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Resumo
Sejam F um corpo de característica 0 e E a álgebra de Grassman de dimensão infinita
sobre F . Na primeira parte desta tese, encontramos um algoritmo que calcula a função
geratriz da sequência de cocaracteres de UTnpEq, a álgebra das matrizes triangulares
superiores com entradas em E, contida numa faixa de comprimento fixo. Logo, calculamos
a série dupla de Hilbert de E e definimos a série de pk, lq-multiplicidades de uma PI-
álgebra. Como aplicação do anterior encontramos um algoritmo para determinar a série
de pk, lq-multiplicidades de UTnpEq.
Para a segunda parte da tese, vamos considerar F um corpo infinito e UTnpF q, a álgebra
das matrizes triangulares superiores com entradas em F e denotemos por UTnpF q

p´q a
álgebra de Lie sobre o espaço vetorial UTnpF q com o commutador usual de matrizes. Nesta
parte do trabalho, damos uma resposta positiva ao problema de Specht para o ideal das
identidades Zn-graduadas de UTnpF q

p´q com a graduação canônica quando a característica
p de F é zero ou maior que n´ 1. Também mostramos que se F é um corpo infinito de
característica p “ 2 então as identidades Z3-graduadas de UT p´q

3 pF q não satisfazem a
propriedade de Specht.

Palavras-chave: PI-álgebras. Cocaracter. Séries de Hilbert. Propriedade de Specht.
Identidades graduadas.



Abstract
Let F be a field of characteristic 0 and let E be the infinite dimensional Grassmann
algebra over F . In the first part of this thesis we give an algorithm that calculates the
generating function of the cocharacter sequence of UTnpEq, the n ˆ n upper triangular
matrix algebra with entries in E, lying in a strip of a fixed size. Then, we compute the
double Hilbert series HpE; Tk,Ylq of E and we define the pk, lq-multiplicity series of any
PI-algebra. As an application, we derive from HpE; Tk,Ylq an algorithm determining the
pk, lq-multiplicity series of UTnpEq.
For the second part of this thesis, let UTnpF q be the algebra of the nˆ n upper triangular
matrices and denote UTnpF q

p´q the Lie algebra on the vector space of UTnpF q with respect
to the usual bracket (commutator), over an infinite field F . In this second part of this
work, we give a positive answer to the Specht property for the ideal of the Zn-graded
identities of UTnpF q

p´q with the canonical grading when the characteristic p of F is 0 or
is larger than n´ 1. Moreover, we show that if F is an infinite field of characteristic p “ 2
then the Z3-graded identities of UT p´q

3 pF q do not satisfy the Specht property.

Keywords: PI-algebras. Cocharacter. Hilbert series. Specht property. Graded identities.
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Introduction

In this thesis, we study two independent topics concerning PI-algebras. The
first one is about cocharacters of associative algebras over a field of characteristic zero,
while the second one deals with the Specht property of varieties of graded Lie algebras.

We will start by discussing the first topic. Consider F a field of characteristic 0
and A an associative algebra over F with unity, let X “ tx1, x2, . . .u be a countable set
of non-commuting indeterminates, then we denote by F xXy the free associative algebra
freely generated by X over F . We say that fpx1, . . . xmq P F xXy is a polynomial identity
of a given algebra A if fpa1, . . . , amq “ 0 for all a1, . . . , am P A. If the algebra A satisfies a
non-trivial polynomial identity, then A is called a PI-algebra. It is well known that its set
of polynomial identities, T pAq, of A is a T -ideal of F xXy, that is, an ideal that is invariant
under all endomorphisms of F xXy.

A famous theorem of Kemer [45] says that if A is a PI-algebra over a field of
characteristic 0, its T -ideal is finitely generated. We recall that the complete set of finite
generators of T -ideals is known only for few algebras.

In the case F is of characteristic 0, all the polynomial identities follow from
the multilinear ones. By a theorem of Regev [64], it turns out to be more efficient to study
the set of multilinear polynomials which (in a certain sense) are not polynomial identities
for a given algebra. More precisely, if Pn is the vector space of multilinear polynomials in
the variables tx1, . . . , xnu, we study the factor space

PnpAq :“ Pn{pPn X T pAqq

for each n. We recall that Pn is also a left Sn-module under the canonical left action.
Since T -ideals are invariant under permutations of the variables then Pn X T pAq is a
submodule, and hence PnpAq is an Sn-module too. It affords a character, χnpAq, called
n-th cocharacter of A. The sequence pχnpAqqnPN is called the sequence of cocharacters of
A. We also observe that PnpAq is a finite dimensional vector space whose dimension cnpAq

is called n-th codimension of A, and the sequence pcnpAqqnPN is called the sequence of
codimensions of A. The above mentioned theorem of Regev states that of A is a PI algebra
and A satisfies an identity of degree d then cnpAq ď d2n for every n. Since dimPn “ n!
this justifies our phrase above: the exponential function grows much “slower” than the
factorial.

In [35], [36] Giambruno and Zaicev proved that there always exists the limit

exppAq “ lim
nÑ8

n
a

cnpAq
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and it is a non-negative integer called the PI-exponent of A. If we use the language of
varieties, the variety generated by the algebra A is the class

V “ VpAq “ tB associative algebra | T pAq Ď T pBqu.

A variety of algebras V is minimal with respect to its exponent whenever for any proper
subvariety U of V we have that exppUq ă exppVq. We say that a PI-algebra is minimal if
it generates a minimal variety.

If S is any commutative ring with 1, we denote by UTnpSq the ring of upper
triangular matrices with entries in S. Let E be the infinite dimensional Grassmann algebra
over F , then the T -ideals of the algebras UTnpF q and UTnpEq are examples of maximal
T -ideals of a given exponent of the codimension sequences (and the corresponding varieties
of algebras are minimal varieties of this exponent). Years before Kemer’s works, Genov in
[32], [33], and Latyshev in [53], proved that every algebra belonging to VpUTnpF qq has a
finite basis of its polynomial identities. In [54] Latyshev and Popov in [60], generalized the
previous result for PI-algebras satisfying the identity

rx1, x2, x3s ¨ ¨ ¨ rx3n´2, x3n´1, x3ns

which generates the T -ideal T pUTnpEqq “ T pEq
n of the algebra UTnpEq. For a long time,

until Kemer developed his structure theory, the results of Genov, Latyshev and Popov
covered most of the known examples of classes of PI-algebras with the finite basis property.

One has in characteristic 0 that for each n P N,

χnpAq “
ÿ

λ$n

mλpAqχλ,

where χλ is the irreducible Sn-character associated with the partition λ. Let us set
Xd :“ tx1, . . . , xdu and let us consider FdpAq :“ F xXdy{pF xXdy X T pAqq. Moreover, if
T “ tt1, . . . , tdu is a set of commutative variables, the Hilbert series HpFdpAq, Tdq of FdpAq

may be decomposed as
HpFdpAq,Tdq “

ÿ

λ

mλpAqSλpTdq,

where λ is a partition in no more than k parts and SλpTdq is the Schur function associated
to λ in the variables from Td. We shall refer to HpFdpAq,Tdq as the Hilbert series of
A and we shall write HpA,Tdq instead of HpFdpAq; Tdq. By a result of Berele [5] and
Drensky [21], the mλpAq’s are the same as in the cocharacter sequence of A. Hence, in
principle, the knowledge of the Hilbert series of A will give us the multiplicities mλpAq

of the cocharacter sequence of A, when λ is a partition in no more than d parts. So if A
is finite dimensional, working with a sufficiently large set of variables will be enough to
capture all the multiplicities. This is no longer true for infinite dimensional algebras.

The explicit form of the multiplicities in the cocharacter sequence of a PI-
algebra is known in very few cases. Among them, the infinite dimensional Grassmann
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algebra E [59], the 2 ˆ 2 matrix algebra M2pF q, [22] and [29], the algebra UT2pF q of 2 ˆ 2
upper triangular matrices [66], based on the approach of Berele and Regev [11], the tensor
square E bE of the Grassmann algebra, [14] and [61], the algebra UT2pEq of 2 ˆ 2 upper
triangular matrices with entries from the Grassmann algebra E [15], the algebra UTnpF q

of n ˆ n upper triangular matrices [13], the algebra Rp,qpF q of upper block triangular
pp ` 2qq ˆ pp ` 2qq when p and q are small values [27].

In [26] Drensky and Genov defined the multiplicity series of a PI-algebra A,
that is the generating function of the cocharacter sequence of A which corresponds to
the multiplicities mλpAq when λ is a partition in no more than d parts. Then, coming
back to upper triangular matrices and their central role in PI-theory, in [13] Boumova
and Drensky found an easy algorithm with input the multiplicity series of a symmetric
function, and output the multiplicity series of its Young-derived. Applying it, they found
the explicit form of the multiplicity series of the Hilbert series of UTnpF q. Following this
line of research, in the first part of this thesis we work with UTnpEq and calculate its
multiplicity series in d variables.

Due to the fact that E is infinite dimensional, we need more tools than the ones
used by Boumova and Drensky in order to know all multiplicities of UTnpEq. Using the
idea of Berele [8], we work with double Hilbert series instead of Hilbert series of PI-algebras
and, due to the analogue of the result of Berele and Drensky for double Hilbert series,
it suffices to study the decomposition of the double Hilbert series of UTnpEq in order to
achieve the explicit form of the cocharacter sequence of UTnpEq. In the second part of
this work, we generalize the definition of multiplicity series of a PI-algebra defining a
pk, lq-multiplicity series which controls three sets of disjoint variables. Here pk, lq means
that the partitions λ “ pλ1, . . . , λmq satisfy the condition λk`1 ď l. In other words, their
Young diagrams Dλ are in a hook of height k of the arm and wide l of the leg.

Afterwards we compute the double Hilbert series of E and, as a consequence,
we build up an algorithm with output the pk, lq-multiplicity series of UTnpEq. In the
spirit of [15] we compute the p2, 3q-multiplicity series of UT2pEq, which one contains
all multiplicities of the cocharacter sequence of UT2pEq, and finally we compute the
p1, 1q-multiplicity series of UT3pEq.

The second part of this thesis studies aspects of one of the most important
problems in the theory of algebras with polynomial identities: determining the identities of
specific algebras and studying the properties of the varieties that these algebras generate.
The most significant part of the advances in this area has been obtained for associative
algebras over fields of characteristic zero. Although the study of problems in positive
characteristic and for other types of algebras has grown in the last decades, there are still
very many questions to answer.

As we already mentioned, in 1984–1986, Kemer proved in [45] that for every
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associative algebra over a field of characteristic zero, its T-ideal is finitely generated as a
T-ideal, thus providing a positive answer to the long standing Specht problem. To that
end Kemer developed a sophisticated theory which described the structure of the ideals of
identities in the free associative algebra. We observe that Kemer’s theory has been shaping
a good deal of the research in PI theory since then.

Here we recall that for a wide range of groups and algebras the analogue of
the Specht problem was investigated and solved. We mention the paper by Oates and
Powell [58], who proved that the variety of groups generated by a finite group admits a
finite basis of its laws. It is also known that the variety generated by a finite ring satisfies
the Specht property; this was obtained independently by Kruse [52] and by Lvov [55].
Bahturin and Ol’shanskĭı proved in [4] that the identities of a finite Lie ring or Lie algebra
also admit a finite basis of its identities.

On the other hand, if the base field is infinite but of positive characteristic,
the Specht problem can have a negative answer. The first such examples for Lie algebras
were obtained by Vaughan-Lee [72], in characteristic 2, and by Drensky [20], for every
characteristic p ą 0. The first examples in the case of associative algebras were obtained,
much later, independently (and almost simultaneously) by Belov [44], Grishin [38], and
Shchigolev [68].

In [2] and [70] it was proved that the Specht problem has positive answer for
graded associative algebras over fields of characteristic zero when the grading group is
finite.

Parts of the theory developed by Kemer do not work so well for non-associative
algebras, even in characteristic 0. Thus, for example, one should impose certain restrictions
on the classes of algebras when studying the Specht problem for Lie or Jordan algebras.
In characteristic 0, Iltyakov [42] proved that if L is a finitely generated Lie algebra and
A is an associative enveloping algebra for L such that A is PI then the weak polynomial
identities for the pair pA,Lq are finitely based. A consequence of this result is that if L is
finitely generated and the adjoint Lie algebra AdpLq generates an associative PI algebra
then the ideal of identities of the Lie algebra L satisfies the Specht property. Recall that
this is the case when L is finite dimensional. Văıs and Zelmanov [73] proved that if J
is a finitely generated Jordan PI-algebra, over a field of characteristic 0, then the ideal
of identities of J satisfies the Specht property. Once again Iltyakov [41] established the
Specht property for the ideals of identities of finitely generated alternative algebras in
characteristic 0.

Therefore it is interesting to study the Specht problem for concrete varieties
of Lie and Jordan algebras. The variety of Lie algebras generated by sl2pF q, the simple
3-dimensional Lie algebra, in characteristic 0, satisfies the Specht property, this was proved
by Razmyslov [62, 63]. Krasilnikov showed in [51] that the variety of Lie algebras defined
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by UT p´q
n pF q, the Lie algebra of the nˆn upper triangular matrices over a field F , satisfies

the Specht property when F is infinite of characteristic 0 or p ě n.

Now we recall some of the known results concerning group graded Lie and
Jordan algebras and their identities. In [47] finite bases of the graded identities of sl2pF q

were found, for an infinite field of characteristic different from 2, and an arbitrary grading.
In [34] it was proved that, in characteristic 0, the variety of group graded Lie algebras
generated by sl2 has the Specht property.

In [48] and [17] the authors studied graded identities for UJ2, the Jordan
algebra of 2 ˆ 2 upper triangular matrices. In [18] it was shown that the variety generated
by UJ2 has the Specht property when it is graded by any finite abelian group. In [49]
the graded identities for any Z2-grading on the Jordan algebra of symmetric matrices of
order two were obtained, and in [69] the Specht property for the finite dimensional Jordan
algebra of a non-degenerate symmetric bilinear form, graded by Z2, in characteristic 0, was
established. Here we recall that the more difficult situation where there is no grading at
all, for this algebra, was settled by Iltyakov [40] in the finite dimensional case. The infinite
dimensional Jordan algebra of a non-degenerate symmetric bilinear form also satisfies
the Specht property in characteristic 0, this follows by combining results obtained by
Vasilovsky [71] and by Koshlukov [46]. Recently, in [57] it was shown that for any grading,
the variety of graded commutative algebras generated by pUT2, ˝q has the Specht property
in characteristic 2.

We recall that if the grading group is infinite then, even in characteristic 0, the
graded identities of an algebra need not be finitely based, see for example [31, 28].

In [50], a finite basis for the graded identities for UTnpF q
p´q was found when

this algebra is endowed with the canonical grading of Zn and the field F is infinite.

In that part of the thesis, we study the variety of graded Lie algebras generated
by UTnpF q

p´q, endowed with the canonical Zn-grading. We prove that, when the charac-
teristic of F is 0 or is a prime p ě n, it satisfies the Specht property. In order to achieve
this we employ properties of partially well-ordered sets. Furthermore we prove that the
restriction p ě n for the characteristic of the base field cannot be removed. Namely, we
prove that the Z3-graded identities of UT p´q

3 pF q do not satisfy the Specht property if F is
an infinite field of characteristic 2. To the best of our knowledge this is the first example of
a finite dimensional Lie algebra nontrivially graded by a finite group that does not satisfy
the Specht property.

This thesis is organized as follows. In the first chapter, we define some notions,
and state several important results concerning PI algebras, gradings and partially well
ordered sets. These notions are necessary in what follows. Most of the proofs are omitted,
and the respective references are given when appropriate.
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The second chapter is about the multiplicity series in d variables of UTnpEq, as
consequence we find a partial algorithm to calculate the multiplicities mλpUTnpEqq when
λ is a partition with no more than d part. Finally, in order to show how the algorithm
works, we compute the multiplicities mλpUTnpEqq when λ is a partition with no more
than 2 parts and 1 ď n ď 3.

In the third chapter, we define pk, lq-multiplicity series of a PI-algebra. Then, we
compute the double Hilbert series of E and, as a consequence, we build up an algorithm with
output the pk, lq-multiplicity series of UTnpEq. We want to highlight that this algorithm
allows us to find all multiplicities mλpUTnpEqq when k “ n and l “ 2n ´ 1. In order to
show how the algorithm works, we finish this chapter considering some particular cases.

Finally, in the fourth chapter we deal first with the graded identities of the Lie
algebra UT p´q

2 pF q, and prove that the corresponding ideal of graded identities satisfies the
Specht property. Afterwards we consider UT p´q

3 pF q. Initially we require F an infinite field
of characteristic 0 or p ą 2, and prove that the ideal of graded identities satisfies the Specht
property. We also show that if F is of characteristic 2, then the Specht property fails in this
case. In the last section we prove the Specht property for UT p´q

n pF q in case charF “ 0 or
charF “ p ě n. We chose to separate the general case from those when n ď 3 for several
reasons. One of them is that the case n “ 2 is much simpler and transparent, and gives no
clue how to treat the case of n ą 2. Another is that when n “ 3 we have two completely
different situations: when charF “ 2 and when charF ‰ 2. And the last reason is that
the arguments in the cases n “ 2 and n “ 3 are more transparent and that for n “ 3 gives
a better idea of the methods used in the general case.

The results contained in Chapters 2 and 3 were obtained in collaboration with
L. Centrone and V. Drensky. The paper that contains these results, [16], was submitted
for publication in January 2023. The contents of Chapter 4 was written in collaboration
with P. Koshlukov, and the corresponding paper [19] was submitted for publication in
August 2022.
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1 Preliminaries

In this chapter we define some notions, and state several important results
concerning PI algebras. We shall deal with algebras over a field. Unless otherwise stated,
all algebras we refer to will be associative and usually with unity. We mention here that
in the last chapter of this text we will be dealing with Lie algebras.

Most of the results in this chapter can be found in [23] and [37]; more specifically,
we recommend chapters 1-5, 8 and 12 of [23]. Moreover we are not going to cite explicitly
the statements from these books.

1.1 PI algebras

1.1.1 Free algebras

Let F be a field and consider X a non-empty set. The free associative algebra
freely generated over F by the set X is the algebra F xXy of the polynomials in non-
commuting variables x P X. A linear basis of F xXy consists of all words in the alphabet
X (including the empty word, denoted by 1). Such words are called monomials and
the product of two monomials is given by juxtaposition. This product is extended by
linearity to the polynomials of F xXy. The elements of F xXy are called, as we said above,
polynomials and, if f P F xXy, we write f “ fpx1, . . . , xnq to indicate that x1, . . . , xn P X

are the only variables occurring in f . To indicate the elements of X we shall commonly
use the symbols x, xi.

We set deg u as the usual degree of a monomial u, that is the length of the
word u. Moreover degxi

u, the degree of u with respect to the variable xi, counts how many
times xi occurs in u. Accordingly, the degree deg f of a polynomial f “ fpx, . . . , xnq is the
maximum degree of a monomial in f ; degxi

f , the degree of f in xi, is the maximum of
degxi

u, for any monomial u of f .

The algebra F xXy is defined, up to isomorphism, by the following universal
property: given an associative F -algebra A, every map from X to A can be uniquely
extended to a homomorphism of algebras from F xXy to A. We shall call the rank of F xXy

the cardinality of X. As a rule we are going to consider the free algebra F xXy of infinite
countable rank on the set X “ tx1, x2, . . .u.

We shall also consider the free nonunitary algebra F`
xXy which consists of all

polynomials from F xXy without constant terms. Notice that F`
xXy is a free algebra in

the class of all algebras without unit.
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Here we observe that the free associative algebra is canonically isomorphic to
the tensor algebra of the F -vector space with a basis the set X.

Definition 1.1.1. Let A be an F -algebra and f “ fpx1, . . . , xnq P F xXy. We say that
f ” 0 (or simply f) is a polynomial identity of A if fpa1, . . . , anq “ 0 for all a1, . . . ,
an P A.

Let Φ denote the set of all homomorphisms φ : F xXy Ñ A. Then f ” 0 is a
polynomial identity for A if and only if f P

č

φPΦ
kerφ. We shall usually say that f ” 0 is

an identity of A or that A satisfies f ” 0 (or simply f).

Definition 1.1.2. We say that A is a PI-algebra if A satisfies a non-trivial polynomial
identity f ” 0.

This means that f ‰ 0 in F xXy but f ” 0 on A.

Definition 1.1.3. The (left-normed) Lie commutator of length n is a polynomial in F xXy

defined inductively by

rx1, x2s :“ x1x2 ´ x2x1,

rx1, x2, . . . , xns :“ rrx1, . . . , xn´1s, xns; n ą 2

We shall give some examples of PI-algebras.

Example 1.1.1. • If A is a commutative algebra then A is a PI-algebra because
rx1, x2s ” 0 is an identity of A.

• The algebra A is nilpotent of class of nilpotency ď n if and only if it satisfies the
polynomial identity x1 ¨ ¨ ¨ xn ” 0. Of course, A is non-unitary and we have to consider
x1 ¨ ¨ ¨ xn as an element of the free non-unitary algebra F`

xXy.

• The algebra M2pF q of the 2ˆ2 matrices over F satisfies the Hall identity rrx, ys
2, xs ”

0. To see this, recall that if b P M2pF q, its characteristic polynomial is

x2
´ trpbqx ` detpbq,

where trpbq and detpbq are the trace and determinant of b. In the case b is a commu-
tator, trpbq “ 0 and so, b2

` detpbqI “ 0, where I is the identity 2 ˆ 2 matrix. This
says that b2

“ ´ detpbqI, so the square of any commutator is a scalar matrix, hence
central. Then rrx, ys

2, zs ” 0 is a polynomial identity of M2pF q. By putting z “ x

we get the required identity.
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• Let UTnpF q be the algebra of the n ˆ n upper triangular matrices over F . Then
UTnpF q is a PI-algebra since it satisfies the identity rx1, x2s ¨ ¨ ¨ rx2n´1, x2ns ” 0. To
see this, observe that the commutator of any two upper triangular matrices is a
strictly upper triangular matrix (that is its diagonal entries are all equal to 0). But
the set of the strictly upper triangular matrix is a nilpotent two-sided ideal I of
UTnpF q such that In

“ 0, hence rx1, x2s ¨ ¨ ¨ rx2n´1, x2ns ” 0 is an identity of UTnpF q.
Observe that I is the Jacobson radical of UTnpF q.

• If A is a finite dimensional algebra and dimA ă n, then A satisfies the standard
identity of degree n

snpx1, . . . , xnq “
ÿ

σPSn

sgnpσqxσp1q ¨ ¨ ¨ xσpnq ” 0.

The algebra A also satisfies the Capelli identity in n alternating variables,

Capnpx1, . . . , xn, y1, . . . , yn´1q “
ÿ

σPSn

sgnpσqxσp1qy1xσp2qy2 ¨ ¨ ¨ yn´1xσpnq ” 0.

• Since the n ˆ n matrix algebra MnpF q is of dimension n2, it satisfies the standard
identity of degree n2

`1 and also the Capelli identity dn2`1px1, . . . , xn2`1, y1, . . . , yn2q.

Example 1.1.2 (Grassmann algebra). Let W be an infinite dimensional vector space
with basis te1, e2, . . .u over a field F of characteristic different from two. The Grassmann
algebra E “ EpW q is the associative algebra over F generated by te1, e2 . . .u with defining
relations eiej ` ejei “ 0 for all i, j P N. Note that E is isomorphic to the factor algebra
F xXy{J where X “ tx1, x2, . . .u and the ideal J is generated by xixj ` xjxi with i, j ě 1.
Observe that E “ Ep0q

‘ Ep1q where

Ep0q :“ spanF t1, ei1 ¨ ¨ ¨ ei2k
|1 ď i1 ă i2 ă ¨ ¨ ¨ ă i2k k ą 0u

Ep1q :“ spanF tei1 ¨ ¨ ¨ ei2k`1 |1 ď i1 ă ¨ ¨ ¨ ă i2k`1 k ě 0u.

