are linearly independent over K (x). So suppose there is a nontrivial

linear combination

ngi(x)zi -0 (1.2)

with ¢;(x) € K(x). By the same reasoning used previously, we might assume ¢;(z) € K|z]
are polynomials not all divisible by z, that is, ¢;(z) = a; + zg;(x) for a; € K and ¢; € K[z],
not all a; = 0. Since z € P and g¢;(z) € K[z] < Op:

pi(x)(P) = ai(P) + zg;(x)(P) = a:(P) = a;.

Applying the residue class map to (1.2), we get

n

0=0(P) = 0@ (P)(P) = 3 as(P).

i=1

a contradiction to the linear independence of z(P), ..., z,(P) over K. O

Corollary 1. The field of constants K of F|K is a finite field extension of K.

Proof. We make use of the fact that Pr # ¢, which we shall prove shortly. Choose P € Pp.
K is embedded in Fp via the residue class map Op — Fp. Therefore, [K’ K| < [Fp:
K] < . O

Remark 2. Ifdeg P =1, then Fp = K and the residue class map sends Fp to K U {o0}.
In particular, if K is algebraically closed, then all places of F|K are rational and we can

interpret an element z € F' as a function

z:Prp— K uU {0} (1.3)
P — z(P).
This is the reason why F|K is called a function field. The elements of K interpreted as

functions in the sense of (1.3), are constant functions. For this reason, K is called the

constant field of F'. This remark also justifies the following terminology:

Definition 7. Let z € F and P € Pr. P is a zero of order m of z if vp(z) = m > 0, and

P is a pole of order m of z if vp(z) —m < 0.
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We shall now prove that Pr # ¢ for any function field F|K.

Theorem 3. Let F|K be a function field and R a subring of F' such that K € R < F.
Suppose I < R is a proper ideal of R. Then there exists a place P € Pr such that [ < P
and R < Op.

Proof. Consider the set
F :={S:Sis asubring of F with R< S and IS # S},

where IS is the set of all finite sums Z apsy with a, € I, s, € S, which is an ideal of S.
We wish to use Zorn’s Lemma. To this end, note that F is non-empty as R € F, and F is
inductively ordered by inclusion. In fact, take H < F a totally ordered subset of F. Then,
T:= U{S : S € H} is a subring of F' with R € T. We must prove that [T # T. Suppose

this is false, then 1 = Z apSk, ax € I, s € T. Since H is totally ordered, there is Sy € H
k=1

n
such that s1,...,s, € .Sy, 801 = Z agsy € 1Sy, which is a contradiction.
k=1
Applying Zorn’s Lemma, F' contains a maximal element O < F such that R <
O c F, 10 # O and O is maximal with respect to these properties. It only remains to

show that O is a valuation ring of F|K.

As I # {0} and 10 # O, it follows that O < F and I < O\O™*. Suppose there
exists z € F with 2 ¢ O and 2z 'O. Then 10|z] = O[z] and IO[z"'] = O[z '], and there

exists ag, ..., a,,bo,...,b, € IO, m,n = 1 such that
l=ag+a1z+ - +a,2" (1.4)
1=by+bz 4+ +buz ™ (1.5)

We can assume m and n are chosen minimally and m < n. Multiplying (1.4) by 1 — by

and (1.5) by a,2", we obtain
1-— bo = (1 — bo)ao + (1 — bo)CLlZ + e+ (1 — bo)anz”
0= (bp—1)anz" +b1ayz" "+ -+ bpanz™ ™.
Adding these equations produces 1 = ¢y + ¢12 + - + ¢,_12" " with coefficients ¢; € 10,

contradicting the minimality of n. This proves z € O or 2z ' € O, which means O is a

valuation ring of F|K. O

Corollary 2. Let F|K be a function field, and z € F transcendental over K. Then z has

at leas one zero and one pole in F. In particular, Pr # .

Proof. Consider the ring R = K|[z] and the ideal I = zK[z]. By Theorem 3, there is a
place P € Py with z € P, hence P is a zero of z. The same reasoning proves z~! has a zero

Q@ € Pr, which means @) is a pole of z. O
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The preceding corollary can be interpreted in the following way: each z € F \f(

yields a non-constant function in the sense of Remark 2.

1.2 The Rational Function Field

In order to better understand places and valuations in arbitrary function fields,
it is essential to thoroughly understand these concepts in the simplest case, the rational
function field F' = K(x) for x € F transcendental over K. Given an irreducible monic

polynomial p(x) € K[z], take the valuation ring

cm@:{”@:mmm@eKwmemwﬁ

9()
of K(x)|K whose maximal ideal is
P = M . K
In the case where p(z) is linear, that is, p(z) = r — a with o € K, we write P, := P,_, €

There is another valuation ring of K (z)|K, namely

Oui= {181 j(a).9t0) € Kl dew (o) < dewglo)}

with maximal ideal

f%:{“”ammm@eM@d%ﬂm<@w@ﬁ.

This place is called the infinite place of K (z). These labels depend on the choice of
the generating element x of K (x). For example, K(x) = K(1/x), but the infinite place of
K(1/z) is equal to Py in K(z).

Proposition 3. Let F' = K(x) be the rational function field.

(a) Let P = Py, € Pr(y) with p(x) € K|x]| an irreducible polynomial. Then p(x) is
a prime element of P, and the corresponding valuation vp is given as follows: if
z € K(x)* is written in the form z = p(x)" - (f(x)/g(x)) with n € Z and f(x), g(z) €
K|z], then vp(z) = n. The residue class field K(x)p = Op/P is isomorphic to
K[z]/{p(x)) with isomorphism given by

¢ Klz]/(p(x)) — K(z)p
f(x) (mod p(z)) — f(x)(P).

Consequently, deg P = deg p(x).
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(b)

(¢)

(d)

If p(v) = v — o with a« € K, the degree of P = P, is 1, and the residue class
map is given by z(P) = z(a) for z € K(xz). We define z(a) in the following way:
if z = f(x)/g(x) with f(x),g(z) € K|x]| relatively prime polynomials, then z(a) =
Ha)/g(@) if gle) # 0 and (@) = o if g(a) = 0.

If P = Py, is the infinite place of K(x), then deg Py, = 1 and t = 1/x is a prime

element for Py. The discrete valuation vy is given by

veo(f(2)/g(2)) = deg g(x) — deg f(x)
where f(x),g(x) € K|x]|. The residue class map is defined by z(Py) = z(0) for
z € K(x) in the following way: if
apx™ + -+ ag

= aanabm7£07
D™ + -+ + by

then

ZZ ifn=m
z(o0) = 0ifn<m
o0 if n > m.
K is the full constant field of K(x)|K.

Proof.  (a) The fact that p(z) | f(z) directly implies P is generated by p(z), hence it is

a prime element for P. To prove the claim about the residue class map, first consider
the ring homomorphism
p: K[z] — K(z)p
f(@) = fz)(P).
Notice that f(x) € kerp < p(z) | f(x) = f(x) € (p(x)), meaning ker p =
{p(x)). ¢ is also surjective: take z € Oy, and write z = u(x)/v(x) with u(x),v(x) €
K|z] such that p(x) { v(x). Since p(z) and v(x) are coprime, there are a(z),b(z) €
K|z] such that a(z)p(x) + b(z)v(x) = 1, therefore
a(z)u(x)
— 1.y = N
2 z o(2) p(x) + b(x)u(x),
and z(P) = (b(x)u(x))(P) is in the image of . Hence, ¢ induces an isomorphism
from K[x]/{p(x)) to K(x)p. Seeing as [K(x)p : K| = [K[z]/{p(x)) : K] = degp(z),
we conclude deg P = deg p(z).

Let P = P,, a € K. For f(z) € K|x], we have (x — ) | (f(z) — f(«)). Hence
f(x)(P) = (f(z) — f()(P) + f(a)(P) = f(a). An arbitrary z € Op can be
written as z = f(x)/g(x) with f(z),g(z) € K[z] and (z — «) t g(x), therefore
g(z)(P) = g(a) # 0 and
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(c) If P = Py, it is clear that 1/z € P. Consider an element z = f(z)/g(z) € Py. We
have deg f(x) < deg g(z), then

_ 1 zf(z)
r  g(r)

, with deg(xf(z)) < degg(x).

This proves z € (1/2)Oq, hence 1/x generates P,, and is a Py-prime element. Finally,
since Py, with respect to z is Py with respect to 1/x, we have K(x)p, ~ K(1/x)p, ~
K|[1/x]/{x), implying deg P, = deg Py = 1.

(d) Choose a rational place P of K (z)|K. The field K of constants of K (z) is embedded
into the residue class field K (z)p, meaning K € K € K (z)p = K.

]

Theorem 4. All places of the rational function field are either of type Pyy or Py.

Proof. Let P be a place of K(x)|K. We split the proof into two cases:

Case 1. Assume x € Op. Then, K[z] € Op. Define I := K[z] n P. This is a
prime ideal of K[z]. The residue class map induces an embedding K[z]/I — K(z)p,
consequently, I # {0} by Proposition 1. It follows there is a unique irreducible monic
polynomial p(x) € K[z] such that I = K[z] n P = p(z) - K[z]. Every g(z) € K[z] with
p(z) 1 g(x) is not in I, so g(x) ¢ P and 1/g(x) € Op by Proposition 1. Thus we conclude

O = {101 j(2).900) € K. i) 19100} < O

Since valuation rings are maximal proper subrings of K(x) (Theorem 2), we see that
Op = Op(a).-

Case 2. Now assume z ¢ Op. We conclude K[z7'] € Op, 27" € Pn K[z7'] and
Pn K[z™'] = 27 ' K[2™!]. Like in the previous case,

f(ﬁfl), - e Ko o 2
op_{ A gt e Kl )}

ag + a1z —i—anx "
b
{bo+b1x1 ¥ bt 07&0}
a4 —i—anm
_ b
{boxmw TS 0}
- {“ (z) € K[z], degu(z) < degv(m)} — 0.

Thus Op = Oy and P = P,,. O

Corollary 3. The rational places of K(x)|K are in a 1 —1 correspondence with K U {o0}.
In particular, if K =TF,, then |Pp| =q+ 1.



Chapter 1. Preliminaries 22

1.3 Independence of Valuations

In this section, we shall prove the Weak Approximation Theorem, which intuitively
states that given vy, ..., v, pairwise distinct discrete valuations of F'|K and z € F, knowing
the values v1(z), ..., v,-1(2) does not give us any information regarding v, (z). This result
will be significantly improved in later sections and will be used when discussing function

field extensions.

Theorem 5 (Weak Approximation Theorem). Let F|K be a function field, Py, ..., P, € Pg
pairwise distinct places of F|K, x1,...,x, € F and ry,...,r, € Z. Then, there exists some
x € F such that

vp(r —x;) =1 fori=1,...,n.

Proof. In order to simplify notation, we write v; instead of vp,. First, we will prove there
exists some u € F such that v;(u) > 0 and v;(u) < 0 for ¢ = 2,...,n. By induction, for
n = 2 we observe Op, & Op, and vice-versa, since valuation rings are maximal proper
subrings of F' (Theorem 2). This means we can find y; € Op \Op, and ys € Op,\Op,.
Then v1(y1) = 0,v2(y1) < 0,v1(y2) < 0, and vy(y2) = 0. Considering u = ¥y, /y2, we have
v1(u) > 0 and ve(u) < 0.

For n > 2, by the induction hypothesis, we have an element y such that v;(y) > 0
and v;(y) <0 fori =2 ...,n— 1. If v,(y) < 0, there is nothing to prove. If v, (y) = 0,
we choose z with v1(z) > 0 and v,(z) < 0 (whose existence is guaranteed by the n = 2
case) and define u := y + 2", where r > 1 is any integer such that r - v;(z) # v;(y) for
i=1,...,n—1. It follows that v;(u) = min{v;(y),r-vi(2)} > 0 and by the Strict Triangle

Inequality, v;(u) = min{v;(y),r - v;(2)} <0 for ¢ = 2,...,n, proving our first claim.

Now we show there exists some w € F' such that vi(w — 1) = r; and v;(w) > r;
fori =2,...,n. In order to prove this, first take v € F with v;(u) > 0 and v;(u) < 0 for

i=2,...,nand put w:= (1 +u*)~". Given a sufficiently large s € N, we have

on(w—1) = v, (— o ) - oy (u) — minfoy (1), vy ()} = 5 - 01 (1) > 14

1+ ws
and
vi(w) = —=s-vi(u) >r;fori =2,... n.
Finally, we prove that given v, ..., y, € I, there exists z € F such that v;(z—y;) > r;
for i = 1,...,n. First, choose s € N such that v;(y;) > s for all 4,5 = 1,...,n. Previously,
we proved there are wyq, ..., w, with

vi(w; — 1) > r; — s and v;(w;) > r; — s for j # 4.
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The element z := Z y;w; has the desired property:
j=1

n
vi(z —ys) = v Zijj +yi(w; — 1) | >r;fori=1,... n.
=1
We are now ready to finish the proof. We take z € F' such that v;(z — x;) > r;, i =
1,...,n. If t; is a P-prime element, set z; := t;’, meaning v;(z;) = r;. Again, we can take

2" such that v;(2' — 2;) > r; for i = 1,...,n. It follows that
v;(2) = vi((2' — z;) + z) = minfv; (2 — 2;),vi(z) = i}
Setting x := z + 2’
vilx — ;) = vi((z — ;) + 2') = min{v;(z — ;), vi(2")} = 74 O
Corollary 4. FEvery function field has infinitely many places.

Proof. Suppose a function field F|K has only finitely many places Py, ..., P,. By Theorem
5, we find a non-zero element x € F' such that vp (z) > 0 for all i = 1,...,n. Since = has

zeroes, it is transcendental over K. However, it has no poles, contradicting Corollary 2. [

Proposition 4. Let F|K be a function field and Py, ..., P, be the zeros of the element
x e F. Then

S v (a) - deg P, < [F - K(2)]

i—1
Proof. We write v; in place of vp, and set f; := deg P;, e; := v;(x). Theorem 5 guarantees
for every i, there is an element ¢; such that v;(¢;) = 1 and v, (t;) = 0 for k # i. Newt,
take s;1,..., S, € Op, such that s;;(F;), ..., sis(P;) form a basis of Fp, over K. Applying
Theorem 5, we find z;; € F' such that for all ¢, j:

Ui(sij — Zz’j) > 0 and Uk(zij) = e for k # i.
We claim the elements

t?'Zij, 1<Z<T’, 1<]<fu 0<a<ei

r

are linearly independent over K (x). There are Z fie; = Z vp,(x)-deg P; of these elements,
i—1 i—1
so proving the linear independence will finish the proof.

Suppose there is a non-trivial linear combination

r fi e—1

2.2 2, ial@)tizi; =0 (1.6)

i=1j=1 a=
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over K (z). Without loss of generality, we can assume ¢;j,(x) € K[x] and not all are
divisible by . Then there are indices k € {1,...,r} and c€ {0,...,e; — 1} such that

z | ppja(x) for alla < cand all j e {1,..., fi}, and

z 1 pjc(x) for some je {1,..., fi}. (1.7)
Multiplying (1.6) by ¢, “:
r fi e—1
ZZ Z ija(T)ti ) 25 = 0. (1.8)
i=1j5=1 a=

Note that for all 7 # k, all summands of (1.8) are elements of P seeing as
ik (ija(@)E5t)  2i5) = vi(Pija(@)) + a - (i) — ¢ vplt) + vi(zi5) 2 —c+ e > 0.
Fori=Fkand a <c
U (ija(2)8 215) Z e, +a—c = e, —c >0,
since = | @gjq(x) and therefore vi(prjo(z)) = ex. For i = k and a > ¢,
U (@ija(2)t825) = a— ¢ > 0.

Combining these observations with (1.8) produces

Zkl gijc(.fE)ij S Pk (19)

Notice that ¢yj.(z)(P;) € K and not all ¢;.(z)(FPx) = 0 by (1.7) so (1.9) yields a non-

trivial linear combination

Z Spk]c * Zkj (Pk) =0

over K, which leads to a Contradlctlon, as 2k1(Pr), - - -, 2kp (Pr) is a basis for Fp |K. O

Corollary 5. In a function field F|K, every x € F* has only finitely many zeros and

poles.

Proof. If x is constant, it has neither zeros nor poles. If it is transcendental over K,
its number of zeros is bounded above by [F' : K(z)] in accordance with Proposition 4.
Applying the same argument, 2~ also has finitely many zeros, and thus, = has only finitely

many poles. [

1.4 Divisors

The field of constants K of F|K is a finite extension of K, as we have shown and
F can be regarded as a function field over K. Therefore, making the assumption that K

is always the full constant field of F' will not limit the generality of the subsequent theory.
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Definition 8. The divisor group of F|K is defined as the additively written free abelian
group generated by the places of F|K. It is denoted by Div(F') and its elements are called

divisors of F|K. A divisor is a formal sum

D = Z npP, with np € Z, almost all np = 0.
PePp
The support of the divisor D is defined as supp(D) := {P € Pr : np # 0}. We shall often

write

D= npP,
PeS

where S is a finite set with supp(D) < S. A divisor D = P with P € Pg is called a prime
divisor of F|K. The addition of divisors is done coefficient-wise: if D = anP and
D = Zn'PP, then D + D' = Z(np + n's)P. The zero element of the group is simply the

divisor where all coefficients are 0.

We can also define the discrete valuation of a divisor: for () € Pr and D = Z npP €
Div(F'), we define vg(D) = ng. This allows us to rewrite

supp(D) = {P € Pp : vp(D) # 0} and D = Z vp(D) - P.

Pesupp(D)
A partial ordering can be defined in Div(F') by
D1 < DQ — Up(Dl) < ?)P(DQ) fO?" all Pe ]P)F

If Dy < Dy and Dy # D,y, we write Dy < Dy. A divisor D = 0 is called effective. The

degree of a divisor is defined as

deg D := »’ vp(D) -deg P,

PEPF

which yields a homomorphism from Div(F) to Z due to the way addition was defined.

Corollary 5 assures an element x € F'* has only finitely many zeros and poles in

Pp, thus allowing us to define the following;:

Definition 9. Let x € F*. Denote by Z < Pr the set of zeros of x and by N < Pr the set
of poles of x. We define

() := Z vp(z)P, the zero divisor of x,

PeZ

(X)ep 1= Z —vp(x) P, the pole divisor of x,

PeN

() :=(x)g — (), the principal divisor of x.
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It follows from the definitions that (z)y = 0, (x)y = 0 and

(z) = Y vp(z)P.

PePp

From Corollary 2, the constant elements x € F'™* are characterized by
reK < (z)=0.

Definition 10. The set

Princ(F) := {(z) : x € F*}
is called the group of principal divisors of F|K. It is a subgroup of Div(F') since for
x,y€ F*:

(zy) = > vp(zy)P = ) (vp(z) + vp(y) P = (z) + ().

PePp PePp

The factor group CI(F') := Div(F)/Princ(F') is called the divisor class group of F'. For
a divisor D € Div(F), its corresponding element in C1(F') is denoted by | D], the divisor
class of D. Two divisors D, D’ are said to be linearly equivalent, denoted by D ~ D', if
[D] = [D'], that is D = D' + (x) for some x € F*. This is an equivalence relation.

Remark 3. We shall prove shortly that all principal divisors have degree 0. Thus,
considering the subgroup Div’(F) of degree 0 divisors, we obtain the quotient group
CI°(F) := Div'(F)/ Princ(F) whose order h := | CI°(F)| is called the class number of F.
We shall later prove that if K is a finite field, then the class number h is always finite.

The next definition will play an important role in both the further study of function

fields and the construction of lattices.

Definition 11. For a divisor A € Div(F'), we define the Riemann-Roch space associated
to A as
L(A)={zxeF:(x)>—-A}u{0}.

We can interpret this definition in the following way: if
A= mb = ) miQ;
i=1 j=1
with n;,m; > 0, then £(A) is the set of elements of F' such that

« x has zeros of order bounded below by m; at @; for j =1,...,s, and

o 1z has poles only at P;,..., P, with the order at P, bounded above by n; for i =

1,...,7.

Remark 4. If A e Div(F), then
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(a) xe L(A) < vp(x) = —vp(A) for all P € Pp.

(b) L(A) # {0} < FA" € Div(F) such that A" >0 and A’ ~ A.

These observations, although simple, will often be quite useful when discussing

Riemann-Roch spaces.
Lemma 3. (a) L(A) is a vector space over K.

(b) If A" € Div(F) is such that A" ~ A, then L(A) and L(A") are isomorphic as vector

spaces over K.
Proof. (a) Let z,y € L(A) and a € K. For all P € Pg:

vp(z + ay) = min{vp(z),vp(ay)} = min{vp(z),vp(y)} = —vp(A),
thus = + ay € L(A) by Remark 4(a).
(b) By hypothesis A = A" + (z) with Z € F*. Consider the map
p: L(A) > F
T Tz

This is a K-linear map. Also, p(L(A)) € L(A') since vp(z) = —vp(A" + (2)) =

—vp(A’) —vp(z) implies
vp(rz) = vp(x) + vp(2) = —vp(A) —vp(2) + vp(2) = —vp(A)
and zz € L(A"). In the same way, we can define

¢ LA) > F

T — xz’l,

which is another K-linear map. Its image is contained in £(A). Since these two maps

are inverses of each other, ¢ is the desired isomorphism between £(A) and L£(A).

[
Lemma 4. (a) £(0) =K.
(b) If A <0, then L(A) = {0}.
Proof.  (a) We know (x) = 0 for x € K*, which implies K < £(0). On the other hand, if

x € L£(0) is a non-zero element, then (z) = 0. This means x has no poles, and thus

x € K by Corollary 2.
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(b) Suppose there exists a non-zero x € L(A). Then (z) = —A > 0, meaning z has at

least one zero, but no pole, which is impossible.

]

Our next objective will be to show that the dimension of £(A) as a K-vector spaces

is always finite.

Lemma 5. Let A, B € Div(F) with A < B. Then L(A) < L(B) and
dim(L(B)/L(A)) < deg B — deg A.

Proof. If x € L(A), then () = —A = —B, and thus £(A) € £(B). In order to prove the
other result, we may assume B = A+ P for some prime divisor P € Pg. Since we can reach
B from A by adding a finite number of prime divisors, the general case will then follow
by induction. Pick an element ¢ € F' such that vp(t) = vp(B) = vp(A) + 1. For z € L(B):

vp(z) = —vp(B) = —vp(t), so vp(xt) = 0 and ot € Op. Thus, we have a K- linear map
’QZ) : ,C(B) g Fp
x — (xt)(P).

Note that x € kery) <= xte P < wvp(at) >0 < vp(r) = —vp(A), since
vp(zt) = vp(A) + 1+ vp(x) >0 < vp(z) > —vp(A) —1 <= vp(z) = —vp(4),

meaning ker ) = L£(A). Therefore, 1 induces an injective K-linear map from £(B)/(A) to

Fp, therefore
dim(L(B)/L(A)) < dim Fp = deg P = deg B — deg A. O

Proposition 5. For each A € Div(F), L(A) is a finite-dimensional vector space over
K. More precisely, if A= A, — A_ with positive divisors A, and A_, then dim L(A) <
deg A+ + 1.

