

UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE QUÍMICA

VICTOR ZEFERINO E RESENDE

AVALIAÇÃO DA DEGRADAÇÃO DE PLÁSTICOS EM CONDIÇÕES AMBIENTAIS SEMI-CONTROLADAS

CAMPINAS 2023

VICTOR ZEFERINO E RESENDE

AVALIAÇÃO DA DEGRADAÇÃO DE PLÁSTICOS EM CONDIÇÕES AMBIENTAIS SEMI-CONTROLADAS

Dissertação de Mestrado apresentada ao Instituto de Química da Universidade Estadual de Campinas como parte dos requisitos exigidos para a obtenção do título de Mestre em Química na área de Química Analítica.

Orientadora: Profa. Dra. Cassiana Carolina Montagner

O arquivo digital corresponde à versão final da Dissertação defendida pelo aluno Victor Zeferino e Resende e orientada pela Profa. Dra. Cassiana Carolina Montagner. Ficha catalográfica Universidade Estadual de Campinas Biblioteca do Instituto de Química Simone Luiz Alves - CRB 8/9094

 Resende, Victor Zeferino e, 1993-Avaliação da degradação de plásticos em condições ambientais semicontroladas / Victor Zeferino e Resende. – Campinas, SP : [s.n.], 2023.
Orientador: Cassiana Carolina Montagner. Dissertação (mestrado) – Universidade Estadual de Campinas, Instituto de Química.
1. Degradação plástica. 2. Degradação ambiental. 3. Mesocosmos. I. Montagner, Cassiana Carolina, 1981-. II. Universidade Estadual de Campinas. Instituto de Química. III. Título.

Informações Complementares

Título em outro idioma: Evaluation of plastic degradation under semi-controlled environmental conditions Palavras-chave em inglês: Plastic degradation Environmental degradation Mesocosms Área de concentração: Química Analítica Titulação: Mestre em Química na área de Química Analítica Banca examinadora: Cassiana Carolina Montagner [Orientador] Walter Ruggeri Waldman William Reis de Araujo Data de defesa: 12-12-2023 Programa de Pós-Graduação: Química

Identificação e informações acadêmicas do(a) aluno(a) - ORCID do autor: https://orcid.org/0000-0003-0970-252X

- Currículo Lattes do autor: http://lattes.cnpq.br/0697987251555087

BANCA EXAMINADORA

Profa. Dra. Cassiana Carolina Montagner (Orientadora)

Prof. Dr. William Reis de Araujo (Universidade Estadual de Campinas)

Prof. Dr. Walter Ruggeri Waldman (Universidade Federal de São Carlos)

A Ata da defesa assinada pelos membros da Comissão Examinadora, consta no SIGA/Sistema de Fluxo de Dissertação/Tese e na Secretaria do Programa da Unidade.

Este exemplar corresponde à redação final da Dissertação de Mestrado defendida pelo aluno **Victor Zeferino e Resende**, aprovada pela Comissão Julgadora em 12 de dezembro de 2023.

AGRADECIMENTOS

À minha esposa Bia, pelo amor, carinho, paciência e, principalmente, por toda a ajuda que me permitiu chegar a esse título.

Aos meus pais Antônio e Franci e minha irmã Lara, pela base que me permitiu concluir mais esta etapa da vida.

À minha segunda família; Marília, Júlia, Adhemar, Vagner, Frida e Margot, agradeço por todo o suporte e carinho ao longo desse caminho.

Aos membros titulares e suplentes das minhas bancas de qualificação e defesa.

Aos amigos do LQA e da Rhodia, pelo aprendizado, parceria e o tempo para execução do projeto.

Aos meus parceiros da História, agradeço por tornarem os meus dias muito mais engraçados.

À Cassiana, agradeço o apoio e a orientação para que o projeto atingisse os objetivos.

Ao Instituto de Química da UNICAMP. Em especial, à Fabiana pelo auxílio nas análises termogravimétricas.

Ao Instituto Nacional de Ciências e Tecnologias Analíticas Avançadas (INCTAA) (CNPq Proc. No. 465768/2014-8 e FAPESP Proc. No. 2014/50951-4).

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Código de Financiamento 001.

Eloisa to Abelard

"...How happy is the blameless vestal's lot!The world forgetting, by the world forgot.Eternal sunshine of the spotless mind!Each prayer accepted, and each wish resign'd..."

(Alexander Pope)

RESUMO

O plástico é um dos materiais mais importantes e versáteis da atualidade, desempenhando um papel fundamental em diversas áreas da sociedade. No entanto, a crescente poluição plástica em diversos compartimentos ambientais representa atualmente um problema alarmante. Desse modo, avaliar a degradação do plástico no meio ambiente é de suma importância. Este trabalho teve como objetivo avaliar a degradação ambiental de plásticos comerciais como folhas de espuma de copolímero de etileno e acetato de vinila (EVA), sacolas descartáveis de polietileno de alta densidade (HDPE), tecidos têxteis de poli(tereftalato de etileno) (PET), e máscaras descartáveis de polipropileno (PP) sob diferentes condições ambientais durante um ano. Para tanto, um mesocosmo de água doce e dois de solo (com e sem exposição) foram utilizados para simular diferentes condições ambientais semi-controladas. Os materiais plásticos pristinos foram cortados em tiras e dispostos aleatoriamente nos mesocosmos. As amostras foram coletadas mensalmente de novembro de 2021 a outubro de 2022. Após a coleta, as amostras foram cuidadosamente lavadas, secas ao ar por 24 horas, depois fotografadas e pesadas para avaliação visual e mássica. Em seguida, as amostras foram analisadas por espectroscopia no infravermelho por transformada de Fourier com amostragem por reflectância total atenuada (ATR-FTIR), calorimetria diferencial de varredura (DSC) e análise termogravimétrica (TGA). A avaliação visual e mássica demostrou que a formação de biofilme ocorreu principalmente no mesocosmo de água doce. Em contrapartida, a fragmentação do plástico ocorreu predominantemente no mesocosmo de solo com exposição e a incrustação de solo ocorreu predominantemente no mesocosmo de solo sem exposição. Além disso, verificou-se a influência da sazonalidade na avaliação mássica, na qual houve variação positiva nos meses chuvosos. As principais bandas monitoradas na análise de ATR-FTIR apresentaram aumento gradual ao longo do experimento e foram associadas principalmente à formação de biofilme, incrustação de solo e exposição à radiação solar. Por sua vez, a presença da matéria orgânica, seja de biofilme ou solo, foi responsável pelas principais alterações nos padrões de fusão e decomposição dos plásticos, de acordo análises de DSC e TGA. Em geral, as análises de DSC demonstraram uma tendência de redução das entalpias de fusão do primeiro aquecimento (ΔH_{m1}), enquanto as análises de TGA demonstraram uma tendência de aumento na temperatura de decomposição dos materiais (T_{máx}).

Palavras-chave: degradação plástica; degradação ambiental; EVA; HDPE; PET; PP; mesocosmos; avaliação visual; avaliação mássica; ATR-FTIR; DSC; TGA.

ABSTRACT

Plastic is one of the most important and versatile materials today, playing a fundamental role in different areas of society. However, the increasing plastic pollution in several environmental compartments currently represents an alarming problem. Thus, evaluating plastic degradation in the environment is of utmost importance. This work aimed to evaluate the environmental degradation of commercial plastics such as ethylene-vinyl acetate copolymer (EVA) foam sheets, high-density polyethylene (HDPE) disposable bags, poly(ethylene terephthalate) (PET) textile fabrics, and polypropylene (PP) disposable masks under different environmental conditions over a year. To this end, one freshwater and two soil (with and without exposure) mesocosms were used to simulate different semi-controlled environmental conditions. Pristine plastic materials were cut into strips and randomly arranged in the mesocosms. Samples were collected monthly from November 2021 to October 2022. After collection, samples were carefully washed, air-dried for 24 hours, then photographed and weighed for visual and mass evaluation. Next, samples were analyzed by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). Visual and mass evaluation demonstrated that biofilm formation occurred mainly in the freshwater mesocosm. In contrast, plastic fragmentation occurred predominantly in the soil mesocosm with exposure, and soil encrustation occurred predominantly in the soil mesocosm without exposure. Also, seasonality influence was verified in the mass evaluation, in which there was a positive variation in rainy months. Main monitored bands in ATR-FTIR analysis showed a gradual increase throughout the experiment and were mainly associated with biofilm formation, soil incrustation, and exposure to solar radiation. In turn, the presence of organic matter, whether from biofilm or soil, was responsible for the main changes in the melting and decomposition patterns of plastics based on DSC and TGA analyses. In general, the DSC analyses demonstrated a trend towards a reduction in the melting enthalpies of the first heating (ΔH_{m1}) , while the TGA analyses demonstrated a trend towards an increase in the decomposition temperature of the materials $(T_{max}).$

Keywords: plastic degradation; environmental degradation; EVA; HDPE; PET; PP; mesocosms; visual evaluation; mass evaluation; ATR-FTIR; DSC; TGA.

LISTA DE FIGURAS

Figura 1. Montagem finalizada do mesocosmo de água doce. Fotografia tirada em outubro d	le
2021	27
Figura 2. Montagem finalizada do mesocosmo de solo com exposição. Fotografia tirada em	
outubro de 2021	28
Figura 3. Montagem finalizada do mesocosmo de solo sem exposição. Fotografia tirada em	
outubro de 2021	29
Figura 4. Fitas controles amostradas mensalmente desde o mês 00 até o mês 12 para	
mesocosmo de água doce, mesocosmo de solo com exposição e mesocosmo de solo sem	
exposição para o EVA	33
Figura 5. Fitas controles amostradas mensalmente desde o mês 00 até o mês 12 para	
mesocosmo de água doce, mesocosmo de solo com exposição e mesocosmo de solo sem	
exposição para o HDPE	35
Figura 6. Fitas controles amostradas mensalmente desde o mês 00 até o mês 12 para	
mesocosmo de água doce, mesocosmo de solo com exposição e mesocosmo de solo sem	
exposição para o PET	37
Figura 7. Fitas controles amostradas mensalmente desde o mês 00 até o mês 12 para	
mesocosmo de água doce, mesocosmo de solo com exposição e mesocosmo de solo sem	
exposição para o PP	39
Figura 8. Variação média de massa (%) das fitas controles em relação aos valores iniciais	
(mês 00) para mesocosmo de água doce, mesocosmo de solo com exposição e mesocosmo de	e
solo sem exposição para o EVA 4	42
Figura 9. Variação média de massa (%) das fitas controles em relação aos valores iniciais	
(mês 00) para mesocosmo de água doce, mesocosmo de solo com exposição e mesocosmo de	e
solo sem exposição para o HDPE 2	14
Figura 10. Variação média de massa (%) das fitas controles em relação aos valores iniciais	
(mês 00) para mesocosmo de água doce, mesocosmo de solo com exposição e mesocosmo de	e
solo sem exposição para o PET 4	46
Figura 11. Variação média de massa (%) das fitas controles em relação aos valores iniciais	
(mês 00) para mesocosmo de água doce, mesocosmo de solo com exposição e mesocosmo de	e
solo sem exposição para o PP	18

Figura 12. Espectro médio de ATR-FTIR inicial (mês 00) com posição das bandas	
características para o EVA	51
Figura 13. Espectros médios de ATR-FTIR do mês 00 ao mês 12 com posição das bandas	
avaliadas para mesocosmo de água doce para o EVA	53
Figura 14. Espectros médios de ATR-FTIR do mês 00 ao mês 12 com posição das bandas	
avaliadas para mesocosmo de solo com exposição para o EVA	54
Figura 15. Espectros médios de ATR-FTIR do mês 00 ao mês 12 com posição das bandas	
avaliadas para mesocosmo de solo sem exposição para o EVA	55
Figura 16. Espectro médio de ATR-FTIR inicial (mês 00) com posição das bandas	
características para o HDPE	56
Figura 17. Espectros médios de ATR-FTIR do mês 00 ao mês 12 com posição das bandas	
avaliadas para mesocosmo de água doce para o HDPE	58
Figura 18. Espectros médios de ATR-FTIR do mês 00 ao mês 12 com posição das bandas	
avaliadas para mesocosmo de solo com exposição para o HDPE	59
Figura 19. Espectros médios de ATR-FTIR do mês 00 ao mês 12 com posição das bandas	
avaliadas para mesocosmo de solo sem exposição para o HDPE	60
Figura 20. Espectro médio de ATR-FTIR inicial (mês 00) com posição das bandas	
características para o PET	61
Figura 21. Espectros médios de ATR-FTIR do mês 00 ao mês 12 com posição das bandas	
avaliadas para mesocosmo de água doce para o PET	63
Figura 22. Espectros médios de ATR-FTIR do mês 00 ao mês 12 com posição das bandas	
avaliadas para mesocosmo de solo com exposição para o PET	64
Figura 23. Espectros médios de ATR-FTIR do mês 00 ao mês 12 com posição das bandas	
avaliadas para mesocosmo de solo sem exposição para o PET	65
Figura 24. Espectro médio de ATR-FTIR inicial (mês 00) com posição das bandas	
características para o PP	66
Figura 25. Espectros médios de ATR-FTIR do mês 00 ao mês 12 com posição das bandas	
avaliadas para mesocosmo de água doce para o PP	68
Figura 26. Espectros médios de ATR-FTIR do mês 00 ao mês 12 com posição das bandas	
avaliadas para mesocosmo de solo com exposição para o PP	69
Figura 27. Espectros médios de ATR-FTIR do mês 00 ao mês 12 com posição das bandas	
avaliadas para mesocosmo de solo sem exposição para o PP	70
Figura 28. Variação (%) da temperatura de fusão do primeiro aquecimento (T_{m1}) em relação	io
aos valores iniciais (mês 00) (esquerda) e variação (%) da entalpia de fusão do primeiro	

aquecimento (ΔH_{m1}) em relação aos valores iniciais (mês 00) (direita) para mesocosmo de água doce, mesocosmo de solo com exposição e mesocosmo de solo sem exposição para o EVA

Figura 29. Variação (%) da temperatura de cristalização do resfriamento (T_c) em relação aos valores iniciais (mês 00) (esquerda) e variação (%) da entalpia de cristalização do resfriamento (ΔH_c) em relação aos valores iniciais (mês 00) (direita) para mesocosmo de água doce, mesocosmo de solo com exposição e mesocosmo de solo sem exposição para o EVA 76 **Figura 30.** Variação (%) da temperatura de fusão do primeiro aquecimento (T_{m1}) em relação aos valores iniciais (mês 00) (esquerda) e variação (%) da entalpia de fusão do primeiro aquecimento (ΔH_{m1}) em relação aos valores iniciais (mês 00) (direita) para mesocosmo de água doce, mesocosmo de solo com exposição e mesocosmo de solo sem exposição para o EVA 76 **Figura 30.** Variação (ΔH_{m1}) em relação aos valores iniciais (mês 00) (direita) para mesocosmo de água doce, mesocosmo de solo com exposição e mesocosmo de solo sem exposição para o EVA 76 HDPE

Figura 31. Variação (%) da temperatura de cristalização do resfriamento (T_c) em relação aos valores iniciais (mês 00) (esquerda) e variação (%) da entalpia de cristalização do resfriamento (ΔH_c) em relação aos valores iniciais (mês 00) (direita) para mesocosmo de água doce, mesocosmo de solo com exposição e mesocosmo de solo sem exposição para o HDPE 79

Figura 32. Variação (%) da temperatura de fusão do primeiro aquecimento (T_{m1}) em relação aos valores iniciais (mês 00) (esquerda) e variação (%) da entalpia de fusão do primeiro aquecimento (ΔH_{m1}) em relação aos valores iniciais (mês 00) (direita) para mesocosmo de água doce, mesocosmo de solo com exposição e mesocosmo de solo sem exposição para o PET 81

Figura 33. Variação (%) da temperatura de cristalização do resfriamento (T_c) em relação aos valores iniciais (mês 00) (esquerda) e variação (%) da entalpia de cristalização do resfriamento (ΔH_c) em relação aos valores iniciais (mês 00) (direita) para mesocosmo de água doce, mesocosmo de solo com exposição e mesocosmo de solo sem exposição para o PET 82 **Figura 34.** Variação (%) da temperatura de fusão do primeiro aquecimento (T_{m1}) em relação aos valores iniciais (mês 00) (esquerda) e variação (%) da entalpia de fusão do primeiro aquecimento (ΔH_m) em relação aos valores iniciais (mês 00) (direita) para mesocosmo de água doce, mesocosmo de solo com exposição e mesocosmo de solo sem exposição para o PET 82 **Figura 34.** Variação (%) da temperatura de fusão do primeiro aquecimento (T_{m1}) em relação aos valores iniciais (mês 00) (esquerda) e variação (%) da entalpia de fusão do primeiro aquecimento (ΔH_m) em relação aos valores iniciais (mês 00) (direita) para mesocosmo de água doce, mesocosmo de solo com exposição e mesocosmo de solo sem exposição para o PP 82

Figura 35. Variação (%) da temperatura de cristalização do resfriamento (T_c) em relação aos valores iniciais (mês 00) (esquerda) e variação (%) da entalpia de cristalização do

75

resfriamento (ΔH_c) em relação aos valores iniciais (mês 00) (direita) para mesocosmo de água doce, mesocosmo de solo com exposição e mesocosmo de solo sem exposição para o PP 85 **Figura 36.** Variação (%) da temperatura máxima ($T_{máx}$) em relação aos valores iniciais (mês 00) (esquerda) e valores (%) de resíduo (R) (direita) para mesocosmo de água doce, mesocosmo de solo com exposição e mesocosmo de solo sem exposição para o EVA. A linha pontilhada nos gráficos de R indicam o valor inicial (mês 00) de 27% 90 Figura 37. Variação (%) da temperatura máxima ($T_{máx}$) em relação aos valores iniciais (mês 00) (esquerda) e valores (%) de resíduo (R) (direita) para mesocosmo de água doce, mesocosmo de solo com exposição e mesocosmo de solo sem exposição para o HDPE. A linha pontilhada nos gráficos de R indicam o valor inicial (mês 00) de 9% 92 **Figura 38.** Variação (%) da temperatura máxima ($T_{máx}$) em relação aos valores iniciais (mês 00) (esquerda) e valores (%) de resíduo (R) (direita) para mesocosmo de água doce, mesocosmo de solo com exposição e mesocosmo de solo sem exposição para o PET. A linha 94 pontilhada nos gráficos de R indicam o valor inicial (mês 00) de 11% Figura 39. Variação (%) da temperatura máxima ($T_{máx}$) em relação aos valores iniciais (mês 00) (esquerda) e valores (%) de resíduo (R) (direita) para mesocosmo de água doce, mesocosmo de solo com exposição e mesocosmo de solo sem exposição para o PP. A linha pontilhada nos gráficos de R indicam o valor inicial (mês 00) de 14% 96

LISTA DE TABELAS

Tabela 1. Variação média de massa (%) e desvio padrão (%) das fitas controles em relação aos valores iniciais (mês 00) para mesocosmo de água doce, mesocosmo de solo com exposição e mesocosmo de solo sem exposição para EVA, HDPE, PET e PP 40 **Tabela 2.** Atribuição das principais bandas avaliadas (cm⁻¹) no infravermelho médio 50 **Tabela 3.** Comparação de intensidade das principais bandas avaliadas (cm⁻¹) entre os meses 00 e 12 para mesocosmo de água doce, mesocosmo de solo com exposição e mesocosmo de solo sem exposição para o EVA 52 Tabela 4. Comparação de intensidade das principais bandas avaliadas (cm⁻¹) entre os meses 00 e 12 para mesocosmo de água doce, mesocosmo de solo com exposição e mesocosmo de solo sem exposição para o HDPE 57 Tabela 5. Comparação de intensidade das principais bandas avaliadas (cm⁻¹) entre os meses 00 e 12 para mesocosmo de água doce, mesocosmo de solo com exposição e mesocosmo de solo sem exposição para o PET 62 **Tabela 6.** Comparação de intensidade das principais bandas avaliadas (cm⁻¹) entre os meses 00 e 12 para mesocosmo de água doce, mesocosmo de solo com exposição e mesocosmo de solo sem exposição para o PP 67 **Tabela 7.** Valores de referência de entalpia de fusão do cristal perfeito (ΔH_m^0) (J g⁻¹) para EVA, HDPE, PET e PP 72 **Tabela 8.** Valores de T_{m1} (°C) e T_c (°C) obtidos no presente estudo em comparação com a literatura para EVA, HDPE, PET e PP 73 Tabela 9. Valores de T_{máx} (°C) obtidos no presente estudo em comparação com a literatura 87 para EVA, HDPE, PET e PP