It is easily checked that Ep0qEp0q
` Ep1qEp1q

Ď Ep0q and Ep0qEp1q
` Ep1qEp0q

Ď Ep1q, hence
the decomposition E “ Ep0q

‘ Ep1q is a Z2-grading of E. Notice that Ep0q coincides with
the center of E.

Notice that E satisfies the identity rx1, x2, x3s ” 0. In fact, observe that Ep0q

is central, and every non zero commutator of two elements of E is a linear combination of
monomials in the ei’s of even length. Thus rE,Es Ď Ep0q and the conclusion follows.

1.1.2 T-ideals and varieties of algebras

In this section we will introduce the notion of T-ideal and variety of algebras.
Given an algebra A, we define

T pAq “ tf P F xXy|f ” 0 in Au
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the set of identities of A. Note that T pAq is a two-sided ideal of F xXy. Moreover, if
fpx1, . . . , xnq is any polynomial in T pAq, and g1, . . . , gn are arbitrary polynomials in F xXy,
it is clear that fpg1, . . . , gnq P T pAq. Since any endomorphism of F xXy is determined by
mapping x ÞÑ g, x P X, g P F xXy, it follows that T pAq is an ideal invariant under all
endomorphisms of F xXy. The ideals with this property are called T-ideals.

Definition 1.1.4. An ideal I of F xXy is a T-ideal if φpIq Ď I for all endomorphisms φ
of F xXy.

Hence T pAq is a T-ideal of F xXy. On the other hand, it is easy to check that
all T-ideals of F xXy are of this type. Indeed, if I is a T-ideal, it can be easily proved that
T pF xXy{Iq “ I. Due to this fact, we have that any algebra A determines a T-ideal of
F xXy. A further remark is relevant. Many (different and even non-isomorphic) algebras
may correspond to the same T-ideal. For this purpose, we need the notion of a variety of
algebras.

Definition 1.1.5. Let S be a non-empty set of F xXy. The class of all algebras A such
that f ” 0 on A for every f P S is called the variety V “ VpSq determined by S.

A variety V is called non-trivial if S ‰ 0 whereas V is said to be proper if it
is non-trivial and contains a non-zero algebra. For example, the class of all commutative
algebras forms a proper variety with S “ trx, ysu. Also, if S “ txn

u, then VpSq is the
class of all algebras which are nil of exponent bounded by n. Observe that if V is the
variety determined by the set S and xSyT is the T-ideal of F xXy generated by S, then
VpSq “ VpxSyT q and xSyT “

č

APV
T pAq. Let us write xSyT “ T pVq. Thus a T-ideal of

F xXy corresponds to each variety; the converse is also true. In fact we have the following
theorem, see for example [37], Theorem 1.2.5.

Theorem 1.1.1. There is a one-to-one correspondence between T-ideals of F xXy and
varieties of algebras. In this correspondence, a variety V corresponds to the T-ideal of
identities T pVq and a T-ideal I corresponds to the variety of algebras satisfying all the
identities in I.

1.1.3 Homogeneous and multilinear polynomials

When the base field F is infinite (or “large enough”), the study of the identities
of a given algebra can be reduced to the study of homogeneous, multi-homogeneous, or
multilinear polynomials as we will see below.

Let Fn “ F xx1, . . . , xny be the free algebra of rank n. Notice that this algebra
can be naturally decomposed as

Fn “ F p0q
n ‘ F p1q

n ‘ F p2q
n ‘ ¨ ¨ ¨
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where for every k ě 0, F pkq
n is the subspace spanned by all monomials of total degree k.

Since F piq
n F pjq

n Ă F pi`jq
n for all i, j ě 0, we say that Fn is graded by the degree or it has

the structure of a Z-graded algebra. The F piq
n ’s are called homogeneous components of Fn.

This decomposition can be further refined as follows: for every k ě 1 write

F pkq
n “

à

i1`¨¨¨`in“k

F pi1,...,inq
n

where F pi1,...,inq
n is the subspace spanned by all monomials of degree it in xt. It is clear

that F pi1,...,inq
n F pj1,...,jnq

n Ď F pi1`j1,...,in`jnq
n . In this case we say that Fn is multigraded. Such

decompositions extend in an obvious way to F xXy when X is countable.

Definition 1.1.6. A polynomial f belonging to F pkq
n for some k ě 0, is called homogeneous

of degree k. If f belongs to some F pi1,...inq
n , it will be called multihomogeneous of multidegree

pi1, . . . , inq. We also say that a polynomial f is homogeneous in the variable xi, if xi appears
with the same degree in every monomial of f .

Observe that if fpx1, . . . , xnq P F xXy, we can always write

f “
ÿ

i1ě0,...,ině0
f pi1,...,inq

where f pi1,...,inq
P F pi1,...,inq

n is the linear combination of all monomials in f where x1, . . . , xn

appear with degree i1, . . . , in respectively. The polynomials f pi1,...,inq which are non-zero
are called the multihomogeneous components of f . The following result gives us a useful
property of T-ideals in the case when F is an infinite field.

Theorem 1.1.2. Let F be an infinite field. If f ” 0 is a polynomial identity for the algebra
A, then every multihomogeneous component of f is a polynomial identity for A.

We recall that one of the proofs of the latter theorem can be found in [37],
Chapter 1, and it uses standard Vandermonde argument. The most important conse-
quence of Theorem 1.1.2 is that over an infinite field, every T-ideal is generated by its
multihomogeneous polynomials.

Definition 1.1.7. A polynomial f is linear in the variable xi if xi occurs with degree 1 in
every monomial of f . A polynomial which is multihomogeneous and linear in each of its
variables is called multilinear.

In other words, a polynomial fpx1, . . . , xnq P F xXy is multilinear if it is
multihomogeneous of multidegree p1, . . . , 1q. Moreover, it is clear that this polynomial is
always of the form

fpx1, . . . , xnq “
ÿ

σPSn

ασxσp1q ¨ ¨ ¨ xσpnq
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where ασ P F , and Sn is the symmetric group of order n. (That is Sn consists of all
permutations of the set t1, 2, . . . , nu; its order as a group is of course n!.) We state the
following definition that we shall need later on.

Definition 1.1.8. i) Let S be a set of polynomials in F xXy and f P F xXy. We say
that f is a consequence of the polynomials in S (or f follows from the polynomials
in S) if f P xSyT , the T-ideal generated by the set S.

ii) Two sets of polynomial identities are equivalent, if they generate the same T-ideal.

We will state a fundamental theorem that simplifies the study of the T-ideals
to their multilinear parts:

Theorem 1.1.3. If charF “ 0, every non-zero polynomial f P F xXy is equivalent to a
finite set of multilinear polynomials.

We can write the previous result in the language of T-ideals.

Corollary 1.1.1. If charF “ 0, every T-ideal is generated, as a T-ideal, by the multilinear
polynomials it contains.

1.2 Graded polynomial identities
In this section, we define some notions concerning graded algebras. We let G

be an arbitrary group with multiplicative notation and unit element 1, and A an arbitrary
(not necessarily associative) algebra. Most of this section can be found in [37].

Definition 1.2.1. The algebra A is G-graded if there exist vector subspaces tAgugPG, where
some of the Ag can be zero, such that

A “
à

gPG

Ag

and AgAh Ď Agh for all g, h P G. The subspaces Ag are called homogeneous and the
non-zero elements a P Ag are homogeneous of degree g. We denote this as G-deg a “ g, or
if not ambiguous, simply as deg a “ g.

A vector subspace B Ď A is called graded (or homogeneous) if B “
à

gPG

pAg XBq.

If I Ď A is an ideal and graded subspace, we call it a graded ideal. In this case the quotient
A{I inherits from A a natural structure of G-graded algebra.

Definition 1.2.2. Let A “
à

gPG

Ag and B “
à

gPG

Bg be two G-graded algebras. The map

f : A Ñ B is a homomorphism of G-graded algebras if f is a homomorphism of algebras
such that fpAgq Ď Bg. Similarly one defines endomorphism, automorphism, isomorphism,
of G-graded algebras.
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Note that A and B are isomorphic as G-graded algebras whenever there is an
isomorphism of algebras from A to B which respects the gradings. We are going to recall
the definition of the free G-algebra. Let g P G and consider Xg :“ tx

pgq

1 , x
pgq

2 , . . . , u a set
variables. Put X “

ď

gPG

Xg and form the free algebra (associative, or Lie, or whatever else)

F tXGu in the variables of X. We can define naturally a G-grading on F tXGu by assigning
degree g to all variables from Xg, deg xpgq

i “ g, and then extending this to all monomials
m P F tXGu in the following way

degm “

#

g, if m “ x
pgq

i ,

pdegm1qpdegm2q if m “ m1m2.

In the case of associative or Lie algebras, we denote the corresponding free algebra by
F xXGy and by LxXGy, respectively.

Definition 1.2.3. Consider A a G-graded algebra and let fpx
pg1q

1 , . . . , xgpnq

n q P F tXGu. We
say that f is a G-graded polynomial identity for A if fpa1, . . . , amq “ 0 for all a1, . . . ,
am P A such that deg ai “ gi for every i.

We denote by TGpAq the set of G-graded identities for A. Observe that TGpAq

is closed under endomorphisms of F tXGu that respect the grading. Conversely every such
ideal is the ideal of G-graded identities for some G-graded algebra.

Definition 1.2.4. If J Ď F tXGu is a G-graded ideal that is closed under endomorphisms
of F tXGu, we say that J is a TG-ideal.

Given a non-empty set S Ď F tXGu, the TG-ideal generated by S, denoted by
xSyG, is the intersection of all TG-ideals of F tXGu such that S is contained in them.

Let J be a TG-ideal and consider S Ď TGpAq. If J “ xSyG, we say that S is
a basis of J as TG-ideal. We draw the readers’ attention that we do not require S to be
minimal; thus the whole J is a basis of J . Clearly such a basis is of little value and does
not contribute much to our knowledge; we are interested in “small” sets S. The following
statements are direct analogues of their counterparts from the ordinary (non-graded) case,
and their proofs remain the same.

Theorem 1.2.1. Consider fpx1, . . . , xnq “

s
ÿ

i“1
fi, where fi is the homogeneous component

of f such that degx1 f “ i. Then the followings statements hold

i. If the base field F contains more that s elements (for example if F is infinite), then
fipx1, . . . , xnq P xfyTG

.

ii. If charF “ 0, then fipx1, . . . , xnq P xfyTG
has a basis of multilinear polynomials.
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Corollary 1.2.1. Let A be a G-graded algebra over an infinite field F . Then

i. If f is a G-graded identity for A, then the multihomogeneous components of f are
G-graded identities for A.

ii. If charF “ 0, then TGpAq is generated, as a TG-ideal, by the multilinear G-identities
of A.

Definition 1.2.5. Let A be G-graded algebra. We say that TGpAq has the Specht property
if any TG-ideal J such that TGpAq Ď J , has a finite basis, i.e., J is finitely generated as a
TG-ideal. A variety V has the Specht property if its TG-ideal has the Specht property.

1.3 Hilbert series
By Theorem 1.1.2, if the base field F is infinite, then a polynomial f is equivalent,

as an identity, to its multihomogeneous components f pi1,...,inq. Hence every T-ideal I of
F xXy is a homogeneous ideal, i.e., I is a direct sum of its multihomogeneous components.
If we consider a (multi)graded vector space such that all homogeneous components are
finite dimensional, it is convenient to use its Hilbert (or Poincaré) series to measure it.

Definition 1.3.1. i) The vector space V is graded if it is a direct sum of subspaces Vm,
m ě 0, that is

V “ V0 ‘ V1 ‘ V2 ‘ ¨ ¨ ¨ .

The subspaces Vm are called the homogeneous components of degree m of V . Similarly,
V is multigraded if

V “
à

miě0
Vpm1,...,mdq,

where Vpm1,...,mdq is its homogeneous component of degree pm1, . . .mdq, and the direct
sum runs over all d-tuples pm1, . . . ,mdq such that mi ě 0.

ii) The subspace W of the graded space V “
à

mě0
Vm is graded (homogeneous) subspace if

W “
à

mě0
pW X Vmq. In this case the factor space V {W can also be naturally graded

and V {W inherits the grading of V .

We shall use the Hilbert series to compute the so-called cocharacters of some
interesting PI algebras

Definition 1.3.2. If V “
à

mě0
Vm is a graded space and dim Vm ă 8 for all m ě 0, the

formal power series
HpV, tq “

ÿ

mě0
pdim Vmqtm
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is called the Hilbert series of V . If the vector space V “
à

miě0
Vpm1,...,mdq is multigraded,

then the Hilbert series of V is

HpV, t1, . . . , tdq “
ÿ

miě0
pdim Vpm1,...,mdqqt

m1
1 ¨ ¨ ¨ tmd

d .

Example 1.3.1. The polynomial algebra F rx1, . . . , xds is Z-graded assuming that the
homogeneous polynomials of degree m (in the usual sense) are the homogeneous elements
of degree m. Similarly, F rx1, . . . , xds has a multi-grading, counting the entry of each
variable in the monomials. Analogously, one can define a grading and a (multi)grading on
the free associative algebra F xx1, . . . , xdy of finite rank d. Usually we shall assume that
F rx1, . . . , xds and F xx1, . . . , xdy are equipped with these two gradings. Their Hilbert series
are

• HpF rx1, . . . , xds, tq “
1

1 ´ t
,

• HpF rx1, . . . , xds, t1, . . . , tdq “

d
ź

i“1

1
1 ´ ti

,

• HpF xx1, . . . , xdy, tq “
1

1 ´ dt
,

• HpF xx1, . . . , xdy, t1, . . . tdq “
1

1 ´ pt1 ` ¨ ¨ ¨ ` tdq
.

In order to deduce these formulas, one expands the geometric progressions on the right-
hand side, and compares the obtained expressions with the dimensions of the corresponding
vector spaces in the usual gradings on the algebras on the left-hand sides.

As we know from basic algebra, if M is a graded module over a graded
commutative algebra A, then the Hilbert series of M determines it up to an isomorphism.

Hilbert series are related to the usual operations on graded vector spaces. In
fact:

Proposition 1.3.1. Let V , W be (multi)graded spaces and consider U a homogeneous
subspace of V . Then

i) HpV ‘ W, t1, . . . , tdq “ HpV, t1, . . . , tdq ` HpW, t1, . . . , tdq,

ii) HpV b W, t1, . . . , tdq “ HpV, t1, . . . , tdq ¨ HpW, t1, . . . , tdq,

iii) HpV {U, t1, . . . , tdq “ HpV, t1, . . . , tdq ´ HpU, t1, . . . , tdq.
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Let A be a PI-algebra over an infinite field F . It is well known that T pAq is a
multihomogeneous ideal of F xXy. Then, if Td “ pt1, . . . , tdq, we denote by

HpA,Tdq :“ HpF xx1, . . . , xdy{pT pAq X F xx1, . . . , xdyq, t1, . . . , tdq

the Hilbert series of the relatively free algebra in d variables.

Formanek in [30] gave a formula for the Hilbert series of the product of two
T-ideals as a function of the Hilbert series of the factors.

Theorem 1.3.1. Let U and V be multihomogeneous ideals of the free algebra F xx1, . . . , xdy.
Then the Hilbert series of UV , U and V are related by the equation

HpU, t1, . . . , tdqHpV, t1, . . . , tdq “ HpUV, t1, . . . , tdqHpF px1, . . . , xdq, t1, . . . , tdq.

Corollary 1.3.1. Let A, B and C be PI-algebras over an infinite field F such that
T pAq “ T pBqT pCq. Then the Hilbert series of the relatively free algebras of A, B and C
satisfy the equation

HpA,Tdq “ HpB,Tdq ` HpC,Tdq ` pt1 ` ¨ ¨ ¨ td ´ 1qHpB,TdqHpC,Tdq

The following example is an application of Corollary 1.3.1.

Example 1.3.2. Consider the algebra UT2pF q of the 2 ˆ 2 upper triangular matrices over
an infinite field F . It is known that T pUT2pF qq “ T pF qT pF q and F xx1, . . . , xdy{pT pF q X

F xx1, . . . , xdyq “ F rx1, . . . , xds. By Example 1.3.1 and Corollary 1.3.1 we get

HpUT2pF q,Tdq “ 2
d

ź

i“1

1
1 ´ ti

` pt1 ` ¨ ¨ ¨ td ´ 1q

d
ź

i“1

1
p1 ´ tiq2 .

1.4 Representation theory of the symmetric group and the general
linear group

In this section we shall describe some applications of the representation theory
of the symmetric groups and the general linear group to the theory of PI-algebras.

1.4.1 Background of Representation theory of groups

In this subsection we recall the basic definitions and results of the representation
theory of finite groups over an algebraically closed field of characteristic zero. For more
information about representation theory, see [43], [37] and [67].

Let V be a vector space over a field F and let GLpV q be the group of invertible
endomorphisms of V . Recall the following
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Definition 1.4.1. A representation of a group G in V is a homomorphism of groups
ρ : G Ñ GLpV q.

Let us denote by EndpV q the algebra of F -endomorphisms of V . If FG is the
group algebra of G over F and ρ is a representation of G in V , it is clear that ρ induces
a homomorphism of F -algebras ρ1 : FG Ñ EndpV q such that ρ1

p1Gq “ 1. Throughout
the text we shall be dealing only with the case when dim V “ n ă 8, i.e., with finite
dimensional representations. In this case n is called the dimension or the degree of the
representation ρ. Notice that a representation of a group G uniquely determines a finite
dimensional FG-module (or G-module) in the following way. If ρ : G Ñ GLpV q is a
representation of G, then V becomes a (left) G-module by defining

g ¨ v “ ρpgqpvq

for all g P G and v P V . It is also clear that if M is a G-module which is finite dimensional
as a vector space over F , then ρ : G Ñ GLpMq, such that

ρpgqpmq “ g ¨ m

for all g P G and m P M , defines a representation of G in M .

Definition 1.4.2. If ρ : G Ñ GLpV q and ρ1 : G Ñ GLpW q are two representations of a
group G, we say that ρ and ρ1 are equivalent if V and W are isomorphic as G-modules. In
this case we write ρ „ ρ1.

Definition 1.4.3. Let ρ : G Ñ GLpV q be a representation of V .

i) ρ is irreducible, if V is an irreducible G-module.

ii) ρ is completely reducible, if V is the direct sum of irreducible G-modules.

One of the basic tools for studying the representations of a finite group in
characteristic zero is Maschke’s theorem. By this theorem every representation of G in
charF “ 0 is completely reducible, equivalently the group algebra FG is semisimple.
Hence by Wedderburn-Artin’s Theorem

FG “ Mn1pD1q ‘ ¨ ¨ ¨ ‘ Mnk
pDkq

whereD1, . . . ,Dk are finite dimensional division algebras over F . Moreover every irreducible
G-module is isomorphic to a minimal left ideal of FG (and hence to a minimal left ideal
of some Mni

pDiq), where G acts on FG by left multiplication.

Proposition 1.4.1. If M is an irreducible representation of G, then M “ Ji a minimal
left ideal of Mni

pDiq, for some i P t1, . . . , ku. Hence there exists a minimal idempotent
e P FG such that M “ eFG.
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Another key topic in representation theory is provided by the theory of charac-
ters. From now on assume that F has characteristic zero and let tr : EndpV q Ñ F be the
trace map on EndpV q.

Definition 1.4.4. Let ρ : G Ñ GLpV q be a representation of G. Then the map χρ : G Ñ F

such that χρpgq “ trpρpgqq is called the character of the representation ρ and dim V “

degχρ is called the degree of the character χρ.

We say that the character χρ is irreducible if ρ is irreducible. Since χρpgq “

χρphgh´1
q, χρ is constant on the conjugacy classes of G, i.e. χρ is a class function of G.

Notice that χρp1q “ degχρ.

1.4.2 Representations of the symmetric group

In this subsection we describe the ordinary representation theory of the sym-
metric group Sn, n ą 1, our principal references of this part are [37] and [67].

Since Q, the field of rational numbers, is a splitting field for Sn, for any field F
of characteristic zero, the group algebra FSn has a decomposition into simple components
which are algebras of matrices over the field F itself, that is

FSn “ Mn1pF q ‘ ¨ ¨ ¨ ‘ Mnk
pF q

The non-isomorphic irreducible representations of the symmetric group (and hence the
left irreducible Sn-modules) are in one-to-one correspondence with the conjugacy classes
of Sn and are described in terms of partitions and Young diagrams.

Definition 1.4.5. Let n ě 0 be an integer. A partition λ of n is a finite sequence of

integers λ “ pλ1, . . . , λrq such that λ1 ě ¨ ¨ ¨ ě λr ě 0 and
r

ÿ

i“1
λi “ n. In this case we write

λ $ n.

If r “ 1, then λ1 “ n and we write λ “ pnq. For the partition λ with
λ1 “ ¨ ¨ ¨ “ λn “ k, the notation λ “ pkn

q is commonly used. There is a natural
correspondence between the partitions of m and the conjugacy classes of Sn: if σ P Sn, we
decompose σ into the product of disjoint cycles, including 1-cycles. This decomposition is
unique if we require that

σ “ π1π2 ¨ ¨ ¨ πr,

where π1, . . . , πr are disjoint cycles of length λ1 ě ¨ ¨ ¨ ě λr ě 1, respectively, up to the
ordering of the cycles of the same length. Then the partition λ “ pλ1, . . . , λrq uniquely
determines the conjugacy class of σ.

Proposition 1.4.2. Let F be any field of characteristic zero and n ą 1. Then there is
a one-to-one correspondence between irreducible Sn-characters and partitions of n. Let
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tχλ | λ $ nu be a complete set of irreducible characters of Sn and let dλ “ χλp1q be the
degree of χλ. Then

FSn “
à

λ$n

Iλ –
à

λ$n

Mdλ
pF q

where Iλ “ eλFSn – Mdλ
pF q and eλ “

ÿ

σPSn

χλpσqσ is up to a scalar, the unit element of

Iλ.

Definition 1.4.6. The Young diagram Dλ of the partition λ1 “ pλ1, . . . , λrq is the set of
all knots (points) pi, jq P Z2, such that 1 ď j ď λi, 1 ď i ď r.

It is convenient to present the Young diagrams graphically as follows. We
replace the knots with square boxes such that the first coordinate i (the index of the
row) increases from top to bottom and the second coordinate j (the index of the column)
increases from left to right. For example, consider the partition λ “ p4, 3, 1q $ 8, its
diagram is given in the figure below

Definition 1.4.7. i) A Young tableau Tλ of the diagram Dλ with n boxes is a filling
of the boxes of Dλ with the positive integers 1, 2, . . . , n, without repetitions. If λ is
a partition of n and σ P Sn, we denote by Tλpσq the tableau such that its first column
contains the integers σp1q, . . . , σpk1q written in this order from top to bottom, the
second column contains consequently written σpk1 ` 1q, . . . , σpkl ` k2q, etc.

ii) The tableau Tλ is called standard, if the integers written in each column and each
row increase, respectively, from top to bottom and from left to right

Example 1.4.1. For the partition λ “ p4, 3, 1q, consider the permutations

σ “

˜

1 2 3 4 5 6 7 8
3 4 5 8 2 1 6 7

¸

, τ “

˜

1 2 3 4 5 6 7 8
1 3 6 2 4 5 7 8

¸

Note that the tableau Tλpσq is not standard while Tλpτq is standard:

Tλpσq “
3 8 1 7
4 2 6
5

Tλpτq “
1 2 5 8
3 4 7
6

Definition 1.4.8. Let λ $ n, σ P Sn and let T “ Tλpσq be the corresponding Young
tableau. The row stabilizer of T is the subgroup RpT q of all permutations ρ in Sn, such
that i and ρpiq are in the same row of T , i “ 1, . . . , n. Similarly one defines the column
stabilizer of T , CpT q.
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Example 1.4.2. From the above example,

T “ Tλpσq, λ “ p4, 3, 1q, σ “

˜

1 2 3 4 5 6 7 8
3 4 5 8 2 1 6 7

¸

the row stabilizer RpT q is the subgroup S4 ˆ S3 ˆ S1 of S8, where S4, S3 and S1 act
respectively on the sets t3, 8, 1, 7u, t4, 2, 6u and t5u.