Proof. Since A < A,, L(A) < L(A;) and it is sufficient to show that dim L(A,) <
deg A, + 1. A, being a positive divisor, we have 0 < A, and Lemma 5 yields
dim(L(A4)/L(0)) < deg A, . Since £(0) = K, we conclude

dim £(A}) = dim(L(AL)/L(0)) + 1 < deg A, + 1. O

Definition 12. For A € Div(F') the integer ((A) := dim L(A) is called the dimension of
the divisor A.
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Calculating the dimension of a divisor is a very important problem both in algebraic
function field theory and lattice construction. In order to build up to a result which will
allow us to compute this dimension, the Riemann-Roch Theorem, we start by proving the
following fact: an element x € F* has the same number of zeros and poles counted with

their multiplicities.

Theorem 6. All principal divisors have degree zero. More precisely, if x € F\K, then
deg(x)g = deg(z)e = [F : K(z)].

Proof. Take n := [F : K(x)] and
B = (x)e = ). —vp,(z) deg P,
i—1

where P, ..., P, are the poles of . Then

deg B = vai(x’l)-degpi <|F:K(x)]=n

i=1
by Proposition 4. It only remains to show n < deg B. To this effect, choose a basis
Uy, ..., up of F|K(z) and a divisor C' = 0 such that (u;) > —C foralli =1,...,n. Given
an integer [ > 0, consider the elements z'u; for 0 <i <l and 1 < j < n. From (u;) > —C

and () = —B, we have
(z'u;) =i+ (z) + (uj) = —iB—C > —(IB+C) = z'u;€ L(IB + C).

Furthermore, all ZL’in are linearly independent over K, since uq, ..., u, are linearly indepen-
dent over K (z). Thus, {(IB + C) = n(l + 1). Setting ¢ := deg C' and applying Proposition
5, weget n(l+1) <l(IB+C) <l -deg B+ c+ 1, meaning

l(degB—n)=zn—c—1 (1.10)

for all [ € N. Since the right side is independent of [, (1.10) is only possible when
deg B > n. This proves that deg(z),, = [F : K(x)], but since (z)o = (z7")s, we conclude
deg(x)o = deg(x ) = [F: K(z )] = [F : K(z)]. O

Definition 13. The degree of a function z € F\K is defined as
deg(z) := deg(z)o = deg(2)w

and can be computed in the following ways:

deg(z) = Y Up(z)-degPZ; S Jop(2)] - deg P.

PePrp PePp
vp(z)>0

Definition 14. The positive integer v := min{[F : K(z)] : z € F'} is called the gonality
of FIK.
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In light of Theorem 6, the gonality can also be interpreted as the smallest degree

of a non-constant function of F.

Corollary 6. (a) Let A, A" € Div(F) with A ~ A’. Then ((A) = ((A") and deg A =
deg A"

(b) If deg A < 0, then ¢(A) = 0.
(¢) For A € Div(F) with deg A = 0, the following are equivalent

1. A is a principal divisor.
2. U(A) = 1.
3. L(A) =1.

Proof. (a) €(A) = ((A) follows from the fact that £(A) ~ L(A"), as proved in Lemma
3. And from Theorem 6, for some z € F*: A = A"+ () = degA = deg A" +
deg((x)) = deg A".

(b) Suppose ¢(A) > 0. Remark 4 implies there exists some divisor A" = 0 such that
A" ~ A, hence deg A = deg A’ > 0.

(2): if A= (z), then (x ') = —A and 2~ € L(A), so ((A) > 1.
(3): suppose deg A = 0 and ¢(A) > 1. By Remark 4(b), A ~ A’ for some
A" = 0. The conditions A" = 0 and deg A’ = 0 imply A" = 0. Therefore, ((A) =

): Suppose deg A = 0 and ¢(A) = 1. Take a non-zero z € L(A), then
> 0. Seeing as deg((z) + A) = deg((z)) + deg A = 0, it follows that
=0and A= —(z) = (') and A is principal. O

Example 2. Consider the rational function field F = K(x). For a non-zero z € K(x), we

have z = a - f(x)/g(x) with a € K*, f(z), g(x) € K|x] monic ans relatively prime with

T

f@) = [ [, o) = [ )™

i=1

where p;(x), q;(z) € K[x| are pairwise distinct, irreducible and monic. Then (z) € Div(F)
has the form

(2) = D 1iPoutay = ) M3 Payta) + (deg g(w) — deg f () o,
i=1 J=1

Therefore, in arbitrary function fields, the principal divisors can be considered as substitutes

for the decomposition into irreducible polynomials from the rational function field.
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For an arbitrary function field F'|K, in Proposition 5 we have showed that
((A) <1 +degA (1.11)

for all A > 0. However, (1.11) in fact holds for every divisor of positive degree. To
verify this, we may assume ¢(A) > 0. Then A ~ A’ for some A" = 0 by Remark 4, so
((A) =0(A") <1+ deg A" =1+ deg A by Corollary 6.

Proposition 6. For all A € Div(F') there is a constant v € Z, independent of A, such
that deg A — ((A) < 7.
Proof. Firstly, we observe that applying Lemma 5 for A; < A, yields

deg Ay — U(Ay) < deg As — £(As). (1.12)

Fix x € F\K and set B := (). Like in the proof of Theorem 6, there exists a divisor
C > 0 depending on x such that ¢(IB +C) = (I + 1) - deg B for all [ = 0. On the other
hand, ¢(IB + C) < ((IB) + deg C according to Lemma 5. Combining these inequalities

produces
U(IB) = (I +1)deg B —degC = deg(IB) + [F : K(x)] — degC.

In other words, deg(IB) — ¢(IB) <~ for all [ > 0 with some v € Z. We wish to prove that
this inequality still holds if we substitute [B for any A € Div(F') with the same .

In order to achieve this, we first show that given A € Div(F'), there exists Ay, D €
Div(F) and an integer [ > 0 such that A < Ay, A; ~ D and D < [B. Choose a positive
divisor A; with A; > A. Then, for sufficiently large [,

(IB — Ay) = ((IB) —deg Ay = deg(IB) — v —deg A; > 0,

where the first inequality follows from Lemma 5. Thus there is some non-zero z € L(IB—A;).
Setting D := A; — (2), we have proved the claim, since A; ~ D and D < A; —(A; —I(B) =
IB.

Using this auxiliary result, the proposition follows:

(1.12) Cort (1.12)
deg A —((A) < degA; —((A) "= degD —¢(D) < deg(IB) —{(IB) < 7.

Definition 15. The genus g of a function field F|K is defined as

g = max{deg A — ((A) +1: Ae Div(F)}.

Proposition 6 assures this definition makes sense. In fact, the genus is the single

most important invariant of a function field.
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Corollary 7. The genus g of F|K is a non-negative integer.

Proof. Taking A = 0 in the definition of g produces g = deg(0) — ¢(0) + 1 = 0. O

Theorem 7 (Riemann’s Theorem). Let F|K be a function field of genus g. Then

(a) For all A€ Div(F), ((A) =>degA+1—g.

(b) There is c € 7 depending only on the function field such that ¢(A) = deg A+ 1 —g if
deg A = c.

Proof.  (a) Follows directly from the definition of the genus.

(b) Choose Ay € Div(F) with g = deg Ag—¢(Ap)+1 and set ¢ := deg Ag+g. If deg A > ¢,
then
E(A—Ag) Zdeg(A—Ao)+1—g>c—deng+1—g= 1,

which means there is a non-zero z € /(A — Ap). Take A" := A + (2), then A" = A

and

Lemma 5

deg A — ((A) “ZO deg A — 0(A") =" deg Ay — ((Ag) = g — 1.
Therefore ((A) < deg A+ 1—g.
[l

Example 3. We will show the rational function field F = K(x) has genus g = 0. Take
Py, the pole divisor of x and consider for r = 0 the vector space L(rPy). For 0 < i <r we
have (3') =i - (v) = —iPy = —1Py, thus 1,z,...,2" € L(rPy). This observation yields

r+1<l(rPy) =deg(rPy)+1—g=r+1—g

if  is sufficiently large, implying g < 0, and finally g = 0.

1.5 Functions Fields of Algebraic Curves

Up until now, we have studied functions fields as completely independent and
abstract mathematical objects. This section aims to establish the connection between the
theories of function fields and algebraic curves and provide different interpretations for
previously discussed concepts which will assist us during the construction of the Fermat
Function Field Lattice.

We begin by presenting some basic definitions from algebraic geometry.

Definition 16. Let K be a field. The n-dimensional affine space A" = A"(K) is the set
of n-tuples of elements of K.



Chapter 1. Preliminaries 33

If K| X3, ..., X,] is the ring of polynomials in n variables over K, a subset V< A"
is algebraic if there exists a set of polynomials M < K[Xy, ..., X,] such that

V={PeA": F(P)=0 forall F € M}.
Given an algebraic set V< A", the set of polynomials
I(V)={FeK[Xy,...,X,]|: F(P)=0 for all Pe V}

is called the ideal of V. Evidently, it is an ideal of K[Xy,...,X,], and can be generated
by finitely many polynomials Fy, ..., F, € K[Xy,...,X,]. Thus

V={PeA": F,(P)=---=F,(P) =0}

We denote the zero locus of these polynomials as V. = V(Fy,...,F.). V is said to be
irreducible if it cannot be written as V =V u Vy with Vi, Vs, proper algebraic subsets of
V. This corresponds to I(V') being a prime ideal. An irreducible algebraic set V< A" is

called an affine variety.

Given an affine variety V, the residue class ring T'(V') : K[X1,..., X,]/I(V) is
called the coordinate ring of V.. Every f = F+ 1(V) € I'(V) induces a function f 1V — K
by setting f(P) := F(P). Since I(V') is a prime ideal, T'(V') is an integral domain and one

can consider the quotient field
K(V) := Quot(T'(V)),

called the function field of V. It contains K as a subfield and the dimension of V is the
transcendence degree of the field extension K(V)|K.

For a point P €V, define
Op(V)={feK(V): f=g/h for gghe (V) and h(P) # 0}.
This is a local ring whose quotient field is K(V'), and unique mazimal ideal is
Mp(V)={fe K(V):f=g/h forghe'(V), h(P) # 0 and g(P) = 0}.

Op(V) is called the local ring of V' at P. For f = g/h € Op(V), the value of f at P is
defined as f(P) := g(P)/h(P).

Definition 17. Take the set A"™\{(0,...,0)} and define the equivalence relation ~ as
(ag,...,an) ~ (bo...,by) <= b; = \a; for some \ € K*.

The equivalence class of (ao, .. .,a,) with respect to ~ is denoted by (ag: ...: a,). The

n-dimensional projective space is the set of all equivalence classes

P* = {(ap: ...: a,):a; € K, not all a; = 0}.
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A polynomial F € K| Xo,...,Xn] is said to be homogeneous of degree d if it is a sum
of monomials of the same degree d. An ideal I < K[Xo, ..., X,]| generated by homogeneous

polynomials is called a homogeneous ideal.

Let P = (ag: ...:a,) € P" and let F € K[Xy,...,X,] be a homogeneous polyno-
mial with deg F' = d. We say that F(P) =0 if F(ao,...,a,) = 0, which makes sense given
that

F(Xag, ..., \an) = A\ Flag, ..., a),

and thus F(ag,...,a,) =0 <= F(X\ao,...,\a,) = 0.

Projective algebraic sets, irreducibility and projective varieties are defined as in the

affine case.

Given a non-empty projective variety V < P, its homogeneous coordinate ring is
(V) = K[Xo, .., X,)/1(V),

which is an integral domain containing K. An element f € T'y(V) is called a form of
degree d if f = F + I(V) for some homogeneous F € K[Xo,...,X,]| with deg F' = d. The
function field of V' is defined as

K(V)={g/h:g,heTy(V) are forms of the same degree and h # 0}.

Once again, the dimension of V' is defined as the transcendence degree of K(V)|K. Given
f =g/he K(V), we can evaluate f at P = (ag: ...: a,) € P* by making f = (G +
I(V)/(H + I(V)), where G, H are polynomials of the same degree and setting f(P) =
G(ag, . ..,a,)/H(ag,...,a,) if H(P) # 0, since

G(Nag, ..., Aa,) X Glag, . .., a,) ~ Glao,...,a,)

H(\ag, ..., Aa,)  M-Hag,...,a,) Hag,...,a,)

The ring
Op(V)={fe K(V): f is defined at P}

s a local ring with mazximal ideal
Mp(V) = {f e Op(V): f(P) = 0}.

Given the two previous definitions, we notice that any projective variety can be
covered by affine varieties such that some properties are preserved. We do this in the

following way: for 0 < ¢ < n, consider the mapping ; : A" — P" given by
wilag: ... an)=(ap: ...:a;1:1:a;1: ... 0 ay).

This is a bijection from A" to U; = {(cp: ...: ¢,) € P": ¢; # 0}, and P" = U U;, meaning
i=0
the n-dimensional projective space is covered (with overlap) by n + 1 copies of the affine

space A",
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Let V' € P" be a projective variety, then V = U(V N U;). Suppose V nU; # &
i=0

and define
Vii=p; " (VnU;) S A"

V; is an affine variety whose ideal I(V}) is given by

[(‘/;) = {F(XO, c. ,Xifl, 17Xi+17 ce 7Xn) Fe [(V)}
For convenience, we restrict ourselves to the case ©+ = n and V n U, # . The set
H, =P"\U, ={(ap: ...: a,) € P":a, =0} is called the hyperplane at infinity.

A notable consequence of this construction is that the function fields of the pro-
jective variety V' and the affine variety V,, are isomorphic. Let f = g/h € K(V'), where
g,h € T'g(V) are forms of the same degree and h # 0. Choose homogeneous poly-
nomials G, H € K[Xy,...,X,] such that ¢ = G + I(V) and h = H + I(V). Define
Gy :=G(Xo,..., X, 1,1), Hy, := H(Xy,..., X, 1,1) € K[Xy,...,X, 1] and denote their

residue classes in I'(V},) by ¢. and h,, respectively. The isomorphism is given by

=

a: K(V)—- K(V,)

9
h he

Under «, the local ring of a point P € V nU,, is mapped onto the local ring of ¢, *(P) € V,,,

hence the local rings are also isomorphic.

We can also construct the projective closure of an affine variety. In order to do that,
first consider a polynomial F' = F(X,..., X, 1) € K[Xo,..., X, 1] of degree d. We can

turn it into a homogeneous polynomial of degree d in n + 1 variables by setting

F* = X F(Xo/Xn, ..., Xn1/X0) € K[Xo, ..., X,

Now consider an affine variety V' < A" and its corresponding ideal I(V) <
K[Xo,...,X,_1]. Define the projective variety V as:
Vi={PeP": F*(P)=0forall FelI(V)}.

The variety V is called the projective closure of V. It is possible to recover V from V by

the process we just outlined:
V=o'Vl =V,.

It follows that the function fields of V and V are isomorphic, and both varieties have the

same dimension.

We now turn our attention to a specific class of maps between varieties.
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Definition 18. Let V. < P™ and W < P" be projective varieties. If Fy,..., F, €

K[Xo, ..., X,,] are homogeneous polynomials such that

(a) Fy,...,F, have the same degree
(b) not all F; are in I(V)

(¢) H(Fy,...,F,) e I(V) for all He I(W).

Take a point Q € V' such that Fi(Q) # 0 for at least one i € {0,...,n} (by (b), such point
exists). Then, the point (Fo(Q): ...: F(Q)) € P" lies in W by (c). If (Go,...,G,) is
another n-tuple of polynomials satisfying (a), (b) and (c), we say that (Fy, ..., F,) and
(Go, ..., Gy) are equivalent if

(d) F,G; — F;G; € I(V) for all0 <i,j <n.

The equivalence class of (Fy,...F,) with respect to this equivalence relation is ¢ =

(Fy: ...: F,) and ¢ is called a rational map from V to W.
A rational map ¢ = (Fy: ...: F,) is reqular at the point P € V if there exist
homogeneous polynomials Gy, ...,Gy, € K[Xo, ..., Xn] such that ¢ = (Go: ...: G,) and

G;(P) # 0 for at least one i. Then we can set

which is well-defined by (a) and (d).

Two varieties Vi and V, are birationally equivalent if there are rational maps
¢1: Vi = Vo and ¢ 1 Vo — Vi such that ¢1 o ¢g and ¢5 0 ¢1 are the identity maps on the
points at which they are regular. Moreover, Vi and V, are birationally equivalent if and
only if the function fields K (V1) and K(V3) are K-isomorphic.

A rational map ¢ : V- — W which is reqular at all points P € V is called a morphism.
It is called an isomorphism if there is a morphism 1y : W — V' such that ¢ o) and 1 o ¢
are the identity maps on W and V', respectively. In this case, the varieties V and W are

said to be isomorphic.

Definition 19. A projective (affine) algebraic curve V is a projective (affine) variety of
dimension 1. This implies that the field K (V') is an algebraic function field of one variable.

A point P €V is non-singular if the local ring Op(V') is a discrete valuation ring,
that is, a principal ideal domain with exactly one maximal ideal. In a given curve, there are
only finitely many singular points. The curve V is called non-singular if all of its points

are mon-singular.
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A plane affine curve is an affine curve V. < A?. Its ideal 1(V) S K[Xo, X1]
is generated by a unique irreducible polynomial G € K|[Xy, X1]. Conversely, given an
irreducible polynomial G € K[Xy, X1], the set V = {P € A* : G(P) = 0} is a plane affine

curve, and G generates I(V). A point P € V is non-singular if and only of

oG oG

—(P 0 — (P 0.

aXO( ) # 07“6X1( ) #

Sitmilarly, the ideal of a plane projective curve V < P? s generated by an irreducible

homogeneous polynomial H € K[Xy, X1, Xs]. A point P € V is non-singular if at least one

of the partial derivatives of H at P is not zero.

IfV = {P e A’ : G(P) = 0} is a plane affine curve with G € K[Xy, X1] an
irreducible polynomial of degree d, then the projective closure of V< P? is the zero locus
of the homogeneous polynomial G, = X - G(Xo/ X2, X1/X5).

If we consider rational maps ¢ : V. — W between two projective curves, the

following hold

(a) ¢ is regular at all non-singular points of V. In particular, if V' is non-singular, ¢ is a

morphism.

(b) If V' is non-singular and ¢ is non-constant, then ¢ is surjective.

Singular points may present a problem when studying certain properties algebraic
curves. For this reason, we often make use of the non-singular model of a curve: given V' a
projective curve, there exists a non-singular projective curve V' and a birational morphism
¢’ . V! — V. that is, every projective curve is birationally equivalent to a non-singular
projective curve. The pair (V', @) is unique in the sense that if given another non-singular
curve V" and birational morphism ¢” : V" — V, there exists a unique isomorphism
¢ : V' — V" such that ¢’ = ¢" o ¢. Therefore, the pair (V', ¢') is called the non-singular
model of V.

This is particularly useful when studying function fields. Since V and V' are
birationally equivalent, they have isomorphic function fields. This means one can always
consider the non-singular model of any given curve, eliminating the problem of singular

points.

The following theorem establishes a very important link between the theory of

algebraic curves and the theory of algebraic function fields.

Theorem 8. Let F|K be an algebraic function field of one variable. There exists a

non-singular projective curve V- such that K(V') is (K-isomorphic to) F.
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Proof. One can construct V' as follows: choose z,y € F such that F' = K(z,y) (every
algebraic function field is an extension of the rational function field). Let G(X,Y) €
K[X,Y] be the irreducible polynomial with G(z,y) = 0. Let W = {P € A* : G(P) = 0}
and W < P? be the projective closure of W. Then, denoting by V the non-singular model
of W, it follows that K (V) ~ F. O

Let V' be a non-singular projective curve with K (V) = F. There is a 1 — 1
correspondence between the points P € V and the places of F|K, given by P +— Mp(V),

the maximal ideal of the local ring Op (V). In particular, the points in the set
V(IK)=VnP"K)={(ap: ...:a,) €V :a;€ Kforalli=0,...,n},

called K-rational points of V' each correspond to a rational place of F.

These correspondences allow us to translate some concepts of function fields over

to algebraic curves and vice versa. For example

e The genus g of an algebraic curve is the same as the genus of its function field.

o If V is non-singular, a divisor of V' is a formal sum of points D = Z npP, where
PeVv

np € Z, almost all np = 0. The degree of D is deg D = Z np.
PeV

o The order of a function f € K(V) at a point P € V is defined to be vp(f), where vp

denotes the discrete valuation of K (V') corresponding to the valuation ring Op(V).

e The principal divisor (f) of a non zero function f e K(V)is (f) = Z vp(f)P. The

PeV
degree of a principal divisor is 0.

« For D e Div(V), the space L(D) is defined as in the function field case
L(D) ={fe K(V):(f) = =D} v {0}.

It is a finite-dimensional K-vector space, whose dimension ¢(D) will be the main

focus of the next section.

1.6 The Riemann-Roch Theorem

For this section, we always assume F'|K is an algebraic function field with genus g.
Definition 20. For A € Div(F'), the integer i(A) := ((A) —deg A + g — 1 is called the
index of specialty of A.

Theorem 7 states i(A) is a non-negative integer and i(A) = 0 if deg A is sufficiently

large.
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Definition 21. An adele of F|K is a mapping

a:Pp— F
P'_>O-/P7

such that ap € Op for almost all P € Pr. We consider an adele an element of the direct

product H F and use the notations a = (ap)pep, or a = (ap). The set
PePp

Ap :={a: «a is an adele of F|K}

is called the adele space of F|K. Is will always be regarded as a vector space over K with

operations defined in the usual way.

The principal adele of an element x € F is the adele where all components are equal
to x. Since x has only finitely many poles, only finitely many components of the adele will
not be in Op, hence this definition makes sense. This gives us an embedding F' — Ap.
Valuations from F are also naturally extended to Ap by setting vp(a) = vp(ap), where ap

is the P-component of the adele a. From the definition, vp(a) = 0 for almost all P € Pg.

Definition 22. For A € Div(F), we define the adele space of A as

Ap(A) :={ae Ap : vp(a) = —vp(A) for all P € Pp}.

This is a K-subspace of Ap.

Theorem 9. For every A € Div(F), the index of specialty is

i(A) = dim(Ap/(Ap(A) + F)).

Note that even though F, Ap and Ap(A) are infinite-dimensional vector spaces
over K, the theorem states the dimension of the quotient space Ar/(Ap(A) + F) over K

is finite.

Proof. First we prove that given A;, Ay € Div(F) with A; < Ay, then Ap(A;) € Ap(As)
and
dlm(AF(AQ)/AF(Al)) = deg A2 — deg Al. (113)

The first claim is evident, since o € Ap(A;) implies for all P € Pp:
?JP(O./) = —’Up(Al) = —UP(AQ) —— (€ AF(AQ)

For the second claim, as in the proof of Lemma 5, we only need to establish a proof for

the case Ay = Ay + P, P € Pr and the general case will follow by induction. Choose t € F
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such that vp(t) = vp(As) = vp(A;) + 1 and consider the K-linear map

¢ : Ap(As) = Fp
a— (tap)(P).