LISTA DE ABREVIATURAS E SIGLAS

ATR-FTIR	attenuated total reflection-Fourier transform infrared spectroscopy
DSC	differential scanning calorimetry
EVA	ethylene-vinyl acetate copolymer
HDPE	high-density polyethylene
LDPE	low-density polyethylene
PBT	persistent, bioaccumulative and toxic
PET	poly(ethylene terephthalate)
PP	polypropylene
TGA	thermogravimetric analysis

LISTA DE SÍMBOLOS

ΔH_c	entalpia de cristalização
ΔH_m	entalpia de fusão
$\Delta {H_m}^0$	entalpia de fusão do cristal perfeito
ΔH_{m1}	entalpia de fusão do primeiro aquecimento
ΔH_{m2}	entalpia de fusão do segundo aquecimento
R	porcentagem de resíduos
T10%	temperatura em 10% de perda mássica
T _c	temperatura de cristalização
T _m	temperatura de fusão
T_{m1}	temperatura de fusão do primeiro aquecimento
T _{m2}	temperatura de fusão do segundo aquecimento
$T_{m \acute{a} x}$	temperatura máxima
Tonset	temperatura de onset
Xc	índice de cristalinidade

SUMÁRIO

1. INTRODUÇÃO	18
2. OBJETIVOS	24
	~ 4
2.1. Objetivo geral	24
2.2. Objetivos específicos	24
3. PROCEDIMENTO EXPERIMENTAL	25
3.1. Materiais	25
3.2. Instrumentação e softwares	25
3.3. Confecção de fitas	26
3.4. Construção de mesocosmos	26
3.5. Coleta e preparo de fitas controles e fitas amostras	29
3.6. Avaliação visual	30
3.7. Avaliação mássica	30
3.8. Espectroscopia no infravermelho por transformada de Fourier com amostragem por	
reflectância total atenuada (ATR-FTIR)	30
3.9. Calorimetria diferencial de varredura (DSC)	31
3.10. Análise termogravimétrica (TGA)	31
4. RESULTADOS E DISCUSSÃO	32
4.1. Avaliação visual	32
4.1.1. EVA	32
4.1.2. HDPE	34
4.1.3. PET	36
4.1.4. PP	38
4.2. Avaliação mássica	39
4.2.1. EVA	40
4.2.2. HDPE	43

4.2.3. PET	45
4.2.4. PP	47
4.3. Espectroscopia no infravermelho por transformada de Fourier com amostra	agem por
reflectância total atenuada (ATR-FTIR)	
4.3.1. EVA	
4.3.2. HDPE	
4.3.3. PET	61
4.3.4. PP	66
4.4. Calorimetria diferencial de varredura (DSC)	
4.4.1. EVA	74
4.4.2. HDPE	77
4.4.3. PET	
4.4.4. PP	
4.5. Análise termogravimétrica (TGA)	86
4.5.1. EVA	
4.5.2. HDPE	91
4.5.3. PET	
4.5.4. PP	
5. CONSIDERAÇÕES FINAIS	97
BIBLIOGRAFIA	
APÊNDICE A – AVALIAÇÃO MÁSSICA	
APÊNDICE B – CALORIMETRIA DIFERENCIAL DE VARREDURA	
APÊNDICE C – ANÁLISE TERMOGRAVIMÉTRICA	

1. INTRODUÇÃO

Os plásticos no contexto atual de desenvolvimento da sociedade moderna são de suma importância. Encontram-se diversas aplicações de plásticos no cotidiano, como embalagens que garantem a integridade dos alimentos, bem como descartáveis usados em áreas médicas, reduzindo as chances de contaminações indesejáveis, ou até mesmo compósitos especiais que permitem aplicações aeroespaciais em condições extremas. Por consequência, a demanda por plásticos continua em franco crescimento, sendo que a produção global de plásticos alcançou 390 milhões de toneladas em 2021 (Plastics Europe, 2022). Entretanto, o descarte incorreto dos plásticos no meio ambiente é um tema central para a humanidade nos próximos anos, sendo fortemente discutido na plataforma de Objetivos de Desenvolvimento Sustentável da Organização das Nações Unidas (UN, 2016).

Dada a poluição causada pelos plásticos nos ambientes aquáticos (marinhos ou de água doce) e terrestres (solos e aterros), estes materiais em diferentes escalas de tamanho apresentam-se como um sério problema ambiental. Os plásticos de uso único promovem a praticidade e segurança no cotidiano, porém são um dos principais causadores da poluição plástica (Chen et al., 2021; Dey et al., 2021). Embalagens, sacolas, máscaras no contexto da pandemia de COVID-19 e outros materiais plásticos de consumo humano são comumente feitos de polímeros convencionais como polipropileno, poliestireno, polietileno, poliéster, entre outros. Estes polímeros apresentam baixo custo, alta funcionalidade e fácil processabilidade, por isso se tornaram usuais e rapidamente descartáveis após o uso (Andrady, 2011).

O descarte plástico pode ser gerenciado por diversos caminhos como reuso, reciclagem, incineração e despejo em aterro sanitário, composteira ou lixão. Dentre estes, o descarte em aterro sanitário ou lixão ainda é majoritariamente predominante, seguido pela incineração e reciclagem. O reuso ainda é pouco explorado frente às opções disponíveis. O despejo em aterro sanitário, composteira ou lixão ocorre devido à dificuldade em separar e limpar o plástico na cadeia do lixo e ser o processo mais simples e barato. Porém, é responsável por diversos impactos ambientais e perda de terra que poderia ser mais bem aproveitada para vegetação natural. Além disso, outros aspectos não avaliados incluem os possíveis impactos na qualidade do composto final em compostagens e processos tróficos em aterros sanitários (Unmar and Mohee, 2008), e a produção de gases de efeito estufa que contribuem para o aquecimento global (Emadian et al., 2017). Já a incineração converte o material plástico em gases, cinzas e calor, pois estes polímeros geram energia próxima a óleos combustíveis (Chen

et al., 2021). Este processo é bastante eficiente em reduzir o volume plástico, entretanto é capaz de emitir gases tóxicos entre os compostos orgânicos voláteis como furanos, dioxinas e entre outros aditivos, além de metais pesados. Outro ponto é a emissão de gases que amplificam o efeito estufa e aumento da poluição atmosférica gerando efeitos deletérios como chuva ácida. Portanto, as plantas incineradoras devem ser adequadas para limpar os gases emitidos, o que encarece o processo. A reciclagem e o reuso são os caminhos mais incentivados recentemente pois contribuem para reduzir a emissão de gases de efeito estufa e outros gases danosos, além de impactar menos os ecossistemas e gastar menos energia. Entretanto, este processo ainda requer gasto energético para fundir os materiais e também é responsável por emitir gases causadores de impactos ambientais (Evode et al., 2021).

Dentre os diversos impactos da poluição plástica, pode-se citar a ingestão por diferentes organismos da cadeia trófica. O processo de ingestão pode ocorrer por duas vias: a ingestão primária, em que o organismo ingere diretamente o plástico e ingestão secundária, em que o organismo ingere por meio de sua presa que havia ingerido de forma primária (biomagnificação). Estes processos podem ser incidentais ao confundir o plástico com uma presa ou acidentais por meio filtração ou pastoreio (Hodgson et al., 2018; Markic et al., 2018). A ingestão é cenário comum para animais marinhos e que pode levar a efeitos letais e sub-letais destes organismos, como comprometer o correto funcionamento fisiológico, gerar estresse ou doenças, reduzir a alimentação e impactar o volume estomacal. Além disso, o plástico sob exposição ambiental, principalmente em meios aquáticos, tem a formação superficial de estruturas de biofilme. Por sua vez, o biofilme pode modificar a palatabilidade do plástico aos organismos, elevando potencialmente o risco de ingestão (Hodgson et al., 2018). Por fim, os plásticos podem impactar drasticamente a dinâmica do solo. Entre os possíveis impactos ambientais a longo prazo estão a alteração na ciclagem de nutrientes, mudança no fluxo e armazenagem de carbono, na dinâmica de contaminantes e o funcionamento da microbiota do solo (Zang et al., 2020).

Os processos de degradação dos plásticos podem promover a fragmentação em partículas de dimensões menores, chamadas de microplásticos (Gewert et al., 2015). Os microplásticos são definidos como qualquer partícula sólida de plástico insolúvel em água com dimensão entre 1 µm e 1 mm (ISO, 2020). Os microplásticos também podem atuar como vetores de transporte de contaminantes, ser bioacumulativos, causar danos aos organismos via ingestão

e inalação, liberar monômeros residuais e intermediários tóxicos e amplificar o problema da poluição plástica como um todo (Cole et al., 2011; Gewert et al., 2015).

Outro impacto relevante da poluição plástica é a lixiviação de aditivos presentes na matriz polimérica de plásticos e microplásticos. Estes aditivos obviamente contribuem para o uso e aplicação final do plástico, pois dificilmente os polímeros podem ser usados de forma pristina. Ao mesmo tempo em que apresentam benefícios para a processabilidade, melhoria de superfície e outras funcionalizações, tais aditivos podem ser classificados como persistentes, bioacumulativos ou tóxicos (PBTs) (Shen et al., 2020). Por exemplo, compostos como ftalatos, nonilfenois, bisfenol A, antioxidantes e retardantes de chama brominados são classificados como PBTs e possuem potencial de disrupção endócrina, mutagenicidade, carcinogenicidade, entre outros (Barrick et al., 2021; Hahladakis et al., 2018).

Os plásticos (e microplásticos) também apresentam processos de sorção e transporte de contaminantes orgânicos e inorgânicos. Isso ocorre, pois a estrutura química dos polímeros que compõe os plásticos promove interações intermoleculares (fisissorção) e ligações químicas (quimissorção) com uma série de contaminantes como pesticidas, hormônios, fármacos, metais pesados entre outros (Cole et al., 2011; Morin-Crini et al., 2022). Diversas características de superfície do plástico podem influenciar tais processos de sorção como área de curvatura, polaridade e rugosidade, bem como características de bulk como a cristalinidade. A área superficial é um fator extremamente importante, pois quanto maior, mais sítios estarão disponíveis para a sorção dos contaminantes. Além disso, a área superficial geralmente é inversamente proporcional ao tamanho do plástico. Portanto, microplásticos apresentam maior disponibilidade de área para interações (Costigan et al., 2022). Já uma maior curvatura da superfície expõe um volume livre maior à solução externa contendo os contaminantes. Além disso, a polaridade da superfície (hidrofobicidade ou hidrofilicidade) impacta na dinâmica de interações químicas com os contaminantes, enquanto uma maior rugosidade superficial do material permite maior disponibilidade para permeação e interação com o contaminante. A cristalinidade do material plástico também altera o fenômeno de sorção. Materiais mais cristalinos apresentam maior rigidez e fragilidade, enquanto materiais menos cristalinos possuem maior flexibilidade e volume livre e, por consequência, apresentam fatores mais favoráveis aos processos de sorção (Burrows et al., 2020).

Dada a importância de estudar a poluição plástica, um dos principais tópicos a ser avaliado trata-se de como ocorre a degradação dos plásticos em condições ambientais. A exposição ambiental permite melhorar a compreensão de como estes materiais degradam físicoquimicamente em relação a ensaios laboratoriais controlados com lâmpadas UV, câmaras salinas e outros dispositivos amplamente utilizados na literatura (De Falco et al., 2021; Kalogerakis et al., 2017). A exposição ambiental promove não só os processos abióticos como estresse mecânico, luz UV, temperatura e umidade, mas também processos bióticos como crescimento de micro-organismos como fungos, bactérias e algas no plástico (Matjašič et al., 2021).

Quando submetidos a condições ambientais, os plásticos podem sofrer processos degradativos abióticos e bióticos por diversos fatores do meio ambiente, como a radiação solar e umidade, bem como a formação de camadas superficiais de biofilme e ação de substâncias orgânicas presentes em solo e água. Usualmente, os processos abióticos precedem os processos bióticos durante a degradação do plástico (Gewert et al., 2015).

A formação de biofilme é um processo biótico em que microrganismos se alojam na superfície do material podendo levar a alterações físicas como aumento da densidade, o que promove a submersão ou alteração da dinâmica de transporte dos plásticos em corpos hídricos, bem como o acúmulo de matéria orgânica e sedimentos, o que altera a interação dos plásticos com o ecossistema e com os contaminantes presentes no meio. Estas interações podem promover a sorção ou transferência de contaminantes na superfície do material (Miao et al., 2021). Além disso, a biodegradação por microrganismos torna-se mais efetiva em polímeros de menor massa molar. Os processos de degradação abióticos são normalmente responsáveis por essa diminuição inicial de cadeia e, em sequência, estes fragmentos sofrem a ação de processos enzimáticos levando a decomposição final em gás carbônico, água e húmus (Gewert et al., 2015).

A degradação abiótica devido à exposição ao intemperismo pode ser iniciada e promovida por diversos fatores fóticos, térmicos e hidrolíticos. Normalmente, o processo começa na superfície do plástico por estar mais exposta às condições externas. Após o início do craquelamento da superfície, as partes internas começam a se tornar disponíveis e amplificar o processo degradativo. Polímeros de cadeia principal carbono-carbono como polietileno, polipropileno, poliestireno, entre outros, são suscetíveis a processo de degradação por mecanismo foto-iniciativo (Gewert et al., 2015). Neste mecanismo, a luz UV ou o calor causam quebras em ligações C-H da cadeia principal levando a formação de radicais livres. Apesar de o polietileno e polipropileno não possuírem ligações insaturadas em sua cadeia principal,

defeitos na formação do polímero e outras impurezas podem levar a processos oxidativos tornando estes polímeros aptos a apresentar radicais livres. Após a formação, os radicais livres podem reagir com o oxigênio da atmosfera e desenvolver estruturas com função hidroperóxido. Por meio desses grupos, reações mais complexas ocorrem e levam a processos de auto-oxidação. Por fim, quebras de cadeia e ligações cruzadas são identificadas como propagação da degradação. O processo oxidativo é responsável por promover diversos acontecimentos ao polímero como quebra de cadeia, redução de massa molar, ramificação, ligações cruzadas e, principalmente, a formações de grupos funcionais oxigenados como ácidos carboxílicos, aldeídos, álcoois e cetonas (Gewert et al., 2015).

Desde a década de 1980, diferentes órgãos buscam padronizar ensaios de degradação por meio de normas, principalmente para embalagens descartáveis, uma das principais fontes de poluição plástica. Porém, essas normas normalmente visam explorar as condições de degradação em aterros sanitários, utilizando lodo ativado, compostagens e solo como possíveis inóculos. Portanto, condições menos relacionadas ao meio ambiente diretamente. Além disso, as normas em geral buscam avaliar a degradação dos plásticos por meio da evolução de gases de efeito estufa como gás carbônico (CO₂) e metano (CH₄), relacionados às digestões aeróbica e anaeróbica presentes nestes meios degradativos. Apesar da busca por padronização, as normas de degradação plástica não são, de um modo geral, relacionáveis ou simuláveis das condições ambientais em que um plástico descartado está sujeito. Estes ensaios padronizados não levam em conta a sazonalidade, condições geográficas, especificidades de solo e água da região. Outro ponto é falta de relação da exposição ambiental com análises laboratoriais mais exaustivas, de maneira que a avaliação da biodegradação seja feita morfologicamente, estruturalmente e, não menos importante, com a toxicidade causada pelos fragmentos dos plásticos degradados (Harrison et al., 2018).

Um outro mecanismo para a avaliação da biodegradação em condições ambientais é a utilização de mesocosmos. Os mesocosmos são definidos como sistemas que copiam o ecossistema natural, porém devem ser autossustentáveis, ter a presença de diferentes níveis tróficos com organismos que sejam representativos da fauna e flora local, além de que as medidas e amostragens não devem causar distúrbios ao sistema (Boyle and Fairchild, 1997; Caquet, 2002). Mesmo que parte dos parâmetros sejam controlados, o mesocosmo se aproxima às situações em que o plástico de uso único é descartado incorretamente e ali permanece sobre ação das intempéries e outros elementos ambientais. Os mesocosmos podem ser unidades de tamanho moderado artificialmente desenvolvidos de ecossistemas ou um sistema delimitado em área natural, conhecido como mesocosmo *in situ*. Estes sistemas semi-controlados já são largamente utilizados para estudos ecotoxicológicos, principalmente em comunidades aquáticas (Weir et al., 2014).

2. OBJETIVOS

2.1. Objetivo geral

O objetivo deste estudo foi avaliar a degradação de plásticos sintéticos comerciais em diferentes condições ambientais semi-controladas.

2.2. Objetivos específicos

• Avaliar a degradação ambiental de quatro diferentes plásticos durante um ciclo

anual;

• Empregar mesocosmos de água doce e solo para simular três diferentes condições ambientais semi-controladas;

• Empregar técnicas de avaliação visual, avaliação mássica, espectroscopia no infravermelho por transformada de Fourier com amostragem por reflectância total atenuada (ATR-FTIR, *attenuated total reflection-Fourier transform infrared spectroscopy*), calorimetria diferencial de varredura (DSC, *differential scanning calorimetry*) e análise termogravimétrica (TGA, *thermogravimetric analysis*) para avaliar a degradação dos plásticos.

3. PROCEDIMENTO EXPERIMENTAL

3.1. Materiais

• Folhas de copolímero de etileno e acetato de vinila (EVA, *ethylene-vinyl acetate copolymer*);

• Sacolas descartáveis de polietileno de alta densidade (HDPE, high-density polyethylene);

• Tecido poliéster para roupas de poli(tereftalato de etileno) (PET, *poly(ethylene terephthalate*));

• Máscaras descartáveis de proteção com tripla camada de polipropileno (PP, *polypropylene*) (Xiantao Junhui Plastic Products Co. LTD., Xiantao, China);

• Caixa d'água de 500 L de polietileno de baixa densidade (LDPE, *low-density poliethylene*). Dimensões: diâmetro da base: 98 cm; diâmetro do topo: 122 cm; altura: 72 cm (Tigre, Joinville, Brasil);

• Caixas organizadoras de 130 L de PP. Dimensões: comprimento: 81 cm; largura: 59 cm; altura: 48 cm (Lar Plásticos, Atibaia, Brasil);

 Seixo de dolomita tamanho 1 (Mineração Itália, Cachoeiro de Itapemirim, Brasil);

• Argila expandida (Cinexpan, Várzea Paulista, Brasil);

- Terra vegetal (SRC Medeiros, Artur Nogueira, Brasil);
- Fio de arame galvanizado liso (Recofer, Taubaté, Brasil);
- Espécimes herbáceas de alface d'água (Pistia stratiotes) e aguapé (Pontederia

crassipes);

• Tela mosquiteira de Nylon.

3.2. Instrumentação e softwares

- Balança analítica Discovery DV215CD (Ohaus, New Jersey, USA);
- Espectrômetro de bancada Cary 630 FTIR (Agilent Technologies, Santa Clara,

USA);

• Calorímetro de varredura diferencial DSC Q100 (TA Instruments, Delaware,

USA);

• Analisador termogravimétrico TGA 2950 HR (TA Instruments, Delaware,

USA);

- Origin Pro 2023b 10.0.5.157 (Originlab, Massachusetts, USA);
- Universal Analysis 2000 4.5A (TA Instruments, Delaware, USA).

3.3. Confecção de fitas

Os plásticos escolhidos para o estudo foram obtidos por meio de produtos acabados com foco em diferentes aplicações como material escolar (EVA), sacolas descartáveis (HDPE), tecidos para roupas (PET) e máscaras cirúrgicas descartáveis (PP). A escolha destes plásticos justifica-se com o fato de serem os mais utilizados e contribuírem majoritariamente para a poluição plástica, especialmente através de produtos de uso único (Plastics Europe, 2022). Os plásticos foram cortados manualmente com tesoura e estilete em formato de fitas em dimensões semelhantes às encontradas em literatura (Rizzo et al., 2021). As fitas de EVA (1,42 mm de espessura), HDPE (0,06 mm de espessura) e PET (0,26 mm de espessura) mediram 2,5 cm x 20 cm e as fitas de PP (0,3 mm de espessura) mediram 3,0 x 15 cm.