For each partition λ of n we denote by Mpλq and χλ the corresponding irre-
ducible Sn-module and its character, respectively.

Theorem 1.4.1. i) Let λ “ pλ1, . . . , λrq be a partition of n, τ P Sn and let T “ Tλpτq

be the corresponding Young tableau. Up to a multiplicative constant the element of
FSn

eT “
ÿ

σPRpT q

ÿ

ρPCpT q

sgnpρqσρ

is a minimal idempotent which generates a submodule of FSn isomorphic to Mpλq.

ii) The sum of all left Sn-modules FSneT , where T runs over the set of standard λ-
tableaux, is direct. It is equal to the minimal two-sided ideal Iλ of FSn corresponding
to λ.

iii) The dimension of Mpλq is given by the hook formula

dimMλ “
n!

ś

pλi ` λ1
j ´ i ´ j ` 1q

where λ1
j’s are the lengths of the columns of Dλ and the product in the denominator

is over all boxes of Dλ. The dimension dimMpλq is equal also to the number of
standard λ-tableaux Tλpτq, τ P Sn.

If H is a subgroup of the finite group G, and if W and V are respectively G-
and H-modules, then we denote by W Ó H the module W considered as an H-module
and by V Ò G the G-module induced by V . Recall that V Ò G “ FG bF H V . If one
observes that V Ă V Ò G as H-modules via the embedding V Ñ V bF H FG, v Ñ 1 b v,
then V Ò G has the following universal property: For every G-module W 1 and for every
homomorphism of H-modules φ : V Ñ W 1

Ó H, there exists a unique homomorphism of
G-modules ψ : V Ò G Ñ W 1 which extends φ.

Identifying Sn´1 with the subgroup of Sn fixing the symbol n, the branching
theorem describes Mpλq Ó Sn´1, λ $ n, and Mpµq Ò Sn, µ $ n ´ 1. Parts iq and iiq are
equivalent by the Frobenius reciprocity law.

Theorem 1.4.2 (Branching Theorem). Let λ $ n, µ $ n ´ 1. Then
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i) Mpλq Ó Sn´1 – ‘Mpµpiq
q where the direct sum runs over all partitions µpiq of n´ 1

such that their diagrams Dµpiq are obtained by deleting one box of the diagram Dλ.

ii) Mpµq Ò Sn – ‘Mpλpjq
q where the direct sum runs over all partitions λpjq of n such

that their diagrams Dλpjq are obtained by adding one box of the diagram Dµ.

Example 1.4.3. Consider λ “ p32, 1q $ 7. Then the diagrams obtained from Dλ adding
a box and applying Theorem 1.4.2 are

ˆ

ˆ

ˆ

.

It follows that

Mpλq Ò S8 – Mpp4, 3, 1qq ‘ Mpp32, 2qq ‘ Mpp32, 12
qq.

We embed the group Sn ˆ Sm into Sn`m naturally. Recall that if M is an Sn-
module and N is an Sm-module, then M bF N has a natural structure of Sn ˆSm-module.

Definition 1.4.9. If M is an Sn-module and N is an Sm-module, then the outer tensor
product of M and N is defined as

M pbN :“ pM b Nq Ò Sn`m.

Theorem 1.4.3 (Young Rule). Let λ $ n and m ě 1. Then

i.
MpλqpbMppmqq “

ÿ

µ

Mpµq

where the sum runs over all partitions µ of n ` m such that µ1 ě λ1 ě λ2 ě ¨ ¨ ¨ ě

µn`m ě λm`n.

ii.
MpλqpbMpp1m

qq “
ÿ

µ

Mpµq

where the sum runs over all partitions µ of n ` m such that µi “ λi ` εi, εi P t0, 1u

and 1 ď i ď n ` m.

Note that in the first case the diagrams Dµ are obtained from the diagram Dλ

by adding m boxes in such a way that no two new boxes are in the same column of Dµ. In
the second case the Young diagrams Dµ are obtained from the diagram Dλ by adding m
boxes in such a way that new boxes are not allowed to be in the same row.



Chapter 1. Preliminaries 33

Example 1.4.4. Consider the partition λ “ p2, 1q $ 3 and m “ 2. By the Young rule,
we have

pb “
ˆ ˆ

‘
ˆ

ˆ

‘

ˆ

ˆ

‘
ˆ

ˆ

Hence
MpλqpbMpp2qq – Mpp4, 1qq ‘ Mpp3, 2qq ‘ Mpp22, 1qq ‘ Mpp3, 1, 1qq.

In order to introduce the most general Littlewood-Richardson rule, which gives
a decomposition MpλqpbMpµq for all λ, µ, we need some further definitions.

Definition 1.4.10. An unordered partition of n is a finite sequence of positive integers

α “ pα1, . . . , αtq such that
t

ÿ

i“1
αi “ n. In this case we write α ( n.

Definition 1.4.11. Let λ $ n and α ( n. A (generalized) Young tableau of shape λ of
content α is a filling of the diagram Dλ by positive integers in such a way that the integer
i occurs exactly αi times.

For example, consider the partition λ “ p4, 3, 1q and set α “ p2, 3, 1, 2q. Then

1 2 2 1
3 4 2
2

is a tableau of shape λ and contents α.

Definition 1.4.12. A Young tableau is semistandard if the numbers are non-decreasing
along the rows and strictly increasing down the columns.

Example 1.4.5. Consider λ “ p4, 3, 1q $ 8 and α “ p2, 3, 1, 2q. Then a semistandard
Young tableau of shape λ of contents α is

1 1 2 2
2 3 4
4

.

We now consider the natural partial order on the set of partitions. Let λ “

pλ1, . . . , λpq $ n and µ “ pµ1, . . . , µqq $ m, then λ ě µ if and only if p ě q and λi ě µi for
all 1 ď i ď p. In the language of Young diagrams λ ě µ means that Dµ is a subdiagram of
Dλ.
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If λ ě µ, we define the skew-partition λ{µ “ pλ1 ´ µ1, λ2 ´ µ2, . . . , λp ´ µpq;
the corresponding diagram Dλ{µ is the set of boxes of Dλ which do not belong to Dµ. For
example, consider λ “ p4, 3, 1q $ 8 and µ “ p2, 2, 1q $ 5, notice that λ{µ “ p2, 1, 0q and

Dλ{µ “
˚ ˚

˚ ˚

˚

Definition 1.4.13. A skew-tableau Tλ{µ is a filling of the boxes of the skew- diagram λ{µ

with distinct positive integers. If repetitions occur, then we have the notion of (generalized)
skew-tableau. We also have the natural notions of standard and semistandard skew-tableaux.

Definition 1.4.14. Let α “ pα1, . . . , αtq ( n. We say that α is a lattice permutation if
for each j the number of i’s which occur among α1, . . . , αj is greater than or equal to the
number of pi ` 1q’s for each i.

Theorem 1.4.4 (Littlewood-Richardson Rule). Let λ $ n and µ $ m. Then

MpλqpbMpµq “
ÿ

ν$n`m

kµ
ν{λMpνq

where kµ
ν{λ is the number of semistandard tableaux of shape ν{λ and content µ which yield

lattice permutations when we read their entries from right to left and downwards.

Example 1.4.6. Consider the partitions λ “ p3, 2q $ 5 and µ “ p2, 1q $ 3. We are
going to find the decomposition of MpλqpbMpµq as a sum of irreducible S8-modules using
Theorem 1.4.4.

Below, we list the semistandard tableaux of shape ν{λ (ν $ 8) and content
µ which yield lattice permutations when we read their entries from right to left and
downwards

i. ν “ p5, 3q $ 8
1 1

2

ii. ν “ p4, 3, 1q $ 8

1
1

2

1
2

1

iii. ν “ p5, 2, 1q $ 8

1 1

2
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iv. ν “ p3, 22, 1q $ 8

1 1
2

v. ν “ p32, 2q $ 8

1
1 2

vi. ν “ p32, 12
q $ 8

1
1
2

vii. ν “ p4, 2, 12
q $ 8

1

1
2

viii. ν “ p42
q $ 8

1
1 2

ix. ν “ p4, 22
q $ 8

1

1 2

It follows that

MpλqpbMpµq – Mpp5, 3qq ` Mpp5, 2, 1qq ‘ 2Mpp4, 3, 1qq ‘ Mpp4, 22
qq‘

Mpp42
qq ‘ Mpp4, 2, 12

qq ‘ Mpp32, 2qq ‘ Mpp32, 12
qq ‘ Mpp3, 22, 1qq.
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1.4.3 Sn-actions on multilinear polynomials

In this section we introduce an action of the symmetric group Sn on the space
of multilinear polynomials in n fixed variables.

Let A be a PI-algebra and T pAq its T-ideal of identities. By Corollary 1.1.1, in
characteristic zero, T pAq is determined by its multilinear polynomials.

We denote by

Pn “ spanF txσp1q ¨ ¨ ¨ xσpnq|σ P Snu,

the vector space of multilinear polynomials in x1, . . . , xn in the free algebra F xXy. We
define a map

φ : FSn Ñ Pn

by setting

φ

˜

ÿ

σPSn

ασσ

¸

“
ÿ

σPSn

ασxσp1q ¨ ¨ ¨ xσpnq.

It is clear that φ is a vector space isomorphism. Observe that the symmetric group Sn

acts from the left on the set Pn of multilinear polynomials of degree n as follows:

σpxτp1q ¨ ¨ ¨ xστpnqq “ xστp1q ¨ ¨ ¨ xστpnq,

for all σ, τ P Sn. It follows that φ is a module isomorphism.

Since T-ideals are invariant under permutations of the variables, we obtain
that Pn X T pAq is a left Sn-submodule of Pn. Hence

PnpAq :“ Pn

Pn X T pAq

has an induced structure of left Sn-module.

Definition 1.4.15. For n ě 1, the Sn-character of PnpAq is called the n-th cocharacter
of A (or of the T-ideal T pAq) and is denoted χnpAq.

If we decompose the n-th cocharacter into irreducibles, we obtain

χnpAq “
ÿ

λ$n

mλpAqχλ,

where χλ is the irreducible Sn-character associated to the partition λ $ n and mλpAq ě 0
is the corresponding multiplicity.

Example 1.4.7. Let A be a (unitary) commutative algebra, then χnpAq “ χpnq for all
n ě 1. In fact, since the T -ideal of A coincides with the commutator ideal of F xXy, the
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relatively free algebra F pAq is isomorphic to the polynomial algebra F rXs in infinitely
many commuting variables. Hence PnpAq is spanned by the monomials x1 ¨ ¨ ¨ xn and

σpx1 ¨ ¨ ¨ xnq “ x1 ¨ ¨ ¨ xn

for all σ P Sn. Hence PnpAq is the trivial Sn-module.

Now we state without proof the following theorems about the partitions and
the shapes of the Young diagrams corresponding to the irreducible characters in the
cocharacter sequence of any PI-algebra.

Theorem 1.4.5 (Regev [65]). The algebra A satisfies the Capelli identity in n skew-
symmetric variables

dnpx1, . . . , xn; y1, . . . yn´1q “
ÿ

σPSn

sgnpσqxσp1qy1xσp2qy2 ¨ ¨ ¨ yn´1xσpnq

if and only if its cocharacter sequence is decomposed as

χmpAq “
ÿ

λn“0
mλpAqχλ,

i. e., the nonzero multiplicities correspond to partitions in less than n parts.

Note that by the previous theorem if A is an algebra such that dimA ă n,
then its cocharacter sequences is completely determined by partitions λ with no more than
n parts.

Theorem 1.4.6 (Amitsur-Regev [3]). For every PI-algebra A there exist nonnegative
integers k and l such that in the cocharacter sequence of A

χnpAq “
ÿ

λ$n

mλpAqχλ, n “ 1, 2, . . . ,

the partitions λ “ pλ1, . . . , λmq corresponding to non-zero multiplicities mλpAq, satisfy the
condition λk`1 ď l. In other words, their diagrams Dλ are in a hook shape with height k
of the arm and width l of the leg (see figure 1).
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l

Dλ
k

Figure 1 – The diagrams Dλ with mλpAq ‰ 0.

1.4.4 The action of the general linear group

In this subsection we survey some results on representation theory of the general
linear group in a form that is useful to our intent. For more details about this topic see
[23] and [24].

We restrict most of our considerations to the case when GLdpF q acts on the
free associative algebra of rank d. Let V be a vector space over F , we denote by GLpV q

the general linear group of V , i.e., the group of invertible linear transformations acting on
V . When dim V “ d ă 8, we write

GLd “ GLdpF q “ GLpV q

and, for a fixed basis te1, . . . , edu of V , we identify GLd with the group of invertible d ˆ d

matrices with entries from F .

Definition 1.4.16. i. A representation of the general linear group GLd

φ : GLd Ñ GLs

is called polynomial (and V is a polynomial GLd-module), if the entries φpqpgq of the
sˆ s matrices φpgq P GLs are polynomial functions of the entries aij for all dˆ d

matrices g “ paijq P GLd.

ii. Let
Dd “ tg P GLd|g “ gpb1, . . . , bdq “ b1e11 ` b2e22 ` ¨ ¨ ¨ ` bdeddu

be the subgroup of diagonal matrices of GLd. For every d-tuple α “ pα1, . . . , αdq of
integers, we define the homogeneous component of weight α (or of degree α) of the
GLd-module V by

V α :“ tv P V | gpb1, . . . , bdqv “ bα1
1 ¨ ¨ ¨ bαd

d v for all g P Ddu
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It is known that polynomial representations of the general linear groups behave
much like representations of finite groups and have many common features with the
representations of symmetric groups.

Theorem 1.4.7. Let φ : GLd Ñ GLs “ GLpV q be a polynomial representation of
GLd. Then

i. The GLd-module V is completely reducible and is a direct sum of homogeneous
polynomial modules.

ii. As a vector space V is a direct sum of its homogeneous components Wα, α P Zd.

iii. The Hilbert series of V

HpV,Tdq “
ÿ

α

dim V αtα1
1 ¨ ¨ ¨ tαd

d

is a symmetric function of t1, . . . , td. If V is homogeneous of degree m, then HpV q

is also homogeneous of degree m.

iv. Two polynomial GLd-modules V1 and V2 are isomorphic if and only if HpV1,Tdq “

HpV2,Tdq.

Notice that by the previous result, the Hilbert series of the polynomial GLd-
module V plays the role of the character of V .

The description of the irreducible polynomial representations of GLd is given
by the following theorem.

Theorem 1.4.8. i. The irreducible polynomial representations of GLd are in a one-
to-one correspondence with the partitions λ “ pλ1, . . . , λdq in not more than d parts.
We denote by Vdpλq the irreducible GLd-module corresponding to λ.

ii. The dimension of Vdpλq is given by the formula

dim Vdpλq “
ź

1ďiăďjďm

λi ´ λj ` i ´ j

j ´ i
.

iii. Let

V pλq “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

tλ1
1 tλ1

2 . . . tλ1
d´1 tλ1

d

tλ2
1 tλ2

2 . . . tλ2
d´1 tλ2

d
... ... . . . ... ...

t
λd´1
1 t

λd´1
2 . . . t

λd´1
d´1 t

λd´1
d

tλd
1 tλd

2 . . . tλd
d´1 tλd

d

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.

Then the symmetric polynomial

SλpTdq “ HpVdpλq,Tdq “
ÿ

α

dim V α
d pλqtα1

1 ¨ ¨ ¨ tαd
d ,



Chapter 1. Preliminaries 40

called the Schur function of Wdpλq, is expressed as

SλpTdq “
V pλ1 ` d ´ 1, λ2 ` d ´ 2, . . . , λd´1 ` 1, λdq

V pd ´ 1, d ´ 2, . . . , 1, 0q
.

iv. Up to a multiplicative constant, there exists a unique non-zero element of weight λ
in Vdpλq. It is called the highest weight vector of Vdpλq and is characterized by the
property that it is invariant under the action of the subgroup TdpF q of GLd of all
upper triangular matrices with 1 on the diagonal.

v. Let V and V 1 be two submodules isomorphic to Vdpλq with highest weight vectors
respectively v and v1. If φ : V Ñ V 1 is a GLd-module isomorphism, then φpvq “ αv1

for some non-zero α P F . Conversely, for every 0 ‰ α P F , there exists a unique
GLd-module isomorphism φ : V Ñ V 1 such that φpvq “ αv1.

Recall that the Schur functions multiply with the Littlewood-Richardson rule.
So, translated in the language of the Schur functions, the Young rule can be stated as
follows:

Case 1 Let µ “ pµ1, . . . , µdq and pmq be partitions, then

SpmqpTdqSµpTdq “
ÿ

λ

SλpTdq

where the summation is over all partitions λ such that

λ1 ` ¨ ¨ ¨ ` λd “ µ1 ` ¨ ¨ ¨ ` µd ` m,

λ1 ě µ1 ě λ2 ě µ2 ě ¨ ¨ ¨ ě λd ě µd.

This means that the Young diagrams Dλ are obtained from the diagram Dµ by adding m
boxes in such a way that no two new boxes are in the same column of Dλ.

Case 2 Let µ “ pµ1, . . . , µdq and p1m
q be partitions with m ď d, then

Sp1mqpTdqSµpTdq “
ÿ

λ

SλpTdq

where the summation is over all partitions λ such that

λ1 ` ¨ ¨ ¨ ` λd “ µ1 ` ¨ ¨ ¨ ` µd ` m,

µi “ λi ` ϵi, ϵi “ 0, 1

In other words the Young diagrams Dλ are obtained from the diagram Dµ by adding m
boxes in such a way that new boxes are not allowed to be in the same row.

Let Vd be a d-dimensional vector space with basis tx1, . . . , xdu and with the
canonical action of GLd, i.e., GLd “ GLpVdq. The general linear group GLd acts diagonally
on the free associative algebra of rank d, Fd “ F xx1, . . . , xdy, i.e., for every g P GLd

gpxi1 ¨ ¨ ¨ ximq “ gpxi1q ¨ ¨ ¨ gpximq
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It is easy to see that the multi-homogeneous component of weight pm1, . . . ,mdq of the
GLd-module F xx1, . . . , xdy, coincides with the vector subspace spanned by the elements
xi1 ¨ ¨ ¨ xim of degree mj with respect to xj.

Theorem 1.4.9. i. Let U be a T-ideal of F xXy. Then U X Fd is GLd-submodule of
Fn and it is a direct sum of its homogeneous component U X F

pmq

d .

ii. Let λ “ pλ1, . . . , λdq be a partition of m. The irreducible polynomial GLd-module
Vdpλq is isomorphic to a submodule of F pmq

d and

F
pmq

d “
à

λ$m

dλVdpλq,

where dλ is the dimension of the corresponding Sm-module, Mpλq and the the sum-
mation is on all partitions λ “ pλ1, . . . , λdq $ m.

The representations of the symmetric group and the polynomial representations
of the general linear group are equivalent, and they have been used simultaneously in many
branches of mathematics. This happened incidentally also in the theory of PI-algebras,
the following theorem is a clear example (see [5] and [21]).

Theorem 1.4.10. Let A be a PI-algebra and let

χnpAq “
ÿ

λ$n

mλpAqχλ, n “ 0, 1, . . .

be the cocharacter sequence of the T-ideal of A. Then, for any d, the relatively free algebra
FdpAq is isomorphic, as a GLd-module, to the direct sum

ÿ

ně0

ÿ

λ$n

mλpAqVdpλq

with the same multiplicities mλpAq as in the cocharacter sequence (assuming that Vdpλq “ 0
if λ is a partition in more than d parts). Then the Hilbert series of FdpAq is

HpA,Tdq “
ÿ

ně0

ÿ

λ$n

mλpAqSλpTdq.

1.5 Finite basis property for sets
Here we collect results and definitions concerning orders and the finite basis

property for sets. For more details see [39].

Let P be a non-empty set. A relation p1 ď p2 on P is a quasi-order if it is
reflexive and transitive. It means that piq p1 ď p1 for every p1 P P , and piiq p1 ď p2 and
p2 ď p3 imply p1 ď p3. If also p1 ď p2 and p2 ď p1 imply p1 “ p2, the relation is an order ;
and if in addition for every p1, p2 either p1 ď p2 or p2 ď p1, it is a linear order.
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If Q is a subset of the quasi-ordered set P , the closure of Q, written Q, is the
set of all elements p P P such that for some q in Q, q ď p. A closed subset of P is one
that coincides with its own closure. The quasi-ordered set P has the finite basis property
(f.b.p.), or it is well-quasi-ordered set, if every closed subset of P is the closure of a finite
set of elements. The following theorem was proved in [39] and gives useful equivalences to
the f.b.p.

Theorem 1.5.1 (Higman [39]). The following conditions on a quasi-ordered set P are
equivalent.

i. Every closed subset of P is the closure of a finite subset;

ii. If Q is any subset of P , there is a finite Q0 such that Q0 Ď Q Ď Q0 ;

iii. Every infinite sequence of elements tpiuiě1 of P has an infinite ascending subsequence

pi1 ď pi2 ď ¨ ¨ ¨ ď pik
ď ¨ ¨ ¨ ;

iv. There exists neither an infinite strictly descending sequence in P nor an infinite one
consisting of mutually incomparable elements of P .

Consider P a quasi-ordered set and let DpP q be the set of finite sequences
of elements of P . Then DpP q is quasi-ordered by the rule: x ď y if x is majorized by a
subsequence of y. In other words x “ pp1, . . . , pnq ď y “ pq1, . . . , qsq if there exists an order
preserving injection φ : N Ñ N such that φpnq ď s and pi ď qφpiq for every i “ 1, . . . , n.

As an example, take the set of positive integers N, with respect to the usual
order it is well ordered. It follows that DpNq satisfies the f.b.p.

Theorem 1.5.2 (Higman, [39]). Let P be a quasi-ordered set. If P has f.b.p., so has
DpP q.

The next result will be very useful in our paper.

Proposition 1.5.1 (Higman [39]). Let pP1,ď1q, pP2,ď 2q, . . . , pPk,ďkq be quasi-ordered
sets satisfying the f.b.p.

i. The disjoint union of P1, P2, . . . , Pk, endowed with the quasi-order where p ď q if
and only if p, q P Pi and p ďi q for some i P t1, 2, . . . , ku, satisfies the f.b.p.

ii. The Cartesian product P1 ˆ P2 ˆ ¨ ¨ ¨ ˆ Pk endowed with the quasi-order given by
pp1, p2, . . . , pkq ď pq1, q2, . . . , qkq whenever pi ďi qi for every i P t1, . . . , ku, satisfies
the f.b.p.
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Example 1.5.1. Let k be a positive integer and consider N endowed with its natural
order ď. Then by Proposition 1.5.1, we have that Nk is partially well ordered with the
following order

pn1, n2, . . . , nkq ď
1
k pm1,m2, . . . ,mkq if ni ď mi for every i P t1, . . . , ku.

Theorem 1.5.2 then implies that pDpNk
q,ďkq has f.b.p. where the order ďk is defined

the following way: pp1, . . . , pnq ďk pq1, . . . , qsq if there exists an order preserving injection
φ : N Ñ N such that φpnq ď s and pi ď

1
k qφpiq for any i “ 1, . . . , n
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2 Multiplicity series of UTnpEq

In this chapter we construct an algorithm to compute the multiplicities of the
cocharacter sequence of UTnpEq associated to partitions that have no more than d parts,
The principal ideas come from the papers [13] and [27]. The most important new results
of this chapter are Corollary 2.2.1, Theorem 2.2.4 and Theorem 2.3.1, and as stated in the
Introduction, they are in preparation for submission.

2.1 Multiplicity series of a PI-algebra
We fix a positive integer d and consider the algebra

CrrTdss “ Crrt1, . . . , tdss

of formal power series in d commuting variables. Let CrrTdss
Sd Ă CrrTdss be the subalgebra

of symmetric functions. Every symmetric function gpTdq can be represented in the form

gpTdq “
ÿ

λ

mλSλpTdq,mλ P C, λ “ pλ1, . . . , λdq,

where SλpTdq is the Schur function related to the partition λ which has at most d parts,
because the Schur functions in d variables form a basis for CrrTdss

Sd . For details on the
theory of Schur functions see the monograph [56].