Note that a € kerp <= vp(tap) >0 < vp(a) = —vp(A;), since
Up(tOzp) = UP(A1)+1+UP(CYP) >0 = Up(a/p) > —’Up(Al)—l — Up(Oé) = —’Up(Al),

meaning ker ¢ = Ap(A;). Furthermore, ¢ is surjective: take z € Op and define the adele

té”Q(A2)+1’ ifQ=P
an =
“ %ﬁQzP

where ¢ is a (Q-prime element. For ) # P, we have

volag) = v (fc}vQ(AQ)H) = —vq(A2) + 1 = —vg(As),
and for ) = P

vp(ap) = vp(x) —vp(t) = vp(z) — vp(A2) = —vp(Ay),

since vp(x) = 0. Thus, a € Ap(Ay) and (o) = z(P). We then conclude that
AF(AQ)/AF(Al) jad Fp and dlm(.AF(AQ)/.AF(Al)) = degP = deg AQ — degAl.

Now we prove that if Ay, A € Div(F) and A; < Ay, then
dim((Ap(As) + F)/(Ap(Ar) + F)) = (deg Ay — (A3)) — (deg Ay — ((Ay)).  (1.14)
In order to prove this, consider the following sequence of linear mappings
0 — L(A2)/L(A1) = Ap(A2)/Ap(A1) 3 (Ap(A2) + F)/(Ap(A) + F) =0, (1.15)
where

o1 L(A2)/L(A1) = Ap(As)/Ar(A1)
T4 LA o 7+ Ap(A))

and

03+ Ap(Ag)/Ap(Ar) = (Ap(A2) + F)/(Ap(Ar) + F)
X + AF(Al) — T+ (AF(Al) + F)

It follows directly from the definitions that oy is injective and o5 is surjective. We now
wish to show that Im(oy) = ker(os).

Take a € Ap(Ay) with oo(a+Ar(A;)) = 0. Then a € Ap(A;)+ F and there is some
x € Fwitha—x € Ap(A;). Since Ap(A;) € Ap(As), we conclude x € Ap(Ay)nE = L(As).
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Therefore, a + Ap(A;) = © + Ap(A41) = o1(x + L(A;)) and « € Im(oy). On the other
hand, if y € Im(0y), then y = x + Ap(A;1), but © + Ar(A;) € Ar(A;) + F. Thus o3(y) =0
and Im(oq) = ker(oy). This means the sequence (1.15) is exact and by using (1.13), we

conclude

dim((Ap(As) + F)/(Ar(A1) + F)) = dim(Ap(As)/Ar(A4;1)) — dim(L(As)/L(A1))
= (deg Ay —deg A1) — (((As) — ((Ag)).

Next we prove that if B is a divisor with {(B) = deg B+1—g, then Ar = Ap(B)+F.
Observe that for B; > B, Lemma 5 yields

U(B;) <deg By + {(B) —deg B=degB; +1—g.
Riemann’s Theorem then shows that
((B;) = deg By + 1 — g for each B; = B. (1.16)
Let a € Ap. We can find a divisor B; > B such that a € Ap(B;). By (1.14) and (1.16)

dim((Ap(By) + F)/(Ap(B) + F)) = (deg By — {(B1)) — (deg B — ((B))
=(g-D-(@-1=0
This means Ap(B;) + F = Ap(B) + F, and thus, a € Ap(B), proving our claim.

We are now ready to finish the proof. Take an arbitrary divisor A. By Theorem
7(b), there exists some A; > A such that ((A;) = deg A1 + 1 — g, then Ap = Ap(A;) + F.
Applying (1.14)

dim(Ar/(Ap(A) + F)) = dim((Ap(A;) + F)/(Ar(A) + F))
= (deg Ay — 0(A})) — (deg A — ((A))
=(g—1)+l(A) —deg A =i(A). O
This theorem can be restated as follows: for all A € Div(F)
U(A) =degA+1—g+dim(Ap/(Ar(A) + F)).
As a corollary, we obtain another characterization for the genus.
Corollary 8. g = dim(Ar/(Ar(0) + F)).

Proof. i(0) = ¢(0) —deg(0) +g—1=1-0+g—1=g. O

We now introduce the concept of Weil differentials, which will provide a second

interpretation of the index of specialty of a divisor.
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Definition 23. A Weil differential of F|K is a K-linear map w : Ap — K that vanishes
on Ap(A) + F for some divisor A € Div(F). The set

Qp = {w: w is a Weil differential of F|K}
is called the module of Weil differentials of F|K. For A € Div(F) let
Qp(A) = {w e Qp : w vanishes on Ap(A) + F'}.
We observe that Qp is a K-vector space. Indeed, if w; vanishes on Agr(A;) + F and
wy vanishes on Agp(Ay) + F, the wy + wy vanishes on Ap(As) + F for any Az € Div(F)

with A3 < A; and A3 < Ay. Also, awy, a € K vanishes on Ar(A;) + F. With this, we
regard Qp(A) a K-subspace of Qp.

Lemma 6. For A € Div(F), we have dim Qg(A) = i(A).

Proof. Let L denote the set of K-linear maps from Ap/(Ar(A) + F) to K and define
w : QF(A) — L
w— W,

where w'(a+ (Ap(A)+ F)) = w(a) for a € Ap. From the definition of Qr(A), ¢ is K-linear
and bijective. Thus, Qp(A) ~ L. Since dim Qp(A) = dim L = dim(Ap/(Ar(A) + F)) =
i(A) by Theorem 9, our lemma follows. O

A direct consequence of this lemma is that Qp # . Choose A € Div(F) with
deg A < —2. Then

dimQp(A) =i(A) =l(A) —degA+g—1=0+2+g—-1=g+1>1,
hence Qr(A) # .

Definition 24. For x € F and w € Qp, we define zw : Ap — K by (2w)(a) := w(za).

zw is indeed a Weil differential of F'|K, since if w vanishes on Agr(A) + F, then zw

vanishes on Ar(A + (z)) + F. This definition gives Qp the structure of a vector space over
F.

Proposition 7. Qr is a one-dimensional vector space over F.

Proof. Choose a non-zero w; € Q. We must show that for any non-zero w, € 2 there
exists some z € F' such that wy = zw;. Choose A, Ay € Div(F) such that wy € Qp(A;)
and ws € Qp(As). For a divisor B, consider the K-linear injective maps

T — TW;.
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We claim that for an appropriate choice of B, Im(p;) nIm(gs) # {0}. From linear algebra,

we know that if Uy, U are subspaces of a finite-dimensional vector space V', then

dim(Uy, nU3) = dim U; 4+ dim Uy — dim V. (1.17)
Applying Riemann’s Theorem, let B > 0 be of sufficiently large degree such that

((A;+ B) =deg(A; + B)+1—g.
Set U; := Im(p;) € Qp(—B). From the fact that
dim Qp(—B) =i(—B) = ¢(—B) —deg(—B) +g—1=degB—1+g,
we obtain
dim Uy + dim Uy — dim Qp(—B) = deg(A; + B) + deg(As + B) —deg B+ 3(1 — g)
= deg B + (deg A; + deg As + 3(1 — g)).

Thus, if deg B is sufficiently large, dim U; +dim Us —dim Qg (—B) > 0. By (1.17), it follows
that Uy n Uy # {0}, proving the claim.

Having proved this intermediate result, the proposition now easily follows: choose
x1 € L(A, + B) and x5 € L(Ay + B) such that z,w; = zowy # 0. Then wy = (1125 )w; as
desired. O

We now wish to attach a divisor to each non-zero Weil differential. To this end, for

a fixed w € Qp, define the set of divisors
M(w) := {A € Div(F') : w vanishes on Ap(A) + F}.

Lemma 7. Let 0 # w € Qp. There is a uniquely determined divisor W € M(w) such that
AW forall Ae M(w).

Proof. Riemann’s Theorem states there is a constant ¢ depending only on the function field
F|K such that i(A) = 0 for all A € Div(F) with deg A > ¢. Since i(A) = dim(Ag/(Ap(A)+
F)), we have that deg A < ¢ for all A € M(w). This means we can choose a divisor

W e M(w) of maximal degree.

Suppose W does not have the desired property. Then there exists a divisor Ag €
M(w) with Ag € W, that is, vg(Ag) > vo(W) for some Q) € Pp. We claim that if this
is the case, then W + @ € M (w), which would contradict the maximality of W. Indeed,
consider the adele a = (ap) € Ap(W + Q). Writing a = o/ + o with

. ap for P # Q 0 for P # Q
ap = and o, =
0for P=Q ag for P = Q).

Then o' € Ap(W) and o” € Ar(Ap), therefore w(a) = w(d') + w(a”) = 0. Hence w
vanishes on Ap(W + Q) + F, proving that W + Q) € M(w). The uniqueness of W is a

direct consequence of its properties. O
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The preceding lemma now allows us to make the following definitions:

Definition 25. (a) The divisor (w) of a Weil differential w # 0 is the uniquely deter-
mined divisor of F|K such that

1. w vanishes on Ap((w)) + F
2. if w vanishes on Ar(A) + F, then A < (w).

(b) For 0 # we Qp and P € Pp, we define vp(w) := vp((w)).

(¢) A place P is a zero of w if vp(w) > 0, and it is a pole of w if vp(w) < 0. The Weil
differential is said to be reqular at P if vp(w) = 0, and w is said to be regqular if it is

reqular for all P € Pp.
(d) A divisor W is called a canonical divisor of F|K if W = (w) for some w € Qp.

Remark 5. From the preceding definitions, it follows that

Qp(A) ={weQr:w=0 or (w) = A} and Qr(0) = {w € Qp : w is reqular}.

As a consequence of Lemma 6 and the definition of the index of specialty, we have
dim Qp(0) = g.
Proposition 8. (a) For x € F* and 0 # w € Qp we have (zw) = (z) + (w).

(b) Any two canonical divisors of F|K are equivalent.

Proof. (a) Ifw vanishes on Ap(A)+F, then zw vanishes on Ar(A+(z))+F, consequently
(w) + (7) < (zw). In the same manner, (rw) + (z7') < (¢ '2w) = (w). Combining

these inequalities:

(b) Given wy,ws € Qp two non-zero Weil differentials, Proposition 7 implies wy = xw;

for some x € F. By item (a): (wy) = () + (w1) and (wy) ~ (wa).
m
From this proposition we conclude that all the canonical divisors of F'|K are in the

same class [WW] in the divisor class group CI(F"). Such class is called the canonical class of
FIK.
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Theorem 10 (Duality Theorem). Let A be any divisor of F|K and W = (w) be a canonical
divisor of F|K. The mapping

o LW — A) > Qp(A)
T - Tw
is an isomorphism of K-vector spaces. In particular, (W — A) = i(A).
Proof. For © € L(W — A), we have (zw) = (z) + (w) = —(W — A) + W = A, hence
2w € Qp(A) by Remark 5 and p is well-defined. It is evident that p is K-linear and

injective. In order to prove it is also surjective, take w; € Qp(A). By Proposition 7,

wy = 2w for some x € F'. Since

(@) + W = (2) + (w) = (2w) = (w1) = 4,
we get () = —(W — A), so x € LW — A) and w; = p(x). We have thus proved that
dim L(W — A) = dim Qp(A). Applying Lemma 6, the result follows. O

A direct implication of the Duality Theorem is the Riemann-Roch Theorem, the

most important theorem in the theory of algebraic function fields.

Theorem 11 (Riemann-Roch Theorem). If W is a canonical divisor of F|K and A €
Div(F'), then
((A) =degA+1—g+ (W —A).

Corollary 9. For a canonical divisor W, degW = 2g — 2 and (W) = g.

Proof. Applying the Riemann-Roch Theorem for A = 0, Lemma 4 yields
1=0(0)=deg0+1—g+ (W —-0) = (W) =g.
Setting A = W, we obtain
g=t(W)=degW +1—g+l(W—-W)=degW +2—g = degW =29 —2.

]

Riemann’s Theorem shows the existence of some constant ¢ such that i(A) = 0

whenever deg A > ¢. We can now give a more precise description of this constant.

Theorem 12. If A € Div(F) is such that deg A = 2g — 1, then ((A) =deg A +1—g.

Proof. Since deg A > 2g — 1 and deg W = 2g — 2 for a canonical divisor W, we have
deg(W — A) =degW —degA<29g—2—(29—1)=-1<0.

By Corollary 6, we conclude that ¢(WW — A) = 0. Applying the Riemann-Roch Theorem, it
follows that /(A) = deg A+ 1—g. O
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It is worth noting that the bound 2g — 1 is the best possible, as for a canonical
divisor W
(W) >degW +1—g

by Corollary 9.

We shall now explore several consequences of the Riemann-Roch Theorem. Our
first aim is to show that this theorem characterizes both the genus and the canonical class
of F|K.

Proposition 9. If g € Z and W, € Div(F) satisfy

((A) =deg A+ 1—go+ (W — A) (1.18)
for all A € Div(F), then go = g and Wy is a canonical divisor.
Proof. Setting A =0 in (1.18) yields ¢(Wy) = go, and setting A = Wy, deg Wy = 299 — 2.
Let W be a canonical divisor of F|K and choose A € Div(F') such that deg A > max{2g —
2,290 — 2}. Theorem 12 implies ¢(A) = deg A + 1 — g. Since deg(Wy — A) < 0, we have

Wy — A) =0 and by (1.18): ¢(A) = deg A+ 1 — go. Thus, g = go. Finally, substituting
A=W in (1.18):

92(29—2)+1—g+€(W0—W) - K(WQ—W)Zl

Since deg(Wy — W) = (290 —2) — (29 — 2) = 0, Wy — W is principal according to Corollary
6, so Wy ~ W and W), is canonical. O

Proposition 10. A divisor B is canonical if and only if deg B =29 — 2 and {(B) = g.

Proof. The forward direction has already been proven. Now suppose deg B = 2g — 2 and
¢(B) = g. Choose a canonical divisor W, then

g<{B)=degB+1—g+{(W —-B)=g—1+ (W — B).

Thus, (W — B) = 1. The fact that deg(WW — B) = 0 now implies W ~ B by Corollary
6. O

Proposition 11. A function field F|K is rational if and only if F|K has genus 0 and
there is some A € Div(F') with deg A = 1.

Proof. (=): proven in Example 3.

(<): Let g =0 and deg A = 1. Then deg A > 2g — 1 and ¢(A) =degA+1—g =2 by
Theorem 12. Thus A" ~ A for some A" = 0 by Remark 4(b). Since ¢(A") = 2, there exists
some z € L(AN\K, so (z) # 0 and A"+ (x) = 0. As A’ > 0 and deg A" = 1, this is only
possible if A" = (z)y. Now

[F: K(x)] = deg(z)y = deg A" =1
by Theorem 6, so F' = K(x). O
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Remark 6. There exist non-rational function fields of genus 0, although these cannot
have a divisor of degree 1 by the preceding proposition. However, if K is algebraically
closed or finite, there will always exist a divisor of degree 1. Hence, in these cases, g =0

is equivalent to F'|K being rational.

Next, we give an improved version of the Weak Approximation Theorem.

Theorem 13 (Strong Approximation Theorem). Let S & Pr and Pi,...,P. € S. Given
x1,..., 2 € Fandny, ... ,n, € Z, there is an element x € F such that vp,(x — x;) = n; for
i=1,...,7 and vp(x) =0 for Pe S\{P,,...,P}.

Proof. Take the adele o = (ap)pep, with

x; for P = P,
(8 =

0 otherwise.
Choose @) € Pp\S. For a sufficiently large m € N

Ar = Ap <mQ — i(nZ + 1)B> + F

i=1

by Theorems 9 and 12. So there is an element z € F' with z—a € Ap (mQ — Z(nl + 1)R> .
i=1
This means

vp(z —x;) >n; fori=1,... r and
vp(z) = 0 for Pe S\{Py,...,P}. (1.19)
Now we choose y1,...,y, € F with vp,(y;) = n;. In the same manner we construct y € F'
with
vp(z—x;) >n; fori=1,... r and (1.20)
vp(z) = 0 for Pe S\{P,,...,P}. (1.21)
Then fori=1,...,7
v (y) = vr((y — i) +yi) = n (1.22)

by (1.20) and the Strict Triangle Inequality. Setting x =: y + z, we get
vp (@ — ;) =vop(y + (2 —x) = n
by (1.22). For P € S\{Py,..., P}, vp(x) = vp(y + z) = 0 by (1.19) and (1.21). O

Proposition 12. Let P € Pr and n € N with n = 2g. There exists an element x € F' such
that () = nP.
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Proof. By Theorem 12, we know ¢((n — 1)P) = (n — 1)deg P + 1 — g and ¢(nP) =
n-deg P+ 1—g hence, L((n—1)P) < L(nP). Thus every element z € L(nP)\L((n—1)P)
has pole divisor nP. O

Definition 26. Let P € Pr. An integer n = 0 is called a pole number of P if there is an

element x € F such that (x)y = nP. Otherwise, n is called a gap number of P.

From the previous proposition, n is a pole number of P if and only if {(nP) >
¢((n — 1)P). Moreover, the set of pole numbers of P is a sub-semigroup of the additive

semigroup N, since (2122)e = (n1 + n2) P if (2)e = n1 P and (29)e = noP.

Theorem 14 (Weierstrass Gap Theorem). Let F|K be a function field of genus g > 0 and
P e Pp with deg P = 1. Then there are exactly g gap numbers iy < --- < iy of P where
1w =1and i, <2g—1.

Proof. By Proposition 12, each gap number of P is bounded above by 2¢g — 1 and 0 is a

pole number. We can characterize gap number by the following equivalence
i is a gap number of P < L((i — 1)P) = L(iP).
Take the sequence of vector spaces
K=L0)cL(P)<---< L((2g —1)P), (1.23)

where dim £(0) = 1 and dim £((2g — 1) P) = g according to Theorem 12. Applying Lemma

5, we observe that for all ¢
dim L(iP) < dim L((i — 1)P) + 1,

so in (1.23) there are exactly g — 1 numbers 1 < i < 2g — 1 such that L((i —1)P) < L(iP).
The remaining g numbers are the pole numbers of P. In order to show that 1 is a gap
number, suppose the converse, that is, 1 is a pole number of P. But since the pole numbers
form an additive subgroup, this would imply every n € N is a pole number of P and there

are no gaps, a contradiction since g > 0. ]

Remark 7. If K is algebraically closed, it can be shown that almost all places of F|K have
the same gap sequence. Such places are called ordinary places of F|K. The non-ordinary
places are called Weierstrass points of F|K. If g = 2, there exists at least one Weierstrass

point.

If A is a divisor of negative degree, we know that £(A) = {0} and ¢(A) = 0. On
the other hand, if deg A > 2g — 2 then ((A) = deg A+ 1 — g. So ¢(A) depends on deg A
and ¢ in these cases. We shall now consider the case where 0 < deg A < 2¢g — 2, which is

significantly more complex.
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Definition 27. A divisor A € Div(F) is called non-special if i(A) = 0. Otherwise A is

called special.
Remark 8. (a) A is non-special < ((A) =deg A +1—g.
(b) deg A > 29 —2 = A is non-special.

(c) A being special or non-special depends only on the class [A] on the divisor class

group.
(d) Canonical divisors are special.
(e) Every divisor A with ((A) > 0 and deg A < g is special.

(f) If A is non-special and B = A, then B is non-special.

Proof.  (a) Direct consequence of the definition of i(A).
(b) This is a restatement of Theorem 12.
(c) Follows from the fact if A" ~ A, then deg A = deg A" and ((A) = ((A").

(d) For a canonical divisor W, i(W) = ¢(W — W) = 1 from the Duality Theorem, hence
W is special.

(e) 1<l(A)=degA+1—g+i(A) = i(A) = g—degA> 0, since deg A < g.
(f) Bt Theorem 9, A is non-special < Ap = Ap(A)+ F. If B > A, we know
Ap(A) € Ap(B), so the claim follows.
[

Proposition 13. Suppose T' < Pr is a set of rational places with |T'| = g. Then there

exists a non-special divisor B = 0 with deg B = g and supp B < T.

Proof. First we prove that given g distinct places pi,...,p, € T and a divisor A > 0 with
((A) =1 and deg A < g — 1, there is an index j € {1,..., g} such that ((A + P;) = 1.

Suppose the claim is false, that is, (A + P;) > 1 for all j. Then there are elements
z; € L(A+ P;)\L(A). Since

vp,(2;) = —vp,(A) — 1 and vp,(2;) = —vp,(A) for i # j,

the Stirct Triangle Inequality implies there are g + 1 elements 1, 21, ..., z, are linearly
independent over K. Pick a divisor D > A+ P, + -+ + P, with deg D = 2g — 1. Then
1,21,...,24 € L(D), hence {(D) = g + 1. On the other hand, /(D) =degD+1—g =g

by the Riemann-Roch Theorem, a contradiction.
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Using this claim we find divisors 0 < Py < Py + P < -+ < Py +-+ P, :=B
with i, € {1,..., g} not necessarily distinct such that ¢(P;; +---+ P;) =1forj=1,...,9.

In particular /(B) = 1. The divisor B is non-special since
degB+1—-g=g+1—g=1={(B)
according to Remark 8(a). O
Lemma 8. If A and B are divisors with {(A) > 0 and {(B) > 0, then
((A) +0(B) <1+ {(A+ B).

Proof. Since ¢(A) > 0 and ¢(B) > 0, we can find Ay, By = 0 with A ~ Ay and B ~ B,.

Consider the set
X :={DeDiv(F): D> Ay and L(D) = L(Ap)}.

We have X # (J since Ay € X. Furthermore, deg D > 0 for all D € X, so there must be
Dy € X of minimal degree. It follows that

U(Dy — P) < {(Dy) for all P € Pp. (1.24)

We wish to show that
U(Do) + £(Bo) < 1+ (Do + By), (1.25)

since the lemma follows immediately from this:

U(A) + U(B) = {(Dy) + £(By) <1+ ¢(Dy + By)
<14 ((Ag + By)
<1+/(A+ B)

In order to prove (1.25), we make the additional assumption that K is infinite. It will later
be shown in this text that the lemma still holds for finite fields. Let supp By = { P}, ..., P.}.
Then L(Dy — F;) is a proper subspace of £L({Dy) for every i = 1,...,r. Since a vector space

over an infinite field is not the union of finitely many proper subspaces, we find an element
ze LD\ | J £(Do - P).
i=1

Consider the K-linear map

(Yol ,C(Bo) - E(D() + Bo)/ﬁ(Ao)
x> xz+ L(A).

