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Resumo

O casamento e reescrita de padrões é uma etapa de otimização do compilador que iden-
tifica idiomas de código predefinidos e os substitui por código otimizado, resultando em
ganhos de desempenho em várias aplicações. Avanços recentes levaram a ferramentas que
agilizam o casamento de padrões e otimizações de reescrita. Uma dessas técnicas, Source
Matching and Rewriting (SMR), emprega uma abordagem centrada no usuário e baseada
em código-fonte, eliminando a necessidade de casamento de padrões internamente dentro
do compilador. No entanto, alcançar uma cobertura abrangente de casamento de padrões
com SMR requer uma especificação meticulosa de todas as variações linguísticas possíveis
dos padrões por parte do usuário, uma tarefa trabalhosa e propensa a erros.

Esta pesquisa apresenta a Pattern Generation Language (PGL), uma linguagem que
visa simplificar a geração automática de variações de padrões. PGL é uma linguagem
de alto nível que permite ao usuário definir padrões de programa que podem ser casados
e reescritos por meio do SMR. Adicionalmente, desenvolvemos o PGL Compiler (PGC),
uma ferramenta compatível com SMR que automatiza a criação de variações idiomáticas e
a síntese de padrões definidos na linguagem PGL. Embora o PGC se concentre principal-
mente na geração de padrões de entrada para SMR, sua flexibilidade permite a adaptação
para outras ferramentas de casamento e reescrita de padrões, mostrando sua versatilidade
e potencial para diversas aplicações.

Os resultados experimentais evidenciam que PGL é capaz de identificar padrões em
códigos escritos em Fortran e C, substituindo-os por chamadas à biblioteca BLAS e, assim,
aprimorando o desempenho dos programas.



Abstract

Pattern Matching and Rewriting is a compiler optimization step that identifies predefined
code idioms and replaces them with optimized code, offering performance gains across
various applications. Recent research advances have led to tools that expedite pattern
matching and rewriting optimizations. One such technique, Source Matching and Rewrit-
ing (SMR), employs a user-centric, source-code-based approach to pattern matching and
rewriting, eliminating the need for specialized compiler intervention. However, achieving
comprehensive pattern-matching coverage with SMR requires meticulous specification of
all possible language variations by the user, a laborious and error-prone task.

This research introduces the Pattern Generation Language (PGL), which is aimed at
simplifying the automatic generation of pattern variations. PGL is a high-level language
that enables the user to define program patterns that can be matched and rewritten by
SMR. Additionally, this work developed the PGL Compiler (PGC), an SMR-compatible
tool that automates the creation of idiomatic variations and the synthesis of patterns
defined in the PGL language. While PGC primarily focuses on generating input patterns
for SMR, its flexibility allows adaptation for other pattern-matching and rewriting tools,
showcasing its versatility and potential for diverse applications.

The experimental results demonstrate that PGL can identify patterns in Fortran and
C code and replace them with calls to the BLAS library to enhance program performance.
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Chapter 1

Introduction

Writing a compiler optimization pass is a complex task that usually requires the inter-
vention of a compiler expert. A subset of these optimizations is called Idiom (or Pattern)
Matching and Rewriting , which consists of detecting a previously specified code idiom
and replacing it with other optimized code fragment. Many applications can benefit from
matching and rewriting optimization passes. For example, linear algebra program frag-
ments can have their performance improved by replacing them with optimized library
calls [6]. For example, GEneric Matrix Multiply (GEMM) is a relevant operation in ML
models that can be accelerated by substituting an unoptimized implementation for a call
to an optimized entry in the BLAS library [14].

An interesting application is to detect poor quality code during code reviews. Code
standards that do not follow a certain quality level can be configured to issue alerts at
compile time so as to facilitate software quality control. Another possible application is the
detection of code patterns that are vulnerable to attacks. In such cases, the compiler can
issue alerts to the programmer or replace the code with protected versions. In addition,
idiom detection and replacement can be exploited as a way to speed up applications or
to reduce the energy or memory consumption of applications’ code fragments.

Tools to help specify pattern matching and rewriting optimizations have recently been
proposed [8, 19, 10]. Their goal is to ease the task of specifying a pattern and its cor-
responding code replacement. Some of these tools use MLIR idioms as patterns [20]
while others start from source code level patterns [11]. Source Matching and Rewrit-
ing (SMR) [8] is an optimizing compiler pass that uses a user-oriented source-code-based
approach for MLIR idiom matching and rewriting. It does not require a compiler ex-
pert’s intervention, as programmer-defined patterns are specified in the source language
of the program to be compiled. However, increasing SMR pattern-matching coverage
requires that the user describe all possible subtle variations of an idiom, a cumbersome
and error-prone task. For example, consider the two code fragments in Listings 1.1 – 1.2
that implement a simple dot-product. Both perform the same operation (dot-product),
differing only on how explicit the accumulation operation is specified. Since programmers
can write many variations of such code, specifying all such variations is thus a tiresome
task. Enabling programmers with a tool to specify patterns can considerably simplify
such tasks.

This research introduces a Pattern Generation Language (PGL) design to ease the
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1 for(int i=0;i<n;++i) {
2 out += x[i]*y[i];
3 }

Listing 1.1: Dot idiom using
addition assignment (+=).

1 for(int i=0;i<n;++i) {
2 out = out + x[i]*y[i];
3 }

Listing 1.2: Dot idiom using
separate assignment and addition.

task of automatically generating pattern variations. PGL is a high-level language that
describes program patterns amenable to SMR matching and rewriting. Additionally, this
work presents the PGL Compiler (PGC), an SMR-compatible code generation tool that:
(a) automatically generates idiom variations; and (b) combines pattern variations to create
new patterns. Although PGC is focused on generating SMR input patterns, it can also
be modified to target other idiom-matching and rewriting tools.

The organizational structure of this work is as follows: Chapter 2 delves into the SMR
pattern matching and rewriting approach and its execution flow. Chapter 3 describes all
aspects of the PGL language, including its syntax and grammar, and shows how it gen-
erates pattern variations and combinations. The design and implementation of the PGC
compiler are described in Chapter 3.2. Chapter 4 provides a set of experiments to show
how PGL can expand SMR matching capabilities to increase patterns’ application cover-
age. Research works similar to PGL are described and put in perspective in Chapter 5.
Finally, Chapter 6 concludes the work and recommends future extensions.
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Chapter 2

Background

This chapter starts by giving an overview of the MLIR operations in Section 2.1. The
chapter concludes with a description on how the Source Matching and Rewriting (SMR)
optimization works. It gives an overview of its inner workings and describes how patterns
are captured and replaced by optimized code fragments at the MLIR-level representation
of the compiler. To achieve that, it first discusses mechanics of SMR (Section 2.2) and
how it generates Multi-Level IR (MLIR) fragments to replace code.

2.1 The Multi-Level IR (MLIR) Representation

One of the main challenges in building compilers is the need to support a wide range
of programming languages and application domains. Different languages have different
syntax, semantics, and optimization requirements, which can make it difficult to build a
single compiler infrastructure that can handle them all. Additionally, different application
domains have different performance requirements, which can make it difficult to optimize
code for a wide range of hardware platforms.

Another challenge in building compilers is the need to support a wide range of hard-
ware platforms. With the rise of heterogeneous computing, there is a growing demand
for applications to support a wide range of hardware platforms, including CPUs, GPUs,
FPGAs, and more. However, each of these platforms has different performance charac-
teristics and programming models, which can make it difficult to optimize code for them.

MLIR [17] (Multi-Level Intermediate Representation) offers a versatile, multi-level
structure that can be tailored for various programming languages, target architectures, or
optimization domains. Within MLIR, customized representations are known as dialects.
Notable examples include:

FIR Dialect Specifically designed for the Fortran programming language.

AMX Vector Dialect Utilized in Intel’s Advanced Matrix Extension (AMX).

Affine Dialect Focused on linear algebraic operations.

A unique feature of MLIR is its ability to represent code from diverse sources, like
programming languages’ ASTs (Abstract Syntax Trees), HLS (High-Level Synthesis) cir-
cuits, and architecture-specific instructions. This versatility is exemplified in the Mojo
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language, a Python superset that leverages MLIR’s backend optimizations to achieve
significant performance improvements without code rewriting.

In terms of structure, MLIR is composed of a graph where nodes are "Operations"
and edges are "Values." Each operation can yield multiple results and accept several argu-
ments. Operations encompass functions, function calls, and dialect-specific instructions.

MLIR’s Types represent the data operated on by these operations. They include basic
types like integers, floats, and tensors, and also support custom types. Attributes in MLIR
are metadata elements associated with operations and types, containing information like
constant values, annotations, and optimization-related properties.

Regions and Blocks are structural elements in MLIR. Regions group operations into
logical units, like functions or loops, while Blocks organize operations within regions, akin
to basic blocks in control flow constructs.

MLIR incorporates concepts from previous intermediate representations, such as
LLVM. It employs SSA (Single Static Assignment) for reducing complexity and enhancing
compiler optimizations. SSA ensures that each variable is defined only once before use.

1 "func"() ( {
2 ^bb0(%arg0: !fir.ref<i32>, %arg1: !fir.ref<i32>):
3 %c1_i32 = "std.constant"() {value = 1 : i32} : () -> i32
4 %c0_i32 = "std.constant"() {value = 0 : i32} : () -> i32
5 %0 = "fir.load"(%arg0) : (!fir.ref<i32>) -> i32
6 %1 = "std.cmpi"(%0, %c1_i32) {predicate = 0 : i64} : (i32, i32) -> i1
7 "fir.if"(%1) ( {
8 "fir.store"(%c1_i32, %arg1) : (i32, !fir.ref<i32>) -> ()
9 "fir.result"() : () -> ()

10 }, {
11 %2 = "fir.load"(%arg1) : (!fir.ref<i32>) -> i32
12 %3 = "std.subi"(%2, %c1_i32) : (i32, i32) -> i32
13 "fir.store"(%3, %arg1) : (i32, !fir.ref<i32>) -> ()
14 %4 = "fir.load"(%arg1) : (!fir.ref<i32>) -> i32
15 %5 = "std.cmpi"(%4, %c1_i32) {predicate = 0 : i64} : (i32, i32) ->

i1
16 "fir.if"(%5) ( {
17 "fir.store"(%c0_i32, %arg0) : (i32, !fir.ref<i32>) -> ()
18 "fir.result"() : () -> ()
19 }, {
20 "fir.result"() : () -> ()
21 }) : (i1) -> ()
22 "fir.result"() : () -> ()
23 }) : (i1) -> ()
24 "std.return"() : () -> ()
25 }) {sym_name = "_QPsum", type = (!fir.ref<i32>, !fir.ref<i32>) -> ()} :

() -> ()

Listing 2.1: MLIR FIR dialect code example.

