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“The task is not so much to see what no

one yet has seen, but to think what nobody
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Arthur Schopenhauer



Resumo

Sejam F' um corpo de caracteristica 0 e E a dlgebra de Grassman de dimensao infinita
sobre F'. Na primeira parte desta tese, encontramos um algoritmo que calcula a funcao
geratriz da sequéncia de cocaracteres de UT,(E), a dlgebra das matrizes triangulares
superiores com entradas em FE, contida numa faixa de comprimento fixo. Logo, calculamos
a série dupla de Hilbert de E e definimos a série de (k,[)-multiplicidades de uma PI-
algebra. Como aplicacao do anterior encontramos um algoritmo para determinar a série
de (k,l)-multiplicidades de UT,(E).

Para a segunda parte da tese, vamos considerar F' um corpo infinito e UT,,(F"), a algebra
das matrizes triangulares superiores com entradas em F' e denotemos por UT,,(F )(_) a
algebra de Lie sobre o espago vetorial UT,,(F") com o commutador usual de matrizes. Nesta
parte do trabalho, damos uma resposta positiva ao problema de Specht para o ideal das
identidades Z,,-graduadas de UT,,(F )(_) com a graduacao canonica quando a caracteristica
p de F' é zero ou maior que n — 1. Também mostramos que se F' é um corpo infinito de
caracteristica p = 2 entao as identidades Zs-graduadas de U T?ff)(F ) nao satisfazem a

propriedade de Specht.

Palavras-chave: Pl-algebras. Cocaracter. Séries de Hilbert. Propriedade de Specht.
Identidades graduadas.



Abstract

Let F be a field of characteristic 0 and let E be the infinite dimensional Grassmann
algebra over F. In the first part of this thesis we give an algorithm that calculates the
generating function of the cocharacter sequence of UT, (F), the n x n upper triangular
matrix algebra with entries in F, lying in a strip of a fixed size. Then, we compute the
double Hilbert series H(E; T, Y;) of E and we define the (k,[)-multiplicity series of any
Pl-algebra. As an application, we derive from H(FE; Ty, Y;) an algorithm determining the
(k,)-multiplicity series of UT,(E).

For the second part of this thesis, let UT,,(F') be the algebra of the n x n upper triangular
matrices and denote UT, (F)) the Lie algebra on the vector space of UT},(F) with respect
to the usual bracket (commutator), over an infinite field F'. In this second part of this
work, we give a positive answer to the Specht property for the ideal of the Z,-graded
identities of UT,(F)™) with the canonical grading when the characteristic p of F is 0 or
is larger than n — 1. Moreover, we show that if F' is an infinite field of characteristic p = 2
then the Zz-graded identities of U Tg(i)(F ) do not satisfy the Specht property.

Keywords: Pl-algebras. Cocharacter. Hilbert series. Specht property. Graded identities.
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Introduction

In this thesis, we study two independent topics concerning Pl-algebras. The
first one is about cocharacters of associative algebras over a field of characteristic zero,

while the second one deals with the Specht property of varieties of graded Lie algebras.

We will start by discussing the first topic. Consider F' a field of characteristic 0
and A an associative algebra over F' with unity, let X = {x1,x9,...} be a countable set
of non-commuting indeterminates, then we denote by F{(X) the free associative algebra
freely generated by X over F. We say that f(xy,...x,,) € F(X) is a polynomial identity
of a given algebra A if f(aq,...,a,) =0forall a, ..., a, € A. If the algebra A satisfies a
non-trivial polynomial identity, then A is called a PI-algebra. It is well known that its set
of polynomial identities, T'(A), of A is a T-ideal of F{X), that is, an ideal that is invariant
under all endomorphisms of F'(X).

A famous theorem of Kemer [45] says that if A is a Pl-algebra over a field of
characteristic 0, its T-ideal is finitely generated. We recall that the complete set of finite

generators of T-ideals is known only for few algebras.

In the case F is of characteristic 0, all the polynomial identities follow from
the multilinear ones. By a theorem of Regev [64], it turns out to be more efficient to study
the set of multilinear polynomials which (in a certain sense) are not polynomial identities
for a given algebra. More precisely, if P, is the vector space of multilinear polynomials in

the variables {z1,...,x,}, we study the factor space
P,(A):=P,/(P, nT(A))

for each n. We recall that P, is also a left S,-module under the canonical left action.
Since T-ideals are invariant under permutations of the variables then P, n T'(A) is a
submodule, and hence P, (A) is an S,-module too. It affords a character, x,(A), called
n-th cocharacter of A. The sequence (x,(A))nen is called the sequence of cocharacters of
A. We also observe that P,(A) is a finite dimensional vector space whose dimension ¢, (A)
is called n-th codimension of A, and the sequence (¢,(A))nen is called the sequence of
codimensions of A. The above mentioned theorem of Regev states that of A is a PI algebra
and A satisfies an identity of degree d then c,(A) < d*" for every n. Since dim P, = n!
this justifies our phrase above: the exponential function grows much “slower” than the

factorial.

In [35], [36] Giambruno and Zaicev proved that there always exists the limit

exp(A) = lim {/c,(A)

n—ao0
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and it is a non-negative integer called the Pl-exponent of A. If we use the language of

varieties, the variety generated by the algebra A is the class
V = V(A) = {B associative algebra | T(A) < T'(B)}.

A variety of algebras V is minimal with respect to its exponent whenever for any proper
subvariety U of V we have that exp(U) < exp(V). We say that a Pl-algebra is minimal if

it generates a minimal variety.

If S is any commutative ring with 1, we denote by UT,(S) the ring of upper
triangular matrices with entries in S. Let E be the infinite dimensional Grassmann algebra
over F', then the T-ideals of the algebras UT,,(F) and UT,(F) are examples of maximal
T-ideals of a given exponent of the codimension sequences (and the corresponding varieties
of algebras are minimal varieties of this exponent). Years before Kemer’s works, Genov in
[32], [33], and Latyshev in [53], proved that every algebra belonging to V(UT,,(F')) has a
finite basis of its polynomial identities. In [54] Latyshev and Popov in [60], generalized the

previous result for Pl-algebras satisfying the identity

[xl, T2, $3] T [‘T3n—27 T3n—1, x?m]

which generates the T-ideal T(UT,(E)) = T(E)" of the algebra UT, (E). For a long time,
until Kemer developed his structure theory, the results of Genov, Latyshev and Popov

covered most of the known examples of classes of Pl-algebras with the finite basis property.

One has in characteristic 0 that for each n € N,
Xn(4) = > ma(A)xa,
Arn
where y, is the irreducible S,-character associated with the partition A. Let us set
Xq := {z1,...,24} and let us consider Fy(A) := F(Xy)/(F{Xa) n T(A)). Moreover, if
T = {t1,...,ta} is a set of commutative variables, the Hilbert series H(F,(A),Ty) of Fy(A)

may be decomposed as

H(Fy(A), Tq) = > ma(A)Sx(Ty),

where A is a partition in no more than k parts and Sy(T,) is the Schur function associated
to A in the variables from Ty. We shall refer to H(Fy(A), Ty) as the Hilbert series of
A and we shall write H(A, T,) instead of H(Fy(A); T4). By a result of Berele [5] and
Drensky [21], the my(A)’s are the same as in the cocharacter sequence of A. Hence, in
principle, the knowledge of the Hilbert series of A will give us the multiplicities m(A)
of the cocharacter sequence of A, when \ is a partition in no more than d parts. So if A
is finite dimensional, working with a sufficiently large set of variables will be enough to

capture all the multiplicities. This is no longer true for infinite dimensional algebras.

The explicit form of the multiplicities in the cocharacter sequence of a PI-

algebra is known in very few cases. Among them, the infinite dimensional Grassmann
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algebra E' [59], the 2 x 2 matrix algebra My (F'), [22] and [29], the algebra UT,(F) of 2 x 2
upper triangular matrices [66], based on the approach of Berele and Regev [11], the tensor
square £ ® E of the Grassmann algebra, [14] and [61], the algebra UTy(FE) of 2 x 2 upper
triangular matrices with entries from the Grassmann algebra F [15], the algebra UT, (F)
of n x n upper triangular matrices [13], the algebra R, ,(F) of upper block triangular
(p+2q) x (p+ 2q) when p and ¢ are small values [27].

In [26] Drensky and Genov defined the multiplicity series of a Pl-algebra A,
that is the generating function of the cocharacter sequence of A which corresponds to
the multiplicities my(A) when A is a partition in no more than d parts. Then, coming
back to upper triangular matrices and their central role in PI-theory, in [13] Boumova
and Drensky found an easy algorithm with input the multiplicity series of a symmetric
function, and output the multiplicity series of its Young-derived. Applying it, they found
the explicit form of the multiplicity series of the Hilbert series of UT,,(F'). Following this
line of research, in the first part of this thesis we work with UT, (FE) and calculate its

multiplicity series in d variables.

Due to the fact that E is infinite dimensional, we need more tools than the ones
used by Boumova and Drensky in order to know all multiplicities of UT,, (F). Using the
idea of Berele [8], we work with double Hilbert series instead of Hilbert series of Pl-algebras
and, due to the analogue of the result of Berele and Drensky for double Hilbert series,
it suffices to study the decomposition of the double Hilbert series of UT,(E) in order to
achieve the explicit form of the cocharacter sequence of UT,,(E). In the second part of
this work, we generalize the definition of multiplicity series of a Pl-algebra defining a
(k,1)-multiplicity series which controls three sets of disjoint variables. Here (k, 1) means
that the partitions A = (\1,..., A,,) satisfy the condition A1 < [. In other words, their
Young diagrams D) are in a hook of height k£ of the arm and wide [ of the leg.

Afterwards we compute the double Hilbert series of E' and, as a consequence,
we build up an algorithm with output the (k,l)-multiplicity series of UT,(E). In the
spirit of [15] we compute the (2,3)-multiplicity series of UTy(E), which one contains
all multiplicities of the cocharacter sequence of UTy(E), and finally we compute the
(1, 1)-multiplicity series of UT3(E).

The second part of this thesis studies aspects of one of the most important
problems in the theory of algebras with polynomial identities: determining the identities of
specific algebras and studying the properties of the varieties that these algebras generate.
The most significant part of the advances in this area has been obtained for associative
algebras over fields of characteristic zero. Although the study of problems in positive
characteristic and for other types of algebras has grown in the last decades, there are still

very many questions to answer.

As we already mentioned, in 1984-1986, Kemer proved in [45] that for every
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associative algebra over a field of characteristic zero, its T-ideal is finitely generated as a
T-ideal, thus providing a positive answer to the long standing Specht problem. To that
end Kemer developed a sophisticated theory which described the structure of the ideals of
identities in the free associative algebra. We observe that Kemer’s theory has been shaping

a good deal of the research in PI theory since then.

Here we recall that for a wide range of groups and algebras the analogue of
the Specht problem was investigated and solved. We mention the paper by Oates and
Powell [58], who proved that the variety of groups generated by a finite group admits a
finite basis of its laws. It is also known that the variety generated by a finite ring satisfies
the Specht property; this was obtained independently by Kruse [52] and by Lvov [55].
Bahturin and Ol'shanskii proved in [4] that the identities of a finite Lie ring or Lie algebra

also admit a finite basis of its identities.

On the other hand, if the base field is infinite but of positive characteristic,
the Specht problem can have a negative answer. The first such examples for Lie algebras
were obtained by Vaughan-Lee [72], in characteristic 2, and by Drensky [20], for every
characteristic p > 0. The first examples in the case of associative algebras were obtained,
much later, independently (and almost simultaneously) by Belov [44], Grishin [38], and
Shchigolev [68].

In [2] and [70] it was proved that the Specht problem has positive answer for
graded associative algebras over fields of characteristic zero when the grading group is
finite.

Parts of the theory developed by Kemer do not work so well for non-associative
algebras, even in characteristic 0. Thus, for example, one should impose certain restrictions
on the classes of algebras when studying the Specht problem for Lie or Jordan algebras.
In characteristic 0, Iltyakov [42] proved that if L is a finitely generated Lie algebra and
A is an associative enveloping algebra for L such that A is PI then the weak polynomial
identities for the pair (A, L) are finitely based. A consequence of this result is that if L is
finitely generated and the adjoint Lie algebra Ad(L) generates an associative PI algebra
then the ideal of identities of the Lie algebra L satisfies the Specht property. Recall that
this is the case when L is finite dimensional. Vais and Zelmanov [73] proved that if J
is a finitely generated Jordan Pl-algebra, over a field of characteristic 0, then the ideal
of identities of J satisfies the Specht property. Once again Iltyakov [41] established the
Specht property for the ideals of identities of finitely generated alternative algebras in

characteristic 0.

Therefore it is interesting to study the Specht problem for concrete varieties
of Lie and Jordan algebras. The variety of Lie algebras generated by sls(F'), the simple
3-dimensional Lie algebra, in characteristic 0, satisfies the Specht property, this was proved
by Razmyslov [62, 63]. Krasilnikov showed in [51] that the variety of Lie algebras defined
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by U Té_) (F), the Lie algebra of the n x n upper triangular matrices over a field F', satisfies
the Specht property when F' is infinite of characteristic 0 or p > n.

Now we recall some of the known results concerning group graded Lie and
Jordan algebras and their identities. In [47] finite bases of the graded identities of sly(F)
were found, for an infinite field of characteristic different from 2, and an arbitrary grading.
In [34] it was proved that, in characteristic 0, the variety of group graded Lie algebras
generated by sl has the Specht property.

In [48] and [17] the authors studied graded identities for U.J,, the Jordan
algebra of 2 x 2 upper triangular matrices. In [18] it was shown that the variety generated
by UJ; has the Specht property when it is graded by any finite abelian group. In [49]
the graded identities for any Zs-grading on the Jordan algebra of symmetric matrices of
order two were obtained, and in [69] the Specht property for the finite dimensional Jordan
algebra of a non-degenerate symmetric bilinear form, graded by Z, in characteristic 0, was
established. Here we recall that the more difficult situation where there is no grading at
all, for this algebra, was settled by Iltyakov [40] in the finite dimensional case. The infinite
dimensional Jordan algebra of a non-degenerate symmetric bilinear form also satisfies
the Specht property in characteristic 0, this follows by combining results obtained by
Vasilovsky [71] and by Koshlukov [46]. Recently, in [57] it was shown that for any grading,
the variety of graded commutative algebras generated by (UT5, o) has the Specht property

in characteristic 2.

We recall that if the grading group is infinite then, even in characteristic 0, the

graded identities of an algebra need not be finitely based, see for example [31, 28].

In [50], a finite basis for the graded identities for UT},(F)™) was found when
this algebra is endowed with the canonical grading of Z,, and the field F' is infinite.

In that part of the thesis, we study the variety of graded Lie algebras generated
by UT,(F)7), endowed with the canonical Z,-grading. We prove that, when the charac-
teristic of F'is 0 or is a prime p > n, it satisfies the Specht property. In order to achieve
this we employ properties of partially well-ordered sets. Furthermore we prove that the
restriction p > n for the characteristic of the base field cannot be removed. Namely, we
prove that the Zs-graded identities of U T3(7)(F ) do not satisfy the Specht property if F' is
an infinite field of characteristic 2. To the best of our knowledge this is the first example of
a finite dimensional Lie algebra nontrivially graded by a finite group that does not satisfy

the Specht property.

This thesis is organized as follows. In the first chapter, we define some notions,
and state several important results concerning PI algebras, gradings and partially well
ordered sets. These notions are necessary in what follows. Most of the proofs are omitted,

and the respective references are given when appropriate.
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The second chapter is about the multiplicity series in d variables of UT, (E), as
consequence we find a partial algorithm to calculate the multiplicities m(UT,(F)) when
A is a partition with no more than d part. Finally, in order to show how the algorithm
works, we compute the multiplicities m(UT,(F)) when A is a partition with no more
than 2 parts and 1 <n < 3.

In the third chapter, we define (k,)-multiplicity series of a Pl-algebra. Then, we
compute the double Hilbert series of E and, as a consequence, we build up an algorithm with
output the (k,l)-multiplicity series of UT,,(F). We want to highlight that this algorithm
allows us to find all multiplicities my(UT,(E)) when k = n and [ = 2n — 1. In order to

show how the algorithm works, we finish this chapter considering some particular cases.

Finally, in the fourth chapter we deal first with the graded identities of the Lie
algebra U Tz(_)(F ), and prove that the corresponding ideal of graded identities satisfies the
Specht property. Afterwards we consider U T3(_)(F ). Initially we require F' an infinite field
of characteristic 0 or p > 2, and prove that the ideal of graded identities satisfies the Specht
property. We also show that if F'is of characteristic 2, then the Specht property fails in this
case. In the last section we prove the Specht property for UT, é_)(F ) in case char F' = 0 or
char F' = p > n. We chose to separate the general case from those when n < 3 for several
reasons. One of them is that the case n = 2 is much simpler and transparent, and gives no
clue how to treat the case of n > 2. Another is that when n = 3 we have two completely
different situations: when char F' = 2 and when char F' # 2. And the last reason is that
the arguments in the cases n = 2 and n = 3 are more transparent and that for n = 3 gives

a better idea of the methods used in the general case.

The results contained in Chapters 2 and 3 were obtained in collaboration with
L. Centrone and V. Drensky. The paper that contains these results, [16], was submitted
for publication in January 2023. The contents of Chapter 4 was written in collaboration
with P. Koshlukov, and the corresponding paper [19] was submitted for publication in
August 2022.
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1 Preliminaries

In this chapter we define some notions, and state several important results
concerning PI algebras. We shall deal with algebras over a field. Unless otherwise stated,
all algebras we refer to will be associative and usually with unity. We mention here that

in the last chapter of this text we will be dealing with Lie algebras.

Most of the results in this chapter can be found in [23] and [37]; more specifically,
we recommend chapters 1-5, 8 and 12 of [23]. Moreover we are not going to cite explicitly

the statements from these books.

1.1 Pl algebras

1.1.1 Free algebras

Let F be a field and consider X a non-empty set. The free associative algebra
freely generated over F' by the set X is the algebra F(X) of the polynomials in non-
commuting variables x € X. A linear basis of F'(X) consists of all words in the alphabet
X (including the empty word, denoted by 1). Such words are called monomials and
the product of two monomials is given by juxtaposition. This product is extended by
linearity to the polynomials of F{X). The elements of F(X) are called, as we said above,
polynomials and, if f € F(X), we write f = f(z1,...,x,) to indicate that zy, ..., x, € X
are the only variables occurring in f. To indicate the elements of X we shall commonly

use the symbols z, z;.

We set degu as the usual degree of a monomial u, that is the length of the
word u. Moreover deg,. u, the degree of u with respect to the variable z;, counts how many
times x; occurs in u. Accordingly, the degree deg f of a polynomial f = f(z ..., z,) is the
maximum degree of a monomial in f; deg,. f, the degree of f in x;, is the maximum of

deg,. u, for any monomial u of f.

The algebra F(X) is defined, up to isomorphism, by the following universal
property: given an associative F-algebra A, every map from X to A can be uniquely
extended to a homomorphism of algebras from F(X) to A. We shall call the rank of F{(X)
the cardinality of X. As a rule we are going to consider the free algebra F'(X) of infinite

countable rank on the set X = {z1,29,...}.

We shall also consider the free nonunitary algebra F*(X) which consists of all
polynomials from F{X) without constant terms. Notice that F*(X) is a free algebra in

the class of all algebras without unit.
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Here we observe that the free associative algebra is canonically isomorphic to

the tensor algebra of the F-vector space with a basis the set X.

Definition 1.1.1. Let A be an F-algebra and f = f(x1,...,x,) € F{(X). We say that
f =0 (or simply f) is a polynomial identity of A if f(ai,...,a,) = 0 for all ay, ...,

a, € A.

Let @ denote the set of all homomorphisms ¢: F(X) — A. Then f =0is a

polynomial identity for A if and only if f € ﬂ ker . We shall usually say that f =0 is

ped
an identity of A or that A satisfies f =0 (or simply f).

Definition 1.1.2. We say that A is a Pl-algebra if A satisfies a non-trivial polynomial
identity f = 0.

This means that f # 0 in F(X) but f =0 on A.

Definition 1.1.3. The (left-normed) Lie commutator of length n is a polynomial in F(X)
defined inductively by

[x17372] = T1X2 — T2,

(21,29, ..., Tp] == [[71, . Znea ], Tn]; > 2

We shall give some examples of Pl-algebras.

Example 1.1.1. e If A is a commutative algebra then A is a Pl-algebra because

[21,22] = 0 is an identity of A.

e The algebra A is nilpotent of class of nilpotency < n if and only if it satisfies the
polynomial identity x; - - - z,, = 0. Of course, A is non-unitary and we have to consider

Ty -, as an element of the free non-unitary algebra F*(X).

e The algebra M;(F) of the 2 x 2 matrices over F satisfies the Hall identity [[z, y]?, 2] =
0. To see this, recall that if b € My(F'), its characteristic polynomial is

2% — tr(b)x + det(b),

where tr(b) and det(b) are the trace and determinant of b. In the case b is a commu-
tator, tr(b) = 0 and so, b* + det(b)I = 0, where I is the identity 2 x 2 matrix. This
says that b? = —det(b), so the square of any commutator is a scalar matrix, hence
central. Then [[z,y]? 2] = 0 is a polynomial identity of My(F). By putting z =
we get the required identity.
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e Let UT,(F) be the algebra of the n x n upper triangular matrices over F. Then
UT,(F) is a Pl-algebra since it satisfies the identity [z1, 23] - [Ton—1,Z2,] = 0. To
see this, observe that the commutator of any two upper triangular matrices is a
strictly upper triangular matrix (that is its diagonal entries are all equal to 0). But
the set of the strictly upper triangular matrix is a nilpotent two-sided ideal I of
UT,(F) such that I" = 0, hence [z1,x2] - - - [T2n_1, T2, = 0 is an identity of UT,, (F).
Observe that I is the Jacobson radical of UT, (F).

e If A is a finite dimensional algebra and dim A < n, then A satisfies the standard
identity of degree n
Sp(T1, ..y my) = 2 sgn(0)To(1) * ** To(m) = 0.

oeSn
The algebra A also satisfies the Capelli identity in n alternating variables,

Capn($1a e Ty Y1y - ayn—l) = Z Sgn(a)xa(l)ylxo(my? o Yn—1To(n) = 0.

€S,

e Since the n x n matrix algebra M, (F) is of dimension n?, it satisfies the standard

identity of degree n* +1 and also the Capelli identity d,241(21,. .., Tp2e1, Y1, - - -, Yn2).

Example 1.1.2 (Grassmann algebra). Let W be an infinite dimensional vector space
with basis {ej, e, ...} over a field F' of characteristic different from two. The Grassmann
algebra E = E(W) is the associative algebra over F' generated by {ey, es ...} with defining
relations e;e; + eje; = 0 for all 4, j € N. Note that F is isomorphic to the factor algebra
F(X)/J where X = {z1,2,,...} and the ideal J is generated by z;x; + x;x; with i, j > 1.
Observe that E = E© &) EY where

E© = spanp{l,e;, ey, |1 <iy <iy < --- <ig k> 0}
EW = spanp{e;, - - - Cigprr |1 <y < - <iigpyr k= 0}
It is easily checked that EQE® + EOEL ¢ FO and EOEW 4 EOEO® < EW hence

the decomposition E = E® @ EM is a Z,-grading of E. Notice that E® coincides with
the center of E.

Notice that F satisfies the identity [z, x9, 23] = 0. In fact, observe that E©
is central, and every non zero commutator of two elements of E is a linear combination of

monomials in the e;’s of even length. Thus [E, E] < F© and the conclusion follows.

1.1.2 T-ideals and varieties of algebras

In this section we will introduce the notion of T-ideal and variety of algebras.