We wish to show that ker ¢ = K. The inclusion K < ker ¢ follows directly from the fact
that £(Dg) = L(Ap) is a K-vector space. In order to show ker ¢ € K, we first prove that
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vp,(2) = —vp,(Dy) forall i = 1,...,r. Indeed, z € L(Dy) = vp(z) = —vp(Dy) for all

P € Pg. In particular,
vp,(2) = —vp(Dy) foralli=1,... r.
Supposing that vp, (z) > —vp, (Do) for some k =1,...,r, we get:
vp,(2) > —vp,(Dy) = vp,(2) = —vp,(Dy) +1 = —(vp, (Do) — 1) = —vp, (Do — P).

Since vg(Dy) = vo(Dy — Py) for Q # Py, it follows that z € L(Dy — P,), which contradicts

our choice of z.

Now, given = € L(By)\K, we show that zz ¢ L(Ay). If z € L(By), we know that
vp(z) = 0 for all P ¢ supp(By). And seeing as x ¢ K, x has at least one pole P’ € Pp
where vp(z) < 0. Combining these two observations, we conclude that P’ € supp(Bjy),

that is, P’ = P; for some j = 1,...,r. Therefore,
vp,(22) = vp,(z) + vp,(2) < vp,(2) = —vp, (Do),
which implies xz ¢ L(Dy) = L(Ap). Hence, ker p = K and
{(Bo) — 1 < {(Do — Bo) — £(A),
proving (1.25) an our lemma. O

Theorem 15 (Clifford’s Theorem). For all divisors A with 0 < deg A < 2g — 2
1
((A) <1+ 3 -deg A.

Proof. If ¢(A), the theorem follows immediately. Likewise, if /(W — A) = 0 for some

canonical divisor W, then
1 1 1
((A) =degA+1—g=1+ idegA + §(degA —29) <1+ idegA,
since deg A < 2g — 2. Finally, if /(A) > 0 and ¢(W — A) > 0, we apply Lemma 8 to obtain
(A)+ LW —A)<1+LW)=1+g.

On the other hand,
0(A)— (W —A)=degA+1—g.

Adding these equations finishes the proof. O
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1.7 Equivalent Formulations of the Riemann-Roch Problem

This section is mostly based on chapter 3 of (GOPPA, 1988), although some results

are stated slightly differently in order to facilitate their use in later chapters.

Having studied the Riemann-Roch space of a divisor in the case of algebraic function
fields, we now use the definitions and results of Section 1.5 to re-frame the problem of
describing this vector space in the context of algebraic curves and present some results

that will be helpful when constructing the Fermat Function Field Lattice.

Up until now, we have studied how to compute the dimension ¢(D) of the Riemann-
Roch space associated with a divisor D. There are, however, two problems equivalent
to this which when investigated will not only yield different ways to compute ¢(D), but

produce an explicit base for £(D) in some cases.

Let F be a projective curve over a field K and D a divisor of F. The Riemann-Roch
problem is equivalent to finding all effective divisors D’ which are linearly equivalent to D:
D' =D + (f) for some f € K(F). Since D' is effective, D + (f) = 0 and hence (f) = —D.

The set of functions f whose divisors satisfy this inequality is exactly L£(D).

The other formulation of the problem deals with intersections of algebraic curves.

In order to state it, we first define the intersection divisor of two curves:

Definition 28. Let F, G be two algebraic curves and ) be a non-singular point on both
curves. The positive integer [(F n G, Q) denotes the intersection multiplicity of F and G
at Q. In addition, if F is not a component of G, then F n G ={Q1,...,Qmn} and

F-G:=>1(FnG.Q)- Qi
i=1

is the intersection divisor of F and G. In this case, we say that F ‘cuts out’ the divisor

F-Gong.

Let fo,..., fr—1 be linearly independent forms of the same degree, \g,..., \,_1 € K

and consider the following equation, called a linear system of curves
)\OfO(X7Y7Z)++>\r—1fr—1(X7Y72) = 0. (126)

By the preceding definition, all the curves of the linear system cut out effective divisors
on the initial curve C. The set of these divisors with Ag, ..., \,_; running over the field K

is called a linear series.

We note that C and the curves fy,..., f,_1 may pass through a common set of
points (a divisor). Apart from this, the remaining divisors are all distinct, since if two
divisors of the linear series coincided, the corresponding curves would differ only by a

constant multiplier, contradicting the assumption that fy, ..., f,_1 are linearly independent.



Chapter 1. Preliminaries 53

Therefore, all divisors of the linear series are in a 1 — 1 correspondence with the points of
P!, Tt is evident that all divisors of a linear series are linearly equivalent, and thus have
the same degree. We use the notation g, to refer to a linear series whose divisors have

degree n.

Dividing (1.26) by fo, for example, we obtain a linear system of functions
Ao+ A1+ -+ A1 = 0.

If D is the divisor of fy, then all functions of this system belong to £(D). If the system
coincides with £(D), the system is said to be complete. In this case, {1, ¢y,..., ¢, 1} is a
base for L(D).

Thus, the notions of Riemann-Roch space of a divisor and of the complete linear

system are equivalent. We now examine how one may construct such a linear system.

Theorem 16 (Bézout’s Theorem). Let F and G be plane algebraic curves of degree m

and n, respectively. If F is not a component of G, then

Z I(F nG,P) <mn.

PeFngG

Definition 29. Let F be an algebraic curve of degree m whose singular points are
Q1, ..., Qs with respective multiplicities r1,...,rs. A curve G of degree n is said to be an

adjoint curve of F if

I(FnG,Q)=ri—1forali=1,...,s.

In the case that F is non-singular, any curve is an adjoint curve of F and by
Bézout’s Theorem, the intersection divisor consists of mn distinct points. This is the only

case we consider going forward. Under this condition, we have the following theorem:

Theorem 17 (Noether’s Theorem). Let F = V(F) and G = V(G) be curves of degree m
and n, respectively such that all mn intersection points are different. Then, all curves of

degree d that pass through the divisor F -G can be written as
D = AF + BG,

where A, B e K[X,Y, Z] with deg A =d —m and deg B = d — n.

Let F = V(F) be a non-singular algebraic curve of degree m. If two divisors D and
D' of C are linearly equivalent, there exist two forms H and H' of the same degree such
that D + (H) = D"+ (H'). Let G = V(G) be an adjoint curve of F of degree n. We have

(GH)=(G)+ (H) =D+ (H') — D+ (G).
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If G also passes through D, that is, (G) = D + R for some divisor R, then (GH) — (H') =
D'+ R. The curve G H passes through the intersection divisor of F' and H', so by Noether’s

Theorem, it can be represented as
GH =FF +G'H’
for some forms F’, G'. Since (FF') = 0, it follows that
(G')=(GH)— (H')=D'+R.
Hence G’ is an adjoint curve of F of the same degree as G. We have thus proved the
following:

Theorem 18. Let D be a divisor of the curve F and D ~ D'. If G = V(QG) is an adjoint
of F of degree n such that (G) = D + R, where R is called the residue divisor, then there
exists an adjoint curve H = V(H) of degree m such that

(H)=D"+R.

This gives another way to compute the dimension of a Riemann-Roch space. Given
D a divisor of F, find an adjoint curve G = V(G) of degree m passing through the divisor
D, that is, (G) = D + R. Now, find all adjoint curves of degree m that pass through the
residue divisor R. The complete linear system g, of divisors cut out on F by the adjoint
curves found correspond to the space £(D). This is because all the curves we found pass
through the common set of points defined by R, thus this divisor can be omitted and g,

contains D and all of its equivalent divisors.

We can summarize our findings with the following lemma:

Lemma 9. Let F be a non-singular curve, D an effective divisor of F, and G an adjoint

curve of F of degree m such that
G-F=D+R.
Then, the dimension £(D) is the dimension of the linear system of adjoint curves of degree
m passing through R.
Finally, we give another useful interpretation for the index of specialty of a divisor.
Definition 30. Let F be an algebraic curve of degree m. The adjoint curves of F that

have degree m — 3 are called canonical adjoints of F.

Given D an effective divisor of F, the number of linearly independent canonical
adjoints of F passing through D is the index of specialty of D, denoted by i(D). This
allows us to present an alternative formulation for the Rieman-Roch theorem discussed

previously
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Theorem 19 (Riemann-Roch). Let D be an effective divisor of F, then
(D) =degD —g+1+i(D),

where g is the genus of F, which is the same as the genus of K(F).

1.8 Algebraic Extensions of Function Fields

In order to study function field extensions, in the following sections we assume that
given a function field F|K, the base field K is perfect, that is, every finite extension of K
is separable. Furthermore, we fix F an algebraic closure of F' and consider only extensions
F' © F such that F' € F.

Definition 31. (a) An algebraic function field F'|K' is an algebraic extension of F|K

if F'|F is an algebraic extension and K < K.
(b) The algebraic extension F'|K' of F|K is a constant field extension if F' = FK'.
(¢) The algebraic extension F'|K' of F|K is finite if [F' : F] < 0.

Lemma 10. If F'|K’ is an algebraic extension of F|K, then

(a) K'|K is algebraic and F n K' = K.
(b) F'|K' is a finite extension of F|K if and only if [K' : K] < o0.

(¢c) FK'|K' is a constant field extension of F|K, and F'|K' is a finite extension of
FK'|K'" with the same field of constants.

Definition 32. Given an algebraic extension F'|K' of F|K, a place P' € Pp lies over
PePrif P< P'. We also say that P’ extends P and write P'|P.

Proposition 14. Let F'|K’ be an algebraic extension of F|K. If P € Pr and P’ € Pp,
denote by Op ¢ F and Op S F' the respective valuation rings and by vp and vp: the

respective discrete valuations. The following are equivalent:

1. P,|P.
2. Op <€ Opr.

3. There exists an integer e = 1 such that vp(x) = e - vp(x) for all x € F.

Besides that, if P'|P, then P = P' A F and Op = Op: " F.
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Proof. 1. = 2. : Suppose P'|P and Op & Opr. Then there is some u € F with vp(u) =0
and vps(u) < 0. Since P € P’ we have vp(u) = 0. Choose t € F' a P-prime element, then

t e P and r := vp:(t) > 0. Consequently,
vp(u't) =1 -vp(u) + vp(t) =1, vp(u't) =r-vp(u) +vp(t) =1 < —r+r=0.

Thus vt € P\P’, contradicting P < P’

2. = 1. : First we show that
Op C OP’ — Op = Fn Op/. (127)

We see that F' n Op: is a subring of F' with Op € F n Op, therefore F' n Op = Opr
or FFnOp = F by Theorem 2(c). Assume F' n Op = F, that is, FF' € Op.. Choose
z € F\Op:. As F'|F is algebraic, there is an equation

1

e 12" 4+ ez =0

with ¢; € F. We have vp/(2") = n-vp/(z) < 0 since z ¢ Opr, therefore
vp(2) < vpi(ez) fori=1,...,n—1.
By the Strict Triangle Inequality
vpr (2" 4 Cp1 2" ez 4 ) = nvpr(2) # vpr(0),

contradicting the original equation and proving (1.27). Now, assuming Op € Op, let
y € P. Then y~ ¢ Op by Proposition 1, therefor 3! ¢ P’ by (1.27). Using Proposition 1
again yields y = (y ') ' € P and hence P < P'.

2. = 3.: Let u € F be such that vp(u) = 0. Then u,u ' € Op by 2., so vp/(u) = 0. Now
choose t a P-prime element and set e := vp/(t). The inclusion P € P’ implies e > 1. Let

x € F* and r := vp(x) € Z, then vp(xt ") = 0 and
vp(z) = vp(xt™") +op (") =041 -vp(t) = e vp(x).

3. = 2.: This follows from Theorem 2(a) and the fact that e > 1.
Finally, P = P’ n F since given x € P, we know x € P’, and given x € P’ n I, using 3.
shows that z € P. O

If P'|P, this proposition implies there is a canonical embedding between the residue
class fields Fp = Op/P and Fp = Opi/P’ given by z(P) — x(P') for x € Op. We thus

consider Fp as a subfield of F.
Definition 33. Let F'|K' be an algebraic extension of F|K and P'|P.
(a) The integer e(P'|P) := e such that vp/(x) = e -vp(x) for all x € F is called the

ramification index of P' over P. We say the extension P'|P is ramified if e(P'|P) > 1
and unramified if e(P'|P) = 1.
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(b) f(P'|P):= [Fp : Fp| is called the relative degree of P’ over P.

Proposition 15. Let F'|K' be an algebraic extension of F|K and P'|P.

(a) f(P'|P)<w < [F':F]< .
(b) If F"|K" is an algebraic extension of F'|K' with P" € Ppn lying over P, then
e(P"|P) = e(P"|P") - e(P'|P) and f(P"|P) = f(P"|P") - f(P'|P).

Proposition 16. Let F'|K' be an algebraic extension of F|K.

(a) For each P’ € Pp, there is exactly one P € Pr such that P'|P, namely P = P' n F.

(b) Every place P € P has at least one, but only finitely many extensions P' € Pp.

Proof. (a) First we prove there is some z € F* with vp/(z) # 0. Assume it is false and

choose t € F' with vp/(t) > 0. F'|F being algebraic means
Ct"+ -+t +cg=0

for some ¢; € F, ¢y # 0 and ¢, # 0. By assumption, vpi(co) = 0 and vp(cit’) =
vpr(¢;) +i-vp(t) >0 for i =1,... n, contradicting the Strict Triangle inequality.
We now set O := Op " F and P := P' n F. O is a valuation ring of F|K by what
was just shown and P is its corresponding place. Since P is a maximal ideal, the

uniqueness follows.

(b) Given P € Pp, choose x € F\K such that the only zero of = is P (possible by
Proposition 12). For P’ € Pp, we show that P'lp <= wvp(x) > 0. If P'|P,
vp(z) = e(P'|P) - vp(x) > 0. Conversely, if vp(z) > 0, denote by @ the place lying
under P’. Then vg(z) > 0, meaning () = P given that P is the only zero of z. Since

x has at least one, but only finitely many zeros in F|K, the claim follows.

]

This propositions gives us the final tool we need to prove that the class number, as
defined in Remark 3, is always finite if K is a finite field. To this end, we first prove the

following lemma:

Lemma 11. Let F|F, be an algebraic function field of genus g. For every n = 0, there

exist only finitely many positive divisors of degree n.

Proof. Since every positive divisor is a sum of prime divisors, it suffices to prove that the
set S := {P € Pp : deg P < n} is finite. Take x € F\[F, and consider Sy := {P) € Pp,(s) :
deg Py < n}. By Proposition 16, we know that P n F,(z) € Sy for all P € S and each
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Py € Sy has only finitely many extensions in F', meaning it suffices to show that 5 is
finite. Aside from the pole of z, every place of F () corresponds to an irreducible monic
polynomial p(z) € F, of the same degree. Thus, the finiteness of F, implies Sy is also finite,

finishing the proof. [
Proposition 17. Under the same conditions as Lemma 11, the order h := hp := | C1°(F)|

is finite.

Proof. Choose a divisor B € Div(F) such that n := deg B > g and consider the set of

divisor classes
CI"(F) :={[C] € CI(F) : deg|C] = n}.

The map

¢ CI°(F) — CI"(F)
[A] — [A + B]

is a bijection, since

o for some ze F\F,, [Ay+ B]=[42+B] = A +B=A4A+B+(x) = A =
A+ (1) = [A] = [Ad], and
o given [D] € CI*(F), [D — B] € CI°(F) and ¢([D — B]) = [D].
So we only need to verify that C1"(F) is finite. In order to do this, we prove that for each

|C] € CI"(F), there exists a divisor A € [C] with A = 0. Indeed, since degC' = n = g, the

Riemann-Roch Theorem implies
Y =UCh)=zn+1—g=1,

proving our claim. By Lemma 11, there are only finitely many divisors A > 0 of degree n,

so our claim implies C1"(F) is finite. O

We now define a homomorphism between the divisor groups of F' and F".

Definition 34. Let F'|K' be an algebraic extension of F|K. For a place P € Pp, its

conorm with respect to F'|F is defined as

Conpp(P) == > e(P'|P)- P

P'|P

This map extends to a homomorphism between Div(F) and Div(F") by setting

Con (Z np - P) = an - Conprp(P).
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By Proposition 15(b), the conorm behaves well in towers of function fields F" 2
F' 2 F, that is,
COI’IF//‘F(A) = COIIF//‘F/ (COHF/|F(A))

for every A € Div(F'). The conorm also preserves principal divisors:

Proposition 18. Let F'|K' be an algebraic extension of F|K. Then
Conpr((x)y) = (), Conpp((2)y) = ()5 and Conpr((x)") = ()7,

where the superscripts F and F' denote under which divisor group the divisor is considered.

Proof. From the definition of the principal divisor:

(z)F = Z vp(z) - P = Z Z e(P'|P) -vp(z) - P’

P'ePpy P'ePrs P'|P
= Z ?}P(ZL‘) . CODF/‘F(P) = COHF/|F ( Z ’Up(l‘) . P)
P’EPF/ PE]P’F

= COI]F/‘F((ZE)F).

Considering only the positive or negative components of the principal divisor, the other

assertions follow. ]

This proposition means the conorm also induces a homomorphism between divisor

class groups
Congp : CI(F) — CI(F").

Lemma 12. Let K'|K be a finite extension and x transcendental over K. Then

[K'(z) : K(z)] = [K": K].

Using this lemma, we can now prove the most important result of this section:

Theorem 20 (Fundamental Equality). Let F'|K' be a finite extension of F|K. Given
P e Pp, let Py, ..., P, be all places of F' lying over P. If e; : —e(P;|P) and f; := f(P|P),
then

m

Dleifi=[F':F].

i=1

Proof. Take x € F such that P is the only zero of x in F|K and set r := vp(z) > 0.
The places Py, ..., P, € Pw are the zeros of z in F'|K’. We compute [F': K(z)] in two
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different ways:

[F: K(2)] = [F": K'(2)][K'(x) - K(x)]

—_

4

I
NgE

op, (@) -dega> K : K]

NgE

(ei-vp(x)) - [Fp, « K']- [K": K]

1

:r.iei-[F}i:Fp]'[FpiK]

=1

<.
Il

= r-degP-ieifi.
i=1
On the other hand,
[F': K(x)] =[F': F]|F: K(z)] =[F': F]-r-degP,
since (x)§ = rP. Comparing the two equalities yields the result. O

Corollary 10. Let F'|K' be a finite extension of F|K and P € Pr. Then

(a) {P' € Pp: P 2 PY| < [F': F].

(b) If P'|P, then e(P'|P) < [F': F] and f(P'|P) < [F': F].

We can now give the following definition

Definition 35. Let F'|K' be an extension of F|K with n := [F': F| and P € Pp.

(a) P splits completely in F'|F if there are exactly n distinct places of F' lying over P.

(b) P is totally ramified in F'|F if there is a place P' € Ppr with P'|P and e(P'|P) = n.

The Fundamental equality implies that P € Pp splits completely in F'|F if and
only if e(P'|P) = f(P'|P) =1 for all P'|P. And if P is totally ramified, there is only one
place P’ € Py that extends it.

Corollary 11. Let F'|K' be a finite extension of F|K. For each A € Div(F)

deg Conpr|p(A) = L il
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Proof. 1t suffices to prove the result for a prime divisor A = P € Pr. We have

deg Conpp(P) = > e(P'|P) - [Fp : K']

PP
) [Fp o K]
= ];Pe(P |P) - K- K]
- (Z (PP) (£} m) [Fp: K
: PP
[F": F]
= W-degf’.

Finally, we present a criterion for polynomial irreducibility.

Proposition 19 (Eisenstein Criterion). Let F|K be an algebraic function field and
o(T) =a,T"+ -+ a;T + ag

be a polynomial with a; € F. Assume there is a place P € Pr such that one of the following

conditions hold

1. vp(a,) =0, vp(a;) = vp(ag) >0 fori=1,...,n—1, and ged(n,vp(ag)) = 1.

2. vp(ay) =0, vp(a;)) =0 fori=1,...,n—1, vp(ag) <0, and ged(n,vp(ag)) = 1.

Then o(T) is irreducible in F[T]. If F' = F(y) with ¢(y) = 0, then P has a unique
extension P' € P and e(P'|P) = n, f(P'|P) = 1.

1.9 Subrings and Integral Bases

Definition 36. A subring of a function field F|K is a ring R such that K € R < F and
R is not a field. In particular, K € R < F.

Some examples of subrings are the valuation ring Op of a place P € Pr and the

polynomial ring K|zy,...,x,]| with z1,..., 2, € FA\K.

Definition 37. Given & # S & Pp, let Og :={z€ F : vp(z) = 0 for all P € S} be the
intersection of all valuation rings Op with P € S. A ring of the form R = Og is called a
holomorphy ring of F|K.

For example, K[z] is a holomorphy ring of K (z)|K since K[x] = ﬂ Op.
P#Py
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Lemma 13. (a) Every valuation ring Op is a holomorphy ring: Op = Og for S = {P}.
(b) Every holomorphy ring Os is a subring of F|K.

(c) For PePp and & # S S Pp, Os € Op <= P e S. Consequently, Os = Oy <
S=T.

Definition 38. Let R be a subring of F'|K.

(a) An element z € F is said to be integral over R if f(z) = 0 for some monic polynomial
f(T) € R[T]. The equation f(z) =0 is called the integral equation of z over R.

(b) The seticp(R) :={z € F : z is integral over R} is called the integral closure of R in
F.

(c) If Fy < F is the quotient field of R, then the ring R is called integrally closed if
iCFO (R) = R.

Proposition 20. If Og is a holomorphy ring of F|K, then

(a) F is the quotient field of Og.
(b) Og is integrally closed.

Theorem 21. Let R be a subring of F|K and S(R) := {p € Pr : R < Op}. Then
& # S(R) & Pp and the integral closure of R in F is Og(g).

Corollary 12. A subring R of F|K with quotient field F is integrally closed if and only
if it is a holomorphy ring.

Proposition 21. If Og is a holomorphy ring of F|K, there is a bijection between S and
the set of maximal ideals of Og given by P +— Mp := P n Og for P € S. Furthermore, the
following map is an isomorphism
@ Os/Mp - Fp
T+ Mp — x+ P.

Proposition 22. If @ # S < Pr is finite, then Og is a principal ideal domain.
We now consider F|K a function field with K its full constant field and F'|K’ a

finite field extension of F'|K.

Proposition 23. Let R be a holomorphy ring of F. For z € F', if o(T) € F[T] denotes
its minimal polynomial over F, then z is integral over R if and only if o(T') € R|T].

Corollary 13. Let Trpp : F' — F denote the trace map from F' to F' and x € F' be an

integral element over R. Then Trp p(x) € R.
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Proposition 24. Let M|L be a separable finite field extension with basis {z1,...,2,}.
Then there are unique elements zy,...,z: € M such that TrM‘L(z,-z;‘) = §;;, where §;;
denotes the Kronecker delta. The set {z{,...,z:} is also a base for M|L called the dual

base of {z1,. .., z,} with respect to the trace.