Furthermore, MLIR supports about 35 officially recognized dialects, including affine,
gpu, llvm, vector, arith, omp, and tensor. These dialects extend MLIR’s capability,
allowing it to cater to a broad range of applications and hardware.
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MLIR also uses passes for code transformation and optimization. It includes built-in
passes for specific hardware platforms or application domains and allows for custom pass
creation through a feature called Interface. This feature facilitates the development of
generic optimizations relative to the operations performed.

The Multi-level lowering process allows code to be transformed in a way that is more
transparent and understandable to developers. By breaking the lowering process into
small steps, each of which can be inspected and understood independently, developers
can more easily reason about the behavior of their code and diagnose performance issues.

Listing 2.1 shows an example of MLIR code in the FIR dialect, derived from Fortran.
This code in Line 3 illustrates an operation from the ’std’ dialect, named ’std.constant’,
which does not take operands and has a constant value of ’1’ of type ’int32’, yielding a
result of the same type.

2.2 Source Matching and Rewriting (SMR)

Source Matching and Rewriting (SMR) [8] is an optimizing compiler pass, developed
within our research group, that uses a user-oriented source-code-based approach for MLIR
idiom matching and rewriting. It does not require a compiler expert’s intervention, as
programmer-defined patterns are specified in the source language of the program to be
compiled, such as C and Fortran.
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1 2
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Figure 2.1: Tree Patterns.
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Figure 2.2: Tree Automaton.

It uses a 2-phase automaton to find information in a program’s control graph and
data graph. SMR builds on previous work [2] on matching patterns in trees (Figures 2.1
– 2.2) and uses the intermediate representation tool MLIR, which allows it to work with
different source languages. 1

Figures 2.1 – 2.2 present a brief overview of the operational mechanics of Twig’s al-
gorithms. Initially, in Figure 2.1(t1)-(t3) tree-patterns, undergo a process of linearization
by mapping out all paths from the root to a leaf. This results in a set of path-strings,
each uniquely representing a tree-pattern. Subsequently, these path-strings are translated
into an Automaton, as illustrated in Figure 2.2. The automaton utilizes state transitions,
annotated with path-string elements, and designates the last state of each path-string as
final.

A noteworthy feature arises from the fact that different tree-patterns share common
prefixes among their path-strings. Consequently, these path-strings traverse the same set

1Parts of the material below were adapted from [8].
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of states in the automaton, contributing to a reduction in its overall size.
To exemplify, consider the path-string (+1r) corresponding to patterns t1 and t2

in Figure 2.1. In Figure 2.2, both path-strings traverse an identical sequence of states
(0,1,2,3), culminating at state 3, marked as final. This state is annotated as having
recognized the path string +1r from both tree-patterns t1 and t2. The criterion for a
tree-pattern to match is that all its path-strings conclude in a final state.

Aho’s [2] approach introduces a unified automaton-based representation for all pat-
terns, yielding two notable advantages. Firstly, it conserves memory by merging common
path-string prefixes, thereby reducing the overall size of the automaton. Secondly, the
unified representation ensures that any input string is automatically compared against
each path-string of every pattern, resulting in a significant reduction in execution time as
the size and number of patterns increase. These advantages prove valuable when dealing
with a substantial number of patterns in the matching process.

The key motivation behind SMR is to use it to leverage modern ISA extensions and
hardware accelerators by detecting and raising program idioms to acceleration instructions
or optimized library calls. While recent works based on MLIR have been proposed for code
raising, they rely on specialized languages, compiler recompilation, or in-depth dialect
knowledge. SMR, on the other hand, is designed to be user-friendly and accessible to a
wider range of programmers.

1 <lang > {
2 fun <idiom_name >(<type_1 > <arg_1 >, <type_2 > <arg_2 >...){
3 <matching_code >
4 }
5 } = {
6 fun <idiom_name >(<type_1 > <arg_1 >, <type_2 > <arg_2 >...){
7 <replacement_code >
8 }
9 }

Listing 2.2: PAT, the pattern description format of SMR.

An example pattern definition that works as an input to SMR is shown in Listing 2.2.
The pattern is described in a new format, called PAT. First, in line 1, there is the definition
of the language in which the pattern was written. The first group of braces (lines 1 to 5)
represents the pattern to be matched. The function definition in line 2 is not part of the
pattern to be detected. It works only as a wrapper that links the pattern input variables
(in sequence) with their proper substitutions at line 6. The pattern to be matched is in
line 3. At lines 5 – 9 is another code in braces that represents the replacement code.
As before in the case of the matching pattern function (line 2), it is worth noting that
the function definition in line 6 is not part of the replacement pattern, working only as
a wrapper to specify its input variables. The actual pattern that will replace that in
line 3 is in line 7. The function wrappers in PAT help the compiler capture the pattern
descriptions while linking the pattern’s input variables together.

To better understand PAT consider, for example, the Fortran and C PAT descriptions
of the sdot inner-product shown Listings 2.3 – 2.4. The patterns were designed to capture
sdot and replace them for optimized BLAS calls. BLAS is an optimized library [29] that
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can considerably speed up linear algebra kernels. The difference between both descriptions
are in the language defined in line 1 (f90 vs. c), the way of defining a function (line 2),
and the different ways of calling the BLAS library from C and Fortran. In C, the pattern
types are defined inside the function arguments (line 2), and in Fortran, they are defined
below (lines 3-5).

1 f90 {
2 subroutine dot(N,x,ix,y,iy ,out)
3 real , dimension (*) :: x, y
4 real :: out
5 integer :: N, ix , iy
6 do i = 1, N
7 out = out + x(i*ix) * y(i*iy)
8 end do
9 end subroutine

10 } = {
11 subroutine dot(M,p,ip,q,iq ,out)
12 real , dimension (*) :: p, q
13 real :: out
14 integer :: M, ip , iq
15 external :: sdot
16 out = out + sdot(M, p, ip, q, iq)
17 end subroutine
18 }

Listing 2.3: Find a dot product patterns and substituting with a BLAS call in Fortran
using SMR.

1 C {
2 void dot(int N,float *x,int ix ,float *y,int iy ,float out){
3 for (int i = 0; i < N; i++)
4 out += x[i*ix] * y[i*iy];
5 }
6 } = {
7 #include <cblas.h>
8 void dot(int M,float *p,int ip ,float *q,int iq ,float out){
9 out += cblas_sdot(M, p, ip, q, iq);

10 }
11 }

Listing 2.4: Find a dot product patterns and substituting with a BLAS call in C using
SMR.

The SMR algorithm runs in two processing phases. In the first phase, the idiom
Control-Dependency Graph (CDG) is matched against the program’s CDG to rule out
code fragments that do not have a control-flow structure similar to the desired idiom.
In the second phase, candidate code fragments from the previous phase have their Data-
Dependency Graphs (DDGs) constructed and matched against the idiom DDG. This
two-phase approach ensures that only relevant code fragments filtered by the first phase
are considered for DDG matching, thus improving the efficiency and effectiveness of the
algorithm.
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SMR is effective in matching idioms from Fortran (FIR) and C (CIL) programs while
raising them as BLAS calls to improve performance [8]. Additional experiments also
show performance improvements when using SMR to enable code replacement in areas
like approximate computing and hardware acceleration.

One problem with the SMR approach is that a programmer can typically write many
source code variations of an idiom. To ensure the correctness of the optimization, the
SMR matching algorithm is very strict and does not consider variations of each input
idiom. This motivated the creation of an automatic generator of pattern variations, the
Pattern Generation Compiler (PGC ). The Pattern Generation Language (PGL) uses the
PGL Compiler (PGC) to translate a pattern description written in PGL into a set of
multiple patterns described in PAT, the input pattern description format for SMR.

SMR

patterns.pat

PAT

idiom.f90 replacement.f90

Language MLIR Frontend

idiom.mlir replacement.mlir

Idiom Preprocessing

Build Pattern Finite Automata

Replacement Preprocessing

Store PFA & Replacements

patterns.pfa

PFA

Replacements

1

2

3

4

5

6

7

(a) Pattern Finite Automaton Build flow with
SMR [8].

SMR

input.f90

Language MLIR Frontend

input.mlir patterns.pfa

Input Preprocessing Load PFA & Replacements
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Rewriting

Postprocessing

Optmized MLIR Input Code
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8

9 9

11 12

13

14

15

16

(b) SMR [8] Input Matching/Rewriting
flow.

Figure 2.3: The workflow of the SMR [8] tool.

The workflow of the SMR tool (Figure 2.3) can be divided into three main stages:
pattern generation, pattern matching, and code rewriting.

In the first stage, the user provides a set of patterns 1 that they want to match in some
user application code 8 . These patterns are expressed in the form of Control-Dependency
Graphs (CDGs) and Data-Dependency Graphs (DDGs), which capture the control-flow
and data-flow relationships between program statements. The CDGs and DDGs are then
converted into path strings and used to generate a Pattern Finite Automaton (PFA) for
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each pattern 5 . At the SMR runtime, path strings from multiple patterns are coalesced
to create a single Pattern Finite Automaton (PFA) file. This coalesced PFA file 7 is
then used to match and rewrite the applications.

To speed up the process of matching, the automaton construction can be generated
before the matching time. As shown in Figure 2.3a, the PAT description of idioms is
converted individually to its MLIR representation, both idiom and replacement 3 . A
preprocessing 4 occurs to prepare the representation to be converted to an automaton.
The Pattern Finite Automata is generated 5 and stored together with the replacements
in a PFA file 6 .

In the second stage, the PFA 9 for each pattern is used to match against the Control-
Dependency Graph (CDG) 13 and Data-Dependency Graph (DDG) 14 of the input
program 8 . The matching algorithm is based on an automaton-based DAG-matching
algorithm inspired by early work on tree-pattern matching [2]. The algorithm first matches
the CDG of the input program against the CDG of the pattern to rule out code fragments
that do not have a control-flow structure similar to the desired idiom. Then, candidate
code fragments from the previous phase have their DDGs constructed and matched against
the DDG of the pattern.

As shown in Figure 2.3b, with the automaton available in a PFA file 9 , the user
program input 8 is converted to its MLIR representation 9 , the desired pattern finite
automaton is loaded 12 , and the input is preprocessed 11 Now the matching process
starts with CDG Matching 13 . The candidates are passed to the DDG Matching 14 . If
a match is identified, the idiom is rewritten appropriately 15 and postprocessed 16 . At
the end, the user will have the optimized MLIR input code, that can be compiled with
the MLIR toolchain to an executable.