Given an algebra A, we define

T(A) = {f e F(XO|f =0 in A}
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the set of identities of A. Note that T'(A) is a two-sided ideal of F(X). Moreover, if
f(z1,...,x,) is any polynomial in T'(A), and g1, ..., g, are arbitrary polynomials in F'(X),
it is clear that f(gi,...,9s) € T(A). Since any endomorphism of F'(X') is determined by
mapping z — g, z € X, g € F(X), it follows that T(A) is an ideal invariant under all
endomorphisms of F'(X). The ideals with this property are called T-ideals.

Definition 1.1.4. An ideal I of F(X) is a T-ideal if p(I) < I for all endomorphisms ¢
of F(X).

Hence T'(A) is a T-ideal of F'(X). On the other hand, it is easy to check that
all T-ideals of F'(X) are of this type. Indeed, if I is a T-ideal, it can be easily proved that
T(F(X)/I) = I. Due to this fact, we have that any algebra A determines a T-ideal of
F(X). A further remark is relevant. Many (different and even non-isomorphic) algebras
may correspond to the same T-ideal. For this purpose, we need the notion of a variety of

algebras.

Definition 1.1.5. Let S be a non-empty set of F{X). The class of all algebras A such
that f =0 on A for every f € S is called the variety V = V(S) determined by S.

A variety V is called non-trivial if S # 0 whereas V is said to be proper if it
is non-trivial and contains a non-zero algebra. For example, the class of all commutative
algebras forms a proper variety with S = {[z,y]}. Also, if S = {z"}, then V(S) is the
class of all algebras which are nil of exponent bounded by n. Observe that if V is the
variety determined by the set S and (S)r is the T-ideal of F'(X) generated by S, then

V(S) = V(S)r) and (S)r = ﬂ T(A). Let us write (S)r = T(V). Thus a T-ideal of
AeV
F{(X) corresponds to each variety; the converse is also true. In fact we have the following

theorem, see for example [37], Theorem 1.2.5.

Theorem 1.1.1. There is a one-to-one correspondence between T-ideals of F(X) and
varieties of algebras. In this correspondence, a variety V corresponds to the T-ideal of
identities T(V) and a T-ideal I corresponds to the variety of algebras satisfying all the

identities in 1.

1.1.3 Homogeneous and multilinear polynomials

When the base field F' is infinite (or “large enough”), the study of the identities
of a given algebra can be reduced to the study of homogeneous, multi-homogeneous, or

multilinear polynomials as we will see below.

Let F,, = F{xy,...,x,) be the free algebra of rank n. Notice that this algebra

can be naturally decomposed as

F, = Frgo)@prgl)@pf)@...
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where for every k > 0, Fr(Lk) is the subspace spanned by all monomials of total degree k.
Since Féi)FTEj) c Fé”j) for all 4, 7 > 0, we say that F), is graded by the degree or it has

the structure of a Z-graded algebra. The FS)’S are called homogeneous components of F,,.

This decomposition can be further refined as follows: for every k£ > 1 write

Fék) _ @ Fé’il,...,in)

i1+ Fin=k

where F,E“"“’i”) is the subspace spanned by all monomials of degree i; in x;. It is clear
that Fit-in) pUtein) o plictiteintin) Tn this case we say that F), is multigraded. Such

decompositions extend in an obvious way to F{X) when X is countable.

Definition 1.1.6. A polynomial f belonging to FT(Lk) for some k = 0, is called homogeneous
of degree k. If f belongs to some F,gil""i”), it will be called multihomogeneous of multidegree
(11,...,1n). We also say that a polynomial f is homogeneous in the variable z;, if x; appears

with the same degree in every monomial of f.

Observe that if f(z1,...,x,) € F{(X), we can always write

where fl-in) Ffl““‘) is the linear combination of all monomials in f where x4, ..., x,
appear with degree i1, ..., i, respectively. The polynomials f (17n) which are non-zero
are called the multihomogeneous components of f. The following result gives us a useful

property of T-ideals in the case when F'is an infinite field.

Theorem 1.1.2. Let F' be an infinite field. If f = 0 is a polynomial identity for the algebra

A, then every multihomogeneous component of f is a polynomial identity for A.

We recall that one of the proofs of the latter theorem can be found in [37],
Chapter 1, and it uses standard Vandermonde argument. The most important conse-
quence of Theorem 1.1.2 is that over an infinite field, every T-ideal is generated by its

multihomogeneous polynomials.

Definition 1.1.7. A polynomial f is linear in the variable x; if x; occurs with degree 1 in
every monomial of f. A polynomial which is multihomogeneous and linear in each of its

variables is called multilinear.

In other words, a polynomial f(z1,...,2,) € F(X) is multilinear if it is
multihomogeneous of multidegree (1,...,1). Moreover, it is clear that this polynomial is

always of the form

f(xh s 7xn) = Z AoTo(1) """ Lo(n)

g€eSn
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where a, € F, and S, is the symmetric group of order n. (That is S, consists of all
permutations of the set {1,2,...,n}; its order as a group is of course n!.) We state the

following definition that we shall need later on.

Definition 1.1.8. i) Let S be a set of polynomials in F{(X) and f € F{(X). We say
that f is a consequence of the polynomials in S (or f follows from the polynomials
in S) if feS)r, the T-ideal generated by the set S.

it) Two sets of polynomial identities are equivalent, if they generate the same T-ideal.

We will state a fundamental theorem that simplifies the study of the T-ideals

to their multilinear parts:

Theorem 1.1.3. If char F' = 0, every non-zero polynomial f € F{X) is equivalent to a

finite set of multilinear polynomials.

We can write the previous result in the language of T-ideals.

Corollary 1.1.1. Ifchar F' = 0, every T-ideal is generated, as a T-ideal, by the multilinear

polynomials it contains.

1.2 Graded polynomial identities

In this section, we define some notions concerning graded algebras. We let GG
be an arbitrary group with multiplicative notation and unit element 1, and A an arbitrary

(not necessarily associative) algebra. Most of this section can be found in [37].

Definition 1.2.1. The algebra A is G-graded if there exist vector subspaces {Ay}gec, where
some of the Ay can be zero, such that
A= (—B A,
e
and AyAn < Agy, for all g, h € G. The subspaces A, are called homogeneous and the
non-zero elements a € A, are homogeneous of degree g. We denote this as G-dega = g, or

if not ambiguous, simply as dega = g.

A vector subspace B = A is called graded (or homogeneous) if B = (P(A, N B).
geG
If I < A is an ideal and graded subspace, we call it a graded ideal. In this case the quotient

A/I inherits from A a natural structure of G-graded algebra.

Definition 1.2.2. Let A = (—BAQ and B = @Bg be two G-graded algebras. The map
geG gelG
f: A — B is a homomorphism of G-graded algebras if f is a homomorphism of algebras

such that f(A,) < B,. Similarly one defines endomorphism, automorphism, isomorphism,

of G-graded algebras.
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Note that A and B are isomorphic as G-graded algebras whenever there is an
isomorphism of algebras from A to B which respects the gradings. We are going to recall
the definition of the free G-algebra. Let g € G and consider X, := (9 289} a set

variables. Put X = U X, and form the free algebra (associative, or Lie, or whatever else)
geG
F{X¢g} in the variables of X. We can define naturally a G-grading on F{Xg} by assigning

degree g to all variables from X, deg xgg) = ¢, and then extending this to all monomials

m € F{X¢} in the following way

g, if m=a

degm = .
(degmy)(degms) if m = mims.

In the case of associative or Lie algebras, we denote the corresponding free algebra by
F(X¢) and by L{X¢), respectively.

Definition 1.2.3. Consider A a G-graded algebra and let f(xggl), . ,:Ezw) € F{Xg}. We

say that [ is a G-graded polynomial identity for A if f(ai,...,an) = 0 for all aq, ...,
am € A such that dega; = g; for every i.

We denote by Tz(A) the set of G-graded identities for A. Observe that T (A)
is closed under endomorphisms of F{X¢} that respect the grading. Conversely every such

ideal is the ideal of G-graded identities for some G-graded algebra.

Definition 1.2.4. If J € F{X¢} is a G-graded ideal that is closed under endomorphisms
of F{X¢}, we say that J is a Tg-ideal.

Given a non-empty set S € F{Xg}, the Tg-ideal generated by S, denoted by
(S)q, is the intersection of all Tg-ideals of F{Xg} such that S is contained in them.

Let J be a Tg-ideal and consider S € Tg(A). If J = (S)q, we say that S is
a basis of J as Tg-ideal. We draw the readers’ attention that we do not require S to be
minimal; thus the whole J is a basis of J. Clearly such a basis is of little value and does
not contribute much to our knowledge; we are interested in “small” sets S. The following
statements are direct analogues of their counterparts from the ordinary (non-graded) case,
and their proofs remain the same.

s

Theorem 1.2.1. Consider f(xy1,...,x,) = Z fi, where f; is the homogeneous component

i1
of [ such that deg, f =1i. Then the followings statements hold

i. If the base field F' contains more that s elements (for example if F is infinite), then
fi(.fﬂl, e ,iﬂn) S <f>TG‘

ii. If char F' = 0, then fi(z1,...,2,) € {f)r, has a basis of multilinear polynomials.
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Corollary 1.2.1. Let A be a G-graded algebra over an infinite field F'. Then

i. If f is a G-graded identity for A, then the multihomogeneous components of f are
G-graded identities for A.

it. If char F' = 0, then Tg(A) is generated, as a Tg-ideal, by the multilinear G-identities
of A.

Definition 1.2.5. Let A be G-graded algebra. We say that T (A) has the Specht property
if any Tg-ideal J such that Tg(A) € J, has a finite basis, i.e., J is finitely generated as a
Tg-ideal. A variety V has the Specht property if its Tg-ideal has the Specht property.

1.3 Hilbert series

By Theorem 1.1.2, if the base field F' is infinite, then a polynomial f is equivalent,
as an identity, to its multihomogeneous components £ Hence every T-ideal I of
F(X) is a homogeneous ideal, i.e., I is a direct sum of its multihomogeneous components.
If we consider a (multi)graded vector space such that all homogeneous components are

finite dimensional, it is convenient to use its Hilbert (or Poincaré) series to measure it.

Definition 1.3.1. i) The vector space V' is graded if it is a direct sum of subspaces V,,,
m = 0, that is

V=1heheho .

The subspaces V,, are called the homogeneous components of degree m of V. Similarly,
V' is multigraded if

V= @ Wm1,...,md)7

m; =0
where Vi, ...m,) 15 its homogeneous component of degree (mq,...my), and the direct

sum runs over all d-tuples (my, ..., mq) such that m; = 0.

it) The subspace W of the graded space V = (—D Vin is graded (homogeneous) subspace if

m=0

W = @ (W nV,,). In this case the factor space V /W can also be naturally graded
mz=0

and V /W inherits the grading of V.

We shall use the Hilbert series to compute the so-called cocharacters of some

interesting PI algebras

Definition 1.3.2. IfV = @ Vi is a graded space and dimV,, < oo for all m = 0, the

m=0
formal power series

H(V,t) = ) (dim V,)t"

mz=0
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1s called the Hilbert series of V. If the vector space V = (—D Vimy,...mq) 95 multigraded,
m; =0

then the Hilbert series of V' is

H(Vity, .o ota) = Y (i Vi, ng) S+ 170
m;=0
Example 1.3.1. The polynomial algebra F[xq,...,z4] is Z-graded assuming that the
homogeneous polynomials of degree m (in the usual sense) are the homogeneous elements
of degree m. Similarly, F[zy,...,x4] has a multi-grading, counting the entry of each
variable in the monomials. Analogously, one can define a grading and a (multi)grading on
the free associative algebra F(xy,...,x4) of finite rank d. Usually we shall assume that

Flxy,...,z4] and Flxy, ..., x4) are equipped with these two gradings. Their Hilbert series

are
H(F| 1,t) :
o T1,...,2T = 7
1reeeodls 1—¢
d 1
0 H(F[xla"'7xd]7t1?"'7td):Hl—t-;
i=1 v
H(F¢ )i t) = :
T1y...,24), _]_—dt’
1

H(F oy, .zt - )

Tl (it t)

In order to deduce these formulas, one expands the geometric progressions on the right-
hand side, and compares the obtained expressions with the dimensions of the corresponding

vector spaces in the usual gradings on the algebras on the left-hand sides.

As we know from basic algebra, if M is a graded module over a graded

commutative algebra A, then the Hilbert series of M determines it up to an isomorphism.

Hilbert series are related to the usual operations on graded vector spaces. In
fact:

Proposition 1.3.1. Let V., W be (multi)graded spaces and consider U a homogeneous
subspace of V. Then

7’) H<V@W>t17"'7td) :H(Vv?tla'-'atd)—i_H(mtlw'wtd);
ZZ) H<V®M/7tla7td) :H(‘/vtla7td)H(VV7tlv7td>;

i) H(V /U i, ... ta) = H(V,t1, ... ta) — H(U, b1, ... ta).
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Let A be a Pl-algebra over an infinite field F. It is well known that 7'(A) is a
multihomogeneous ideal of F{X). Then, if Ty = (¢1,...,t4), we denote by

H(A,Ty) = H(Fwy,...,2)/(T(A) A Flay, ..., 2)) b, ta)

the Hilbert series of the relatively free algebra in d variables.
Formanek in [30] gave a formula for the Hilbert series of the product of two

T-ideals as a function of the Hilbert series of the factors.

Theorem 1.3.1. Let U and V' be multihomogeneous ideals of the free algebra F{xq, ..., xq).
Then the Hilbert series of UV, U and V' are related by the equation

H(U,tl,...,td)H(‘/,tl,...,td) = H(Uv,tl,...,td)H(F(ZL‘l,...,:L'd),tl,...,td).

Corollary 1.3.1. Let A, B and C be Pl-algebras over an infinite field F such that
T(A) =T(B)T(C). Then the Hilbert series of the relatively free algebras of A, B and C

satisfy the equation

H(A,Ty) = H(B, Tg) + H(C, Tg) + (ty + - - -4 — 1)H(B, T)H(C, T,)

The following example is an application of Corollary 1.3.1.

Example 1.3.2. Consider the algebra UTy(F') of the 2 x 2 upper triangular matrices over
an infinite field F'. It is known that T(UTy(F)) = T(F)T(F) and F{z1,...,zqe)/(T(F) n
Flxy,...,xq)) = Flz1,...,24]. By Example 1.3.1 and Corollary 1.3.1 we get

d

d
1
H(UTQ(F),Td)zzﬂl_tf(tﬁ ta—- D[]+ 1_t
=1 ? =1

1.4 Representation theory of the symmetric group and the general

linear group

In this section we shall describe some applications of the representation theory

of the symmetric groups and the general linear group to the theory of Pl-algebras.

1.4.1 Background of Representation theory of groups

In this subsection we recall the basic definitions and results of the representation
theory of finite groups over an algebraically closed field of characteristic zero. For more

information about representation theory, see [43], [37] and [67].

Let V' be a vector space over a field F' and let GL(V') be the group of invertible

endomorphisms of V. Recall the following
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Definition 1.4.1. A representation of a group G in V' is a homomorphism of groups
p: G— GL(V).

Let us denote by End(V') the algebra of F-endomorphisms of V. If F'G is the
group algebra of G over F' and p is a representation of GG in V', it is clear that p induces
a homomorphism of F-algebras p': FG — End(V) such that p'(1¢) = 1. Throughout
the text we shall be dealing only with the case when dimV = n < oo, i.e., with finite
dimensional representations. In this case n is called the dimension or the degree of the
representation p. Notice that a representation of a group G uniquely determines a finite
dimensional FG-module (or G-module) in the following way. If p: G — GL(V) is a
representation of G, then V' becomes a (left) G-module by defining

g-v=p(g)v)
for all g € G and v € V. It is also clear that if M is a G-module which is finite dimensional
as a vector space over F, then p: G — GL(M), such that

plg)(m) =g-m
for all g € G and m € M, defines a representation of G in M.

Definition 1.4.2. If p: G — GL(V) and p': G — GL(W) are two representations of a
group G, we say that p and p’ are equivalent if V' and W are isomorphic as G-modules. In

this case we write p ~ p'.

Definition 1.4.3. Let p: G — GL(V) be a representation of V.

i) p is irreducible, if V' is an irreducible G-module.

it) p is completely reducible, if V is the direct sum of irreducible G-modules.

One of the basic tools for studying the representations of a finite group in
characteristic zero is Maschke’s theorem. By this theorem every representation of G in
char F' = 0 is completely reducible, equivalently the group algebra F'G is semisimple.
Hence by Wedderburn-Artin’s Theorem

FG = M,,(D))® - @ M,,(Dy)

where Dy, ..., Dy are finite dimensional division algebras over F'. Moreover every irreducible
G-module is isomorphic to a minimal left ideal of F'G (and hence to a minimal left ideal
of some M, (D;)), where G acts on F'G by left multiplication.

Proposition 1.4.1. If M is an irreducible representation of G, then M = J; a minimal

left ideal of M, (D;), for somei € {1,...,k}. Hence there exists a minimal idempotent
e € FG such that M = eFG.
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Another key topic in representation theory is provided by the theory of charac-
ters. From now on assume that F' has characteristic zero and let tr: End(V) — F be the

trace map on End(V).

Definition 1.4.4. Let p: G — GL(V) be a representation of G. Then the map x,: G — F
such that x,(g9) = tr(p(g)) is called the character of the representation p and dimV =
deg x, is called the degree of the character x,.

We say that the character x, is irreducible if p is irreducible. Since x,(g) =
Xp(hgh_l), X, is constant on the conjugacy classes of G, i.e. X, is a class function of G.

Notice that x,(1) = deg x,.

1.4.2 Representations of the symmetric group

In this subsection we describe the ordinary representation theory of the sym-

metric group S, n > 1, our principal references of this part are [37] and [67].

Since Q, the field of rational numbers, is a splitting field for .S,,, for any field F'
of characteristic zero, the group algebra F'S,, has a decomposition into simple components

which are algebras of matrices over the field F' itself, that is
FS, = Mm(F)@"'@Mnk(F)

The non-isomorphic irreducible representations of the symmetric group (and hence the
left irreducible S,,-modules) are in one-to-one correspondence with the conjugacy classes

of S, and are described in terms of partitions and Young diagrams.

Definition 1.4.5. Let n = 0 be an integer. A partition A of n is a finite sequence of

integers A = (A1,..., A\) such that \y = --- = X\, =0 and Z N, = n. In this case we write

i=1
A n.

If =1, then \; = n and we write A\ = (n). For the partition A with
Al = -+ = A\, = k, the notation A = (k") is commonly used. There is a natural

correspondence between the partitions of m and the conjugacy classes of S,: if o € S, we
decompose ¢ into the product of disjoint cycles, including 1-cycles. This decomposition is
unique if we require that

O = M Ty Tp,

where 7, ..., m,. are disjoint cycles of length \; = --- > A\, > 1, respectively, up to the
ordering of the cycles of the same length. Then the partition A = (\1,...,\,) uniquely

determines the conjugacy class of o.

Proposition 1.4.2. Let F' be any field of characteristic zero and n > 1. Then there is

a one-to-one correspondence between irreducible S, -characters and partitions of n. Let
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{x» | A= n} be a complete set of irreducible characters of S, and let dy = xx(1) be the
degree of xx. Then

fPS% =:<:><[A§E <:><A4QA(f7)

An AEn

where I = exF'S,, = My, (F') and ey = Z Xx(0)o is up to a scalar, the unit element of

o€eSn
Iy.
Definition 1.4.6. The Young diagram D) of the partition A\; = (A1, ..., \,) is the set of
all knots (points) (i,7) € Z*, such that 1 < j < \;, 1 <i <r.

It is convenient to present the Young diagrams graphically as follows. We
replace the knots with square boxes such that the first coordinate i (the index of the
row) increases from top to bottom and the second coordinate j (the index of the column)
increases from left to right. For example, consider the partition A = (4,3,1) - 8, its

diagram is given in the figure below

Definition 1.4.7. i) A Young tableau T\ of the diagram Dy with n bozes is a filling
of the bozxes of Dy with the positive integers 1, 2, ..., n, without repetitions. If X\ is
a partition of n and o € S, we denote by Th\(o) the tableau such that its first column
contains the integers o(1), ..., o(ki) written in this order from top to bottom, the

second column contains consequently written o(ky + 1), ..., o(k, + ko), etc.

it) The tableau Ty is called standard, if the integers written in each column and each

row increase, respectively, from top to bottom and from left to right

Example 1.4.1. For the partition A = (4, 3,1), consider the permutations

123 456 78 123456 78
o= , T =
34582167 136 245 738

Note that the tableau Ty (o) is not standard while T)(7) is standard:

T = 31817 ey =[L]2]5]8
4l216 3
5 6

Definition 1.4.8. Let A+ n, 0 € S,, and let T = Ty(o) be the corresponding Young
tableau. The row stabilizer of T' is the subgroup R(T') of all permutations p in S,, such

that i and p(i) are in the same row of T, i =1, ..., n. Similarly one defines the column

stabilizer of T, C(T).
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Example 1.4.2. From the above example,

1 23 45 6 78
T = T)x(g)7 A= (473a 1)7 g =
345 8 216 7

the row stabilizer R(T') is the subgroup Sy x S3 x S of Sg, where Sy, S3 and S; act
respectively on the sets {3,8,1,7}, {4,2,6} and {5}.

For each partition A of n we denote by M (A) and x, the corresponding irre-

ducible S,-module and its character, respectively.

Theorem 1.4.1.  4) Let A\ = (\q,...,\;) be a partition of n, 7 € S, and let T' = T\(T)

be the corresponding Young tableau. Up to a multiplicative constant the element of

FS,
=YY sloop

oeR(T) peC(T)
is a minimal idempotent which generates a submodule of F'S,, isomorphic to M(\).
it) The sum of all left S,-modules F'S,er, where T runs over the set of standard \-
tableauz, is direct. It is equal to the minimal two-sided ideal I\ of F'S, corresponding
to A.
iit) The dimension of M(X) is given by the hook formula

n!
]_[(Ai~|—)\;—i—j+1)

dll’nM)\ =

where )\; ’s are the lengths of the columns of Dy and the product in the denominator
is over all boxes of Dy. The dimension dim M(X) is equal also to the number of
standard \-tableauz Ty(T), T € S,.

If H is a subgroup of the finite group G, and if W and V' are respectively G-
and H-modules, then we denote by W | H the module W considered as an H-module
and by V 1 G the G-module induced by V. Recall that V 1 G = FG Qg V. If one
observes that V < V 1 G as H-modules via the embedding V — V Qpyg FG, v > 1® v,
then V' 1 G has the following universal property: For every G-module W' and for every
homomorphism of H-modules ¢: V — W’ | H, there exists a unique homomorphism of
G-modules ¥: V 1 G — W’ which extends ¢.

Identifying S,,_; with the subgroup of S, fixing the symbol n, the branching
theorem describes M(A) | Sp—1, A = n, and M () 1 S,, p = n — 1. Parts i) and i7) are

equivalent by the Frobenius reciprocity law.

Theorem 1.4.2 (Branching Theorem). Let A —n, un— 1. Then
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i) M(N) | S,y = @M (') where the direct sum runs over all partitions ' of n — 1
such that their diagrams D, are obtained by deleting one box of the diagram Djy.

i) M(p) 1S, = @®M(AD) where the direct sum runs over all partitions A9 of n such
that their diagrams D,y are obtained by adding one box of the diagram D,,.

Example 1.4.3. Consider A = (3%,1) - 7. Then the diagrams obtained from D, adding
a box and applying Theorem 1.4.2 are

It follows that

M(/\) T Sg = M((47 3, 1)) S M(<327 2)) @ M((327 12))'

We embed the group S, x 5, into S,,.,, naturally. Recall that if M is an S,,-

module and N is an S,,-module, then M ®p N has a natural structure of .S,, x S,,-module.