Let gpTdq “
ÿ

λ

mλSλpTdq be a symmetric function, then we define its multi-

plicity series as

Mpg; Tdq “
ÿ

λ

mλTd
λ

“
ÿ

λ

mλt1
λ1 ¨ ¨ ¨ td

λd P CrrTdss.

It is also convenient to consider the subalgebra CrrVdss Ă CrrTdss of the formal power
series in the new set of variables Vd “ tv1, . . . , vdu, where

v1 “ t1, v2 “ t1t2, . . . , vd “ t1 ¨ ¨ ¨ td.

Then the multiplicity series Mpg; Tdq can be written as

M 1
pg; Vdq “

ÿ

λ

mλv1
λ1´λ2 ¨ ¨ ¨ vd´1

λd´1´λdvd
λd P CrrVdss.

We also call M 1
pg; Vdq the multiplicity series of g. The advantage of the mapping

M 1 : CrrTdss
Sd ÝÑ CrrVdss defined by M 1 : gpTdq Ñ M 1

pg; Vdq is that it is a bijection.
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Lemma 2.1.1 (Berele, [7]). The functions fpTdq P CrrTdss
Sd and Mpf ; Tdq are related by

the following equality. If

fpTdq
ź

iăj

pti ´ tjq “
ÿ

piě0
bpp1, . . . , pdqtp1

1 ¨ ¨ ¨ tpd
d , bpp1, . . . , pdq P C,

then
Mpf ; Tdq “

1
td´1
1 td´2

2 ¨ ¨ ¨ td´1

ÿ

piąpi`1

tp1
1 ¨ ¨ ¨ tpd

d ,

where the summation is on all p “ pp1, . . . , pdq such that p1 ą p2 ¨ ¨ ¨ ą pd.

Remark 2.1.1. In general, it is difficult to find an explicit form of Mpf ; Tdq if we know
fpTdq. But it is very easy to check whether the formal power series

hpTdq “
ÿ

hpq1, . . . , qdqtq1
1 ¨ ¨ ¨ tqd

d , q1 ě ¨ ¨ ¨ ě qd,

is equal to the multiplicity series Mpf ; Tdq of fpTdq because hpTdq “ Mpf ; Tdq if and only
if

fpTdq
ź

iăj

pti ´ tjq “
ÿ

σPSd

td´1
σp1q

td´2
σp2q

¨ ¨ ¨ tσpd´1qhptσp1q, . . . , tσpdqq.

This equation can be used to verify the computational results on multiplicities.

Definition 2.1.1. Let A be a PI-algebra and consider its Hilbert Series

HpA; Tdq “
ÿ

λ

mλpAqSλpTdq,

where λ has at most d parts. We define the multiplicity series of A in d variables as

MpA; Tdq “
ÿ

λ

mλpAqTλ
d “

ÿ

λ

mλpAqt1
λ1 ¨ ¨ ¨ td

λd .

Notice that if we know the multiplicity series of A in d variables, it is possible
to find the multiplicities mλpAq. So if we have the Hilbert series HpA; Tdq, the problem is
to write the series as a linear combination of Schur functions, which in turn is equivalent
to computing the multiplicity series of A.

The following two linear transformations play an important role in the devel-
opment of an algorithm to compute the multiplicities in the cocharacter sequence of the
algebra UTnpEq.

Definition 2.1.2. Let Y be the linear operator in CrrVdss which sends the multiplicity
series of a symmetric function to the multiplicity series of its Young-derived series. That
is, let gpTdq be a symmetric function, then

Y pMpgq,Tdq “ M

˜˜

d
ź

i“1

1
p1 ´ tiq

¸

gpTdq; Td

¸

.



Chapter 2. Multiplicity series of UTnpEq 46

Definition 2.1.3. Let gpTdq P CrrTdss
Sd, then we define the linear operator pY in CrrVdss Ă

CrrTdss as

pY pMpgq; Tdq :“ M

˜

gpTdq

«

1
2

d
ź

i“1
p1 ´ tiq `

1
2

d
ź

i“1
p1 ` tiq

ff

; Td

¸

.

The following proposition describes the multiple action of Y on 1.

Proposition 2.1.1. For d ě k ě 1 the following decomposition holds

d
ź

i“1

1
p1 ´ tiqk

“
ÿ

µ

SµpTdq,

where the summation is over all partitions µ “ pµ1, . . . , µkq and

ηµ “ Sµ p1, . . . , 1q
loooomoooon

k times

“ dim Vkpµq.

Equivalently,
Y k

p1q “
ÿ

µ

dim VkpµqTµ
k , µ “ pµ1, . . . , µkq, k ě 1.

Proof. Recall that
d

ź

i“1

1
1 ´ ti

“
ÿ

mě0
SmpTdq,

then
d

ź

i“1

1
p1 ´ tiqk

“
ÿ

Sm1pTdq ¨ ¨ ¨Smk
pTdq,

where the summation is over all k-tuples of non-negative integers pm1, . . . ,mkq. By the
Young rule

Spm1qpTdqSpm2qpTdq “
ÿ

SπpTdq,

where the sum is over all partitions π “ pπ1, π2q $ m1 ` m2 such that π ě m1 and the
skew-diagram Dπ{pmiq is a horizontal strip. We fill in the entries of Dpm1q and Dpm2q with
11s and 21s respectively. Then we fill in with 11s and 21s the boxes of Dπ corresponding to
the boxes of Dpm1q and Dpm2q, respectively:

1 ¨ ¨ ¨ 1
b

2 ¨ ¨ ¨ 2
“

ÿ 1 ¨ ¨ ¨ 1 1 . . . 1 2 ¨ ¨ ¨ 2
2 ¨ ¨ ¨ 2

As a result, we obtain a bijection between the summands SπpTdq in the decomposition of
the product Spm1qpTdqSpm2qpTdq and the semistandard tableaux of contents pm1,m2q. In
the next step, the product of three Schur functions has the form

Spm1qpTdqSpm2qpTdqSpm3qpTdqq “
ÿ

SρpTdq
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where the sum is over all partitions ρ “ pρ1, ρ2, ρ3q $ m1 ` m2 ` m3 which contain a
partition π “ pπ1, π2q $ m1 ` m2 such that the skew diagrams Dπ{pm1q and Dρ{pi are
horizontal strips. The Schur functions SρpTdq participate as many times as possible to
choose the partition π. Hence SρpTdq appears in the sum with its multiplicity in the
decomposition of Spm1qpTdqSpm2qpTdqSpm3qpTdqq “

ÿ

SρpTdq. Again, filling in the entries
of Dpm1q, Dpm2q and Dpm3q with 11s, 21s and 31s, respectively, we obtain a bijection between
the summands SρpTdq of Spm2qpTdqSpm3qpTdqq and the semistandard tableaux of contents
pm1,m2,m3q.

1 ¨ ¨ ¨ 1
b

2 ¨ ¨ ¨ 2
b

3 ¨ ¨ ¨ 3
“

ÿ 1 ¨ ¨ ¨ 1 1 . . . 1 2 ¨ ¨ ¨ 2 3 ¨ ¨ ¨ 3
2 ¨ ¨ ¨ 2 2 ¨ ¨ ¨ 2 3 ¨ ¨ ¨ 3
3 ¨ ¨ ¨ 3

This bijection preserves the shape of the partitions and SρpTdq is mapped to a ρ-tableau.
Carrying on this way we obtain a bijection between the summands SµpTdq in the decom-
position of the product Spm1qpTdq ¨ ¨ ¨Spm1qpTdq. This bijection counts the multiplicity of
SµpTdq and the semistandard tableaux of content pm1, . . . ,mkq. Hence the multiplicity

of SµpTdq in the decomposition of
d

ź

i“1

1
p1 ´ tiqk

is equal to the number of semistandard

µ-tableaux, which in turn is equal to Sµp1, . . . , 1q, and to the dimension of the GLk-module
Vkpµq. The equivalence of both statements follows from the definitions of the multiplicity
series and the operator Y .

In the general case there is an easy formula which translates the Young-derived
operator to the language of multiplicity series.

Proposition 2.1.2 (Drensky and Genov [25] ). Let gpTdq P CrrTdss
Sd. Then

Y pMpg; Tdqq “

d
ź

i“1

1
1 ´ ti

ÿ

p´t2q
ε2 ¨ ¨ ¨ p´tdq

εdMpg; t1tε2
2 , t

1´ε2
2 tε3

3 , . . . , t
1´εd´1
d´1 tεd

d , t
1´εd
d q,

where the summation runs over all ε2, . . . , εd P t0, 1u.

Consider the operator pY and observe that

pY j
pMp1q; Tdq “

˜

1
2

d
ź

i“1
p1 ´ tiq `

1
2

d
ź

i“1
p1 ` tiq

¸j

.

Now we want to know which Schur functions participate in the decomposition of pY j
pMp1q; Tdq.

This means we have to express pY j
pMp1q; Tdq as a linear combination of Schur functions.

First we are going to consider some particular cases of pY j
pMp1q; Tdq with j P t1, 2, 3u.

Example 2.1.1. Consider j “ 1, since

1
2

d
ź

i“1
p1 ´ tiq `

1
2

d
ź

i“1
p1 ` tiq “

ÿ

ně0
e2npt1, . . . , tdq “

ÿ

ně0
Sp12nqpTdq,
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see [23], the decomposition of pY pMp1q; Tdq as a sum of Schur functions is

pY pMp1q; Tdq “
ÿ

ně0
Sp12nqpTdq.

If j “ 2, we have that

pY 2
pMp1q; Tdq “

˜

1
2

d
ź

i“1
p1 ´ tiq `

1
2

d
ź

i“1
p1 ` tiq

¸2

“
ÿ

n1,n2ě0
Sp12n1 qpTdqSp12n2 qpTdq.

Note that by the Young rule, the Schur functions that participate in the decomposition of
Sp12n1 qpTdqSp12n2 qpTdq are given by partitions π, whose diagrams Dπ are obtained from the
diagram Dp12n1 q by adding 2n2 boxes in such a way that no two of the new boxes are in
the same row. Hence

Sp12n1 qpTdqSp12n2 qpTdq “
ÿ

π

SπpTdq

where π “ p2m, 1l
q $ 2pn1 ` n2q, m, l ě 0 and l is even. So if

pY 2
pMp1q; Tdq “

ÿ

niě0
Sp12n1 qpTdqSp12n2 qpTdq “

ÿ

ρ

mρSρpTdq

and mρ ‰ 0 then ρ “ p2m, 1l
q with m, l ě 0 and l is even.

If j “ 3, then we have

pY 3
pMp1q; Tdq “

ÿ

niě0
Sp12n1 qpTdqSp12n2 qpTdqSp12n3 qpTdq “ pY 2

pMp1q; TdqpY pMp1q; Tdq.

By the Young rule we have that the Schur functions participating in the decomposition of
Sp2m,1lqpTdqSp12n3 qpTdq are indexed by partitions ρ, whose diagrams Dρ are obtained from
the diagram Dp2m,1lq by adding 2n3 boxes in such a way that no two of the new boxes can
be in the same row. It follows

Sp12n1 qpTdqSp12n2 qpTdqSp12n3 qpTdq “
ÿ

ρ

SρpTdq

where ρ “ p3s, 2m, 1l
q $ 2pn1 ` n2 ` n3q, s, m, l ě 0 and s ” l pmod 2q. So

pY 3
pMp1q; Tdq “

ÿ

niě0
Sp12n1 qpTdqSp12n2 qpTdqSp12n3 qpTdq “

ÿ

ρ

mρSρpTdq,

and mρ ‰ 0 then ρ “ p3s, 2m, 1l
q with s, m, l P Zě0.

Below, we have the general result.

Proposition 2.1.3. Let j ě 1 and let
˜

1
2

d
ź

i“1
p1 ´ tiq `

1
2

d
ź

i“1
p1 ` tiq

¸j

“
ÿ

ρ

mρSρpTdq.

If mρ ‰ 0, then ρ “ pjs1 , pj ´ 1q
s2 , . . . , 1sj q $ 2pn1 ` ¨ ¨ ¨ ` njq and ps1, . . . , sjq P Zj

ě0.
Equivalently, if mρ ‰ 0 then ρ has at most j columns.
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Proof. The proof will be done by induction on j.

The case j “ 1 was dealt with in Example 2.1.1.
Assuming the result valid for j, let us prove it for j ` 1. We have

˜

1
2

d
ź

i“1
p1 ´ tiq `

1
2

d
ź

i“1
p1 ` tiq

¸j`1

“

˜

1
2

d
ź

i“1
p1 ´ tiq `

1
2

d
ź

i“1
p1 ` tiq

¸j ˜

1
2

d
ź

i“1
p1 ´ tiq `

1
2

d
ź

i“1
p1 ` tiq

¸

.

Suppose that
˜

1
2

d
ź

i“1
p1 ´ tiq `

1
2

d
ź

i“1
p1 ` tiq

¸j

“
ÿ

ρ1

mρ1Sρ1pTdq.

By induction hypothesis, if mρ1 ‰ 0, then

ρ1
“ pjn1 , . . . , 1nj q

with pn1, . . . njq P Zj
ě0. Since

1
2

d
ź

i“1
p1 ´ tiq `

1
2

d
ź

i“1
p1 ` tiq “

ÿ

ně0
Sp12nqpTdq.

By the Young rule, we have

Sρ1pTdqSp12nqpTdq “
ÿ

ρ

SρpTdq

where ρ has at most j`1 columns. This means ρ “ ppj`1q
n1 , . . . , 1nj`1q where pn1, . . . , nj`1q P

Zj`1
ě0 .

Hence, if
˜

1
2

d
ź

i“1
p1 ´ tiq `

1
2

d
ź

i“1
p1 ` tiq

¸j`1

“
ÿ

ρ

mρSρpTdq,

and mρ ‰ 0, then ρ “ ppj ` 1q
n1 , ¨ ¨ ¨ , 1nj`1q with pn1, . . . , nj`1q P Zj`1

ě0 , as desired.

Lemma 2.1.2. Let fpTdq P CrrTdss
Sd. Then

M 1
pfpTdqSp12qpTdq; Vdq “v2M

1
pfpTd; Vdq ` v1

d´1
ÿ

j“2

vj`1

vj

gjppM 1
pfpTdq, v1, . . . , vdqq

`

d´2
ÿ

i“1

vi`2

vi

gippM 1
pfpTdq, v1, . . . , vdqq

`
ÿ

1ďi,jďd´1
i`1ăj

vi`1

vi

vj`1

vj

gijppM 1
pfpTdq, v1, . . . , vdqq,

where

gjpM 1
pfpTdq, v1, . . . , vdqq “ M 1

pfpTdq, v1, . . . , vdq ´ M 1
pfpTdq; v1, . . . , vj´1, 0, vj`1, . . . , vdq
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gijpM 1
pfpTdq, v1, . . . , vdqq “M 1

pfpTdq, v1, . . . , vdq`

M 1
pfpTdq, v1, . . . , vi´1, 0, vi`1, . . . , vj, 0, vj`1, . . . , vdq´

M 1
pfpTdq; v1, . . . , vi´1, 0, vi`1, . . . , vdq´

M 1
pfpTdq; v1, . . . , vj´1, 0, vj`1, . . . , vdq

Proof. Notice that it is sufficient to prove the lemma for fpTdq “ SµpTdq where µ “

pµ1, . . . , µdq is a partition in no more than d parts. Rewriting M 1
pSµpTd,Vdq as

M 1
pSµpTdq; Vdq “ vp1

1 ¨ ¨ ¨ vpd
d

where pi “ µi ´ µi`1, i “ 1, . . . , d ´ 1 and pd “ µd, by the Young Rule, we have
SµpTdqSp12qpTdq is a linear combination of SλpTdq, where

• λ “ pµ1 ` 1, µ2 ` 1, µ3, . . . , µdq.

• λ “ pµ1 ` 1, . . . , µj, µj`1 ` 1, . . . , µdq, if µj ą µj`1 and j ě 2.

• λ “ pµ1, . . . , µi, µi`1 ` 1, µi`2 ` 1, . . . , µdq, if µi ą µi`1.

• λ “ pµ1 ` 1, . . . , µi, µi`1 ` 1, . . . , µj, µj`1 ` 1, . . . , µdq, if µi ą µi`1, µj ą µj`1 and
i ` 1 ă j.

In the language of multiplicity series, this means that M 1
pSµpTdqSp1,1qpTdqq is a linear

combination of the following terms

• v2pvp1
1 ¨ ¨ ¨ vpd

d q “ v2M
1
pSµpTd,Vdq,

• v1
vj`1

vj

M 1
pSµpTd,Vdq, if µj ą µj`1 and j ě 2,

• vi`2

vi

M 1
pSµpTd,Vdq, if µi ą µi`1,

• vi`1

vi

vj`1

vj

M 1
pSµpTd,Vdq, if µi ą µi`1, µj ą µj`1 and i ` 1 ă j.

Now, observe that

gjppM 1
pfpTdq; Vdqq “

$

’

&

’

%

M 1
pfpTdq; Vdq if pj ą 0

0 if pj “ 0

gijppM 1
pfpTdq; Vdqq “

$

’

&

’

%

M 1
pfpTdq; Vdq if pi ą 0, pj ą 0

0 for all other cases

Then the result follows easily.
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By Lemma 2.1.2, we have the following corollary

Corollary 2.1.1. Let fpT2q P CrrT2ss
S2, then

pY pMpf ; T2qq “ p1 ` t1t2qMpf ;T2q “

«

1
2

2
ź

i“1
p1 ´ tiq `

1
2

2
ź

i“1
p1 ` tiqs

ff

Mpf ;T2q.

From Definitions 2.1.3 and 2.1.2 it follows that

Y ppY pMpgq;Tdqq “ Y

˜

M

˜

gpTdq

«

1
2

d
ź

i“1
p1 ´ tiq `

1
2

d
ź

i“1
p1 ` tiq

ff¸

; Td

¸

“ M

˜

d
ź

i“1

1
1 ´ ti

gpTdq

«

1
2

d
ź

i“1
p1 ´ tiq `

1
2

d
ź

i“1
p1 ` tiq

ff

; Td

¸

“ M

˜

gpTdq

«

1
2 `

1
2

d
ź

i“1

1 ` ti
1 ´ ti

ff

; Td

¸

.

Notice that the composition Y ppY pMpgq;Tdqq is well-defined one because gpTdq

and also
˜

1
2 `

1
2

d
ź

i“1

1 ` ti
1 ´ ti

¸

are symmetric functions. Hence gpTdq

«

1
2 `

1
2

d
ź

i“1

1 ` ti
1 ´ ti

ff

is

also symmetric. Observe also that Y ˝ pY “ pY ˝ Y .

We will define Z :“ Y ˝ pY . This operator will appear in the computation of
the multiplicity series of the algebra of UTnpEq

2.2 Hilbert series and Multiplicity series of UTnpEq

In this section, we will find the Hilbert series of UTnpEq and an algorithm to
compute the multiplicities in the cocharacter sequence of this algebra using its multiplicity
series.

First, we are going to state a result which gives a basis for the T-ideal of UTnpEq.
An important tool in the proof of this theorem is the well known Lewin’s Theorem.

Theorem 2.2.1 (Abakarov [1]). The T-ideal of UTnpEq is generated by the polynomial

rx1, x2, x3s ¨ ¨ ¨ rx3n´2, x3n´1, x3ns.

We also recall that in [12, Theorem 2.8] the authors give a more general version
of the previous result.

The following results make reference to the Hilbert series and the multiplicities
series of E, they are useful throughout this work.
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Proposition 2.2.1. Let E be the infinite dimensional Grassmann algebra over a field of
characteristic zero. The Hilbert series of FdpEq in d variables is given by

HpE; Tdq “
1
2 `

1
2

d
ź

i“1

1 ` ti
1 ´ ti

.

A proof of the previous proposition can be found in [23].

Theorem 2.2.2 (Olsson and Regev [59]). Let E be the infinite dimensional Grassmann
algebra over a field of characteristic zero. Then the cocharacter sequence of E, for any
n ě 1 is given by

χnpEq “

n
ÿ

p“1
χpp,1n´pq.

Using Corollary 1.3.1 and Theorem 2.2.1, we have the following result

Theorem 2.2.3. The Hilbert series HpUTnpEq; Tdq of the algebra FdpUTnpEqq is

HpUTnpEq; Tdq “

n
ÿ

j“1

ˆ

n

j

˙

˜

1
2 `

1
2

d
ź

i“1

1 ` ti
1 ´ ti

¸j

pt1 ` ¨ ¨ ¨ td ´ 1q
j´1.

Proof. We use an induction on n. For n “ 1, it is Proposition 2.2.1. Assuming the result
true for n, let us prove it for n ` 1. By Theorem 2.2.1 we have

T pUTn`1pEqq “ T pUTnpEqqT pEq.

Thus, applying Corollary 1.3.1 it follows that

HpUTn`1pEq; Tdq “ HpUTnpEq; Tdq`HpE; Tdq`pt1`¨ ¨ ¨`td´1qHpUTnpEq; TdqHpE; Tdq.

By induction hypothesis, we have

HpUTnpEq; Tdq “

n
ÿ

j“1

ˆ

n

j

˙

HpE; Tdq
j
pt1 ` ¨ ¨ ¨ ` td ´ 1q

j´1.
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Then

HpUTn`1pEqq; Tdq “

n
ÿ

j“1

ˆ

n

j

˙

HpE; Tdq
j
pt1 ` ¨ ¨ ¨ ` td ´ 1q

j´1
` HpE; Tdq

`pt1 ` ¨ ¨ ¨ ` td ´ 1q

˜

n
ÿ

j“1

ˆ

k

j

˙

HpE; Tdq
j
pt1 ` ¨ ¨ ¨ ` td ´ 1q

j´1

¸

HpE; Tdq

“

n
ÿ

j“1

ˆ

n

j

˙

HpE; Tdq
j
pt1 ` ¨ ¨ ¨ ` td ´ 1q

j´1
` HpE; Tdq

`

n
ÿ

j“1

ˆ

n

j

˙

HpE; Tdq
j`1

pt1 ` ¨ ¨ ¨ ` td ´ 1q
j

“ pn ` 1qHpE; Tdq `

n
ÿ

j“2

ˆˆ

n

j

˙

`

ˆ

n

j ´ 1

˙˙

HpE; Tdq
j
pt1 ` ¨ ¨ ¨ ` td ´ 1q

j´1

`HpE; Tdq
n`1

pt1 ` ¨ ¨ ¨ ` td ´ 1q
n

“

ˆ

n ` 1
1

˙

HpE; Tdq `

n
ÿ

j“2

ˆ

n ` 1
j

˙

HpE; Tdq
j
pt1 ` ¨ ¨ ¨ ` td ´ 1q

j´1

`

ˆ

n ` 1
n ` 1

˙

HpE; Tdq
n`1

pt1 ` ¨ ¨ ¨ ` td ´ 1q
n

“

n`1
ÿ

j“1

ˆ

n ` 1
j

˙

HpE; Tdq
j
pt1 ` ¨ ¨ ¨ ` td ´ 1q

j´1

and we are done.

Using the previous result and the operator Z, we get an expression for the
multiplicity series of UTnpEq.

Corollary 2.2.1. The multiplicity series of UTnpEq is

MpUTnpEq; Tdqq “

n
ÿ

j“1

j´1
ÿ

q“0

ÿ

λ$q

p´1q
j´1´q

ˆ

n

j

˙ˆ

j ´ 1
q

˙

dλZ
j
pTλ

dq,

where dλ is the degree of the irreducible Sn-character χλ, Td “ tλ1
1 ¨ ¨ ¨ tλd

d and Z “ Y ˝ pY .

Proof. Note that

pt1 ` ¨ ¨ ¨ ` td ´ 1q
j´1

“

j´1
ÿ

q“0
p´1q

j´1´q

ˆ

j ´ 1
q

˙

pt1 ` ¨ ¨ ¨ ` tdq
q

and expanding the expression of HpUkpEq,Tdq from Proprosition 2.2.3, we get

HpUTnpEq; Tdq “

n
ÿ

j“1

ˆ

n

j

˙

˜

1
2 `

1
2

d
ź

i“1

1 ` ti
1 ´ ti

¸j j´1
ÿ

q“0
p´1q

j´1´q

ˆ

j ´ 1
q

˙

pt1 ` ¨ ¨ ¨ ` tdq
q.