3.4. Construção de mesocosmos

Três mesocosmos foram construídos para simular diferentes condições ambientais semi-controladas. Os mesocosmos foram construídos em outubro de 2021 e dispostos em local aberto dentro do Instituto de Química da Unicamp (22°49'09.9"S 47°04'06.0"W) e expostos ao ambiente local. No período de ensaio, entre outubro de 2021 e outubro de 2022, a precipitação média mensal foi de 110,7 mm de chuva, com máxima média mensal de 312,9 mm em janeiro e mínima média mensal de 8,9 mm em julho. A temperatura média mensal foi de 24,1 °C no período, com mínima média mensal de 17,5 °C em maio e máxima média mensal de 25,3 °C em janeiro (CEPAGRI Unicamp, 2023).

Em cada mesocosmo foram distribuídas 50 fitas de cada plástico, totalizando 200 fitas por mesocosmo. Dentre as 50 fitas, 5 delas, denominadas fitas de monitoramento 1 a 5, foram marcadas e permanentemente destinadas para avaliação visual e avaliação mássica,

enquanto 36 fitas foram destinadas às coletas mensais em triplicata para análises de ATR-FTIR, DSC e TGA, e 9 foram utilizadas como extras para eventuais perdas.

O primeiro mesocosmo, denominado mesocosmo de água doce (Figura 1), foi construído utilizando uma caixa d'água de 500 L. Primeiramente, forrou-se o fundo da caixa d'água com uma mistura de terra vegetal e folhas secas até uma altura de aproximadamente 15 cm, a fim de simular o sedimento. Em seguida, completou-se com água de torneira até a altura do extravasor da caixa d'água (52 cm). O extravasor funcionou como um escape para evitar o transbordamento da água e perda do experimento em caso de chuva. Adicionou-se também espécimes de herbáceas de alface d'água e aguapé. As amostras foram aleatoriamente fixadas em fios de aço galvanizado e presas no topo do mesocosmo. Por fim, cobriu-se o mesocosmo com tela mosquiteira de Nylon a fim de evitar a proliferação do mosquito da dengue. O extravasor também foi coberto, evitando também a perda de amostras em caso de aumento do nível da água. Não foi realizada a reposição de água durante todo o período de funcionamento do mesocosmo, porém os períodos de chuva e seca levaram a pequenas variações no volume de água. Foram observadas reduções no volume de água de até aproximadamente 15 cm em relação ao extravasor.

Figura 1. Montagem finalizada do mesocosmo de água doce. Fotografia tirada em outubro de 2021

Os segundo e terceiro mesocosmos, denominados mesocosmos de solo com exposição (Figura 2) e mesocosmo de solo sem exposição (Figura 3), foram igualmente construídos utilizando caixas organizadoras de 130 L. Primeiramente, fez-se pequenos furos no fundo das caixas, forrando-as completamente com uma camada de seixo de dolomita tamanho 1, seguida de uma camada de argila expandida, a fim de facilitar o escoamento da água. Em seguida, completou-se os mesocosmos com terra vegetal até uma altura de aproximadamente 18 cm. As amostras foram aleatoriamente distribuídas na superfície do mesocosmo de solo com exposição e abaixo de uma camada superfícial de solo (3 cm) no mesocosmo de solo sem exposição.

Figura 2. Montagem finalizada do mesocosmo de solo com exposição. Fotografia tirada em outubro de 2021

Figura 3. Montagem finalizada do mesocosmo de solo sem exposição. Fotografia tirada em outubro de 2021

3.5. Coleta e preparo de amostras

As coletas foram realizadas mensalmente durante o período de um ano, de novembro de 2021 a outubro de 2022. Em cada mesocosmo, as 5 fitas de monitoramento e 3 fitas amostras foram coletadas. Após cada coleta, todas as fitas foram cuidadosamente lavadas com água corrente para a remoção de impurezas superficiais como solo, organismos e outros resíduos. Em seguida, as fitas foram secas com papel absorvente e deixadas em capela por 24 horas para completa secagem. Após este processo, as fitas de monitoramento foram fotografadas, pesadas e imediatamente devolvidas aos respectivos mesocosmos, enquanto as demais fitas seguiram para análises de ATR-FTIR, DSC e TGA e foram posteriormente arquivadas. Todas as amostras foram guardadas em papel alumínio e colocadas em um dessecador de vidro.

3.6. Avaliação visual

A avaliação visual foi realizada mensalmente nas fitas de monitoramento. Após o procedimento de coleta e secagem, tais fitas foram fotografadas agrupadamente de acordo com os plásticos e mesocosmos. As fotografias foram feitas utilizando sempre o mesmo local e estrutura para facilitar a comparação ao longo dos meses.

3.7. Avaliação mássica

A avaliação mássica foi realizada mensalmente nas fitas de monitoramento. Após a avaliação visual, tais fitas foram pesadas individualmente em balança analítica com o auxílio de um béquer.

3.8. Espectroscopia no infravermelho por transformada de Fourier com amostragem por reflectância total atenuada (ATR-FTIR)

A análise por ATR-FTIR foi realizada mensalmente nas fitas amostras. Cada fita foi analisada três vezes em pontos escolhidos ao longo de cada amostra, totalizando 9 medidas por plástico, mês e mesocosmo. O método utilizado foi definido da seguinte forma: modo de absorbância, resolução de 2 cm⁻¹, número de *scans* de 64, e faixa do infravermelho médio de 650 a 4000 cm⁻¹ (Jung et al., 2018). Um branco foi feito a cada medida, e utilizou-se a normalização de espectros e a média da absorbância para o tratamento de dados. As absorbâncias dos 9 espectros foram normalizadas pelas respectivas bandas de identificação do polímero. Os espectros de EVA, HDPE e PP foram normalizados pela banda em 2916 cm⁻¹ e os espectros foi utilizado para avaliar as possíveis mudanças estruturais superficiais dos plásticos.

3.9. Calorimetria diferencial de varredura (DSC)

A análise por DSC foi realizada mensalmente nas fitas amostras. As análises foram feitas em monoplicata, utilizando uma pequena porção de apenas uma das três amostras coletadas. O método utilizado foi definido da seguinte forma: taxa de aquecimento/resfriamento: 10 °C min⁻¹; quantidade de amostra: 2 a 4 mg; atmosfera: inerte (N₂); primeira rampa de aquecimento: 30 a 200 °C (EVA, HDPE e PP) e 30 a 300 °C (PET); rampa de resfriamento: 200 a -70 °C (EVA, HDPE e PP) e 300 a 30 °C (PET); segunda rampa de aquecimento: -70 a 200 °C (EVA, HDPE e PP) e 30 a 300 °C (PET) (Li et al., 2019; Ronkay et al., 2020).

3.10. Análise termogravimétrica (TGA)

A análise por TGA foi realizada mensalmente nas fitas amostras. As análises foram feitas em monoplicata, utilizando uma pequena porção de apenas uma das três amostras coletadas. O método utilizado foi definido da seguinte forma: taxa de aquecimento/resfriamento: 10 °C min⁻¹; quantidade de amostra: 2 a 4 mg; atmosfera: inerte (N₂); faixa de temperatura: 30 a 600 °C (Joseph et al., 2003).

4. RESULTADOS E DISCUSSÃO

4.1. Avaliação visual

A avaliação visual foi realizada mensalmente nas fitas de monitoramento, que foram agrupadas de acordo com o tipo de plástico e também de acordo com o mesocosmo. A avaliação visual levou em consideração a incrustação de solo, a formação de biofilme e a fragmentação da fita. No mesocosmo de água doce observou-se a formação de ferrugem na superfície das fitas devido ao enferrujamento dos fios de aço em contato direto com a água. As Figuras 4 a 7 mostram as fitas de monitoramento do plástico coletadas mensalmente desde o mês 00 até o mês 12 para os mesocosmos de água doce, de solo com exposição e de solo sem exposição para EVA, HDPE, PET e PP, respectivamente.

4.1.1. EVA

A Figura 4 mostra as fitas de monitoramento do plástico coletadas mensalmente desde o mês 00 até o mês 12 para os mesocosmos de água doce, de solo com exposição e de solo sem exposição para o EVA.

De acordo com a Figura 4, observou-se a formação de biofilme na superfície do EVA com intensificação ao longo dos meses no mesocosmo de água doce. O mesocosmo de solo com exposição houve pouca incrustação de solo e pouca formação de biofilme, diferentemente do mesocosmo de solo sem exposição, em que a incrustação de solo é bem mais aparente. Além disso, não foi observada fragmentação nas fitas em nenhum dos mesocosmos ao longo dos meses.

Figura 4. Fitas de monitoramento amostradas mensalmente desde o mês 00 até o mês 12 para mesocosmo de água doce, mesocosmo de solo com exposição e mesocosmo de solo sem exposição para o EVA

4.1.2. HDPE

A Figura 5 mostra as fitas de monitoramento do plástico coletadas mensalmente desde o mês 00 até o mês 12 para os mesocosmos de água doce, de solo com exposição e de solo sem exposição para o HDPE.

De acordo com a Figura 5, não foi possível observar a incrustação de solo ou formação de biofilme na superfície do HDPE em nenhum mesocosmo, o que está relacionado à superfície lisa de baixa rugosidade e curvatura do material, que impede a ancoragem e desenvolvimento de microrganismos (Burrows et al., 2020). Contudo, houve fragmentação das fitas no mesocosmo de solo com exposição a partir do mês 08 e que se intensificou ao longo dos meses seguintes. A fragmentação destes materiais pode estar associada à exposição direta à radiação solar e demais intempéries (Gewert et al., 2015). No último mês de coleta (mês 12) não foi possível diferenciar as fitas de monitoramento do restante das amostras, e a fita número 2 foi perdida entre os meses 04 e 05.

Figura 5. Fitas de monitoramento amostradas mensalmente desde o mês 00 até o mês 12 para mesocosmo de água doce, mesocosmo de solo com exposição e mesocosmo de solo sem exposição para o HDPE

4.1.3. PET

A Figura 6 mostra as fitas de monitoramento do plástico coletadas mensalmente desde o mês 00 até o mês 12 para os mesocosmos de água doce, de solo com exposição e de solo sem exposição para o PET.

De acordo com a Figura 6, foi possível observar a formação de biofilme ao longo do ensaio no mesocosmo de água doce. Além disso, a superficie das fitas tornou-se mais áspera ao longo dos meses. No mesocosmo de solo com exposição houve pontos específicos em que ocorreu a incrustação de solo e a formação de biofilme, pois provavelmente estes pontos estavam em maior contato com o solo. Dentre os plásticos estudados, o PET foi o plástico que apresentou maior formação de biofilme no mesocosmo de solo com exposição. Tanto para o mesocosmo de água doce quanto para o mesocosmo de solo com exposição foi possível observar uma crescente formação de biofilme juntamente com uma variação positiva de massa (item 4.2). Por fim, houve incrustação de solo sem a formação de biofilme no mesocosmo de solo sem exposição. Não foi observada fragmentação nas fitas em nenhum dos mesocosmos ao longo dos meses, e a fita número 2 foi perdida no mesocosmo de água doce entre os meses 02 e 03.

Figura 6. Fitas de monitoramento amostradas mensalmente desde o mês 00 até o mês 12 para mesocosmo de água doce, mesocosmo de solo com exposição e mesocosmo de solo sem exposição para o PET

4.1.4. PP

A Figura 7 mostra as fitas de monitoramento do plástico coletadas mensalmente desde o mês 00 até o mês 12 para os mesocosmos de água doce, de solo com exposição e de solo sem exposição para o PP.

De acordo com a Figura 7, houve extensa formação de biofilme crescente ao longo dos meses de ensaio no mesocosmo de água doce. Além disso, as superfícies das fitas também se tornaram mais ásperas e enrijecidas. No mesocosmo de solo com exposição observou-se pontos específicos em que ocorreu a incrustação de solo e formação de biofilme, pois provavelmente estes pontos estavam em maior contato com o solo. Foi possível observar que a fragmentação do material começou entre os meses 02 e 03 e que, a partir do mês 04 não foi possível diferenciar as fitas de monitoramento do restante das amostras. Semelhante ao HDPE, as fitas tornaram-se bastante frágeis e com intensa fragmentação, e qualquer manipulação promovia a quebra em fragmentos menores. Por fim, houve somente incrustação de solo sem a formação de biofilme no mesocosmo de solo sem exposição.

Figura 7. Fitas de monitoramento amostradas mensalmente desde o mês 00 até o mês 12 para mesocosmo de água doce, mesocosmo de solo com exposição e mesocosmo de solo sem exposição para o PP

4.2. Avaliação mássica

A avaliação mássica foi realizada mensalmente nas fitas de monitoramento. Os valores de massa pesados mensalmente para cada fita encontram-se no Apêndice A para o EVA (Tabela A1), HDPE (Tabela A2), PET (Tabela A3) e PP (Tabela A4). As Figuras 8 a 11 mostram a variação de massa (%) das fitas de monitoramento em relação aos valores iniciais (mês 00) para os mesocosmos de água doce, solo com exposição e sem exposição para EVA, HDPE, PET e PP, respectivamente.

A Tabela 1 resume a variação de massa ao final do experimento (após 12 meses). A variação de massa para o HDPE no mesocosmo de solo com exposição foi calculada após 09 meses com 4 fitas, pois foi o último mês em que todas as fitas foram coletas integralmente, com exceção da fita número 2 que foi perdida entre os meses 04 e 05. Além disso, a variação de massa para o PET no mesocosmo de água doce foi calculada apenas com 4 fitas, pois a fita número 2 foi perdida entre os meses 02 e 03. Por fim, a variação de massa para o PP no mesocosmo de solo com exposição foi calculada após 02 meses, uma vez que foi o último mês em que todas as fitas foram coletadas integralmente.

Tabela 1. Variação média de massa (%) e desvio padrão (%) das fitas de monitoramento em relação aos valores iniciais (mês 00) para mesocosmo de água doce, mesocosmo de solo com exposição e mesocosmo de solo sem exposição para EVA, HDPE, PET e PP

Polímero	Mesocosmo	Número de meses	Número de fitas	Variação média de massa (%)	Desvio padrão (%)
EVA	Água doce	12	5	8,6	1,6
	Solo com exposição	12	5	1,6	1,5
	Solo sem exposição	12	5	7,9	0,4
HDPE	Água doce	12	5	1,1	1,9
	Solo com exposição	09	4	-1,0	0,4
	Solo sem exposição	12	5	-0,6	0,7
PET	Água doce	12	4	9,3	0,6
	Solo com exposição	12	5	7,1	1,7
	Solo sem exposição	12	5	4,9	0,4
PP	Água doce	12	5	32,2	7,3
	Solo com exposição	02	5	-0,2	3,0
	Solo sem exposição	12	5	12,5	0,9

4.2.1. EVA

No mesocosmo de água doce, o EVA apresentou alta variação de massa ao longo dos meses (Figura 8) e, as fitas tiveram, em média, uma variação positiva de 8,6% após os 12 meses de ensaio, principalmente devido à formação de biofilme (Tabela 1). Além disso, o EVA apresentou um aumento considerável nos primeiros meses de ensaio, o que pode estar associado ao período de chuvas e maior umidade. Nos meses 03 a 05, correspondentes a janeiro, fevereiro e março de 2022, foram registradas grandes chuvas com médias mensais de 313, 168 e 131 mm, respectivamente (CEPAGRI Unicamp, 2023). O EVA apresenta grupos hidroxila disponíveis

para fazer ligações de hidrogênio em sua estrutura polimérica, o que pode levar à retenção de umidade no material mesmo após o período de secagem. Desse modo, a secagem incompleta pode ter influenciado na pesagem do material, causando uma variação positiva na massa das amostras.

No mesocosmo de solo com exposição, a variação de massa média foi desprezível, com uma variação positiva de somente 1,6% após os 12 meses de ensaio (Tabela 1). Esta pequena variação pode estar relacionada à formação de biofilme ou incrustação de solo.

Por fim, no mesocosmo de solo sem exposição, o fenômeno foi semelhante ao mesocosmo de água doce, pois houve uma variação positiva de massa e crescente nos primeiros meses de ensaio. Devido à alta umidade e forte precipitação, o solo estava bastante úmido, contribuindo para o aumento de massa assim como observado para o mesocosmo de água. As fitas tiveram, em média, uma variação positiva de 7,9% após os 12 meses de ensaio (Tabela 1), principalmente devido à incrustação de solo que não pôde ser totalmente removida apenas pela lavagem após a coleta.

Figura 8. Variação média de massa (%) das fitas de monitoramento em relação aos valores iniciais (mês 00) para mesocosmo de água doce, mesocosmo de solo com exposição e mesocosmo de solo sem exposição para o EVA

4.2.2. HDPE

O HDPE apresentou comportamento semelhante em todos os mesocosmos, e não foi possível estabelecer nenhuma tendência de aumento ou diminuição de massa (Figura 9), uma vez que a variação de massa foi considerada desprezível. O mesocosmo de água doce apresentou uma variação de massa de 1,1%, enquanto os mesocosmos de solo com exposição e sem exposição apresentaram uma variação de massa de -1,0 e -0,6%, respectivamente (Tabela 1).

Este acontecimento pode ser explicado pela pouca formação de biofilme e incrustação de solo neste material, devido à menor rugosidade, porosidade e curvatura do HDPE, que apresenta uma superfície lisa característica de filmes. A formação de biofilme e incrustação de solo são favorecidas quando o material apresenta maior rugosidade, porosidade e curvatura, pois essas características levam a um efeito geométrico de maior área superfícial e, principalmente, maior volume livre em contato com o meio e permitem a ancoragem de material orgânico. Além disso, o HDPE é um material hidrofóbico sem grupos laterais, portanto as interações são desfavorecidas com as partes polares da matéria orgânica, como polissacarídeos, aminoácidos e proteínas, ácidos orgânicos, íons, entre outros (Bhagwat et al., 2021; Burrows et al., 2020).

Figura 9. Variação média de massa (%) das fitas de monitoramento em relação aos valores iniciais (mês 00) para mesocosmo de água doce, mesocosmo de solo com exposição e mesocosmo de solo sem exposição para o HDPE

4.2.3. PET

No mesocosmo de água doce, o PET apresentou um crescimento relativamente constante ao longo do experimento (Figura 10). Após os 12 meses de ensaio, as fitas tiveram, em média, uma variação positiva de 9,3% (Tabela 1). Este crescimento está associado ao desenvolvimento de biofilme na superfície das fitas, pois o PET possui uma estrutura de tecido em fios com grande área superficial, menor densidade superficial, maior porosidade e maior volume livre em contato com o meio, o que permite a ancoragem crescente de biofilme. As fibras diferenciam-se dos filmes, pois os processos de interação com o meio ocorrem em todo o material (*bulk*), enquanto nos filmes a exposição ao meio ocorre inicialmente como um fenômeno de superfície para depois impactar o material como um todo (Gasparyan et al., 2023).

No mesocosmo de solo com exposição houve uma variação positiva maior nos primeiros meses, seguida de estabilização até o penúltimo mês de ensaio com leve aumento no último mês. Após os 12 meses de ensaio, a variação de massa foi de 7,1%, em média (Tabela 1). Este aumento de massa pode ser explicado pela presença de biofilme e incrustação de solo. A maior variação de massa observada no início do experimento (três primeiros meses) também pode estar relacionada ao período de maior umidade e precipitações.

No mesocosmo de solo sem exposição, a variação de massa também foi superior nos primeiros meses, seguida de certa estabilidade e decréscimo nos últimos meses. Após os 12 meses de ensaio, as fitas tiveram, em média, uma variação positiva de 4,9% (Tabela 1). O aumento nos meses iniciais também pode estar relacionado à alta umidade e precipitações no período, o que favoreceu a incrustação de solo. Após este período não houve mais aumento apreciável.

Figura 10. Variação média de massa (%) das fitas de monitoramento em relação aos valores iniciais (mês 00) para mesocosmo de água doce, mesocosmo de solo com exposição e mesocosmo de solo sem exposição para o PET

4.2.4. PP

No mesocosmo de água doce, a variação de massa do PP apresentou um crescimento constante ao longo de todo o ensaio (Figura 11). Após os 12 meses de ensaio, as fitas tiveram, em média, uma variação positiva de 32,2% (Tabela 1). Semelhante ao observado para o PET, o PP também apresenta uma estrutura de tecido em fios que permite a formação contínua de biofilme, expressa na variação positiva crescente de massa observada (Gasparyan et al., 2023).