The rewriting process involves replacing the matched code fragments with optimized
library calls or acceleration instructions. For example, if the pattern is a matrix mul-
tiplication, the matched code fragment can be replaced with a BLAS call to improve
performance.

The automaton creation phase involves generating a Pattern Finite Automaton (PFA)
for each pattern that the user wants to match in their code. The PFA is constructed by
converting the Control-Dependency Graph (CDG) and Data-Dependency Graph (DDG)
of the pattern into path strings. These path strings are then used to generate a finite
automaton that can recognize the pattern in the input program. The PFA is stored in a
file and loaded during the pattern-matching phase.

The CDG phase is the first step in the pattern-matching phase. In this phase, the
CDG of the input program is matched against the CDG of the pattern to rule out code
fragments that do not have a control-flow structure similar to the desired idiom. The
CDG is a directed graph that represents the control-flow relationships between program
statements. The CDG of the input program is constructed by analyzing the program’s
control-flow statements, such as if-else statements and loops. The CDG of the pattern is
generated during the automaton creation phase.

The DDG phase is the second step in the pattern-matching phase. In this phase,
candidate code fragments from the previous phase have their Data-Dependency Graphs
(DDGs) constructed and matched against the DDG of the pattern. The DDG is a directed
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graph that represents the data-flow relationships between program statements. The DDG
of the input program is constructed by analyzing the program’s data dependencies, such
as variable assignments and function calls. The DDG of the pattern is generated during
the automaton creation phase.

The CDG represents the control-flow relationships between program statements. It is a
directed graph where each node represents a program statement, and each edge represents
a control-flow relationship between two statements. For example, an if-else statement in
a program would be represented by a node in the CDG, with edges connecting the node
to the statements inside the if and else blocks. The CDG is used in the SMR algorithm
to match the control-flow structure of a pattern against the control-flow structure of the
input program.

The DDG, on the other hand, represents the data-flow relationships between program
statements. It is a directed graph where each node represents a program statement that
produces or consumes data, and each edge represents a data-flow relationship between
two statements. For example, a variable assignment statement in a program would be
represented by a node in the DDG, with edges connecting the node to the statements that
use the variable. The DDG is used in the SMR algorithm to match the data dependencies
of a pattern against the data dependencies of the input program.
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Chapter 3

The Pattern Generation Language
(PGL)

This chapter introduces the Pattern Generation Language (PGL), the main contribution
of this dissertation. It provides a comprehensive definition and insights into PGL grammar
and structure. The following sections delve into the motivations driving its design and
provide a detailed overview of its key features.

PGL was designed to:

• be sufficiently flexible and powerful to enable the description of a variety of patterns;

• provide constructs that allow the expression of complex patterns;

• be easy to learn and use.

PGC SMR

patterns.pgl

Macro substitutions

Permutations

patterns.pat

Input source code

Pattern matching

Replacement

Optimized code

Figure 3.1: PGL Compiler integration flow with SMR [8].

An integrated workflow that combines PGL with SMR is shown in Figure 3.1. First,
the pattern programmer writes in PGL all the desirable patterns that are stored in the
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patterns.pgl file. Second, patterns.pgl is fed to the PGL Compiler (PGC) which code
generates all variations of the programmed patterns storing them into the patterns.pat
using the PAT format. Finally, patterns.pat is read by the SMR tool which performs
pattern matching and replacement in the input (i.e. application) source code, as specified
in the original PGL description, producing optimized code.

As described below, the expressiveness power of PGL allows pattern designers to easily
describe a large and diverse set of idioms, thus increasing the chance of matching input
program fragments. For example, in the previous chapter, it was shown that there are
many ways to describe a dot product, specifically when programming the accumulation
operation. As shown in (Listing 3.1) and detailed below, PGL addresses this problem by
allowing the programmer to describe different variations of the accumulation operation
without enumerating them. Although in the particular example of Listing 3.1 the pro-
grammer describes a C pattern, PGL is generic enough to enable pattern descriptions in
any other language.

1 def inc(x) : ++x | x++ | x += 1 | x = x + 1
2 def init(x) : x = 0
3 def comp(a, b) : a < b
4 def for(x, y) : for ($init(x); $comp(x, y); $inc(x))
5 def acc(a, b) : a += b | a = b + a
6 def mul(a, b) : (a) * (b) | (b) * (a)
7 def vector(x, i) : x[i]
8

9 type int : unsigned int | int | unsigned long | long
10 type real : float | double
11

12 decl dot($int(n),$real(*x,*y,out)){
13 $init(out);
14 $for(i,n){
15 $acc(out ,$mul($vector(x,i),$vector(y,i)));
16 }
17 } = {
18 #include <cblas.h>
19 $if($real==float){
20 out = cblas_sdot(n,x,1,y,1);
21 }
22 $else{
23 out = cblas_ddot(n,x,1,y,1);
24 }
25 }

Listing 3.1: DOT pattern written in PGL, using float and double types with the $real
type expansion, to match a C idiom and replace with the cblas library.

Line 12 of Listing 3.1 declares the dot-product pattern and specifies its parameter
types. The pattern is named dot and uses variables n of type int, and pointers x, y,
and variable out all of type real. The type int was declared in Line 9 and represents
both signed, unsigned, int or long int types from the C language. The type real
was declared in Line 10 and represents both float or double types from the C language.
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This way, the PGL compiler can synthesize dot-product pattern variations for both float
and double data types and the 4 integer types.

Lines 1-7 represent the definitions constructs used later in the expansions. For ex-
ample, the acc in Line 5 defines an accumulation operation with two variables, a and
b. The multiple variations of this definition are separated by vertical bars and provide
alternation between the code a += b, and a = b + a. Lines 13-16 of Listing 3.1 describe
the code and expansions for the matching part of the pattern. Expansions in this context
are identified by a dollar sign ($) followed by the expansion name and its arguments.
The arguments provided are then substituted in sequence based on their corresponding
order as defined in the expansion’s definition. Lines 18-24 are the replacement part of
the pattern. Line 18 is the library included for the BLAS call. Lines 19-24 represent the
If operation, which compares the type of the real Type Expansion to choose different
BLAS calls for each type.

3.1 PGL Syntax and Semantics

From the perspective of programming language design, a PGL (Pattern Generation Lan-
guage) program fundamentally comprises four types of constructs: Definitions, Expan-
sions, Conditionals, and Pattern Declarations. Listing 3.2 illustrates the structure of
PGL, which serves as the pattern description format for PGC (Pattern Generation Com-
piler).

1 import "<def_file_location >"
2 def <def_name_1 >(<arg_1 >,...) : <variation_1 > | <variation_2 > | ...
3 def <def_name_2 >(<arg_1 >,<arg_2 > ,...) : <variation_1 > | <variation_2 >
4 type <type_1 > : <variation_1 > | <variation_2 > | ...
5 type <type_2 > : <variation_1 > | <variation_2 >
6 decl <idiom_name >( <type_1 >(<arg_1 >,...) ,<type_2 >(<arg_1 >,<arg_2 >,...) )

{
7 <matching_code >
8 $<def_name_1 >(<arg_1 >,<arg_2 > ,...)
9 <matching_code >

10 $<def_name_2 >(<arg_1 >,<arg_2 > ,...)
11 ...
12 }
13 } = {
14 <replacement_code >
15 $if(<type_1 > == <value >){
16 <replacement_code >
17 }
18 $elif(<type_2 > != <value >){
19 <replacement_code >
20 }
21 $else{
22 <replacement_code >
23 }
24 <replacement_code >
25 }

Listing 3.2: PGL, the pattern description format of PGC.
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In Listing 3.2, Line 1 imports definitions from an external file, which consists solely
of ’def’ and ’type’ statements. Lines 2-3 present two example definitions using the ’def’
keyword, specifying the definition name, argument names, and variations. Lines 4-5
introduce two example type definitions, employing the ’type’ keyword followed by the
type name and variations.

Lines 6-25 feature a pattern declaration. This begins with the ’decl’ keyword and
includes the pattern name, argument names with their corresponding types, a matching
section (Lines 7-11), and a replacement section (Lines 14-24). The matching section
(Lines 7-11) may contain code snippets in the target language (as seen in Lines 7,9)
and definition expansions, denoted by the $ sign (Lines 8,10). These code snippets can
intersperse expansions and conditionals in both the matching and replacement sections.

An expansion corresponds to a definition, and its arguments are replaced when the
definition expands. Line 13, marked by an equal sign, signals the beginning of the replace-
ment section (Lines 14-24). This section can also include multiple target language code
snippets (Lines 14,16,19,22,24), with some embedded within a conditional block (Lines
15-23). The conditionals compare type variation values (defined in Lines 4-5) against
constant values (as in Lines 15,18), allowing for varied replacement codes based on the
type expanded in the matching section.

Definition

⟨definition⟩ ::= "def" ⟨ID⟩ "(" ⟨parameters⟩ ")" ":" ⟨variations⟩
⟨type_definition⟩ ::= "type" ⟨ID⟩ ":" ⟨variations⟩

⟨parameters⟩ ::= ⟨parameter⟩ ("," ⟨parameter⟩) ∗
⟨variations⟩ ::= ⟨instruction⟩ ("|" ⟨instruction⟩)∗

In PGL, a ’definition’ behaves similarly to a C-macro, providing a way to predefine
operations for later use in PGL descriptions. As depicted in the presented PGL grammar
fragment, a definition begins with the keyword ’def’, followed by the definition’s name.
Parameters for the definition are then listed, enclosed in parentheses, and separated by
commas. The syntax of a definition uses a colon to signify the beginning of the variations,
which are delineated by vertical bars to indicate alternation between different instructions.
A type definition begins with the keyword ’type’, followed by the type’s name. In this
case, there is no parameters, only variations.

1 def inc(x): ++x | x++ | x += 1 | x = x + 1 | x = 1 + x
2 def sum(a, b): a + b | b + a
3 def mul(a, b): (a) * (b) | (b) * (a)
4 type int: int | unsigned int
5 type real: float | double

Listing 3.3: PGL Definition example.

Listing 3.3 showcases several examples of such definitions. For instance, line 1 in List-
ing 3.3 demonstrates a definition for various increments, a versatile operation commonly
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used to update loop induction variables. Lines 2 and 3 of the same listing illustrate
how PGL facilitates the definition of commutative variations for sum and multiplication
patterns. Lines 4 and 5 demonstrates type definitions of integer and real types (float
and double). Predefined sets of definitions can be seamlessly incorporated into a pro-
gram using the ’import’ keyword. This is followed by specifying the relative path to the
definitions file. For instance, import "fortran.def" demonstrates how to import a file
containing definitions. This feature is particularly beneficial for reusing a common set
of definitions across multiple patterns, thereby streamlining the pattern-creation process
and maintaining consistency.