Using the well-known equality

pt1 ` ¨ ¨ ¨ ` tdq
q

“ Sq
p1q

pTdq “
ÿ

λ$q

dλSλpTdq,
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where dλ is the degree of the irreducible Sq-character χλ, we have

HpUTnpEq; Tdq “

n
ÿ

j“1

ˆ

n

j

˙

˜

1
2 `

1
2

d
ź

i“1

1 ` ti
1 ´ ti

¸j j´1
ÿ

q“0
p´1q

j´1´q

ˆ

j ´ 1
q

˙

ÿ

λ$q

dλSλpTdq

“

n
ÿ

j“1

j´1
ÿ

q“0

ÿ

λ$q

p´1q
j´1´q

ˆ

n

j

˙ˆ

j ´ 1
q

˙

dλ

˜

1
2 `

1
2

d
ź

i“1

1 ` ti
1 ´ ti

¸j

SλpTdq.

Indeed, the multiplicity series of SλpTdq is

MpSλpTdq; Tdq “ t1
λ1 ¨ ¨ ¨ td

λd “ Tλ
d .

Then

M

¨

˝

˜

1
2 `

1
2

d
ź

i“1

1 ` ti
1 ´ ti

¸j

SλpTdq; Td

˛

‚“ Zj
pMpSλpTdq; Tdqq “ Zj

pTλ
dq.

Hence, the multiplicity series of UTnpEq equals

MpHpUTnpEq; Tdqq “

n
ÿ

j“1

j´1
ÿ

q“0

ÿ

λ$q

p´1q
j´1´q

ˆ

n

j

˙ˆ

j ´ 1
q

˙

dλZ
j
pTλ

dq.

We want to describe those partitions λ such that mλpUTkpEqq ‰ 0. In this way
we obtain a better upper bound on the height of λ.

Theorem 2.2.4. If mλpUTnpEqq ‰ 0 and λ “ pλ1, ¨ ¨ ¨ , λdq, then λn`1 ď 2n ´ 1.

Proof. By Theorem 2.2.3 and in the spirit of Corollary 2.2.1, the non-zero multiplicities
mλpUTnpEqq in the cocharacter sequence of UTnpEq come from the decomposition
˜

1
2 `

1
2

d
ź

i“1

1 ` ti

1 ´ ti

¸j

pt1 ` ¨ ¨ ¨ ` tdq
q

“

˜

d
ź

i“1

1
1 ´ ti

¸j˜

1
2

d
ź

i“1
p1 ´ tiq `

1
2

d
ź

i“1
p1 ` tiq

¸j

Sp1qpTdq
q,

j ď n and q ď n ´ 1, as a linear combination of Schur functions.
By Proposition 2.1.3, the Schur functions SπpTdq participating in the product

˜

1
2

d
ź

i“1
p1 ´ tiq `

1
2

d
ź

i“1
p1 ` tiq

¸j

are indexed by partitions π having at most j ď n columns. By the Branching rule, the
multiplication of SπpTdq by Sp1qpTdq is a linear combination of SρpTdq where the diagrams
of ρ are obtained from the diagrams of π by adding a box. Multiplying q times by Sp1qpTdq

we add to the diagram of π no more than q ď n ´ 1 boxes in the first row.

The diagrams of the partitions ρ appearing in the decomposition of
˜

1
2

d
ź

i“1
p1 ´ tiq `

1
2

d
ź

i“1
p1 ` tiq

¸j

Sp1qpTdq
q,
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have at most j ` q ď 2n ´ 1 boxes in the first row.

Due to the fact that
˜

d
ź

i“1

1
1 ´ ti

¸j

“
ÿ

niě0
Spm1qpTdq ¨ ¨ ¨SpmjqpTdq,

applying the Young rule iteratively, it follows that if the partition λ appears in the
decomposition of

˜

d
ź

i“1

1
1 ´ ti

¸j

SρpTdq,

then λ is of the type pm1, . . . ,mj, pj ` qqs1 , . . . , 1sj`q q with non-negative m1, . . . ,mj,

s1, . . . , sj`q. Hence λj`1 ď j ` q.

Therefore, if mλpUTnpEqq ‰ 0, then λk`1 ď 2n ´ 1.

It is worth mentioning that results about the cocharacter sequence of E and
UT2pEq satisfy the bound given in the previous theorem. By Theorem 2.2.2, we know

χnpEq “

n´1
ÿ

k“0
χpn´k,1kq.

Note that the diagrams of the partitions λ “ pn ´ k, 1k
q have at most one box in the

second column, that is, λ2 ď 1. Therefore, it agrees with Theorem 2.2.4.

In [15] Centrone proved that

HpUT2pEq; Tdq “
ÿ

mλpUT2pEqqSλpTdq,

where λ “ pm1,m2, 3, 2m, 1l
q or λ “ pm1,m2, 2m, 1l

q. Hence the diagrams of the partitions
λ have at most 3 boxes in the third row, that is, λ3 ď 3.

2.3 Application to the multiplicity series of UTnpEq in two variables
In this section, we shall compute the multiplicity series of UTnpEq in two vari-

ables for n P t1, 2, 3u. As consequences, we obtain the multiplicities mλ in the cocharacter
sequences of UTnpEq, where λ is a partition in no more than 2 parts.

Proposition 2.3.1. Consider the algebras E and UT2pEq, then

i. The multiplicity series of E in two variables is

M 1
pE; V2q “

1 ` v2

1 ´ v1
. (2.1)

ii. The multiplicity series of UT2pEq in two variables is

M 1
pUT2pEq; V2q “

2p1 ` v2q

1 ´ v1
`

p1 ` v2q2p´1 ` v1 ` 2v2 ´ v1v2q

p1 ´ v1q2p1 ´ v2q
. (2.2)
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Proof. Let us start with the statement i.

i. By Corollary 2.2.1, we get

MpE,T2q “ Zp1; T2q.

Since Z “ Y ˝ pY , applying Proposition 2.1.2 and Corollary 2.1.1 we have

MpE,T2q “
1 ` t1t2
1 ´ t1

.

Recall that v1 “ t1 and v2 “ t1t2. Hence

M 1
pE; V2q “

1 ` v2

1 ´ v1
.

ii. By Corollary 2.2.1, we have

MpUT2pEq; T2q “ 2Zp1q ´ Z2
p1q ` Z2

pt1q.

Now, we will compute 2Zp1q, Z2
p1q and Z2

pt1q using Propostion 2.1.2 and Corollary
2.1.1

• 2Zp1q “
2p1 ` t1t2q

1 ´ t1
,

• Z2
p1q “

p1 ` t1t2q2

p1 ´ t1q2p1 ´ t1t2q
,

• Z2
pt1q “

p1 ` t1t2q2pt1 ` 2t1t2 ´ t21t2q

p1 ´ t1q2p1 ´ t1t2q
.

Hence

MpUT2pEq; T2q “
2p1 ` t1t2q

1 ´ t1
´

p1 ` t1t2q2

p1 ´ t1q2p1 ´ t1t2q
`

p1 ` t1t2q2pt1 ` 2t1t2 ´ t21t2q

p1 ´ t1q2p1 ´ t1t2q

“
2p1 ` t1t2q

1 ´ t1
`

p1 ` t1t2q2p´1 ` t1 ` 2t1t2 ´ t21t2q

p1 ´ t1q2p1 ´ t1t2q
.

Finally, we have

M 1
pUT2pEq; V2q “

2p1 ` v2q

1 ´ v1
`

p1 ` v2q2p´1 ` v1 ` 2v2 ´ v1v2q

p1 ´ v1q2p1 ´ v2q
,

and we are done.

Now we are able to compute the multiplicity mλ in the cocharacter sequences
of E and UT2pEq when λ is a partition in no more than 2 parts. The next corollary shows
how to compute the multiplicities by using Corollary 2.2.1 and Proposition 2.3.1

Corollary 2.3.1. Let λ be a partition in no more than 2 parts.
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i. The multiplicity mλ in the cocharacter sequence of E is given by

mλ “

$

’

&

’

%

1 if λ “ pnq

1 if λ “ pλ1, 1q, λ1 ě 1
0 for all other λ

ii. The multiplicity mλ in the cocharacter sequences of UT2pEq is given by

mλ “

$

’

’

’

’

&

’

’

’

’

%

1 if λ “ pnq

λ1 if λ “ pλ1, 1q, λ1 ě 1
3λ1 ´ 4 if λ “ pλ1, 2q, λ1 ě 2
4pλ1 ´ λ2 ` 1q if λ “ pλ1, λ2q, λ1 ě λ2 ě 3

Proof. i. By Proposition 2.3.1, we get

M 1
pE; V2q “

ÿ

ně0
vn

1 `
ÿ

ně0
vn

1 v2.

From the first summand of the previous equality, we have that if λ “ pnq with
n ě 0 then mλ “ 1. Observe that vn

1 v2 with n ě 0 corresponds to the partition
λ “ pn ` 1, 1q. It follows that if λ “ pλ1, 1q where λ1 ě 1 then mλ “ 1.

ii. By Proposition 2.3.1, it follows that

M 1
pUT2pEq; V2q “

ÿ

ně0
2vn

1 `
ÿ

ně0
2vn

1 v2 ´
ÿ

m,ně0
pn ` 1qvn

1 v
m
2 ´

ÿ

ně0,mě1
2pn ` 1qvn

1 v
m
2 ´

ÿ

mě2,ně0
pn ` 1qvn

1 v
m
2 `

ÿ

mě1,ně0
2pn ` 1qvn

1 v
m
2 `

ÿ

mě2,ně0
4pn ` 1qvn

1 v
m
2 `

ÿ

mě3,ně0
2pn ` 1qvn

1 v
m
2 `

ÿ

ně1
nvn

1 `
ÿ

ně1
2nvn

1 v2 `
ÿ

ně1
nvn

1 v
2
2

Therefore

M 1
pUT2pEq; V2q “

ÿ

ně0
vn

1 `
ÿ

ně0
pn ` 1qvn

1 v2 `
ÿ

ně0
p3n ` 2qvn

1 v
2
2`

ÿ

ně0,mě3
4pn ` 1qvn

1 v
m
2

First, consider the first summand of the previous equality and observe that vn
1

corresponds to the partition λ “ pnq. So, if λ “ pnq, then mλ “ 1.

Now, notice that there is a bijection between vn
1 v2 with n ě 0 and the partition

λ “ pn` 1, 1q. It follows from the last equality that if λ “ pn, 1q where n ě 1 then
mλ “ n.
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Finally, we have that vn
1 v

m
2 corresponds to the partition λ “ pn`m,mq. Then since

mλ “ 4pn ` 1q “ 4ppn ` mq ´ m ` 1q, it follows that λ “ pλ1, λ2q with λ1 ě λ2 ě 3,
and thus mλ “ 4pλ1 ´ λ2 ` 1q.

The remaining case is treated similarly.

We note that Corollary 2.3.1 agrees with the results presented in [59] and [15]
when the partitions have no more than two parts.

Now, we will compute the multiplicity series of UT3pEq in two variables.

Theorem 2.3.1. i. The multiplicity series of UT3pEq in two variables is

M 1
pUT3pEq,V2q “

3p1 ` v2q

1 ´ v1
´

3p1 ` v2q2

p1 ´ v1q2p1 ´ v2q
`

3
ˆ

2p1 ` v2q2

p1 ´ v1q2p1 ´ v2q
`
v1p1 ` v2q2

p1 ´ v1q2

˙

`

1
p1 ´ v1q3p1 ´ v2q3

`

1 ´ 2v1 ` v2
1 ´ 2v2 ` 2v1v2 ´ 4v2

2 ` 8v1v
2
2

´ 3v2
1v

2
2 ` 7v3

2 ´ 5v1v
3
2 ` 10v4

2 ´ 13v1v
4
2 ` 3v2

1v
4
2 ´ v5

2 ´ v1v
5
2

´3v6
2 ` 3v1v

6
2 ´ v2

1v
6
2
˘

(2.3)

ii. Let λ be a partition in no more than 2 parts. The multiplicity mλ in the cocharacter
sequences of UT3pEq is given by

mλ “

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

1 if λ “ pnq

λ1 if λ “ pλ1, 1q, λ1 ě 1
1
2pλ1 ` 2qpλ1 ´ 1q if λ “ pλ1, 2q, λ1 ě 2
1
2p16 ´ 17λ1 ` 5λ2

1q if λ “ pλ1, 3q, λ1 ě 3

14 ´ 16λ2 ` 4λ2
2 ` 2pλ1 ´ λ2qp2 ´ 5pλ1 ´ λ2qq if λ “ pλ1, λ2q, λ1 ě λ2 ě 4

`4λ2pλ1 ´ λ2qp´3 ` λ2 ` pλ1 ´ λ2qq

Proof. i. By Corollary 2.2.1, we have

MpUT3pEq,T2q “ 3Zp1q ´ 3Z2
p1q ` 3Z2

pt1q ` Z3
p1q ´ 2Z3

pt1q ` Z3
pt21q ` Z3

pt1t2q.

Due to Corollary 2.1.1 and Proposition 2.1.2, we get

3Zp1q ´ 3Z2
p1q ` 3Z2

pt1q “
3p1 ` v2q

1 ´ v1
´

3p1 ` v2q2

p1 ´ v1q2p1 ´ v2q
`

3
ˆ

2p1 ` v2q2

p1 ´ v1q2p1 ´ v2q
`
v1p1 ` v2q2

p1 ´ v1q2

˙ (2.4)
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Z3
p1q ´ 2Z3

pt1q ` Z3
pt21q ` Z3

pt1t2q “
1

p1 ´ v1q3p1 ´ v2q3

`

1 ´ 2v1 ` v2
1 ´ 2v2`

2v1v2 ´ 4v2
2 ` 8v1v

2
2 ´ 3v2

1v
2
2 ` 7v3

2 ´ 5v1v
3
2`

10v4
2 ´ 13v1v

4
2 ` 3v2

1v
4
2 ´ v5

2 ´ v1v
5
2 ´ 3v6

2`

3v1v
6
2 ´ v2

1v
6
2
˘

(2.5)

From equalities (2.4) and (2.5), the result follows.

ii. We expand into a power series the expression for M 1
pUT3pEq,V2q given in part i.

using the following well known equalities.

va1
1 v

a2
2

1 ´ v1
“

ÿ

něa1

vn
1 v

a2
2 ,

va1
1 v

a2
2

p1 ´ v1q2 “
ÿ

něa1

pn ´ a1 ` 1qvn
1 v

a2
2 ,

va1
1 v

a2
2

p1 ´ v1q2p1 ´ v2q
“

ÿ

něa1

ÿ

měa2

pn ´ a1 ` 1qvn
1 v

m
2 ,

va1
1 v

a2
2

p1 ´ v1q3p1 ´ v2q3 “
ÿ

něa1

ÿ

měa2

ˆ

n ´ a1 ` 2
2

˙ˆ

m ´ a2 ` 2
2

˙

vn
1 v

m
2 .

Easy manipulations give us the explicit expression for mλ where λ is a partition in
no more than two parts. In particular, if we want to compute the multiplicity of
λ “ pλ1, 1q, we need to study the terms of type vn

1 v2 in M 1
pUT3,V2q. Hence we will

study the following expression

3v2

1 ´ v1
´

ˆ

3
p1 ´ v1q2p1 ´ v2q

`
6v2

p1 ´ v1q2p1 ´ v2q

˙

`
6v1v2

p1 ´ v1q2 `

6v2

p1 ´ v1q2p1 ´ v2q
`

1
p1 ´ v1q3p1 ´ v2q3

`

1 ´ 2v1 ` v2
1 ´ 2v2 ` 2v1v2

˘

(2.6)

as a power series.

Notice that if n ě 2 and m “ 1, then λ “ pn ` 1, 1q. We get

mλ “3 ´ p3pn ` 1q ` 6pn ` 1qq ` 6n ` 6pn ` 1q `
6pn ` 1qpn ` 2q

4 ´
6npn ` 1q

2

`
6pn ´ 1qn

4 ´
2pn ` 2qpn ` 1q

2 `
2npn ` 1q

2
“n ` 1,

or equivalently, if λ “ pn, 1q, with n ě 3, then mλ “ n. Observe that if m “ 0 and
n “ 1, then λ “ p1, 1q. It follows from expression (2.6) that

mλ “ 3 ´ p3 ` 6q ` 6 `
12
4 ´

4
2 “ 3 ´ 9 ` 6 ` 3 ´ 2 “ 1.
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Finally, if n “ 1 and m “ 1 then λ “ p2, 1q. Hence

mλ “3 ´ p6 ` 12q ` 6 ` 12 `
36
4 ´

12
2 ´

12
2 `

4
2 “ 3 ´ 18 ` 18 ` 9 ´ 6 ´ 6 ` 2 “ 2.

From the previous computations, we conclude that if λ “ pλ1, 1q with λ1 ě 1 then
mλ “ λ1.

The remaining cases are treated similarly.
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3 pk, lq-multiplicity series of UTnpEq

The multiplicity series of UTnpEq given in Corollary 2.2.1 gives us only the
multiplicities mλ when λ has no more than d parts. Our next goal is to find an algorithm
that allows us to compute the multiplicities in the cocharacter sequence of UTnpEq having
more “freedom” in the partitions λ. In other words we want to find mλ without any
restriction on the height of λ. Due to this, it is necessary to introduce some notions studied
in [10] and [8]. The important new results of this chapter are Theorem 3.2.2, Theorem
3.4.1, Theorem 3.4.2 and Theorem 3.4.3.

3.1 Double Hilbert Series and Hook Schur Functions
Consider E, the infinite dimensional Grassmann algebra. Then

B “ t1, ei1 ¨ ¨ ¨ eim | i1 ă ¨ ¨ ¨ ă im, m “ 1, 2, . . .u

is a basis of the vector space of E. We recall the action ˚ of Sn introduced by Berele and
Regev in [10]. Given 1 ‰ a “ ei1 ¨ ¨ ¨ eim P B, we write lpaq “ m. Let paq “ pa1, . . . , anq,
where a1, . . . , an P B, and define

I “ Oddpaq “ ti | lpaiq ” 1 pmod 2qu.

Remark 3.1.1. Let I Ď t1, . . . , nu (possibly empty), σ P Sn. Choose any paq “ pa1, . . . , anq,
ai P B, such that a1 ¨ ¨ ¨ an ‰ 0 and Oddpaq “ I. Then

aσp1q ¨ ¨ ¨ aσpnq “ ˘a1 ¨ ¨ ¨ an.

Note that the sign ˘ depends on I and σ but does not depend on the concrete choice of a.

Definition 3.1.1. Let I Ď t1, . . . , nu (possibly empty), σ P Sn. Choose any paq “

pa1, . . . , anq, ai P B, such that a1 ¨ ¨ ¨ an ‰ 0 and Oddpaq “ I. We define fIpσq “ ˘1 by the
equality

aσp1q ¨ ¨ ¨ aσpnq “ fIpσqa1 ¨ ¨ ¨ an.

Definition 3.1.2. Fixing two non-commuting sets of variables X “ tx1, . . . , xku and
Z “ tz1, . . . , zlu and a vector space V with basis X Y Z “ tx1, . . . , xk, z1, . . . , zlu, the
tensors v1 b ¨ ¨ ¨ b vn, vi P X Y Z form a basis of V bn. Given such pvq “ v1 b ¨ ¨ ¨ b vn we
define the Z-indices of pvq by IZpvq “ ti | vi P Zu. Let σ P Sn and let us define the right
action ˚ by

pv1 b ¨ ¨ ¨ b vnq ˚ σ “ fIZpvqpσqvσp1q b ¨ ¨ ¨ vσpnq.

Finally, extend the ˚ action of σ to all V bn by linearity.
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Let us consider now double Hilbert series (or double Poincaré series) related
to the polynomial identities of a PI-algebra A. In the above setup we identify the tensor
algebra TV of V with the free algebra

F xX,Zy “ F xx1, . . . , xk, z1, . . . , zly.

The latter algebra is a free superalgebra assuming, as usual, that x1, . . . , xk and z1, . . . ,
zl are, respectively, the even and the odd free generators. Let

xa; by “ xa1, . . . , ak; b1, . . . , bly

where a1 ` ¨ ¨ ¨ ` ak ` b1 ` ¨ ¨ ¨ ` bl “ n, and let V xa; by Ď V bn be the subspace of all
polynomials which are homogeneous in each of x1, . . . , xk, z1, . . . , zl, of degree ai in xi

and bj in zj.

Definition 3.1.3. Let A be a PI-algebra and consider the following sets of commuting
variables Tk “ tt1, . . . , tku, Yl “ ty1, . . . , ylu. The double Hilbert series of A is defined to be

HpA; Tk, Ylq “ HpA; t1, . . . , tk; y1, . . . , ylq “
ÿ

xa;by

dimF pV xa; by{V xa; by ˚ Qnqta1
1 ¨ ¨ ¨ tak

k yb1
1 ¨ ¨ ¨ ybl

l ,

where Qn “ T pAq X Pn.

Note that the variables t’s and y’s count, respectively, the degrees of the x’s
and z’s.

There is another way to define double Hilbert series which is an exact analogue
of the definition of Hilbert series of relatively free algebras. We recall that if A is a
PI-algebra, then AM :“ A bF E inherits the superalgebra structure from the natural
Z2-grading of E, i.e., A0 “ A b E0 and A1 “ A b E1.

If T2pAM
q Ď F xx1, x2, . . . , z1, z2, . . .y is the T2-ideal of the Z2-graded polynomial

identities of AM , then the relatively free Z2-graded algebra

F xx1, . . . , xk, z1, . . . , zly{pT2pAM
q X F xx1, . . . , xk, z1, . . . , zlyq

is the magnum of A. For more details on the magnum of a PI-algebra see [6]. The following
result is well known (see [6]) and gives that the double Hilbert series related to the
PI-algebra A coincides with the Hilbert series of the magnum of A.

Proposition 3.1.1. Let A be a PI-algebra. If xa; by “ xa1, . . . , ak; b1, . . . , bly is such that
a1 ` ¨ ¨ ¨ ` ak ` b1 ` ¨ ¨ ¨ ` bl “ n, then V xa; by ˚ Qn “ V xa; by X T2pAM

q.

Now we discuss hook Schur functions and their relations with the double
Hilbert series of a PI-algebra. We begin with a definition that generalizes the notion of
semistandard tableau.
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Fix integers k, l ě 0, k` l ą 0 and k` l variables t1, . . . , tk, y1, . . . , yl, so that
t1 ă ¨ ¨ ¨ ă tk ă y1 ă ¨ ¨ ¨ yl. Let λ be a partition with Young diagram Dλ. Fill Dλ with
elements from tt1, . . . , tk, y1, . . . ylu, allowing repetitions, to get a pk, lq-tableau Tλ. Such
Tλ is said to be pk, lq-semistandard if

i. The “t part” (i.e., the cells filled with ti’s) of Tλ forms a tableau. (Thus the “y part”
is a skew tableau.)

ii. The ti’s are increasing in rows (with possible repetitions), and strictly increasing in
columns.

iii. The yj’s are increasing in columns (with possible repetitions), strictly increasing in
rows.

Definition 3.1.4. Let Tλ be a pk, lq-semistandard tableau, define wTλ “ ta1
1 ¨ ¨ ¨ tak

k y
b1
1 ¨ ¨ ¨ ybl

l

where each ai counts the number of entries of ti in Tλ and each bj counts the number of
entries of yj in Tλ. The hook Schur functions is defined by

HSλpTk; Ylq “ HSλpt1, . . . , tk; y1, . . . , ylq “
ÿ

twTλ |Tλ is pk, lq-semistandardu.

Let Hpk, l;nq “ tλ “ pλ1, λ2, ¨ ¨ ¨ q $ n|λk`1 ď lu and

Hpk, lq “
ď

ně0
Hpk, l, nq.

Note that if λ P Hpk, lq, then the Young diagram Dλ lies in the hook with width of the
hand k and width of the leg l. It is not hard to see from the definition that HSλpTk; Ylq ‰ 0
if and only if λ P Hpk, lq.