Definition 1.4.9. If M is an S,,-module and N is an S,,-module, then the outer tensor
product of M and N is defined as

M®N := (M ®&N) 1 Syim.

Theorem 1.4.3 (Young Rule). Let A —n and m > 1. Then

MN@M((m)) = Y M(n)

where the sum runs over all partitions p of n +m such that py =M\ = g = -+ =

Hnt+m = )\m-‘rn .

MMM ((1™) = > M(p)
o
where the sum runs over all partitions p of n + m such that u; = A\; + €;, €; € {0, 1}
and 1 <1< n+m.

Note that in the first case the diagrams D,, are obtained from the diagram Dy
by adding m boxes in such a way that no two new boxes are in the same column of D,,. In
the second case the Young diagrams D, are obtained from the diagram D, by adding m

boxes in such a way that new boxes are not allowed to be in the same row.
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Example 1.4.4. Consider the partition A = (2,1) - 3 and m = 2. By the Young rule,

we have

Hence

MN®M((2)) = M((4,1)) ® M((3,2)) ® M((2%,1)) @ M((3,1,1)).

In order to introduce the most general Littlewood-Richardson rule, which gives
a decomposition M(N)QM (i) for all A, i, we need some further definitions.

Definition 1.4.10. An unordered partition of n is a finite sequence of positive integers
t

a = (a,...,qq) such that Z a; = n. In this case we write o = n.
i=1

Definition 1.4.11. Let A - n and o =n. A (generalized) Young tableau of shape \ of

content o is a filling of the diagram D)y by positive integers in such a way that the integer

1 occurs exactly o; times.

For example, consider the partition A = (4,3, 1) and set « = (2,3, 1,2). Then

is a tableau of shape A\ and contents «.

Definition 1.4.12. A Young tableau is semistandard if the numbers are non-decreasing

along the rows and strictly increasing down the columns.

Example 1.4.5. Consider A = (4,3,1) 8 and a = (2,3,1,2). Then a semistandard

Young tableau of shape A of contents « is

We now consider the natural partial order on the set of partitions. Let A =
(A1, Ap) Frnand = (p1,..., 1) = m, then A > p if and only if p > ¢ and \; > p; for
all 1 <4 < p. In the language of Young diagrams A > p means that D, is a subdiagram of
D,,.
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If A > p, we define the skew-partition A/ = (A1 — g, Ao — o, -, Ap — f1p);
the corresponding diagram D)/, is the set of boxes of Dy which do not belong to D,. For
example, consider A = (4,3,1) - 8 and p = (2,2,1) I 5, notice that A\/u = (2,1,0) and

* *

Dy =

* *

*

Definition 1.4.13. A skew-tableau T, is a filling of the boxes of the skew- diagram \/p
with distinct positive integers. If repetitions occur, then we have the notion of (generalized)

skew-tableau. We also have the natural notions of standard and semistandard skew-tableauz.

Definition 1.4.14. Let a = (aq,...,qq4) E n. We say that « is a lattice permutation if
for each j the number of i’s which occur among o, ..., o  is greater than or equal to the

number of (i + 1)’s for each i.

Theorem 1.4.4 (Littlewood-Richardson Rule). Let A - n and p = m. Then
MM () = Y kM)
vn+m
where k" /) 18 the number of semistandard tableauz of shape v/ and content p which yield

lattice permutations when we read their entries from right to left and downwards.

Example 1.4.6. Consider the partitions A = (3,2) — 5 and p = (2,1) - 3. We are
going to find the decomposition of M (\)®M (i) as a sum of irreducible Sg-modules using
Theorem 1.4.4.

Below, we list the semistandard tableaux of shape v/ (v - 8) and content

4 which yield lattice permutations when we read their entries from right to left and

downwards
i.v=(53)+38
111
2
ii. v=(4,3,1)+8
1 1
1 2
2 1
i, v =(5,2,1) 8
111
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iv. v=(3,22,1) 8

11
2
v. v=(32)+38
1
1]2
vi. v=(3%1%) - 8
1
1
2
vii. v = (4,2,1%) - 8
1
1
2
viii. v = (4*) 8
1
12
ix. v=(4,2%) 8
1
1|2

It follows that

M(N®M (1) = M((5,3)) + M((5,2,1)) ©2M((4,3,1)) ® M((4,2*))®
M((4%) @ M((4,2,1%)) @ M((3",2)) © M((3%,1%)) @ M((3,2%,1)).
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1.4.3 S,-actions on multilinear polynomials

In this section we introduce an action of the symmetric group S,, on the space

of multilinear polynomials in n fixed variables.

Let A be a Pl-algebra and T'(A) its T-ideal of identities. By Corollary 1.1.1, in

characteristic zero, T'(A) is determined by its multilinear polynomials.

We denote by
P, = spanp{T,(1) - - - To(n)|o € Sy},

the vector space of multilinear polynomials in xy, ..., z, in the free algebra F(X). We

define a map

p: F'S, - P,

by setting

@ (Z a00> = Z UoTo(1) " To(n)-

O'ESn UESn
It is clear that ¢ is a vector space isomorphism. Observe that the symmetric group .S,

acts from the left on the set P, of multilinear polynomials of degree n as follows:

O-(IT(l) o xaT(n)) = Tor(1) """ Lor(n),

for all o, 7 € S,,. It follows that ¢ is a module isomorphism.

Since T-ideals are invariant under permutations of the variables, we obtain
that P, n T(A) is a left S,-submodule of P,. Hence

-Pn
Bald) = 5

has an induced structure of left .S,,-module.

Definition 1.4.15. For n > 1, the S, -character of P,(A) is called the n-th cocharacter
of A (or of the T-ideal T(A)) and is denoted x,(A).

If we decompose the n-th cocharacter into irreducibles, we obtain

Xa(A) = Y ma(A)xa,

An

where x is the irreducible S,-character associated to the partition A - n and my(A) =0

is the corresponding multiplicity.

Example 1.4.7. Let A be a (unitary) commutative algebra, then y,(A) = x) for all
n > 1. In fact, since the T-ideal of A coincides with the commutator ideal of F'(X), the
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relatively free algebra F'(A) is isomorphic to the polynomial algebra F'[X] in infinitely

many commuting variables. Hence P, (A) is spanned by the monomials x; - - - x,, and
O-(mlxn) :wl...xn

for all o € S,,. Hence P, (A) is the trivial S,-module.

Now we state without proof the following theorems about the partitions and
the shapes of the Young diagrams corresponding to the irreducible characters in the

cocharacter sequence of any Pl-algebra.

Theorem 1.4.5 (Regev [65]). The algebra A satisfies the Capelli identity in n skew-

symmetric variables
dn(Z1, . Tns YL, Yn1) = Z Sgn(a)%(l)yl%(z)m © Yn—1To(n)
o€Sn
if and only if its cocharacter sequence is decomposed as
Xm(A) = D7 ma(A)xa,
An=0

i. e., the nonzero multiplicities correspond to partitions in less than n parts.

Note that by the previous theorem if A is an algebra such that dim A < n,
then its cocharacter sequences is completely determined by partitions A with no more than

n parts.

Theorem 1.4.6 (Amitsur-Regev [3]). For every Pl-algebra A there exist nonnegative

integers k and | such that in the cocharacter sequence of A

Xn(A) = Z m)\(A)XA; n= 17 27 )
An

the partitions A = (A1, ..., Am) corresponding to non-zero multiplicities my(A), satisfy the
condition \y1 < . In other words, their diagrams Dy are in a hook shape with height k
of the arm and width | of the leg (see figure 1).
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Figure 1 — The diagrams Dy with my(A) # 0.

1.4.4 The action of the general linear group

In this subsection we survey some results on representation theory of the general
linear group in a form that is useful to our intent. For more details about this topic see
23] and [24].

We restrict most of our considerations to the case when GLy4(F') acts on the
free associative algebra of rank d. Let V' be a vector space over F', we denote by GL(V)

the general linear group of V', i.e., the group of invertible linear transformations acting on
V. When dimV = d < o0, we write

GLy = GLy(F) = GL(V)

and, for a fixed basis {ey, ..., eq} of V, we identify G Ly with the group of invertible d x d

matrices with entries from F.
Definition 1.4.16. i. A representation of the general linear group G Ly
@Y: GLd i GLS

is called polynomial (and V' is a polynomial G Lg-module), if the entries p,q(g) of the
s x s matrices ¢(g) € GL, are polynomial functions of the entries a;; for all d x d
matrices g = (a;;) € GLqg.
1. Let
Dy ={g€GLqlg = g(br,...,ba) = breir + breay + - - - + baeqa}
be the subgroup of diagonal matrices of GLg. For every d-tuple a = (ay, ..., aq) of

integers, we define the homogeneous component of weight o (or of degree a) of the
GLg-module V' by

Vo= (we V| glbr,....bJo = B - Bjv for all ge Dy}
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It is known that polynomial representations of the general linear groups behave
much like representations of finite groups and have many common features with the

representations of symmetric groups.

Theorem 1.4.7. Let ¢: GLy — GLs = GL(V) be a polynomial representation of
GL,. Then

i. The GLg-module V' is completely reducible and is a direct sum of homogeneous

polynomial modules.
ii. As a vector space V is a direct sum of its homogeneous components W, o € Z°.
1ii. The Hilbert series of V
H(V,Tq) = ) dim Vg1 - ¢3¢
is a symmetric function of ty, ..., tq. If V is homogeneous of degree m, then H (V')
is also homogeneous of degree m.
w. Two polynomial G Lg-modules Vi and Va are isomorphic if and only if H(Vy,Ty) =

H(V3,Ty).

Notice that by the previous result, the Hilbert series of the polynomial G Lg4-
module V' plays the role of the character of V.

The description of the irreducible polynomial representations of G Ly is given

by the following theorem.

Theorem 1.4.8. i. The irreducible polynomial representations of GLg4 are in a one-
to-one correspondence with the partitions X = (A1, ..., Aq) in not more than d parts.

We denote by Vy(\) the irreducible G Lq-module corresponding to A.

it. The dimension of Vy(X) is given by the formula

N
dimV(\) =[] i

1<i<<j<m J =
141. Let
A1 A1 A1 A1
t] t5 R t
)\2 )\2 /\2 /\2
t] t5 N t
VA =] : : : :
Ad—1 3Ad-1 Ad—1  3Ad-1
t1 ty - td—l td
)\d /\d >\d >\d
t] t5 N t;

Then the symmetric polynomial

Sx(Ta) = H(Va(N), Ta) = Y dim V2 (A5 - 57,
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called the Schur function of W4(X), is expressed as

VIMi+d—1,+d—2,..., 01+ 1, )
V(d—-1,d—2,...,1,0) '

S\(Tq) =

w. Up to a multiplicative constant, there exists a unique non-zero element of weight A
in Va(N). It is called the highest weight vector of Vy(\) and is characterized by the
property that it is invariant under the action of the subgroup Ty(F') of GLq4 of all

upper triangular matrices with 1 on the diagonal.

v. Let V and V' be two submodules isomorphic to Vy(\) with highest weight vectors
respectively v and v'. If o V. — V' is a GLg-module isomorphism, then p(v) = av’
for some non-zero o € F. Conversely, for every 0 # « € F, there exists a unique

G Lg-module isomorphism p: V. — V' such that p(v) = av'.

Recall that the Schur functions multiply with the Littlewood-Richardson rule.
So, translated in the language of the Schur functions, the Young rule can be stated as

follows:

Case 1 Let p= (u1,...,pq) and (m) be partitions, then
Sy (Ta)Su(Ta) = Y Sx(Ta)
)

where the summation is over all partitions A such that
M+ A=+t g+ m,

A== Ao =g = = Ny = fig-

This means that the Young diagrams D) are obtained from the diagram D, by adding m

boxes in such a way that no two new boxes are in the same column of D,.

Case 2 Let p = (u1,...,pq) and (1™) be partitions with m < d, then
Sy (Ta)Su(Ta) = > Sx(Ta)
)

where the summation is over all partitions A such that
M oA Ay =g+ g+,
i =N+ 6,6 =0,1

In other words the Young diagrams D) are obtained from the diagram D, by adding m

boxes in such a way that new boxes are not allowed to be in the same row.

Let V; be a d-dimensional vector space with basis {x1,..., 24} and with the
canonical action of GLg, i.e., GLy; = GL(Vy). The general linear group G L, acts diagonally

on the free associative algebra of rank d, Fy = F{x1,...,x4), i.e., for every g € GLq4

9(wiy - wy,) = g(xs,) - g(w4,)
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It is easy to see that the multi-homogeneous component of weight (mq,...,mg) of the
G Lg-module F{xy,...,x4), coincides with the vector subspace spanned by the elements

xi, - - - x;,, of degree m; with respect to z;.

Theorem 1.4.9.  i. Let U be a T-ideal of F{X). Then U n Fy is G Lg4-submodule of

F,, and it is a direct sum of its homogeneous component U N Fém).

it. Let A = (A1,..., ) be a partition of m. The irreducible polynomial G Lg-module
V() is isomorphic to a submodule of Fém) and

— P dVa(N)

Am

where dy is the dimension of the corresponding S,,-module, M(X\) and the the sum-

mation is on all partitions A = (A1, ..., Ag) - m.

The representations of the symmetric group and the polynomial representations
of the general linear group are equivalent, and they have been used simultaneously in many
branches of mathematics. This happened incidentally also in the theory of Pl-algebras,

the following theorem is a clear example (see [5] and [21]).

Theorem 1.4.10. Let A be a Pl-algebra and let

Xn(4) = Y ma(A)xa, n =0, 1, ...

AN

be the cocharacter sequence of the T-ideal of A. Then, for any d, the relatively free algebra

Fy(A) is isomorphic, as a GLg-module, to the direct sum

with the same multiplicities my(A) as in the cocharacter sequence (assuming that Vy(A\) = 0

if X is a partition in more than d parts). Then the Hilbert series of Fy(A) is

HATd sz)\ S)\Td

n=0 A\Fn

1.5 Finite basis property for sets

Here we collect results and definitions concerning orders and the finite basis

property for sets. For more details see [39].

Let P be a non-empty set. A relation p; < p, on P is a quasi-order if it is
reflexive and transitive. It means that (i) p; < p; for every p; € P, and (ii) p; < py and
Py < p3 imply p; < ps. If also p; < po and py < p; imply p; = po, the relation is an order;

and if in addition for every p;, po either p; < ps or ps < py, it is a linear order.
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If Q is a subset of the quasi-ordered set P, the closure of @, written Q, is the
set of all elements p € P such that for some ¢ in @, ¢ < p. A closed subset of P is one
that coincides with its own closure. The quasi-ordered set P has the finite basis property
(f.b.p.), or it is well-quasi-ordered set, if every closed subset of P is the closure of a finite

set of elements. The following theorem was proved in [39] and gives useful equivalences to

the £.b.p.

Theorem 1.5.1 (Higman [39]). The following conditions on a quasi-ordered set P are

equivalent.

i. Bvery closed subset of P is the closure of a finite subset;
ii. If Q is any subset of P, there is a finite Qg such that Qy < Q < Q, ;

iii. Every infinite sequence of elements {p;}i=1 of P has an infinite ascending subsequence
Pin SPip S0 SPij, S0

1. There exists neither an infinite strictly descending sequence in P nor an infinite one

consisting of mutually incomparable elements of P.

Consider P a quasi-ordered set and let D(P) be the set of finite sequences
of elements of P. Then D(P) is quasi-ordered by the rule: z < y if x is majorized by a
subsequence of y. In other words x = (p1,...,pn) <y = (qu,...,qs) if there exists an order

preserving injection ¢: N — N such that p(n) < s and p; < gy for every i =1, ..., n.

As an example, take the set of positive integers N, with respect to the usual
order it is well ordered. It follows that D(N) satisfies the f.b.p.

Theorem 1.5.2 (Higman, [39]). Let P be a quasi-ordered set. If P has f.b.p., so has
D(P).

The next result will be very useful in our paper.
Proposition 1.5.1 (Higman [39]). Let (P, <1), (P, <2), ..., (P, <g) be quasi-ordered
sets satisfying the f.b.p.
i. The disjoint union of Py, Ps, ..., Py, endowed with the quasi-order where p < q if
and only if p, g € P; and p <; q for some i € {1,2,...,k}, satisfies the f.b.p.

ii. The Cartesian product Py X Py x --- x P, endowed with the quasi-order given by

(p1,02, - > k) < (q1,G2, - - -, qr) whenever p; <; q; for every i€ {1,...,k}, satisfies
the f.b.p.
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Example 1.5.1. Let k£ be a positive integer and consider N endowed with its natural

order <. Then by Proposition 1.5.1, we have that N* is partially well ordered with the

following order
(n1,ng,...,ng) < (M1, ma,...,my) if n; < my; for every i € {1,... k}.

Theorem 1.5.2 then implies that (D(N*), <;) has f.b.p. where the order < is defined
the following way: (p1,...,pn) <k (q1,-..,¢s) if there exists an order preserving injection

¢: N — N such that ¢(n) < s and p; <), gy foranyi =1, ..., n
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2 Multiplicity series of UT},(E)

In this chapter we construct an algorithm to compute the multiplicities of the
cocharacter sequence of UT,(F) associated to partitions that have no more than d parts,
The principal ideas come from the papers [13] and [27]. The most important new results
of this chapter are Corollary 2.2.1, Theorem 2.2.4 and Theorem 2.3.1, and as stated in the

Introduction, they are in preparation for submission.

2.1 Multiplicity series of a Pl-algebra

We fix a positive integer d and consider the algebra

Cl[T4]] = C[[t1,- - -, td]]

of formal power series in d commuting variables. Let C[[T4]]®* < C[[T4]] be the subalgebra

of symmetric functions. Every symmetric function g(Ty) can be represented in the form

Td) = ZmAS)\<Td)7m)\ S C, )\ = ()\17 ey Ad)?
A

where Sy (T}) is the Schur function related to the partition A which has at most d parts,
because the Schur functions in d variables form a basis for C[[T,]]**. For details on the

theory of Schur functions see the monograph [56].

Let g(Tq) = Z maSx(Tq) be a symmetric function, then we define its multi-

A
plicity series as

M(g;Tq) Z myTq 2 mat™ -t e C[[Tal].
/\

It is also convenient to consider the subalgebra C[[V4]] < C[[Ty4]] of the formal power

series in the new set of variables V4 = {vq,...,v4}, where
Ulztl, ngtth,..., ’Udztl"'td.
Then the multiplicity series M (g; Ty) can be written as

g, Vd Zm,\vl’\l A2 Udfl)\dfli/\dvd)\d € C[[Vd]]

We also call M'(g;Vy) the multiplicity series of g. The advantage of the mapping
M': C[[T,4]]** — C[[V4]] defined by M’: g(T4) — M'(g; Vy) is that it is a bijection.
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Lemma 2.1.1 (Berele, [7]). The functions f(T4) € C[[T4]]°* and M(f;T4) are related by
the following equality. If

f(Td)Ht — 1) Z b(pry.. ., pa)th -5 b(p1,...,pa) €C,

i<j ;=0
then .
M<f§Td): d—1,d—2 Z tﬁ”"'tzd,
bty T taa Pi>Pit1
where the summation is on all p = (p1,...,pa) such that py > py--- > pqg.

Remark 2.1.1. In general, it is difficult to find an explicit form of M (f;T,) if we know

f(Ty). But it is very easy to check whether the formal power series

ZhQI)"'7thq1”'tzd7 Ch?"'qu,

is equal to the multiplicity series M (f;Ty) of f(Tq4) because h(Ty) = M(f;Ty) if and only
if
FT) ][t =) = D0t s to@—nyhltaq), - s tota)-

1<J €Sy

This equation can be used to verify the computational results on multiplicities.

Definition 2.1.1. Let A be a Pl-algebra and consider its Hilbert Series

A Td ZTI’L)\ SA Td
where X\ has at most d parts. We define the multiplicity series of A in d variables as

A Td Zm,\ Té\ = Zm)\(A)lﬁ)\l - -td/\d.
A

Notice that if we know the multiplicity series of A in d variables, it is possible
to find the multiplicities my(A). So if we have the Hilbert series H(A; Ty), the problem is
to write the series as a linear combination of Schur functions, which in turn is equivalent

to computing the multiplicity series of A.

The following two linear transformations play an important role in the devel-
opment of an algorithm to compute the multiplicities in the cocharacter sequence of the
algebra UT, (F).

Definition 2.1.2. Let Y be the linear operator in C[[V]] which sends the multiplicity
series of a symmetric function to the multiplicity series of its Young-derived series. That

is, let g(Ty) be a symmetric function, then

Y(M(g), T (( ) Td);Td> :
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Definition 2.1.3. Let g(Ty) € C[[T4]]%¢, then we define the linear operator Y in Cl[V4]] <
C[[T4]] as

[\')

=1

Y(M(g);Ty) := M ( [ ﬁ 1ﬁ 1+t;) ] Td>.

The following proposition describes the multiple action of Y on 1.

Proposition 2.1.1. Ford = k > 1 the following decomposition holds
d
S, (Tq)
E 1—t;) Z 2

where the summation is over all partitions p = (u1, ..., px) and
Ny =Sy (1,...,1) = dim Vi (p).
—_—

k times

Equivalently,
Zdlka VT4, = (g, pg), k=1

Proof. Recall that

d
1
H

t m=0
then
d
H 1 —t Z‘Sml Td : mk<Td)7
where the summation is over all k-tuples of non-negative integers (my, ..., my). By the

Young rule

S(m1)<Td (mz2) (Ta) ZS Ta),

where the sum is over all partitions m = (7, m2) = my + mg such that 7 = m; and the
skew-diagram Dy (y,) is a horizontal strip. We fill in the entries of D, ) and D,,,) with
1's and 2's respectively. Then we fill in with 1’s and 2's the boxes of D, corresponding to

the boxes of D,y and D), respectively:

1---1®2---2221---11...1 20+ 2
210...12

As a result, we obtain a bijection between the summands S;(T,) in the decomposition of
the product S(m,)(Tq)S(m,)(Ta) and the semistandard tableaux of contents (my,ms). In

the next step, the product of three Schur functions has the form

St (Ta) Stma) (Ta) Sty (Ta)) = ¥ Sp(Ta)
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where the sum is over all partitions p = (p1, p2, p3) = my + mg + mg which contain a
partition m = (m,m2) = my + mo such that the skew diagrams Dr)im,) and D, are
horizontal strips. The Schur functions S,(T,;) participate as many times as possible to
choose the partition 7. Hence S,(T;) appears in the sum with its multiplicity in the
decomposition of S, )(Ta)Sme) (Ta)Sms)(Ta)) Z S,(Tq4). Again, filling in the entries
of D)y Dy and D,y with 1's, 2's and 3's, respectively, we obtain a bijection between
the summands S,(Tg) of S(m,)(Ta)S(ms)(Ta)) and the semistandard tableaux of contents

(mla ma, m3)‘

1...1@2...2@3...3221...11___12...23...3
12121 -2
13

This bijection preserves the shape of the partitions and S,(T,) is mapped to a p-tableau.
Carrying on this way we obtain a bijection between the summands S, (T4) in the decom-

position of the product S(;,,)(Tq) - - - Sgm,)(Ta). This bijection counts the multiplicity of

S,(T4) and the semistandard tableaux of content (my, ..., my). Hence the multiplicity
1

of S,(T4) in the decomposition of 1_[ 7}5)/& is equal to the number of semistandard

p-tableaux, which in turn is equal to S (1,...,1), and to the dimension of the G'L;-module

Vi(1t). The equivalence of both statements follows from the definitions of the multiplicity

series and the operator Y. O

In the general case there is an easy formula which translates the Young-derived

operator to the language of multiplicity series.