No mesocosmo de solo com exposição, o PP sofreu fragmentação total a partir do terceiro mês, o que impediu a avaliação da variação de massa. Portanto, não foi possível estabelecer uma comparação ao longo dos meses. Até o mês 02, sua variação de massa média foi desprezível (-0,2%).

No mesocosmo de solo sem exposição, o PP também apresentou uma variação de massa positiva nos primeiros meses de ensaio. Após este período, houve uma estabilização com leve decréscimo nos últimos dois meses. Após os 12 meses de ensaio, as fitas tiveram, em média, uma variação positiva de 12,5% (Tabela 1). Este aumento está associado, principalmente, à incrustação de solo (Gasparyan et al., 2023).

Figura 11. Variação média de massa (%) das fitas de monitoramento em relação aos valores iniciais (mês 00) para mesocosmo de água doce, mesocosmo de solo com exposição e mesocosmo de solo sem exposição para o PP

4.3. Espectroscopia no infravermelho por transformada de Fourier com amostragem por reflectância total atenuada (ATR-FTIR)

A confirmação da classe polimérica (*fingerprint*) foi realizada a partir dos espectros iniciais (mês 00), através da atribuição das bandas características. Além disso, as análises iniciais foram utilizadas para a observação de características específicas de cada tipo de plástico em cada mesocosmo, e para o acompanhamento de bandas devido a possíveis processos oxidativos, incrustação de solo, formação de biofilme, ou demais modificações estruturais superficiais (Tabela 2).

Ao fim do período do estudo, os materiais pristinos foram novamente analisados e os espectros obtidos confirmaram que estes materiais não sofreram alterações durante este período. Portanto, as mudanças nos espectros oriundos do estudo em mesocosmo se devem à influência das condições ambientais.

A partir da comparação dos espectros médios de cada plástico nos três mesocosmos, é possível observar que, para todos os plásticos, as bandas com as principais mudanças tendem a aumentar conforme o avanço dos meses de ensaio. O crescimento das principais bandas avaliadas pode estar associado a processos oxidativos devido à (bio)degradação do plástico, à incrustação de solo na superfície do material, e/ou à formação de biofilme (Potrykus et al., 2021).

O processo de (bio)degradação pode levar ao aparecimento de bandas relacionadas a funções de aldeídos, ésteres, álcoois, amidas, cetonas e ácidos carboxílicos. A incrustação de solo é observada no aparecimento de bandas de dobramento N–H e estiramento S=O que podem estar associadas a outras substâncias orgânicas presentes no solo e também em bandas de estiramento éter alifático C-O-C de polissacarídeos ou semelhantes a polissacarídeos e C=C aromáticos das estruturas policíclicas relacionadas a substâncias húmicas e fúlvicas que aderiram à superfície dos plásticos (Gewert et al., 2015; Machado et al., 2020; Potrykus et al., 2021). Além disso, os estiramentos e dobramentos relacionados a ligações Si–O de silicatos e/ou aluminossilicatos comprovam a presença de minerais (Volkov et al., 2021). Por fim, a formação de biofilme é identificada nas regiões de bandas relacionadas a amidas (referentes às estruturas dos sacarídeos/carboidratos) e a ésteres (referentes as estruturas dos lipídeos) (Gieroba et al., 2020).

Posição (cm ⁻¹)	Atribuição	Descrição	Referência
915	δC–OH	Dobramento fora do plano	(Volkov et al., 2021)
1005	vSi–O	Estiramento dióxido de silício	(Volkov et al., 2021)
1030	vS=O	Estiramento sulfóxido	(Potrykus et al., 2021)
1090	vC–O	Estiramento álcool, éster, éter	(Gieroba et al., 2020)
1243	vC–O	Estiramento éster	(Gieroba et al., 2020)
1539	δΝ–Η	Dobramento amina / amida II	(Gieroba et al., 2020)
1643	vC=O/C=C	Estiramento amida I / alceno aromático	(Machado et al., 2020)
1720	vC=O	Estiramento carbonila	(Potrykus et al., 2021)
3289	vO–H	Estiramento álcool	(Potrykus et al., 2021)
3450	vN–H	Estiramento amina	(Potrykus et al., 2021)
3694	vSiO–H	Estiramento ligação de hidrogênio	(Volkov et al., 2021)

Tabela 2. Atribuição das principais bandas avaliadas (cm⁻¹) no infravermelho médio

Os espectros médios de ATR-FTIR iniciais (mês 00) com as atribuições espectrais características para EVA, HDPE, PET e PP são apresentados nas Figuras 12, 16, 20 e 24, respectivamente. A comparação de intensidade das principais bandas avaliadas entre os meses 00 e 12 para os mesocosmos de água doce, solo com exposição e solo sem exposição para EVA, HDPE, PET e PP é apresentada nas Tabelas 3 a 6, respectivamente. A comparação dos espectros médios do mês 00 ao mês 12 para EVA, HDPE, PET e PP é apresentada nas Tabelas 3 a 6, respectivamente. A comparação dos espectros médios do mês 00 ao mês 12 para EVA, HDPE, PET e PP é apresentada, respectivamente, nas Figuras 13, 17, 21 e 25 (mesocosmo de água doce), Figuras 14, 18, 22 e 26 (mesocosmo de solo com exposição) e Figuras 15, 19, 23 e 27 (mesocosmo de solo sem exposição).

4.3.1. EVA

O EVA é um copolímero de acetato de vinila e etileno, portanto espera-se que seu espectro de infravermelho médio apresente características especificas de cada monômero que o compõem. A partir do espectro inicial (Figura 12), as bandas nos números de onda em 2916 e 2848 cm⁻¹ são atribuídas a CH₂ estiramento assimétrico e CH₂ estiramento simétrico, respectivamente. Além disso, as bandas na região de 1463 cm⁻¹ são atribuídas aos dobramentos CH₂ e CH₃. Por fim, em 720 cm⁻¹ é atribuída ao CH₂ *rocking*. Estas bandas são caracteristicamente observadas em polietilenos (Jung et al., 2018).

Porém, esperava-se observar uma banda com maior absorbância em 1740 cm⁻¹, atribuída ao estiramento da ligação C=O de carbonila, bem como bandas em 1020 e 1241 cm⁻¹

atribuídas a estiramentos C–O, presentes no grupo funcional éster. Além disso, a presença considerável do grupo O–H atribuída ao estiramento em 3392 cm⁻¹ indica a possível hidrólise de parte dos monômeros de acetato de vinila (Jung et al., 2018). Devido à baixa absorbância dos estiramentos de éster e à presença do grupo hidroxila, é possível concluir que se trata de um plástico de EVA com baixo grau de monômeros de acetato de vinila e/ou parcialmente hidrolisado. Portanto, boa parte de sua composição é próxima a um polietileno convencional.

Figura 12. Espectro médio de ATR-FTIR inicial (mês 00) com posição das bandas características para o EVA

A partir da comparação de intensidade das principais bandas avaliadas (Tabela 3) e dos espectros médios dos meses 00 a 12 (Figuras 13 a 15), foi possível observar que o mesocosmo de água doce apresentou a maior mudança no perfil do espectro em relação aos demais mesocosmos, principalmente em bandas referentes ao crescimento de biofilme em 3289 (vO–H), 1643 (vC=O), 1539 (δ N–H) e 1243 (vC–O) cm⁻¹, conforme observado na avaliação visual (item 4.1). No mesocosmo de solo com exposição, foi observado um crescimento em

bandas relacionadas à incrustação de solo em 3694 (vSiO–H), 1005 (vSi–O) e 915 (δ C–OH) cm⁻¹, indicando a presença de minerais. Observou-se um discreto aumento em 1720 cm⁻¹ (vC=O), o que sugere maior influência da radiação solar neste material devido ao processo de oxidação superficial. Também se observou um discreto aumento em 3450 (vN–H), 3289 (vO–H), 1643 (vC=O ou vC=C), 1090 (vC–O) e 1030 (vS=O) cm⁻¹, bandas referentes à parte orgânica de solo ou biofilme. No mesocosmo de solo sem exposição, a incrustação de solo foi a principal alteração observada no perfil do espectro, indicando a presença de minerais (3694 (vSiO–H), 1005 (vSi–O) e 915 (δ C–OH) cm⁻¹), aminas (3450 (vN–H) cm⁻¹), álcoois/ésteres/éteres (1090 (vC–O) cm⁻¹) e sulfóxidos (1030 (vS=O) cm⁻¹).

Tabela 3. Comparação de intensidade das principais bandas avaliadas (cm⁻¹) entre os meses 00 e 12 para mesocosmo de água doce, mesocosmo de solo com exposição e mesocosmo de solo sem exposição para o EVA

Posição (cm ⁻¹)	Atribuição	Água doce	Solo com exposição	Solo sem exposição
915	δC–ΟΗ	=	+	+
1005	vSi–O	=	++	++
1030	vS=O	++	++	++
1090	vC–O	+	+	+
1243	vC–O	+	=	=
1539	δΝ–Η	+	=	=
1643	vC=O/vC=C	++	+	+
1720	vC=O	=	+	=
3289	vO–H	+ +	+	+
3450	vN–H	=	+	+
3694	vSiO–H	=	+	+

=: banda não apresentou mudanças; +: banda apresentou aumento discreto; + +: banda apresentou aumento considerável; -: banda apresentou diminuição discreta; - -: banda apresentou diminuição considerável.

Figura 13. Espectros médios de ATR-FTIR do mês 00 ao mês 12 com posição das bandas avaliadas para mesocosmo de água doce para o EVA

Figura 14. Espectros médios de ATR-FTIR do mês 00 ao mês 12 com posição das bandas avaliadas para mesocosmo de solo com exposição para o EVA

Figura 15. Espectros médios de ATR-FTIR do mês 00 ao mês 12 com posição das bandas avaliadas para mesocosmo de solo sem exposição para o EVA

4.3.2. HDPE

A partir do espectro inicial (Figura 16), as bandas nos números de onda em 2916 e 2848 cm⁻¹ são atribuídas a CH₂ estiramento assimétrico e CH₂ estiramento simétrico, respectivamente. Além disso, as bandas em 1473 e 1463 cm⁻¹ são atribuídas ao dobramento CH₂ de HDPE, uma vez que o LDPE apresenta as bandas de dobramento CH₂ em 1467 e 1462 cm⁻¹. Por fim, a banda em 720 cm⁻¹ é atribuída a CH₂ *rocking*. Este padrão de bandas confirma que a cadeia principal do polímero é um polietileno de alta densidade (Jung et al., 2018).

Figura 16. Espectro médio de ATR-FTIR inicial (mês 00) com posição das bandas características para o HDPE

A partir da comparação de intensidade das principais bandas avaliadas (Tabela 4) e dos espectros médios dos meses 00 a 12 (Figuras 17 a 19), foi possível observar que o mesocosmo de água doce apresentou a maior mudança no perfil do espectro em relação aos demais mesocosmos, principalmente em bandas referentes ao crescimento de biofilme em 3289 (vO–H), 1643 (vC=O), 1539 (δ N–H) e 1243 (vC–O) cm⁻¹, embora a avaliação visual (item 4.1) não tenha indicado mudanças apreciáveis. No mesocosmo de solo com exposição, foi observado um crescimento em bandas relacionadas à incrustação de solo em 3694 (vSiO–H), 1005 (vSi–O) e 915 (δ C–OH) cm⁻¹, indicando a presença de minerais. Observou-se um discreto aumento em 1720 cm⁻¹ (vC=O), o que sugere maior influência da radiação solar neste material devido ao processo de oxidação superficial. Este processo oxidativo contribuiu para fragmentação do material como observado na avaliação visual nos meses finais. Também se observou um discreto aumento em 3450 (vN–H), 1090 (vC–O) e 1030 (vS=O) cm⁻¹, bandas referentes à parte orgânica de solo ou biofilme. Ainda assim, a avaliação visual mostrou um impacto menor no HDPE. No mesocosmo de solo sem exposição, a incrustação de solo foi a principal alteração observada no perfil do espectro, indicando a presença de minerais (3694 (vSiO–H), 1005 (vSi–O) e 915 (δ C–OH) cm⁻¹), aminas (3450 (vN–H) cm⁻¹), álcoois/ésteres/éteres (1090 (vC–O) cm⁻¹) e sulfóxidos (1030 (vS=O) cm⁻¹). Para o HDPE, a superficie lisa de baixa rugosidade e curvatura do material dificultam a ancoragem e desenvolvimento de microrganismos (Burrows et al., 2020).

Tabela 4. Comparação de intensidade das principais bandas avaliadas (cm⁻¹) entre os meses00 e 12 para mesocosmo de água doce, mesocosmo de solo com exposição e mesocosmo desolo sem exposição para o HDPE

Posição (cm ⁻¹)	Atribuição	Água doce	Solo com exposição	Solo sem exposição
915	δC–OH	=	+	+
1005	vSi–O	=	++	++
1030	vS=O	+ +	++	++
1090	vC–O	+ +	+ +	++
1243	vC–O	+	=	=
1539	δΝ–Η	+	=	=
1643	vC=O/vC=C	++	=	=
1720	vC=O	=	+	=
3289	vO–H	++	=	=
3450	vN–H	=	+	+
3694	vSiO–H	=	+	+

=: banda não apresentou mudanças; +: banda apresentou aumento discreto; + +: banda apresentou aumento considerável; -: banda apresentou diminuição discreta; - -: banda apresentou diminuição considerável.

Figura 17. Espectros médios de ATR-FTIR do mês 00 ao mês 12 com posição das bandas avaliadas para mesocosmo de água doce para o HDPE

Figura 18. Espectros médios de ATR-FTIR do mês 00 ao mês 12 com posição das bandas avaliadas para mesocosmo de solo com exposição para o HDPE

Figura 19. Espectros médios de ATR-FTIR do mês 00 ao mês 12 com posição das bandas avaliadas para mesocosmo de solo sem exposição para o HDPE

4.3.3. PET

A partir do espectro inicial (Figura 20), a banda no número de onda em 1714 cm⁻¹ é atribuída ao estiramento da ligação C=O da carbonila presente no grupo funcional éster. Já as bandas em 1240 e 1092 cm⁻¹ são atribuídas a estiramentos C–O também presentes na ligação da função éster. Por fim, a banda em 720 cm⁻¹ está atribuída ao dobramento CH aromático fora do plano. Este padrão de bandas confirma que a cadeia principal do polímero é um poliéster do tipo polietileno tereftalato (Jung et al., 2018).

Figura 20. Espectro médio de ATR-FTIR inicial (mês 00) com posição das bandas características para o PET

A partir da comparação de intensidade das principais bandas avaliadas (Tabela 5) e dos espectros médios dos meses 00 a 12 (Figuras 21 a 23), não foi possível observar crescimento das bandas relativas a crescimento de biofilme no mesocosmo de água doce com exceção da banda em 3289 (vO–H) cm⁻¹, embora a avaliação visual demonstrasse que este processo tenha

ocorrido (item 4.1). No mesocosmo de solo com exposição, algumas bandas referentes a presença de minerais em 3694 (vSiO–H) e 915 (δ C–OH) cm⁻¹ apresentaram crescimento discreto, o que demonstra o efeito do contato com o solo. Além disso, também ocorreu o aumento discreto em bandas referentes à parte orgânica de solo ou biofilme em 3450 (vN–H), 3289 (vO–H) e 1030 (vS=O) cm⁻¹. No mesocosmo de solo sem exposição, bandas referentes à presença de minerais (3694 (vSiO–H) e 915 (δ C–OH) cm⁻¹), aminas (3450 (vN–H) cm⁻¹) e sulfóxidos (1030 (vS=O) cm⁻¹) também apresentaram aumento discreto devido ao contato com o solo. O PET é o plástico que apresenta menor alteração das bandas, possivelmente devido ao fato de que o material já apresenta em seu espectro inicial as principais bandas de estrutura e composição de cadeia polimérica que coincidem com as bandas relacionadas à formação de biofilme, presença de solo e aos processos oxidativos.

Tabela 5. Comparação de intensidade das principais bandas avaliadas (cm ⁻¹) entre os meses
00 e 12 para mesocosmo de água doce, mesocosmo de solo com exposição e mesocosmo de
solo sem exposição para o PET

Posição (cm ⁻¹)	Atribuição	Água doce	Solo com exposição	Solo sem exposição
915	δC–ΟΗ	=	+	+
1005	vSi–O	=	=	=
1030	vS=O	+	+	+
1090	vC–O	=	=	=
1243	vC–O	=	=	=
1539	δΝ–Η	=	=	=
1643	vC=O/vC=C	=	=	=
1720	vC=O	=	=	=
3289	vO–H	+	+	+
3450	vN–H	=	+	+
3694	vSiO–H	=	+	+

=: banda não apresentou mudanças; +: banda apresentou aumento discreto; + +: banda apresentou aumento considerável; -: banda apresentou diminuição discreta; - -: banda apresentou diminuição considerável.

Figura 21. Espectros médios de ATR-FTIR do mês 00 ao mês 12 com posição das bandas avaliadas para mesocosmo de água doce para o PET

Figura 22. Espectros médios de ATR-FTIR do mês 00 ao mês 12 com posição das bandas avaliadas para mesocosmo de solo com exposição para o PET

Figura 23. Espectros médios de ATR-FTIR do mês 00 ao mês 12 com posição das bandas avaliadas para mesocosmo de solo sem exposição para o PET

4.3.4. PP

A partir do espectro inicial (Figura 24), as bandas nos números de onda em 2950 cm⁻¹, 2916 cm⁻¹, 2867 cm⁻¹ e 2838 cm⁻¹ são atribuídas a CH₃ estiramento assimétrico, CH₂ estiramento assimétrico, CH₃ estiramento simétrico e CH₂ estiramento simétrico, respectivamente. As bandas em 1458 cm⁻¹ e 1375 cm⁻¹ são atribuídas a dobramento CH₃ simétrico. Por fim, a banda em 840 cm⁻¹ está relacionada a C–H e CH₃ *rocking*. Este padrão de bandas confirma que a cadeia principal do polímero é um polipropileno (Jung et al., 2018).

Figura 24. Espectro médio de ATR-FTIR inicial (mês 00) com posição das bandas características para o PP

A partir da comparação de intensidade das principais bandas avaliadas (Tabela 6) e dos espectros médios dos meses 00 a 12 (Figuras 25 a 27), foi possível observar que o mesocosmo de água doce apresentou a maior mudança no perfil do espectro em relação aos demais mesocosmos, principalmente em bandas referentes ao crescimento de biofilme em 3289 (vO–H), 1643 (vC=O), 1539 (δ N–H) e 1243 (vC–O) cm⁻¹, conforme observado na avaliação visual (item 4.1). No mesocosmo de solo com exposição, foi observado um crescimento em bandas relacionadas à incrustação de solo 3694 (vSiO–H), 1005 (vSi–O) e 915 (δ C–OH) cm⁻¹, indicando a presença de minerais. Observou-se um discreto aumento em 1720 cm⁻¹ (vC=O), o que sugere maior influência da radiação solar neste material devido ao processo de oxidação superficial, fato semelhante ao observado no HDPE e EVA. Este processo oxidativo contribui para fragmentação do material conforme observado na avaliação visual nos meses iniciais. Também se observou um discreto aumento em 3450 (vN–H), 3289 (vO–H), 1643 (vC=O ou vC=C) e um aumento maior em 1090 (vC–O) e 1030 (vS=O) cm⁻¹, bandas referentes à parte orgânica de solo ou biofilme. No mesocosmo de solo sem exposição, a incrustação de solo foi a principal alteração observada no perfil do espectro, indicando a presença de minerais (3694 (vSiO–H), 1005 (vSi–O) e 915 (δ C–OH) cm⁻¹), aminas (3450 (vN–H) cm⁻¹), álcoois/ésteres/éteres (1090 (vC–O) cm⁻¹) e sulfóxidos (1030 (vS=O) cm⁻¹).