Expansion

⟨expansion⟩ ::= "$" ⟨ID⟩ "(" ⟨parameters⟩ )"
⟨type_expansion⟩ ::= "$" ⟨ID⟩

⟨parameters⟩ ::= ⟨parameter⟩ ("," ⟨parameter⟩) ∗
⟨parameter⟩ ::= ⟨ID⟩

⟨expansion⟩

An Expansion in PGL involves replacing the contents of a definition, akin to invoking
a C-macro. As shown in the grammar fragment above, it begins with a $ sign, followed
by the definition ID and its actual variables enclosed within parentheses and separated by
commas. A TypeExpansion begins with a $ sign followed by the type definition ID, with-
out arguments. When an Expansion is utilized, each invocation triggers a permutation
of the possible existing definitions, generating a resulting pattern for each combination.
When a TypeExpansion is utilized, it is replaced by a fixed value for each resulting pat-
tern. This way, the type generates consistent patterns that correspond to the function
arguments.

A concrete example of an Expansion is depicted in Figure 3.2. In the example, a
pattern written in PGL for sum and multiplication 0 undergoes expansion, resulting in
eight variations ( 1 - 8 ) after considering all possible combinations. These variations en-
compass the two variations for the sum and mul definitions, along with two type variations
derived from the ’real’ keyword, namely float and double. As shown in the figure, one
can estimate the total number of resulting variations as 2 (sum) × 2 (mul) × 2 (real) = 8.
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1 $real sum = $sum(a, b);
2 $real mul = $mul(a, b);

1 float sum = a + b;
2 float mul = a * b;

1 float sum = b + a;
2 float mul = a * b;

1 float sum = b + a;
2 float mul = b * a;

1 float sum = a + b;
2 float mul = b * a;

1 double sum = a + b;
2 double mul = a * b;

1 double sum = b + a;
2 double mul = a * b;

1 double sum = b + a;
2 double mul = b * a;

1 double sum = a + b;
2 double mul = b * a;
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Figure 3.2: PGL Expansion example.

Conditional

⟨operation⟩ ::= ⟨condition_op⟩
⟨condition_op⟩ ::= "$if" "(" ⟨condition⟩ ")" "{" ⟨instruction⟩ ∗ "}" ⟨elif⟩ ∗ ⟨else⟩?

⟨condition⟩ ::= ⟨type_expansion⟩ ⟨operator⟩ ⟨ID⟩
⟨operator⟩ ::= "=="

"!="

⟨elif⟩ ::= "$elif" "(" ⟨condition⟩ ")" "{" ⟨instruction⟩ ∗ "}"

⟨else⟩ ::= "$else" "{" ⟨instruction⟩ ∗ "}"

In PGL, the conditional construct (if-else) plays a crucial role in influencing the pat-
tern generation process during PGC compile time, based on specific conditions. As out-
lined in the grammar fragment, this construct is initiated with ’if’, marked by a $ sign.
The condition, enclosed in parentheses, typically comprises a type expansion (like ’$real’),
an operator (either equal or not equal), and an identifier (ID). At compile time, PGC eval-
uates this condition: if true, the patterns enclosed within the if-clause (denoted by braces)
are generated; if false, the else-clause patterns are generated instead.

To add more flexibility, the construct includes optional keywords such as ’else’ and
’elif’. The ’elif’ keyword, combining the roles of else and an ensuing if, offers a seamless
transition to additional conditions and can be used repeatedly. Conversely, the ’else’
keyword, which does not require a condition, is used exclusively at the end of an if-else
chain, and only once.

An example of the if-else construct is shown in the Figure 3.3. Depending on the type
of the ’$real’ variable 0 , the corresponding BLAS library function call is selected. If the
type is float, a pattern with a call to the cblas_sdot is generated 1 . Otherwise, if the
type is double, a pattern with a call to the cblas_ddot is produced 2 .
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1 $if($real == float){
2 $real out = cblas_sdot(n,x,1,y,1);
3 }
4 $else{
5 $real out = cblas_ddot(n,x,1,y,1);
6 }

1 float out = cblas_sdot(n,x,1,y,1);

1 double out = cblas_ddot(n,x,1,y,1);

0

1

2

Figure 3.3: PGL Conditional Operation example.

Pattern Declaration

⟨pattern_decl⟩ ::= "decl" ⟨ID⟩ "(" ⟨parameters⟩ ")" ⟨block⟩ "=" ⟨block⟩
⟨block⟩ ::= "{" ⟨instruction⟩ ∗ "}"

⟨instruction⟩ ::= ⟨CODE⟩
⟨expansion⟩
⟨type_expansion⟩
⟨operation⟩

A Pattern Declaration is a PGL construct that defines new patterns based on definition
and expansion constructs. It takes as input a set of pattern definitions, and its body (also
called pattern code) uses expansions to program pattern variations. At its output, a
pattern declaration synthesizes all possible patterns (in PAT format) that satisfy its PGL
specification.

As shown in the grammar fragment above, the pattern declaration syntax is made up
of a ’decl’ keyword, followed by an ID with the name of the pattern, the definition of
the pattern’s input variables (in parentheses), and the matching code (in braces). This
is followed by the = punctuation mark and another block to the replacement code (in
braces).

An example of how the Pattern Declaration construct works is shown in Figure 3.4 for
the C language. In the figure, the sum2mul PGL pattern is described in 0 . That pattern
takes as input the $real type definition (float or double) for variables out, x, and y (line
1) and replaces all possible statements resulting from the pattern variations produced by
the expansion $sum (line 2) by statements that operate on the same arguments but use
multiplication instead (line 4). After compiling the code in 0 , the PGC compiler produces
all possible sum2mul patterns resulting from the combinations of float and double input
types ( 1 – 4 ). For example, the pattern variation in 1 uses float for all input variables
and expands the $sum as x + y. On the other hand, in pattern 1 , all variables are
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treated as double, and $sum is expanded to its commutative form y + x.

1 decl sum2mul($real(out , x, y)){
2 out = $sum(x, y);
3 } = {
4 out = x * y;
5 }

1 C {
2 void sum2mul(float out , float x, float y){
3 out = x + y;
4 }
5 } = {
6 void sum2mul(float out , float x, float y){
7 out = x * y;
8 }
9 }

···

1 C {
2 void sum2mul(double out , double x, double y){
3 out = y + x;
4 }
5 } = {
6 void sum2mul(double out , double x, double y){
7 out = x * y;
8 }
9 }

0

1

4

Figure 3.4: PGL Pattern Declaration example.

The GEMM Pattern

A more complex example of PGL programming is the Generic Matrix Multiply (GEMM)
pattern shown in Listing 3.4. GEMM represents a fundamental idiom in linear algebra
where two matrices are multiplied to produce a third matrix. An in-depth explanation of
this idiom is found in the Section 4.1.1.

The definitions used by the GEMM pattern (Listing 3.4) are shown in lines 1-10.
Lines 1 – 2 contain basic definitions like increment (inc), initialize (init), and compare
(comp). A definition that can generate variations of simple for-loops is shown in line
4. The multiply and accumulate definition (macc) is in line 7, which uses expansions of
definitions acc (line 5) and mul (line 6). Given that any GEMM pattern uses vector and
matrix accumulation operations, the PGL program also includes definitions for them in
lines 9 – 10. Type definitions are in lines 11 – 12. Notice that the int definition has only
one variation, while the real type has variations float and double.
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1 def inc(x): ++x | x++ | x += 1 | x = x + 1
2 def init(x): x = 0
3 def comp(a, b): a < b
4 def for(x, y): for ($init(x); $comp(x, y); $inc(x))
5 def acc(a, b): a += b | a = b + a
6 def mul(a, b): a * b | b * a
7 def macc(a, b, c): $acc(a,$mul(b,c))
8 def sum(a, b): a + b | b + a
9 def vector(x, i): x[i]

10 def matrix(A,b,c,d): $vector(A,$sum(b, $mul(c, d)))
11 type int: int
12 type real: float | double
13

14 decl gemm($int(m,n,k,lda ,ldb ,ldc),$real(alpha ,*A,*B,beta ,*C)){
15 $int mm , nn , i;
16 $for(mm ,m){
17 $for(nn ,n){
18 $real $init(c);
19 $for(i,k){
20 $real a = $matrix(A,mm ,i,lda);
21 $real b = $matrix(B,nn ,i,ldb);
22 $macc(c,a,b);
23 }
24 $matrix(C,mm ,nn ,ldc) = $sum($mul($matrix(C,mm ,nn ,ldc),beta),$mul(

alpha ,c));
25 }
26 }
27 } = {
28 #include <cblas.h>
29 $if($real == float){
30 cblas_sgemm(m, n, k, alpha , A, lda , B, ldb , beta , C, ldc);
31 }
32 $elif($real == double){
33 cblas_dgemm(m, n, k, alpha , A, lda , B, ldb , beta , C, ldc);
34 }
35 }

Listing 3.4: GEMM pattern written in PGL.
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The declaration for the GEMM pattern is in line 14. The indexes are declared using
the type int and the array pointers and factors alpha and beta are declared using the
type real. Lines 15-26, enclosed in braces, represent the desired matching part for the
GEMM pattern. It consists of three nested for loops, using the for expansion. Lines
20-21 access the arrays at the desired position, and line 22 performs the multiply and
accumulate using the macc expansion. Line 24 performs the final computation of addition
and multiplications, storing at the output array C. The replacement for the detected
GEMM patterns is surrounded by braces in lines 28-34. Line 28 includes the CBLAS
library for the optimized function call. Lines 29-34 perform the selection of the appropriate
BLAS function according to the real type. The function cblas_sgemm is called if the
type is float. Otherwise, if the type is double, cblas_dgemm is called.

3.2 The PGL Compiler (PGC)

PGC

Lexer Parser AST

AST ExpansionCode Generation

Figure 3.5: PGC Execution Flow.

The compilation flow of PGC is shown in the Figure 3.5. PGC was implemented in
Python using the SLY[26] library. SLY provides two separate classes, Lexer and Parser.
The Lexer class is used to break the pattern input written in PGL into a collection of
tokens specified by a collection of regular expression rules. The Parser class is used to rec-
ognize the PGL language syntax. The two classes were combined to build a Lexer+Parser
for PGC. As shown in Figure 3.5, an Abstract Syntax Tree (AST) for the PGL program is
built after the execution of the lexical (Lexer) and syntactic (Parser) phases of the com-
piler. Finally, PGC traverses the AST to detect the expansion and pattern declaration
constructs, using them to produce all pattern variations in the PAT format.