Proposition 2.1.2 (Drensky and Genov [25] ). Let g(T4) € C[[T4]]%¢. Then

d
Y(M(g:Ta) =] [ = - Z £9)%2 o (—tg)*d M (g; 01152 EL™22858 . th S ese gl moe),
i=1 g
where the summation runs over all ey, ..., g4 € {0,1}.

Consider the operator Y and observe that

d d

YI(M(1); Ty) = (; H(l —t) + ;H(l + tl-)) :

i=1 i=1
Now we want to know which Schur functions participate in the decomposition of Y7 (M (1): Ty).

This means we have to express Y7 (M (1);: Ty) as a linear combination of Schur functions.

First we are going to consider some particular cases of Y7 (M(1); Ty) with j € {1, 2, 3}.

Example 2.1.1. Consider 7 = 1, since

d

d
H H(1+t) Ze2n t1,...,tq ZS(IQ” Td
i=1

i=1 n=0 n=0
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see [23], the decomposition of Y (M (1); T4) as a sum of Schur functions is
}A/(M(l);Td) = Z Sqzny(Ta).
n=0

If 7 = 2, we have that

P2(M(1); Ty - <§H<1—ti>+§ﬂ<l+ti>> = 3 Sy (Ta)Sgenn (Ta).

i=1 i=1 n1,mn2=0
Note that by the Young rule, the Schur functions that participate in the decomposition of
S(12n1y(T4)S(2n2)(Tq) are given by partitions 7, whose diagrams D, are obtained from the
diagram D y2n,y by adding 2ny boxes in such a way that no two of the new boxes are in

the same row. Hence

S(12”1)(Td) 12n2) Td Z S Td
where 7 = (2™,1') - 2(ny + ny), m, 1 = 0 and [ is even. So if

Y2(M(1);Tq) = Y. Sz (Ta)Spzea (Ta) Zmp

n; =0
and m, # 0 then p = (2™, 1") with m, [ = 0 and [ is even.

If 7 = 3, then we have

Y3(M(1);Tq) = Y Spzmy(Ta)Spuzen) (Ta) Saznay (Ta) = Y2(M(1); Tg)Y (M(1); Tg).

n; =0
By the Young rule we have that the Schur functions participating in the decomposition of
S(am 11)(Ta)S2ns)(Ta) are indexed by partitions p, whose diagrams D, are obtained from
the diagram Dom 11y by adding 2n3 boxes in such a way that no two of the new boxes can

be in the same row. It follows

S(l2n1)(Td)S(12n2)(Td) 12n3) Td Z S Td

where p = (3°,2™,1) = 2(ny +ny +n3), s, m, 1 =0 and s = (mod 2). So

}73<M(1) Z 512n1 Td)S(12n2 (Td) 12n3) Td Zmp

n; =0

and m, # 0 then p = (3°,2™, 1Y) with s, m, [ € Zs,.

Below, we have the general result.

Proposition 2.1.3. Let 7 > 1 and let

Ifm, # 0, then p = (j*,(j — 1)*,...,19) I 2(ny + -~ +n;) and (s1,...,5;) € ZL,.

Equivalently, if m, # 0 then p has at most j columns.
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Proof. The proof will be done by induction on j.

The case j = 1 was dealt with in Example 2.1.1.
Assuming the result valid for j, let us prove it for j + 1. We have

d d Jj+1 1 d 1 d J 1 d ) d
( E(l—ti)"r H(l-ﬁ-ti)) = <2H(1—ti)+21—[(1+ti)> <2H(1_ti)+2n(l+ti)>-

Suppose that

N |
DO |

(31T0-0+31Tn+0) = Smessira

=1 i=1

By induction hypothesis, if m, # 0, then

with (ny,...n;) € ZL,. Since

i=1 i=1 n=0

By the Young rule, we have

Sp(Ta)Szmy (Ta) = > 8,(Ta)

)
where p has at most j+1 columns. This means p = ((j+1)",...,1"*!) where (nq,...,nj41) €
zZIH

Hence, if
| | j+1
(2 [Ja—t)+ 5 [Ja+ m) = > m,S8,(Ta),
i=1 i=1 P

and m, # 0, then p = ((j +1)™,--- ,1"+') with (ny,...,nj41) € Z];BI, as desired. ]

Lemma 2.1.2. Let f(Ty) € C[[T4]]%¢. Then

M'(f(T4)S12)(Ta); Va) =vaM'(f(Ta; Va) + 1 2 Ujflgj((M'(f(Td)vvla —)

j=2
d—2 Viso
1+
+ 2, (M (f(Ta) v, va))
i=1 Ui
Vi+1 U5
+ Z ;1 Jflgij((M/(f(Td)vvlv s ,’Ud)),
1<i,j<d-1 Vi Y
i+1<y

where

gi(M'(f(Ta),v1,...,04)) = M'(f(Ta),v1,...,va) — M'(f(Ta);v1s- 0521, 0,051, . .., Va)
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9ij(M'(f(Ta),v1, ...y va)) =M'(f(Ta),v1, -, va)+
M'(f(Ta),v1, ..y 0im1, 0,050, .05, 0,051, ..., Vg)—
M'(f(Tq);v1,. .., vi-1,0,0i41, ..., Va)—
M'(f(Tq);v1,...,0j-1,0,0j41, ..., 0a)

Proof. Notice that it is sufficient to prove the lemma for f(T;) = S,(Tq) where p =
(p1, - ., pa) is a partition in no more than d parts. Rewriting M'(S, (T4, Va) as

M'(S,(Ta); Va) = i - - - vl

where p; = p; — piz1, ¢ = 1, ..., d—1 and p; = pg, by the Young Rule, we have
Su(Tq)Sa2y(Ty) is a linear combination of Sy(Tg), where

o A= (1 + 1o+ 1, s,y ftg).

o A= (i + 1, g, i1 + 1,000, pa), if g > pjyq and j = 2.

o A= (oo fis figr + 1 pige + 150 ), 3 s > g

o A=+ 1 ety + 1y g + 1 pa), 3 g > i, > py and

1+ 1 <.

In the language of multiplicity series, this means that M'(S,(T4)Sq,1)(Tq)) is a linear

combination of the following terms

o vp(vft i) = vaM'(S,(Ta, Va),

e U vj+1M/<SH(Td,vd), if Mt = i1 andj = 2,

Uj

Vj .
° TJF'ZM/(SM(Tdvvd% if Hi > Hit1,

o SN, (Ta, Va), 3 i > g, g > igsa and i+ 1< .
i Uj

Now, observe that

M'(f(Ta);Va) if p;>0
g;(M'(f(Ta); Va)) =
0 if pj=0

M'(f(Tq);Va) if pi>0,p;>0
gij((M/(f(Td)§Vd)) =

0 for all other cases

Then the result follows easily. O]
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By Lemma 2.1.2; we have the following corollary

Corollary 2.1.1. Let f(Ty) € C[[T2]]%2, then

1 2 2

}A/(M(f;Tﬁ) = (L4 tata) M(f; 1) = [2 H(l —t;) + ;H(l + tz)]] M(f;Ty).

i=1 i=1

From Definitions 2.1.3 and 2.1.2 it follows that

VM@ T) = Y <M (g@d) STla-w-+5]Ja~ m]) ;Td>

= M (Hl_t 9(Tu) [;Ha—twﬂ(lw)l ;Td>
- (oo 3 31T o)

A~

Notice that the composition Y (Y (M (g);Ty)) is well-defined one because g(T,)

1 151+ L Iyl
and also (2 + 5 H H) are symmetric functions. Hence ¢g(T}) [2 + B H 11, is

also symmetric. Observe also that Y o V=YoY.

We will define Z := Y o Y. This operator will appear in the computation of
the multiplicity series of the algebra of UT, (E)

2.2 Hilbert series and Multiplicity series of UT,,(F)

In this section, we will find the Hilbert series of UT,(E) and an algorithm to
compute the multiplicities in the cocharacter sequence of this algebra using its multiplicity

series.

First, we are going to state a result which gives a basis for the T-ideal of UT,,(E).

An important tool in the proof of this theorem is the well known Lewin’s Theorem.

Theorem 2.2.1 (Abakarov [1]). The T-ideal of UT,(E) is generated by the polynomial
(21, 22, 23] -+ [T30-2, Tan—1, T3n].

We also recall that in [12, Theorem 2.8] the authors give a more general version

of the previous result.

The following results make reference to the Hilbert series and the multiplicities

series of F/, they are useful throughout this work.
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Proposition 2.2.1. Let E be the infinite dimensional Grassmann algebra over a field of

characteristic zero. The Hilbert series of Fy(E) in d variables is given by

1141 +¢
+
[

H(E;Ty) =

i

N —
DO |

(2

A proof of the previous proposition can be found in [23].

Theorem 2.2.2 (Olsson and Regev [59]). Let E be the infinite dimensional Grassmann
algebra over a field of characteristic zero. Then the cocharacter sequence of E, for any

n =1 is given by

Xn(B) = Y Xpan-»)-
p=1

Using Corollary 1.3.1 and Theorem 2.2.1, we have the following result

Theorem 2.2.3. The Hilbert series H(UT,(E); Tq) of the algebra Fy(UT,(F)) is

d

H(UT,(E); Ty) = Zi: (Z) (; + ;H T_ﬁi) (b, + - tg— 1770

i=1

Proof. We use an induction on n. For n = 1, it is Proposition 2.2.1. Assuming the result

true for n, let us prove it for n + 1. By Theorem 2.2.1 we have
T(UT,.1(E)) = T(UT, (E))T(E).
Thus, applying Corollary 1.3.1 it follows that
HUT,1(E); Ta) = HUT(E); To)+H(E; Ta)+(ti+- - +ta—1) H{UT,(E); Ta) H(E; Ty).

By induction hypothesis, we have

H(UT,(E); Ty) = 2 <7;> H(E;Tg) (ty+ - +tg— 177"

J=1
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Then

H(UT,+1(E)); Ta) Zn: ( ) (B; T (ty + - +tg — 1) + H(E; Ty)

<.

+(t1++td_1) (i (f)H(E,Td)J(tl—‘r—|—td—1)J_1>H(E,Td)
_ i()HETd Vlty 4ot ta— 177 H(ET))

Z <n>H (B; Tty + -+ tg— 1)
=\

n

= (n+1)H(E;Tq) + ) ((’;) n (;:)) H(E; Ta)Y (b + -+t — 1)

j=2
FH(E;T)" (14 +tg—1)"

n

= (nT)H(E;Td) + 2 <n;1>H(E;Td)j(t1 do g — 1)

n+1 n+1 n
H(E;T t et tg—1
# (0 BT et )

n+1 n+1 ) )
= 2 ( j )H(E;Td)](tl+"-+ﬁd—1)J_1
j=1

and we are done. O

Using the previous result and the operator Z, we get an expression for the
multiplicity series of UT,,(E).

Corollary 2.2.1. The multiplicity series of UT,(E) is

- S8 ()]

)dAZﬂ(Té),
J
where dy is the degree of the irreducible S,-character xx, Tq = t}* - ~t3d and Z =Y oY.

Proof. Note that

- —1
(t1+ +td—1 Z qu( q )(t1+"'+td)q

and expanding the expression of H(Uy(FE), Tq) from Proprosition 2.2.3, we get

H(UT,(E); T4) = i (?) (; n ;lj 1 f ij)jZZ::‘j(_l)j_l_q (j ; 1) (f1 4 + )",

Using the well-known equality

(ty+ -+ tg) = Sgl)(Td) = Z dxSx(Ta),
Mg



Chapter 2. Multiplicity series of UT,,(E) 54

where d) is the degree of the irreducible S,-character x,, we have

HUT,(E)T,) ~ Z(j)(biﬂifﬁ)& mo(T) S asr

S () (o 1 s

Indeed, the multiplicity series of S)(Ty) is

M(S)\(Td),Td) = tl)\l s 'td)\d = Tfi\

Then

J
1 1{%1+¢ . .
M[|=+= Y Sa(Ta); Ty | = Z2(M(S\(Tq); Tq)) = Z7(T).
(2*2!}1—:;) MTa); Ta | = 29 (M(Sx(Ta): Tu)) = Z9(T))
Hence, the multiplicity series of UT,,(E) equals

M(H(UT,(E 22;} )1 Q<7) (j ; 1) d\Z7 (TY). O

J

We want to describe those partitions A such that my(UTy(E)) # 0. In this way
we obtain a better upper bound on the height of \.

Theorem 2.2.4. If my(UT,,(E)) #0 and A = (Ay,--+ , \g), then A\pyq < 2n — 1.

Proof. By Theorem 2.2.3 and in the spirit of Corollary 2.2.1, the non-zero multiplicities
mx(UT,(E)) in the cocharacter sequence of UT,(E) come from the decomposition

d d

d ' J J d J
(i*ilﬁfi) (bt ta)? = (Hliti> (;H(l—ti”éﬂ(l“i)) S (Ta)",

i= i=1 i=1
j<nandqg<n-—1,as a linear combination of Schur functions.

By Proposition 2.1.3, the Schur functions S, (T,) participating in the product

(; [Ta-w+ 5 Ta+ ti))

i=1 i=1
are indexed by partitions 7 having at most j < n columns. By the Branching rule, the
multiplication of S;(T4) by Su)(74) is a linear combination of S,(T4) where the diagrams
of p are obtained from the diagrams of m by adding a box. Multiplying ¢ times by S(1y(Tq)

we add to the diagram of m no more than ¢ < n — 1 boxes in the first row.
The diagrams of the partitions p appearing in the decomposition of
1.4 d

<2 [Ja -+ T+ m) Sy (Ta),

=1 =1
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have at most j + ¢ < 2n — 1 boxes in the first row.

Due to the fact that

(Hliti> - Z S(m1)<Td>”'S(mj)(Td)a

=1 n; =0

applying the Young rule iteratively, it follows that if the partition A\ appears in the

decomposition of

(1_[ 1it1> SP(Td)7

i=1
then A is of the type (my,...,m;, (j + ¢)™,...,1%+7) with non-negative my,...,m;,
51,...,8j14. Hence \j11 < j +q.

Therefore, if my(UT,(E)) # 0, then A\j41 < 2n — 1. O

It is worth mentioning that results about the cocharacter sequence of F and
UT,(FE) satisfy the bound given in the previous theorem. By Theorem 2.2.2, we know

n—1

XTL(E) = Z X (n—k,1k)-
k=0

Note that the diagrams of the partitions A = (n — k, 1¥) have at most one box in the

second column, that is, Ay < 1. Therefore, it agrees with Theorem 2.2.4.

In [15] Centrone proved that
H(UTy(E); Ty) = Y ma(UT3(E))SA(Ta),

where X\ = (mq, my,3,2™, 1) or A = (my,my,2™,1"). Hence the diagrams of the partitions
A have at most 3 boxes in the third row, that is, A3 < 3.

2.3 Application to the multiplicity series of UT),(E) in two variables

In this section, we shall compute the multiplicity series of UT,,(E) in two vari-
ables for n € {1,2,3}. As consequences, we obtain the multiplicities m, in the cocharacter

sequences of UT, (FE), where A is a partition in no more than 2 parts.

Proposition 2.3.1. Consider the algebras E and UTy(E), then

i. The multiplicity series of E in two variables is

14 vy
1—1)1'

M(E;V,) = (2.1)

it. The multiplicity series of UTy(E) in two variables is

2(]_ + Ug) (1 + 1)2)2(—]. + v + 21)2 — ’011)2)

M'(UTy(E);Vy) = 1= o, (1 —v1)2(1 —vq)

(2.2)
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Proof. Let us start with the statement 1.

i. By Corollary 2.2.1, we get
M(E,Ty) = Z(1;Ts).

Since Z =Y o }A/, applying Proposition 2.1.2 and Corollary 2.1.1 we have

1+t
M(E, Ty) = — 12
11—t
Recall that v; = ¢; and vy = t;t9. Hence
14+ vy
M'(E:Vy) = )
( ) 2) 1— v

ii. By Corollary 2.2.1, we have
M(UTy(E); Ty) = 2Z(1) — Z*(1) + Z*(t1).

Now, we will compute 2Z(1), Z*(1) and Z*(t;) using Propostion 2.1.2 and Corollary

2.1.1
. 22(1) - 2(1 +t1t2)7
1—t
1+ tyty)?
o 71y = UEhR
(1 —#1)2(1 — t1t9)
. 2t = (1 +t1t2)2(t12+ 21ty — tits)
(1 —11)2(1 — t1to)
Hence
2(1 + tyt 1+ tyts)? 1+ tyte)?(t) + 2tyty — 3t
MUT(E); Ty) = (14 tt2) ( 4'212) (1+ 12)(12+ 1ty — tits)
1—t (1—11)2(1 — tyto) (1 —11)2(1 — tyto)
o 2(1 4 taty) N (1 + t1t9)*(—1 + t1 + 2t1ty — t3ts)
1t (1—11)2(1 — o) '

Finally, we have

2(1 + 'U2) (1 + U2)2(_1 + v + 2’U2 — U1U2>
1—’1}1 (1—7}1)2(1—112) ’

M/(UT2(E)§V2) =

and we are done. O

Now we are able to compute the multiplicity m, in the cocharacter sequences
of E and UT,(F) when A is a partition in no more than 2 parts. The next corollary shows

how to compute the multiplicities by using Corollary 2.2.1 and Proposition 2.3.1

Corollary 2.3.1. Let A be a partition in no more than 2 parts.
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i. The multiplicity my in the cocharacter sequence of E is given by

1 if A= (n)
my = 1 lf)\:()\l,l), /\121
0 for all other A

it. The multiplicity my in the cocharacter sequences of UTy(E) is given by

1 if A= (n)

A if A=(0w1), A1
my =

3N, — 4 if A= (2,0 =2

4()\1 — A + 1) if A= ()\1,)\2), A=A >3

Proof. i. By Proposition 2.3.1, we get
E VQ Z U1 + Z ’Ul Va.
n=0 n=0

From the first summand of the previous equality, we have that if A = (n) with
n > 0 then my = 1. Observe that v]vy with n > 0 corresponds to the partition
A= (n+1,1). It follows that if A = (A;,1) where A\; = 1 then m, = 1.

ii. By Proposition 2.3.1, it follows that

M'(UTy(E);Va) = > 207+ > 200w, — Y (n+ Lojoy' —

n=0 n=0 m,n=0

Z 2(n + ool — Z (n + 1oy +

m=>1 m=2,n=0
Z vty + Z 4(n + 1)ovjvy +
m>=1,n=0 m=2,n=>0
2(n + )iy + Z nvy + Z 2nvivg + Z nvlvs
m=3,n=0 n=1 n=1 n>1
Therefore
M'(UTy(E); Vo) = Y of 4+ Y (n+ Dvfog + Y (3n + 2)vjvs+
n=0 n=0 n=0
Z 4(n + 1)vfvy
n=0,m=3

First, consider the first summand of the previous equality and observe that v}

corresponds to the partition A = (n). So, if A = (n), then m, = 1.

Now, notice that there is a bijection between vjvy with n > 0 and the partition
A= (n+1,1). It follows from the last equality that if A = (n,1) where n > 1 then

my = mn.
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Finally, we have that v]'vy" corresponds to the partition A = (n 4+ m,m). Then since
my =4(n+1) =4((n+m) —m + 1), it follows that A = (A, A\y) with Ay = Ay = 3,
and thus my = 4(A; — A2 + 1).

The remaining case is treated similarly. O

We note that Corollary 2.3.1 agrees with the results presented in [59] and [15]

when the partitions have no more than two parts.

Now, we will compute the multiplicity series of UT3(FE) in two variables.

Theorem 2.3.1. . The multiplicity series of UT3(E) in two variables is

v St St
2(1 + vg)? vi(1 + vy)°
3((1—v1>2<1—v2> RNGRE )*
1
(]. — U1)3(1 — U2)3

2 4
— 3vivs + Tvs — buyvs + 10v; — 13005 + 3vivy — vy — v1v)

(1 — 21 + v% — 20Uy + 2v1v9 — 4@5 + 81}11)%
305 + 3v05 — v%vg)
(2.3)

1. Let X be a partition in no more than 2 parts. The multiplicity m in the cocharacter
sequences of UT3(E) is given by

1 if A= (n)

A if A=(,1), A =1

Lov+ 200 - 1) if A= (L2 A =2
S S (16— 177 +53) if A= (\L3) A =3

14 — 16X + 403 +2(\1 — XA2)(2 = 5(A1 — A2)) if A= (A1,h), M1 =X =4

+42a (A1 — A2) (=3 + X2 + (A1 — \2))

Proof. i. By Corollary 2.2.1, we have
M(UT3(E), Ty) = 3Z(1) — 3Z*(1) + 3Z%(ty) + Z°(1) — 22°(t1) + Z3(]) + Z°(t1t2).

Due to Corollary 2.1.1 and Proposition 2.1.2, we get

21) =322(1) + 3220 =M - R
2(1 + vp)? v1(1 + vy)?
(. : )

1—2)1)2(1—’02) (1 —1)1)2

(2.4)
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1
(1 —v1)3(1 — )3 (

20 vy — 403 + 8uyvs — 3vIv; + Tvs — Bujvs+

Z3(1) = 223(t1) + Z3(13) + Z3(t1ty) = 1 —2v; +v2 — 2up+

4 4 2,4 _ 5 5 6
10vy — 13v1v5 + 3vivy — vy — v1V5 — 3Us+

3uv5 — U%vg)
(2.5)
From equalities (2.4) and (2.5), the result follows.

ii. We expand into a power series the expression for M'(UT3(FE), V3) given in part i.
using the following well known equalities.

ai ,,a2

(- " as
1 — - Ul U2 )
1 n=ai
ai . .as
V1 Vg
—— = Z (n —ay + 1)vivs?,
(1 —wv1)?
1 n=al

ai,,az

U1 Vg _ Z 2 (n —a + 1)vivy',

(1 - 01)2(1 - U2) n=a; m=az

vyt 5 B n—a +2\[(m-—a+2\ , .
<1—v1>3<1—v2>3‘22( 2 )( 2 )

n=a1 m=as

Easy manipulations give us the explicit expression for m, where \ is a partition in
no more than two parts. In particular, if we want to compute the multiplicity of
A = (A1, 1), we need to study the terms of type vjvy in M'(UT3, V3). Hence we will

study the following expression

3v? ( ‘;3 N 6212 > N 6v1v2 +
1— U1 (1 - Ul) (1 — Ug) (1 — Ul) (]. — Ug) (1 - ’Ul)
6U2 . 1 (
(I=v1)?)(1=v2)  (L—=01)*(1 —v2)

(2.6)
1—2v + Uf — 20Uy + 21}11)2)

as a power series.
Notice that if n > 2 and m = 1, then A = (n + 1,1). We get

6(n+1)(n+2) 6n(n+1)

my=3—3Bn+1)+6(n+1))+6n+6(n-+1)+ 1 - 5
6(n—1)n 2(n+2)(n+1) 2n(n+1)
4 2 T

=n+1,

or equivalently, if A = (n, 1), with n > 3, then m, = n. Observe that if m = 0 and
n =1, then A = (1,1). It follows from expression (2.6) that

12 4
mA:B—(3+6)+6+Z—§=3—9+6+3—2:1.
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Finally, if n = 1 and m = 1 then A = (2,1). Hence
36 4
my=3—(6+12)+6+12+ — — — — — +§=3—18+18+9—6—6+2=2.

From the previous computations, we conclude that if A = (A, 1) with A\; = 1 then

my = )\1.