Example 3.1.1. Consider the hook Hp2, 1q and let us calculate HSp2,1,1qpt1, t2; y1q. Notice
that the p2, 1q-semistandard tableux of shape p2, 1, 1q are

t1 t1

t2

y1

t1 y1

y1

y1

t1 t2

t2

y1

t2 t2

y1

y1

t1 t2

y1

y1

t1 t1

y1

y1

t2 y1

y1

y1

Hence

Hp2,1,1qpt1, t2, y1q “ t21t2y1 ` t1y
3
1 ` t1t

2
2y1 ` t22y

2
2 ` t1t2y

2
1 ` t21y

2
1 ` t2y

3
1.

Theorem 1.4.6 shows that whenever k, l are large enough we can capture all
partitions that have non-zero multiplicities in the cocharacter sequence of a PI-algebra A.
i.e, if mλpAq ‰ 0 then λ P Hpk, lq.

Let A be a PI-algebra, we write χpAq Ď Hpk, lq when the non-zero multiplicities
mλpAq in the cocharacter sequence χnpAq, n “ 0, 1, 2 . . . , appear only for λ P Hpk, lq. By
Theorems 6 and 11 of [9], we have the following generalization of Theorem 1.4.10.
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Theorem 3.1.1 (Berele and Regev [9]). Let A be a PI-algebra such that for any n ě 0

χnpAq “
ÿ

λ$n

mλpAqχλ.

Then
HpA; Tk,Ylq “

8
ÿ

n“0

ÿ

λPHpk,l;nq

mλpAqHSλpTk,Ylq,

where k, l are non-negative integers.

Formanek expressed the Hilbert series of the product of two T -ideals in terms of
the Hilbert series of the factors, (see Corollary 1.3.1). Here we have the following analogue
for double Hilbert series.

Proposition 3.1.2. Let A,A1, A2 be PI-algebras such that for any n P N and T pAq “

T pA1qT pA2q. Then

HpA; Tk, Ylq “ HpA1; Tk, Ylq ` HpA2; Tk, Ylq ` pHSp1qpTk, Ylq ´ 1qHpA1; Tk, YlqHpA2; Tk, Ylq.

Proof. Berele and Regev proved in [11] that if T pAq “ T pA1qT pA2q then

χnpAq “ χnpA1q ` χnpA2q ` χp1q
pb

n´1
ÿ

j“0
χjpA1qpbχn´j´1pA2q ´

n
ÿ

j“0
χjpA1qpbχn´jpA2q (3.1)

where pb denotes the “outer” tensor product of characters. Recall that for irreducible
characters pb behaves according to the Littlewood-Richardson rule.

Due to Theorem 3.1.1, we have

HpA; Tk,Ylq “

8
ÿ

n“0

ÿ

λPHpk,l;nq

mλpAqHSλpTk, Ylq

HpA1; Tk; Ylq “

8
ÿ

n“0

ÿ

αPHpk,l;nq

mαpA1qHSαpTk, Ylq

HpA2; Tk,Ylq “

8
ÿ

n“0

ÿ

βPHpk,l;nq

mβpA2qHSβpTk, Ylq.

Since the hook Schur functions multiply according to the Littlewood-Richardson rule (see
[10], section 6), we can conclude in the light of (3.1) that

HpA; Tk, Ylq “ HpA1; Tk, Ylq ` HpA2; Tk, Ylq ` pHSp1qpTk, Ylq ´ 1qHpA1; Tk, YlqHpA2; Tk, Ylq,

as desired.

Corollary 3.1.1. Let A, C be PI-algebras such that T pCq “ T pAq
m. Then

HpC; Tk,Ylq “

m
ÿ

j“1

ˆ

m

j

˙

HpA; Tk,Ylq
j
pSp1qpTk; Ylq ´ 1q

j´1.
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Proof. We will prove the statement using induction on m.

If m “ 1, then χnpAq “ χnpCq. So by Theorem 3.1.1

HpC; Tk; Ylq “ HpA; Tk; Ylq.

Assuming the result true for m ´ 1, let us prove it for m.

Let Am´1 be a PI-algebra such that T pAm´1q “ T pAq
m´1, then T pCq “

T pAm´1qT pAq. By Proposition 3.1.2, we get

HpC; Tk; Ylq “ HpAm´1; Tk; Ylq ` HpA; Tk; Ylq

` pHSp1qpTk,Ylq ´ 1qHpAm´1; Tk; YlqHpA; Tk; Ylq.

By induction hypothesis, we have

HpAm´1; Tk; Ylq “

m´1
ÿ

j“1

ˆ

m ´ 1
j

˙

HpA; Tk; Ylq
j
pSp1qpTk; Ylq ´ 1q

j´1.

Hence

HpC; Tk; Ylq “

m´1
ÿ

j“1

ˆ

m ´ 1
j

˙

HpA; Tk; Ylq
j
pSp1qpTk; Ylq ´ 1q

j´1
` HpA; Tk; Ylq

`pSp1qpTk; Ylq ´ 1q

˜

m´1
ÿ

j“1

ˆ

m ´ 1
j

˙

HpA; Tk; Ylq
j
pSp1qpTk; Ylq ´ 1q

j´1

¸

HpA; Tk; Ylq

“ mHpA; Tk; Ylq `

m´1
ÿ

j“2

ˆ

m ´ 1
j

˙

HpA; Tk; Ylq
j
pSp1qpTk, Ylq ´ 1q

j´1

`

m´1
ÿ

j“1

ˆ

m ´ 1
j

˙

HpA; Tk; Ylq
j`1

pSp1qpTk; Ylq ´ 1q
j

“ mHpA; Tk; Ylq `

m´1
ÿ

j“2

ˆ

m ´ 1
j

˙

HpA; Tk; Ylq
j
pSp1qpTk; Ylq ´ 1q

j´1

`

m
ÿ

j“2

ˆ

m ´ 1
j ´ 1

˙

HpA; Tk; Ylq
j
pSp1qpTk; Ylq ´ 1q

j´1

“ mHpA; Tk; Ylq `

m´1
ÿ

j“2

ˆˆ

m ´ 1
j

˙

`

ˆ

m ´ 1
j ´ 1

˙˙

HpA; Tk; Ylq
j
pSp1qpTk; Ylq ´ 1q

j´1

`HpA; Tk; Ylq
m

pSp1qpTk; Ylq ´ 1q
m´1

“ mHpA; Tk; Ylq `

m´1
ÿ

j“2

ˆ

m

j

˙

HpA; Tk; Ylq
j
pSp1qpTk; Ylq ´ 1q

j´1

`HpA; Tk; Ylq
m

pSp1qpTk; Ylq ´ 1q
m´1

“

m
ÿ

j“1

ˆ

m

j

˙

HpA; Tk; Ylq
j
pSp1qpTk; Ylq ´ 1q

j´1

and we are done.
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3.2 The Double Hilbert series of UTnpEq

We know that the cocharacter sequence of E lies in the hook Hp1, 1q. The double
Hilbert series HpE; t1, y1q was computed in [9]. We present once again the computation of
HpE, t1, y1q as a direct application of the definition of hook Schur functions.

We also compute HpE; Tk,Tlq for k, l non-negative integers. Moreover, we find
an expression for the double Hilbert series of UTnpEq. Finally, using HpUTnpEq; Tk,Ylq

we give a description of the non-zero multiplicities mλ in the cocharacters sequence of
UTnpEq.

Proposition 3.2.1. Let E be the infinite dimensional Grassmann algebra. Then

HpE; t1, y1q “
1 ` t1y1

p1 ´ t1qp1 ´ y1q
.

Proof. By Theorem 2.2.2 we know that for any n ě 1, if λ “ pp, 1n
´pq, we have mλpEq “ 1.

In light of Theorem 3.1.1, we have to compute HSλpt1, y1q in order to determine HpE; t1, y1q.
Note that the only p1, 1q-semistandard tableaux of shape λ are

t1 t1
y1

y1

t1 t1 y1
y1

y1

corresponding to the monomials tp1yn´p
1 and tp´1

1 yn´p`1
1 , respectively. Hence

HpE; t1, y1q “ 1 `

8
ÿ

n“1

n
ÿ

p“1
ptp1y

n´p
1 ` tp´1

1 yn´p`1
1 q.

Note that

1 `

8
ÿ

n“1

n
ÿ

p“1
ptp1y

n´p
1 ` tp´1

1 yn´p`1
1 q “ 1 ` pt1 ` y1q

8
ÿ

n“1

n
ÿ

p“1
tp´1
1 yn´p

1

“ 1 ` pt1 ` y1q

8
ÿ

k“0

ÿ

n`p“k

tp1y
n
1

“ 1 ` pt1 ` y1q

8
ÿ

p“0
tp1

8
ÿ

n“0
yn

1

“ 1 `
t1 ` y1

p1 ´ t1qp1 ´ y1q

“
1 ` t1y1

p1 ´ t1qp1 ´ y1q
.

It follows that
HpE; t1, y1q “

1 ` t1y1

p1 ´ t1qp1 ´ y1q
.
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In a similar way, we compute HpE; Tk,Ylq for any k, l P N using Definition
3.1.4 together with Theorems 3.1.1 and 2.2.2. The results is the following.

Proposition 3.2.2. Let k, l P N. Then

HpE; Tk,Ylq “
1
2

˜

1 `

k
ź

i“1

l
ź

j“1

p1 ` tiqp1 ` yjq

p1 ´ tiqp1 ´ yjq

¸

.

Proof. By the definition of pk, lq-semistandard tableau, we have only two types of tableaux
for λ “ pp, 1n´p

q :
T T Y Y
T

T
Y

Y

Y Y Y Y
Y

Y

Y

where with the symbol T , we mean “elements lying in Tk” and with the symbol Y “elements
lying in Yl”. Recall that

• The elements in Tk are non-decreasing in rows and strictly increasing in columns.

• The elements in Yl are non-decreasing in columns and strictly increasing in rows.

Hence the tableaux of the first type have n ě 1 boxes and contain at least one symbol T .
The tableaux of the second type do not contain symbols T and have n ě 0 boxes.

Consider a tableau Tλ of type 1. The T -parts of Tλ form a semistandard tableau
Tµ filled with elements from Tk where µ “ pq, qm´q

q for some m ď n and q ď p. Hence
the T -parts of such tableaux are in one-to-one correspondence with the semistandard
µ-tableaux filled with elements from Tk where µ “ pq, qm´q

q, m ď n and q ď p. The sum on
all µ of the products of the entries of Tµ is equal to the sum of the Schur functions SµpTkq.
If the Y -part of the arm of the tableau Tλ consists of yj1 , . . . , yjr , then 1 ď j1 ¨ ¨ ¨ ă jr ď l.
Similarly, if the Y -part of the leg of the tableau of Tλ consists of ym1 , . . . , yms then
1 ď m1 ¨ ¨ ¨ ď ms ď l. Hence the sum of all monomials wTλ , when Tλ runs over all
pk ´ lq-semistandard tableaux of type 1, is

ÿ

mě1

m
ÿ

q“1
Spq,1m´qqpTkq

ÿ

ciě0
yc1

1 ¨ ¨ ¨ ycl
l

ÿ

j1ă¨¨¨ăjs

yj1 ¨ ¨ ¨ yjs

“
ÿ

mě1

m
ÿ

q“1
Spq,1m´qqpTkq

l
ź

j“1

1
1 ´ yj

l
ÿ

s“0
espYlq “

ÿ

mě1

m
ÿ

q“1
Spq,1m´qqpTkq

l
ź

j“1

1 ` yj

1 ´ yj

where
espYlq “

ÿ

j1ă¨¨¨ăjs

yj1 ¨ ¨ ¨ yjs



Chapter 3. pk, lq-multiplicity series of UTnpEq 68

is the s-th elementary symmetric function. By Theorem 2.2.2

ÿ

mě1

m
ÿ

q“1
Spq,1m´qq “ HpE,Tkq ´ 1.

The explicit form of HpE,Tkq is given in Proposition 2.2.1. In particular, we have

HpE; Tkq “
1
2

˜

1 `

k
ź

i“1

1 ` ti
1 ´ ti

¸

.

In this way, the sum of all monomials wTλ , when Tλ runs over all pk, lq-semistandard
tableaux of type 1, has the form

1
2

˜

´1 `

k
ź

i“1

1 ` ti
1 ´ ti

¸

l
ź

j“1

1 ` yj

1 ´ yj

.

Now, we consider the pk, lq-semistandard tableaux Tpp,1n´pq of type 2. Clearly, the transposed
tableau T 1

pp,1n´pq is the tableau of shape pn ´ p ` 1, 1p´1
q. So the entries of T 1

pp,1n´pq do
not decrease in the first row and strictly increase in the columns. Hence T 1

pp,1n´pq is a
semistandard tableau in the ordinary sense. Applying the same argument as for the T -part
of the sum for the tableaux of type p1q, we have that the sum of the monomials wTλ over
all T pp,1n´pq is equal to

1 `
ÿ

ně1

n
ÿ

p“1
Spn´p`1,1p´1qpYlq “ HpE; Ylq “

1
2

˜

1 `

l
ź

j“1

1 ` yj

1 ´ yj

¸

.

Hence

HpE; Tk,Ylq “
1
2

˜

´1 `

k
ź

i“1

1 ` ti
1 ´ ti

¸

l
ź

j“1

1 ` yj

1 ´ yj

`
1
2

˜

1 `

l
ź

j“1

1 ` yj

1 ´ yj

¸

“
1
2

˜

´

l
ź

j“1

1 ` yj

1 ´ yj

`

k
ź

i“1

l
ź

j“1

p1 ` tiq

p1 ´ tiq

p1 ` yjq

p1 ´ yjq
` 1 `

l
ź

j“1

1 ` yj

1 ´ yj

¸

“
1
2

˜

1 `

k
ź

i“1

l
ź

j“1

p1 ` tiq

p1 ´ tiq

p1 ` yjq

p1 ´ yjq

¸

and the proof follows.

Corollary 3.2.1. Let E be the infinite dimensional Grassmann algebra. Consider the
algebra UTnpEq of n ˆ n upper triangular matrices with entries in E. Then

HpUTnpEq; Tk, Ylq “

n
ÿ

j“1

ˆ

n

j

˙

˜

1
2

«

1 `

k
ź

i“1

l
ź

s“1

p1 ` tiq

p1 ´ tiq

p1 ` ysq

p1 ´ ysq

ff¸j ˜

k
ÿ

i“1
ti `

l
ÿ

s“1
ys ´ 1

¸j´1

,

for some k, l P N.
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Proof. By Proposition 3.2.2 and Corollary 3.1.1, we have

HpUTnpEq; Tk,Ylq “

n
ÿ

j“1

ˆ

n

j

˙

˜

1
2

«

1 `

k
ź

i“1

l
ź

s“1

p1 ` tiq

p1 ´ tiq

p1 ` ysq

p1 ´ ysq

ff¸j

pSp1qpTk; Ylq ´ 1q
j´1.

Note that by the definition of hook Schur functions, it follows

Sp1qpTk; Ylq “

k
ÿ

i“1
ti `

l
ÿ

s“1
ys.

Hence HpUTnpEq; Tk,Ylq equals

n
ÿ

j“1

ˆ

n

j

˙

˜

1
2

«

1 `

k
ź

i“1

l
ź

s“1

p1 ` tiq

p1 ´ tiq

p1 ` ysq

p1 ´ ysq

ff¸j ˜

k
ÿ

i“1
ti `

l
ÿ

s“1
ys ´ 1

¸j´1

.

By Theorem 1.4.6, there are positive integers k, l such that χpUTnpEqq Ď

Hpk, lq. By Theorem 2.2.4 it follows that k “ n and l “ 2n ´ 1. So, we have the following
result.

Proposition 3.2.3. Let n ě 1 and consider the algebra UTnpEq. Then the partitions λ
with non-zero multiplicities mλpUTnpEqq in the cocharacter sequence of UTnpEq lie in the
hook Hpn, 2n ´ 1q.

Using the double Hilbert series of UTnpEq, we are able to give a better descrip-
tion of the partitions λ with mλpUTnpEqq ‰ 0 than the one given in Theorem 2.2.4.

Theorem 3.2.1. The hook Schur functions HSπpTk,Ylq participating in the product
HpE; Tk,Ylq

j are indexed by partitions π lying in Hpj, jq.

Proof. We will prove the assertion by induction on j.

If j “ 1, the result follows from Theorems 3.1.1 and 2.2.2.

Assuming the result true for j ´ 1 ě 1, let us prove it for j. Note that

HpE; Tk,Ylq
j

“ HpE; Tk,Ylq
j´1HpE; Tk,Ylq.

By induction hypotheses, we have

HpE; Tk,Ylq
j´1

“
ÿ

αλHSλpTk,Ylq,

where λ P Hpj ´ 1, j ´ 1q and αλ P C.

Let λ P Hpj ´ 1, j ´ 1q and consider the following product

HSλpTk,YlqHSpq,1m´qqpTk,Ylq “
ÿ

θαHSαpTk,Ylq.
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Suppose that there exists some partition α such that HSαpTk,Ylq participates in the
decomposition of the latter product, and α R Hpj, jq.

Note that α R Hpj, jq implies αj`1 ą j, hence suppose that αj`1 “ j ` 1. Let
Q Ď α{λ be the square formed by the boxes pj, jq, pj, j ` 1q, pj ` 1, jq and pj ` 1, j ` 1q

as in the picture below:

Q “ .

Of course, if we consider a semi-standard tableau of shape α{λ and content pq, 1m´q
q, then

Q must be filled as below

i.
1 1
j k

,

where j, k ‰ 1 and j ă k.

ii.
1 i

j k
,

where i, j, k ‰ 1 e i ă k e j ă k.

iii.
i j

k l
,

where i, j, k, l ‰ 1, i ă j ă l and i ă k ă l. Observe that those conditions are
imposed because we are working with content pq, 1m´q

q.

Note that i, j, k, l must be pairwise different since we consider a semi-standard tableau of
shape α{λ and content pq, 1m´q

q, then none of the cases above yields a lattice permutations
when we read their entries from the right to the left and downwards. Hence by the
Littlewood-Richardson rule, HSαpTk,Ylq cannot participate in the decomposition of

HSλpTk,YlqHSpq,1m´qqpTk,Ylq,

that is an absurd and we are done.

In what follows we find the partitions with non-zero multiplicities participating
in the decomposition of HpUTnpEq; Tk,Ylq. Given n ě 1, let Q2 “ pn´ 1q

n´1 be a square
Young tableau of size n ´ 1. We denote by Hpn, nq ˚ Q2 the skew hook obtained when we
identify the box p1, 1q of Q2 with the pn` 1, n` 1q (empty) box of Hpn, nq, the box p1, 2q

of Q2 with the pn ` 1, n ` 2q (empty) box of Hpn, nq and so on.

Proposition 3.2.4. If mλpUTnpEqq ‰ 0, then λ P Hpn, nq ˚ Q2 and |λ X Q2| ď n ´ 1.
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Proof. By Corollary 3.2.1, the non-zero multiplicities mλpUTnpEqq in the cocharacter
sequence of UTnpEq come from the decomposition, as an infinite sum of hook Schur
functions, of

HpE; Tk,Ylq
j

˜

k
ÿ

i“1
ti `

l
ÿ

s“1
ys

¸q

“ HpE; Tk,Ylq
jHSp1qpTk, Ylq

q,

where j ď n and q ď n ´ 1, for some k, l. By Theorem 3.2.1, the hook Schur functions
HSπpTk; Ylq participating in the product HpE; Tk; Ylq

j are indexed by partitions π lying
in Hpn, nq, then πn`1 ď n. Note that by the Branching rule, the product HSπpTk; Ylq ¨

HSp1qpTk;Ylq gives a sum of HSρpT ;Uq where the diagrams of ρ are obtained from the
diagram of π by adding a box. It follows that the diagram of ρ has no more than one box
in Q2. Multiplying q times by HSp1qpTk; Ylq we add to the diagram of π no more than
q ď n ´ 1 boxes in Q2. This means if mλpEq ‰ 0, then |λ X Q2| ď n ´ 1.
If there is λ R Hpn, nq ˚ Q2 such that mλpEq ‰ 0, then λn`1 ě 2n or λ2n ě n ` 1.

Suppose λn`1 ě 2n. We know that there is π P Hpn, nq such that the diagram
Dλ is obtained from the diagram Dπ by adding q ď n´ 1 boxes. So λn`1 ď 2n´ 1, which
is an absurd.

If λ2n ď n ` 1, we know that there is π P Hpn, nq such that the diagram Dλ is
obtained from the diagram Dπ by adding q ď n ´ 1 boxes. Note that the limit of cases is
πi “ n for i ě n ` 1. Hence λ2n ď n, which is a contradiction and we are done.

Remark 3.2.1. Note that the previous proposition gives a better description of the
partitions λ “ pλ1, . . . , q such that mλpUTnpEqq ‰ 0 than Theorem 2.2.4. In fact, by
Proposition 3.2.4, we have that λ P Hpn, 2n ´ 1q, λi ď 2n ´ 1 for n ` 1 ď i ď 2n ´ 1 and
λi ď n for i ě 2n, whereas by Theorem 2.2.4, we only know λ P Hpn, 2n ´ 1q, that means
λi ď 2n ´ 1 for i ě n ` 1.

3.3 The pk, lq-multiplicity series
Note that by Theorem 1.4.5, If A is a finite dimensional PI-algebra, it suffices

to work with a large enough set of variables T in order to capture all the multiplicities
mλpAq of its cocharacter sequence from its Hilbert series. But if A is an infinite dimensional
algebra, knowing its multiplicity series is not enough to find all multiplicities mλpAq. Due
to this fact, we want to generalize the idea of the multiplicity series defining the pk, lq-
multiplicity series of a A. This series contains all the information about the multiplicities
mλpAq for λ in the hook Hpk, lq.

As in [11], identifying a partition with its Young diagram, we can break each
λ P Hpk, lq into three parts λ Ñ pλ0, µ, νq where λ0 is the piece of the partition in the
k ˆ l rectangle plkq, µ is a partition with at most k parts and it is the part λ to the right
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of λ0 and ν is a partition with at most l parts and it is the conjugate of the part of λ
below λ0. (see figure 2)

l

λ0
µ k

ν 1

Figure 2 – Definition of λ0, µ and ν

We fix two non-negative integers k, l such that k ` l ě 1. Let λ0 be a partition
such that λ0 Ď plkq and the set

Hλ0pk, lq :“ tλ P Hpk, lq|λ X plkq “ λ0u.

Notice that Hpk, lq “
ď

λ0Ďplkq

Hλ0pk, lq. Let Tk “ tt1, . . . , tku, Y “ ty1, . . . , ylu and V “

tv1, . . . , vku be three sets of commuting variables and consider the algebra

CrrTk,Ylss “ Crrt1, . . . , tk, y1, . . . , ylss

of formal power series in pk ` lq commuting variables. Let

Λpk,l,nq :“ t
ÿ

λ

mλHSλpTk,Ylq|λ P Hpk, l;nqmλ P Cu,

the set tHSλpTk,Ylq|λ P Hpk, l, nqu is a basis of Λpk,l,nq as a vector space (see [10]). Now,
define

Λpk,lq
“ t

ÿ

λ

mλHSλpTk,Ylq|λ P Hpk, lqmλ P Cu.

Note that Λpk,lq is a subalgebra of CrrTk,Ylss, since the hook Schur functions multiply
with the Litlewood-Richarson rule. Given gpTk,Ylq “

ÿ

λPHpk,lq

mλHSλpTk,Ylq P Λpk,lq, we

have
gpTk,Ylq “

ÿ

λ0Ďplkq

ÿ

λPHλ0 pk,lq

mλHSλpTk,Ylq.
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Definition 3.3.1. Let gpTk,Ylq “
ÿ

λ0Ďplkq

ÿ

λPHλ0 pk,lq

mλHSλpTk,Ylq P Λpk,lq, we define the

pk, lq-multiplicity series of g by

xMpg; Vk,Tk,Ylq :“
ÿ

λ0Ďplkq

ÿ

λPHλ0 pk,lq

mλVλ0
k Tµ

kYν
l ,

where Vλ0
k “ vλ01

1 ¨ ¨ ¨ vλ0k
k , Tµ

k “ tµ1
1 ¨ ¨ ¨ tµk

k and Yν
l “ yν1

1 ¨ ¨ ¨ yνk
l .