Tabela 6. Comparação de intensidade das principais bandas avaliadas (cm⁻¹) entre os meses 00 e 12 para mesocosmo de água doce, mesocosmo de solo com exposição e mesocosmo de solo sem exposição para o PP

Posição (cm ⁻¹)	Atribuição	Água doce	Solo com exposição	Solo sem exposição
915	δC–OH	=	+	+
1005	vSi–O	=	++	+ +
1030	vS=O	++	++	+ +
1090	vC–O	+	++	++
1243	vC–O	+	=	=
1539	δΝ–Η	+	=	=
1643	vC=O/vC=C	+ +	+	+
1720	vC=O	=	+	=
3289	vO–H	++	+	+
3450	vN–H	=	+	+
3694	vSiO–H	=	+	+

=: banda não apresentou mudanças; +: banda apresentou aumento discreto; + +: banda apresentou aumento considerável; -: banda apresentou diminuição discreta; --: banda apresentou diminuição considerável.

Figura 25. Espectros médios de ATR-FTIR do mês 00 ao mês 12 com posição das bandas avaliadas para mesocosmo de água doce para o PP

Figura 26. Espectros médios de ATR-FTIR do mês 00 ao mês 12 com posição das bandas avaliadas para mesocosmo de solo com exposição para o PP

Figura 27. Espectros médios de ATR-FTIR do mês 00 ao mês 12 com posição das bandas avaliadas para mesocosmo de solo sem exposição para o PP

4.4. Calorimetria diferencial de varredura (DSC)

As análises térmicas em plásticos auxiliam na identificação de alterações nos padrões de cristalinidade, temperaturas de decomposição e transição de fase, possíveis artefatos e alterações estruturais dos polímeros durante a interação em condições ambientais (Bitter and Lackner, 2021; Gewert et al., 2015).

A partir das análises de DSC, é possível obter parâmetros importantes relacionados aos processos de fusão e cristalização do material. A transição de fase de fusão é um processo endotérmico e permite obter valores como temperatura de fusão (T_m) e entalpia de fusão (ΔH_m) . Além disso, em um termograma de DSC, o formato do pico de fusão pode ser influenciado tanto pela estrutura do material (polidispersidade da massa molar e irregularidades morfológicas) quanto pela interferência externa causada pela exposição ambiental (Bitter and Lackner, 2021; Mandelkern, 2004). Já a transição de fase de cristalização é um processo exotérmico e permite obter valores semelhantes como a temperatura de cristalização (T_c) e entalpia de cristalização (ΔH_c). Neste caso, a cristalização realizada durante a análise é controlada e, por consequência, a nucleação dos cristais ocorre de forma mais padronizada (Bitter and Lackner, 2021).

Tais parâmetros de fusão e cristalização permitem confirmar o tipo de polímero que está sendo utilizado nos ensaios por meio de comparação com os valores observados na literatura. Além disso, a entalpia de fusão do primeiro aquecimento (ΔH_{m1}) pode especialmente demonstrar a influência provocada pela exposição ambiental como a presença de matéria orgânica, impacto na distribuição de massa molar das cadeias do polímero, modificação das estruturas cristalinas e efeitos de envelhecimento como os processos foto-oxidativos (Bitter and Lackner, 2021). O ΔH_{m1} também permite calcular o índice de cristalinidade (X_c) do material em questão. Este índice descreve quanto o polímero semicristalino apresenta regiões lamelares construídas devido à estereorregularidade de suas cadeias e também reflete o impacto da exposição ambiental, que pode provocar alterações nas regiões amorfas e cristalinas do material (Crawford and Quinn, 2017; Li et al., 2019). O X_c, expresso em porcentagem, é calculado a partir da razão entre ΔH_m da amostra e ΔH_m^0 , valor de referência da entalpia de fusão do cristal perfeito do polímero.

A Tabela 7 apresenta os valores de ΔH_m^0 encontrados na literatura. Para o EVA, utilizou-se o mesmo valor de ΔH_m^0 do PE, pois a cristalinidade apresentada no copolímero está

relacionada aos cristais provenientes das estruturas das cadeias de etileno que apresentam certo grau de cristalinidade (Faga et al., 2022). Já os grupos acetóxi advindos da copolimerização com acetato de vinila não permitem a formação de cristais, por isso compõem predominantemente a parte amorfa do polímero (Sung-Seen and Yu Yeon, 2021).

Por fim, a entalpia de fusão do segundo aquecimento (ΔH_{m2}) está relacionada às características do material com a menor interferência da exposição ambiental, pois é possível que o primeiro aquecimento altere os interferentes como matéria orgânica e, por consequência, permita identificar outras características estruturais do polímero em questão (Bitter and Lackner, 2021). Devido a este trabalho elucidar o impacto da exposição ambiental, o primeiro aquecimento foi utilizado para uma melhor compreensão.

Tabela 7. Valores de referência de entalpia de fusão do cristal perfeito (ΔH_m^0) (J g⁻¹) para EVA, HDPE, PET e PP

Polímero	$\Delta H_m^0 (J g^{-1})$	Referência
PE, EVA	293	(Li et al., 2019)
PET	140	(Ronkay et al., 2020)
PP	207	(Rivera-Armenta et al., 2022)

Os plásticos estudados podem ser classificados como semicristalinos, ou seja, parte das cadeias forma cristais em meio à matriz amorfa, levando a um certo grau de cristalinidade. A Tabela 8 apresenta a comparação dos valores de T_{m1} e T_c iniciais (mês 00) em comparação com a literatura, indicando que os dados obtidos no presente estudo estão de acordo com o esperado e corroboram com as análises de ATR-FTIR (item 4.3) e TGA (item 4.5) em relação à composição dos materiais.

Os valores obtidos de T_{m1} (°C), ΔH_{m1} (J g⁻¹), X_c (%), T_c (°C), ΔH_c (J g⁻¹), T_{m2} (°C) e ΔH_{m2} (J g⁻¹) estão apresentados no Apêndice B para EVA (Tabela B1), HDPE (Tabela B2), PET (Tabela B3) e PP (Tabela B4). A variação (%) de T_{m1} e ΔH_{m1} em relação aos valores iniciais (mês 00) para EVA, HDPE, PET e PP é apresentada nas Figuras 28, 30, 32 e 34, respectivamente. A variação (%) de T_c e ΔH_c ao longo do ensaio em relação aos valores iniciais (mês 00) para EVA, HDPE, PET e PP é apresentada nas Figuras 29, 31, 33 e 35, respectivamente.
Polímero	Tm1 (°C)	Tc (°C)	Referência
EVA	111	94	Presente estudo
	85	68	(Faga et al., 2022)
	58 - 90	39 - 73	(Díez et al., 2021)
LDPE	108	94	(Li et al., 2019)
	112	94	(Zhang et al., 2020)
HDPE	130	111	Presente estudo
	125	113	(Li et al., 2019)
	131	118	(Cestari et al., 2014)
PET	259	199	Presente estudo
	243 - 247	188 - 193	(Viora et al., 2023)
	251	204	(Wang et al., 2017)
PP	168	116	Presente estudo
	163	107	(Joseph et al., 2003)
	171	111	(Rivera-Armenta et al., 2022)

Tabela 8. Valores de T_{m1} (°C) e T_c (°C) obtidos no presente estudo em comparação com a literatura para EVA, HDPE, PET e PP

A partir dos resultados obtidos no primeiro aquecimento ao longo do ensaio, no geral observou-se uma redução de ΔH_{m1} , que pode estar relacionada à presença de matéria orgânica, seja ela proveniente de biofilme ou de solo. Primeiramente, as interações entre os polímeros, que são estruturalmente compostos por grupos hidrofóbicos, e a matéria orgânica, constituída de material hidrofílico como polissacarídeos, aminoácidos e proteínas, ácidos orgânicos, íons, entre outros, são fracas e não permitem uma interface favorável entre si, requerendo menos energia para manter o material em estado sólido (Castillo and Barbosa, 2020; Joseph et al., 2003). Além disso, também existe um efeito de diluição causado pela composição vegetal presente na amostra. A matéria orgânica normalmente é constituída de estruturas amorfas, exceto à celulose que pode apresentar maiores níveis de cristalinidade. As estruturas amorfas não participam do processo de transição de fase de fusão, e como este processo é endotérmico, não requerem energia. Por consequência, ocorre a diminuição do ΔH_{m1} em relação ao total de amostra. No primeiro aquecimento em que há maior presença desta matéria orgânica, o efeito de diluição é mais expressivo (Castillo and Barbosa, 2020; Joseph et al., 2003).

Os resultados obtidos no resfriamento apresentam uma redução de ΔH_c ao longo do ensaio, que também pode ser referente à presença de matéria orgânica ou minerais presentes nos mesocosmos de solo. Esta alteração pode ser compreendida como um fenômeno de transcristalização. Este processo ocorre quando o polímero fundido é resfriado junto com a matéria orgânica ou minerais, impactando no desenvolvimento dos cristais. A matéria orgânica ou os minerais agem como centros nucleantes dos cristais, e a proximidade do polímero fundido com a superfície do material interferente inibe o processo comum de crescimento radial das esferulitas no desenvolvimento dos cristais poliméricos. Dessa forma, a cristalização se desenvolve apenas na direção paralela à superfície do material orgânico ou mineral. Portanto, são observadas regiões de transcristalinidade próximas a estes materiais (Joseph et al., 2003).

4.4.1. EVA

A análise inicial (mês 00) de DSC para o EVA apresentou valores altos de T_{m1} (111 °C) e T_c (94 °C) (Tabela B1) quando comparado a dados da literatura (Tabela 8). Isso indica um grau menor de monômeros de acetato de vinila na composição do polímero, fato também observado nas análises iniciais de ATR-FTIR (item 4.3) e TGA (item 4.5) (Sung-Seen and Yu Yeon, 2021). Em adição, o EVA apresentou valores de T_{m1} e T_c próximos ao LDPE (Tabela 8), o que reafirma tratar-se de um copolímero com baixa quantidade de monômeros com grupo acetóxi, pois em um copolímero, o monômero que possui maior presença governa as propriedades térmicas do material. Além disso, o EVA apresentou valores mais baixos de cristalinidade em comparação com os demais polímeros, pois possui cadeias com uma maior dificuldade para a formação de cristais (Li et al., 2019).

O mesocosmo de água doce demonstrou um padrão aleatório de valores de ΔH_{m1} , tendo meses com aumento e meses com decréscimo (Figura 28). Portanto, não foi possível estabelecer uma tendência de mudança ao longo do ensaio. Em ambos os mesocosmos de solo, no geral, houve uma pequena redução nos valores de ΔH_{m1} , com exceção de alguns meses. Não ocorreram mudanças apreciáveis nas temperaturas de T_{m1} para o EVA em nenhum dos mesocosmos ao longo do ensaio. Já o ΔH_c apresentou uma redução ao longo de todo o ensaio para os três mesocosmos (Figura 29), enquanto não ocorreram mudanças apreciáveis nas temperaturas de T_c para o EVA em nenhum dos mesocosmos ao longo do ensaio.

As reduções de ΔH_{m1} e ΔH_c podem estar relacionadas à presença de matéria orgânica de biofilme ou solo, bem como minerais advindos do contato com o solo. Tais interferentes podem mudar os padrões de fusão e cristalização do material (Joseph et al., 2003; Stelea et al., 2022).

Figura 28. Variação (%) da temperatura de fusão do primeiro aquecimento (T_{m1}) em relação aos valores iniciais (mês 00) (esquerda) e variação (%) da entalpia de fusão do primeiro aquecimento (ΔH_{m1}) em relação aos valores iniciais (mês 00) (direita) para mesocosmo de água doce, mesocosmo de solo com exposição e mesocosmo de solo sem exposição para o EVA

4.4.2. HDPE

A análise inicial (mês 00) de DSC para o HDPE foi utilizada para a confirmação de sua estrutura. O material apresentou valores de T_{m1} e T_c de acordo com um polímero de alta densidade. Em comparação, o LDPE normalmente apresenta valores mais baixos para ambas as temperaturas (Tabela 8) (Li et al., 2019).

O mesocosmo de água doce demonstrou um padrão de redução de valores de ΔH_{m1} , com exceção de alguns meses (Figura 30). Fenômeno semelhante foi observado para o mesocosmo de solo sem exposição, com exceção do último mês. Este fato também deve estar associado à presença de matéria orgânica ou minerais que geralmente levam a uma redução de ΔH_{m1} (Joseph et al., 2003). No caso do HDPE, esta redução foi menor provavelmente pela menor formação de biofilme ou incrustação de solo como apresentado nos itens de avaliação visual (item 4.1) e avaliação mássica (item 4.2). Para o mesocosmo de solo com exposição, até o nono mês, os valores de ΔH_{m1} estiveram em torno do valor inicial, com pequenos aumentos e decréscimos. Porém, nos últimos meses, foi observado um aumento considerável e, por consequência, um incremento no índice de cristalinidade do material (Tabela B2). Este acontecimento pode estar associado à exposição à radiação solar que promove o alinhamento nas cadeias do polímero levando a um aumento da cristalinidade, o que torna o material mais duro e quebradiço. Outro fato é que o HDPE não apresenta grupos laterais, por isso a estereorregularidade presente no polietileno favorece a mobilidade e o alinhamento das cadeias e, por consequência, o processo de cristalização (Conradie et al., 2022). Isto corrobora com o observado na avaliação visual em que nos meses finais, o HDPE apresentou extensa fragmentação das fitas. A T_{m1} não sofreu modificações consideráveis em nenhum mesocosmo.

 $O \Delta H_c$ apresentou padrão aleatório não sendo possível estabelecer uma tendência em nenhum mesocosmo, enquanto a T_c também não sofreu modificações consideráveis em nenhum mesocosmo (Figura 31).

Figura 30. Variação (%) da temperatura de fusão do primeiro aquecimento (T_{m1}) em relação aos valores iniciais (mês 00) (esquerda) e variação (%) da entalpia de fusão do primeiro aquecimento (ΔH_{m1}) em relação aos valores iniciais (mês 00) (direita) para mesocosmo de água doce, mesocosmo de solo com exposição e mesocosmo de solo sem exposição para o HDPE

4.4.3. PET

A análise inicial (mês 00) de DSC para o PET está condizente com a literatura (Tabela 8). Em todos os mesocosmos, os valores de ΔH_{m1} apresentaram redução em comparação com o valor inicial (Figura 32). Este fato, semelhante ao ocorrido nos plásticos anteriores, deve estar associado à presença de matéria orgânica ou minerais que geralmente levam a uma redução desta entalpia (Joseph et al., 2003; Stelea et al., 2022). A T_{m1} não sofreu modificações consideráveis em nenhum mesocosmo.

Diferentemente dos demais plásticos, os valores de $\Delta H_c e T_c$ apresentaram aumento apreciável ao longo do ensaio em todos os mesocosmos (Figura 33). No mesocosmo de água doce, o aumento ocorreu a partir do mês 07 para o ΔH_c e mês 09 para o T_c . Já no mesocosmo de solo com exposição, o aumento foi a partir do mês 04 para a ΔH_c e mês 03 para o T_c . Por fim, no mesocosmo de solo sem exposição, o aumento foi a partir do mês 09 para o ΔH_c e mês 06 para o T_c . Em contradição aos outros plásticos, a presença de matéria orgânica (biofilme ou solo) ou minerais presentes nos mesocosmos de solo não favoreceu o processo de cristalização por meio da transcristalização. Diferentemente dos outros plásticos, os valores de ΔH_{m2} (Tabela B3) são consideravelmente menores do que os valores de ΔH_{m1} em todos os mesocosmos, o que indica uma formação menor de cristais no processo de recristalização após exposição ambiental quando comparado ao material pristino.

Figura 32. Variação (%) da temperatura de fusão do primeiro aquecimento (T_{m1}) em relação aos valores iniciais (mês 00) (esquerda) e variação (%) da entalpia de fusão do primeiro aquecimento (ΔH_{m1}) em relação aos valores iniciais (mês 00) (direita) para mesocosmo de água doce, mesocosmo de solo com exposição e mesocosmo de solo sem exposição para o PET

4.4.4. PP

A análise inicial (mês 00) de DSC para o PP está condizente com a literatura (Tabela 8). Em todos os mesocosmos, no geral, houve uma redução dos valores de ΔH_{m1} (Figura 34). Além disso, a T_{m1} também foi mais baixa em todos os mesocosmos, principalmente no de água doce e de solo com exposição, apresentando uma redução de até 12 °C em relação ao valor inicial (Tabela B4). No mesocosmo de solo com exposição, ocorreu o aumento da ΔH_{m1} nos meses 02 e 03. Esta exceção pode ter sido causada pela exposição à radiação solar, que promove o alinhamento nas cadeias do polímero levando a um aumento da cristalinidade e torna o material mais duro e quebradiço. Além disso, esse processo degradativo pode levar à redução da massa molar das cadeias de PP devido ao processo de cisão radicalar causada pela foto-oxidação (Conradie et al., 2022). Isto corrobora com o observado na avaliação visual (item 4.1) em que nestes meses, o PP iniciou fragmentação intensa, fenômeno também observado para o HDPE nos últimos meses.

Em todos os mesocosmos, no geral, os valores de ΔH_c sofreram uma pequena redução em relação ao valor inicial, enquanto os valores de T_c não apresentaram mudanças consideráveis ao longo do ensaio (Figura 35). Estas reduções, semelhante ao ocorrido nos plásticos anteriores, podem estar associadas à presença de matéria orgânica ou minerais que geralmente levam a uma redução das entalpias (Joseph et al., 2003; Stelea et al., 2022).

4.5. Análise termogravimétrica (TGA)

Análises de TGA permitem compreender a degradação e estabilidade térmica do material sob atmosfera inerte (fluxo de nitrogênio) ou oxidante (fluxo de oxigênio ou de ar atmosférico) e, portanto, avaliar a possível formação ou incorporação de grupos ou compostos mais voláteis durante a exposição do material em condições ambientais (Mansa and Zou, 2021). A técnica acompanha a variação mássica durante a programação de temperatura, possibilitando a avaliação de processos de decomposição, volatilização e vaporização. Além disso, a estabilidade térmica e cinética dos processos de degradação também pode ser avaliada (Ng et al., 2018).

Além do perfil de perda mássica, é possível estabelecer a temperatura na qual ocorre a taxa máxima de degradação medida como o pico da primeira derivada, conhecida como a temperatura máxima, $T_{máx}$ (°C), bem como a temperatura de *onset*, T_{onset} (°C), definida pela norma ISO 11358-1:2022 como "o ponto de intersecção da linha de base da massa inicial e a tangente à curva TGA no ponto de gradiente máximo" (tradução livre) (ISO, 2022). Outra importante temperatura é a definida em 10% de perda mássica, $T_{10\%}$ (°C), que ajuda a compreender como ocorre o início do processo de decomposição.

Todas as temperaturas estão relacionadas ao processo de decomposição das cadeias poliméricas, porém são calculadas de maneiras distintas. Estas temperaturas ajudam a compreender se o padrão de decomposição do material foi alterado durante o período de exposição ambiental, bem como contribuir para elucidar quais fatores levaram a essa alteração de padrão. Por sua vez, a massa residual ou a porcentagem de resíduos R (%) observada ao fim da análise pode estar relacionada também à presença de interferentes que não sofreram a completa degradação durante a análise ou uma eventual modificação estrutural que leva a compostos mais estáveis na temperatura final da análise (De Falco et al., 2021).

A Tabela 9 apresenta a comparação dos valores de $T_{máx}$ iniciais (mês 00) em comparação com a literatura, indicando que os dados obtidos no presente estudo estão de acordo com o esperado e corroboram com as análises de ATR-FTIR (item 4.3) e DSC (item 4.4) em relação à composição dos materiais. Além disso, todos os materiais apresentaram valores de $T_{máx}$ próximos da literatura, porém a variação observada decorre de diversos fatores como massa molar, aditivos utilizados na produção dos plásticos, ramificação das cadeias poliméricas e histórico de processamento (de Carvalho et al., 2013; Li et al., 2019; Martínez et al., 2017).