The remaining cases are treated similarly. ]
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3 (k,l)-multiplicity series of UT},(FE)

The multiplicity series of UT,(F) given in Corollary 2.2.1 gives us only the
multiplicities m, when A has no more than d parts. Our next goal is to find an algorithm
that allows us to compute the multiplicities in the cocharacter sequence of UT,, (E) having
more “freedom” in the partitions A. In other words we want to find m, without any
restriction on the height of A. Due to this, it is necessary to introduce some notions studied
in [10] and [8]. The important new results of this chapter are Theorem 3.2.2, Theorem
3.4.1, Theorem 3.4.2 and Theorem 3.4.3.

3.1 Double Hilbert Series and Hook Schur Functions

Consider F, the infinite dimensional Grassmann algebra. Then
B={l,e, e |in<: - <im m=12,..}

is a basis of the vector space of E. We recall the action = of S, introduced by Berele and

Regev in [10]. Given 1 # a = ¢;, - --¢;,, € B, we write [(a) = m. Let (a) = (ay,...,a,),

m

where aq, ..., a, € B, and define
I =0dd(a) ={i|l(a;) =1 (mod 2)}.

Remark 3.1.1. Let I < {1,...,n} (possibly empty), o € S,,. Choose any (a) = (ay,...,a,),
a; € B, such that ay - --a, # 0 and Odd(a) = I. Then

A(1) """ Qo(n) = TQ1 -~ Ap.
Note that the sign + depends on I and o but does not depend on the concrete choice of a.

Definition 3.1.1. Let I < {1,...,n} (possibly empty), o € S,. Choose any (a) =
(ay,...,ay), a; € B, such that ay - --a, # 0 and Odd(a) = I. We define f;(c) = £1 by the
equality

Ao(1) " " Ao(n) = fl(0>a1 c Ay

Definition 3.1.2. Fizing two non-commuting sets of variables X = {x1,...,x,} and
Z = {z,...,z1} and a vector space V with basis X v Z = {x1,..., Tk, 21,...,2}, the
tensors v, @ - - - @ vy, v; € X U Z form a basis of V®". Given such W) =1®: v, we
define the Z-indices of (v) by IZ(v) = {i |v; € Z}. Let o € S,, and let us define the right
action = by

(1 ® - ®vn) *0 = fr2()(0)Ve(1) ® - Vo(n)-

Finally, extend the * action of o to all VO™ by linearity.
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Let us consider now double Hilbert series (or double Poincaré series) related
to the polynomial identities of a Pl-algebra A. In the above setup we identify the tensor
algebra Ty, of V' with the free algebra

F(X,Z) = F{x1,...,&Xp, 21, .., 21)

The latter algebra is a free superalgebra assuming, as usual, that x1, ..., x; and zq, ...,

z; are, respectively, the even and the odd free generators. Let
<a7b> = <a17"'?ak;b17"'7bl>

where a; + --- 4+ a + by + --- + b = n, and let V{a;b) < V®" be the subspace of all
polynomials which are homogeneous in each of xy, ..., zy, 21, ..., 2, of degree a; in z;

and b; in z;.

Definition 3.1.3. Let A be a Pl-algebra and consider the following sets of commuting
variables Ty = {t1,...,tx}, Y1 = {y1,...,yi}. The double Hilbert series of A is defined to be

H(A7 Tk’le> = H(Aatb cee 7tk; Y1, - - - 7yl) = Z dlmF(V<a7 b>/V<(I7 b> * Qn)tclll o tzkyi)l o y[bl7
Casby

where @, = T(A) N P,.

Note that the variables t’s and y’s count, respectively, the degrees of the z’s

and z’s.

There is another way to define double Hilbert series which is an exact analogue
of the definition of Hilbert series of relatively free algebras. We recall that if A is a
Pl-algebra, then AY := A ®p E inherits the superalgebra structure from the natural
Zy-grading of F, ie., Ag = A® Ey and A = A® E;.

If To(AM) € Flxy,9,...,21,2,...)is the Th-ideal of the Z;-graded polynomial
identities of AM, then the relatively free Z,-graded algebra

Flry, ... o 21,20/ (To(AM) A Flay, .. ag, 21,0, 20))

is the magnum of A. For more details on the magnum of a Pl-algebra see [6]. The following
result is well known (see [6]) and gives that the double Hilbert series related to the
Pl-algebra A coincides with the Hilbert series of the magnum of A.

Proposition 3.1.1. Let A be a Pl-algebra. If {a;b) = {aq,...,ax;b1,...,b) is such that
ay+ -+ ag + b+ -+ b =n, then Via;b)y * Q,, = V{a; by n Ty(AM).

Now we discuss hook Schur functions and their relations with the double
Hilbert series of a Pl-algebra. We begin with a definition that generalizes the notion of

semistandard tableau.
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Fix integers k, l > 0, k+1 > 0 and k + [ variables tq, ..., tx, y1, ..., ¥, so that
ty < - <ty <y <---y. Let X\ be a partition with Young diagram D,. Fill D, with
elements from {t1,..., %, v1,. ..y}, allowing repetitions, to get a (k,l)-tableau Ty. Such
T, is said to be (k,l)-semistandard if

i. The “t part” (i.e., the cells filled with ¢;’s) of T\ forms a tableau. (Thus the “y part”

is a skew tableau.)

ii. The t;’s are increasing in rows (with possible repetitions), and strictly increasing in

columns.

iii. The y;’s are increasing in columns (with possible repetitions), strictly increasing in

TOWS.

Definition 3.1.4. Let Ty be a (k,1)-semistandard tableau, define w™ = 3. & yb1 .. g0
where each a; counts the number of entries of t; in T\ and each b; counts the number of

entries of y; in T\. The hook Schur functions is defined by

HS\(Ty;Yy) = HS\(t1, ..yt yn, -2y y) = Z{wTWTA is (k,l)-semistandard}.

Let H(k,l;n) ={\ = (A, Ao, +) b n| 1 <1} and
H(k,1) = | J H(k,1,n).
n>0
Note that if A € H(k,1), then the Young diagram D), lies in the hook with width of the
hand %k and width of the leg [. It is not hard to see from the definition that H.Sy(Ty;Y;) # 0
if and only if A\ € H(k,1).

Example 3.1.1. Consider the hook H(2, 1) and let us calculate HS(21,1y(t1, t2; y1). Notice
that the (2, 1)-semistandard tableux of shape (2,1, 1) are

ty | b1 | by [ta| |ta|ta| Lo |l [t1i|t1] |t2|tn
to (0 () Y1 Y1 (7 (7
n n Y1 U1 Y1 Y1 Y1

Hence

Hpqy(t, o, y1) = titays + tys + titayn + 13y5 + titays + t1y7 + tays.
Theorem 1.4.6 shows that whenever k, [ are large enough we can capture all
partitions that have non-zero multiplicities in the cocharacter sequence of a Pl-algebra A.

i.e, if ma(A) # 0 then X e H(k,1).

Let A be a Pl-algebra, we write x(A) < H(k, ) when the non-zero multiplicities
mx(A) in the cocharacter sequence x,(A), n =0,1,2..., appear only for A € H(k,l). By

Theorems 6 and 11 of [9], we have the following generalization of Theorem 1.4.10.
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Theorem 3.1.1 (Berele and Regev [9]). Let A be a Pl-algebra such that for any n = 0

Then
H(A; Ty, Y)) = 2 Z mx(A)HS\(Tx, Y1),

where k, | are non-negative integers.

Formanek expressed the Hilbert series of the product of two T-ideals in terms of
the Hilbert series of the factors, (see Corollary 1.3.1). Here we have the following analogue

for double Hilbert series.

Proposition 3.1.2. Let A, Ay, Ay be Pl-algebras such that for any n € N and T(A) =

H(A; Ty, Yy) = H(A1; Tr, Yo) + H(A2; Ty, Yo) + (HS)(Tk, Yi) = 1) H (Ar; T, Yi) H(A2; Ty, Yy).

Proof. Berele and Regev proved in [11] that if T(A) = T'(A;)T(Ay) then

n—1

Xn(A) = Xn (A1) + Xn(A2) + x0)® Y X5 (A1)@xn—j-1(A2) — Z (AD)®Xn-;(A2) (3.1)

7=0

where ® denotes the “outer” tensor product of characters. Recall that for irreducible

characters ® behaves according to the Littlewood-Richardson rule.

Due to Theorem 3.1.1, we have

ee}

H(A; Ty, Y0) = ) ma(A)HS\(Ty, Y))
n=0 XeH (k,l;n
e e}

H(Al,Tk,Yl) Z ma Al HS (Tk7 )
n=0 acH (k,l;n)
0

H (A Ty, Y)) = Z mg(A2) HSp(Tk, Y1)
n=0 BeH (k,l;n)

Since the hook Schur functions multiply accordlng to the Littlewood-Richardson rule (see
[10], section 6), we can conclude in the light of (3.1) that

H(A; Ty, Y,) = H(A1; Tr, Yo) + H(A2; Tr, Yi) + (HS (1) (Tk, Yi) — 1) H(A1; Tr, Y1) H(A2; Ty, Yy),
as desired. ]

Corollary 3.1.1. Let A, C be Pl-algebras such that T(C) = T(A)™. Then

H(C; Ty, X)) = Z < ) H(A T Y (Say(Tw Yo) — 1771
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Proof. We will prove the statement using induction on m.

If m =1, then x,(A) = x»(C). So by Theorem 3.1.1
H(C;Ti; Y1) = H(A; Ty ).

Assuming the result true for m — 1, let us prove it for m.

Let A,,_1 be a Pl-algebra such that T(4,,_;) = T(A)™ !, then T(C) =
T(A,,—1)T(A). By Proposition 3.1.2, we get

H(C;Ti; Yy) = H(Ap—1; Tis Yo) + H(A; Ty Y)
+ (HSy (T, Y1) = 1) H(Ap—1; Ti; Yi) H(A; Ty; o).

By induction hypothesis, we have

m—1

m—1 ; -
H(Ap—y; Ti; Y1) = ) ( j )H(A;Tk§Yl)](S(1)(Tk§Yl) -1y
=1

Hence

m—1
m—1 ; i
H(C;Tr; Y1) = ( i )H(A;Tk;Yl)](S(n(Tk;Yl)1)J L H(A TR Y))
1

j=

m—1
1 , .
+(S1)(Tx; Y1) — 1) (Z (m . >H(A§Tk§Yl)](S(1)(Tk§Yl) -1y 1) H(A; Ty; Y1)
=1\
m—1
-1 . .
= mH(A; Ty Yy) + Z (mj >H(A§Tk§Yl)J(S(1)(Tk7Yl) —1)’!
=2

~1 , .
(mj )H(A§TkQYl)j+1(S(1)(Tk§Yl) -1y

7j=1
m—1
m—1 ; i
= mH(A; Ty Y)) + Z ( i >H(A§Tk§Yl)J(S(1)(Tk§Yl)1)] '
j=2
+ i mel H(A; T Y1) (S (Te; Yo) = 1)1
= j—1 ) ) (1) )

= mHATEY) + mil <<m - 1) + (m B 1)) H(A; Tws Ya) (S (Tas Yo) = 1)

= J J—1
+H(A; Ti; Y1) (S (T Yi) — nHm
m—1
— mH(ATEY) 4 Y (T) H(A TR Y0 (S(0) (T Yo) — 17
=2

+H (A5 Ti; Y™ (S(ay (Tos Yo) = 1)

= i <T>H(A7 Tk;Yl)j(S(l)(Tk;Yl) — l)j_l

=1

and we are done. O



Chapter 3. (k,l)-multiplicity series of UT, (E) 66

3.2 The Double Hilbert series of UT,,(F)

We know that the cocharacter sequence of E lies in the hook H(1,1). The double
Hilbert series H(F;tq1,y;) was computed in [9]. We present once again the computation of

H(E,t1,11) as a direct application of the definition of hook Schur functions.

We also compute H(E; T, T)) for k, [ non-negative integers. Moreover, we find
an expression for the double Hilbert series of UT,,(E). Finally, using H(UT,(E); Tk, Y1)
we give a description of the non-zero multiplicities m) in the cocharacters sequence of
UT,(E).

Proposition 3.2.1. Let E be the infinite dimensional Grassmann algebra. Then

1 +—t1y1
(I=t)(1 =)

Proof. By Theorem 2.2.2 we know that for any n > 1, if A = (p, 1" —p), we have m,(E) = 1.

H(E;t1,y1) =

In light of Theorem 3.1.1, we have to compute H.Sy(t1,y1) in order to determine H(E;t1,y1).
Note that the only (1, 1)-semistandard tableaux of shape \ are

bl [ [ ] [t bl [ ] [t
Y1 Y1
m m
corresponding to the monomials /4 and *~'y7 P! respectively. Hence

o n
H(E;ty,y) =1+ Z Z(t]fy?_p 4 tzla—1y?_p+1).

n=1p=1

Note that

a0 n [ee} n
L+ Y Sy 7 ) = L () Y D

n=1p=1 n=1p=1
0
= 1+ (t+y)), D) Bf
k=0 n+p=k
0 o0
= 1+ (t+y) D D>
p=0 n=0
1+
- 1+
(1—t)(1—w)
14ty

It follows that
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In a similar way, we compute H(E; Ty, Y;) for any k, [ € N using Definition
3.1.4 together with Theorems 3.1.1 and 2.2.2. The results is the following.

Proposition 3.2.2. Let k,l € N. Then
1 b () (1 + )
HE;TY,)==-11 . o
(BT o) 2( Bk

Proof. By the definition of (k,[)-semistandard tableau, we have only two types of tableaux
for A\ = (p,1"77) :

T [Tyl [v] Y] [Y[Y] Y]
N Y|
7 Y|
Y| |
Y] Y]

where with the symbol T', we mean “elements lying in T},” and with the symbol Y “elements
lying in Y;". Recall that

e The elements in T} are non-decreasing in rows and strictly increasing in columns.

e The elements in Y; are non-decreasing in columns and strictly increasing in rows.

Hence the tableaux of the first type have n > 1 boxes and contain at least one symbol T

The tableaux of the second type do not contain symbols 7" and have n > 0 boxes.

Consider a tableau T), of type 1. The T-parts of T form a semistandard tableau
T, filled with elements from T} where p = (¢,¢™ ) for some m < n and ¢ < p. Hence
the T-parts of such tableaux are in one-to-one correspondence with the semistandard
p-tableaux filled with elements from T}, where u = (¢,¢™ %), m < n and g < p. The sum on
all 11 of the products of the entries of T}, is equal to the sum of the Schur functions S, (Ty).

If the Y-part of the arm of the tableau 7} consists of y;,, ..., y;,, then 1 < j;--- < 7, < L.
Similarly, if the Y-part of the leg of the tableau of T consists of ¥, ..., Ym. then
1 < my--- < my < l. Hence the sum of all monomials w™, when T) runs over all

(k — [)-semistandard tableaux of type 1, is

Zzsqlmq Tk Zyl lel Z y]lyﬂe

m=1q= c;=0 J1<<Js
m l l l
S Zs(qylmq)@k)nl_ly, Z = quw o (T5) n
m>1g=1 j=1 J s=0 m>=1qg= :1 Yj

where
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is the s-th elementary symmetric function. By Theorem 2.2.2

> qulm o =H(E,Ty) — 1L

m=1 q=

The explicit form of H(F,T}) is given in Proposition 2.2.1. In particular, we have
H(E-T)—1 1+ﬁ1+ti
Mg Vi)

In this way, the sum of all monomials w’, when Ty runs over all (k,[)-semistandard

tableaux of type 1, has the form

1 Fl4t vy L+
-1+ L

Now, we consider the (k, [)-semistandard tableaux 7{; 1»-» of type 2. Clearly, the transposed
tableau T(, ;. is the tableau of shape (n —p + 1, 1771, So the entries of T(p1n-»y do
not decrease in the first row and strictly increase in the columns. Hence T{p,ln,p) is a
semistandard tableau in the ordinary sense. Applying the same argument as for the T-part
of the sum for the tableaux of type (1), we have that the sum of the monomials w’ over

all T7®1"™") is equal to

n=1p=1 j=1 L= Yj
Hence
1 P l+t\ 1 l+y L
H(E; Ty, YY) = S |-1+ : L1+ J
1 L1 b (L+t) (14 o
_ t _1_[ y]+H ( ) ( Yj) 1+H Yj
2 j=1 1-— Y i=1 j=1 (1 - tl) (1 - y]) j=1 1- Yj
kool
(1 + tl) (1 + y])
- |1+
U =)
and the proof follows. n

Corollary 3.2.1. Let E be the infinite dimensional Grassmann algebra. Consider the

algebra UT, (E) of n x n upper triangular matrices with entries in E. Then

H(UT,(E); Tt, Y;) =i<>< [ +ﬁﬁ8ii§g + s D (Zt +Zys_1> _1,

for some k, [ € N.
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Proof. By Proposition 3.2.2 and Corollary 3.1.1, we have

H(UT,(E); Ty, Y;) = Zn]( )( [ +]_[]_[ igi]) (Say(Tw; Yy) — 1)

i=1 s=

Note that by the definition of hook Schur functions, it follows

1)(Tw; Y0) Zt +2ys

Hence H(UT,(E); Tk, Y,) equals

Z(?)( [+ﬁﬁ e D <2t+2y8—1> S

i=1s

By Theorem 1.4.6, there are positive integers k, [ such that y(UT,(E)) <
H(k,l). By Theorem 2.2.4 it follows that k = n and [ = 2n — 1. So, we have the following

result.

Proposition 3.2.3. Let n > 1 and consider the algebra UT, (E). Then the partitions
with non-zero multiplicities m)(UT,(E)) in the cocharacter sequence of UT, (E) lie in the
hook H(n,2n —1).

Using the double Hilbert series of UT,,(E), we are able to give a better descrip-
tion of the partitions A with my(UT,(E)) # 0 than the one given in Theorem 2.2.4.

Theorem 3.2.1. The hook Schur functions HS,(Tx,Y,;) participating in the product
H(E; Ty, Y,) are indeved by partitions 7 lying in H(3j,7).

Proof. We will prove the assertion by induction on j.
If 7 = 1, the result follows from Theorems 3.1.1 and 2.2.2.

Assuming the result true for j —1 > 1, let us prove it for j. Note that
H(E; Ty, Y)Y = H(E; Ty, ) " H(E; Ty, Y)).
By induction hypotheses, we have
H(E; T, Y1) ™' = > axHS\(Ty, Y0),

where Ae H(j — 1,7 — 1) and «a, € C.

Let Ae H(j —1,j — 1) and consider the following product

HS\Tr, Y1) HS(g im0 (Th, Y1) = > 0 HSa(T, Y)).
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Suppose that there exists some partition o such that HS, (T, Y;) participates in the
decomposition of the latter product, and o ¢ H(j, 7).

Note that « ¢ H(j, j) implies 41 > j, hence suppose that a1 = j + 1. Let
@ < a/X be the square formed by the boxes (j,7), (7,7 + 1), (j+1,j) and (j + 1,7+ 1)

as in the picture below:

Q=

Of course, if we consider a semi-standard tableau of shape a/A and content (g, 1™ ?), then
() must be filled as below

11
gk
where 7, k # 1 and j < k.
ii.
117
gk
where 7, j, k#lei<kej<k.
iii.
]
k

where i, 7, k, | # 1,1 < 7 <l and i < k < [. Observe that those conditions are

imposed because we are working with content (g, 1™7%).

Note that i, j, k, [ must be pairwise different since we consider a semi-standard tableau of
shape /A and content (g, 1™~ %), then none of the cases above yields a lattice permutations
when we read their entries from the right to the left and downwards. Hence by the

Littlewood-Richardson rule, HS, (T, Y;) cannot participate in the decomposition of
HS\(Ty, Y1) HSg1m—ay(Tk, Yy),
that is an absurd and we are done. O

In what follows we find the partitions with non-zero multiplicities participating
in the decomposition of H(UT,,(E); Tk, Y;). Given n > 1, let Q3 = (n — 1)""* be a square
Young tableau of size n — 1. We denote by H(n,n) = Q2 the skew hook obtained when we
identify the box (1, 1) of @y with the (n+ 1,n + 1) (empty) box of H(n,n), the box (1,2)
of Q2 with the (n + 1,n + 2) (empty) box of H(n,n) and so on.

Proposition 3.2.4. If m\(UT,(E)) # 0, then A€ H(n,n) = Qz and |A n Qa] <n — 1.
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Proof. By Corollary 3.2.1, the non-zero multiplicities my(UT,(F)) in the cocharacter
sequence of UT,(E) come from the decomposition, as an infinite sum of hook Schur

functions, of

H(E;T),,Y,) <Zt + Zy) H(E; Ty, Y1)’ HS 1y (T, Y14,

where j < n and ¢ < n — 1, for some k, [. By Theorem 3.2.1, the hook Schur functions
HS(Ty;Y;) participating in the product H(E; Ty;Y;)’ are indexed by partitions 7 lying
in H(n,n), then m,,1 < n. Note that by the Branching rule, the product HS;(Tk;Y;) -
HS 1) (Ty; Y1) gives a sum of HS,(T;U) where the diagrams of p are obtained from the
diagram of 7 by adding a box. It follows that the diagram of p has no more than one box
in Q2. Multiplying ¢ times by H.S1)(Tx;Y;) we add to the diagram of 7 no more than
g <n —1boxes in Q. This means if my(EF) # 0, then |A n Q3] <n — 1.

If there is A ¢ H(n,n) * Qg such that my(E) # 0, then A\,11 = 2n or Ay, =n + 1.

Suppose A1 = 2n. We know that there is 7 € H(n, n) such that the diagram
D, is obtained from the diagram D, by adding ¢ < n — 1 boxes. So A, 41 < 2n — 1, which

is an absurd.

If Ao, < n + 1, we know that there is 7 € H(n,n) such that the diagram D) is
obtained from the diagram D, by adding ¢ < n — 1 boxes. Note that the limit of cases is

=n for i = n + 1. Hence Xy, < n, which is a contradiction and we are done. O]

Remark 3.2.1. Note that the previous proposition gives a better description of the
partitions A = (Ay,...,) such that my(UT,(F)) # 0 than Theorem 2.2.4. In fact, by
Proposition 3.2.4, we have that A€ H(n,2n —1), \; <2n—1forn+1<i<2n—1 and
Ai < n for i = 2n, whereas by Theorem 2.2.4, we only know A € H(n,2n — 1), that means
N<2n—1fori>=n+1.

3.3 The (k,l)-multiplicity series

Note that by Theorem 1.4.5, If A is a finite dimensional Pl-algebra, it suffices
to work with a large enough set of variables T in order to capture all the multiplicities
my(A) of its cocharacter sequence from its Hilbert series. But if A is an infinite dimensional
algebra, knowing its multiplicity series is not enough to find all multiplicities my(A). Due
to this fact, we want to generalize the idea of the multiplicity series defining the (k,[)-

multiplicity series of a A. This series contains all the information about the multiplicities

mx(A) for X in the hook H(k,1).