Theorem 22. Let R be an integrally closed subring of F|K with quotient field F' and
F'|F be a separable field extension of degree n. If R' denotes the integral closure of R in
F', then

(a) For every base {x1,...,x,} of F'|F there are elements a; € R* such that ayx1+ -+ +

anr, € R'. It follows that there are bases of F'|F which are contained in R'.

(b) If {z1,...,2,} S R is a base of F'|F and {zf,..., 2%} is its dual with respect to the

trace, then
Y Rz;c R ) Rzl
i=1 i=1

(¢) If R is also a principal ideal domain, there exists a base {uy,...,u,} of F'|F such

that R = Z Ru,.
i-1

Corollary 14. If F'|F is a finite separable extension of and P is a place of F, then the
integral closure Op of Op is Op = ﬂ Op. Also, since Op is a principal ideal domain,
P'|P

there is a base {u1,...,u,} of F'|F such that O = Z Op - u;. In this case, {uy, ..., u,}
i1

is called an integral base of P or of O over Op.

Theorem 23. Let F'|F be a finite separable extension. Then each base {z1,...,z,} of

F'|F is an integral base for all but finitely many places.

We will now prove a theorem that will help with determining all the extensions
of a place P € Py in an extension F'|F. In the sequel, we use the notation F := Fp
for the residue class field of P, @ := a(P) € F the residue class of a € Op and if
W(T) = ZciTi e Op[T], we set (T) := Z@Ti e F[T]. Also, we can represent every
polynomial v(T) € F[T] as y(T) = ¢¥(T) with ¢)(T) € Op[T] and deg1) = deg~.

Theorem 24 (Kummer). Suppose F' = F(y) for some y integral over Op, and consider the
minimal polynomial o(T) € Op[T] of y over F. Let )(T) = H%(T)Ei be the decomposition
i=1

of ¥ into irreducible factors over F. Choose monic polynomials 1;(T) € Op[T] with
Ui(T) = %(T) and degt); = deg~y;. Then, for 1 < i < r, there are places P; € Ppi such
that Bi|P, ¢;(y) € P, and f(P;|P) = deg~;. Moreover P; # P; if i # j.

If we suppose at least one of the following conditions is satisfied
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(i) ;=1 fori=1,... r.

(i) {1,y,...,y" '} is an integral basis for P.

Then there exists, for 1 <i < r, exactly one place P; € Pr with P;|P and p;(y) € P;. The
places Py, ..., P, are all the places of F' lying over P and we have

CODF/‘F(P) = Z 8iPi,
=1

that is, &; = e(P;|P). The residue class field Fy, is isomorphic to F[T|/{v(T)), hence
f(Fi|P) = deg;.

Proof. Set F; := F[T]/{v(T)). Since +; is irreducible, F;|F has degree

[F; : F] = deg;. (1.28)
n—1 '
Consider the ring Oply| = Z Op - y’, where n = degp = |[F' : F|. There are ring
7=0
homomorphisms
p: Op[T] = Oply]
Z c;jT? Z iy’
and

T Op[T] — F;
chTj — Zc_jTj mod ~; (7).
We see that kerp = {p(T')). Since m(p(T)) = ¢(T) mod v(T) = 0, it follows that

ker p € ker m;. Therefore, there is a unique homomorphism o; : Op|y] — F; with 7; = o;0p,

given explicitly by

o : Oply] — F,

n—1 n—1
Dy’ = Y Gy mod (T,
=0 =0

which is also surjective. We show that

kero, = P - Op[y] + 901'(3/) . Op[y]. (1.29)

From the definition of ;, the inclusion P-Op|y]+¢i(y)-Op|y| < ker o; follows. Conversely,

n—1 n—1
take Y c;y’ € ker o;. Then Z &7 = §;(T) - (T) for some ¢(T) € Op[T], hence
j=0 Jj=0

n—1

D1 6T = (1) p(T) € P OplT].

7=0
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Setting T' = y yields

n—1

My’ —eily) - v(y) € P-Oplyl,

=0
proving (1.29).

Using Theorem 3, there exists a place P; € Pr such that kero; € P; and Op[Y] <
Op,, implying P;|P and ¢;(y) € P;. The residue class field Op, /P; contains Op|y]/ ker o;,

which is isomorphic to F} via o;. From (1.28), we see that
f(P|P) = [F;: F] = deg .

For i # j, the polynomials ~;(T) = @;(T) and v;(T) = ¢;(T) are coprime in F[T'], meaning
there exists \;(T"), \;(T") € Op|T] such that

1= @i(T) - M(T) + ;(T) - M(T),

and thus
@i(T) - M(T) + ¢;(T) - \;(T) — 1€ P- Oply].

This means 1 € ker o; + ker o; by (1.29). Since P; 2 kero; and P; 2 ker oy, it is proved
that P; # P; for i # j.

Now, assume that condition (i) is fulfilled, that is, ¢(T") = n v(T). Then
i1

[F': F] =degp = Zdeggpl-

<3 F(BIP) < Y e(RIP) - f(P|P)
< Y e(P|P)- f(P|P) = [F' : F]

P'|P

by the Fundamental Equality. This is only possible if e(P;|P) = 1, f(P;|P) = deg¢; and
the only places that extend P are P,..., P,.

If condition (ii) is satisfied, choose P; € P such that P;|P and ¢;(y) € P;. First we
show that P, ..., P. are the only extensions of P in F’. Take P’ € P with P'|P. Since

0=(y) = n piy)” mod P Oply],

we have

[[eiy)yier (1.30)
=1
P’ is a prime ideal of Opr, so ;(y) € P’ for some i € {1,...,r} and

P - Oply] + ¢i(y) - Oply] = P' 0 Oply] (1.31)
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by (1.30). The left side is a maximal ideal of Op[y| by (1.29), meaning equality holds in
(1.31). Since we also know that

P - Oply] + »i(y) - Oply] < Pi n Oply],
it follows that
P'n Oply] = P, 0 Oply] = P Oply] + ¢i(y) - Oply]- (1.32)

Since Op[y] is the integral closure of Op in F' by condition (ii), Proposition 21 implies
P’ = P; and our claim is proved. Having showed this, an immediate consequence of

applying 14 is

Oply] = () Or. (1.33)
i=1
Using the Approximation Theorem, we find elements ¢y, ..., ¢, € I’ such that

vp,(ti) = 1 and vp,(t;) = 0 for i # j.
Choose a P-prime element t € I, then
ti € Oplyl 0 P = ¢i(y) - Orlyl +1- Orly]
by (1.32) and (1.33). Thus, there exists a;(y), b;(y) € Op[y] such that
ti = @iy) - aiy) + - bily).

From this we get
T T

[Tt =a) - [Teiw) +¢-by) (1.34)

i=1 i=1

for some a(y), b(y) € Op[y]. Since

ﬁ wi(y)" = ¢(y) mod t-Oply]

and p(y) = 0, (1.34) implies that

Htf" =t - u(y) for some u(y) € Op[y]. (1.35)
i1
Therefore
€ = vp, (H t§j> = vp,(t) = e(P|P). (1.36)
=1

On the other hand,
f(F|P) = deg; (1.37)
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by (1.28), (1.29), (1.32) and Proposition 21. Finally, applying the Fundamental Equality
yields

T

[F: F] = ZB(B|P) - f(P;|P)

< ) gi-degy; =degp = [F': F],

i=1

proving that ¢; = e(P|P) for all i =1,...,r. O

Corollary 15. Let o(T) = T" + fo1(2)T" ' + - + fo(z) € K(z)[T] be an irreducible
polynomial over the rational function field K(x). Consider the extension K(x,y)|K where
©(y) = 0 and an element o € K with f;(a) # o for all j = 0,...,n — 1. Suppose the

polynomial
0a(T) :=T" + fo 1 ()T P+ -+ fo(a) € K[T]

decomposes as Hwi(T) over K|T'| with irreducible, monic and pairwise distinct polyno-
i=1

mials V;(T) € K[T]. Then the following hold

(a) For everyi=1,...,r there is a unique place P; € Py, such that x —a € P; and
Vi(y) € P;. The element © — « is a prime element of P;, that is, e(P;|P,) = 1 and the
residue class field of P; is K-isomorphic to K[T]/{i(T)), hence f(P;|P,) = deg ;.

(b) If degtp; = 1 for at least one i € {1,...,r}, then K is the full constant field of
K(z,y).

(¢) If o (T) has degy distinct roots  in K, then there is for each B a unique place
P.p € Pg(sy) such that v —a € P, g and y — 3 € P, 5. Also, P, g is a rational place

of K(x,y).

Proof. Set F':= K(z) and F' := K(z,y). The assumption f;(«) # oo means y is integral
over Op,, and ¢, (1) is merely ¢(T") using the notation from Kummer’s Theorem. Therefore,

condition (i) is satisfied and the corollary follows. O

1.10 The Hurwitz Genus Formula

This most important result of this section is the Hurwitz formula for the genus
of a function field extension. In order to prove this, we first introduce the notions of the

cotrace of a Weil differential, as well as the different of a function field extension.
Definition 39. For P € Pg, let O% denote the integral closure of Op in F'. The set
Cp:={z€F : Trpp(z-Op) < Op}

is called the complementary module over Op.
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Proposition 25. (a) Cp is an Op-module with Op < Cp.

(b) If {z1,...,za} is an integral basis of O over Op, then

Cp=>,0p 2,
i=1
where {z}, ..., 2} is the dual basis of {z1,...,z,} with respect to the trace.

(c) There is an element t € F' depending on P such that Cp = t-O's. Moreover, vp:(t) < 0
for all P'|P and for everyt' € F', Cp = t'- O% if and only if vp(t') = vp:(t) for all
P'|P.

(d) Cp = Op for almost all P € Pg.

Definition 40. Let P be a place of F and O be its integral closure in F'. If Cp =t-Op’,
then the different exponent of P'|P is d(P'|P) := —vp:(t). By Proposition 25, d(P'|P) is

well-defined and non-negative. And since Cp = 1-O%p, d(P'|P) =0 for almost all P € Pg.
This means the following divisor, called the different of F'|F is well-defined:

Diff (F'|F) := Y| Y d(P'|P)- P
PePp P'|P
Remark 9. From the definitions, we can characterize the complementary module by the

following equivalence
z2€Cp < vp/(z) = —d(P'|P) for all P'|P.
Definition 41. The adele space of a function field extension F'|F is

Apipi={aeAp rap =ag if PnF =Q n F}.

This is an F'-subspace of Ap. We can also extend the trace map Trpp : F' — F

to an F-linear map from Apr to Ap setting
(TI‘F/‘F(O[))]D = TI‘F/‘F(Ozp/) for a € AF’\F

where P’ is any place of I’ that extends P. We notice that apr € Opr for almost all P’ € P,
meaning Trpp(ap) € Op for almost all P € Pp by Corollary 13. Hence Trpp(a) is an
adele of F|K. Furthermore, the trace of a principal adele z € F' is the principal adele of
Trpr(z). Given a divisor A’ € Div(F'), we set App(A") = Ap(A") 0 App.

Theorem 25. For every Weil differential of F|K, there exists a unique Weil differential
W' of F'|K' such that

Trik (W'(@) = w(Trpp(a))
for all e App. This is called the cotrace of w in F'|F, denoted by Cotrprp(w). If w # 0

and (w) is the divisor of w, then

(Cotrp/‘p(w)) = COHF1|F((M)) + DIH(FI|F)
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A particularly noteworthy case of this theorem is

Corollary 16. Let F|K be a function field and x € F be an element such that F|K (z)
is separable. If n is the Weil differential of the rational function field with (n) = —2Py
(—2P,, is canonical by Proposition 10), then

(Cotrpiicey(n) = ~2(x)0 + DI (F|K (2)).

Some useful properties of the cotrace are

Proposition 26. If w,n are Weil differentials of F|K and x € F, then

(a) Cotrpp(w +n) = Cotrpp(w) + Cotrpp(n).
(b) CotrF/|F(xw) =XT- CotrF/|F(w).

Corollary 17. If F" 2 F' 2 F are finite separable extensions, then

(a) Diff(F"|F) = Conpnp (Diff(F|F)) + Diff(F"|F").

(b) d(P"|P) = e(P"|P') - d(P'|P) + d(P"|P), if P € Pp, P' € Pp and P" € Py

Finally, we can prove the main result of this section:
Theorem 26 (Hurwitz Genus Formula). If F|K is a function field of genus g and F'|K’
is a finite seperable extension of F with genus ¢'. If K' is the full constant field of F', then

29 —2 = [[[];:zf(]]@g — 2) + deg Diff (F'|F)).

Proof. Take w # 0 a Weil differential of F'|K. From Theorem 25:
COtl"F/‘F(w) = COHF/|F((Q})) + DIH(FI|F)

The canonical divisors of F' and F’ have degree 29 — 2 and 2¢’ — 2, respectively. Applying
Corollary 11 to the above equation yields

2¢' — 2 = deg Conpr|p((w)) + deg Diff (F'|F)
[F': F] e o
= ———=(29 — 2) + deg Diff (F'| F). O
[K,:K](g ) + deg Diff (F| F')
Since every function field can be regarded as a finite extension of the rational

function field, this special case of the Hurwitz genus formula is of great utility:

Corollary 18. Let F|K be a function field of genus g and x € F\K be an element such
that the extension F|K(x) is separable. Then

29 —2 = =2|F: K(x)| + deg Diff (F|K(x)).



Chapter 1. Preliminaries 70

1.11 The Different

Given the Hurwitz genus formula discussed previously, a more in-depth investigation
of the different divisor of an extension is warranted. The main result of this section is
Dedekind’s Different Theorem, which gives a more precise characterization to the different

exponent of a place extension.

In order to prove the theorem, we make use of two lemmas:

Lemma 14. Let F'|F be an algebraic extension of function fields and P € P, P' € Pp
such that P'|P. If o is an automorphism of F'|F, then o(P’) :={o(2) : z € P'} is a place
of F' and

(@) vaen(y) = v (o™ \(9)) for all y e F'

(b) o(P")|P

(c) e(a(P)|P) = e(P'|P) and f(o(P)|P) = f(P'|P).
Proof. First we notice that o(Opr) is a valuation ring of F’ with o(P’) being its maximal

ideal. Therefore, a place of F with corresponding valuation ring Ou(pry = o(Op). If t' is

a P'-prime element, then o(P') = o(t') - 0(Op/), meaning o(t') is a o(P’)-prime element.

(a) Take a non-zero element y € F' say y = o(z). Then z = t"u with r := vp(2) and
ue Op\P', thus y = o(t")" - o(u) with o(U) € Ogpr\o(P') and o(t') is a prime
element for o(P'). We then conclude that v,p(y) =7 = vp/(2) = vpi (o (y)).

(b) Since P’ 2 P and o(P) = P, it follows that o(P') 2 o(P) = P, meaning o(P")|P.

(c) Take z a P-prime element. Then
e(a(P)|P) = vo(pn(x) = vpr(0}(2)) = vpi(z) = e(P'|P).

The automorphism ¢ induces an automorphism ¢ between the residue class fields
Fpiand F pry given by o(z + P') = 0(2) + o(P’'). This application is the identity
over Fp, hence f(P'|P) = f(o(P")|P).

]

Lemma 15. Let P € Pr and Py,..., P, € Pp be all extensions of P in F'|F. Consider
the residue class fields Fp := Op/P, F]’gi := Op,/P; © Fp and their respective residue class

maps m: Op — Fp and 7; : Op, — FJ'% Then, for every u € icm(Op), we have

TrF’|F Z P|P TrF;,i\Fp(Wi(u))‘
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Theorem 27 (Dedekind’s Different Theorem). Given F'|K' a finite separable extension
of FIK, for all P € Pp, P' € P} such that P'|P, the following are valid

(a) d(P'|P) = e(P'|P) —1.

(b) d(P'|P) = e(P'|P)—1 if and only if e(P'|P) is not divisible by char K. In particular,
if char(K') = 0, then d(P'|P) = e(P'|P) — 1.

Proof. (a) Let O% denote the integral closure of Op on F' and Cp denote its comple-

mentary module. We wish to prove that
Trep(t-Op) < Op (1.38)
for all t € F' such that
vp(t) = 1 —e(P'|P) for all P'|P. (1.39)
The inclusion (1.38) implies t € Cp and the characterization of Cp given in Remark
9 yields 1 — e(P'|P) = —d(P'|P), implying d(P'|P) = e(P'|P) — 1.
In order to prove (1.38), take a finite Galois extension F"|F such that F < F' < F”

and choose n = [F' : F| automorphisms oy, ..., 0, of F"|F who are all distinct when
restricted to F”. For z € O:

n

TI‘F/|F tZ ZO’Z (140)

i=1

Fix a place P" of F” lying over P. Set P/ := o; '(P") and P := P/ n F'. We see
that o;(2) is integral over Op, since z € O, and thus vpr(o;(z)) = 0. Then
vpr(0i(t2)) = ver(0i(t)) + UP"(UZ(Z))
> opn(i(0) " ()
"2 (PP (1~ e(PI|P))
> —e(P/|F}) - e(F|P)
—e(P/|P) "X —e(P"|P).
Using (1.40) we conclude
—e(P"|P) < vpr(Trpp(tz)) = e(P"|P) - vp(Trpp(tz)),
meaning vp(Trpp(tz)) = 0, and hence (1.38).

(b) Using the notation of Lemma 15, set ¢; := e(FP;|P), P' := P, and e := e(P'|P). We

must prove that

d(P'|P) =e—1 <= char K does not divide e. (1.41)
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First suppose e is not divisible by char K and d(P'|P) > e. Then there exists some
w € F' with
vp(w) < —e and Trpp(w - Op) < Op. (1.42)

Since K is a perfect field, the extension FJI% | F'p is separable, and we can find yo € Opr
with Trpr 7, (71(%)) # 0. By the Approximation Theorem, there is some y € F”
such that vp (y — yo) > 0 and

vp,(y) = max{l, e; + vp(w)} for 2 <i <r. (1.43)

Then y € O and applying Lemma 15 yields

(T (0) = € Trry i (ra(0) + e Tory o ((0)

=e- TrFlfvl‘Fp(ﬂ.l(yO)) # 0,

since char K not dividing e implies e # 0 in Fp. We conclude that vp(Trpr(y)) = 0.

Now take x € F' a P-prime element. Then
Trpp(z™'y) =27 Trpp(y) ¢ Op. (1.44)
On the other hand, z 'yw™" € O}, since
vpr(z lyw ) = —e +vp(y) — vpr(w) =0
and

vp; (m,flwal) = Upi(y) - (ei + Up, (U))) =0

for i =2,...,r by (1.42) and (1.43). Thus, z 'y € w- Op and Trpr(z'y) € Op by
(1.42), which contradicts (1.44). This proves the reverse implication of (1.41).

In order to prove the direct implication, assume char K divides e and we must show

that d(P'|P) = e. Choose u € F' such that
vp(u) = —e and vp, (u) = —e; + 1 for i = 2,... 7. (1.45)

If x € F is a P-prime element, for every z € Op, we have vp/(zuz) > 0 and

vp,(zuz) > 0 for i = 2,...,r. Therefore, zuz € O, and by Lemma 15:

m(Trp p(auz)) = e- TrF;D1|FP (m1(zuz)) + Z e; - Ter;i\Fp (mi(zuz))
i—2

= e Trpy, |pp (m1(zuz)) = 0.

We conclude that - Tr g p(uz) = Trpp(zuz) € P = 2-Op, implying Trpp(uz) € Op
for all z € O%. Thus, u € Cp and —e = vp:(u) = —d(P'|P) by (1.45) and Remark
9. [
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Definition 42. Let F'|F be an algebraic extension of function fields and P € Pp.

(a) An extension P' of P is said to be tamely ramified if e(P'|P) > 1 and char K 1 e(P'|P).
If char K | e(P'|P), the extension is wildly ramified.

(b) P is said to be ramified in F'|F if there exists some P' € P for which P'|P is
ramified. P is unramified otherwise. Furthermore, P is tamely ramified if no extension
of P in F' is wildly ramified. If there is at least one wildly ramified extension P'|P,
P is said to be wildly ramified.

(c) P is totally ramified in F'|F if there is only one extension P' € Pr of P in F' and
the ramification index is e(P'|P) = [F" : F].

(d) F'|F is ramified if at least one place P € Pr is ramified in F'|F. Otherwise, F'|F is

said to be unramified.
(e) The extension F'|F is tame if no P € Pr is wildly ramified in F'|F.

Corollary 19. If F'|F is a finite separable extension

(a) The extension P'|P is ramified if and only if P' < Diff (F'|F). If P'|P is ramified, then
d(P'|P) = e(P'|P)—1 if and only if P'|P is tamely ramified, and d(P'|P) = e(P'|P)
if and only if P'|P is wildly ramified.

(b) Almost all places P € Pr are unramified in F'|F.

Corollary 20. If F'|F is a finite separable extension such that K is the full constant field
of ' and F’, denoting their respective genera by g and ¢', we have

20 —2=[F':F]-(29-2)+ Y, > (e(P'|P)—1)-deg P,
PePr P'|P
where equality holds if and only F'|F is tame.

Corollary 21. If F'|F is a finite separable extension of function fields with the same
constant field. Then g < ¢'.

Corollary 22. Let F'|K(x) be a finite separable extension of the rational function field of
degree [F : K ()] > 1 such that K is the full constant field of F. Then F|K(z) is ramified.

Theorem 28. Suppose F' = F(y) is a finite separable extension of F with |[F' : F| = n.
Let P € Pr be such that the minimal polynomial o(T) of y has coefficients in Op, and let
Py,...,P. € Pgr be all extensions of P. The following hold

(a) d(P;|P) < vp, (¢ (y)) for 1 <i<r, where ¢ denotes the formal derivative of ¢ in
the polynomial ring F|T].
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(b) {1,y,...,y" '} is an integral base of F'|F at P if and only if d(P;|P) = vp,(¢'(y))
forl1 <i<r.

Corollary 23. Let F' = F(y) be a finite separable extension of F with [F'|F| = n. If
o(T') € F|T] is the minimal polynomial of y over F' and P € P is such that y is integral
over Op and vp(¢'(y)) = 0 for all P'|P, then P is unramified in F'|F and {1,y,...,y" "}
is an integral base of F'|F at P.

Proposition 27. Let F'|F be a finite separable extension of function fields and P € Pp,
P" € Ppr be such that P'|P. If P'|P is totally ramified, that is, e(P'|P) = [F' : F] =n
and t € F' is a P'-prime element with minimal polynomial p(T) € F|T] over F, then
d(P'|P) = vp(¢'(t)) and {1,t,...,t""'} is an integral base of F'|F at P.

1.12 Galois Extensions

We now study a particularly useful case of algebraic function field extensions. An

extension M|L is said to be Galois if the automorphism group
Aut(M|L) = {o : M — M | o is an automorphism with o), = id}

has order [M : L]. In this case, Aut(M|L) is called the Galois group of M|L and denoted
by Gal(M|L). We shall restrict our study to Galois extensions of finite degree.