Polímero	Tmáx (°C)	Referência
EVA	445	Presente estudo
	459	(Contat-Rodrigo et al., 2002)
	462 - 505	(Das and Tiwari, 2017)
HDPE	447	Presente estudo
	450 - 480	(Al-Yaari and Dubdub, 2020)
	463 - 505	(Das and Tiwari, 2017)
	465	(Contat-Rodrigo et al., 2002)
PET	421	Presente estudo
	375 - 441	(Alhulaybi and Dubdub, 2023)
	427 - 470	(Das and Tiwari, 2019)
PP	367	Presente estudo
	284	(Veroneze et al., 2022)
	398	(Joseph et al., 2003)
	433 - 489	(Das and Tiwari, 2017)

Tabela 9. Valores de T_{máx} (°C) obtidos no presente estudo em comparação com a literaturapara EVA, HDPE, PET e PP

Os perfis e temperaturas de decomposição dos plásticos estudados são semelhantes entre si. O principal processo ocorre em temperaturas superiores a 300 °C e até 500 °C, o que indica a quebra das cadeias carbônicas que compõem o *backbone* dos polímeros. Este processo de uma única etapa ocorre por quebra aleatória radicalar. O calor fornecido durante a rampa é responsável por induzir a formação de radicais na cadeia polimérica que levam à cisão da cadeia e propagação do efeito de degradação térmica (Esmizadeh et al., 2020; Faga et al., 2022; Joseph et al., 2003).

Os valores obtidos de $T_{10\%}$ (°C), $T_{máx}$ (°C), T_{onset} (°C) e R (%) estão apresentados no Apêndice C para EVA (Tabela C1), HDPE (Tabela C2), PET (Tabela C3) e PP (Tabela C4). A variação (%) de $T_{máx}$ e os valores de R (%) em relação aos valores iniciais (mês 00) para EVA, HDPE, PET e PP são apresentados nas Figuras 36 a 39, respectivamente.

A partir dos resultados obtidos ao longo do ensaio, no geral observou-se um aumento de $T_{máx}$. Esta alteração no padrão de decomposição pode ser justificada pela presença de matéria orgânica, que passa a cobrir a superfície dos materiais, seja ela proveniente de biofilme (principalmente no mesocosmo de água doce) ou incrustação de solo (principalmente nos mesocosmos de solo). Dentre os diferentes componentes da matéria orgânica, dois tipos

principais podem contribuir para o aumento de $T_{máx}$; matéria lignocelulósica e matéria húmica e fúlvica (Esteves and Duarte, 1999; Nurazzi et al., 2021).

A lignina apresenta início de processo de degradação até 200 °C, e a partir desta temperatura até 500 °C ocorrem processos de quebra das ligações entre as unidades da lignina liberando monômeros fenólicos. Devido a este processo começar antes do observado para o material pristino, isto pode influenciar na antecipação do processo de degradação que é observado a partir de 300 °C. Além disso, a celulose e a hemicelulose possuem temperaturas de decomposição por volta de 300 a 350 °C, atribuídas à quebra das ligações glicosídicas da celulose e à despolimerização da hemicelulose. Já a celulose desidratada possui decomposição por volta de 470 °C (Nurazzi et al., 2021; Poletto, 2017).

As substâncias húmicas e fúlvicas apresentam decomposição de grupos carboxílicos, metílicos, metilênicos, carbonilas, fenólicos, álcoois, polissacarídeos e insaturações. Substâncias fúlvicas apresentam estruturas termicamente mais lábeis como estruturas alifáticas e grupos funcionais oxigenados, portanto sua degradação geralmente inicia antes de 200 °C. Já as substâncias húmicas são termicamente mais estáveis devido às estruturas de maior aromaticidade e, portanto, decompõem perto de 300 °C aproximadamente (Esteves and Duarte, 1999).

Outra característica provocada pela matéria orgânica é o aumento de R ao final do ensaio. Este aumento está relacionado ao resíduo de carvão formado durante a decomposição da matéria lignocelulósica, principalmente para a lignina, ou substância húmicas e fúlvicas presentes no solo que apresentam estruturas policíclicas aromáticas. Estes compostos levam a formação de estruturas aromáticas altamente condensadas que não se decompõem em altas temperaturas. No caso da incrustação de solo, além da influência da matéria orgânica, a presença de minerais também pode influenciar o padrão de decomposição, uma vez que sua faixa de temperatura de decomposição está entre 430 e 590 °C (Esteves and Duarte, 1999; Joseph et al., 2003; Nurazzi et al., 2021; Pallasser et al., 2013; Poletto, 2017).

4.5.1. EVA

A análise inicial (mês 00) de TGA para o EVA apresentou valores de $T_{máx}$ mais próximos ao HDPE do presente estudo do que valores encontrados na literatura para polímeros

do tipo EVA (Tabela 9) (Contat-Rodrigo et al., 2002). Além disso, o EVA apresentou um único processo de decomposição, pois caso a presença de grupos laterais acetóxi fosse considerável, haveria um processo adicional de decomposição anterior ao processo da cadeia principal de etileno (Faga et al., 2022). Essas características reafirmam que o EVA utilizado no presente estudo é um copolímero com baixa quantidade de monômeros com grupo acetóxi, fato também observado nas análises iniciais de ATR-FTIR (item 4.3) e DSC (item 4.4).

A partir da variação de $T_{máx}$ e R dos meses 00 a 12 (Tabela C1 e Figura 36), foi possível observar que o mesocosmo de água doce demonstrou um aumento da $T_{máx}$ a partir do sexto mês. Além disso, no geral, o valor de R apresentou um discreto aumento ao longo do ensaio. No mesocosmo de solo com exposição, observou-se comportamento semelhante em que a partir do segundo mês todos os valores $T_{máx}$ são superiores ao inicial e, no geral, todos os valores de R também são maiores. No mesocosmo de solo sem exposição, o aumento de $T_{máx}$ ocorreu a partir do terceiro mês, enquanto houve um aumento em R ao longo de todo o ensaio. Estes incrementos de $T_{máx}$ e R podem estar associados à presença de matéria orgânica proveniente de biofilme, principalmente para o mesocosmo de água doce, ou de incrustação de solo para os mesocosmos de solo, bem como a presença de minerais nos mesocosmos de solo.

4.5.2. HDPE

A análise inicial (mês 00) de TGA para o HDPE apresentou valores de $T_{máx}$ próximos do indicado na literatura e um único processo de decomposição como esperado para este plástico (Tabela 9).

A partir da variação de T_{máx} e R dos meses 00 a 12 (Tabela C2 e Figura 37), foi possível observar que o mesocosmo de água doce demonstrou um aumento da T_{máx} a partir do sétimo mês. Além disso, no geral, o valor de R apresentou um discreto aumento ao longo do ensaio. No mesocosmo de solo com exposição, observou-se comportamento semelhante em que a partir do sexto mês todos os valores T_{max} são superiores ao inicial e, no geral, todos os valores de R também são maiores, mesmo que o aumento seja discreto. No mesocosmo de solo sem exposição, o aumento de T_{máx} ocorreu a partir do quarto mês, enquanto houve um aumento em R ao longo de todo o ensaio. Estes incrementos de T_{máx} e R podem estar associados à presença de matéria orgânica proveniente de biofilme, principalmente para o mesocosmo de água doce, ou de incrustação de solo para os mesocosmos de solo, bem como a presença de minerais nos mesocosmos de solo. No caso do HDPE, o incremento observado nos mesocosmos foi mais discreto, o que deve estar relacionado a menor presença de matéria orgânica e minerais na superfície do material como observado na avaliação visual (item 4.1) e avaliação mássica (item 4.2). A pouca formação de biofilme e incrustação de solo neste material está associada à menor rugosidade, porosidade e curvatura do HDPE, que apresenta uma superfície lisa característica de filmes (Burrows et al., 2020).

4.5.3. PET

A análise inicial (mês 00) de TGA para o PET apresentou valores de $T_{máx}$ próximos do indicado em literatura e um único processo de decomposição como esperado para este plástico (Tabela 9).

A partir da variação de $T_{máx}$ e R dos meses 00 a 12 (Tabela C3 e Figura 38), foi possível observar que o mesocosmo de água doce demonstrou um aumento da $T_{máx}$ a partir do sexto mês. Além disso, no geral, o valor de R apresentou uma oscilação ao longo do ensaio não sendo possível estabelecer uma tendência. No mesocosmo de solo com exposição, observou-se comportamento semelhante em que a partir do sexto mês todos os valores $T_{máx}$ são superiores ao inicial. Entretanto, os valores de R oscilam em torno do inicial e apresentam aumento a partir do sétimo mês e mantem-se acima do inicial até o fim do ensaio. No mesocosmo de solo sem exposição, o aumento de $T_{máx}$ ocorreu também a partir do sexto mês, enquanto houve um aumento em R a partir do quarto mês. Estes incrementos de $T_{máx}$ e R podem estar associados à presença de matéria orgânica proveniente de biofilme, principalmente para o mesocosmo de água doce, ou de incrustação de solo para os mesocosmos de solo, bem como a presença de minerais nos mesocosmos de solo.

4.5.4. PP

A análise inicial (mês 00) de TGA para o PP apresentou valores de $T_{máx}$ próximos do indicado em literatura e um único processo de decomposição como esperado para este plástico (Tabela 9).

A partir da variação de T_{máx} e R dos meses 00 a 12 (Tabela C4 e Figura 39), foi possível observar que o mesocosmo de água doce demonstrou um aumento considerável da T_{máx} a partir do primeiro mês. Além disso, no geral, o valor de R apresentou uma oscilação próxima ao valor inicial com redução relevante a partir do oitavo mês. Neste mesocosmo também foi possível observar redução da $T_{10\%}$ em alguns meses o que indica antecipação do processo de decomposição. No mesocosmo de solo com exposição, observou-se comportamento diferente no terceiro mês em que o valor de T_{máx} é 10% menor que a inicial, além disso a T10% também acompanha este padrão de decréscimo. Esta redução pode estar relacionada ao fato que o PP apresentou rápida fragmentação (a partir do terceiro mês), o que possivelmente demonstra mudanças estruturais, principalmente na distribuição de massa molar. Apesar de ser a mesma classe polimérica, a diferença na distribuição de massa molar promove diferentes temperaturas de decomposição (Martínez et al., 2017). Entretanto, a partir do quarto mês os valores de T_{máx} voltam a apresentar incremento considerável até o fim do ensaio. Os valores de R oscilam bastante em torno do inicial até o fim do ensaio. No mesocosmo de solo sem exposição, o aumento de T_{máx} ocorreu também a partir do primeiro mês de forma crescente até o fim do ensaio, enquanto houve um aumento em R a partir do segundo mês. Estes incrementos de T_{máx} e R podem estar associados à presença de matéria orgânica proveniente de biofilme, principalmente para o mesocosmo de água doce, ou de incrustação de solo para os mesocosmos de solo, bem como a presença de minerais nos mesocosmos de solo. O PP foi o plástico que apresentou maior incremento de T_{máx} em relação aos demais, o que corrobora com as diferenças observadas nas demais análises.

5. CONSIDERAÇÕES FINAIS

A partir da avaliação visual e da avaliação mássica ao longo dos meses, concluiuse que o mesocosmo de água doce apresentou intensa formação de biofilme na superfície dos plásticos EVA, PET e PP. Por sua vez, o mesocosmo de solo com exposição apresentou menor formação de biofilme e incrustação de solo, mas, devido principalmente à exposição solar, observou-se a fragmentação do HDPE e do PP, o que favorece acentuadamente a formação de fragmentos menores. Por fim, o mesocosmo de solo sem exposição não apresentou alterações visuais e mássicas apreciáveis, salvo à incrustação de solo na superfície de EVA, PET e PP. Devido às suas características da superfície, o HDPE não demonstrou formação de biofilme e incrustação de solo nos mesocosmos de água doce e de solo sem exposição.

A avaliação das principais bandas nas análises de ATR-FTIR permitiu concluir que houve a formação de biofilme nos mesocosmos de água doce e solo com exposição, e que tal fenômeno foi mais presente no mesocosmo de água doce devido à exposição ao meio aquático. Além disso, foi possível concluir que houve incrustação de solo em ambos os mesocosmos de solo, com maior intensidade no mesocosmo sem exposição. Por fim, o mesocosmo de solo com exposição apresentou uma maior degradação física nas fitas, principalmente nos plásticos HDPE e PP, devido a processos oxidativos da exposição às condições ambientais como radiação solar e umidade.

As análises de DSC demonstraram, no geral, redução das entalpias de fusão do primeiro aquecimento (ΔH_{m1}) para todos os plásticos e em todos os mesocosmos, fato associado à presença de matéria orgânica. No caso do EVA, o mesocosmo de água doce teve comportamento aleatório nos valores de ΔH_{m1} e não foi possível estabelecer uma tendência. Por sua vez, o HDPE apresentou intenso aumento nos valores de ΔH_{m1} nos meses finais no mesocosmo de solo com exposição, o que deve estar relacionado aos processos foto oxidativos e, por consequência, fragmentação do material. O PP também apresentou redução de temperatura de fusão do primeiro aquecimento (T_{m1}), que pode também ter sido influenciada pela formação de biofilme.

Por fim, as análises de TGA demonstraram a influência da formação de biofilme nos mesocosmos de água doce e de solo com exposição, e da presença de matéria orgânica e minerais em ambos os mesocosmos de solo. Estas mudanças levaram a um aumento na temperatura de decomposição dos materiais $(T_{máx})$. O PP demonstrou redução destas temperaturas nos primeiros meses do mesocosmo de solo com exposição, o que pode ser referente à diferença na distribuição de massa molar, corroborando com a fragmentação observada na avaliação visual. Também foi possível observar mais facilmente as alterações provocadas pela exposição ambiental para este plástico, devido às suas temperaturas de decomposição serem mais baixas. Além disso, a matéria orgânica também influenciou no aumento dos resíduos (R) dos materiais.

Por fim, o desenvolvimento dos ensaios de exposição ambiental por meio de mesocosmos em conjunto com as técnicas analíticas de ATR-FTIR, DSC e TGA permitiram elucidar o impacto de condições ambientais mais realistas em plásticos comerciais e acompanhar os processos de degradação, formação de biofilme e influência do solo.

BIBLIOGRAFIA

- Al-Yaari, M., Dubdub, I., 2020. Application of Artificial Neural Networks to Predict the Catalytic Pyrolysis of HDPE Using Non-Isothermal TGA Data. Polymers (Basel). 12, 1813. https://doi.org/10.3390/polym12081813
- Alhulaybi, Z., Dubdub, I., 2023. Comprehensive Kinetic Study of PET Pyrolysis Using TGA. Polymers (Basel). 15, 3010. https://doi.org/10.3390/polym15143010
- Andrady, A.L., 2011. Microplastics in the marine environment. Mar. Pollut. Bull. 62, 1596– 1605. https://doi.org/10.1016/j.marpolbul.2011.05.030
- Barrick, A., Champeau, O., Chatel, A., Manier, N., Northcott, G., Tremblay, L.A., 2021. Plastic additives: challenges in ecotox hazard assessment. PeerJ 9, e11300. https://doi.org/10.7717/peerj.11300
- Bhagwat, G., O'Connor, W., Grainge, I., Palanisami, T., 2021. Understanding the Fundamental Basis for Biofilm Formation on Plastic Surfaces: Role of Conditioning Films. Front. Microbiol. 12. https://doi.org/10.3389/fmicb.2021.687118
- Bitter, H., Lackner, S., 2021. Fast and easy quantification of semi-crystalline microplastics in exemplary environmental matrices by differential scanning calorimetry (DSC). Chem. Eng. J. 423, 129941. https://doi.org/10.1016/j.cej.2021.129941
- Boyle, T.P., Fairchild, J.F., 1997. The Role of Mesocosm Studies in Ecological Risk Analysis. Ecol. Appl. 7, 1099–1102.
- Burrows, S.D., Frustaci, S., Thomas, K. V., Galloway, T., 2020. Expanding exploration of dynamic microplastic surface characteristics and interactions. TrAC Trends Anal. Chem. 130, 115993. https://doi.org/10.1016/j.trac.2020.115993
- Caquet, T., 2002. Use of aquatic mesocosms in ecotoxicology: State of the art and perspectives. Radioprotection 37, C1-173-C1-177. https://doi.org/10.1051/radiopro/2002033
- Castillo, L.A., Barbosa, S.E., 2020. Comparative analysis of crystallization behavior induced by different mineral fillers in polypropylene nanocomposites. Nanomater. Nanotechnol. 10, 184798042092275. https://doi.org/10.1177/1847980420922752
- CEPAGRI Unicamp, 2023. Climatologia Campinas [WWW Document]. URL https://www.cpa.unicamp.br/

- Cestari, S.P., Mendes, L.C., Altstädt, V., Mano, E.B., da Silva, D.F., Keller, J.-H., 2014. Crystallization Kinetics of Recycled High Density Polyethylene and Coffee Dregs Composites. Polym. Polym. Compos. 22, 541–550. https://doi.org/10.1177/096739111402200606
- Chen, Y., Awasthi, A.K., Wei, F., Tan, Q., Li, J., 2021. Single-use plastics: Production, usage, disposal, and adverse impacts. Sci. Total Environ. 752, 141772. https://doi.org/10.1016/j.scitotenv.2020.141772
- Cole, M., Lindeque, P., Halsband, C., Galloway, T.S., 2011. Microplastics as contaminants in the marine environment: A review. Mar. Pollut. Bull. 62, 2588–2597. https://doi.org/10.1016/j.marpolbul.2011.09.025
- Conradie, W., Dorfling, C., Chimphango, A., Booth, A.M., Sørensen, L., Akdogan, G., 2022. Investigating the Physicochemical Property Changes of Plastic Packaging Exposed to UV Irradiation and Different Aqueous Environments. Microplastics 1, 456–476. https://doi.org/10.3390/microplastics1030033
- Contat-Rodrigo, L., Ribes-Greus, A., Imrie, C.T., 2002. Thermal analysis of high-density polyethylene and low-density polyethylene with enhanced biodegradability. J. Appl. Polym. Sci. 86, 764–772. https://doi.org/10.1002/app.10974
- Costigan, E., Collins, A., Hatinoglu, M.D., Bhagat, K., MacRae, J., Perreault, F., Apul, O., 2022. Adsorption of organic pollutants by microplastics: Overview of a dissonant literature. J. Hazard. Mater. Adv. 6, 100091. https://doi.org/10.1016/j.hazadv.2022.100091
- Crawford, C.B., Quinn, B., 2017. Physiochemical properties and degradation, in: Microplastic Pollutants. Elsevier, pp. 57–100. https://doi.org/10.1016/B978-0-12-809406-8.00004-9
- Das, P., Tiwari, P., 2019. Thermal degradation study of waste polyethylene terephthalate (PET) under inert and oxidative environments. Thermochim. Acta 679, 178340. https://doi.org/10.1016/j.tca.2019.178340
- Das, P., Tiwari, P., 2017. Thermal degradation kinetics of plastics and model selection. Thermochim. Acta 654, 191–202. https://doi.org/10.1016/j.tca.2017.06.001
- de Carvalho, C.L., Silveira, A.F., Rosa, D. dos S., 2013. A study of the controlled degradation of polypropylene containing pro-oxidant agents. Springerplus 2, 623. https://doi.org/10.1186/2193-1801-2-623

- De Falco, F., Avolio, R., Errico, M.E., Di Pace, E., Avella, M., Cocca, M., Gentile, G., 2021. Comparison of biodegradable polyesters degradation behavior in sand. J. Hazard. Mater. 416, 126231. https://doi.org/10.1016/j.jhazmat.2021.126231
- Dey, A., Dhumal, C.V., Sengupta, P., Kumar, A., Pramanik, N.K., Alam, T., 2021. Challenges and possible solutions to mitigate the problems of single-use plastics used for packaging food items: a review. J. Food Sci. Technol. 58, 3251–3269. https://doi.org/10.1007/s13197-020-04885-6
- Díez, E., Rodríguez, A., Gómez, J., Galán, J., 2021. TG and DSC as tools to analyse the thermal behaviour of EVA copolymers. J. Elastomers Plast. 53, 792–805. https://doi.org/10.1177/0095244320988163
- Emadian, S.M., Onay, T.T., Demirel, B., 2017. Biodegradation of bioplastics in natural environments. Waste Manag. 59, 526–536. https://doi.org/10.1016/j.wasman.2016.10.006
- Esmizadeh, E., Tzoganakis, C., Mekonnen, T.H., 2020. Degradation Behavior of Polypropylene during Reprocessing and Its Biocomposites: Thermal and Oxidative Degradation Kinetics. Polymers (Basel). 12, 1627. https://doi.org/10.3390/polym12081627
- Esteves, V.I., Duarte, A.C., 1999. Thermogravimetric properties of aquatic humic substances. Mar. Chem. 63, 225–233. https://doi.org/10.1016/S0304-4203(98)00064-4
- Evode, N., Qamar, S.A., Bilal, M., Barceló, D., Iqbal, H.M.N., 2021. Plastic waste and its management strategies for environmental sustainability. Case Stud. Chem. Environ. Eng. 4, 100142. https://doi.org/10.1016/j.cscee.2021.100142
- Faga, M., Duraccio, D., Di Maro, M., Pedraza, R., Bartoli, M., D'Ayala, G., Torsello, D.,
 Ghigo, G., Malucelli, G., 2022. Ethylene-Vinyl Acetate (EVA) Containing Waste HempDerived Biochar Fibers: Mechanical, Electrical, Thermal and Tribological Behavior.
 Polymers (Basel). 14, 4171. https://doi.org/10.3390/polym14194171
- Gewert, B., Plassmann, M.M., MacLeod, M., 2015. Pathways for degradation of plastic polymers floating in the marine environment. Environ. Sci. Process. Impacts 17, 1513– 1521. https://doi.org/10.1039/C5EM00207A
- Gieroba, B., Krysa, M., Wojtowicz, K., Wiater, A., Pleszczyńska, M., Tomczyk, M., Sroka-Bartnicka, A., 2020. The FT-IR and Raman Spectroscopies as Tools for Biofilm