As in [11], identifying a partition with its Young diagram, we can break each
A € H(k,l) into three parts A\ — (Ao, i, ¥) where )q is the piece of the partition in the
k x [ rectangle (I*), uu is a partition with at most k parts and it is the part A to the right
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of \g and v is a partition with at most [ parts and it is the conjugate of the part of A

below Ag. (see figure 2)

Figure 2 — Definition of A\g, 4 and v

We fix two non-negative integers k, [ such that k + 1 > 1. Let Ag be a partition
such that Ay < (I*) and the set

Hy, (k1) := {\e HE,DIAn (I*) = \o}.
Notice that H(k,l) = U Hy,(k,1). Let Ty = {t1,...,tx}, Y = {v1,...,yp and V =

Aoc (1)
{vi,..., v} be three sets of commuting variables and consider the algebra

C[[Tx,Y:]] = C[[t1, - sty y1,-- - wil]

of formal power series in (k + [) commuting variables. Let

ABED = (N myHS)(Ty, Yi)|A € H(k, I;n) my € C},
A

the set {HS\(Tk, Y;)|\ € H(k,1,n)} is a basis of A®4™ as a vector space (see [10]). Now,
define

AFD = (3 myHS)\(Tx, Y1) |\ € H(k,1)my € C}.
A

Note that A*Y is a subalgebra of C[[T}, Y]], since the hook Schur functions multiply

with the Litlewood-Richarson rule. Given g(Ty,Y;) = 2 maxHS\(Tg,Y;) € e ABD | we
AeH (k,l)
have

9T Y) = > > maHS\(Ty, Y)).
)\oc(lk) )\EH)\O (k l)
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Definition 3.3.1. Let g(Tx,Y)) = >, >, maHS\(Ti, Y)) € A®D, we define the
)\og(lk) )\EH)\O (k,l)
(k,l)-multiplicity series of g by

MgV, T Y) = Y. D0 maVeThyy,

Ao (1F) AeH g (k1)

Aot Aok B g1 Mk
...ka 7Tk_tltk‘

where V,° = v and Y] =yt -y

It is clear that ]\/Z(g; Vi, Tk, Y)) is an element of C[[Vy, T, Y]] the algebra of
formal power series in (2k + [) variables. Observe that M defines an injective linear map
from A(k’l) to C[[Vk, Tk7Yl]] and set A(2k,l) = M(A(k’l)>

Example 3.3.1. Consider the hook H(2,1) and the partition A\ = (2,1?). Then )y =
(1,1),u = (1) and v = (1). It follows that

M(HS)\(TQ, Yl)) = vlfu2t1y1.

Now, if we consider the hook H(3,1) and the same partition, we obtain Ay = (1*), u = (1)
and v = (0). Hence
M(HS)\(Tg, Yl)) = Ul?}gvgtl.

Definition 3.3.2. Let A be a Pl-algebra. The formal series

MAVLTLY) = > D) ma(A)VRTEYY
oS (IF) AeHy, (k1)

where X € H(k,l) and my(A) is the multiplicity corresponding to x in the cocharacter
sequences of A, is called the (k,l)-multiplicity series of A.

When the sets of variables are inferred from the context, we may also write
M\(A) instead of M\(A; Vi, Tk, Y7).

Our next step is to find an expression for the (k, [)-multiplicity series of UT,,(F).
In the light of Proposition 3.2.2, we define the linear operator

G : Aok — Mok

such that

yS)

o -7 (o3 (1 TG0 )
where g e A%V,

Remark 3.3.1. Notice that HS(,1m-q)(Tk, Y;) participates in the decomposition of
HS ) (Tr, Y1) HSy(Ty, Y1) and HSq—1)(Tk, Y1) HS m-a+1)(Tk, Y;) as sum of hook Schur
functions. Hence H S, 1m-q¢) appears with multiplicity 2 in the product

D HS0)(Tr, Y1) - Y HSamy (T, Y0).

n=0 m=0
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It follows that

UL 1
H(E; Ty, Y) = 1+ 2 Z HS g 1m-ay(Tk, Y1) = (1 + Z HS ) (Tk, Y1) 2 HS(lm)(Tkaz)> :

m=1g=1

It is well known that

S HS (T ) = T[]

m>0 i=1 s=1 (1—ys)

Due to Remark 3.3.1, we define the following two operators G : Aary — Aary)
and G2 : A(Qk}l) - A(2k,l) given by

and

1
where g € A®D Note that Gy 0 Gy = Gy 0 Gy and G = 3 (1 + Gy 0Gq) where 1 is the
identity map.

3.3.1 The action of G; and G5

Now we describe the action of GG and G5 on Agy ;. Let us start with the operator

(1. Using the notation of chapter 2, we define the following linear operator.

Definition 3.3.3. Given a positive integer d. Let f(Tq) € C[[T4]]%, define the conjugate
Young operator Y on C[[V4]] as

d
Y (M(f(Ta)) :== M <f(Td) > S(15)<Td)> :
s=0
Lemma 3.3.1. Consider the hook H(k,l) and let X\ € H(k,l) be a partition such that
Ao = (I%). Then

BT (HSy (T Y HS (T Y1) = V20 S M (S,(T) Sy (i) M(S, (Y1) Sy (Y1) (3.2)

m=0

Proof. Recall that HSs(Ty,Y;) = 0 if, and only if, 3 ¢ H(k,1). Since Ny = (I¥), if
HS3(Tk, Y,) participates in the decomposition of

HS\(Tw, Y1) HSmy)(Tk, Y1),
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then 3y = B n (I¥) = (I*). Hence, applying the Young rule to the partition A is equivalent
to applying the Young rule to p and v. So, we have

M (HS\(Tw, Y0) HS(y (Th, Y1) =} -+ Zn: M (Su(Tk)S(my (Tr)) M (Sy (Y1) S(an-m)(Yr)) O

m=0

Lemma 3.3.2. Let A be a partition in the hook H(k,1) such that Ao # (1¥), then

n—[Dgy\Dx, |
M (HS)\(Tk,Yl)HS(n)(Tk,Yl)) = Z Vkﬂo Z M (Sus(pﬁTrgo) M (Sus(lnf\Dao\on\*p);Yc) (33)
Bo€ell p=0

where T1 = {By < (I¥)|8 participates in the decomposition of HS\H S}, 13, is the num-

ber of the rows of By of size | and c is the number of the columns of Ay of size k.

Proof. Note that the difference between this case and Lemma 3.3.1 is that if 5 € H(k,I)

participates in the decomposition of
HS\(Tx, Y1) HSny)(Tr, Y1)

as sum of hook Schur functions, then [y is not necessarily A\g. Consider the set II and
notice that if \; > [ or \] = k, then )\ € II. The possible 3, are those whose diagrams are
obtained from the diagram of A\g when we apply the Young rule to the partitions Ay and

(m) for some 0 < m < n such that Dz S Dy.

Now, we identify A with the triple (Ao, i, ). Suppose that Dg, is obtained from
D,, by adding m boxes. Note that m = |Dg,\D,,|, that is, m is the number of boxes in
the skew-diagram Dg,\D,,. If we want to know what partitions 3 satisfy 8 n (I*) = S,
we have to add a total of n —m boxes to the diagrams D, and D, using the Young rule.
Consider the numbers rg, and ¢, observe that we can add boxes to the diagram D, up to
line rg,. In the case of the diagram D,, it is only allowed to add boxes up to line c.

Hence, the partitions § € H(k,[) participating in the decomposition of
M (HS\(Tx, Y1) HS () (Tk, Y1)

such that 8 n (I*) = B, are determined by the following expression

n=|Dg \Dxo |

VP M (St Ty, ) M (808 gnmmgong i Ye)
p=0

Tt follows that M (HSA(Tk,Yl)HS(n)(Tk,YZ)) equals
n—[Dgy\Dx|

SV D M (kS Ty ) M (S8 sy agryi Ye) O

Boell p=0

Using Lemmas 3.3.1, 3.3.1 and the linearity of M and M , we obtain
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Theorem 3.3.1. Let A be a partition in H(k,l). The action of G1 on ]T/[\(HSA(T;C,YI))

can be described as follows
i. If \g = (I%), then

G (M(HS\(Ty,, 1)) = VoY (M(S,; T)Y (M(S,; Yo)).

ii. If Ao # (I%), then

G1(M(HS\(Ti; Y1) = Y. VRV (M(S,u Ty, )Y (M(S,); Ye)),
BoeQ

where Q = {By < (I¥)| Dy, is obtained from Dy, by the Young rule (Case 1)}, rg, is
the number of rows of the diagram of Dg, of size [, and c is the number of colums of

the diagram of Dy, of size k.
Note that if rg, = 0 or ¢ = 0, then &J = Yy = Tp. Hence 1 = Y(1,Ty) =
Y (1,Yo).

Now, let us study G,. Our goal is to describe G5 in terms of the operators Y
and Y defined above. Note that (n) and (1") are conjugate partitions, so from Theorem

3.3.1 we get the following result.

Corollary 3.3.1. Let A be a partition in H(k,l). The action of Go on M\(HS,\(Tk,Yl))

can be described as follows:
i. If \g = (I¥) then

Go(M(HS\(Ty, Y1) = VoY (M(S,: Ti)Y (M(S,; Y1)

ii. If Ao # (I¥) then

Go(M(HS\(Ti; Y1) = 3 VEV(M (S, T)Y (M(S,); Yey,)),

OEQ/

where Q' = {By < (I¥)|Dg, is obtained from Dy, by Young rule (Case 2)}, r is the
number of rows of the diagram of Dy, of size | and cg, is the number of columns of

the diagram of Dg, of size k.

3.4 The (k,l)-multiplicity series of UT,,(F)

The following result is analogous to Theorem 2.2.3. We obtain an expression

for the (k,l)-multiplicity series of UT,,(F) using the linear operator G.
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Theorem 3.4.1. Let E be the infinite dimensional Grassmann algebra. Then

—~ — 1 .
M(UT,(E); Vi, T, Y)) = ZZZ ) 1( )(‘7 . >dAGJ(V20T2‘YZ’),

Jj=1¢=0 ¢

where dy is the degree of the S\-characters x, and
LY =ttty
for = (p1,...,px), v = (11,...,1;) partitions outside the rectangle (I*).

Proof. Expanding the expression of H(UT,(E); Tk, Y;) from Corollary 3.2.1 we obtain:

. B n n Bl 1+yj jj—l_ i1g -1 1 . 1 q
monwreny - () ([ TERE]) Sev () (S 20)

Since

l l a
(Z ti+ Y, y5> = HS)(T, Y1) = > d\HS\(Ti, Y7),
i=1 s=1

Aq

where d) is the degree of the Sy-characters x,, it follows that
Ui, j—1 1 E ) 4]\
UT,(E); Tk,Y)) H1<>< )d — |1+ : ! HS\(Ty,Y)).
i ¥ ;g; VAN > [P = o=y AT )

Recall that we can identify A € H(k,[) with the partitions Ao, p, v (see figure 2), so

koL J
G/ (Vi*TLY) = G (M(HSA(Tw, 1)) = (( l 1“;”) .HSA(Tk,Yl)).
=1 7:1 —d
Hence
~ =1 1 ‘
M(UT,(E); Vi, T, Y)) = ). )71 1( )(J )dAGWﬁOTﬁYf),
leq:OAkq J 1
and the proof follows. O

Theorems 3.3.1, 3.3.1 and 3.4.1 give us an algorithm to compute the multiplici-
ties in the cocharacter sequences of UT,,(E). In order to show how the algorithm works,

we consider some particular cases.
Proposition 3.4.1. The (1,1)-multiplicity series of E is

M(E;v,t,y) =1+m.

Proof. Using Theorem 3.4.1, we have ]/\/[\(E;v,t,y) = G/(1). By theorem 3.3.1 we get

Gi(1) = Gy (M(HSy, );v,t,y) = Y (1; To)Y(1; Yo) + oY (L T)Y (1Y) = 1 + ﬁ
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Now, we are going to compute G5(1) and G, (1075) Using Corollary 3.3.1, we get

Ga(1) = Go(M(HS(0)):v.t,y) = Y(1,To)Y (L, Yo) + oY (L, To)Y(1,Y;) = 1 + 1#

-y
v v (s
G2(1—t>: ( ) B =T a—y T a—oa -y
Hence
1 2v v
=30 o6 = (1414 iy ) <1 gy
as desired. ]

Notice that at light of Theorem 3.2.1, the (1, 1)-multiplicity series of E already

contains the information about the multiplicities in the cocharacter sequence of E. In fact:
v
_—— = Z ut"y™,
(1 _t)(l _y) m,n=0

then, expanding its homogeneous component of degree m, we obtain

i vtqflym’q
q=1

which gives the exact multiplicities of the m-th cocharacter of £ as in Theorem 2.2.2.

By Theorem 3.2.3, we have x(UTy(E)) < H(2,3). Hence we would like to
compute the (2,3) multiplicity series of UT5(E). We need the following technical lemma.

Lemma 3.4.1. Consider the hook H(2,3) and the set of variables {vy,va,t1,t2, Y1, Yo, Y3}
Then:

V1V Vi, v} Vi,

i. G(1,Va, Ty, Y3) = 14+ v; +0° + + .
(1, V2, T3, Y3) PR Ty Ty 1=t =t (1 =)

2 1
G* (1) = 142 3v? 2
(1) + 20; + U1+Ulv2(1_y1"‘(1_%)2)4""1”2 1—y1+
1+ Y1 1 ) 3 < 3 1 )
+ + v + +
(I=wm)* (1—m)? "\1-t (I—ty)?
5 2(1 + 1) 1+t
v ( + +
P I -t)0—y)  A-t)@—y)? (I—t)2(1—w)
1 + tlyl ) 2 9 < 2 2(]. + yl) 4y1y2 )
+ vjv + + +
(1 —=t1)%(1 —y1)? P\L-yn o —wm)? —0)2(1 = niye)
32 < 3 3(1+ 1) 6y1y2
PP A -t) A —y) A=t =y A =t)(1—y)?(1 = y1ye)

L 1+t (1+t)(1 +y1) 2(1 + t)y1ye ) .
I=t)?(=y) (-t 0-p)* 1-0)*(1 =)’ -y
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’U3’U3 ( 1 n 1 + U1
PP A -t) A=) Q=)L+ )

2919 N (1 + 1ty + tity — t3t)
(T=t)(I = y1)2(1 =) (1 —1)2(1 = tat2)(1 — y1)
(1 4+t + tito — t3t2) (1 + 11) 2(1 4ty + tity — t2t2) 11 )
(I=t)2 (1 =tata) (1 —y1)? (1 —t2)2(1 — tat2) (1 — 91)*(1 — 11%2)

1 1 3 I+
G%(v)) = v++2fz)2+vv( + )Jrvzv( + +
() ' PRy (-2 P\l 1 —y)?
2 3 4 3(1+y1)
— =) b + +
(1—y1)2> 1 ((1—?51)(1—91) (1 —t1)(1 —y1)?

2(1+t1’y1) (1 +t1) 3 2 1
A2 -2 (1-h) <1—y1>> T (1—t1 i <1—t%>> i

V2 < 2 n 3(1+ 1) 6y1y2 (1 +y192) >
l—yr (1=w)* (A—w)*(I—vy2) (1 —y1)*(1—y1y0)
Fodl ( 3 n 5(1+ 1) 10y1y2
I—t)d—w) (A—t)T—w)? A —=t)1—y1)*(1—viy2)

21+ )1 + 1) 4(1 + t1)y1y2

(1=t)2(1—9)? (1 —t1)2(1 = p1)*(1 — 1y2)
L+ 192 + 20911 + by — Lyt ye 1+ 3y1y2 — yiy2 + 11 )

(T =t1)?(1 = 91)*(1 — y112) (T =) (1 —y1)*(1 — y130)

3.3 1 2(1+ 1)

e <<1 )0 1) - )
4y1y2 N (1 4ty + ity — t3ty)

(I=t)(I—y)2(T —wy2) (1 —t)*(1 = tate)(1 — y1)
2(1 + ty + tte — t32) (1 + y1) 4(1 4ty + tity — t3t9) Y1y

(1 —1)2(1 = tata) (1 — y1)? (1 —=21)2(1 = tat2) (1 — 92)*(1 — y192)
(14t + taty — B562) (1 — yiyo + 3y1y2 + 1 + 20102Y3)
(T —t1)2(1 = tat2) (1 — 91)*(1 — v1y2)
(1 —yiya + 3192 + 1 + 2y1y2y3))
(1—t)(1 = y1)2(1 — y1y2)

Proof. i. The result follows directly from the definition of G.

ii. By the previous item and the linearity of GG, we have
2 3

G2(1) =G(1) + G(v1) + G(v?) + G (1“”’2 > + G ( Y12 ) e, ( Y ) +

— U 1= 1-t

(3.4)
We compute each part of the right hand side of the equality separately. Let us
calculate G(vq). We start with computing G;(v;). From Theorem 3.3.1, we get
3 3

G1(v1) =v1 + v2 + vyvy + Vg + )
1(v1) =0y 1 1U2 102 1 T1og




Chapter 3. (k,l)-multiplicity series of UT, (E) 80

It follows that

3 3
GQ(G1(U1)) =G2<U1) + GQ('U%) + G(vlvg) + GQ(U%UQ) + Gy (11)11); ) + Gy <1 Ult ) .

By Corollary 3.3.1, we have:

20103 203 dvivy dviv,
Gy (G (1)) =v; + 202 + + +
2(G1(v1)) =vr Pley 11—t 1y (I—t)(1—y)
20203 2viv3

=y O—t)0—m)

Hence
V1V 202 v3
Goy) =vy + 08 + ——— 4 A2 Ly
]'_yl 1_91 ]-_tl (35)
2030y viv3 viv2 '

+ .
I=t)I—=y) 1-y (A—t)1—w)
To compute the remaining parts, we use Theorem 3.3.1 and Corollary 3.3.1. As the

computations are too extensive, we only write the final results:

V204 v3 2030, v202 20302
G 'U2 :/UQ + 1 1 + 1 + 192 + 1¥2 +
N A Ty N (ESS (RS I A e g Ry
viv3 ,
(I—=t)(1—y1)
(3.6)

V102 V102 9 I+ )
G = +ujvy | ——— | +
(1—?/1) (1—p)? 2((1—91)2
L+ 2y1Y2 )
2.2
VIV +
b ((1 ) (1 =y1)*(1 — yiy2)

1 + 1

3
+ +

Qm&(ﬂ—hﬂl—mﬁ)

L+ 212 >

3.2
(Y + ;
e ((1 —t)(1—=wy)? (1 —=y)*(1 = v13p)

'U3 'U3 1 +t1 1 +t1
G ! >= ! + 030 ( )-1-1131]2( )+
(1—751 1—t)2 P\ A—t)2(1—y) PPN = 4)2 (1 —y)

Y L+t + bty — t3ts .
PPN =021 = tit) (1 =) )

v2y ) v2Uy 1+ 1+
G- -1 + vy ( ) + Vi) (+
(1 — % LT—p)? P\ —t)(1— )2 PPN )2

2y1y2 3 2 2(1 + y1>
(1—mﬁ0—ywﬁ)+UWQQ1—hﬂl—mP
4y1y2 3 3 (1+w)
U—hmfwﬂﬂ—mw)+%%(U—MH—mV+
21192 ) )
(1—t)(1—y1)?(1 —y1ye) )’
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v (<1 - t><1 - yn) i <<1 e y1>2) i <<§1—+t338 - 33“

2(1 + t1)1hy: > N
(1 —t1)2(1 = 41)*(1 — v1y2)
o0 ((1 + b+ tite — t3) (1 + 1)
(T —t1)2(1 = tat2) (1 — yn)?
2(1 + ty + tite — t3t9)y1yo >
(L=t)2(1 = tita)(1 — 91)*(1 — yaya) )

By equality (3.4) and the previous computations, we obtain the desired result.

iii. From equality (3.5), we have

2 3
(1) =G(01) + G(?) + G <1““’2 ) e (1 ) e (1 i ) i
— U1

=
2 ((1 -iié’f-yn) ve (1—y) v ((1 -Zfi?f-yo) |

viv? viv?
It only remains to calculate G ( 12 ) and G ( L ), since the other
1—y (1 =) (1 =)

summands have been found in item b).

(3.7)

The following equalities are obtained by Theorem 3.3.1 and Corollary 3.3.1.

G( viv3 ) :Uzvz( L+ 4190 > +Ugv2< 1+ 3192 — yiye + 1 ) N
L—y PN - 90)2(1 - i) PPN = y)2(1 = yaye) (1 — 1)
vivs (1 +3y1y2 — Yiya +y1 + 2y1y2y3>
(1 —21)%(1 — y1y2)(1 — 1)

G ( v3v3 ) 32 <1 + y1y2 + 2t1y1y2 + L1y — tly%y2>
(I—t)(L—wy1) . (1= y1)?(1 — y1y2)(1 — t1)?
vl ((1 + 1+ tits — 1) (1 + 3y1y2 — yiyz +y1 + 2y1y2y3)> ‘
(1 —=t1)%(1 = tata) (1 — y1)*(1 — y1y2)
Now the result follows by a combination of equality (3.7) and the previous compu-
m

tations.
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Theorem 3.4.2. The (2, 3)-multiplicity series of UTy(E) is

M(UTy(E); Va, T, Y3) =1+ vy + 07 + I v Us( yl)+

]-_yl ]_—tl (1—y1)2

o ( 1 N 1+ 1+t )
P Aty At —y)? (1= t)2(1— )2

s o 2+W 4y1y2
e ((1 T R CEy yly») !
vl ( 2(1 + 1) 4192
(I—t)A—=w)?  (1—t)(1 —y)*(1 —yiye)
(T+t1)(1+ 1) 2(1 + t1)y192

A=t —p)? (A= 0)2(— )21 — prgo)

L+ 192 + 2tiynys + tiyn — tiyiye
(1 =11)2(1 = y1)*(1 — y1y2)
L+ 34192 — ¥y + 1 ) e ( (1+wy)
(T =t)(1 —v1)*(1 — y1y2) PN =) =)
29112 N (14t + ity — t3t2) (1 + 1)
L=t)(1—y1)*(1—wvy2) (1 —11)2(1 = tatz) (1 —y1)?
2(1 + t1 + tats — t3t2)y1y2
(T —1)2(1 = tat2) (1 — y1)*(1 — v1y2)
(1 4ty + taitg — £312) (1 — Y7y + 312 + Y1 + 2y1023)
(1 —t1)2(1 = tata) (1 — v1)*(1 — y1y2)
N (1 —yiys + 3y1yo + 41 + 2y1y2y3))
(I —=t)(1 = y1)2(1 — y132)

i

_l’_

Proof. Due to Proposition 3.2.3 we have x(UTy(E)) < H(2,3). Hence we work with the
set of variables {v1,vo,t1,t2, Y1, y2,ys}. By Theorem 3.4.1 we obtain

M(UTy(E); Vs, Ty, Y3) = 2G(1) — G*(1) + G*(v). (3.8)
From equality (3.8) and Lemma 3.4.1, the result follows. O

The next result was proved by Centrone in [15]. Now, we are going to prove it
using the (2, 3)-multiplicity series of UTy(E).

Corollary 3.4.1. Let \ be a partition. The multiplicity m, in the cocharacter sequence of

UTy(E) is given by the following expression:
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1 if A=(n

1 if A=(1™), m>1

m+1 if A=(2,1"), m=>=1

3m + 2 if A=(2,2,1"), m>0

A(m +1) if A=(2,2,2°1™), m>0, s> 0

2nm —3m —n+3 if A=mn1"), n=3 m=1

6m(n—3)+9m+3n—3)+5 if A=mn,2,1"), n=3 m=0

T 8 -3)+12)(m+ 1) if A=(n,2,2°1"), n=3, s>1, m>0

4(ny —ng + 1)(2m + 1) if A=(ny,n9,1™), ng=2ne =3 m=0

12(ny —ng + 1)(m + 1) if A= (n1,n2,2°,1™), ng =ng >3,
s=z1, m=0

4(ny —ng +1)(m+1) if A= (n1,n2,3,2°,1™), ny =mng =3,
s=20, m=0

0 for all other A

Proof. Given a partition A, by Theorem 3.2.3 we know that m, = 0 if A ¢ H(2,3). Hence
let A€ H(2,3). In order to compute the multiplicity m,, it is necessary to write the hook

multiplicity series of UTy(E) as a power series.

Let A € H(2,3) and consider the triple (Ao, i, ). Notice that Dy, < D(33). It
follows that

Ao € {(1)7 (2)7 (3)7 (17 1)? (27 1)7 (37 1)7 (27 2)7 (37 2)7 (37 3)}
First, let A be a partition such that Ay € {(1), (2), (3)}. Using Theorem 3.4.2, we obtain
my = 1.