Let F'|F be a Galois extension of function fields of finite degree. Given a place
P € Pp, the group Gal(F'|F) acts on the set of all extensions {P' € Pp : P'|P} via
o(P') = {o(z) : x € P'}, and we have proved in Lemma 14 that the valuation v,(pr is
given by
Vo(p(y) = vpr (07 (y)) for y € F.
Theorem 29. Let F'|K' be a Galois extension of F|K and Py, Py € Pgr be place extensions
of P € Pr. Then P, = o(Py) for some 0 € G := Gal(F'|F). In other words, G acts

transitively on the set of extensions of P.

Proof. Suppose the assertion is false, that is, P # o(P;) for all o € G. By the Approxi-
mation Theorem, there is some z € F' such that vp,(z) > 0 and vg(z) = 0 for all other
Q € Pp with Q|P. Let Np/p : F' — F be the norm map, then

UPl(NF’IF(Z)) =Up (1_[ U(Z)> = Z vp (0(2))
o€ oeG
= D Uemur(2) = D oy (2) =0, (1.46)

oG oceG

since by assumption, P, is not equal to any o(P;). On the other hand,

vp, (N (2)) = D Vo) (2) > 0. (1.47)



Chapter 1. Preliminaries 75

But NF1|F(Z) S F, thus UPl(NF’\F(Z)) =0< UP(NF/|F(Z)) =0< UPQ(NF/‘F(Z)) = O,
which contradicts (1.46) and (1.47).

Corollary 24. With the same notation as in Theorem 29, let Py,..., P, be all place

extensions of P in F'. Then

(a) e(P|P) = e(P;|P) and f(P,|P) = f(FP;|P) for all i,j. Therefore, we set e(P) :=
e(P|P), f(P):= f(P|P), and call them the ramification index and relative degree
of P, respectively.

(b) e(P)- f(P)-r=[F:F]

(¢) d(P|P) = d(P,|P) for alli,j.

Proof.  (a) This is a direct consequence of Theorem 29 and Lemma 14(c).
(b) Follows from (a) and the Fundamental Equality.

(c¢) Consider the integral closure
O =()0n
i—1

of Op in F' and the complementary module
Cp = {Z e F': TI"F/|F(Z . O;;) - Op}

Let 0 € Gal(F'|F). We know that Trp p(o(u)) = Trpp(u) for ue F', so o(Op) =
O% and o(Cp) = Cp. Writing Cp =t - O, we get o(t) - Op = 0(Cp) =Cp =t - Op,
S0

—d(P|P) = vp,(t) = vp(o(t)) for 1 <i<r

by Proposition 25(c). Now take two places P;, P; lying over P and take an automor-
phism ¢ € Gal(F’|F) such that o(P;) = P,. Then

—d(B|P) = vp,(0(1)) = vo1(p)(t) = vp; (1) = =d(F;| P). O

We now discuss a class of Galois extensions called Kummer extensions.

Proposition 28 (Kummer Extensions). Let F|K be an algebraic function field such that
K contains a primitive n-th root of unity, where n > 1 is coprime with char K. If u € F
satisfies

u#w? forallweF andd|n, d>1. (1.48)

Let
F' = F(y), with y" = u. (1.49)

The extension F'|F is called a Kummer extension of F. It has the following properties:
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(a) ®(T) =T" —wu is the minimal polynomial of y over F. The extension F'|F is Galois
of degree [F' : F| = n. Its Galois group is cyclic generated by o(y) = Cy, where
¢ € K is a primitive root of unity.

(b) Let P € Pr and P' € Pp be an extension of P. Then

e(P|P) =~ and d(P'|P) = - 1,
rp

rp

where rp = ged(n,vp(u)) > 0.

(c) If K' is the constant field of F' and g,q" are the genera of F' and F', respectively,

than
, n 1 ( Tp)
=14 g—1+5 > (1--2) -degP].
g +[K':K]<g T3 n eg)

PE]P)F
Proof.  (a) This is a well-known fact from Galois Theory.

(b) If rp =1, (1.49) implies n-vp/(y) = vp(y") = vpr(u) = e(P'|P)-vp(u), which means
e(P'|P) = n, because n and vp(u) are coprime. Since char K { n, Dedekind’s Different
Theorem yields d(P'|P) = n—1. If rp = n take [ € Z such that vp(u) = [ -n, choose
te F with vp(t) =l and set y; :=t 'y, uy :=t "u. Then y} = uy, vp(y1) = vp(uy)
and the minimal polynomial of y; over F is ¢(T) = T" — u; € F[T], thus y; is

integral over Op and Theorem 28 yields
0 < d(P'|P) < vp(¥'(y1))-

Since ¥'(y1) = ny? ", vp (V' (y1)) = (n — 1) - vp(y1) = 0 and d(P'|P) = 0. By
Dedekind’s Theorem, e(P’|P) = 1, finishing the proof of this case.

Finally, if 1 < rp < n, consider the intermediate field Fy := F(yo) where yo := ye.
Then [F': Fo] = n/rp and [Fy : F] = rp. The element 3, satisfies
Yot =u (1.50)

over F. Set Py := P’ n F,. The second applies to Fy|F, and thus e(Py|P) = 1. By
(1.50), vp,(yo) = vp(u)/rp, which is coprime with n/rp, so the first case applies to
F' = Fy(y). Consequently, e(P'|Py) = n/rp and

n

e(P'|P) = e(P'|Py) - e(Py|P) = —.
rp
(c) The degree of Diff (F'|F) is

deg Diff (F'|F) = )] <" - 1) Y deg P. (1.51)

pepp \'P P'|P
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Since the ramification index e(P) depends only on P, we have

> deg P’ = e(lp) - deg (Z e(P'|P) -P’)
P'|P

P'|P
1 rp n
- .d p(P) =L . degP
o(p) esConmr(P) = g e
rp
=T . degP
[k K] ©®

by (b) and Corollary 11. Substituting this into (1.51) proves that

n—rp rp

deg Diff (F'|F) = deg P
P;P;F Tp [K' : K]
n ( rp
= — 1——)-degP.
[K': K] P;P;F n
Applying the Hurwitz Genus Formula finishes the proof. O

Corollary 25. Let F|K be a function field and F' = F(y) with y* = u € F, where
char K ¥ n and K contains a primitive n-th root of unity. If there is a place Q € Pr such
that ged(n, vg(u)) = 1, then K is the full constant field of F', the extension F'|F is cyclic

2 '

PePp

Example 4. Let F' = K(x,y) with char K # 2 and

y' = f(z) = pi(2) -+ ps(z) € Kz],

where py(x), ..., ps(x) are distinct irreducible polynomials. Then K is the full constant
field of F' and if m := deg f, then F|K has genus

m—1

if m is odd

9= VYm—-2

2

if m is even.

Proof. Note that F' = Fy(y), where Fy = K () is the rational function field. If P; € Py
denotes the zero of p;(x) and P, denotes the pole of x in K(z), then vp, (f(z)) = 1 and
vp, (f(x)) = —m. From Corollary 25, we obtain that F'|Fj is cyclic of degree 2 and K is
the full constant field of F'. The numbers rp for P € P, are

rp =1fori=1,... s
rp, = 1 if m is odd

rp, = 2 if m is even.

Our last claim now follows from Corollary 25. O
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1.13 Lattice Theory

In this section we follow chapter 2 of (COSTA et al., 2017) and give the basic
definitions and results of lattice theory which will be used for the construction of function
field lattices.

Definition 43. Let vy,...,v,, be linearly independent over R™. A lattice A with basis

{v1,...,0m} is defined as
A= {alvl+"'+amvm:a17"'7ameZ}'

The integer m is called the rank of A, denoted by rank(A). If m = n, we say A has full
rank. Equivalently, a subset of R™ is a lattice if and only if it is a discrete subgroup of R"

with respect to vector addition.

Definition 44. A generator matriz B for the lattice A is a matriz whose columns are the

basis vectors of A:

B =[v]--[om].

It is clear from these two definitions that the rank of the matrix B is m. Also, this

matrix is not unique, as multiple basis can generate the same lattice.

Example 5. Two of the simplest examples of lattices in the plane are the square lattice

and the hexagonal lattice, displayed below. The square lattice is nothing more than Z>:
7* = {(a1,as) : ay,ay € Z}.

A natural basis for this lattice is the canonical basis {e; = (1,0),e9 = (0,1)}. The hexag-
onal lattice has a basis {(1,0),(1/2,v/3/2)}. We can also visualize different examples of
lattices simply by coming up with basis for them. For example, the lattice with basis
B ={(1,1/2),(2,0)} is also shown below.

Figure 1 — Examples of lattices in the plane

(a) Square lattice (b) Hexagonal lattice (c) Lattice generated by B
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Definition 45. The volume of the lattice A, denoted by V(A) is the positive real number

V(A) := +/det(BTB),
where B is a generator matriz of A.

Definition 46. The minimum distance of a lattice is the minimum norm among its

non-zero vectors, that is

d(A) := min ||z}

where || - || denotes the euclidean norm.

Definition 47. The kissing number K(A) is defined as the number of lattice vectors that

attain the minimum distance
K(A) :=[{z e A [|z|] = d(A)}].
Definition 48. If A is a lattice of rank n, we say it is well-rounded if it contains n linearly

independent minimum length vectors over R.

Note that the previous definition asks for linear independence over R. This means
that well-roundedness is not equivalent to having a base of minimum length vectors. The
equivalence holds for lower dimensions, but for all other cases, being generated by minimum

length vectors is a strictly stronger condition.

Example 6. Another example of a lattice that will be quite useful is the root lattice in R",
denoted by A, _1. It is defined as

An,1 = {(l’l,...,l‘n) EZnZZZL'i :O}
i=1

Considering the vectors v; = e; — e; for i1 = 2,...,n, we have a basis for A, 1. Hence,
rank(A,—1) =n—1<n and A,y is not a full-rank lattice. Taking B = [vq] - - - |v,], we
find
1/2
2 1
1 92 ... 1
V(A1) =+/det(BTB)=| | =+/n
11 .- 9

The wvectors of An—1 achieving minimum distance are of the form e; —e; for i,j €
{1,...,n}, i # j. Hence the minimum vector length is d(A,_1) = v/2. From this charac-

terization of minimum length vectors, we can also conclude
K(A,_1) =n(n—1).

Finally, since ||v;|| = V2 for alli =1,...,n, A,_1 has a basis of minimum length vectors,

implying s it also well-rounded.



Chapter 1. Preliminaries 80

Theorem 30. Let A be a lattice of rank n and A’ a sublattice of A of the same rank. Then
the quotient group A/AN' has finite order given by

V(A
V(A

[A/A] =

This positive integer is called the index of A" in A.



81

2 Function Field Lattices

Having laid out all the essentials, we now finally turn our attention to the topic of
function field lattices. We start by presenting the method used for all constructions and
outline some essential properties every function field lattice must satisfy. After that, we

explore a couple of known examples and their properties.

2.1 Construction and Basic Properties

The general results of this section are taken from (ATES, 2017).

Let F be a function field over the finite field F,, where ¢ = p" for some prime
number p and h > 1. Denote its genus by g(F) = g and its set of places by Pr. Take n

distinct degree 1 (rational) places of F', form the set of places
P={P,...,P.} <Pp
and define the set of functions
OF = {z € F* : supp(z) < P}.
Proposition 29. O3 is an abelian group with respect to multiplication.

Proof. Multiplication is evidently commutative since F' is a field.

e 1€ O}, since supp(l) = g < P

« Given z,y € O, we know (zy) = (2)+(y). Hence supp(zy) < supp(x)usupp(y) < P
and zy € O%.

e Since (') = — (), it follows that supp(z~') = supp(z) € P and ™' € O}. O

Define the map
vp: (Op,) = (27, +)
z = (UP1 (Z)’ s Up, (Z>)
The following proposition will allow us to properly define function field lattices:

Proposition 30. ¢p is a group homomorphism.
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Proof. This is an immediate consequence of the fact that vp(xy) = vp(z) + vp(y) for any
Pe PFZ

= op(z) + pr(y). 0

Definition 49. The set Ap := Im(pp) is a discrete additive subgroup of R™ by the previous
proposition and thus is called the function field lattice of F' generated by P.

For an element z € O%, the fact that supp(z) < P implies we can identify its
principal divisor (z) with its image ¢p(2) € Ap in the natural way. In addition, we define

the length of z as the vector length of ¢p(z):
21 = ller (2)I-

We now discuss some general properties of function field lattices regarding first

rank and volume, followed by minimum distance, kissing number and well-roundedness.

Proposition 31. If h is the class number of F|F,, then

(a) Ap is a sublattice of the root lattice A, .
(b) rank(Ap) =n — 1.
(c) The index |A,_1/Ap| is equal to some positive integer hy that divides h.

(d) The volume of Ap is V(Ap) = v/n - he.

Proof.  (a) By Theorem 6, all principal divisors have degree 0, thus
deg((2)) = Y vp(2) =0 = @p(2) € A,y
i1

(b) Consider the degree 0 divisors of F' given by P, — P; for i = 2,...,n. Since h is the
class number of F, hP, — hP; € Princ(F) and hP, — hP, = (z;) for some z; € O%.

The corresponding images of these functions are

op(z2) = (h,—h,0,...,0)
QOP(Z?,) = (h, 0, —h, Ce ,0)
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Thus, we find n — 1 vectors of Ap which are linearly independent over R. Hence,
rank(Ap) = n — 1. But seeing as rank(Ap) < rank(A,,_1) = n—1 from (a), our claim

follows.

(c) Seeing as A, 1 and Ap have the same rank, Theorem 30 implies the index hy =

|A,,_1/Ap| is finite. In order to prove that hg | h, consider the group homomorphism
Y A, — CI%F)
(x1,...,xn) = [x1PL+ -+ 2, P,]

and notice that

(x1,...,2,) €kery < x, P + -+ + x, P, € Princ(F)
— P+ +z,P=(2), 2z€ O}

== (21,...,%,) = @p(2), z€ OF.
Thus kert) = Ap and hyg | h.

(d) Applying Theorem 30 and Example 6 yields
V(Ap) = V(An_1) - |An1/Ap| = /1 - hy. O

Remark 10. Since the value of hg is often unknown, the previous proposition serves to

establish at least an upper bound for the volume of all function field lattices:

where h is the class number of F.

Example 7. As a first example, let us examine the lattice from a rational function field
F =TF,(z). Take
P = {Pla"'apnfhpoo}?

where Py, is the pole of z and P; := P,_,, fora; € Fy, i =1,...,n—1. We have the vectors

op(z —a,—1)=(0,...,0,1,—1)

in Ap. By Proposition 31, Ap can have no more than these n — 1 linearly independent

vectors. Since we know from Example 6 that these vectors generate A,_1, it follows that
Ap =A,_1.
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Proposition 32. (a) If z € Op\F,, then ||z|| = /2deg(z). Equality holds if and only
if the zero and pole of z in Fy(z) split completely in the extension F|F,(z).

(b) d(Ap) = /27, where 7 is the gonality of F.

(¢) Let z € Op\F,. Then ||z|| = /27 if and only if deg(z) = v and the zero and pole of
z in Fy(z) split completely in F|F(z).

Proof.  (a) Since z is transcendental over F,, deg(z) is finite. Let the principal divisor of

z be
(2) = (1Q1+ -+ + bsQs) — (1 Ry + -+ - + 1 Ry),

where Q;, R; € P are distinct places and bj,c; e Nfori=1...,sand j =1... ¢t

Then . .
1217 = Y07+ > 3 = D> b+ D ¢; = 2deg(2).
i=1 Jj=1 i=1 j=1

Equality holds if and only if b; = ¢; = 1 for all 4, j, which is equivalent to saying the

zero and pole of z split completely in the extension F'|F,(z).

(b) Since v < deg(z) for all z € F\F, by definition, it follows from (a) that ||z|| = /2y
for all z € O5\F, and thus
d(Ap) = 4/ 2’)/

(c) This follows directly from part (a). O

As a consequence of this proposition, we can now precisely determine the conditions

under which a function field lattice attains the lower bound /27 for the minimum distance:

Corollary 26. d(Ap) = /27 if and only if there exists a rational subfield E < F with
|F : E] =~ and at least two places P and Q) of E such that:

1. P and Q split completely in F|E.

2. P <€ Pr contains all extensions of P and Q).

Proof. (=): If d(Ap) = /27, there exists z € O} with ||z|| = v/27. Setting E := F ()
and applying Proposition 32(c) implies first [F' : E| = deg(z) = v, and also Fy, Py, the
zero and pole of z in E, respectively, split completely in F'|E. Since supp(z) € P, all the
extensions of Py and P, must be contained in P.

(<): Let P,@Q € Py be distinct rational places that satisfy conditions 1 and 2. We can find
an element z € E such that P is the zero of z in E and @ is the pole of z in E. Condition
1 yields [F : Fy(2)] = v = [F : E], and thus E = [ (z). Since all extensions of P and @
are contained in P by condition 2, it follows that supp(z) € P and z € Of. Proposition
32(c) now assures ||z|| = v/2v and d(Ap) = /27. O



Chapter 2. Function Field Lattices 85

Lemma 16. Let E be a rational subfield of F' with [F : E| =~ and d(Ap) = /2. Define
the set S(E) < Pg as the set of rational places of E satisfying conditions 1 and 2 of
Corollary 26. If m :=|S(E)| = 2, then:

(a) If z € E N OF, the vectors op(z) € Ap of minimum length span a sublattice Ap of
Ap such that rank(Ap) =m — 1.

(b) The number of minimum length vectors pp(z) € Ap with z€ E n OF is m(m — 1).

Proof. By Corollary 26, there exists a rational subfield E < F with [F : E] = v and
|S(E)| = 2. Let S(E) ={P1,..., Py}

a) If z e En O} with ||z]| = +/2v, Proposition 32 implies [F' : F,(z)] = ~, and thus
P q

E =TF,(2) and the zero and pole of z satisfy conditions 1 and 2. Denoting by (z)”

the principal divisor of z in F, we have
(2)Ff =P — Pjfori,je{l,...,m}, i #j.
Denoting 2 by z;; if (2)¥ = P, — P;, we have
(zi))f =P —Pj=(P—P)— (P;— P) = (zi1)" — (21)" fori,j e {2,...,m}.

Also notice that (z1,)” = P, — P; = —(P; — P) = —(2;1)”. Identifying principal

divisors with images via ¢p yields

op(zij) = pp(zi1) — pp(zi1) and pp(z1;) = —op(2)1)-

Therefore, all vectors pp(z;;), i,j5 € {1,...,m}, i # j are spanned by the set

{op(zi1):7=2,...,m}.

Notice that vp(z;1) = —1 for all P € Pp such that P|P;, vg(z;1) = 1 for all
Q) € Pr such that Q|P; and all other valuations are zero. Since every place of
F extends exactly one place of E by Proposition 16(a), no other vector besides
©p(zj1) will have non-zero entries at the places corresponding to the extensions of

P;. Therefore, the generating set of Ap obtained previously is linearly independent
and rank(Ap) =m — 1.

(b) Using part (a), we simply have to count the elements z; ; for i, j € {1,...,m} and

i # j. This number is m(m — 1). O

We now consider multiple rational subfields of F' and give an interval on which

rank(Ap) must lie.
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Theorem 31. Let E; be rational subfields of F with |[F : E;| = v fori = 1,...,s
and d(Ap) = /2. Define the set S(E;) < Pg, in the same way as Lemma 16. Setting

m; := |S(E;)| and m = max m;, the following statements hold:

(a) m = 2.
(b) rank Ap = my — 1.

(¢) m —1 <rank(Ap) < s(m —1).

Proof.  (a) Since the lower bound for the minimum distance is attained, Corollary 26

guarantees at least one of the S(F;) has 2 or more places, hence m = 2.

(b) From Proposition 31(b), rank(Ap) = |P| — 1. By condition 1, every place of S(E;)
splits completely in the extension F|E;, thus there are v = [F' : E;] rational places
of F' lying over each one. From condition 2, all these extensions are contained in P,
therefore

|P| = my = rank(Ap) = my — 1.

(c) Let ¢p(z) be a minimal vector. Applying Corollary 26, we get F (z) = E; for some
i=1,...,5 and m; > 2. Thus, z € E; n O}. Lemma 16(a) now implies there are
m; — 1 linearly independent vectors ¢p(z) of minimal length. This means the number
of linearly independent minimal length vectors in Ap must satisfy

mi—1<m—1<rank(AP)<Z(mi—1)<s(m—l). O
i1
Corollary 27. If the hypothesis of Theorem 31 hold along with g > 0 and s < v, then Ap

18 not well-rounded.

Proof. First notice that g > 0 implies v > 1, since if v = 1, then F' would be rational and
its genus would be 0. Thus,

rank(Ap) < s(m—1) <y(m—1) =ym — vy <ym — 1 < rank(Ap),

meaning there are less linearly independent minimal length vectors than the rank of Ap.

Therefore, it cannot be well-rounded. n

Example 8. Let F|F, be a hyperelliptic function field, that is, an extension of F,(x)
with [F : F,(z)] =2 =~ and g = 2, where F,(x) is the unique rational subfield of F' of
degree 2, thus s = 1. If at least two places of F,(x) split completely in F|F,, then we are
under the hypothesis of Corollary 27 and the function field lattice associated to F' is never

well-rounded.

Finally, we can give an exact expression for the kissing number:
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Corollary 28. Under the same assumptions as Theorem 31, the kissing number of Ap is
K(Ap) =) mi(m; —1).
i=1

Proof. Applying Corollary 26 shows that any minimal length vector must be the image of
some z € E; n OF such that m; > 2. By Lemma 16(b), there are m;(m; — 1) such vectors,

hence )
K(Ap) =) mi(m; —1). O
i=1

2.2  Known Examples

This section is dedicated to examining the existing examples of function field lattices
with particular emphasis being placed on the minimum distance, kissing number and
well-roundedness. The first part is based on (FUKSHANSKY; MAHARAJ, 2014) and the
second part on (BOTTCHER et al., 2016) with some needed properties regarding function
fields taken from chapter 6 of (STICHTENOTH, 2009).

2.2.1 Elliptic Function Fields

Definition 50. An Algebraic function field F|K with K the full constant field of F' is
said to be elliptic if its genus is g = 1 and there exists some A € Div(F') with deg A = 1.

Elliptic function fields can be characterized explicitly via the following proposition:

Proposition 33. Let F|K be an elliptic function field.

(a) If char K # 2, there exist x,y € F such that F = K(z,y) and y* = f(z) for some
square-free polynomial f(x) € K[x]| of degree 3.

(b) If char K = 2, there exist x,y € F such that F = K(z,y) and y* +y = f(z) € K[x]

with deg f =3 or y> +y =« + where a,be K and a # 0.

ar +b

We now present some results that allow us to induce a group structure on the set

of rational places of an elliptic function field.