Characterization Created by Cariogenic Streptococci. Int. J. Mol. Sci. 21, 3811. https://doi.org/10.3390/ijms21113811

- Hahladakis, J.N., Velis, C.A., Weber, R., Iacovidou, E., Purnell, P., 2018. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. J. Hazard. Mater. 344, 179–199. https://doi.org/10.1016/j.jhazmat.2017.10.014
- Harrison, J.P., Boardman, C., O'Callaghan, K., Delort, A.-M., Song, J., 2018.
 Biodegradability standards for carrier bags and plastic films in aquatic environments: a critical review. R. Soc. Open Sci. 5, 171792. https://doi.org/10.1098/rsos.171792
- Hodgson, D.J., Bréchon, A.L., Thompson, R.C., 2018. Ingestion and fragmentation of plastic carrier bags by the amphipod Orchestia gammarellus: Effects of plastic type and fouling load. Mar. Pollut. Bull. 127, 154–159. https://doi.org/10.1016/j.marpolbul.2017.11.057
- ISO, 2022. ISO 11358-1:2022. Plastics Thermogravimetry (TG) of polymers. Part 1: General principles. International Organization for Standardization, Geneva.
- ISO, 2020. ISO/TR 21960:2020. Plastics Environmental aspects State of knowledge and methodologies.
- Joseph, P.V., Joseph, K., Thomas, S., Pillai, C.K.S., Prasad, V.S., Groeninckx, G., Sarkissova, M., 2003. The thermal and crystallisation studies of short sisal fibre reinforced polypropylene composites. Compos. Part A Appl. Sci. Manuf. 34, 253–266. https://doi.org/10.1016/S1359-835X(02)00185-9
- Jung, M.R., Horgen, F.D., Orski, S. V., Rodriguez C., V., Beers, K.L., Balazs, G.H., Jones, T.T., Work, T.M., Brignac, K.C., Royer, S.-J., Hyrenbach, K.D., Jensen, B.A., Lynch, J.M., 2018. Validation of ATR FT-IR to identify polymers of plastic marine debris, including those ingested by marine organisms. Mar. Pollut. Bull. 127, 704–716. https://doi.org/10.1016/j.marpolbul.2017.12.061
- Kalogerakis, N., Karkanorachaki, K., Kalogerakis, G.C., Triantafyllidi, E.I., Gotsis, A.D., Partsinevelos, P., Fava, F., 2017. Microplastics Generation: Onset of Fragmentation of Polyethylene Films in Marine Environment Mesocosms. Front. Mar. Sci. 4. https://doi.org/10.3389/fmars.2017.00084
- Li, D., Zhou, L., Wang, X., He, L., Yang, X., 2019. Effect of Crystallinity of Polyethylene with Different Densities on Breakdown Strength and Conductance Property. Materials

(Basel). 12, 1746. https://doi.org/10.3390/ma12111746

- Machado, W., Franchini, J.C., de Fátima Guimarães, M., Filho, J.T., 2020. Spectroscopic characterization of humic and fulvic acids in soil aggregates, Brazil. Heliyon 6, e04078. https://doi.org/10.1016/j.heliyon.2020.e04078
- Mandelkern, L., 2004. Crystallization of Polymers. Cambridge University Press. https://doi.org/10.1017/CBO9780511535413
- Mansa, R., Zou, S., 2021. Thermogravimetric analysis of microplastics: A mini review. Environ. Adv. 5, 100117. https://doi.org/10.1016/j.envadv.2021.100117
- Markic, A., Niemand, C., Bridson, J.H., Mazouni-Gaertner, N., Gaertner, J.-C., Eriksen, M., Bowen, M., 2018. Double trouble in the South Pacific subtropical gyre: Increased plastic ingestion by fish in the oceanic accumulation zone. Mar. Pollut. Bull. 136, 547–564. https://doi.org/10.1016/j.marpolbul.2018.09.031
- Martínez, M.C., Benavente, R., Gómez-Elvira, J.M., 2017. Molecular weight dependence and stereoselective chain cleavage during the early stages of the isotactic polypropylene pyrolysis. Polym. Degrad. Stab. 143, 26–34. https://doi.org/10.1016/j.polymdegradstab.2017.06.011
- Matjašič, T., Simčič, T., Medvešček, N., Bajt, O., Dreo, T., Mori, N., 2021. Critical evaluation of biodegradation studies on synthetic plastics through a systematic literature review. Sci. Total Environ. 752, 141959. https://doi.org/10.1016/j.scitotenv.2020.141959
- Miao, L., Gao, Y., Adyel, T.M., Huo, Z., Liu, Z., Wu, J., Hou, J., 2021. Effects of biofilm colonization on the sinking of microplastics in three freshwater environments. J. Hazard. Mater. 413, 125370. https://doi.org/10.1016/j.jhazmat.2021.125370
- Morin-Crini, N., Lichtfouse, E., Liu, G., Balaram, V., Ribeiro, A.R.L., Lu, Z., Stock, F.,
 Carmona, E., Teixeira, M.R., Picos-Corrales, L.A., Moreno-Piraján, J.C., Giraldo, L., Li,
 C., Pandey, A., Hocquet, D., Torri, G., Crini, G., 2022. Worldwide cases of water
 pollution by emerging contaminants: a review. Environ. Chem. Lett. 20, 2311–2338.
 https://doi.org/10.1007/s10311-022-01447-4
- Ng, H.M., Saidi, N.M., Omar, F.S., Ramesh, K., Ramesh, S., Bashir, S., 2018. Thermogravimetric Analysis of Polymers, in: Encyclopedia of Polymer Science and Technology. Wiley, pp. 1–29. https://doi.org/10.1002/0471440264.pst667

Nurazzi, N.M., Asyraf, M.R.M., Rayung, M., Norrrahim, M.N.F., Shazleen, S.S., Rani,

M.S.A., Shafi, A.R., Aisyah, H.A., Radzi, M.H.M., Sabaruddin, F.A., Ilyas, R.A., Zainudin, E.S., Abdan, K., 2021. Thermogravimetric Analysis Properties of Cellulosic Natural Fiber Polymer Composites: A Review on Influence of Chemical Treatments. Polymers (Basel). 13, 2710. https://doi.org/10.3390/polym13162710

- Pallasser, R., Minasny, B., McBratney, A.B., 2013. Soil carbon determination by thermogravimetrics. PeerJ 1, e6. https://doi.org/10.7717/peerj.6
- Plastics Europe, 2022. Plastics the Facts 2022: an Analysis of European Plastics Production, Demand and Waste Data. Plastics Europe, Brussels.
- Poletto, M., 2017. Assessment of the thermal behavior of lignins from softwood and hardwood species. Maderas. Cienc. y Tecnol. 0–0. https://doi.org/10.4067/S0718-221X2017005000006
- Potrykus, M., Redko, V., Głowacka, K., Piotrowicz-Cieślak, A., Szarlej, P., Janik, H.,
 Wolska, L., 2021. Polypropylene structure alterations after 5 years of natural degradation in a waste landfill. Sci. Total Environ. 758, 143649. https://doi.org/10.1016/j.scitotenv.2020.143649
- Rivera-Armenta, J.L., Salazar-Cruz, B.A., Espindola-Flores, A.C., Villarreal-Lucio, D.S., De León-Almazán, C.M., Estrada-Martinez, J., 2022. Thermal and Thermomechanical Characterization of Polypropylene-Seed Shell Particles Composites. Appl. Sci. 12, 8336. https://doi.org/10.3390/app12168336
- Rizzo, M., Corbau, C., Lane, B., Malkin, S.Y., Bezzi, V., Vaccaro, C., Nardin, W., 2021. Examining the dependence of macroplastic fragmentation on coastal processes (Chesapeake Bay, Maryland). Mar. Pollut. Bull. 169, 112510. https://doi.org/10.1016/j.marpolbul.2021.112510
- Ronkay, F., Molnár, B., Nagy, D., Szarka, G., Iván, B., Kristály, F., Mertinger, V., Bocz, K., 2020. Melting temperature versus crystallinity: new way for identification and analysis of multiple endotherms of poly(ethylene terephthalate). J. Polym. Res. 27, 372. https://doi.org/10.1007/s10965-020-02327-7
- Shen, M., Song, B., Zeng, G., Zhang, Y., Huang, W., Wen, X., Tang, W., 2020. Are biodegradable plastics a promising solution to solve the global plastic pollution? Environ. Pollut. 263, 114469. https://doi.org/10.1016/j.envpol.2020.114469

Stelea, L., Filip, I., Lisa, G., Ichim, M., Drobotă, M., Sava, C., Mureșan, A., 2022.

Characterisation of Hemp Fibres Reinforced Composites Using Thermoplastic Polymers as Matrices. Polymers (Basel). 14, 481. https://doi.org/10.3390/polym14030481

Sung-Seen, C., Yu Yeon, C., 2021. Change of Crystalline Properties of Poly(ethylene-covinyl acetate) according to the Microstructures. Elastomers Compos. 56, 92–99.

UN, 2016. The 17 goals for sustainable development.

- Unmar, G., Mohee, R., 2008. Assessing the effect of biodegradable and degradable plastics on the composting of green wastes and compost quality. Bioresour. Technol. 99, 6738– 6744. https://doi.org/10.1016/j.biortech.2008.01.016
- Veroneze, I.B., Onoue, L.A., Cruz, S.A., 2022. Thermal Stability and Crystallization Behavior of Contaminated Recycled Polypropylene for Food Contact. J. Polym. Environ. 30, 3474–3482. https://doi.org/10.1007/s10924-022-02447-9
- Viora, L., Combeau, M., Pucci, M.F., Perrin, D., Liotier, P.-J., Bouvard, J.-L., Combeaud, C., 2023. A Comparative Study on Crystallisation for Virgin and Recycled Polyethylene Terephthalate (PET): Multiscale Effects on Physico-Mechanical Properties. Polymers (Basel). 15, 4613. https://doi.org/10.3390/polym15234613
- Volkov, D., Rogova, O., Proskurnin, M., 2021. Organic Matter and Mineral Composition of Silicate Soils: FTIR Comparison Study by Photoacoustic, Diffuse Reflectance, and Attenuated Total Reflection Modalities. Agronomy 11, 1879. https://doi.org/10.3390/agronomy11091879
- Wang, D., Luo, F., Shen, Z., Wu, X., Qi, Y., 2017. A study on the crystallization behavior and mechanical properties of poly(ethylene terephthalate) induced by chemical degradation nucleation. RSC Adv. 7, 37139–37147. https://doi.org/10.1039/C7RA06823A
- Weir, S.M., Wooten, K.J., Smith, P.N., Salice, C.J., 2014. Phthalate ester leachates in aquatic mesocosms: Implications for ecotoxicity studies of endocrine disrupting compounds. Chemosphere 103, 44–50. https://doi.org/10.1016/j.chemosphere.2013.10.097
- Zang, H., Zhou, J., Marshall, M.R., Chadwick, D.R., Wen, Y., Jones, D.L., 2020. Microplastics in the agroecosystem: Are they an emerging threat to the plant-soil system? Soil Biol. Biochem. 148, 107926. https://doi.org/10.1016/j.soilbio.2020.107926
- Zhang, X., Wang, M., Gao, J., Guo, N., 2020. Crystallization morphology and space charge property of silica/low density polyethylene composites. AIP Adv. 10. https://doi.org/10.1063/1.5135039

APÊNDICE A – AVALIAÇÃO MÁSSICA

Mesocosmo	Fita	Mês												
		00	01	02	03	04	05	06	07	08	09	10	11	12
	1	0,4332	0,4744	0,4933	0,6878	0,4950	0,5466	0,4455	0,5225	0,4422	0,4428	0,4728	0,4643	0,4706
	2	0,4623	0,5171	0,5301	0,7208	0,6732	0,6380	0,4695	0,5592	0,4721	0,4723	0,4995	0,5155	0,4936
Água doce	3	0,4445	0,4758	0,5191	0,6485	0,6268	0,5816	0,4596	0,5589	0,4643	0,4659	0,4822	0,4808	0,4906
-	4	0,4496	0,4812	0,5396	0,6136	0,6177	0,6130	0,4630	0,5578	0,4618	0,4649	0,4955	0,5020	0,4945
	5	0,4200	0,4595	0,4941	0,6001	0,5226	0,5608	0,4286	0,4954	0,4294	0,4293	0,4525	0,4544	0,4499
	1	0,4315	0,4317	0,4376	0,4320	0,4539	0,4524	0,4507	0,4500	0,4469	0,4461	0,4495	0,4452	0,4440
Solo com	2	0,4699	0,4724	0,4766	0,4743	0,4828	0,4806	0,4792	0,4808	0,4788	0,4792	0,4811	0,4824	0,4763
	3	0,4585	0,4608	0,4609	0,4759	0,4682	0,4642	0,4623	0,4636	0,4609	0,4611	0,4618	0,4630	0,4623
exposição	4	0,4883	0,4926	0,4985	0,5200	0,5033	0,5012	0,5005	0,5017	0,4993	0,5008	0,5037	0,5088	0,5038
	5	0,4812	0,4831	0,4830	0,4838	0,4860	0,4898	0,4874	0,4858	0,4817	0,4819	0,4809	0,4827	0,4791
	1	0,4840	0,5366	0,5951	0,6963	0,5347	0,5397	0,5245	0,5281	0,5223	0,5251	0,5272	0,5238	0,5228
Solo com	2	0,4682	0,5878	0,5791	0,6808	0,5991	0,5250	0,5178	0,5062	0,5095	0,5155	0,5158	0,5121	0,5071
solo sem exposição	3	0,4655	0,5788	0,5562	0,6789	0,5581	0,5419	0,5059	0,5052	0,4981	0,5043	0,5048	0,5031	0,5010
	4	0,4727	0,5275	0,5933	0,6838	0,5564	0,5239	0,5104	0,5018	0,5063	0,5073	0,5089	0,5073	0,5113
	5	0,4846	0,5661	0,5782	0,6908	0,5876	0,5592	0,5224	0,5256	0,5175	0,5209	0,5219	0,5203	0,5202

Tabela A1. Massa (g) das fitas de monitoramento amostradas mensalmente do mês 00 até o mês 12 para mesocosmo de água doce, mesocosmode solo com exposição e mesocosmo de solo sem exposição para o EVA

Magaaageeaa	E :4a							Mês						
IVIESOCOSIIIO	гна	00	01	02	03	04	05	06	07	08	09	10	11	12
	1	0,1033	0,1033	0,1044	0,1031	0,1029	0,1039	0,1031	0,1028	0,1032	0,1029	0,1029	0,1034	0,1033
	2	0,1152	0,1151	0,1159	0,1152	0,1150	0,1145	0,1144	0,1148	0,1147	0,1147	0,1152	0,1153	0,1153
Água doce	3	0,1091	0,1099	0,1100	0,1104	0,1101	0,1100	0,1052	0,1050	0,1046	0,1055	0,1059	0,1050	0,1089
	4	0,1171	0,1171	0,1183	0,1176	0,1184	0,1172	0,1175	0,1123	0,1182	0,1177	0,1178	0,1180	0,1186
	5	0,1062	0,1059	0,1068	0,1062	0,1086	0,1055	0,1103	0,1139	0,1096	0,1097	0,1104	0,1102	0,1109
	1	0,1041	0,1033	0,1033	0,1032	0,1030	0,1029	0,1024	0,1030	0,1025	0,1032	0,1039	0,1044	a
Solo com	2	0,1064	0,1059	0,1062	0,1049	0,1048	0,1054	0,1057	0,1054	0,1056	0,1047	0,1063	0,1060	a
	3	0,1216	0,1213	0,1211	0,1212	0,1212	0,1238	0,1207	0,1207	0,1214	0,1203	a	a	a
exposição	4	0,0962	0,0959	0,0960	0,0957	0,0955	_b							
	5	0,1064	0,1063	0,1063	0,1066	0,1062	0,1062	0,1059	0,1058	0,1064	0,1057	a	a	a
	1	0,1073	0,1065	0,1064	0,1065	0,1065	0,1068	0,1064	0,1065	0,1058	0,1065	0,1063	0,1065	0,1055
Solo sem	2	0,1205	0,1202	0,1206	0,1206	0,1202	0,1204	0,1201	0,1206	0,1209	0,1203	0,1203	0,1205	0,1206
	3	0,1210	0,1206	0,1204	0,1199	0,1204	0,1204	0,1198	0,1204	0,1200	0,1205	0,1203	0,1202	0,1199
exposição	4	0,1205	0,1201	0,1201	0,1198	0,1198	0,1198	0,1200	0,1203	0,1204	0,1203	0,1206	0,1205	0,1201
	5	0,1212	0,1203	0,1211	0,1204	0,1206	0,1205	0,1206	0,1208	0,1204	0,1207	0,1209	0,1208	0,1208

Tabela A2. Massa (g) das fitas de monitoramento amostradas mensalmente do mês 00 até o mês 12 para mesocosmo de água doce, mesocosmode solo com exposição e mesocosmo de solo sem exposição para o HDPE

^a: a pesagem não pôde ser feita, pois a fita quebrou; ^b: a pesagem não pôde ser feita, pois a fita se perdeu.