Consider now A such that A\g = (1,1). By Theorem 3.4.2, we have that A,

corresponds to the summand

It follows that partitions of type A = (1,1,1™) with m > 0 have multiplicity 1 or,
equivalently, if A = (1™), with m > 1 then m, = 1.

Now, let A be such that Ay = (2,1). Observe that
2
viv2(2 — 1) ) m
“aog v 2 + n;(m + 2.
Hence, if A = (2, 1), then m) = 2. Moreover, if A = (2,1,1™), with m > 1, then my = m+2
or, equivalently, if A = (2,1™), with m > 2, then m) = m + 1.
Let A be a partition such that A\g = (2,2). Then
vl ( 2+ 1 5 + 422’/13’/2 > =v2? |2+ Z (3m + 2)yi" + Z Z Amys s |
(T=w1)* (I =y)*(1—y1y2)

m=>1 m>=1s>1

Hence if A = (2,2), then my = 2. If A = (2,2,1™), then my = 3m + 2.
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Observe that y""*~'y5 is in one-to-one correspondence with the partition
v=(m+s—1,s), hence v/ = (2°,1™71). So, if A = (2,2,2°,1™1), with m, s > 1, then

my = 4m or, equivalently, if A = (2,2,2°,1™), with s = 1 and m > 0, then m) = 4(m + 1).

The remaining cases are treated similarly. O

Now we compute the multiplicities m, in the cocharacter sequence of UT3(E)
when A\ € H(1,1).

Theorem 3.4.3. Let A\ be a partition such that A € H(1,1). The multiplicity my in the

cocharacter sequence of UT3(E) is given by the following expression:

-

1 if A=(m),n=0

1 if A=(1M), m>1

n if A=(n,1), n=2
TN 1 if A= (2,1™), m>2

1

Zwﬁ—gmn+2&n2—5@1+6&nn—2mn%zif A= (n,1™), n >3,

+10n% — 12mn? + 4m*n?) m =2

\

Proof. By Theorem 3.4.1, we have
M(UT(E); v, t,y) = 3G(1) — 3G2(1) + 3G (v) + G3(1) — 2G3(v) + G*(vt) + G*(vy) (3.9)

By Theorem 3.3.1 and Corollary 3.3.1, we obtain

A s g
. G21) =1+ v v(1 + ty)

A-t1—-y) Q-1’0 -y)?*

v(1 + 2ty + t%y?)

- G*(v) = TR
O A gy g 0
. ) = 21 +(13t_y 53?12325;3@/3)7
-G%m):”@+£fi;i?z;#f{

. G(oy) = LB 30+ Ty

(1= -y)?
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By Equation (3.9) the (1, 1)-multiplicity series of UT3(E) in the variables v, ¢,y is

—~ v v(1 + 4ty + 3t%y?) v
MUT3(E);v,t,y) =1+ + -1+t
R e [U ) (s B ER Ry Rl
+y — 4ty — 5t%y% — 26393 + 3ty + 33y + thy® + 3P+
3t%y° + tPy*) (3.10)

Note that in order to compute the multiplicity m) where A € H(1,1), it is necessary to

write (3.10) as a power series. Recall that

ta1ya2 " m
e

nz=za; m=az

101 4/92
i :Z Z(n—a1+1)(m—a2+1)t” "

(]‘ - t)2<1 - y)2 n=a; m=az

(1_ta1 2 Z (n—a1+2>( —gg+2)tnym.

n=a1 m=a

Using the previous equations and making some algebraic manipulations, we obtain the
following expression

MUTs(E);v,t,y) =1+ v (Z >y Y (e Dy + D (m+ Dty™+

n=0 m>=1 n=1 m=2

Z Z (32 — 34(m + n) + 10(n? + m?) — 12(m?n + n?m) + 44mn + 4m?>n?) t”ym>
4

n=2m=2
(3.11)
By Equation (3.11), it follows that if A = (n) or A = (1™) then m, = 1. Now, if
A= (n+1,1) and n > 1 then my = n + 1, this means that if A = (n, 1) with n > 2 then
my = n. Observe that if A = (2,1™) with m > 2, its multiplicity is m + 1.
Finally if A = (n + 1,1™) with n, m > 2, we have that

32 — 34(m + n) + 10(n? + m?) — 12(mn? + n®m) + 44mn + 4m?*n?
4 )

my =

or equivalently if A = (n,1™) with n > 3 and m > 2, we have that

76 — 90m + 26m? — 54n + 68mn — 20m2n + 10n? — 12mn? + 4m?n?

my = 1

]

Recall that if we want to know all multiplicities of the cocharacter sequence of
UT5(E), we have to work with the hook H(3,5) because by Theorem 3.2.3 we know that
x(UT5(E)) < H(3,5). Hence the (3, 5)-multiplicity series ]T/[\(UTg(E),Vg,Tg,Yg)) has 11

variables and the computations are very technical.
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4 Specht property of varieties of graded Lie

algebras

Let F be an infinite field and let L = UT,(F)7) be the Lie algebra of the n x n
upper triangular matrices. If a,b € L, denote the commutator [a,b] = ab — ba. The Lie
brackets are asssumed left normed, that is, [a, b, c] = [[a, b], ].

In this chapter we consider a particular but important grading on L. Suppose
G = Z,, in additive notation and recall that e;; stand for the matrix units: e;; has an entry
1 at position (i, j) and 0 elsewhere, then the algebra L is G-graded by setting L = @} Ly
where Ly, is the span of all e;; such that j —¢ = k, this grading is called the canonical
Z,-grading. The principal goal of this chapter is to prove that the 77 -ideal of graded
identities of L has the Specht property when char F' > n or char F' = 0. Moreover we
prove that when n = 3 and F' is of characteristic 2 then the corresponding ideal of graded
identities does not satisfy the Specht property. Hence the restriction imposed on the
characteristic cannot be removed. The most significant new results of this chapter are
Theorem 4.1.1, Proposition 4.2.6, Theorem 4.2.1, Theorem 4.2.2 and Theorem 4.3.1.

The Tz, -ideal of graded identities of L over an infinite field was described in

Theorem 4.0.1 (Koshlukov-Yukihide [50]). The Z,,-graded identities of the Lie algebra L

of the upper triangular n x n matrices over I follow from

[2{),29], i+j=n
©) _(0) (4.1)
[351 y Lo ]

41 The case UTy(F)")

First, we are going to study the Specht property when n = 2. Let Y and Z
be two infinite countable sets, Y = {y1,vs,...} and Z = {21, 25, ...}. Consider the free
Lie algebra L(Y U Z) generated over F' by Y U Z. Note that the algebra £(Y U Z) has
a natural Z,-grading assuming the variables Y to be of degree 0 and those Z of degree
1. Consider the algebra UT,(F') endowed with the canonical Z,-grading, denote by I the
ideal of Zy-graded identities for UT5(F’). By Theorem 4.0.1 and the Jacobi identity, we get

[z, 91, 92] = [2, 92, 01] € 1, (4.2)

hence the non-zero monomials in L(Y u Z)/I are of the type

[Z7yi17yi27 s 7yik]

where 11 <99 < -+ < 7.
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Notation 1. We will denote [z,y1, ..., Y1,y Yns-- - Yn] bY [2, 0101, - -, QnYn].
— S

al an

Consider the following set

B ={lz,a1y1,...,anyn]In =1, a; > 0, for all i}.

Given f = [z,a191, - . ., anyn] € B, we will define V; := (a; ..., a,). Note that {V;|f € B} <
D(N), hence V; = (ay,...,a,) <V, = (ai,..., m) if there exists an order preserving
injection : N — N such that ¢(n) < m and a; < al,, for any i =1,...,n.

Proposition 4.1.1. Let f,g e B. If V; <V, then g is a consequence of f modulo I, i.e.,
g€ <f U ]>TZ2 .

Proof. Suppose that V; = (a1, ..., a,) and V, = (a}, ..., a,,). By hypothesis, there is a sub-
sequence (a,, ..., a; ) of Vg such that a; < a;, forall j € {1,. n} Let f(z,9i,,-- -, v, ) the
polynomial obtained replacing the variable y; by y;, for each 1 <j <nin f(z,y1,...,¥n).

Then by equality (4.2), we get

[f(zayiu s >yln) ( a;, — al)yim R (a;n - an)yin] = [ ) zlyll’ SR znyln] (mOd I)

Now, let {l1,...,lmn—n} ={1...,m} —{i1,...,in}. Using again equality (4.2), we conclude
that
[ ’ zly%m R znyznv allyh? s ’a;m,nylmfn] =g (mOd ])

and the result follows. O

Definition 4.1.1. Consider f,g € B and define the following quasi-order em B: f <g g if
Vf < Vg.

Proposition 4.1.2. (B,<p) satisfies f.b.p.
Proof. Suppose that there is an infinite sequence {f;};>o of pairwise incomparable elements
in B with respect to the order <p. The previous sequence defines the sequences {V7%,};>0 in

D(N), by definition 4.1.1, the elements of the sequence {V}, };>0 are mutually incomparable,
but this is a contradiction because by Theorem 1.5.1 D(N) is partially-well ordered. [

Theorem 4.1.1. Let J be a Tz,-ideal such that I < J, then J is finitely generated as
Tz, -ideal.

Proof. Since F' is an infinite field, we know that .J is generated as 7',-ideal by multihomo-

geneous polynomials. Hence there exists a subset B’ < B such that

J={B)r, (modI).
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By Proposition 4.1.2 and Theorem 1.5.1, there is By < B’ such that By is a finite set and
By € B < By. It follows that given g € B', there exists f € By such that V; < V,. By
Proposition 4.1.1, g € {f)r,, < (Bo)r,, mod I, then

J = <BO>T22 (mOd [)7

hence the T7,-ideal J is finitely generated. [

42 The case UTs(F)")

Let Y, Z and W be infinite countable sets, namely Y = {y;,40,...}, Z =
{z1,22,...} and W = {wy, wy, ...}. Consider the free Lie algebra L(Y U Z U W) generated
over F'by Y u Z u W. Note that the algebra L(Y U Z u W) has a natural Zs-grading
assuming the variables Y, Z and W to be of degree 0,1 and 2 respectively. Consider the
algebra UT3(F') endowed with the canonical Z3-grading, denote by I the ideal of Z3-graded
identities for UT5(F).

By Theorem 4.0.1, the Zs-graded identities for UT5(F') follow from

[yh yz]
[317 22, 23]
[wl ) w2]

[z, w]

(4.3)

Using the previous identities and the Jacobi identity, we have the following equalities,
(modulo 1):

[z, 41, 92] = [2,y2, 31], (4.4)
[w7y17y2] = [way2ay1]7 (45>
[21, Y1, Y2, 22] = [21, Y2, Y1, 22]. (4.6)

It follows that the non-zero monomials in £(Y u Z u W)/I are the following types

1. [Z,yily--'ayik];
IL. [w7yi17 s 7ylk]’
L [2,Yir, s Yigs 2 Yirs - - - Ui ;

IV. [217:%'17 s Yigs 22, Yy e e 7yjz]7

where 17 < iy < - <14 and j; < iy < --- < j;. Observe that if f is a monomial of type
ITI, then its second block of the variables Y can be empty. Moreover if f is a monomial of

type IV, then its first or second block of the variables Y can be empty or both.
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Let f € L(YUZUW)/I be a multihomogeneous polynomial, then f is equivalent
to a monomial of type I or Il or f is a linear combinations of monomials of type III or

type IV.

Notation 2.

[Zaalyla"'aanyn] = [Zyyla"'7y17"'7yn7"'7yn]
— —

al an

[w, a1y1, ... anyn] = [0, Y1, Y1, Yns -5 YUn
e Y

al Qn
[2’17@1917 ceey AplYn, 22, blylv s 7bnyn] = [21791, e Yy Yny - -5 Yny 22,
(S —_—
ai an

Yisoo s Yty s Yny oo Yn]

b1 bn
Consider the following sets
By ={[z,a1v1,...,a,ys] | n =1, a; > 0, for all i},
By = {[w,a1yn, ..., anyn] | n =1, a; >0, for all i},

By = {[z1, 0101, - @Y, 22,0101, .- by ] | n =0, a;,0; = 0, for all 4}.

Given f € B;, we assign to it the finite sequence Vy = (a4, ...,a,) where 1 <i < 2. Note
that Vy € D(N). So, we define the following order in f € B;.

Definition 4.2.1. Let f, g € B; where i =1 or 2, we define f <p, g whenever Vy <'V,.

Proposition 4.2.1. Consider the set B; and let f, g € B;.

i. If [ <p, g, then g is a consequence of f modulo I.

ii. (Bi,<p,) satisfies the f.b.p.

Proof. The argument is analogous to the proofs of Propositions 4.1.1 and 4.1.2. O]

Corollary 4.2.1. Let J be a Tz,-ideal such that I < J and let A; = {f € J | f € B;},
i =1, 2. Then there exist finite subsets A, = A; such that

(Ary, = (ADr,, (mod I).

Proof. By item ii. of Proposition 4.2.1 and Theorem 1.5.1, there exist finite subsets A, < A;
where 7 = 1, 2, such that

./4; c A, < I;
It follows that given g € A;, there exists f € A such that f <g, g. Hence, by item i. of

Proposition 4.2.1, ¢ is a consequence of f modulo I. Then

(Ary, = (ADr,, (mod I). B
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If f e Bu,y, we assign to it the finite sequence Vy = ((a1,b1),. .., (an,by)).
Observe that V; € D(Ny?). Recall that by Theorem 1.5.2 and Proposition 1.5.1, the set
D(Ny?) is partially well ordered.

Definition 4.2.2. Let f, g be two polynomials in B 1y. Define the following quasi-order

in Bay: f<p,, g whenever Vi <o V.

Proposition 4.2.2. If f <p,, g, then g€ (f U D1, .

m’m

Proof. Suppose that V; = ((a1,b1),...,(an,b,)) and V, = ((a},b)),...,(al,,b,)). By
hypothesis there exists a subsequence ((ag,,b;,), ..., (a; ,b; )) of V, such that a; < aj,

117 i1 1n’ in

and by, < b;_ for every ke {1,...,n}. Let f(z1,22,%,...,%,) be the polynomial obtained
replacing the variable yj, by y;, for each 1 <k <nin f(21,22,91,...,¥s). Then by equality
(4.5), we get

fl = [f(zlv 22y Yiyy - -+ 7yln) (bzl b1>yi17 R (b;n - bn)yln]
= [Zh Qi1 Yiyy - -5 Qi Yiy 5 22, bilyin s 7b’/LnyZn:| (mOd I)

!/

Replacing the variable z; by [z1, (@], — a1)yi,, - - -, (a; —an)y;, ] in fi and applying several

times (4.4), we obtain
fl([’zl? (a;l - a1>yi17 RN (CL; —a )yln] 225 Yiyy - - - 7yln>
= [Zla aglyiu R zny’Ln7 29, b“ylu SRR b;nyln]

Let {l1,....lpn—n}={1...,m}\{i1, ... ,0n}. It follows from equalities (4.4) and (4.5)

’ /
[[217 Y- 50, nylvnfn]7 zly“? AR znylnv 22,

bglyh? s 7bzny%n7 bllylw R bl»,n,nylmfn] =g (mOd I)
Hence g is a consequence of f modulo I. n

Proposition 4.2.3. (B(1,1), <5(1’1)) is a quasi well ordered set.

Proof. Suppose that there is an infinite sequence {f;};>o of pairwise incomparable ele-

ments in B ;) with respect to the order < The above sequence defines the infinite

Ba:
sequence {Vr, }i=o in D(Ny?). Note that the elements of the sequence {V},};=o are pairwise

incomparable, but this is a contradiction since the set D(Ng?) is partially well ordered. [

Lemma 4.2.1. The commutators

c= [Zl7y17 s Y 22, Y1, - - 7yt+k]

are linearly independent modulo the Zs-graded identities for UTg(F)(_).
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Proof. Here we use a technique based on generic matrices, adapted to our case. First,
consider the substitution z; = e and zo = e93. Computing ¢ with the above substitution of
the z;, and assuming y; = y; €11 + yrex + +y ess where the y{ are commuting independent

variables (here j is an upper index, not an exponent), yields

C_Hl_[ erl_yz 613

Here in the second product, ¢ ranges from 1 to ¢, if s = 1. If s = 2, ¢ ranges from ¢ + 1 to

t + k. Now make the following substitutions for the y;.

First put all of the yf = (0 except for:

e i=1,...,t: here define y7 = 1.

e i=1+1,...,t+k: here define y} = 1.
Such a substitution vanishes all commutators but ¢, and ¢ = ey3. So if we suppose there is a
linear combination among commutators of the type ¢ (we assume them multihomogeneous;
this is no loss of generality since the base field is infinite), we assume that ¢ participates

with a nonzero coefficient in it. Then make the substitution for the y; as above. All

commutators vanish except for c¢. This proves they are linearly independent. ]

Lemma 4.2.2. The commutators

c=|z1,a191, - -, QuYn,y 22, D191, - -+, Dp¥n]

are linearly independent modulo the Zs-graded identities for UT3(F)(_).

Proof. First, consider the substitution z; = ej3 and zo = eg3. Computing ¢ with the
above substitution of the z;, and assuming y; = y;e1; + yiegn + +yiess, where the yf are

commuting independent variables as above, gives
c= <H - yz 1_[ - yz ) €13.
=1 i=1
Now making y; = 0 for all 4, we obtain
= (H(yf)“i]_[(yf’)bi> e13. (4.7)
i=1 i=1

Define the following monomial
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Consider ¢, ¢ two different commutators and notice that m. # m.. Hence, the elements
of the set {m. | c € B(1,1)} are linearly independent. So if we suppose there is a nontrivial
linear combination among commutators of type ¢ (we assume them multihomogeneous)

such that ,

Zaici('zl)Z?ayla s 7yn) el

i=1
t
0= Z ozjmcj €13-
=1

t
0= Z ajme,,
j=1

hence a; = 0. This proves the commutators ¢ are linearly independent. O

By equality (4.7), we have

It follows that

Definition 4.2.3. Let f;, f; € Bay be multihomogeneous polynomials of the same

multidegree. Consider the finite sequences

Vfi = ((ala bl)? R (am bn))v ij = ((allv bll)a R (a;w b;z))

We define the order f; <" f; as follows:

n n n n
i< fiif Za; > Zai, or if Za; = Zai and (ay, ..., a,) <pg (ay, ..., a,).
=1 i=1 i=1 =1

The order <’ is linear on the polynomials of the same multidegree in By 1).

Definition 4.2.4. Let f be a multihomogeneous polynomial such that

f= anoﬁfi;
where f; € Ba 1y and oy € F\{0}. We define the leading monomial of f by
mi(f) = mae(f, | 1< < n),
and the leading coefficient of f, denoted by cl(f), as the coefficient of mi(f).

By Lemmas 4.2.1 and 4.2.2, this way of writing f as a linear combination of
elements of B 1) is unique. For this reason, we can define the leading monomial of f with

respect to the order <'.

Proposition 4.2.4. Let f(z1,22,Y1,--.,Yn) be a multihomogeneous polynomial such that

f(217z27y17 s 7yn) = Z@ifl(zlu 22, Y1y - 7yn)7
i=1

where fi(z1, 22,1, ..., Yn) € Ba1y and o; € F\{0}. The following statements hold.
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i If g(z1, 20,01, - Yns y) = [f (205 22,01, - -, yn), Y], then mil(g) = [ml(f),y].

. [fh(zl7227y17~--7yn7y) = f([zlvy]az%yla"'ayn)f then
mi(h) = ml(f)([21, y], 22,51, -, Yn)-

Proof. 1t follows from Definitions 4.2.3 and 4.2.4. [

Proposition 4.2.5. Let f, g be two multihomogeneous polynomials such that

t s
F=>aif,  9=> B9
i=1 Jj=1

where o;, B; € F\{0}, fi, g; € Bay for all1 < i <t and 1 < j < s. Suppose that
ml(f) <p,,, ml(g), then there exists h € {f)z, modulo I such that ml(h) = ml(g) and
cl(h) = cl(f).

Proof. By Proposition 4.2.2, we know that ml(g) € {ml(f))z, mod I. Then, making the
same computations done on ml(f) to obtain ml(g), we can obtain a consequence h from
f- Moreover, by Proposition 4.2.4, ml(h) = ml(g). It is clear that the polynomial h has

the same leading coefficient as f. O

Definition 4.2.5. Let f be a multihomogeneous polynomial that is a linear combination

of polynomials in B1y. Then f is called polynomial of type (1,1).

Proposition 4.2.6. There is no infinite sequence of polynomial { f;}i=1 of type (1,1) such
that

fig (fry- e 7fi—1>T23 (mod I)

where 1 = 2.

Proof. Suppose, on the contrary, that there exists such an infinite sequence of polynomials
{fi}i=1. Moreover, suppose that the f;’s are of different multidegrees in the variables Y.

Define the following sets

° Jz = <f1, e 7fi>T23 (mod I),

e R;={fe€J\Ji—1| fisof type (1,1) and of the same multidegree in the variables Y’
as fi} ;

e Ry ={ml(f)| feRi}.
Note that f; € R;, so without loss of generality, we can suppose that

ml(f;) = min R..
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We denote m; := ml(f;) where ¢ > 1. Then we have the infinite sequence {m;};>1 in B 1).
By Proposition 4.2.3, we have that (B, <3(171)) is a quasi well ordered set. It follows
from Theorem 1.5.1 that there exists an infinite subsequence {m;, };>1 of the sequence
{m;}i=1 such that

My, <5(1,1) My <13(1,1) <13(1,1) my, <3(1,1)
where iy < iy < ---ij < -+

Let o, be the leading coefficient of f;,, where k > 1. Take s > 1 such that

ZS: Oéil #* 0
=1

Recall that m; <p,, m,,,, where [ € {1,...s}. By Proposition 4.2.5, there exists
hi € {fi,)1,, such that

ml(h;) = m;,,, and cl(h) = o,

for every 1 < [ < s. Consider the polynomial
h=>h,
I=1

and notice that ml(h) = m, ., and cl(h) = Z Q;,.
11

Observe that h; € J;, < J;,,,—1, where 1 <[ < s, and since J;_,,—; is Tz,-ideal,

we have h € J;_ ., 1. Define

g = fis+1 - (ais+10l(h)_1)h'

Then mi(g) # m;,,, and mi(g) < m;_,,. Note that g € J; and
helJi . ,-1< Ji,,. On the other hand, g ¢ J;,,,—1 because f; ., ¢ J;,,,—1 and h € J;
It follows that g € R then ml(g) € R

which is a contradiction. O

.. because f; ., € J;

s+1—1-

~

but ml(g) <’ m,,,, and m;_,, = min R
</

G541 Ts+19 Ts419

As a direct consequence of Proposition 4.2.6, we have the following corollary.

Corollary 4.2.2. Let J be a Tz,-ideal such that I < J. Consider the following set
Aaqqy = {f e J| f is a polynomial of type (1,1)}.
Then there exists a finite subset Ajy 1y S A1) such that

<~A(1,1)>Tz3 = <‘A/(1,1)>Tz3 (mOd I)

Now we deduce the Specht property for the ideal of Zz-graded identities for
U T?ff)(F ) when F' is an infinite field of characteristic different from 2.
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Theorem 4.2.1. Suppose that char F' # 2. If J is a Tz,-ideal such that I < J then J is
finitely generated as Tz,-ideal.