Lexer & Parser

The Pattern Generation Language (PGL) syntax is defined by the EBNF grammar in
Listing 3.5.

From a syntax point of view, a program in PGL consists of:

• Imports

• Type Definitions
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• Definitions (Function Definitions)

• Pattern Declarations

Imports are specified using the ’import’ keyword followed by a STRING, containing
the relative path to the definition file. Type Definitions are declared using the ’type’
keyword, followed by an identifier (ID), a colon (:), and type variations. Definitions
start with ’def’ followed by an identifier (ID), parameters within parentheses, a colon
(:), and variations of the definition that can be produced by expanding ID. Parameters
are a list of identifiers (ID) separated by commas (,), which are used within expansions.
Pattern Declarations begin with ’decl’ followed by an identifier (ID) and parameters within
parentheses. Expansions can be either simple identifier expansions ($ID(parameters))
or type expansions ($ID), both achieved through the expansion operator $. Variations
consist of one or more instructions. Instructions can be actual code (CODE), expansions,
type expansions, or conditional constructs.

⟨program⟩ ::= ⟨import⟩
⟨type_definition⟩
⟨definition⟩
⟨pattern_decl⟩

⟨import⟩ ::= "import" ⟨STRING⟩
⟨type_definition⟩ ::= "type" ⟨ID⟩ ":" ⟨variations⟩

⟨definition⟩ ::= "def" ⟨ID⟩ "(" ⟨parameters⟩ ")" ":" ⟨variations⟩
⟨parameters⟩ ::= ⟨parameter⟩ ("," ⟨parameter⟩) ∗
⟨parameter⟩ ::= ⟨ID⟩

⟨expansion⟩
⟨variations⟩ ::= ⟨instruction⟩ ("|" ⟨instruction⟩) ∗

⟨pattern_decl⟩ ::= "decl" ⟨ID⟩ "("⟨parameters⟩") {" ⟨instruction⟩ ∗ "} ="

"{" ⟨instruction⟩ ∗ "}"

⟨expansion⟩ ::= "$" ⟨ID⟩ "(" ⟨parameters⟩ )"
⟨type_expansion⟩ ::= "$" ⟨ID⟩

⟨instruction⟩ ::= ⟨CODE⟩
⟨expansion⟩
⟨type_expansion⟩
⟨operation⟩

⟨operation⟩ ::= ⟨condition_op⟩
⟨condition_op⟩ ::= "$if" "(" ⟨condition⟩ ")" "{" ⟨instruction⟩ ∗ "}"

⟨elif⟩ ∗ ⟨else⟩?
⟨condition⟩ ::= ⟨type_expansion⟩ ⟨operator⟩ ⟨ID⟩
⟨operator⟩ ::= "=="
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"!="

⟨elif⟩ ::= "$elif" "(" ⟨condition⟩ ")" "{" ⟨instruction⟩ ∗ "}"

⟨else⟩ ::= "$else" "{" ⟨instruction⟩ ∗ "}"

Listing 3.5: PGL EBNF grammar
The PGL grammar accepts programs written both in Fortran and in C, as it treats

language operations as text and only differentiates specific PGL code by the use of the $
sign.

The generated parser tree is converted into an Abstract Syntax Tree (AST).

AST

The creation of the PGL AST involves the utilization of Python classes and the combina-
tion of patterns through the itertools library [18]. The pertinent classes within the AST
include Code, Instructions, ParamList, Lines, Variations, Block, Def, TypeExpansion,
TypeDef, TypeDecl, PointerArray, Expansion, IfOperation, Comparison, and Declara-
tion.

Following the construction phase, the AST undergoes a two-step process involving
the expansion of definitions and a subsequent linearization procedure aimed at facilitat-
ing code generation. As an illustrative example, consider the for definition depicted in
Figure 3.6. In Figure 3.6a, the initial AST resulting from parsing the for definition is
displayed. The represented classes include Def (denoting a definition), ParamList (a list of
parameters), Code (a segment of the source language code), Variations (elements subject
to permutation), Instructions (a list comprising Codes, Variations, or Expansions), and
Expansion (representing the expansion of a definition).

Figure 3.6b illustrates the detailed AST for the ’for’ definition in PGL. In this figure,
each ’Expansion’ node from Figure 3.6a is substituted with its corresponding ’Variation’,
as defined in PGL. This substitution also includes updating the expansion parameters to
align with the new context. For instance, the ’Expansion’ node $inc(x) from Figure 3.6a
is transformed in Figure 3.6b into a ’Variations’ node with four child nodes. These child
nodes represent different coding ways to increment ’x’, specifically: ++x, x++, x+=1, and
x=x+1.

Finally, Figure 3.6c demonstrates the linearization of the AST. This process consoli-
dates multiple Variation nodes into a single Variation node at a higher level within the
AST. Achieved through the cartesian product of each lower-level Variation and their al-
location to distinct branches within the higher-level Variation node.

This pre-computation step significantly contributes to reducing the subsequent com-
plexity of the code algorithm, which is responsible for generating all possible PAT varia-
tions for the for definition, as elaborated in the subsequent section.
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Figure 3.6: PGC AST Expansion.
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Code Generation

In the Code Generation phase of the PGL Compiler (PGC), output patterns in the PAT
format are produced. This phase begins by processing the linearized Abstract Syntax
Tree (AST), which includes nodes for Definitions (Def), Type Definitions (TypeDef), and
Declarations.

Initially, the Pattern Declaration node is interpreted. Here, the ’decl’ name within
this node is converted into the name of the PAT function. Concurrently, the TypeDecl
nodes are transformed into arguments for the resulting PAT pattern. The TypeDecl nodes
include various combinations, all of which are generated using the ’itertools.product’ func-
tion. This method results in a consistent and fixed set of combinations for each pattern,
ensuring uniformity in type variations across all generated patterns. This structured
approach is pivotal in maintaining consistency in pattern generation.

In the matching and replacement sections of the Pattern Declaration, the content of
Expansion nodes is substituted using the Expansion dictionary. This substitution replaces
the relevant variables with the arguments from the Expansion. Since the AST is already
linearized and its sub-expansions are pre-combined, the substitution of Expansion nodes
in the AST is efficiently executed.

The AST, now predominantly consisting of Code and Variations nodes, is next con-
verted into a list-based format. In this format, each Variation becomes an element of a
list, and Code is represented as a list containing a single element.

These list structures are then processed through the ‘itertools.product‘ function (carte-
sian product function), generating all required pattern combinations. The outcome of this
process is formatted into text, resulting in the creation of the PAT patterns.
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Chapter 4

Experimental Evaluation

This chapter details the experimental evaluation of the Pattern Generation Language
(PGL), aimed at automating the generation of code pattern variations. The experiments
focus on evaluating the usability, adaptability, strengths, and weaknesses of PGL, with
a key finding being its enhanced pattern-matching quality compared to previous manual
methods.

All experiments were performed using a dual Intel Xeon Silver 4208 CPU @ 2.10GHz
with 16 cores total and 191 GiB of RAM running Ubuntu 20.04. As for the software tool-
chain, the following commits/versions have been used: (a) Flang (FIR) commit 8abd290
[24]; (b) CIL commit 195acc3 [23]; (c) LLVM/MLIR commit 1fdec59 [25]; (d) OpenBLAS
version 0.3.20 [29]; and (e) GFortran version 9.4.0.

4.1 Linear Algebra PGL Patterns

Central to the experiments were two carefully designed sets of PGL patterns, derived from
Polybench and BLAS reference library, tailored for both Fortran and C languages, as de-
tailed in Sections 4.1.1 – 4.1.2. The utilization of Polybench and BLAS kernels was a de-
liberate choice, given their widespread recognition as exemplary linear algebraic patterns,
and their prevalent use across a variety of applications ranging from image processing to
machine learning domains. These pattern sets were subjected to a rigorous evaluation
process, focusing on aspects such as usability (Section 4.2.1), correctness (Section 4.2.2),
coverage (Section 4.2.3), and variability (Section 4.2.4). The evaluation methodology in-
volved converting these patterns into various formats using the PGL Compiler (PGC),
followed by an in-depth analysis of the resultant outputs to assess their accuracy and
practical effectiveness.

4.1.1 C PGL Patterns

To simplify the notation, Listing 4.1 lists all the definitions used by all the PGL descrip-
tions in Section 4.1.1.

The six C patterns listed below were programmed in PGL. Following code generation
with PGC, we conducted five measurements of the generation time and calculated the
average. The quantity of pattern variations generated is detailed in Table 4.1.
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1 def inc(x): ++x
2 def init(x): x = 0
3 def comp(a, b): a < b
4 def for(x, y): for ($init(x); $comp(x, y); $inc(x))
5 def acc(a, b): a += b | a = b + a
6 def mul(a, b): a * b | b * a
7 def macc(a, b, c): $acc(a,$mul(b,c))
8 def sum(a, b): a + b | b + a
9 def vector(x, i): x[i]

10 def matrix(A,b,c,d): $vector(A,$sum(b, $mul(c, d)))
11

12 type int : unsigned int | int | unsigned long | long
13 type real : float | double

Listing 4.1: PGL definitions used in C patterns.

When op(X) is used, it represents one of op(X) = X (same matrix) , or op(X) = AT

(transposed matrix).

Idioms axpy copy dot scal gemm gemv
# Patterns 160 40 160 136 86016 256

Generation time (ms) 62.5 21.58 66.18 57.89 26505.57 113.19

Table 4.1: Pattern variations generated with PGL for each idiom in C.

AXPY

The term "AXPY" stands for "a times x plus y". In this operation, you multiply a vector
x by a scalar alpha, and then add the resulting vector to another vector y, as in the
following equation:

y = α× x+ y

An example of axpy idiom written in PGL uses the expansions $for, $macc and
$vector and is presented in Listing 4.2.

1 decl axpy($int(n), $real(*x, *y, alpha)) {
2 $int i;
3 $for(i,n) {
4 $macc($vector(y, i), $vector(x, i), alpha);
5 }
6 }

Listing 4.2: AXPY pattern written in PGL.

COPY

The copy idiom is used to copy elements from one vector to another. It takes a vector x
and produces a vector y, as in the following equation:

y = x
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An example of a copy idiom written in PGL uses the expansions $for and $vector
and is presented in Listing 4.3.

1 decl copy($int(n), $real(*x, *y)) {
2 $int i;
3 $for(i,n) {
4 $vector(y, i) = $vector(x, i);
5 }
6 }

Listing 4.3: COPY pattern written in PGL.