Proposition 34. Let F|K be an elliptic function field. If P denotes the set of all rational
places of F', then

(a) For each divisor A € Div(F) with deg A = 1, there is a unique place P € P with
A ~ P. In particular, P # .
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(b) Given a fized place Py € P, the following map is a bijection

®:P — CI°(F)
P~ [P — Py

Proof. (a) Let A € Div(F') with deg A = 1. Since deg A > 2g — 2, the Riemann-Roch
Theorem implies £(A) = deg A+ 1 — g > 0 and by Remark 4(b), there is a divisor
A ~ A with A; > 0. Since deg A = deg A; = 1, it follows that A; = P € P. To
prove uniqueness, suppose A ~ P and A ~ @ for distinct places P, () € P. Then,
P ~ @ and there exists x € F with P — @ = (z). Applying Theorem 6:

[F: K(z)] = deg(z)e, = deg @ =1,
hence F' = K(x), which is impossible, since F'|K is elliptic.

(b) First suppose ®(P) = ®(Q) for P,Q € P. Then P — Py ~ Q — Py, and hence P ~ Q.
If P # @, Theorem 6 produces a contradiction, so P = ) and ® is injective. To show
that it is surjective, take [B] € C1°(F). We know that deg(B + P) = 1, so (a) implies
the existence of a unique P € P with B+ Py ~ P. Hence, [B] = [P—F)] = ®(P). O

Using the bijection ®, we can carry over the group structure from ClO(F ) to P by
defining, for P, () € P:

P®Q =3 (d(P) + 3(Q)). (2.1)

This definition has the following properties:

Proposition 35. Let F|K be an elliptic function field. Then:

(a) P with the operation @ as defined in (2.1) is an abelian group.
(b) The place Py is the zero element of the group (P,®).
(¢) For PPQ, REP:P®Q =R < P+Q ~R+ P,.

(d) The map ® : P — CI°(F) is a group isomorphism.

The group law of P is dependent on the choice of Fy. Since we will represent an
elliptic function field F|K as F' = K(z,y) according to Proposition 33, we set Py := Qq,
the common pole of x and y, which is a rational place. We also note that if P, € P, then
P — @ is a principal divisor if and only if P = Q. Hence /(P — Q) >0 < P = Q.

Let E be a curve over F, such that F,(E) = F' (Theorem 8). Each [ -rational point
of E corresponds to a rational place of F'| so we denote a place by P and its corresponding
point in £ by P. This means P + () is a divisor of F', while P + Q is another point of F.
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Let the set of rational places of F' be P = {Fy := Qu, P1,..., P, 1}. For a place
P € P, P' will denote the place corresponding to the additive inverse of P, that is,
P+ P’ = Q. In this case, z(P) = z(P’).

Define m(P, Q) as the line through P and Q if P,Q # Q, meaning m(P,Q) =
ax + by + ¢ for some a,b,ce F,. If P = Q # Q, then m(P, Q) is the tangent line of F
at the point P. If Q = P' # Qy then m(P,Q) =z — x(P) = 2 — 2(Q). If P = Q or
Q = Qo, we define m(P,Q) :=1€F,.

If P,Q # Qx and P + Q = R, then m(P, Q) intersects £ at points P,Q and R/,

and thus has the principal divisor
(mP,Q) =P+ Q+R —3Qx.
If R = Qu, then Q = P'. In this case,
(m(P,Q)) =P+ P —2Q.

Therefore, if P + Q = R and R # o, it follows that

(%) — (P+Q+R =3Qx) — (R+ R —2Qu) = P+Q - R—Qu..

Supposing P + Q = R, we define

(z—z(R) .
mP.Q) iftP,Q,R #Q,

F(P,Q) = { 1. _
(P.Q) RG] ifP,Q#Q,and R =Q,

1lifP=Q,orQ=Q,.

In any case, the divisor of F/(P,Q) is

(F(P,Q)) = =P —Q+ R+ Q.

Lemma 17. If F|K is a function field, f € F and D € Div(F), then

Proposition 36. Let P,Q, R € P. Then P+ Q = R if and only if L(P+Q—R—Q) # {0},

in which case

L(P+Q— R~ Qx) = spang (F(P, Q)).

Proof. (=) :IfP+Q =R, then P+ Q — R — Q is the principal divisor of (1/F(P,Q)).
Hence L(P + Q — R — Q«) # {0} by our previous observation.
(<) : In order to show that P + Q = R, first suppose P, Q # (o, then

1
WC(PJFQ—R—Q@)):E(S—R)?
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where S is the third point of intersection of the line m(P,Q) and the curve E. By
assumption, £(S — R) has positive dimension, so R = S and L(S — R) = F,, implying

L(P+Q—R— Q) =spang (F(P,Q)).

If P=CQx, then P+ Q=Qand L(P+ Q — R— Q) = L(Q — R) # {0} by assumption
and it follows that P = @ and R = P + Q. Finally, £L(P + Q — R — Q) = spang, (1) =
spang, (F(P,Q)). The @ = Q case is proven in the same manner. O

Theorem 32. For an integer v > 1, iP = Q. if and only if
L(iP —iQx) = spang (F(P, P)F(P,2P)--- F(P, (i — 1) P)).

Proof. For i = 1, the result follows immediately. For k£ > 1, set Py := kP. So, if k > 1,
P + P;_; = P, and by Proposition 36:

L(P+ Py 1 — P, — Qo) = spang (F(P,Py_1)).
Now suppose P = Q_,, meaning P + P, ; = Q_, and
L(P+ Pm1 — 2Qx) = spang, (F(P,P;_1)).
Also, P+P; ; 1 =P, jfor j=1,...,1— 2, so the following identities hold:

L(P+ Py — Pi-1 — Q) = spang, (F(P,P;_))
L(P+ Pi—3 — Pi-s — Q) = spang, (F'(P,P;_3))

L(P+ P~ P~ Qx) = spang, (F(P,P)).

Now, if £(D1) = spang (fi) and L£(D2) = spang, (f2), then L(Dy + Ds) = spang_(f1f2).
Combining this with the equalities above yields

L(iP —iQqx) = Span]Fq(F(Pvp)F(P7P2) - F(P,Piy)).
Now assume the above equation holds. The divisor of g := F(P,P)F(P,Py)--- F(P,P;_5)
Is
i=2 i—2
(6) = SF(P.P) = Y[-P By + Pras + Qul = ~(i~ )P + Py + (i~ 2Q,
s P

so we conclude that

;E(iP —iQu) = L(P + Py —2Qu) # {0},

Applying Proposition 36 shows that P + P, ; = Q_,, that is, iP = Q... O]
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Theorem 33. Let D € Div(F) define as
n—1
D :=rQqu+ Z a; P;
i—1

be a divisor of degree 0. Then D is a principal divisor if and only if

n—1

ZaiPi = QOO‘

i=1
In this case, D = (f), where [ is a product of functions of the form F(P, Q) with
P,Q € P. The group OF of functions with support in P is generated by the functions

F(P, Q). Consequently, the lattice Ap is generated by vectors of the form P+ Q — R— Qq
where P+ @ = R.

Proof. First we observe that it may be assumed that a; = 0 for 1 < i < n — 1. Indeed, for

a place P € P and an integer k > 2, define
Tw(P) := F(P,P)F(P,2P)--- F(P,(k — 1)P).

Suppose a; < 0 and let k; be such that k;P; = Q.. By Theorem 32: (Tk,(P;)) =
—k;P; + k;jQw. Therefore

1 I
_ E D == E DI )
(Tkj (Pj)) (D) )
where _1
D' =D +1- (T, (Py)) = (r — k) Qo + ) a;Ps + (a; + lk;) P;
i=1
i#]

and a; + lk; = 0 for a sufficiently large I. Also, D' is a principal divisor if and only if D is

also a principal divisor and

7121 a;P; + (a; + 1k;)P; = nzl a;P;.

7
Write D = rQy + Q1 + - - - + Q¢ with repetitions possibly occurring among the places @Q;
and t = —r. Define

T :=Q_; + Qt—z’+1 ++ Qy
and
= F(QtflaQt)F(QthaTl)F(QtfsaTﬁ"'F(Q17Tt—2)-

Note that

t—2
(}) =[Qi 1+ Qi —Th — Qo] + Z[Qtﬂel +T; — Tiy1 — Qo]
i=1
=Qi+ Qi1+ + Q1 — Ty — (t — 1) Q.
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And D — (1/f) = —Qu + T_1. So

;E(D) — L(=Qu + T ).

The result now follows since —Q4 + T3 is principal if and only if T; ; = Q,,, that is,
Q, +Q,+ -+ Q, =Q,. Furthermore, —Qy + 1} ; is a principal divisor if and only if
1

?E(—Qw +T,1) = F,, that is, L(D) = spang_(f).

For the remaining statement, note that each function F(P, Q) belongs to O%.
Furthermore, O} is the union of all £L(D)\{0} for all principal divisors D with support
in P. From what was just proved, £(D) is spanned by products of functions F(P, Q) for
P, () € P, which finishes the proof. m

We can now prove results concerning some parameters of the lattice Ap from an

elliptic function field.

Theorem 34. If n = 4, d(Ap) = 2 and the minimal vectors of Ap are of the form
P+@Q—R-—S, where P.Q,R,S € P are distinct places and P+ Q = R+ S. If
n=3and P = {P,Q,Qux}, then d(Ap) = /6 and the minimal vectors have the form
+(P+Q —2Qx), +(P—2Q + Qu) and £(—2P + Q + Q).

Proof. P — (@ is a principal divisor if and only if P = @, so v > 1. F(P,Q) is a function
of degree 2, meaning v = 2. First assume n > 4. There are two distinct points P, Q
not equal to Q,, such that P # Q. This means P + Q = R for R # P, Q, Q,,. Since
(F(P,Q)) = —P—Q+ R+ Qu, d(Ap) < 2. On the other hand, Proposition 32(b) implies
d(Ap) =2, s0 d(Ap) = 2.

A minimal vector v of Ap must have the form P+ @ — R — S where P, (), R,S € P
are all distinct. Also, P + (Q — R — S is a principal divisor. Suppose P + Q = R, then
P+ @Q — Ry — Qu is a principal divisor asis (P+Q — R — Qy) —(P+Q —R—195) =
R+ S5 — Ry — Q. It follows from Proposition 36 that R + S = R;. Therefore, the minimal
vectors of Ap have the form P+ @Q — R — S where P+ Q =R + S.

Finally, if n = 3, then Zs ~ P = {Qw, P, @}, where P = 2Q. We have the following
vectors of Ap: 3P — 3Q«, 3Q — 3Qw, 2P — Q — Qw, P — 2Q + Q. This means that if
a1 P+ b:Q + c1Q is a lattice vector, then as P + byQ) + coQ o, With as = a1 mod 3, by = by
mod 3 and ¢y = —ag — by. A vector with minimal length is obtained when ay = by = 1 and

¢y = —2, implying d(Ap) = V6. ]

We now give a formula for the kissing number of Ap.

Theorem 35. If n > 4 and e is the number of points of P such that 2P = Q.,, then

N e
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Proof. Define the homomorphism 7 : £ — E by 7(P) = 2P. Then |ker7| = e and
|Im 7| = |E/ ker 7| = n/e. Fix some point A of E. We first count the number of solutions
to the equation P + Q = A for P and Q distinct points of E. Note that P = Q if and
only if A € Im 7. In the case that A € Im 7, each element of the kernel gives a solution to
2P = A, so there are e of them. Thus, there are n —e points P such that Q := A—P # P,
so there are (n— e)/2 pairs P, Q such that P+ Q = A and P # Q. Therefore, the number
of pairs R, S disjoint from P, Q such that R+ S = A is (n — e — 2)/2. We conclude that

the number of minimal vectors P + Q — R — S such that P+ Q = A = R + S with
Aelmr7is —- (n—e)(n—e—Q).

e 4

If A ¢ Im7, there are no solutions to 2P = A. A similar argument shows there

-2
are (n — E) . n(n4) minimal vectors P + ) — R — S such that P + Q ¢ Im 7, which
e
concludes the proof. O]

Finally, we show that Ap has a base of minimal vectors.

Theorem 36. If E has at least 5 points, then Ap is generated by minimal vectors. In

particular, Ap is well-rounded.

Proof. From Theorem 33, Ap is generated by vectors of the form v := =P — Q + R+ Q«
where P + Q = R. We need only to prove that v is generated by minimal vectors. Suppose
v does not have minimum length, that is, P, @, R, Q, are not all distinct. Since v is a
nonzero principal divisor, P, Q) # Q. Also, P,Q # R, so either P = Q or R = Q.

fP=Q,v=-2P+ R+ Qs and 2P = R. Since E has at least 5 points, we can
choose a rational place U such that U is different from Q,, P,2P and —P. Set S := P+ U

and notice that
2P+ R+ Qp=(—P—~U+S+Qyp)— (P+S—R-U).

We claim —P —U 4+ S+ @« and P+ S — R— U are minimal vectors. By choice, U # P, QQ«
and U # S, otherwise P = Q. Also, S # P otherwise U # (Qy. Finally, S # Q4 as
equality would imply P + U = Q_, and U = —P, which is false. Thus —P — U + S + Q

is a minimal vector.

Observe that P+ S =2P 4+ U =R + U, so P+ S — R — U is a lattice vector.
We know P, S,U are distinct, so we must show that S,U # R. If R = S, then U = P,
which is impossible. If R = U then U = R = 2P, which is also not possible. Therefore,
P+ S — R —U is a minimal vector. This shows that v is the difference of two minimal
vectors if P = Q.

Now assume R = @, meaning v = —P—Q+2Q, and P+Q = Q.. Since F has at
least 5 rational points, choose a rational point U # P, Q, 2P, Q.. Set S := Q+ U and note
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that U # S as Q # Q. Also, Q+U—S—Q is a lattice vector and P+S = P+Q+U =U
so that P+ .S — U — (D is also a lattice vector. Writing v as

U:_(Q+U_S_Qoo)_(P+S_U_Qoo)
we notice that it is a sum of two lattice vectors, so we only need to show that Q+U —S—Q

and P+ S — U — Q5 are minimal vectors.

For the first vector we show that Q,U, S, are all distinct places. By choice,
U # @Q,Q, and we have already observed that U # S. If () were equal to S, then
Q=S=Q+ U, implying U = Q,, and U = (), which contradicts the choice of
U. Finally, S # @« as otherwise, U = —Q = P, another contradiction. Therefore,

Q+U—S—(Qy is a minimal vector.

Finally, to show that P + S — U — () is a minimal vector, we once again prove all
of its places are distinct. From the previous argument, S, U, (), are all distinct. If P = U
or P = @, then the vector P + S — U — Q) would have length 1, contradicting Theorem
34. And if P = S, then U = P + S = 2P, contradicting the choice of U. Therefore
P+ S —U—(Qy is a minimal vector and the vectors that generate Ap are themselves
generated by vectors of minimal length, implying Ap is also generated by vectors of

minimum length. [

2.2.2 Hermitian Function Fields

Definition 51. The Hermitian function field over IF 2 is defined as

H :=Fp(x,y) where y? +y = 27"

One of the reasons why the Hermitian function field is of particular interest is the
fact that it contains many rational places. The following results make this notion more

precise:

Theorem 37 (Hasse-Weil bound). If F|F, is a function field of genus g and N is the

number of rational places of F', then
[N — (g + 1] <29v74.
Lemma 18. The Hermitian function field H|F 2 has the following properties:
(a) H has genus g = q(q — 1)/2 and gonality v = q.
(b) H has ¢° + 1 Fz2-rational places, namely

e the common pole Q of x and y, and
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e for each o € Fp2, there are q elements 3 € Fp2 such that 7+ 3 = o™ and

for all such pairs (a, B) there is a unique place P, g such that x(P, ) = a and
y(Pap) = 5.

(c) H attains the upper Hasse-Weil bound, that is, H|F 2 is a mazimal function field.

(d) For each pair (d, ) € F2 with e+e = d*', there is an automorphism o € Aut(H|F2)
with o(z) =z +d and o(y) =y + d'z + e.

Let K := {(a, ) € ng : B+ B ="} and let P be the set of all rational places
of H, that is, the common pole ()5, of x and y, and the places P, 3 indexed by K. For
each pair (o, ) € K, define the function

Ta,B ::y—ﬂ—@q(ﬂf—@) :y_aqm—i_ﬁq?
which is the tangent line to the Hermitian curve at the point (a, ).

Interpreting H as a Kummer extension of the rational function field Fp2(y), the

rational places of F2(y) satisfy

e For each v € Fp2 with v+~ = 0, the place P,_, is totally ramified, and if v?+~ # 0,
the place P,_., splits completely in H|F .

o The pole of y is totally ramified.

We note that
Tap+ Tap = (7 — )Tt (2.2)
therefore H = F2(x,y) = Fp2 (70,8, ) and H|F2(7,4) is @ Kummer extension. It follows
that

(Ta,p) = (¢ + 1) Fap — (¢ +1)Qc.
We denote the rational places of F2(7, ) by their corresponding monic irreducible polyno-

mials, except for the place at infinity, denoted by P (74,). For any v € Fp2 with 474+~ = 0,

we have 7,3 — 7 = Ta g4+

Functions of the type ax + by + ¢ with a,b,c € Fp2: and a,b # 0 will be referred
to as lines. By points on the line, we mean intersection points between the line and the
Hermitian curve. The following lemma allows us to determine the divisor of every line,

and thus obtain the points of IC which lie on a line.

Lemma 19. Let H|F 2 be the Hermitian function field and v € Fp.

(a) If v1 4+ v = 0, the place To3 — Y = Ta g4y 15 totally ramified in H|Fp2(7.5) and the

divisor of T, 3 — 1 is

(Tap =) = (@ + D) Papiy— (¢ + 1)Qo
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and the line 7,5 — v is a tangent line.
(b) The pole Py (Tap) of Tap is totally ramified in the extension H|F2(7a3).

(c) If '+~ # 0, the place T, 3 — 7 of F2 (74 ) splits completely in H|F,2(7,.5), and the

divisor of To 3 — 7 is

q
(Tap —7) = Z Poisci payrasse — (@ + 1) Qo (2.3)
i=0
with ¢ a primitive (q+ 1)st root of unity in Fg2 and 0 € Fy is such that y7 +~ = st
The points of K lying on the line 17,3 — 7 are

(a+6C",B+~y+a%¢), 0<i<gq.
The line 745 — 7y is not a tangent line.

(d) Let f:=y+bx+canddeFyp be such that 67" = b7 — (¢4 + ¢). The points of K

lying on the line f are
(b7 + 5¢", b7 —c—boCY), 0<i<q.

In this case, f is a tangent line < 0 =0 < (=07,c?) e K < (-b,c) e K.
If f is a tangent line, then f = T_paca. If 6 # 0, then f contains exactly ¢ + 1 points
of K.

(e) If f =x —c, the divisor of f is

() = 3 Pra — 4Qur, (2.4)

where the sum is done over the q solutions d € Fz of d +d = ¢4+,

Proof. One can view H as a Kummer extension of F2(7, ), so parts (a), (b), (e) and the

first statement of (c) all follow from Proposition 28.

(c) In order to determine the divisor of 7, 3 — 7, we apply Theorem 24. Over Fp2(7,4),
the minimal polynomial of z is ¢(T) := (T — a)®*" — 72, — 705 € Fpa(rap)[T]-
The place 7,3 — 7y is rational in F2(7,,3), so its residue class field is isomorphic to
F,2. Using notation as in Theorem 24, we will study the decomposition of H(T) =
(T — a)?™ — (47 + ) € F2[T]. The trace map from F2 to F, is 2 — 2 + z and the
norm map from Fp. to Fy, given by z — 2971 is surjective, so there exists € o2
with v+~ = 697" If ¢ € F2 is a primitive (g + 1)st root of unity, using the notation
of Theorem 24, we can write

B q

HT) = (T — )™ =" =] [(T — o= 6¢").

i=0
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Therefore, the place 7,3 — v splits completely in the extension H|F2(7,4), and the
function 7, g — v has ¢ + 1 zeros in H, say, Zy, Z1, ..., Zy with v —a — 8¢ e Z; for
1=0,...,q. Since

Tap—7=y—a'z+pl—y=(y—f—056aC") — oz — a— ),

a common zero of the functions 7, 5 —v and x —a — d¢" is also a zero of y — 3 — da’¢".
The functions © —a — 0¢* and y — 3 — 6" have P, is¢i grsaaci @8 a unique common
zero in H, that means Z; = P,ysci gisaaci for i = 0,...,¢. From the fact that
Tas — 7 =y — alz + 37 —~, any pole of 7,3 — v must be a pole of z or y. This
means (), is the only pole of 7, 5 — 7y, with order ¢ + 1.

(d) Seeing as b7 — (c? + ¢) € F 2, there exists d € F 2 such that §77" = 67" — (¢ + ¢).
Set a = =07, then b = —a?. If § € Fp is such that g7+ § = a?™ =yl then
f=y—alz+c=r7,5—7 withy = 37—c. Note that 74+~ = b7 — (¢! +¢) = 5§77
By part (c), the points on f are (a+3¢", B +7+a?6¢") = (—b?+ ¢, b7 — ¢ —bICY).
Now, f is a tangent to the Hermitian curve at (B,C) € K < f = 17p¢ =
y — Blz + C? for some (B,C) e K < (b,c) = (—B?,CY) for some (B,C) € K.
Since b = —B! < B = —b? and ¢ = (! < C(C = ¢, f is a tangent

— (-, ekk < (-bc)ek < 0=0. O

This lemma allows us to find the minimum distance of the lattice.

Theorem 38. The Hermitian function field lattice Ap generated by P attains the lower
bound for the minimum distance: d(Ap) = +/2q.

Proof. Pick a point P = (a, #) on the Hermitian curve and two distinct non-tangent lines
f1, fo through P such that neither is of the form x —«. These can be constructed by picking
two distinct slopes M;, M, € F 2 which are not equal to —af. We can find m,my € Fpe
with My = m{ and My = mi. Defining f; := y—F—mi(x —a) and fo := y—F—mi(z—a),
we see both lines pass through P and are not the tangent at this point since their slopes
are not —a?. Neither can these lines be tangential to the curve at any other point, because

every tangent passes only through its point of tangency.
Applying Lemma 19(c), we observe the intersection between the supports of (f1)
and (f2) consists of only the pole Qy and P, 3. Therefore (f1) = P g+ 2 Qi—(¢+1)Q

and (f2) = Pag + Z R; — (¢ + 1)Q«, meaning

()03

and || fi/fall = v2q. O
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Having attained the lower bound for the minimum distance, we can now easily

determine a lower bound for the kissing number.

Theorem 39. K(Ap) = (¢* +1)-¢*- (¢* = 1).

Proof. The function x has degree q, so [H : F,2(z)] = ¢. There are ¢* + 1 rational subfields
E of H which are conjugate to F,(z), meaning [H : E] = ¢. In each of these extensions,
all places but the pole of the generating element split completely, that is, ¢* in each one.

Applying Corollary 28, we conclude
+
Z (=1 =(+1) ¢ (1) O

From Lemma 19 and Theorem 38, we have the following characterization for minimal

vectors:

Lemma 20. If f1, fo are distinct lines, then fi1/fs and fo/fi are minimal vectors if one

of the following conditions hold:

e f1 and fy are of the form x — a.

e One of the lines is of the form x — «, the other is a non tangent line y + bx + ¢ and

both intersect in exactly one point.

e Both lines are non tangent of the form y + bx + ¢ with a point of intersection lying
in IC.