Proof. Since F is infinite, J is generated by its multihomogeneous polynomials. As char F' #
2, using the multilinearization process, we can consider that every multihomogeneous
polynomial with variables 2’s is linear in these variables, because by the identities (4.3),
they appear in the non-zero monomials of £L(Y u Z u W)/I at most twice. Hence, J is

generated as a T,-ideal, modulo I, by the following sets
e A;={feJ| feB} where 1l <i<2;
o Aqqy) = {fe€J|fisapolynomial of type (1,1)}.

Using Corollaries 4.2.1 and 4.2.2, we get that there exist finite subsets A < A;, where
i=1,2, and A ;) S Aq1 such that

(Apr,, = (ADry, (mod I);
<"4(171)>Tz3 = <-’4/(1,1)>ng (mod I).
It follows
J={AT v AU A/(1,1)>T23 (mod 1),

therefore J = (A} U Ay U Afy 1y U D, , and J is finitely generated as a Tz,-ideal. O

4.2.1 The case UTgf_)(F) in characteristic 2

In this subsection we prove that the graded identities of U Tgf_)(F ) do not
satisfy the Specht property if F' is an infinite field of characteristic 2.

Lemma 4.2.3. Let F' be an infinite field of characteristic 2. For k > 1, define the
polynomial

Cr = [Zayla"'ayk’az]-
Consider [ a consequence of ¢, (mod I) such that f is a multihomogeneous polynomial

and deg f > degcy. Suppose that f has degree 2 in the variable z and it is multilinear in

the variables y’s, then f is a linear combination of polynomials

[Zayilv e Yigy 2y Yig 415 - - 'yiz]7

where the rightmost block of variables Y is not empty.

Proof. Note that the multihomogeneous consequences of the polynomial ¢ (mod I), that
have degree 2 in the variable z and degree 1 in all variables y, are obtained by applying a

combination of the following rules:



Chapter 4. Specht property of varieties of graded Lie algebras 96

« Making substitutions of type z — z + [z, ¥, - - -, Ui, |-

° Maklng [Ck7 Yizye o ayit]'

Now replacing z by z + [z, Yk+1, - - -, Yk+n] in ¢ and taking the homogeneous component

of degree 1 in yri1, ..., Yrin, We obtain the following polynomial

g = [Z7y17 v Yk Yk+1, - - - 7yk+n72] + [Z7y17 ey Yk, [ZaykJrla B 73/k+n]] (mOd I)7

where we apply to the first summand several times the identity (4.4).

Let C = {k+1,...,k+n}andlet P(C) ={S | S < C} be the set of all subsets
of C. If S = {iy,...,i;} = C, and its complement in C' is S¢ = C\S = {is41,...,0n}, We

suppose that i1 < -+ < iy and 4,41 < -+ < i,. Define

[Zayla"'vyk7YS7ZaYSC] = [zayla"'7yk7yi17'"7yit727yit+17"'7yin]'

Recall that char F' = 2, so using several times the fact that ady = [*,y] is a derivation in

every Lie algebra, we have

[273/17 <oy Yk [Zayk+17 s 7yk+n]] = Z [Z7y17 s 7yk7Y57Z7YSC]7
SeP(C)

therefore

g = [Z>y17"'7yk7yk+17"'7yk+naz] + Z [Zayla"'aybYSaZaYS‘:]
SeP(C

)
:2[273/17'-'7yk7yk+17"'7yk+nvz]+ Z [z7y17"'7yk7YS7z7YSC]
SeP(C),5+4C

= Z [Z7y17"'7yk7Y57’Z7YSC]7
SeP(C),S#C

and the result follows. O

Theorem 4.2.2. If F' is an infinite field, char ' = 2, then I, the ideal of the Z3-graded
identities of UT3(7) does not have the Specht property.

Proof. Given k > 1, as above, we consider the polynomials

Ck('z)ylv S 7yk) = [Zayla S ,yk,Z]-

Note that by Theorem 4.0.1, ¢x # 0 (mod I). We perform the following substitutions in

the polynomial ¢

* 2 = ez + €3,

o i ="ien + Yiexn +Yless,
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where 'yf are commuting independent variables. In this way we obtain the following
expression

Gﬂﬁ+ﬁﬂ{ﬂﬁ+ﬁﬁﬁs (4.8)

=1 i=1

Define

h:@Yﬁ+ﬁH{Yﬁ+ﬁ0,

i=1 i=1
a polynomial in the commuting variables ”yf where 1 <i< kand 1<1[<3.

Let I, = {1,...,k} and consider S < [j such that S # ¢ and S # I;. We

define the following polynomial

fS = [Z7yi17'"7yit7zayiz+17"'ayik]7

where S = {i1,..., 4}, S = {431, g}, 11 < -+ < iy and 44,1 < -+ < ig. By Theorem
4.0.1, fs # 0 (mod I). Making the above substitution in fg, we get

0Yﬁ+ﬁﬂ{ﬁﬁ+ﬁ0fﬂﬁ+ﬁM& (4.9)
€S €S jese

Consider

hsz(Fﬂﬁ+ﬁ%+IIW?PﬁOIT@§+ﬁ)

€S €S jese
Observe that hg is a polynomial in the commuting variables 7! where 1 < i < k and

1 <l < 3. Notice that

h ¢ spanp{hs | S € I}, S # Iy, S # &},

k k
because the monomials 7, H’yf and 7} H”yf appear in the polynomial h, but these
=2 i=
monomials do not appear in any of the hg.
Let Jp = {cy,. .. ck>TZ3 (mod I) and suppose ¢; € Jy_1. By Lemma 4.2.3, we

Cr, = Z asfs

SeP
where age Fand Se P ={Sc I, |S #I,S # J}. Then (4.8) and (4.9) imply

h = Z Ckshs,

SeP

get

but h ¢ spanp{hs | S € P}. Therefore ¢ ¢ Jr—1 and we have that the following ascending

chain of T%,-ideals modulo I
chj2c...chc...7

where J; = {c1, ... ci)1,,, is not stationary (does not stabilize). Therefore the Tz,-ideal I

does not have the Specht property. O]
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4.3  The case UTn(F)<_), n >3

Let Z% and Y be disjoint infinite countable sets, Z9% = {z{", 25" ... } where
g; € Z,\{0} and Y = {y1, s, ...}. Consider the free Lie algebra
Ezn = £< Z9 U Y)
9i€Zn\{0}

freely generated over F' by U Z9% u'Y. Notice that the algebra £z, has a natural

9:€Zp\{0}
Z,-grading assuming the variables Y, Z% to be of homogeneous degrees 0 and g;, for

g € Z,\{0}, respectively. Consider the algebra UT, (F') endowed with the canonical
Z,-grading, and denote by I the ideal of Z,,-graded identities for UT,,(F).

By Theorem 4.0.1, we get that the non-zero monomials in the algebra Lz /I

are of the following types

L. [zgiayim s 7yis]>

; 1 1 ; 2 2 : k k
II. [Zghayi(l)7 s 73-/1'(5)7'29]27:[/1(1)7 s 7yl(m)7 s 7Zg]k7y1$1)a s 71/15")]7

k

where Z gi; < n — 1 and the indices of the variables y’s are ordered in non-decreasing
j=1

way (that is their indices, in each group, increase with possible repetitions). Observe that

some (or all) of the blocks of variables y’s can be empty in monomials of type II.

k
Let zq, ..., zx be variables of degree ¢, ..., gx, respectively, such that Z gi <
n — 1 and g; # 0. Denote by
[zisa1y1, - s an¥n] = (2,01, - Y1y oo s Uny - - YUn)
e —
al Qn
k
[21, agl)yl, caMyn, o 2, ag )yl, o aPy]
= [Z17y17"'7y17'"7yn7'"7yn7"'7Zk7y17'"7y17"'7yn7"'7yn:|'
(1) (1) (k) (k)
ay ap, a; an
Define the following sets
By, = {[zi,agl)yl, caPy] la; >0, n=1);
1 2 k
B(gl,...,gk) = {[217 ag )y17 cee 7a£11)yn7 Zo‘(?); ag )yla S 7a7(7,2)yn7 o 7za(k)7 CLg )yb S 7a1(1k)yn:|}7

where o € Sy, o(1) =1, agj) >0,1<j<n,andn > 1.
Definition 4.3.1. Let f = [z, a1y1, - - -, anYnl, 9 = [2i,a1y1, ..., @, ym]| be polynomials in
By,. Consider the finite sequences in D(N)

Vi=(a1,...,an), V,=(a},....a,).

»r'm

We define the following order on By, : f <p, g whenever Vy < V.
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Proposition 4.3.1. Consider the set By, and let f, g € By, be two polynomials in B;.

i. If f <s,, g, then g is a consequence of f modulo I.
i. (By,, <s,,) satisfies the f.b.p.
1i. Let J be a Tz, -ideal such that I < J. Consider the following sets
Ag, ={f€J|[eBy}
Then there exist finite subsets .A'gi c A, such that

<Agi>TZn = <A;l>Tzn (mOd ])

Proof. The proof of this proposition is completely analogous to the proofs of Proposition
4.2.1 and Corollary 4.2.1, and that is why we omit it. O]

Definition 4.3.2. Let f, g € B(y,,...4,) be respectively the polynomials
[21, agl)yl, o alVy, 25(2)5 a&z)yl, o aPy,, . s 2o (k) s agk)yl, a®

k k
[Zb a/l(l)yb ce 7a;n(1)ym7 2o(2)) a/1(2)ZJ1> . aa';n(myma <oy Ro(k) afll( )yb . 7a;n( )ym]

3
<
3
[

where o, T € Sy, are such that 1 = o(1) = 7(1). Consider the finite sequences

k
Vi = (0. ai"), @), al)),
Vo= (0™, at™), (e, Y.

If Vi <4V, and 0 = 7, we write f SBgyoom I

Recall that V}, V, € D(Ny*). The order < coincides with the order defined in
Example 1.5.1.

Lemma 4.3.1. Let f € By, 4 be such that

f(zla sy Ry YLy - 7yk> = [Zl7y17227y27' . ‘Jzk7yk]'
Then the polynomial
g = [Zlﬂyb ey Zi=1,Yi—1, %0, Y, Yiy Zit 1y - - 7zk‘ayk’] € <f>Tzn (mOd I)

Proof. If i = 1 then g = f([21,y], 22, .-, 2k, Y1, -, Uk) € {f)ry, (mod I). If i = k then
g =[f,vy] and g is a consequence of f.

Thus we suppose 1 < i < k. Let fs be the polynomial obtained replacing the
variable z; by [zs,y] in f, where 1 < s <. Notice that fs equals

[Zlvyla vy By Yy Ysy Bs+1y Ys41 - - - 7Zk7yk] - [Zlayla ey Bs—1,Ys—1, Y, Zss Ysy - - - Zkayk]a
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where s € {1,...,4}. Recall that [y,3'] = 0 mod I, thus one has

g = Z fs (mod I).
Therefore g is a consequence of f modulo I. O]

The previous lemma has as a direct consequence the following result.

Proposition 4.3.2. Let f, g € By, 4. be polynomials such that V; SBioy o) Vy. Then
g € {f)r,, modulo I.

Proposition 4.3.3. The set (B, ... g,); <Bly, . an) ) satisfies the f.b.p.

.....

Proof. Suppose that there is an infinite sequence {f;};>1 of pairwise incomparable elements

in Bg,,....g) With respect to the order <p . Since the symmetric group Sy is a finite

,,,,,

set, we obtain an infinite subsequence {f;, } ;> frorn {fi}i=1, such that the permutations o,
are the same for all j > 1. Hence, the previous subsequence induces the sequence {Vfl Visi
in D(N ). By Definition 4.3.2, these elements are pairwise incomparable with respect to

the order <;. But this is absurd because (D(No"), <i) is partially well-ordered. O

Proposition 4.3.4. Let n > 3 and take z1, ..., z variables of degrees g1, ..., gk,

respectively, such that g; # 0 and Zgl n — 1. Let y; be variables of degree 0. Then the

=1
commutators

c= [217 Yis -5 Yt 22 Yt +1s - - -5 Ytat+tar 235 - -+ Bk Yt +o it g +15 - - - 7tt1+"'+tk]

are linearly independent modulo the graded identities for UTn(F)(_).
Proof. Suppose that m —1 = g; + --- + g and consider first the substitutions:

1 = €Clgi+1, 22 = Cgi+lgi+ga+ls- -3 Rk = Cgi+tgr1+lg1++gp+l:

Pay attention gy +---+ g + 1 = m < n.

A standard staircase argument shows that, fixing z; at the leftmost position in
the commutator, the only permutation of the 2o, ..., z; that yields a nonzero element will

be as in the commutator ¢ given in the statement of the proposition.

Computing ¢ with the above substitution of the z;, and assuming y; = yiei; +

YZegy + -+ Ylen, where the y{ are commuting independent variables, yields

k
_ gittgetl 1
=111 1w —ul)eun.

Here in the second product, ¢ ranges:
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e From 1 to ty, if s = 1.

e Fromt;+ - -+t +1tot; +---+t,, if s> 2.

Now make the following substitutions for the ;.

First put all of the yf = 0 except for:

e i=1,...,t: here define y#*' = 1.

e i=1t +1,...,t + ta: here define y91+g2+1 =1.

7

e Andsoon, fori =1ty +---+ts1+1toi=1t; +---+t, define yo' * o+t = 1.

(2

Such a substitution vanishes all commutators but ¢, and ¢ evaluates to ¢ = eq,,.

Let us suppose there is a nontrivial linear combination among multihomogeneous

commutators of the type ¢, such that ¢ participates with a nonzero coefficient in it.

First we get, by means of the above substitution for the z;, the correct order
for the zo, ..., z;. Then we make the substitutions for the y; as above. All commutators
vanish except for ¢. This implies the coefficient of ¢ must be 0, a contradiction. This proves

the linear independence. 0

Proposition 4.3.5. Let n > 3 and let z1, ..., 2z, be variables of degrees g1, ..., gk,

k

respectively, such that g; # 0 and Zgi <n — 1. Take y; variables of degree 0. Then the
i=1

commutators

(1) (1) (2) (2)

_ 2 2 (k) (k)
C_[Zlval Yiy-- -5 Q¢ "Yt, 22,01 "Y1,.-., 0

k
Yty ooy Zhy @ Y1y ooy Oy Yt

are linearly independent modulo the graded identities of UTn(F)(’).
Proof. Suppose that m —1 = ¢g; + - - - + g and consider first the substitution:

21 = €1,g1+1, 22 = €gi1+1,91+g2+15 ceey 2k = €gitetgr_1+1,g1 4+ +grtl-

(Pay attention that g; + -+ + gx + 1 = m.)

Once again, a staircase argument shows that, fixing z; at the leftmost position
in the commutator, the only permutation of the z,, ..., 2, that yields a nonzero element

will be as in the commutator c.

Computing ¢ with the above substitution of the z;, and assuming y; = y;e1; +

y2ess + -+ + Y'enn, where the yf are commuting independent variables, gives

_ gi+-+gs+1 _ 1yal?
c= H(yz —y;)" e

k t
=14=1

S
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Now making the substitution y; = 0 for all i, we obtain:

k (s)
HH g1+ +Qs+1 % e (410)

s=11=1

Define the following monomial

koot
Hn gi+tgetlya (=)

s=11i=1

Note that if ¢ and ¢’ are different commutators with the same permutation of the z, ...,
z, we have that the monomials m. and m. are different. We suppose there is a nontrivial

linear combination among commutators of type ¢
Dz, 2 Y )

which is a graded identity for UT,(F)™). First we get, by means of the substitution for
the z;, the correct order for the zo, ..., 2z, with respect to the commutator ¢;. Then we

make the substitution for the y; as above. By Equality (4.10), we have

l
0= (> aime, e
j=1

where the polynomials ¢;; have the same permutation of the 23, ..., 2 as the polynomial
c;. It follows that 0 = Z ;M -
j=1
But the monomials Me,, (in commuting variables) are linearly independent
because they are different for each ¢;;, hence ;; = 0. Using the same argument several

times, we have that a; = 0 for every 1 < i < r, and the claim follows. n

Definition 4.3.3. Let f;, f; € 3(91

multidegree, as given below, respectively

y be multihomogeneous polynomials of the same

11111

1 2 k
[Zlaag )y17"'7 S)yn7za(2)7ag )y17"‘7 53)%7-- y o (k) ag )?/17--.76% yn]a

[7«’1,@1(1)917---7 n(l)ynaza( )7a/1(2)y17"'7 n( )yn)"'a Zo(k ))all(k)ylv"‘va/n

Consider the finite sequences

1 k
Vi, = (@, ...,a), ... @D, ... a®)),

n

Vo= (@}, at ™)@, al ™).

We define the order f; <' f; if some of the following conditions is met:

e (0(2),...,0(k)) <tex (7(2),...,7(k));
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e 0 =1 and Z Z a > 2 a;®;
s=114i=1 s=114=1
k=1 n k=1 n
SDNWLED I
e 0 =T, a; = a;"” and
s=11=1 s=11=1
O, N a0y < (V@ Sy,
i=1 i=1 i=1 i=1
k=1 n k=1 n
SOMLLE WL
e 0 =T, a; = a;\",
s=11i=1 s=11i=1
(Z a; M, ... ,Z a; V) = (Z a, ,Z a* Y, and
i=1 i=1 i=1 i=1
(al(l), o ,an(l . 7al(kfl)7 o 7an(k71)) <lex(a/1(l), o ,a;(l), o ,a’l(k_l), o ,a;(k_l)).

Observe that this order is linear on the polynomials of the same multidegree in

8(91,---,%)'
t
Suppose f = Z fi is a multihomogeneous polynomial, where f; € By, . g,

i=1
and «; € F\{0}. By Propositions 4.3.4 and 4.3.5, this way of expressing f as a linear
combination of elements of B, . ,,) is unique. For this reason, we can define the leading

monomial of f with respect to the order <'.

t

Definition 4.3.4. Let f = Z a; fi be a multihomogeneous polynomial, where f; € By, . 4,)
i=1

and o; € F\{0}. We define the leading monomial of f by

mi(f) = max{f; | 1< i <n),
and the leading coefficient of f, cl(f), as the coefficient of mi(f).

Proposition 4.3.6. Consider two elements in B, .. g,

1 2 k
fi = [Zly (lg )yla v aagzl)yna 20(2)) a(l )yla S 7a£7,2)yn7 <oy Ra(k) ag )yla SR 7a£7,k)yn]7
f] = [Zlv all(l)ylv B aa;-b(l)y’rw 27(2)) (1,1(2)91, s 7afn(2)yna <oy Br(k)s all(k)yla <. ,&;(k)yn]

of the same multidegree and suppose that f; <" fi. Let fi(s), f;s) be the polynomials obtained
by replacing the variable zs by |zs,y] in fi and f;, respectively, where 1 < s < k. Then
mi(f;7) < mi(f”).

Proof. Consider the finite sequences
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If (0(2),...,0(k)) <iex (7(2),...,7(k)), the result follows.

Now consider o = 7 and without loss of generality suppose that o is the identity.

Hence
fz(S) = [Zh al(l)yh s 7an(1)y’n) 25 Y, al(S)yh s uan(S)yTM Zs+15
a1(5+1)y1, . ,an(5+1)yn s 2k al(k)yl, . ,an(k)yn]
— [z, a1y, @My ze, Sy, @,y 2,
ai Yy, @Dy, My a, Py
fj(S) = [Zlﬂ all(l)ylv s 7a;(1)yn7 2 Y, a’/l(S)ylv v 7a;(3)yn7 Zs+1;
a/l(s+1)y1, . ,a;(sﬂ)yn, e 2R, a’l(k)yl, . ,a;(k)yn]
- [Zl7 a/l(l)yb cee 7a;1(1)yn ceey Rs—1, all(s_l)yb cee aa;z(s_l)yna Y, Zs,
s s k k
a’l( )yl, . ,a;( )yn, ey 2 a’l( )yl, . ,a;( )yn].
By Definition 4.3.3, we have
ml(fi(s)) = (21,0 Y1, . 4V, 20y, 0@y, a0y, 2ei1,
al(l)yl, . ,an(sﬂ)yn e 2R, al(k)yl, . ,an(k)yn];
ml(fj(S)> = [Z17 all(l)yla s 7aln(1)y'rw -2 Y, all(S)yla s 7a/n(5)yn7 Zs+1,
a'l(l)yl, . ,a;(sﬂ)yn ey 2 a'l(k)yl, . ,a;(k)yn].

Observe that the s-th block of variables y’s in both polynomials ¢l( fl-(s)) and ¢l( f;s)) is

subjected to the same modification by the same variable y. Recall that

[2791792] = [Z7y27y1] (I'IlOd ])

for every variable z of degree different from 0. Hence the order is preserved, and this means
mi(f;”) < mi(f{"). m

t
Corollary 4.3.1. Consider f = Zaifl- a multihomogeneous polynomial, where f; €

=1
Big,....qr), and suppose that ml(f) = fi. Let fz-(s) be the polynomial obtained by replacing
the variable zs by [zs,y] in fi, where 1 < s <k and 1 <i<t. Then ml(fi(s)) < ml(fl(s)).

Proof. Recall that the commutators f; have the same multidegree. So, applying the previous

proposition, the result follows. O

Proposition 4.3.7. Consider f, g two multihomogeneous polynomials such that

t s
f= Z%‘fi, 9= Zﬁjgj,
i=1 J=1
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where a;, 3; € F\{0}, fi,9; € Bg,,...q) Jor every 1 < i <t and 1 < j < s. Suppose that
, ml(g). Then there exists h € {f)z, modulo I such that ml(h) = mli(g)

Lreens 9k

Proof. By Proposition 4.3.2, we have that ml(g) is a consequence of ml(f) modulo I.
Then Corollary 4.3.1, making the same computations as in the case of ml(f) in order to
obtain ml(g), we deduce a consequence h from f such that mi(h) = mli(g). Moreover, the

leading coefficient of h is the same as that of f. O

Definition 4.3.5. Let f be a multihomogeneous polynomial that is a linear combination

of polynomials in B, . g4.)- Then f is called a polynomial of type (g1, ..., gk).

-----

Proposition 4.3.8. There is no infinite sequence of polynomials { f;}i=1 of type (g1, - .., gx)
such that

fi ¢ <f1, . ’fi—1>TZn (mod I)

for every i = 2.
Proof. The proof is completely analogous to that of Proposition 4.2.5. O

As a consequence of the previous result, we have the following corollary

Corollary 4.3.2. Let J be a 1%z, -ideal such that I < J. Consider the following set

Awgr,.g) ={f € J | [ is a polynomial of type (g1, .., gr)}-

77777

Theorem 4.3.1. Suppose that char F' = 0 or char F' > n. If J is a Tz, -ideal such that
I < J, then J is finitely generated as a Tz, -ideal.

Proof. Since F'is an infinite field, J is generated by its multihomogeneous polynomials. If
char F' > n or char F' = 0, using the multilinearization process, we can consider that any
multihomogeneous polynomial is linear in the variables of degree different from 0, because
by Theorem 4.0.1, each of them can appear in the non-zero monomials of £z, /I at most

n — 1 times. Hence, J is generated as T%, -ideal, modulo I, by the following sets
e Ay, = {feJ]|feB,)} where g € Z,\{0};

k
o Awg,,..q0) = {f €J| fis a polynomial of type (g1,...,gr)}, where Zgi <n-—1and
i=1
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Using Proposition 4.3.1 and Corollary 4.3.2, we get that there exist finite subsets A, < A,,,

where g; € Z,\{0}, and A{, S Ag,,..g) such that

1gk) -

(Ag )1y, = (A, >, (mod 1),
<'A(91 ----- 9k)>Tzn = <A,(g19-~~:gk)>TZn (mod I).

It follows
J = <M>Tzn (mod ]),

where M is a finite set. Then J = (M U I)r, and since I has a finite basis, we can

conclude that J is finitely generated as a Tz, -ideal.

[]
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