DOT

The dot product (also known as the scalar product or inner product) is an idiom that
takes two vectors and produces a scalar. The dot product of two vectors, X and Y, is
calculated as follows:

out =
∑n

i=1XiYi

An example of dot idiom written in PGL uses the expansions $init, $for, $macc and
$vector and presented in Listing 4.4.

1 decl dot($int(n), $real(*x, *y, out)) {
2 $init(out);
3 $int i;
4 $for(i,n) {
5 $macc(out , $vector(x, i), $vector(y, i));
6 }
7 }

Listing 4.4: DOT pattern written in PGL.

SCAL

The scaling idiom takes a vector and a scalar and produces a vector. The scaling operation
of vector X with scalar alpha is calculated as follows:

x = α× x

An example of the scal idiom written in PGL uses the expansions $for, $mul and
$vector and is presented in Listing 4.5.

1 decl scal($int(n), $real(*x, alpha)) {
2 $int i;
3 $for(i,n) {
4 $vector(x, i) = $mul($vector(x, i),alpha);
5 }
6 }

Listing 4.5: SCAL pattern written in PGL.
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GEMV

The term GEMV stands for Generic Matrix-Vector multiplication. It represents a common
idiom in numerical linear algebra where a matrix is multiplied by a vector. The matrix can
be of any size, and the vector can be of any dimension, provided the number of columns
in the matrix matches the dimension of the vector.

The gemv idiom multiplies a matrix A with a vector x and a scalar alpha, producing
a result vector y that was previously scaled by beta. The operation is defined as follows:

y = α× op(A)× x+ β × y

An example of the gemv idiom written in PGL uses the expansions $for, $macc,
$matrix and $vector and is presented in Listing 4.6.

1 decl gemv($int(n),$real(*A,*X,*Y)) {
2 $int i,j;
3 $for(i,n) {
4 $for(j,n) {
5 $macc($vector(Y,i),$matrix(A,j,i,n),$vector(X,j));
6 }
7 }
8 }

Listing 4.6: GEMV pattern written in PGL.

GEMM

The term GEMM stands for Generic Matrix-Matrix Multiplication. It represents a fun-
damental idiom in linear algebra where two matrices are multiplied to produce a third
matrix. The GEMM operation involves three matrices: A, B, and C. Matrices A and B
are multiplied (A x B), and the result is scaled by alpha, producing alpha x A x B. C is
then scaled by beta before the scaled matrix multiplication (alpha x A x B) is accumulated
to it. This operation is defined as follows:

C = α× op(A)× op(B) + β × C

An example of the gemm idiom written in PGL uses the expansions $for, $acc, $macc,
$mul and $matrix and is presented in Listing 4.7.

1 decl gemm($int(m,n,k,lda ,ldb ,ldc),$real(alpha ,*A,*B,beta ,*C)) {
2 int mm, nn, i;
3 $for(mm ,m) {
4 $for(nn ,n) {
5 $real $init(c);
6 $for(i,k) {
7 $macc(c,$matrix(A,mm ,i,lda),$mul(alpha ,$matrix(B,i,nn ,ldb)));
8 }
9 $acc($matrix(C,nn ,mm ,ldc),c);

10 }
11 }
12 }

Listing 4.7: GEMM pattern written in PGL.
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4.1.2 Fortran PGL Patterns

To simplify the notation, Listing 4.8 lists all the definitions used by all the PGL descrip-
tions in Section 4.1.2.

1 def inc(x): ++x | x++ | x += 1 | x = x + 1
2 def init(x): x = 1
3 def comp(a, b): a < b
4 def for(x, y): do $init(x), y
5 def par(x): (x)
6 def acc(a, b): a = a + $par(b) | a = a + b
7 def mul(a, b): a * b | b * a
8 def macc(a, b, c): $acc(a,$mul(b,c))
9 def sum(a, b): a + b | b + a

10 def vector(x, i): x(i)
11 def matrix(x, i, j): x(i, j)
12

13 type int: integer
14 type real: real | double precision

Listing 4.8: PGL definitions used in Fortran patterns.

The nine Fortran patterns listed below were programmed in PGL. Following code gen-
eration with PGC, we conducted five measurements of the generation time and calculated
the average. The quantity of pattern variations generated is detailed in Table 4.2.

Idioms 2mm 3mm atax bicg gemm mvt symm syr2k syrk
# Patterns 32 8 32 32 32 16 4096 256 16

Gen. time (ms) 45.42 26.62 33.83 33.10 42.26 32.66 954.39 86.01 33.40

Table 4.2: Pattern variations generated with PGL for each idiom in Fortran.

2MM

The 2MM idiom is designed in PGL by performing two matrix-matrix multiplications in
sequence, as defined below:

D = alpha× op(A)× op(B) +D

E = op(C)× op(D) + beta× E

The 2mm idiom is characterized by a sequence of two distinct Region Defining Oper-
ations (RDOs). Due to its structure, where each of the matrix multiplications performs a
unique set of operations, it is not feasible to represent the 2mm idiom with a single PGL
pattern. This limitation arises from the SMR’s constraint of matching only one RDO per
pattern. To effectively capture the essence of the 2mm idiom, it is necessary to devise two
separate PGL patterns. Each pattern is designed to match one of the matrix-matrix mul-
tiplications: the first pattern accounts for the multiplication involving the alpha scalar,
and the second handles the multiplication with the beta scalar. These patterns leverage
the capabilities of $for, $macc, and $mul expansions in PGL, as detailed in the 2mm
pattern representation in Listing 4.9.
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1 decl p2mm1($int(ni ,nj ,nk),$real(alpha ,a[nk][ni],b[nj][nk],tmp[nj][ni])){
2 $for(i,ni)
3 $for(j,nj)
4 tmp(j,i) = 0.0
5 $for(k,nk)
6 $macc(tmp(j,i),alpha ,$mul(a(k,i),b(j,k)))
7 end do
8 end do
9 end do

10 }
11

12 decl p2mm2($int(ni ,nj ,nl),$real(beta ,c[nl][nj],d[nl][ni],tmp[nj][ni])){
13 $for(i,ni)
14 $for(j,nl)
15 d(j,i)=$mul(d(j,i),beta)
16 $for(k,nj)
17 $macc(d(j,i),tmp(k,i),c(j,k))
18 end do
19 end do
20 end do
21 }

Listing 4.9: 2MM pattern written in PGL.

3MM

The 3MM idiom is designed in PGL by performing three matrix-matrix multiplications
in sequence. The 3rd matrix-matrix multiplication uses the matrices resulting from the
1st and 2nd matrix-matrix multiplications.

E = op(A)× op(B) + E

F = op(C)× op(D) + F

G = op(E)× op(F ) +G

In contrast to the 2mm idiom’s requirement for multiple PGL patterns, the 3mm id-
iom can be effectively represented using a single PGL pattern. This is possible because
all three matrix-matrix multiplications in the 3mm idiom execute the same set of opera-
tions, allowing for a unified pattern description. The 3mm idiom effectively utilizes $for
and $macc expansions within PGL, as illustrated in the detailed representation provided
in Listing 4.10.

1 decl p3mm($int(ni ,nj ,nk),$real(a[nk][ni],b[nj][nk],e[nj][ni])){
2 $for(i,ni)
3 $for(j,nj)
4 e(j,i) = 0.0
5 $for(k,nk)
6 $macc(e(j,i),a(k,i),b(j,k))
7 end do
8 end do
9 end do

10 }

Listing 4.10: 3MM pattern written in PGL.
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ATAX

The ATAX idiom is described as Matrix Transpose and Vector Multiplication and involves
the following steps:

tmp = A× x

y = AT × tmp

where A is the coefficient matrix, x is the input vector, tmp is the temporary vector,
and y is the output vector. The AT represents the transpose of matrix A.

This idiom uses the expansions $for and $macc as presented in Listing 4.11.

1 decl atax($int(nx ,ny),$real(a[ny][nx],x[ny],y[ny],tmp[nx])){
2 $for(i,nx)
3 tmp(i) = 0.0D0
4 $for(j,ny)
5 $macc(tmp(i),a(j,i),x(j))
6 end do
7 $for(j,ny)
8 $macc(y(j),a(j,i),tmp(i))
9 end do

10 end do
11 }

Listing 4.11: ATAX pattern written in PGL.

BICG

The BICG idiom in Polybench is the Sub Kernel of BiCGStab (Biconjugate gradient
stabilized method) Linear Solver.

This idiom uses the expansions $for and $macc as presented in Listing 4.12.

1 decl bicg($int(nx ,ny),$real(a[ny][nx],r[nx],q[nx],p[ny],s[ny])){
2 $for(i,nx)
3 q(i) = 0.0D0
4 $for(j,ny)
5 $macc(s(j),r(i),a(j, i))
6 $macc(q(i),a(j, i),p(j))
7 end do
8 end do
9 }

Listing 4.12: BICG pattern written in PGL.

GEMM

The GEMM idiom performs the classic Generic Matrix Multiply (GEMM) operation as
defined by the formula below: C = alpha× op(A)× op(B) + beta× C

It uses the expansions $for, $matrix, $mul and $macc presented in Listing 4.13.
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1 decl gemm($int(m,n,k),$real(alpha ,beta ,A[m][k],B[k][n],C[m][n])) {
2 $for(nn ,n)
3 $for(mm ,m)
4 $matrix(c, mm , nn) = $mul($matrix(c, mm , nn), beta)
5 $for(i,k)
6 $macc($matrix(c, mm , nn),$mul(alpha ,$matrix(b, i, nn)),$matrix(a

, mm , i))
7 end do
8 end do
9 end do

10 }

Listing 4.13: GEMM pattern written in PGL.

MVT

The MVT idiom comprises two matrix-vector multiplications, where the 2nd one has the
A matrix transposed, as defined by the formulas below:

x1 = A× y1 + x1

x2 = AT × y2 + x2

Both idioms use the expansions $for and $macc presented in Listing 4.14.

1 decl mvt1($int(n),$real(a[n][n],y[n],x[n])){
2 $for(i,n)
3 $for(j,n)
4 $macc(x(i),a(i,j),y(j))
5 end do
6 end do
7 }
8

9 decl mvt2($int(n),$real(a[n][n],y[n],x[n])){
10 $for(i,n)
11 $for(j,n)
12 $macc(x(i),a(j,i),y(j))
13 end do
14 end do
15 }

Listing 4.14: MVT pattern written in PGL.

SYMM

The SYMM idiom represents a symmetric matrix-matrix multiplication operation. Given
a symmetric matrix A, a matrix B, and a matrix C, the SYMM pattern computes the
following operation:

C = α× A×B + β × C

Here, A is a symmetric matrix, B is a matrix, C is the result matrix, α is a scalar
coefficient, and β is another scalar coefficient.