Hiss proved in (HISS, 2004) that every function in the set O can be represented as
a product of functions of the form ax + by + ¢ and their inverses. Combining this result with
the previous lemma, we can prove that Ap is not only well-rounded, but also generated by

minimal vectors.

Theorem 40. Ap is generated by minimal vectors and is, thus, well-rounded.

Proof. Since Ap is generated by the divisors of lines, we need only prove that every such
divisor is an integer linear combination of minimal vectors. We will call a line good if it is
an integer linear combination of minimal vectors. Denoting by ¢ € F 2 a primitive (g + 1)st

root of unity, the proof is split into cases.
Case 1: Let d,e € F2 be such that d? +d = e?™!. We first show that y — d and
x — e are good. Denote by dy = d,ds, ..., d, the solutions to y? +y = e?™! . Then

q

q
Hy—dizyq—ky—e‘”lzxqﬂ—eqﬂznx—(’ie,

i=1 =0
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therefore,
y—d;

x — (e

Tr —e =

T

i=1

The lines y — d; and x — (‘e have only one point of intersection and y — d; are non tangent

—d
since d? + d; = e?™ # 0. By Lemma 20, i — is a minimal vector and x — e is a sum of
x — (le

minimal vectors, proving the line x — e is good. On the other hand,

y_d:(x—e)(x—Ce)Hx__é;.e’

=2

meaning y — d is also a sum of minimal vectors.

Case 2: We now prove every non tangent line f =y + bx + ¢ is good. Since f is
non tangent, from Lemma 19 we get that (—b,c) ¢ K, that is ¢? + ¢ # (=b)?™ = b7, Set
a = —b%sothat b = —a?and o' = 7. Let 8 € F2 be a solution to 7+ 3 = o™ = b4,
Then

f=y—alz+B7+c—p7=14p—d whered = 7 —c.

Also, d* +d = B+ B — (" +¢) = b7 — (c¢” + ¢) # 0. Now choose e € F,2 such that
d?+d = " s0 ¢?+c = bt — et Tt follows that e # 0. Defining dy = d, da, ..., d, € Fpe

to be the solutions of 47 + y = e?™!, we have:

q q
nTa,B —di =75+ Tap — el = (z — )it — ettt = Hx —a(le, (2.5)
i=1 i=1

and from this, it follows that
q
To,8 — dz
—a—e= —_— 2.6
rT—a—e ﬂm—&—(le (2.6)
Due to the fact that d? + d; = ™" = d? + d # 0, we infer from Lemma 19 that the lines

Tap — d; are not tangent lines. Moreover, the line 7, 5 — d; intersects ¥ — a — ('e at exactly

one point, namely (o + (’e, 8 + d; + ea’("), which belongs to K, since

(B + di + ea?CH + B+ d; + eaCt = B9+ B+ d! + d; + e?al™ + ea?("
= a?m 4 et 40 4 eqt(?
= (a + (')t
. Ta, — dz . ..
Thus, the vectors corresponding to 70, 1 =1,...,q are minimal vectors. From
r—a— ('

equation (2.6), the line x — o — e is good. The same argument applies for x — « — (e. From
equation (2.5):

q

f:mﬁ_d:(g;—a—e)(a:—oz—Ce)H

1=2

r—a— (e
_ 2.7
Ta,ﬁ _ d'L ? ( )

meaning f is a sum of minimal vectors and the line defined by f is good.
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Case 3: Now, we prove the line 75 = y is good. Firstly, notice that

q

Y — =yt gty = (=) =1 = [ [y -1
=0

q
But also y?™! — 277! = n(y —('7), so
i=0
y—1-¢=[Jy-¢x
i=0 i=0
Since —1 is a (¢ + 1)st root of unity, there is a unique j € {0,..., ¢} such that ¢/ = —1.
Then

_ Y 1 y— CZCU
y=(y Cmuly—l—ﬁ' (2.8)
i#]

The points of K on the line y — (1 + ¢*) are ((1 4+ ¢)¢F, 1+ ¢ for k=0, ..., ¢, meaning
the line y — (1 + (') for i # j intersects y — 'z in exactly one point of K, that being
(1 + ¢HCT 1 + ¢Y), which belongs to K given that

(L+ )¢ = (1+ )™ = 1+ )1+ )
=14+¢"+¢ +1
=1+ + 1+,
The lines y — 'z are not tangent since (¢ =1 # 0 and thus (—¢*,0) ¢ K. Consequently,
y— ¢z
y—1-¢

y — (72 is not a tangent, it is good by case 2, and from equation (2.8), y is good.

the functions fori=0,...,q and ¢ # j correspond to minimal vectors. Since

Case 4: For every («, #) € K, the tangent line 7, 3 = y — a2 + 57 is good. Note
that (—«, 37) € K. From Lemma 18(d), there is an automorphism o € Aut(H|F2) with
o(z) =z —aand o(y) =y — alx + f? = 7,3. Applying o to equation (2.8):

. .

_ g . Ta,ﬁ_cl(z_a) 29

Tap = (Tap — (@ aDIl PR (2.9)
it

By Lemma 14, a place @ is a common zero of o(y — 1 — (') and o(y — ('x) if and only if
o 1(Q) is a common zero of y — 1 — ¢* and y — (*x. Applying the results from case 3, the
line 7,5 —1—C" =0y —1— ") intersects 7,53 — ("(x — ) = o(y — ('z) at only one point.
Again, by Lemma 14, these lines are not tangents, both of the form y + ax + ¢. Applying
Tap — ¢z — )
) Ta,B — - Cl

v/2q. Since 7, 5 — (?(z — ) is good, we conclude from equation (2.9) that 7, g is good.

Lemma 20, the vectors from for i =0,...,q and ¢ # j all have length

Case 5: Finally, we show that x is good. First we observe

q
yq+y—($q+$)zxq“—a:q—x:(m—l)q“—lznx—l—gi.
i=0
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On the other hand

q

Yty =@ ra)=(y-2)'+@y-2)=]y—x—p,

i=1
with p1,..., pg € Fp are the solutions to p? 4+ p = 0. Thus

q

q
nm—l—d:ny—x—pi. (2.10)
i=0 i=1

Denoting by zi,..., 2z, a numbering of 1 + C"fori=0,...,qand i # j, since ¢/’ = —1.

From equation (2.10):

= 00 (2.11)

q
ey Tr — Z;
The two lines x — (1 4+ (™) and y — x — p; intersect at (1 + (™, 1+ (™ + p;), which is a

point of C, since
L+ +p) + (A +C"+p)=pi+pl + 1+ + 14" = (1+ M)

The line y — z — p; is non-tangent since (1, —p;) ¢ K. From Lemma 20, the functions

— X = P . . . o
y—r—m generate minimal vectors, and from equation (2.11), x is good, finishing the
Xr — Z;

proof. O]
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3 Fermat Function Field Lattices

Finally, we construct some lattices associated to the Fermat function field. This
construction is based on the study made by David Rohrlich on the group of functions with
support at the “points at infinity” of the Fermat curve. See (ROHRLICH, 1977).

Techniques from algebraic geometry are employed to prove results concerning the
minimum distance, kissing number and well-roundedness of the lattice. We show that
the lower bound /27 for the minimum distance is not attained. Furthermore, the kissing

number is low and fixed for the Fermat curves of degree n > 5.

Let F,, denote the Fermat curve of degree n > 4, that is, the non-singular plane

algebraic curve given by the projective equation

"yt = 2"

Denote its function field by
F, :=F,(x,y) where 2" +y" =1

and ¢ = p" with p an odd prime number and h > 1 such that 2n | ¢ — 1. This implies F,
contains (, a primitive n-th root of unity, and €, a primitive n-th root of —1. Thus we
have 3n F,-rational points on the curve for which exactly one of the coordinates is zero,

namely:
a;i:=(0:¢":1), b;:=(C":0:1), ¢;:=(e¢":1:0) fori =0,...,n— 1.

For the sake of simplicity, we put A := ag+ -+ ap_1, B :=by+ -+ b,_1, C :=
co+ -+ c,_1. The set P is the set of the places corresponding to these 3n points. Note
that all points of type a; are contained in the line x = 0, all points b; are on the line y = 0,
and all of the ¢; are on z = 0. Thus, we refer to them as lying on a triangle where each of

the lines corresponds to a side of this triangle.

Denoting by A, the lattice from F),|FF, and generated by P, we first investigate the
minimum distance d(A,,) and prove that it exceeds v/2v = +/2(n — 1) for all n > 4.

In order for a function to attain the minimum distance 4/2(n — 1), it, in particular,
must have a pole divisor of the form p; + - -+ +p,_1, where py,...,p,—1 € P are all distinct.
Therefore, examining the Riemann-Roch space L(p; + -+ + p,_1) is very useful when

determining if the minimum distance lower bound is achieved.

Remark 11. Suppose notation as in Lemma 9. If D is the sum of 7 different points and
those points lie on k different sides (k = 2,3), then there are at least n — j + k — 1 points

of R on each side.
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This is easily verifiable, since if k = 2, a side must have at least 1 point of D,
meaning the other can have at most j —1 points of D, and at leastn—(j—1) =n—j+1 =
n—j+k—1 points of R. For k = 3, two sides have at least 1 point of D and the other
has at most j — 2, meaning each side has at leastn — (j —2)=n—j+2=n—j+k—1
points of R.

We have the following proposition:

Proposition 37. Let p1,...,p,_1 be any n — 1 distinct points of P.

1. If p1,...,pu_1 lie on one side, then £(py + +++ + pp_1) = 2.
2. If p1,...,pn_1 lie on two sides, then £(py + -+ + pp_1) = 1.

3. If p1,...,pn_1 lie on three sides, then {(py + -+ + pp_1) = 1.

Proof. For n = 4, consider the effective divisor D = p; + py + p3. Its degree is deg D = 3.
Furthermore, the genus of Fj is:

(4-1)(4-2)

= 3.
2

g:

Hence, by the Riemman-Roch Theorem 19, we have (D) = i(D) + 1. Since the canonical

adjoints of F, are all lines, we have the cases:

1. If p1, p2 and p3 lie on one side of the triangle, then they determine a unique line that

passes through them, which implies ¢(p; + p2 + p3) = 2.

2,3. If p1, py and p3 lie on more than one side of the triangle, there doesn’t exist a line

passing through all three points. Hence ¢(p; + p2 + p3) = 1.
For n = 5 we make use of Lemma 9.

1. Suppose all n — 1 points lie on one side of the triangle, say, * = 0. Take the line

L =V (z). Bezout’s Theorem 16 guarantees that
L-F,=A.

The residue divisor R always consists of one point, meaning ¢(p; + - - - + p,_1) is the

dimension of the pencil of lines through a point, that is, {(py + -+ + p, 1) = 2.

2. I p1,...,pn_1 lie on two sides, say, x = 0 and y = 0, consider the conic G = V (zy).
Then,
G-F,=A+B.
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R now consists of n + 1 points. Applying Remark 11 with j =n — 1 and k = 2, we
see that at least 2 points of R are on each side. However, if a side has 3 or more
residue points, Theorem 16 implies that side must be a component of any conic
passing through the residue. If both sides satisfy this condition, the conic is uniquely

determined.

If one of the sides, say = = 0, contains only 2 residue points then y = 0 contains the
other n — 1 points, and thus, is a component of the conic. The 2 remaining points
define a unique line. As the conic must also pass through these points, there is only

one choice for such a conic.

Finally, observe that if both sides contain only 2 residue points each, the divisor D
would have 2n — 4 points. However, 2n —4 > n — 1 for n = 5, so this configuration

is impossible and £(p; + -+ + p,—1) = 1 in all cases.

3. For p1,...,pn_1 lying on all three sides, take the cubic C = V(zyz), which cuts out
on F,, the divisor
C-F,.=A+B+C.

The residue consists of 2n + 1 points, and according to Remark 11 with j =n —1
and k = 3, at least 3 of those are on each side. But if a side contains 4 or more
residue points, Bezout’s Theorem implies that side is a component of any cubic

passing through the residue. If all sides satisfy this condition, the cubic is unique.

In the case that only 2 sides have 4 or more residue points, the cubic is still unique,
since the 3 residue points on the last side are aligned, and thus define a unique line
through them.

Finally, note that two different sides cannot contain only 3 residue points each. If
this were the case, the last side would have to contain 2n — 5 residue points. Since
2n — 5 = n for n = 5, this is impossible and ¢(p; + --- + p,_1) = 1 in all cases,

finishing the proof. O

This proposition shows there are no non-constant functions of degree v =n —1 in
F,, whose pole divisor has unaligned points of P. Thus, the only remaining possibility for
a function to have length /27 is to have a pole divisor with all points aligned. We will
prove, however, that no functions in the Riemann-Roch spaces of case 1 of Proposition 37
attain the length /2. In order to prove that, we tabulate some functions and divisors

which will be useful:
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Function Divisor
x A-C
Y B-C
x— n-b;—C
y— (7 n-a;—C
z—ely n-c;—C.

From this table, we notice that

<y—Cj) —(n—1)-a; — (A—a;)

2=\ 1) b (B b
(=) = tw-v b -
(x—e(jy)z(n—l)-cj—(C'—cj).

This gives us explicit bases for the Riemann-Roch spaces of type 1, as described in our

proposition:

— (7
{1, y=o } is a base for L(A — a;)
T

(I
{1, T¢ } is a base for L(B — b;)
Y
{1,z — ey} is a base for L(C — ¢;).
We can now prove our first major result concerning the Fermat function field lattice:
Theorem 41. d(A,) > /27 = 4/2(n —1).

Proof. According to Proposition 37, we only need to examine the Riemann-Roch spaces of

case 1. Given f € L(A — a;), it has the form

f=a+b-

y— ¢’
X

with a,b € F,. Note that we may assume a, b # 0, since if b = 0, f is constant, and if a = 0,

_
(f) = <ywc>, which has a zero of order n — 1 and thus does not have length +/2v. We

() = (x oy = Cj)) ~ (az + by — ) — (@),

T

have

Notice that ax + b(y — ¢/) = 0 defines a line £ which is not the tangent at a; = (0: ¢/ : 1).
It cannot coincide with x = 0 since b # 0. It also is not y = 0 or z = 0, given that it passes
through a;.

Therefore, ¢ can only possibly intersect the triangle at one point on each side. This

means that for n > 5, ¢ must have at least one zero outside of P. In the case n = 4, three
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points of intersection is impossible. Indeed, if ¢ intersected all three sides, its zero divisor
would have the form (¢)g = a; + b; + ¢, for some 4,5,k € {0,...,n — 1}. But this means
(1/0)s = a; + bj + ¢, and thus 1/¢ has three unaligned poles, contradicting Proposition
37. Now, the divisor of x has neither zeros nor poles outside the triangle thus subtracting

it means f still has at least one zero outside of P, meaning f ¢ O} and f cannot achieve
length +/27.
For a function g € £L(B — b;), the argument is similar. ¢ has the form

x— (7
Y

g=a+b-

with a,b € ;. Its divisor is

(9) = (y +he = C”) ~ (ay + bz — &) — ()

Y

The line m : ay + b(z — ¢/) = 0 is not the tangent at b; = (¢/ : 0: 1). Neither is it y = 0,
given that b # 0. It also is not = 0 or 2 = 0, as it passes through ;. The same argument

as the previous case now applies: since (y) has only zeros and poles in the triangle, g ¢ O%.

Finally, if h € L(C — ¢;):
h=a+b(z—ely),

a,be F;. The line h = 0 cannot be z = 0, since it does not pass through c;. It also is not

xz =0 ory =0, since

a
v 4 be(’

a
y € b?

that is, the intersection points are uniquely determined. Once again, our argument applies

and the claim is proved. O

Remark 12. This constitutes the first example known by the authors of a function field
lattice with arbitrarily large dimension that does not attain the lower bound for the minimum
distance. The only other instance in which this happens is in Theorem 3/ if there are only

3 places in the set P.

Corollary 29. d(A,) = v2n.

Proof: The lower bound 4/2(n — 1) isn’t attained, so d(A,) = 4/2(y + 1) = v2n. This
corresponds to functions with n simple zeros and n simple poles. Some examples of such

functions and their divisors are:
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Function Divisor

x A-C
Y B-C
1/z C—-A
1/y C-B
z/y A—-B
y/x B-—A
This also gives a lower bound for the kissing number: x(A,,) = 6. ]

This lower bound turns out to be sharp for every n > 5. In order to prove this, we

shall first prove an analogous version of Proposition 37:

Proposition 38. Ifn =5, let py,...,p, be any n points of P.

1. If p1,...,p, lie on one side, then £(py + -+ + p,) = 3.

2. If pr,...,py lie on two sides, then £(py + - - + p,) = 2 if there is only one unaligned
point and (py + --- + p,) = 1 otherwise.

3. If p1,...,pn lie on three sides, then {(p1 + -+ + p,) = 1.

Remark 13. For the third case of this proposition, we must make a key observation about

the required number of residue points on a side that quarantees it is a part of the cubic.

If there is a side with 4 or more residue points, it is a component of the cubic by
Bézout’s Theorem, as previously established. However, if we have already determined a
side to be a component of the cubic, there is only the need to find a conic which passes
through the remaining residue points. This means that if a side already has 4 or more
points, finding a second component only requires a side to have 3 points. Finally, if two
components have already been determined, it suffices for the last side to have only 2 points,

which always happens.

Proof: 1. Suppose the points lie on £ = V(x). Then
L-F,=A.

Hence R is the zero divisor. This means there are no restrictions imposed on the
lines of the linear system, that is, £(p; + - - + p,) is the dimension of the space of
all lines in the projective plane, implying ¢(p; + -+ + p,) = 3.

2. If the points lie on sides x = 0 and y = 0, for example, we consider the conic V (zy)
which cuts out the divisor A + B on F,,. The residue R consists of n points with at
least 1 of them lying on each side by Remark 11. Thus, the possible distributions for

the residue points are:
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Side 1 | Side 2
n—1 1
n—2 2
n—3 3
1 n—1

In the first and last lines of the table, since n —1 > 4, one side is always a component
of any conic passing through the residue. The other component may be any line that

passes through the point lying on the other side, that is, ¢(p; + --- + p,) = 2.

For the second line, n — 2 > 3 and side 1 is a component. The 2 points remaining
in side 2 define a unique line, which means ¢(p; + - -- + p,) = 1. For all other lines
of the table, side 2 is always a component, and side 1 always has 2 or more points,

meaning the conic is always unique and ¢(p; + - - - + p,) = 1 always holds.

3. Considering the cubic C = V(xyz) which cuts out the divisor A + B + C' on F,,
leaving 2n points on the residue divisor with at least 2 (Remark 11) and at most
n — 1 on each side, since n residue points on a side means that side has no points of

D. The first two possible distributions of residue points are

Side 1 | Side 2 | Side 3
2 n—11|n-—1
3 n—11n—2

If one side has only 2 residue points, the only way to distribute the other 2n — 2
is to have n — 1 be on each remaining side. The fact that n — 1 > 4 then implies
these two sides must be components of the cubic. The last component is the line

determined by the two points on the first side and the cubic is unique.

Now, if one side has 3 residue points, one of the other sides must have n — 1 points,
and the other, n — 2. Seeing as n — 1 = 4, this side is a component of the cubic. By
Remark 13, the side with 3 points now is also a component, implying the cubic is

always unique.

Finally, suppose there are k > 4 residue points on the first side, implying it is a
component. Evidently, we must have n = k+ 1. To conclude uniqueness, we will show
that at least one of the other sides must always be a component. The distribution of

points always has the form

k4+(n—a)+ (n—p), witha+ g =k.
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The most balanced distribution of residue points is

k K
k+(n—2)+<n—2>, if k is even.
k+(n—k;J>4—Qr—k;1>,ﬁkmomi

Note that if we can prove uniqueness for the case of these distributions, all of the
other cases will follow, since other distributions will necessarily have more residue
points accumulated on one side. Hence, if that side was a component under the most

balanced distribution, it will also be a component under the other distributions.

E—1
If k is odd, we need only show that n — 5 > 3. We have

k-1
AR N
"y

k—1 k
= +3>4>3
2 2

for £ = 5. And if k is even, we show that n — l; > 3. We have

k ko k+2

= 3.
2 2

for k = 4. Hence, uniqueness is always guaranteed and ¢(p; + - - - + p,) = 1 always

holds. O

We can now determine the kissing number of the lattice for all n > 5.

Theorem 42. K(A,) =6 for alln = 5.

Proof: We will show that apart from the 6 functions presented, the minimum length is
not achieved by any other function in the Riemann-Roch spaces of Proposition 38 whose

the dimension is greater than 1. In case 1, we have the following bases:

A function f € £(C) has the form f = a + bx + cy with a,b, c € F,. Note that at least two

of these scalars must be non-zero, since if b, ¢ = 0, f is constant, if a,c =0, (f) = (x) and
In any case, is it clear that the line defined by f cannot coincide with any side of the

triangle. This means the same argument used in the proof of Theorem 41 applies, implying

f has at least one zero outside of P. For functions in £(A) or £(B), we do the same as
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in the previous case, except with the subtraction of (z) or (y) which, as discussed in the
proof of Theorem 41, does not change the fact that the functions in these spaces have
zeros not in the triangle. Hence, there can be no minimum length functions in £(A), L(B)

or L(C), except for the non-constant basis elements.

In case 2 with py,...,p,_1 lying on one side and p, on another, the situation is

the same as in the first case of Proposition 37. Suppose we take p; +-++ +p,1 = A — q;
y—¢
x

for some j =0,1,...,n — 1 and p, # a;, then it is clear that € L(pr+ - +pn),

_
implying {1, ZJxC} is a base for L(py +- - -+ p,). Note that we can consider n— 1 aligned

points over y = 0 or z = 0 and construct the same bases as we did for Theorem 41. We
have already shown that functions generated by those bases either are not in O or have
length 4/(n — 1)2 + (n — 1) > v/2n, proving the theorem. O

Corollary 30. The lattice A,, is never well rounded for n = 5.

Proof. For n = 5, the rank of A,, is rank(A,,) = 3n—1 > 14. Since there are only 6 minimal

vectors by Theorem 42, our claim follows. ]

For n = 4, we can apply the Riemann-Roch Theorem 19 to conclude

Proposition 39. Let py,...,ps be any 4 points of P.

1. If p1,...,p4 lie on one side, then {(py + -+ + ps) = 3.
2. If p1,...,ps lie on two sides, then £(py + -+ + py) = 2.

3. If p1,...,ps lie on three sides, then {(py + -+ + ps) = 2.

Functions in the Riemann-Roch spaces of case 1 and case 2 with 3 aligned points
and 1 unaligned point do not achieve minimum length by the same arguments used in the
proof of Theorem 42. However, the remaining cases still require closer investigation, so for

A4 there is only the lower bound K (A4) = 6 for the kissing number.
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