It is clear that xMpg; Vk,Tk,Ylq is an element of CrrVk,Tk,Ylss the algebra of
formal power series in p2k ` lq variables. Observe that xM defines an injective linear map
from Λpk,lq to CrrVk,Tk,Ylss and set Λp2k,lq :“ xMpΛpk,lq

q.

Example 3.3.1. Consider the hook Hp2, 1q and the partition λ “ p2, 12
q. Then λ0 “

p1, 1q, µ “ p1q and ν “ p1q. It follows that

xMpHSλpT2,Y1qq “ v1v2t1y1.

Now, if we consider the hook Hp3, 1q and the same partition, we obtain λ0 “ p13
q, µ “ p1q

and ν “ p0q. Hence
xMpHSλpT3,Y1qq “ v1v2v3t1.

Definition 3.3.2. Let A be a PI-algebra. The formal series

xMpA; Vk,Tk,Ylq “
ÿ

λ0Ďplkq

ÿ

λPHλ0 pk,lq

mλpAqVλ0
k Tµ

kYν
l

where λ P Hpk, lq and mλpAq is the multiplicity corresponding to χλ in the cocharacter
sequences of A, is called the pk, lq-multiplicity series of A.

When the sets of variables are inferred from the context, we may also write
xMpAq instead of xMpA; Vk,Tk,Ylq.

Our next step is to find an expression for the pk, lq-multiplicity series of UTnpEq.
In the light of Proposition 3.2.2, we define the linear operator

G : Λp2k,lq Ñ Λp2k,lq

such that

GpxMpgqq “ xM

˜

g ¨
1
2

˜

1 `

k
ź

i“1

l
ź

s“1

p1 ` tiqp1 ` ysq

p1 ´ tiqp1 ´ ysq

¸¸

,

where g P Λpk,lq.

Remark 3.3.1. Notice that HSpq,1m´qqpTk,Ylq participates in the decomposition of
HSpqqpTk,YlqHSp1qpTk,Ylq and HSpq´1qpTk,YlqHS1pm´q`1qpTk,Ylq as sum of hook Schur
functions. Hence HSpq,1m´qq appears with multiplicity 2 in the product

ÿ

ně0
HSpnqpTk,Ylq ¨

ÿ

mě0
HSp1mqpTk,Ylq.
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It follows that

HpE; Tk, Ylq “ 1`
ÿ

mě1

m
ÿ

q“1
HSpq,1m´qqpTk, Ylq “

1
2

˜

1 `
ÿ

ně0
HSpnqpTk, Ylq

ÿ

mě0
HSp1mqpTk, Ylq

¸

.

It is well known that

ÿ

ně0
HSpnqpTk,Ylq “

k
ź

i“1

l
ź

s“1

p1 ` ysq

p1 ´ tiq
;

ÿ

mě0
HSp1mqpTk,Ylq “

k
ź

i“1

l
ź

s“1

p1 ` tiq

p1 ´ ysq
.

Due to Remark 3.3.1, we define the following two operators G1 : Λp2k,lq Ñ Λp2k,lq

and G2 : Λp2k,lq Ñ Λp2k,lq given by

G1pxMpgqq “ xM

˜

g ¨

k
ź

i“1

l
ź

s“1

p1 ` ysq

p1 ´ tiq

¸

and

G2pxMpgqq “ xM

˜

g ¨

k
ź

i“1

l
ź

s“1

p1 ` tiq

p1 ´ ysq

¸

,

where g P Λpk,lq. Note that G1 ˝ G2 “ G2 ˝ G1 and G “
1
2 p1 ` G2 ˝ G1q where 1 is the

identity map.

3.3.1 The action of G1 and G2

Now we describe the action of G1 and G2 on Λ2k,l. Let us start with the operator
G1. Using the notation of chapter 2, we define the following linear operator.

Definition 3.3.3. Given a positive integer d. Let fpTdq P CrrTdss
Sd, define the conjugate

Young operator Y on CrrVdss as

Y pMpfpTdqq :“ M

˜

fpTdq ¨

d
ÿ

s“0
Sp1sqpTdq

¸

.

Lemma 3.3.1. Consider the hook Hpk, lq and let λ P Hpk, lq be a partition such that
λ0 “ plkq. Then

xM
`

HSλpTk, YlqHSpnqpTk, Ylq
˘

“ Vλ0
k

n
ÿ

m“0
MpSµpTkqSpmqpTkqqMpSνpYlqSp1n´mqpYlqq (3.2)

Proof. Recall that HSβpTk,Ylq “ 0 if, and only if, β R Hpk, lq. Since λ0 “ plkq, if
HSβpTk,Ylq participates in the decomposition of

HSλpTk,YlqHSpnqpTk,Ylq,
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then β0 “ β X plkq “ plkq. Hence, applying the Young rule to the partition λ is equivalent
to applying the Young rule to µ and ν. So, we have

xM
`

HSλpTk, YlqHSpnqpTk, Ylq
˘

“ vl
1 ¨ ¨ ¨ vl

k

n
ÿ

m“0
MpSµpTkqSpmqpTkqqMpSνpYlqSp1n´mqpYlqq

Lemma 3.3.2. Let λ be a partition in the hook Hpk, lq such that λ0 ‰ plkq, then

xM
`

HSλpTk, YlqHSpnqpTk, Ylq
˘

“
ÿ

β0PΠ
V β0

k

n´|Dβ0 zDλ0 |
ÿ

p“0
M

`

SµSppq; Trβ0

˘

M
´

SνS
p1n´|Dβ0 zDλ0 |´p

q
; Yc

¯

(3.3)

where Π “ tβ0 Ď plkq|β participates in the decomposition of HSλHSpnqu, rβ0 is the num-
ber of the rows of β0 of size l and c is the number of the columns of λ0 of size k.

Proof. Note that the difference between this case and Lemma 3.3.1 is that if β P Hpk, lq

participates in the decomposition of

HSλpTk,YlqHSpnqpTk,Ylq

as sum of hook Schur functions, then β0 is not necessarily λ0. Consider the set Π and
notice that if λ1 ě l or λ1

1 ě k, then λ0 P Π. The possible β0 are those whose diagrams are
obtained from the diagram of λ0 when we apply the Young rule to the partitions λ0 and
pmq for some 0 ď m ď n such that Dβ0 Ď Dplkq.

Now, we identify λ with the triple pλ0, µ, νq. Suppose that Dβ0 is obtained from
Dλ0 by adding m boxes. Note that m “ |Dβ0zDλ0 |, that is, m is the number of boxes in
the skew-diagram Dβ0zDλ0 . If we want to know what partitions β satisfy β X plkq “ β0,
we have to add a total of n´m boxes to the diagrams Dµ and Dν using the Young rule.
Consider the numbers rβ0 and c, observe that we can add boxes to the diagram Dµ up to
line rβ0 . In the case of the diagram Dν , it is only allowed to add boxes up to line c.
Hence, the partitions β P Hpk, lq participating in the decomposition of

xMpHSλpTk,YlqHSpnqpTk,Ylqq

such that β X plkq “ β0 are determined by the following expression

V β0
k

n´|Dβ0 zDλ0 |
ÿ

p“0
M

´

SµSppq; Trβ0,m

¯

M
´

SνSp1n´|Dβ0 zDλ0 |´p
q
; Yc

¯

.

It follows that xM
`

HSλpTk,YlqHSpnqpTk,Ylq
˘

equals

ÿ

β0PΠ
V β0

k

n´|Dβ0 zDλ0 |
ÿ

p“0
M

´

SµSppq; Trβ0

¯

M
´

SνSp1n´|Dβ0 zDλ0 |´p
q
; Yc

¯

.

Using Lemmas 3.3.1, 3.3.1 and the linearity of xM and M , we obtain
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Theorem 3.3.1. Let λ be a partition in Hpk, lq. The action of G1 on xMpHSλpTk,Ylqq

can be described as follows

i. If λ0 “ plkq, then

G1pxMpHSλpTk,Ylqqq “ Vλ0
k Y pMpSν ;TkqqY pMpSµ; Ylqq.

ii. If λ0 ‰ plkq, then

G1pxMpHSλpTk; Ylqqq “
ÿ

β0PΩ
Vβ0

k Y pMpSµ; Trβ0
qqY pMpSνq; Ycqq,

where Ω “ tβ0 Ď plkq|Dβ0 is obtained from Dλ0 by the Young rule (Case 1)u, rβ0 is
the number of rows of the diagram of Dβ0 of size l, and c is the number of colums of
the diagram of Dλ0 of size k.

Note that if rβ0 “ 0 or c “ 0, then H “ Y0 “ T0. Hence 1 “ Y p1,T0q “

Y p1,Y0q.

Now, let us study G2. Our goal is to describe G2 in terms of the operators Y
and Y defined above. Note that pnq and p1n

q are conjugate partitions, so from Theorem
3.3.1 we get the following result.

Corollary 3.3.1. Let λ be a partition in Hpk, lq. The action of G2 on xMpHSλpTk,Ylqq

can be described as follows:

i. If λ0 “ plkq then

G2pxMpHSλpTk,Ylqqq “ Vλ0
k Y pMpSν ;TkqqY pMpSµ; Ylqq

ii. If λ0 ‰ plkq then

G2pxMpHSλpTk; Ylqqq “
ÿ

β0PΩ1

Vβ0
k Y pMpSµ; TrqqY pMpSνq; Ycβ0

qq,

where Ω1
“ tβ0 Ď plkq|Dβ0 is obtained from Dλ0 by Young rule (Case 2)u, r is the

number of rows of the diagram of Dλ0 of size l and cβ0 is the number of columns of
the diagram of Dβ0 of size k.

3.4 The pk, lq-multiplicity series of UTnpEq

The following result is analogous to Theorem 2.2.3. We obtain an expression
for the pk, lq-multiplicity series of UTnpEq using the linear operator G.
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Theorem 3.4.1. Let E be the infinite dimensional Grassmann algebra. Then

xMpUTnpEq; Vk,Tk,Ylq “

n
ÿ

j“1

j´1
ÿ

q“0

ÿ

λ$q

p´1q
j´q´1

ˆ

n

j

˙ˆ

j ´ 1
q

˙

dλG
j
pVλ0

k Tµ
kYν

l q,

where dλ is the degree of the Sλ-characters χλ and

T µ
k Y

ν
l “ tµ1

1 ¨ ¨ ¨ tµk
k yν1

1 ¨ ¨ ¨ yνl
l

for µ “ pµ1, . . . , µkq, ν “ pν1, . . . , νlq partitions outside the rectangle plkq.

Proof. Expanding the expression of HpUTnpEq; Tk,Ylq from Corollary 3.2.1 we obtain:

HpUTnpEq; Tk, Ylq “

n
ÿ

j“1

˜

n

j

¸˜

1
2

«

1 `

k
ź

i“1

l
ź

j“1

p1 ` tiq

p1 ´ tiq

p1 ` yjq

p1 ´ yjq

ff¸j j´1
ÿ

q“0

p´1q
j´1´q

˜

j ´ 1
q

¸˜

l
ÿ

i“1

ti `

l
ÿ

s“1

ys

¸q

.

Since
˜

l
ÿ

i“1
ti `

l
ÿ

s“1
ys

¸q

“ HSp1qpTk,Ylq
q

“
ÿ

λ$q

dλHSλpTk,Ylq,

where dλ is the degree of the Sλ-characters χλ, it follows that

HpUTnpEq; Tk, Ylq “

n
ÿ

j“1

j´1
ÿ

q“0

ÿ

λ$q

p´1qj´q´1
ˆ

n

j

˙ˆ

j ´ 1
q

˙

dλ

˜

1
2

«

1 `

k
ź

i“1

l
ź

j“1

p1 ` tiq

p1 ´ tiq

p1 ` yjq

p1 ´ yjq

ff¸j

HSλpTk, Ylq.

Recall that we can identify λ P Hpk, lq with the partitions λ0, µ, ν (see figure 2), so

GjpVλ0
k Tµ

kYν
l q “ GjpMpHSλpTk, Ylqqq “ M

¨

˝

˜

1
2

«

1 `

k
ź

i“1

l
ź

j“1

p1 ` tiq

p1 ´ tiq

p1 ` yjq

p1 ´ yjq

ff¸j

¨ HSλpTk, Ylq

˛

‚.

Hence

xMpUTnpEq;Vk, Tk, Ylq “

n
ÿ

j“1

j´1
ÿ

q“0

ÿ

λ$q

p´1q
j´q´1

ˆ

n

j

˙ˆ

j ´ 1
q

˙

dλG
j
pV λ0

k T µ
k Y

ν
l q,

and the proof follows.

Theorems 3.3.1, 3.3.1 and 3.4.1 give us an algorithm to compute the multiplici-
ties in the cocharacter sequences of UTnpEq. In order to show how the algorithm works,
we consider some particular cases.

Proposition 3.4.1. The p1, 1q-multiplicity series of E is

xMpE; v, t, yq “ 1 `
v

p1 ´ tqp1 ´ yq
.

Proof. Using Theorem 3.4.1, we have xMpE; v, t, yq “ Gp1q. By theorem 3.3.1 we get

G1p1q “ G1pxMpHSλ0q; v, t, yq “ Y p1; T0qY p1; Y0q ` vY p1; T1qY p1; Y0q “ 1 `
v

1 ´ t
.



Chapter 3. pk, lq-multiplicity series of UTnpEq 78

Now, we are going to compute G2p1q and G2

ˆ

v

1 ´ t

˙

. Using Corollary 3.3.1, we get

G2p1q “ G2pxMpHSp0qq; v, t, yq “ Y p1,T0qY p1,Y0q ` vY p1,T0qY p1,Y1q “ 1 `
v

1 ´ y

G2

ˆ

v

1 ´ t

˙

“ vY

ˆ

1
1 ´ t

; T1

˙

Y p1; Y1q “
v

p1 ´ tqp1 ´ yq
`

vt

p1 ´ tqp1 ´ yq
.

Hence

Gp1q “
1
2 p1 ` G2 ˝ G1p1qq “

1
2

ˆ

1 ` 1 `
2v

p1 ´ tqp1 ´ yq

˙

“ 1 `
v

p1 ´ tqp1 ´ yq
,

as desired.

Notice that at light of Theorem 3.2.1, the p1, 1q-multiplicity series of E already
contains the information about the multiplicities in the cocharacter sequence of E. In fact:

v

p1 ´ tqp1 ´ yq
“

ÿ

m,ně0
vtnym,

then, expanding its homogeneous component of degree m, we obtain
m
ÿ

q“1
vtq´1ym´q

which gives the exact multiplicities of the m-th cocharacter of E as in Theorem 2.2.2.

By Theorem 3.2.3, we have χpUT2pEqq Ď Hp2, 3q. Hence we would like to
compute the p2, 3q multiplicity series of UT2pEq. We need the following technical lemma.

Lemma 3.4.1. Consider the hook Hp2, 3q and the set of variables tv1, v2, t1, t2, y1, y2, y3u.
Then:

i. Gp1,V2,T2,Y3q “ 1 ` v1 ` v2
1 `

v1v2

1 ´ y1
`

v2
1v2

1 ´ y1
`

v3
1

1 ´ t1
`

v3
1v2

p1 ´ t1qp1 ´ y1q
.

ii.

G2
p1q “ 1 ` 2v1 ` 3v2

1 ` v1v2

ˆ

2
1 ´ y1

`
1

p1 ´ y1q2

˙

` v2
1v2

ˆ

4
1 ´ y1

`

1 ` y1

p1 ´ y1q2 `
1

p1 ´ y1q2

˙

` v3
1

ˆ

3
1 ´ t1

`
1

p1 ´ t1q2

˙

`

v3
1v2

ˆ

5
p1 ´ t1qp1 ´ y1q

`
2p1 ` y1q

p1 ´ t1qp1 ´ y1q2 `
1 ` t1

p1 ´ t1q2p1 ´ y1q
`

1 ` t1y1

p1 ´ t1q2p1 ´ y1q2

˙

` v2
1v

2
2

ˆ

2
1 ´ y1

`
2p1 ` y1q

p1 ´ y1q2 `
4y1y2

p1 ´ y1q2p1 ´ y1y2q

˙

`

v3
1v

2
2

ˆ

3
p1 ´ t1qp1 ´ y1q

`
3p1 ` y1q

p1 ´ t1qp1 ´ y1q2 `
6y1y2

p1 ´ t1qp1 ´ y1q2p1 ´ y1y2q

`
1 ` t1

p1 ´ t1q2p1 ´ y1q
`

p1 ` t1qp1 ` y1q

p1 ´ t1q2p1 ´ y1q2 `
2p1 ` t1qy1y2

p1 ´ t1q2p1 ´ y1q2p1 ´ y1y2q

˙

`
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v3
1v

3
2

ˆ

1
p1 ´ t1qp1 ´ y1q

`
1 ` y1

p1 ´ y1q2p1 ` t1q
`

2y1y2

p1 ´ t1qp1 ´ y1q2p1 ´ y1y2q
`

p1 ` t1 ` t1t2 ´ t21t2q

p1 ´ t1q2p1 ´ t1t2qp1 ´ y1q

`
p1 ` t1 ` t1t2 ´ t21t2qp1 ` y1q

p1 ´ t1q2p1 ´ t1t2qp1 ´ y1q2 `
2p1 ` t1 ` t1t2 ´ t21t2qy1y2

p1 ´ t1q2p1 ´ t1t2qp1 ´ y1q2p1 ´ y1y2q

˙

.

iii.

G2
pv1q “ v1 ` `2v2

1 ` v1v2

ˆ

1
1 ´ y1

`
1

p1 ´ y1q2

˙

` v2
1v2

ˆ

3
1 ´ y1

`
1 ` y1

p1 ´ y1q2 `

2
p1 ´ y1q2

˙

` v3
1v2

ˆ

4
p1 ´ t1qp1 ´ y1q

`
3p1 ` y1q

p1 ´ t1qp1 ´ y1q2 `

2p1 ` t1y1q

p1 ´ t1q2p1 ´ y1q2 `
p1 ` t1q

p1 ´ t1q2p1 ´ y1q

˙

` v3
1

ˆ

2
1 ´ t1

`
1

p1 ´ t21q

˙

`

v2
1v

2
2

ˆ

2
1 ´ y1

`
3p1 ` y1q

p1 ´ y1q2 `
6y1y2

p1 ´ y1q2p1 ´ y1y2q
`

p1 ` y1y2q

p1 ´ y1q2p1 ´ y1y2q

˙

`v3
1v

2
2

ˆ

3
p1 ´ t1qp1 ´ y1q

`
5p1 ` y1q

p1 ´ t1qp1 ´ y1q2 `
10y1y2

p1 ´ t1qp1 ´ y1q2p1 ´ y1y2q

`
2p1 ` t1qp1 ` y1q

p1 ´ t1q2p1 ´ y1q2 `
4p1 ` t1qy1y2

p1 ´ t1q2p1 ´ y1q2p1 ´ y1y2q
`

1 ` y1y2 ` 2t1y1y2 ` t1y1 ´ t1y
2
1y2

p1 ´ t1q2p1 ´ y1q2p1 ´ y1y2q
`

1 ` 3y1y2 ´ y2
1y2 ` y1

p1 ´ t1qp1 ´ y1q2p1 ´ y1y2q

˙

`v3
1v

3
2

ˆ

1
p1 ´ t1qp1 ´ y1q

`
2p1 ` y1q

p1 ´ t1qp1 ´ y1q2 `

4y1y2

p1 ´ t1qp1 ´ y1q2p1 ´ y1y2q
`

p1 ` t1 ` t1t2 ´ t21t2q

p1 ´ t1q2p1 ´ t1t2qp1 ´ y1q
`

2p1 ` t1 ` t1t2 ´ t21t2qp1 ` y1q

p1 ´ t1q2p1 ´ t1t2qp1 ´ y1q2 `
4p1 ` t1 ` t1t2 ´ t21t2qy1y2

p1 ´ t1q2p1 ´ t1t2qp1 ´ y1q2p1 ´ y1y2q
`

p1 ` t1 ` t1t2 ´ t21t2qp1 ´ y2
1y2 ` 3y1y2 ` y1 ` 2y1y2y3q

p1 ´ t1q2p1 ´ t1t2qp1 ´ y1q2p1 ´ y1y2q

p1 ´ y2
1y2 ` 3y1y2 ` y1 ` 2y1y2y3q

p1 ´ t1qp1 ´ y1q2p1 ´ y1y2q

˙

.

Proof. i. The result follows directly from the definition of G.

ii. By the previous item and the linearity of G, we have

G2
p1q “Gp1q ` Gpv1q ` Gpv2

1q ` G

ˆ

v1v2

1 ´ y1

˙

` G

ˆ

v2
1v2

1 ´ y1

˙

` G

ˆ

v3
1

1 ´ t1

˙

`

G

ˆ

v3
1v2

p1 ´ t1qp1 ´ y1q

˙

.

(3.4)
We compute each part of the right hand side of the equality separately. Let us
calculate Gpv1q. We start with computing G1pv1q. From Theorem 3.3.1, we get

G1pv1q “v1 ` v2
1 ` v1v2 ` v2

1v2 `
v3

1v2

1 ´ t1
`

v3
1

1 ´ t1
.
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It follows that

G2pG1pv1qq “G2pv1q ` G2pv2
1q ` Gpv1v2q ` G2pv2

1v2q ` G2

ˆ

v3
1v2

1 ´ t1

˙

` G2

ˆ

v3
1

1 ´ t1

˙

.

By Corollary 3.3.1, we have:

G2pG1pv1qq “v1 ` 2v2
1 `

2v1v2

1 ´ y1
`

2v3
1

1 ´ t1
`

4v2
1v2

1 ´ y1
`

4v3
1v2

p1 ´ t1qp1 ´ y1q
`

2v2
1v

2
2

1 ´ y1
`

2v3
1v

2
2

p1 ´ t1qp1 ´ y1q
.

Hence

Gpv1q “v1 ` v2
1 `

v1v2

1 ´ y1
`

2v2
1v2

1 ´ y1
`

v3
1

1 ´ t1
`

2v3
1v2

p1 ´ t1qp1 ´ y1q
`

v2
1v

2
2

1 ´ y1
`

v3
1v

2
2

p1 ´ t1qp1 ´ y1q
.