This idiom uses the expansions $for, $macc, $mul, $sum and $par as presented in
Listing 4.15.
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1 decl symm($int(ni ,nj),$real(acc ,alpha ,beta ,a[nj][nj],b[nj][ni],c[nj][ni
])){

2 $for(i,ni)
3 $for(j,nj)
4 acc = 0.0D0
5 $for(k,j-2)
6 $macc(c(j,k),$mul(alpha ,a(i,k)),b(j,i))
7 $macc(acc ,b(j,k),a(i,k))
8 end do
9 c(j,i) = $sum($par($mul(beta ,c(j,i))),$sum($par($mul(alpha ,$mul(

a(i,i),b(j,i)))),$par($mul(alpha ,acc))))
10 end do
11 end do
12 }

Listing 4.15: SYMM pattern written in PGL.

SYRK

The SYRK pattern represents a symmetric rank-k update operation. Given a matrix A

and a matrix B, the SYRK pattern computes the following operation:
C = α× A× AT + β ×B

Here, A is a matrix, C is the result matrix, α is a scalar coefficient, beta is another
scalar coefficient, and AT the transpose of matrix A.

This idiom uses the expansions $for, $mul, and $macc as presented in Listing 4.16.

1 decl syrk($int(ni ,nj),$real(alpha ,a[ni][ni],c[nj][ni])){
2 $for(i,ni)
3 $for(j,ni)
4 $for(k,nj)
5 $macc(c(j,i),alpha ,$mul(a(k,i),a(k,j)))
6 end do
7 end do
8 end do
9 }

Listing 4.16: SYRK pattern written in PGL.

SYR2K

The SYR2K pattern represents a symmetric rank-2k update operation. Given two matri-
ces A and B, the SYR2K pattern computes the following operation:

C = α× A×BT + α×B × AT + β × C

Here, A and B are symmetric matrices, C is the result matrix, α is a scalar coefficient,
and β is another scalar coefficient. The × symbol represents matrix multiplication, and
BT and AT represent the transpose of matrices B and A, respectively.

This idiom uses the expansions $for, $mul and $macc as presented in Listing 4.17.
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1 decl syr2k($int(ni ,nj),$real(alpha ,beta ,a[nj][nj],b[nj][ni],c[ni][ni])){
2 $for(i,ni)
3 $for(j,i)
4 c(j, i)=$mul(c(j, i),beta)
5 end do
6 $for(j,i)
7 $for(k,nj)
8 $macc(c(j, i),alpha ,$mul(a(k,i),b(k,j)))
9 $macc(c(j, i),alpha ,$mul(b(k,i),a(k,j)))

10 end do
11 end do
12 end do
13 }

Listing 4.17: SYR2K pattern written in PGL.

4.2 Experimental Results

This section demonstrates the versatility of the Pattern Generation Language (PGL) in
formulating patterns for different programming languages, specifically Fortran and C. The
evaluation of PGL encompasses four critical aspects, each addressing a unique dimension
of PGL as a pattern programming language:

1. Usability (Section 4.2.1): Here, the focus is on the practical application of PGL.
Fortran patterns, created using PGL, were tested with the Source Matching and
Rewriting (SMR) tool against the Polybench/Fortran suite. This test served to
validate PGL’s usability in real-world scenarios.

2. Correctness (Section 4.2.2): In this section, the emphasis is on the accuracy and
reliability of PGL. C patterns generated through PGL were transformed into func-
tions, compiled, and then executed against predetermined inputs. The outcomes of
these tests were then compared to a reference standard to assess their correctness.

3. Coverage Improvement (Section 4.2.3): This part of the evaluation focused on
PGL’s efficiency in pattern matching. The study involved comparing the cover-
age achieved by automatically synthesized PGL C patterns against coverage from
manually written PAT patterns, as described in [8]. This comparison aimed to
demonstrate how PGL enhances pattern-matching capabilities.

4. Pattern Variation Analysis (Section 4.2.4): The final aspect of the evaluation ex-
plored the specific contributions of individual PGL pattern definitions to the overall
pattern-matching process. This was carried out by examining the roles of ’accu-
mulation’ and ’multiply’ definitions in pattern formation, providing a detailed case
study in pattern variation analysis.

Each of these areas collectively underscores the comprehensive capabilities of PGL
as a pattern programming language, highlighting its utility and effectiveness in various
aspects of pattern generation and application.
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4.2.1 Usability

In the first experiment, a set of patterns targeting Fortran BLAS kernels have been de-
signed using the PGL language and applied to Fortran Polybench programs for matching.

To achieve that, first, the Polybench Fortran PGL patterns described in Section 4.1.2
were passed through the PGC compiler resulting in a set of PAT patterns that cover many
variations of the input PGL patterns.

Second, the generated PAT patterns were used with SMR to run against the Polybench
Fortran programs. Idioms were substituted by the corresponding Fortran BLAS calls.

Listings in Section 4.1.2 illustrates the PGL language straightforward representation
for describing Polybench’s kernel idioms, reiterating the usability of PGL with SMR.

With these experiments, it was possible to replicate all the matching results of the
SMR paper [8] regarding the Fortran matching experiments. This achievement was ac-
complished by leveraging the PGL patterns outlined in Section 4.1.2. Notably, these
PGL patterns offer a more versatile and flexible definition compared to the traditional
PAT format.

4.2.2 Correctness Analysis

The goal of this set of experiments was to evaluate the correctness of the PGL language
and the PGC compiler.

In order to validate the correctness of the generation of patterns and combinations, it
was necessary to compile each generated pattern and execute them, comparing its output
with an expected reference output. We validated all the patterns listed in Section 4.1.1
(axpy, copy, dot, scal, gemm and gemv) written in the C language. To test the pattern
generation, it was necessary to extract only the match section of the patterns and insert
them into functions of the language in which they were specified. These functions were
divided into files with up to 10 functions and compiled in parallel with cmake and ninja.
The main function instantiated the inputs (vectors or matrices) and saved the results in a
variable or vector, using the first generated pattern as the reference pattern. After that,
each pattern was executed with the same input values, and the output was compared with
the reference output. This comparison takes into account that floating point operations
have an error added to the result. Therefore, the accepted variation in this experiment
was 10−5 for float and 10−14 for double. This validation program is compiled into a binary,
that was produced for each type of pattern, performs the execution and comparison of all
functions, and issues an error if the result is outside the threshold. With this experiment,
it was possible to conclude that all generated pattern variations in Section 4.1.1 are
equivalent.

4.2.3 Coverage Analysis

The goal of this section is to evaluate the ability of PGC to generate a broad range of
pattern variations from a PGL description and to evaluate the coverage of these patterns
on programs at large. To achieve that, the PGL patterns described in the Section 4.1.1
are passed through the PGC compiler, and the PAT patterns resulting from the PGC
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output are fed to the SMR compiler. The SMR compiler takes as input a benchmark
codebase and tries to pattern-match the PGC output patterns on them.

As stated in [4], the perfect evaluation scenario for pattern matching should consider
matching patterns on a large-scale real-world codebase, but this brings many implemen-
tation problems as such code is not prepared for benchmarking. In addition, there is no
known benchmark for pattern matching. To address that, this work uses AnghaBench [5],
a large codebase containing one million programs randomly extracted from the Internet.

Although the goal of AnghaBench was not to evaluate pattern matching1, it can still
serve the purpose of this work. To achieve that, the AnghaBench programs were pre-
compiled with the CIL MLIR frontend to filter only the compilable codes and then create
a set of code snippets that work as a large codebase, on top of which the patterns generated
by PGC from the PGL patterns in Section 4.1.1 could be matched.

Table 4.3, presents a comparison of pattern-matching results using PGL with SMR, fo-
cusing on different idioms across various programs like Darknet, Cello, Exploitdb, Ffmpeg,
Hpgmg, and Nekrs. The table contrasts the number of idioms matched using SMR alone
(Column A) and the combination of PGL with SMR (Column B). The baseline experi-
ment and results were obtained from the coverage experiment of the SMR paper [8]. This
comparison enables an evaluation of PGL’s effectiveness in enhancing pattern-matching
coverage. The data suggests that for certain programs and idioms, the use of PGL with
SMR leads to a higher number of matches, indicating PGL’s potential to expand pattern-
matching capabilities. The total counts at the bottom of the table summarize the overall
increase in pattern matches achieved by integrating PGL with SMR. The PGL result was
inferior to that of SMR only in the case of Exploitdb. This discrepancy arose because the
patterns utilized by SMR involved variations with global variables, a feature that was not
implemented in the PGL language.

1 void axpy(int N, float alpha , float *x, int incx , float *y, int incy) {
2 for(int i = 0; i < N; ++i) {
3 y[i*incy] += alpha * x[i*incx];
4 }
5 }

Listing 4.18: Pattern axpy not matched previously with SMR.

1 decl axpy($int(n, incx , incy), $real(*x, *y, alpha)) {
2 $int i;
3 $for(i,n) {
4 $acc($vector_inc(y, i, incy), $mul($vector_inc(x, i, incx), alpha));
5 }
6 }

Listing 4.19: Matched AXPY PGL pattern.

An illustration of PGL’s capability for pattern matching is evident in the comparison
of Listings 4.18 and 4.19. In Listing 4.18, an AXPY idiom failed to match in the SMR

1AnghaBench is used in predictive compilation to train compilers for code size reduction
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1 void axpy(int n, int incx , int incy , float *x, float *y, float alpha){
2 int i;
3 for(i=0;i<n;++i) {
4 y[i*incy ]+=(x[i*incx])*( alpha) ;
5 }
6 }

Listing 4.20: Matched AXPY PAT pattern generated with PGL.

experiment. However, with PGL’s description of the same idiom, as shown in Listing 4.19,
a successful match was achieved. The key difference between these pattern descriptions
lies in the multiplication order of the scalar "alpha", highlighting how subtle variations
in pattern description can significantly impact the matching process. The matched PAT
pattern is detailed in Listing 4.20, demonstrating the effectiveness of PGL in capturing
patterns that were previously unmatched.

Table 4.3: PGL with SMR matching results using CIL and CBLAS idioms.

Darknet [22] Cello [12] Exploitdb [27] Ffmpeg [7] Hpgmg [1] Nekrs [9] Total

Idiom A B A B A B A B A B A B A B
saxpy 1 2 1 1 3
scopy 1 1 9 1 10
sdot 1 3 1 4 2 7

sgemm 4 4 4 4
sscal 2 4 2 2 6
daxpy 1 3 0 4
ddot 1 1 1 2 2 2 4 5

dgemm 1 3 3 4 3
dgemv 1 1 1 1
dscal 3 4 3 4
Total 9 14 1 1 1 0 1 17 1 2 9 13 22 47

A: SMR.
B: PGL+SMR.