Magaaagu	E :4a	Mês												
Iviesocosiiio	гна	00	01	02	03	04	05	06	07	08	09	10	11	12
Água doce	1	0,7040	0,6997	0,7149	0,7129	0,7178	0,7324	0,7410	0,7455	0,7471	0,7507	0,7548	0,7602	0,7718
	2	0,7754	0,7716	0,7873	_b									
	3	0,7770	0,7747	0,7920	0,7968	0,7996	0,8118	0,8184	0,8239	0,8193	0,8264	0,8335	0,8457	0,8512
	4	0,7615	0,7602	0,7852	0,7925	0,7924	0,7974	0,8093	0,8107	0,8071	0,8094	0,8168	0,8192	0,8340
	5	0,7936	0,7905	0,8095	0,8100	0,8104	0,8173	0,8325	0,8383	0,8368	0,8406	0,8436	0,8496	0,8604
	1	0,7341	0,7442	0,7469	0,7568	0,7717	0,7758	0,7677	0,7720	0,7712	0,7674	0,7699	0,7730	0,7820
Solo com	2	0,7674	0,7842	0,7794	0,7964	0,8158	0,7994	0,7942	0,7956	0,7926	0,7895	0,7929	0,7966	0,8260
Solo com	3	0,7487	0,7747	0,7679	0,7722	0,7758	0,7739	0,7667	0,7669	0,7665	0,7625	0,7687	0,7738	0,7874
exposição	4	0,7898	0,8189	0,7991	0,8144	0,8227	0,8354	0,8282	0,8312	0,8346	0,8269	0,8321	0,8405	0,8406
	5	0,7474	0,7709	0,7554	0,7742	0,7945	0,7851	0,7805	0,7779	0,7767	0,7737	0,7793	0,7859	0,8192
	1	0,7606	0,7843	0,7947	0,8091	0,8154	0,8061	0,8092	0,8108	0,8015	0,8051	0,8078	0,8006	0,7974
Solo sem	2	0,7328	0,7495	0,7508	0,7801	0,7867	0,7807	0,7930	0,7940	0,7813	0,7782	0,7789	0,7723	0,7684
Solo selli	3	0,7165	0,7345	0,7434	0,7852	0,7852	0,7773	0,7744	0,7724	0,7626	0,7611	0,7650	0,7569	0,7552
exposição	4	0,7738	0,8012	0,8023	0,8201	0,8242	0,8172	0,8186	0,8228	0,8112	0,8146	0,8171	0,8088	0,8073
	5	0,7310	0,7536	0,7675	0,7827	0,7901	0,7838	0,7805	0,7852	0,7737	0,7753	0,7768	0,7700	0,7672

Tabela A3. Massa (g) das fitas de monitoramento amostradas mensalmente do mês 00 até o mês 12 para mesocosmo de água doce, mesocosmode solo com exposição e mesocosmo de solo sem exposição para o PET

^b: a pesagem não pôde ser feita, pois a fita se perdeu.
Magaaaa	E :4a							Mês						
Mesocosino	rita	00	01	02	03	04	05	06	07	08	09	10	11	12
	1	0,3578	0,3632	0,3838	0,4142	0,4014	0,4112	0,4086	0,4137	0,4084	0,4112	0,4183	0,4227	0,4279
_	2	0,3484	0,3776	0,4109	0,4012	0,4032	0,4223	0,4264	0,4403	0,4428	0,4510	0,4609	0,4728	0,4816
Água doce	3	0,3742	0,3998	0,4207	0,4211	0,4331	0,4388	0,4273	0,4642	0,4699	0,4751	0,4889	0,4950	0,5079
	4	0,3529	0,3562	0,3782	0,3990	0,4044	0,4157	0,4181	0,4230	0,4315	0,4305	0,4397	0,4593	0,4723
	5	0,3504	0,3508	0,3763	0,4039	0,4004	0,4193	0,4501	0,4315	0,4341	0,4372	0,4490	0,4602	0,4685
	1	0,3654	0,4009	0,3497	a	a	a	a	_a	a	a	a	a	_a
Sala com	2	0,3538	0,3829	0,3608	a	a	a	a	a	a	a	a	a	a
Solo Colli	3	0,3705	0,3907	0,3833	a	a	a	a	a	a	a	a	a	_a
exposição	4	0,3568	0,4056	0,3516	a	a	a	a	a	a	a	a	a	_a
	5	0,3784	0,3844	0,3766	a	a	a	a	a	a	a	a	a	a
	1	0,3589	0,3697	0,3852	0,3954	0,3986	0,4035	0,4045	0,4174	0,3988	0,4132	0,4142	0,4019	0,4006
Solo sem	2	0,3616	0,3731	0,3901	0,3838	0,3942	0,4024	0,4076	0,4212	0,4031	0,4308	0,4314	0,4115	0,4101
	3	0,3865	0,3932	0,4092	0,4162	0,4209	0,4230	0,4263	0,4458	0,4253	0,4406	0,4563	0,4320	0,4312
exposiçao	4	0,3441	0,3545	0,4023	0,3802	0,3879	0,3988	0,3961	0,3998	0,3855	0,3973	0,3996	0,3887	0,3901
	5	0,3792	0,4013	0,4217	0,4164	0,4138	0,4184	0,4292	0,4281	0,4176	0,4431	0,4515	0,4320	0,4269

Tabela A4. Massa (g) das fitas de monitoramento amostradas mensalmente do mês 00 até o mês 12 para mesocosmo de água doce, mesocosmode solo com exposição e mesocosmo de solo sem exposição para o PP

^a: a pesagem não pôde ser feita, pois a fita quebrou.

APÊNDICE B – CALORIMETRIA DIFERENCIAL DE VARREDURA

Tabela B1. Temperatura de fusão $(T_{m1}, °C)$, entalpia de fusão $(\Delta H_{m1}, J g^{-1})$ e índice de cristalinidade $(X_{c1}, %)$ do primeiro aquecimento, temperatura de cristalização $(T_c, °C)$, entalpia de cristalização $(\Delta H_c, J g^{-1})$ do resfriamento, e temperatura de fusão $(T_{m2}, °C)$ e entalpia de fusão $(\Delta H_{m2}, J g^{-1})$ do segundo aquecimento para mesocosmo de água doce, mesocosmo de solo com exposição e mesocosmo de solo sem exposição para o EVA

Mesocosmo	Mês		ΔH_{m1}	Xc1	Tc	$\Delta \mathbf{H}_{\mathbf{c}}$	T _{m2}	ΔH_{m2}
		(°C)	(J g ⁻¹)	(%)	(°C)	(J g ⁻¹)	(°C)	(J g ⁻¹)
	00	111	77	26	94	82	111	77
	01	112	84	29	93	85	111	81
	02	112	104	36	93	71	111	74
	03	111	89	30	93	73	112	78
	04	112	67	23	94	67	111	70
,	05	113	62	21	93	68	112	69
Agua doce	06	112	70	24	94	70	111	71
	07	112	75	26	94	73	112	74
	08	111	100	34	94	70	112	66
	09	113	92	31	94	76	112	77
	10	113	72	25	94	65	112	70
	11	112	67	23	94	69	112	71
	12	115	86	29	93	79	113	69
	00	111	77	26	94	82	111	77
	01	112	74	25	92	88	112	83
	02	113	84	29	94	82	111	68
	03	113	70	24	94	60	111	71
	04	113	72	25	94	69	111	72
Solo com	05	113	62	21	93	60	112	72
	06	112	68	23	94	62	112	62
exposição	07	111	69	23	93	60	111	56
	08	114	70	24	94	64	111	69
	09	114	63	21	93	79	112	79
	10	114	67	23	94	68	112	67
	11	113	67	23	94	61	111	70
	12	112	82	28	93	79	112	76
	00	111	77	26	94	82	111	77
	01	111	67	23	93	77	112	76
	02	111	75	26	94	69	111	75
	03	109	68	23	94	73	111	70
	04	111	79	27	93	74	111	74
Solo som	05	111	67	23	94	63	111	68
	06	112	71	24	93	58	111	60
exposição	07	112	75	26	93	61	111	60
	08	111	75	26	94	61	111	64
	09	113	68	23	94	71	111	71
	10	111	58	20	94	65	111	70
	11	111	72	25	93	67	111	71
	12	111	72	25	94	80	111	79

Tabela B2. Temperatura de fusão $(T_{m1}, °C)$, entalpia de fusão $(\Delta H_{m1}, J g^{-1})$ e índice de cristalinidade $(X_{c1}, %)$ do primeiro aquecimento, temperatura de cristalização $(T_c, °C)$, entalpia de cristalização $(\Delta H_c, J g^{-1})$ do resfriamento, e temperatura de fusão $(T_{m2}, °C)$ e entalpia de fusão $(\Delta H_{m2}, J g^{-1})$ do segundo aquecimento para mesocosmo de água doce, mesocosmo de solo com exposição e mesocosmo de solo sem exposição para o HDPE

Magaaaguaa	Mâz	T _{m1}	ΔH_{m1}	Xc1	Tc	$\Delta \mathbf{H_{c}}$	T _{m2}	ΔH_{m2}
Mesocosmo	Mes	(°C)	(J g ⁻¹)	(%)	(°C)	(J g ⁻¹)	(°C)	(J g ⁻¹)
	00	130	108	37	111	126	127	127
	01	126	106	36	111	145	128	132
	02	125	102	35	112	135	127	138
	03	124	112	38	113	112	125	117
Á 1	04	124	94	32	113	132	125	128
	05	125	107	37	112	119	126	131
Água doce	06	126	104	36	113	117	125	130
6	07	126	103	35	112	113	127	113
	08	125	100	34	112	109	126	121
	09	125	106	36	112	148	126	140
	10	125	110	38	113	125	125	129
	11	124	101	34	113	123	125	132
	12	126	121	41	112	145	126	122
	00	130	108	37	111	126	127	127
	01	126	114	39	112	140	127	135
	02	125	104	35	112	112	126	122
	03	125	109	37	113	123	125	119
	04	124	103	35	113	137	125	113
Solo com	05	126	112	38	114	128	125	123
	06	125	108	37	112	104	127	115
exposição	07	124	104	35	112	114	126	122
	08	126	106	36	112	130	125	121
	09	127	107	37	111	151	127	146
	10	126	124	42	113	128	125	127
	11	126	119	41	114	125	126	137
	12	126	140	48	114	173	125	163
	00	130	108	37	111	126	127	127
	01	128	100	34	111	130	128	130
	02	127	101	34	112	113	128	123
	03	125	102	35	112	143	125	121
	04	124	96	33	113	126	125	124
Solo sem	05	126	108	37	113	111	125	122
exposição	06	125	99	34	112	123	127	124
exposição	07	125	99	34	113	126	125	128
	08	125	101	35	112	114	127	124
	09	126	105	36	113	130	126	132
	10	125	106	36	112	112	127	126
	11	125	106	36	112	123	126	131
	12	125	136	46	112	160	127	145

Tabela B3. Temperatura de fusão $(T_{m1}, °C)$, entalpia de fusão $(\Delta H_{m1}, J g^{-1})$ e índice de cristalinidade $(X_{c1}, %)$ do primeiro aquecimento, temperatura de cristalização $(T_c, °C)$, entalpia de cristalização $(\Delta H_c, J g^{-1})$ do resfriamento, e temperatura de fusão $(T_{m2}, °C)$ e entalpia de fusão $(\Delta H_{m2}, J g^{-1})$ do segundo aquecimento para mesocosmo de água doce, mesocosmo de solo com exposição e mesocosmo de solo sem exposição para o PET

Magaaageeaa	Mâz	T _{m1}	ΔH_{m1}	Xc1	Tc	$\Delta \mathbf{H_{c}}$	T _{m2}	ΔH_{m2}
Mesocosmo	Mes	(°C)	(J g ⁻¹)	(%)	(°C)	(J g ⁻¹)	(°C)	(J g ⁻¹)
	00	259	64	46	199	47	254	50
	01	259	59	42	195	48	255	43
	02	259	63	45	194	49	256	41
	03	260	61	44	190	48	255	42
ί	04	260	58	41	193	48	256	41
	05	259	60	43	192	47	255	40
Água doce	06	259	57	41	193	46	255	46
6	07	260	60	43	190	52	256	41
	08	260	55	39	197	51	255	43
	09	259	57	40	205	57	255	46
	10	259	58	41	201	57	256	47
	11	259	59	42	205	54	255	48
	12	260	57	41	202	53	254	44
	00	259	64	46	199	47	254	50
	01	259	62	44	194	47	255	42
	02	259	61	44	199	48	254	38
	03	259	53	38	202	46	255	37
	04	260	54	39	202	54	255	51
Sala aam	05	259	55	39	207	50	255	42
	06	258	55	39	205	49	255	41
exposiçao	07	259	56	40	206	49	255	42
	08	260	58	41	203	47	255	39
	09	259	58	42	203	51	254	39
	10	257	56	40	203	55	255	44
	11	258	59	42	204	51	254	41
	12	258	57	41	212	55	256	44
	00	259	64	46	199	47	254	50
	01	259	61	43	195	48	255	41
	02	260	64	45	198	46	255	37
	03	260	58	41	199	43	256	35
	04	259	46	33	199	41	255	33
Solo com	05	259	59	42	198	44	255	38
	06	260	49	35	200	43	256	38
exposiçao	07	259	54	39	206	47	256	40
	08	259	49	35	199	43	255	33
	09	259	55	39	204	49	256	40
	10	257	51	37	214	56	255	47
	11	259	56	40	202	50	255	40
	12	258	51	36	216	55	256	52

Tabela B4. Temperatura de fusão $(T_{m1}, °C)$, entalpia de fusão $(\Delta H_{m1}, J g^{-1})$ e índice de cristalinidade $(X_{c1}, %)$ do primeiro aquecimento, temperatura de cristalização $(T_c, °C)$, entalpia de cristalização $(\Delta H_c, J g^{-1})$ do resfriamento, e temperatura de fusão $(T_{m2}, °C)$ e entalpia de fusão $(\Delta H_{m2}, J g^{-1})$ do segundo aquecimento para mesocosmo de água doce, mesocosmo de solo com exposição e mesocosmo de solo sem exposição para o PP

M	MA.	T _{m1}	ΔH_{m1}	Xc1	Tc	ΔH_{c}	T _{m2}	ΔH_{m2}
Mesocosmo	Mes	(°C)	(J g ⁻¹)	(%)	(°C)	(J g ⁻¹)	(°C)	(J g ⁻¹)
	00	168	84	41	116	99	162	92
	01	165	83	40	114	100	163	103
	02	165	75	36	115	91	163	86
	03	164	71	34	114	86	163	81
	04	165	73	35	115	89	164	80
	05	162	79	38	115	95	157	89
Água doce	06	160	68	33	115	87	163	79
U	07	161	77	37	115	96	158	85
	08	162	84	41	115	103	164	99
	09	156	87	42	115	106	164	91
	10	161	57	27	112	77	154	74
	11	163	60	29	114	82	161	71
	12	160	66	32	114	85	155	92
	00	168	84	41	116	99	162	92
	01	162	80	39	115	96	157	90
	02	161	86	41	115	103	154	100
	03	157	98	47	113	106	155	101
	04	156	83	40	110	95	156	88
Solo com	05	159	75	36	116	90	160	88
	06	162	63	30	120	81	162	76
exposição	07	161	74	36	118	89	164	80
	08	160	78	38	118	100	160	96
	09	160	66	32	115	86	160	77
	10	160	55	27	116	75	156	81
	11	161	75	36	117	97	161	98
	12	159	76	37	116	98	160	104
	00	168	84	41	116	99	162	92
	01	166	80	39	116	99	163	90
	02	167	78	38	119	92	163	91
	03	165	79	38	118	95	163	86
	04	166	76	37	119	92	163	95
Solo sem	05	165	77	37	119	92	162	97
evnosição	06	161	61	30	120	83	162	79
exposição	07	164	55	27	119	73	164	69
	08	165	61	29	119	80	165	75
	09	164	58	28	120	73	163	76
	10	162	71	34	120	88	162	73
	11	165	65	31	118	83	165	84
	12	164	67	33	119	85	163	85

APÊNDICE C – ANÁLISE TERMOGRAVIMÉTRICA

Tabela C1. Temperatura em 10% de perda mássica (T10%, °C), temperatura máxima (Tmá	ίx,
°C), temperatura de onset (Tonset, °C) e resíduos (R, %) para mesocosmo de água doce,	
mesocosmo de solo com exposição e mesocosmo de solo sem exposição para o EVA	

Magaaaa	Mâa	T10%	Tmáx	Tonset	R
Mesocosmo	Ivies	(°C)	(°C)	(°C)	(%)
	00	410	445	420	27
	01	406	437	415	28
	02	386	437	416	26
	03	419	445	422	28
	04	376	444	422	23
_	05	399	441	421	27
Água doce	06	421	454	433	28
-	07	425	455	437	28
	08	420	461	438	27
	09	414	457	438	30
	10	416	469	440	29
	11	414	464	442	29
	12	376	466	441	26
	00	410	445	420	27
	01	412	444	421	27
	02	399	449	421	32
	03	410	447	425	27
	04	409	449	424	26
Solo com	05	412	449	425	29
ovpogioão	06	421	461	446	30
exposição	07	426	462	431	34
	08	432	458	432	31
	09	431	460	438	32
	10	436	464	434	32
	11	437	467	438	32
	12	435	464	441	32
	00	410	445	420	27
	01	411	445	421	30
	02	385	442	422	31
	03	368	452	423	35
	04	377	453	425	35
Solo sem	05	396	454	428	33
exposição	06	385	465	431	38
enposição	07	424	464	431	33
	08	420	466	432	34
	09	421	461	432	37
	10	425	466	431	33
	11	422	469	428	31
	12	431	472	438	37

Mesocosmo	Mês	T10%	T _{máx}	Tonset	\mathbf{R}
	00	(C)	(C)	(C)	(/0)
	00	410	44 /	420	9 10
	01	<i>39</i> 4 400	440	400	10 Q
	02	400	447	420	0
	03	392	447	419	0
	05	381	446	416	10
Á gua doce	05	305	1/8	410 /17	10
I Igua doce	07	422	463	417	11
	08	431	403	420	12
	09	413	451	420	8
	10	428	458	432	12
	11	419	471	437	12
	12	419	470	444	13
	00	410	447	420	9
	01	398	449	413	11
	02	374	441	400	10
	03	380	448	409	9
	04	380	432	407	9
Sala aam	05	393	437	410	10
	06	398	461	433	13
exposição	07	429	458	435	13
	08	433	469	437	12
	09	431	459	432	13
	10	430	462	435	10
	11	429	468	438	5
	12	441	476	447	13
	00	410	447	420	9
	01	394	436	402	12
	02	392	448	405	10
	03	402	438	414	10
	04	402	449	414	10
Solo sem	05	395	450	416	11
exposição	06	365	461	427	16
en poorgao	07	410	455	431	13
	08	420	458	419	15
	09	424	462	427	
	10	425	459	427	14
	11	428	458	428	15
	12	429	456	430	13

Tabela C2. Temperatura em 10% de perda mássica ($T_{10\%}$, °C), temperatura máxima ($T_{máx}$, °C), temperatura de *onset* (T_{onset} , °C) e resíduos (R, %) para mesocosmo de água doce, mesocosmo de solo com exposição e mesocosmo de solo sem exposição para o HDPE

Mesocosmo	Mês	T10%	Tmáx	Tonset	R
		(40)	(°C)	(°C)	(%)
	00	391	421	394	11
	01	389	421	396	9
	02	386	422	393	4
	03	386	424	394	1
	04	386	424	396	6
,	05	387	423	397	11
Agua doce	06	391	430	402	7
	07	398	437	400	13
	08	396	436	401	11
	09	394	436	399	10
	10	399	438	406	16
	11	400	438	405	22
	12	389	438	409	12
	00	391	421	394	11
	01	387	422	393	8
	02	384	419	392	6
	03	381	421	393	13
	04	383	424	396	10
Solo com	05	377	423	395	12
ovposição	06	387	429	398	10
exposição	07	396	436	397	20
	08	400	438	400	14
	09	394	437	396	25
	10	395	437	396	18
	11	394	438	396	18
	12	404	440	406	13
	00	391	421	394	11
	01	386	421	393	8
	02	380	418	391	8
	03	384	423	395	9
	04	382	423	395	14
Solo com	05	384	422	395	14
	06	387	429	402	18
exposição	07	395	437	396	15
	08	395	437	397	21
	09	401	436	399	20
	10	399	437	402	19
	11	401	439	403	16
	12	401	439	406	17

Tabela C3. Temperatura em 10% de perda mássica (T_{10%}, °C), temperatura máxima (T_{máx}, °C), temperatura de *onset* (T_{onset}, °C) e resíduos (R, %) para mesocosmo de água doce, mesocosmo de solo com exposição e mesocosmo de solo sem exposição para o PET

Masaaasma	Mâg	T10%	Tmáx	Tonset	R
Iviesocosino	wies	(°C)	(°C)	(°C)	(%)
	00	325	367	331	14
	01	338	382	346	10
	02	340	395	358	12
	03	334	411	370	11
	04	318	418	374	16
	05	294	435	389	12
Água doce	06	329	418	372	14
-	07	353	436	365	12
	08	352	447	379	1
	09	363	433	388	0
	10	294	446	388	11
	11	289	415	373	0
	12	291	428	371	5
	00	325	367	331	14
	01	325	388	347	16
	02	287	361	311	5
	03	247	332	281	3
	04	277	413	329	9
Solo com	05	320	433	379	6
Solo com	06	278	380	291	26
exposição	07	378	426	384	13
	08	340	408	348	4
	09	302	435	342	34
	10	315	416	319	28
	11	331	441	372	8
	12	328	462	410	19
	00	325	367	331	14
	01	315	374	332	14
	02	323	382	335	18
	03	333	392	344	22
	04	327	388	344	16
Solo sem	05	355	416	367	19
evnosição	06	353	410	361	25
exposição	07	369	463	397	32
	08	372	434	375	19
	09	379	434	382	25
	10	374	425	376	16
	11	341	464	416	44
	12	403	469	417	18

Tabela C4. Temperatura em 10% de perda mássica (T_{10%}, °C), temperatura máxima (T_{máx}, °C), temperatura de *onset* (T_{onset}, °C) e resíduos (R, %) para mesocosmo de água doce, mesocosmo de solo com exposição e mesocosmo de solo sem exposição para o PP