4.2.4 Pattern Variation Analysis

The goal of this section is to analyze how PGL can improve the matching of patterns
that were impracticable before without the increasing flexibility of PGL definitions. The
experiment starts by analyzing in greater depth the results of the experiments described
in Section 4.2.3. In particular, it evaluates the impact of two central PGL definitions (acc
and mul) in the matching result.

1 def acc(a, b) : a += b 1 | a = b + a 2
2 def mul(a, b) : (a) * (b) 1 | (b) * (a) 2

Listing 4.21: The definition of Acc and Mul written in PGL
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The result of this evaluation is shown in Table 4.4. That table lists, for each input
program, the PAT idioms that were matched from those produced after compiling the
PGL patterns in Section 4.1.1. Columns acc and mul of Table 4.4 show which pattern
variations have been matched at the input program based on the variations presented
at the definitions in Listing 4.21. For example, line 1 Listing 4.21 describes a definition
for acc in which two variations for addition are possible. Variation sentence a += b is
marked 1 while variation a = b + a is marked with 2 . Similarly, in the definitions
for mul, there are two variations: (a) * (b) marked with 1 and its commutative form
(b) * (a) marked with 2 .

Variations marked with 1 and 2 in Listing 4.21 are associated with the columns
acc and mul in Table 4.4, so an idiom matching can be broken down in which definition
variations it used. For example, take idiom scal when matched inside the program
Darknet. In the first matching of scal column 1 of both acc and mul are marked,
meaning that idioms composed of the first variations of their corresponding definitions
have been matched twice (see the last column). In addition, the second matching of scal
was achieved by matching the first variation of acc and both variations (1 and 2) of mul.

Based on the Table 4.4, a deeper analysis reveals some insightful patterns and prefer-
ences in the use of ’acc’ and ’mul’ variations across different programs. The table indicates
a tendency for certain variations to be more prevalent, suggesting that the way of writing
a language in a program tends to repeat itself. This is evident in the frequent matching
of the same patterns within different parts of the same input program. Such a trend
implies that programmers often have a preferred way of implementing certain operations,
which PGL can successfully capture and utilize for pattern matching. The dominance of
variation 1 in both ’acc’ and ’mul’ rules across multiple programs could reflect a more
conventional or widely accepted way of writing these operations in code. This observation
highlights the effectiveness of PGL in adapting to common coding practices and suggests
potential areas for further optimization in pattern recognition algorithms, as the analysis
suggests a tendency for only one type of variation to occur throughout the pattern.
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Input Idiom acc mul # Matches1 2 1 2
Cello [12] dot 1
Cinder copy 2

Darknet [22]

axpy 1
1

copy 1

dot 2
1

gemm 3
1

scal 2
2

FFmpeg [7]

axpy 2
copy 9
dot 4
scal 2

Hpgmg [1] dot 2

Nekrs [9]

axpy 3
dot 2

scal 3
1

gemm 3
gemv 1

Numpy scal 1
Petsc dot 1

ReactOS copy 1
RetroArch axpy 1

Table 4.4: Ocurrence of acc and mul variations in idioms matched with PGL.
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Chapter 5

Related Work

This chapter discusses key research relevant to our study, focusing on advanced techniques
in programming language representation and optimization.

Shoaib Kamil et al. introduced Verified Lifting [13], a novel method for transforming
low-level Fortran stencil computations into a high-level summary using a predicate lan-
guage. This process is largely automated, relying on counter-example guided inductive
synthesis (CEGIS) to ensure accurate and provably correct translations. Implemented
within the STNG system, this approach yielded significant performance gains, with the
translated code outperforming the original Fortran code by factors ranging from 4.1x to
24x.

The research also highlights the challenges in effectively using domain-specific lan-
guages (DSLs), pointing out the necessity of manual code rewriting. To address this, the
authors developed Metalift [16], a new framework that automates the creation of DSL
transpilers using program synthesis. Metalift, demonstrated to be efficient in translating
and reducing code size, simplifies the complex process traditionally handled by compilers.
Verified Lifting’s extension into the Metalift framework is detailed, illustrating its use
in pattern description through Python and efficient pattern identification using an SMT
solver.

E-graphs, an innovation from the 1970s, are now instrumental in equality saturation
for compiler optimizations and program synthesis. In the paper "Egg: Fast and Extensible
Equality Saturation" [28], Max Willsey et al. present two methods to enhance e-graphs’
efficiency and extensibility in this context. They also introduce "Ruler", a pattern rewrit-
ing tool that utilizes Egg and an SMT solver for equality saturation, offering a distinct
approach compared to automaton-based methods like "SMR".

The paper "Rewrite Rule Inference Using Equality Saturation" [21] explores using
e-graphs and equality saturation to infer rewrite rules in compilers, synthesizers, and
theorem provers. Rewrite rules, crucial for simplifying expressions or establishing equiva-
lences, are often challenging to develop. The authors demonstrate how equality saturation
can efficiently generate smaller, more adaptable rulesets, highlighting "Ruler" for its abil-
ity to synthesize rulesets 25 times faster than similar tools without losing proving power.
In a case study, Ruler-generated rules performed comparably to expert-crafted rules and
solved issues in an open-source tool.

"RISE" [19] is a parallel data functional language integrated with MLIR, comple-
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mented by "Elevate" [11], a language for describing optimization strategies. These tools,
successors to the "Lift" project [15], feature a pattern detection system and device-specific
optimizations. RISE primarily utilizes parallel data operators like "map" and "reduce".

"PDL" [20] developed by the MLIR community, is a language designed for pattern
replacement within dialects, independent of external tools. It adopts a pattern-matching
approach similar to "SMR" but focuses on defining patterns directly in dialects, whereas
SMR uses source languages like C and Fortran.

Polyhedral and BLAS optimizations are implemented using the "Tactics Description
Language" from "Multi-Level Tactics" (MLT) [3], which is based on MLIR. Descriptions
in TDL are converted into "Tactics Description Specification," using MLIR’s "TableGen".
However, this support is limited to high-level operations such as reshape, transpose, mat-
mul, matvec, and convolution.

"Idiom Description Language" (IDL) [10] is used for describing substitution patterns
for LLVM, mapping patterns to calls of optimized libraries and domain-specific languages
like Halide and Lift [15]. One challenge with this approach is pattern recognition post-
LLVM lowering, as code distortions can reduce pattern detection. Using MLIR mitigates
this by enabling higher-level matching, thus preserving more of the source language’s
structure.

Table 5.1 compares the programs cited above, like Verified Lifting (VL), Metalift,
Ruler, Elevate, PDL, Multi-Level Tactics (MLT), and Idiom Description Language (IDL)
against key features: MLIR, LLVM, Automaton, SMT Solver, and TableGen. Verified
Lifting and Metalift are both automated systems that utilize SMT Solvers for high-level
abstraction and efficient pattern recognition. Ruler stands out for its use of SMT Solvers,
focusing on equality saturation and rewrite rule inference. Elevate, closely integrated with
MLIR, emphasizes optimization strategies without incorporating LLVM or SMT Solvers.
PDL, uniquely, is tailored to MLIR with a specific emphasis on pattern replacement within
dialects. MLT employs both MLIR and TableGen for optimizing complex operations like
polyhedral and BLAS optimizations. IDL, conversely, is more aligned with LLVM, using
it for pattern description in low-level code.

In contrast, our work with PGL+SMR is distinct for its feature of Source Language
Pattern Description. While other programs in the table focus on either high-level ab-
straction (like in VL and Metalift) or low-level code optimization (such as in Ruler and
IDL), PGL+SMR stands out for its ability to describe patterns directly in the source
language. This unique feature allows for more intuitive and accessible pattern recogni-
tion and manipulation, bridging the gap between high-level conceptual understanding and
low-level code optimization. This capability makes PGL+SMR particularly versatile and
user-friendly, especially for developers who may not be deeply versed in MLIR or LLVM
intricacies. Overall, while each program has its strengths, PGL+SMR’s focus on source
language pattern description offers a distinctive and practical approach in the realm of
programming language representation and optimization.
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Features Programs
VL Metalift Ruler Elevate PDL MLT IDL PGL+SMR

MLIR
LLVM

Automaton
SMT Solver

TableGen (graph)
Languages Fortran Java Rise MLIR IR MLIR IR LLVM IR C/Fortran

Source language
pattern description

Table 5.1: PGL and Related Works feature comparison.
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Chapter 6

Conclusions and Future Work

This dissertation introduces and evaluates the Pattern Generation Language (PGL), an
innovative tool designed to simplify and enhance the process of code detection and rewrit-
ing. PGL enables users to describe complex program patterns, which are then processed
by the PGL Compiler (PGC) to automatically generate a variety of pattern variations.
This research also explores the integration of PGL with existing Source Matching and
Rewriting (SMR) and Multi-Level Intermediate Representation (MLIR) tools.

Our experimental analysis demonstrates PGL’s capability to significantly increase
the number of pattern matches in comparison to manually written patterns for SMR.
This enhancement is particularly notable in its application to real-world programs, where
PGL’s ability to generate diverse pattern variations leads to more effective code optimiza-
tion. The study also identifies several pattern characteristics that contribute to improved
matching efficiency.

While PGL has shown considerable promise in this domain, future research avenues
remain open:

Parallel Code Generation Enhance PGL’s code generation process with parallel com-
puting techniques. This could involve optimizing the PGL Compiler to exploit
parallelism, thereby accelerating the generation of pattern variations and improving
overall performance.

Cross-Language Compatibility Extend PGL’s capabilities to support a wider range of
programming languages. Investigate methods to make PGL patterns more language-
agnostic, enabling seamless application across diverse codebases written in different
languages.

Semantic Analysis for Code Reordering Enhance PGL with advanced semantic
analysis capabilities to automatically identify opportunities for code reordering.
This could involve analyzing dependencies and interactions between instructions
to improve code efficiency further.

Pattern Repository and Sharing Develop a centralized repository for PGL patterns,
allowing users to share and reuse patterns across different projects. This collabora-
tive approach could foster a community-driven ecosystem for pattern development
and optimization strategies.



56

Energy Efficiency Optimization Investigate PGL’s potential in optimizing code for
energy efficiency. Develop patterns and strategies that consider energy consumption
metrics, contributing to the broader goal of sustainable computing.

By addressing these areas, we aim to broaden PGL’s applicability and efficiency in the
field of compiler optimization, particularly in the realms of code quality control, security
enhancement, and performance improvement in various computing applications.
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