(3.5)

To compute the remaining parts, we use Theorem 3.3.1 and Corollary 3.3.1. As the
computations are too extensive, we only write the final results:

Gpv2
1q “v2

1 `
v2

1v2

1 ´ y1
`

v3
1

1 ´ t1
`

2v3
1v2

p1 ´ t1qp1 ´ y1q
`

v2
1v

2
2

1 ´ y1
`

2v3
1v

2
2

p1 ´ t1qp1 ´ y1q
`

v3
1v

3
2

p1 ´ t1qp1 ´ y1q
;

(3.6)

G

ˆ

v1v2

1 ´ y1

˙

“
v1v2

p1 ´ y1q2 ` v2
1v2

ˆ

1 ` y1

p1 ´ y1q2

˙

`

v2
1v

2
2

ˆ

1 ` y1

p1 ´ y1q2 `
2y1y2

p1 ´ y1q2p1 ´ y1y2q

˙

` v3
1v2

ˆ

1 ` y1

p1 ´ t1qp1 ´ y1q2

˙

`

v3
1v

2
2

ˆ

1 ` y1

p1 ´ t1qp1 ´ y1q2 `
2y1y2

p1 ´ y1q2p1 ´ y1y2q

˙

;

G

ˆ

v3
1

1 ´ t1

˙

“
v3

1
p1 ´ t1q2 ` v3

1v2

ˆ

1 ` t1
p1 ´ t1q2p1 ´ y1q

˙

` v3
1v

2
2

ˆ

1 ` t1
p1 ´ t1q2p1 ´ y1q

˙

`

v3
1v

3
2

ˆ

1 ` t1 ` t1t2 ´ t21t2
p1 ´ t1q2p1 ´ t1t2qp1 ´ y1q

˙

;

G

ˆ

v2
1v2

1 ´ y1

˙

“
v2

1v2

p1 ´ y1q2 ` v3
1v2

ˆ

1 ` y1

p1 ´ t1qp1 ´ y1q2

˙

` v2
1v

2
2

ˆ

1 ` y1

p1 ´ y1q2 `

2y1y2

p1 ´ y1q2p1 ´ y1y2q

˙

` v3
1v

2
2

ˆ

2p1 ` y1q

p1 ´ t1qp1 ´ y1q2 `

4y1y2

p1 ´ t1qp1 ´ y1q2p1 ´ y1y2q

˙

` v3
1v

3
2

ˆ

p1 ` y1q

p1 ´ t1qp1 ´ y1q2 `

2y1y2

p1 ´ t1qp1 ´ y1q2p1 ´ y1y2q

˙

;
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G

ˆ

v3
1v2

p1 ´ t1qp1 ´ y1q

˙

“v3
1v2

ˆ

1 ` t1y1

p1 ´ t1q2p1 ´ y1q2

˙

` v3
1v

2
2

ˆ

p1 ` t1qp1 ` y1q

p1 ´ t1q2p1 ´ y1q2 `

2p1 ` t1qy1y2

p1 ´ t1q2p1 ´ y1q2p1 ´ y1y2q

˙

`

v3
1v

3
2

ˆ

p1 ` t1 ` t1t2 ´ t21t2qp1 ` y1q

p1 ´ t1q2p1 ´ t1t2qp1 ´ y1q2 `

2p1 ` t1 ` t1t2 ´ t21t2qy1y2

p1 ´ t1q2p1 ´ t1t2qp1 ´ y1q2p1 ´ y1y2q

˙

.

By equality (3.4) and the previous computations, we obtain the desired result.

iii. From equality (3.5), we have

G2
pv1q “Gpv1q ` Gpv2

1q ` G

ˆ

v1v2

1 ´ y1

˙

` 2G
ˆ

v2
1v2

1 ´ y1

˙

` G

ˆ

v3
1

1 ´ t1

˙

`

2G
ˆ

v3
1v2

p1 ´ t1qp1 ´ y1q

˙

` G

ˆ

v2
1v

2
2

1 ´ y1

˙

` G

ˆ

v3
1v

2
2

p1 ´ t1qp1 ´ y1q

˙

.

(3.7)

It only remains to calculate G
ˆ

v2
1v

2
2

1 ´ y1

˙

and G

ˆ

v3
1v

2
2

p1 ´ t1qp1 ´ y1q

˙

, since the other

summands have been found in item b).

The following equalities are obtained by Theorem 3.3.1 and Corollary 3.3.1.

G

ˆ

v2
1v

2
2

1 ´ y1

˙

“v2
1v

2
2

ˆ

1 ` y1y2

p1 ´ y1q2p1 ´ y1y2q

˙

` v3
1v

2
2

ˆ

1 ` 3y1y2 ´ y2
1y2 ` y1

p1 ´ y1q2p1 ´ y1y2qp1 ´ t1q

˙

`

v3
1v

3
2

ˆ

1 ` 3y1y2 ´ y2
1y2 ` y1 ` 2y1y2y3

p1 ´ y1q2p1 ´ y1y2qp1 ´ t1q

˙

.

G

ˆ

v3
1v2

2
p1 ´ t1qp1 ´ y1q

˙

“v3
1v2

2

ˆ

1 ` y1y2 ` 2t1y1y2 ` t1y1 ´ t1y2
1y2

p1 ´ y1q2p1 ´ y1y2qp1 ´ t1q2

˙

`

v3
1v3

2

ˆ

p1 ` t1 ` t1t2 ´ t2
1t2qp1 ` 3y1y2 ´ y2

1y2 ` y1 ` 2y1y2y3q

p1 ´ t1q2p1 ´ t1t2qp1 ´ y1q2p1 ´ y1y2q

˙

.

Now the result follows by a combination of equality (3.7) and the previous compu-
tations.
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Theorem 3.4.2. The p2, 3q-multiplicity series of UT2pEq is

xMpUT2pEq; V2,T2,Y3q “1 ` v1 ` v2
1 `

v1v2

1 ´ y1
`

v3
1

1 ´ t1
`
v2

1v2p2 ´ y1q

p1 ´ y1q2 `

v3
1v2

ˆ

1
p1 ´ t1qp1 ´ y1q

`
1 ` y1

p1 ´ t1qp1 ´ y1q2 `
1 ` t1y1

p1 ´ t1q2p1 ´ y1q2

˙

` v2
1v

2
2

ˆ

2 ` y1

p1 ´ y1q2 `
4y1y2

p1 ´ y1q2p1 ´ y1y2q

˙

`

v3
1v

2
2

ˆ

2p1 ` y1q

p1 ´ t1qp1 ´ y1q2 `
4y1y2

p1 ´ t1qp1 ´ y1q2p1 ´ y1y2q

`
p1 ` t1qp1 ` y1q

p1 ´ t1q2p1 ´ y1q2 `
2p1 ` t1qy1y2

p1 ´ t1q2p1 ´ y1q2p1 ´ y1y2q
`

1 ` y1y2 ` 2t1y1y2 ` t1y1 ´ t1y
2
1y2

p1 ´ t1q2p1 ´ y1q2p1 ´ y1y2q

`
1 ` 3y1y2 ´ y2

1y2 ` y1

p1 ´ t1qp1 ´ y1q2p1 ´ y1y2q

˙

` v3
1v

3
2

ˆ

p1 ` y1q

p1 ´ t1qp1 ´ y1q2 `

`
2y1y2

p1 ´ t1qp1 ´ y1q2p1 ´ y1y2q
`

p1 ` t1 ` t1t2 ´ t21t2qp1 ` y1q

p1 ´ t1q2p1 ´ t1t2qp1 ´ y1q2 `

2p1 ` t1 ` t1t2 ´ t21t2qy1y2

p1 ´ t1q2p1 ´ t1t2qp1 ´ y1q2p1 ´ y1y2q
`

p1 ` t1 ` t1t2 ´ t21t2qp1 ´ y2
1y2 ` 3y1y2 ` y1 ` 2y1y2y3q

p1 ´ t1q2p1 ´ t1t2qp1 ´ y1q2p1 ´ y1y2q

`
p1 ´ y2

1y2 ` 3y1y2 ` y1 ` 2y1y2y3q

p1 ´ t1qp1 ´ y1q2p1 ´ y1y2q

˙

.

Proof. Due to Proposition 3.2.3 we have χpUT2pEqq Ď Hp2, 3q. Hence we work with the
set of variables tv1, v2, t1, t2, y1, y2, y3u. By Theorem 3.4.1 we obtain

xMpUT2pEq; V2,T2,Y3q “ 2Gp1q ´ G2
p1q ` G2

pv1q. (3.8)

From equality (3.8) and Lemma 3.4.1, the result follows.

The next result was proved by Centrone in [15]. Now, we are going to prove it
using the p2, 3q-multiplicity series of UT2pEq.

Corollary 3.4.1. Let λ be a partition. The multiplicity mλ in the cocharacter sequence of
UT2pEq is given by the following expression:
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mλ “
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’
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’
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’

’

’

’

’

’

%

1 if λ “ pnq

1 if λ “ p1mq, m ą 1
m ` 1 if λ “ p2, 1mq, m ě 1
3m ` 2 if λ “ p2, 2, 1mq, m ě 0
4pm ` 1q if λ “ p2, 2, 2s, 1mq, m ě 0, s ą 0
2nm ´ 3m ´ n ` 3 if λ “ pn, 1mq, n ě 3, m ě 1
6mpn ´ 3q ` 9m ` 3pn ´ 3q ` 5 if λ “ pn, 2, 1mq, n ě 3, m ě 0
p8pn ´ 3q ` 12qpm ` 1q if λ “ pn, 2, 2s, 1mq, n ě 3, s ě 1, m ě 0
4pn1 ´ n2 ` 1qp2m ` 1q if λ “ pn1, n2, 1mq, n1 ě n2 ě 3, m ě 0
12pn1 ´ n2 ` 1qpm ` 1q if λ “ pn1, n2, 2s, 1mq, n1 ě n2 ě 3,

s ě 1, m ě 0
4pn1 ´ n2 ` 1qpm ` 1q if λ “ pn1, n2, 3, 2s, 1mq, n1 ě n2 ě 3,

s ě 0, m ě 0
0 for all other λ

Proof. Given a partition λ, by Theorem 3.2.3 we know that mλ “ 0 if λ R Hp2, 3q. Hence
let λ P Hp2, 3q. In order to compute the multiplicity mλ, it is necessary to write the hook
multiplicity series of UT2pEq as a power series.

Let λ P Hp2, 3q and consider the triple pλ0, µ, νq. Notice that Dλ0 Ď Dp3,3q. It
follows that

λ0 P tp1q, p2q, p3q, p1, 1q, p2, 1q, p3, 1q, p2, 2q, p3, 2q, p3, 3qu.

First, let λ be a partition such that λ0 P tp1q, p2q, p3qu. Using Theorem 3.4.2, we obtain
mλ “ 1.

Consider now λ such that λ0 “ p1, 1q. By Theorem 3.4.2, we have that λ0

corresponds to the summand

v1v2

1 ´ y1
“ v1v2

˜

ÿ

mě0
ym

1

¸

.

It follows that partitions of type λ “ p1, 1, 1m
q with m ě 0 have multiplicity 1 or,

equivalently, if λ “ p1m
q, with m ą 1 then mλ “ 1.

Now, let λ be such that λ0 “ p2, 1q. Observe that

v2
1v2p2 ´ y1q

p1 ´ y1q2 “ v2
1v2

˜

2 `
ÿ

ně1
pm ` 2qym

1

¸

.

Hence, if λ “ p2, 1q, then mλ “ 2. Moreover, if λ “ p2, 1, 1m
q, with m ě 1, then mλ “ m`2

or, equivalently, if λ “ p2, 1m
q, with m ě 2, then mλ “ m ` 1.

Let λ be a partition such that λ0 “ p2, 2q. Then

v2
1v2

2

ˆ

2 ` y1
p1 ´ y1q2 `

4y1y2
p1 ´ y1q2p1 ´ y1y2q

˙

“ v2
1v2

˜

2 `
ÿ

mě1
p3m ` 2qym

1 `
ÿ

mě1

ÿ

sě1
4mym`s´1

1 ys
2

¸

.

Hence if λ “ p2, 2q, then mλ “ 2. If λ “ p2, 2, 1m
q, then mλ “ 3m ` 2.
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Observe that ym`s´1
1 ys

2 is in one-to-one correspondence with the partition
ν “ pm ` s ´ 1, sq, hence ν 1

“ p2s, 1m´1
q. So, if λ “ p2, 2, 2s, 1m´1

q, with m, s ě 1, then
mλ “ 4m or, equivalently, if λ “ p2, 2, 2s, 1m

q, with s ě 1 and m ě 0, then mλ “ 4pm` 1q.

The remaining cases are treated similarly.

Now we compute the multiplicities mλ in the cocharacter sequence of UT3pEq

when λ P Hp1, 1q.

Theorem 3.4.3. Let λ be a partition such that λ P Hp1, 1q. The multiplicity mλ in the
cocharacter sequence of UT3pEq is given by the following expression:

mλ “

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

1 if λ “ pnq, n ě 0
1 if λ “ p1mq, m ą 1
n if λ “ pn, 1q, n ě 2
m ` 1 if λ “ p2, 1mq, m ě 2
1
4p76 ´ 90m ` 26m2 ´ 54n ` 68mn ´ 20m2n if λ “ pn, 1mq, n ě 3,

`10n2 ´ 12mn2 ` 4m2n2q m ě 2

Proof. By Theorem 3.4.1, we have

xMpUT3pEq; v, t, yq “ 3Gp1q ´ 3G2
p1q ` 3G2

pvq `G3
p1q ´ 2G3

pvq `G3
pvtq `G3

pvyq (3.9)

By Theorem 3.3.1 and Corollary 3.3.1, we obtain

• Gp1q “ 1 `
v

p1 ´ tqp1 ´ yq
,

• G2
p1q “ 1 `

v

p1 ´ tqp1 ´ yq
`

vp1 ` tyq

p1 ´ tq2p1 ´ yq2 ,

• G2
pvq “

vp1 ` 2ty ` t2y2q

p1 ´ tq2p1 ´ yq2 ,

• G3
p1q “ 1 `

v

p1 ´ tqp1 ´ yq
`

vp1 ` tyq

p1 ´ tq2p1 ´ yq2 `
vp1 ` 2ty ` t2y2q

p1 ´ tq3p1 ´ yq3 ,

• G3
pvq “

vp1 ` 3ty ` 3t2y2 ` t3y3q

p1 ´ tq3p1 ´ yq3 ,

• G3
pvtq “

vpt ` 3t2y ` 3t3y2 ` t4y3q

p1 ´ tq3p1 ´ yq3 ,

• G3
pvyq “

vpy ` 3ty2 ` 3t2y2 ` t3y4q

p1 ´ tq3p1 ´ yq3 .



Chapter 3. pk, lq-multiplicity series of UTnpEq 85

By Equation (3.9) the p1, 1q-multiplicity series of UT3pEq in the variables v, t, y is

xMpUT3pEq; v, t, yq “1 `
v

p1 ´ tqp1 ´ yq
`
vp1 ` 4ty ` 3t2y2q

p1 ´ tq2p1 ´ yq2 `
v

p1 ´ tq3p1 ´ yq3 p´1 ` t

` y ´ 4ty ´ 5t2y2
´ 2t3y3

` 3t2y ` 3t3y2
` t4y3

` 3ty2
`

3t2y3
` t3y4˘

(3.10)

Note that in order to compute the multiplicity mλ where λ P Hp1, 1q, it is necessary to
write (3.10) as a power series. Recall that

ta1ya2

p1 ´ tqp1 ´ yq
“

ÿ

něa1

ÿ

měa2

tnym,

ta1ya2

p1 ´ tq2p1 ´ yq2 “
ÿ

něa1

ÿ

měa2

pn ´ a1 ` 1qpm ´ a2 ` 1qtnym,

ta1ya2

p1 ´ tq3p1 ´ yq3 “
ÿ

něa1

ÿ

měa2

ˆ

n ´ a1 ` 2
2

˙ˆ

m ´ a2 ` 2
2

˙

tnym.

Using the previous equations and making some algebraic manipulations, we obtain the
following expression

xMpUT3pEq; v, t, yq “1 ` v

˜

ÿ

ně0
tn `

ÿ

mě1
ym `

ÿ

ně1
pn ` 1qtny `

ÿ

mě2
pm ` 1qtym`

ÿ

ně2

ÿ

mě2

p32 ´ 34pm ` nq ` 10pn2 ` m2q ´ 12pm2n ` n2mq ` 44mn ` 4m2n2q

4 tnym

¸

(3.11)

By Equation (3.11), it follows that if λ “ pnq or λ “ p1m
q then mλ “ 1. Now, if

λ “ pn ` 1, 1q and n ě 1 then mλ “ n ` 1, this means that if λ “ pn, 1q with n ě 2 then
mλ “ n. Observe that if λ “ p2, 1m

q with m ě 2, its multiplicity is m ` 1.
Finally if λ “ pn ` 1, 1m

q with n, m ě 2, we have that

mλ “
32 ´ 34pm ` nq ` 10pn2 ` m2q ´ 12pmn2 ` n2mq ` 44mn ` 4m2n2

4 ,

or equivalently if λ “ pn, 1m
q with n ě 3 and m ě 2, we have that

mλ “
76 ´ 90m ` 26m2 ´ 54n ` 68mn ´ 20m2n ` 10n2 ´ 12mn2 ` 4m2n2

4 .

Recall that if we want to know all multiplicities of the cocharacter sequence of
UT3pEq, we have to work with the hook Hp3, 5q because by Theorem 3.2.3 we know that
χpUT3pEqq Ď Hp3, 5q. Hence the p3, 5q-multiplicity series xMpUT3pEq,V3,T3,Y5q has 11
variables and the computations are very technical.
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4 Specht property of varieties of graded Lie
algebras

Let F be an infinite field and let L “ UTnpF q
p´q be the Lie algebra of the nˆn

upper triangular matrices. If a, b P L, denote the commutator ra, bs “ ab ´ ba. The Lie
brackets are asssumed left normed, that is, ra, b, cs “ rra, bs, cs.

In this chapter we consider a particular but important grading on L. Suppose
G “ Zn in additive notation and recall that eij stand for the matrix units: eij has an entry
1 at position pi, jq and 0 elsewhere, then the algebra L is G-graded by setting L “ ‘

n´1
k“0Lk

where Lk is the span of all eij such that j ´ i “ k, this grading is called the canonical
Zn-grading. The principal goal of this chapter is to prove that the TZn-ideal of graded
identities of L has the Specht property when charF ě n or charF “ 0. Moreover we
prove that when n “ 3 and F is of characteristic 2 then the corresponding ideal of graded
identities does not satisfy the Specht property. Hence the restriction imposed on the
characteristic cannot be removed. The most significant new results of this chapter are
Theorem 4.1.1, Proposition 4.2.6, Theorem 4.2.1, Theorem 4.2.2 and Theorem 4.3.1.

The TZn-ideal of graded identities of L over an infinite field was described in

Theorem 4.0.1 (Koshlukov-Yukihide [50]). The Zn-graded identities of the Lie algebra L
of the upper triangular n ˆ n matrices over F follow from

#

rx
piq
1 , x

pjq

2 s, i ` j ě n

rx
p0q

1 , x
p0q

2 s
(4.1)

4.1 The case UT2pF q
p´q

First, we are going to study the Specht property when n “ 2. Let Y and Z

be two infinite countable sets, Y “ ty1, y2, . . .u and Z “ tz1, z2, . . .u. Consider the free
Lie algebra LpY Y Zq generated over F by Y Y Z. Note that the algebra LpY Y Zq has
a natural Z2-grading assuming the variables Y to be of degree 0 and those Z of degree
1. Consider the algebra UT2pF q endowed with the canonical Z2-grading, denote by I the
ideal of Z2-graded identities for UT2pF q. By Theorem 4.0.1 and the Jacobi identity, we get

rz, y1, y2s ´ rz, y2, y1s P I, (4.2)

hence the non-zero monomials in LpY Y Zq{I are of the type

rz, yi1 , yi2 , . . . , yik
s

where i1 ď i2 ď ¨ ¨ ¨ ď ik.
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Notation 1. We will denote rz, y1, . . . , y1
loooomoooon

a1

, . . . , yn, . . . , yn
loooomoooon

an

s by rz, a1y1, . . . , anyns.

Consider the following set

B “ trz, a1y1, . . . , anyns|n ě 1, ai ą 0, for all iu.

Given f “ rz, a1y1, . . . , anyns P B, we will define Vf :“ pa1 . . . , anq. Note that tVf |f P Bu Ď

DpNq, hence Vf “ pa1, . . . , anq ď Vg “ pa1
1, . . . , a

1
mq if there exists an order preserving

injection φ : N Ñ N such that φpnq ď m and ai ď a1
φpiq for any i “ 1, . . . , n.

Proposition 4.1.1. Let f, g P B. If Vf ď Vg then g is a consequence of f modulo I, i.e.,
g P xf Y IyTZ2

.

Proof. Suppose that Vf “ pa1, . . . , anq and Vg “ pa1
1, . . . , a

1
mq. By hypothesis, there is a sub-

sequence pa1
i1 , . . . , a

1
in

q of Vg such that aj ď a1
ij

for all j P t1, . . . , nu. Let fpz, yi1 , . . . , yinq the
polynomial obtained replacing the variable yj by yij

for each 1 ď j ď n in fpz, y1, . . . , ynq.
Then by equality (4.2), we get

rfpz, yi1 , . . . , yinq, pa1
i1 ´ a1qyi1 , . . . , pa

1
in

´ anqyins ” rz, a1
i1yi1 , . . . , a

1
in
yins pmod Iq

Now, let tl1, . . . , lm´nu “ t1 . . . ,mu ´ ti1, . . . , imu. Using again equality (4.2), we conclude
that

rz, a1
i1yi1 , . . . , a

1
in
yin , a

1
l1yl1 , . . . , a

1
lm´n

ylm´ns ” g pmod Iq.

and the result follows.

Definition 4.1.1. Consider f, g P B and define the following quasi-order em B: f ďB g if
Vf ď Vg.

Proposition 4.1.2. pB,ďBq satisfies f.b.p.

Proof. Suppose that there is an infinite sequence tfiuiě0 of pairwise incomparable elements
in B with respect to the order ďB. The previous sequence defines the sequences tVfi

uiě0 in
DpNq, by definition 4.1.1, the elements of the sequence tVfi

uiě0 are mutually incomparable,
but this is a contradiction because by Theorem 1.5.1 DpNq is partially-well ordered.

Theorem 4.1.1. Let J be a TZ2-ideal such that I Ď J , then J is finitely generated as
TZ2-ideal.

Proof. Since F is an infinite field, we know that J is generated as TZ2-ideal by multihomo-
geneous polynomials. Hence there exists a subset B1

Ď B such that

J “ xB1
yTZ2

pmod Iq.
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By Proposition 4.1.2 and Theorem 1.5.1, there is B0 Ď B1 such that B0 is a finite set and
B0 Ď B1

Ď B0. It follows that given g P B1, there exists f P B0 such that Vf ď Vg. By
Proposition 4.1.1, g P xfyTZ2

Ď xB0yTZ2
mod I, then

J “ xB0yTZ2
pmod Iq,

hence the TZ2-ideal J is finitely generated.

4.2 The case UT3pF q
p´q

Let Y , Z and W be infinite countable sets, namely Y “ ty1, y2, . . .u, Z “

tz1, z2, . . .u and W “ tw1, w2, . . .u. Consider the free Lie algebra LpY YZ YW q generated
over F by Y Y Z Y W . Note that the algebra LpY Y Z Y W q has a natural Z3-grading
assuming the variables Y, Z and W to be of degree 0, 1 and 2 respectively. Consider the
algebra UT3pF q endowed with the canonical Z3-grading, denote by I the ideal of Z3-graded
identities for UT3pF q.

By Theorem 4.0.1, the Z3-graded identities for UT3pF q follow from
$

’

’

’

’

&

’

’

’

’

%

ry1, y2s

rz1, z2, z3s

rw1, w2s

rz, ws

(4.3)

Using the previous identities and the Jacobi identity, we have the following equalities,
(modulo I):

rz, y1, y2s “ rz, y2, y1s, (4.4)

rw, y1, y2s “ rw, y2, y1s, (4.5)

rz1, y1, y2, z2s “ rz1, y2, y1, z2s. (4.6)

It follows that the non-zero monomials in LpY Y Z Y W q{I are the following types

I. rz, yi1 , . . . , yik
s;

II. rw, yi1 , . . . , yik
s;

III. rz, yi1 , . . . , yik
, z, yj1 , . . . , yjl

s;

IV. rz1, yi1 , . . . , yik
, z2, yj1 , . . . , yjl

s,

where i1 ď i2 ď ¨ ¨ ¨ ď ik and j1 ď i2 ď ¨ ¨ ¨ ď jl. Observe that if f is a monomial of type
III, then its second block of the variables Y can be empty. Moreover if f is a monomial of
type IV, then its first or second block of the variables Y can be empty or both.
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Let f P LpY YZYW q{I be a multihomogeneous polynomial, then f is equivalent
to a monomial of type I or II or f is a linear combinations of monomials of type III or
type IV.

Notation 2.

rz, a1y1, . . . , anyns “ rz, y1, . . . , y1
loooomoooon

a1

, . . . , yn, . . . , yn
loooomoooon

an

s

rw, a1y1, . . . , anyns “ rw, y1, . . . , y1
loooomoooon

a1

, . . . , yn, . . . , yn
loooomoooon

an

s

rz1, a1y1, . . . , anyn, z2, b1y1, . . . , bnyns “ rz1, y1, . . . , y1
loooomoooon

a1

, . . . , yn, . . . , yn
loooomoooon

an

, z2,

y1, . . . , y1
loooomoooon

b1

, . . . , yn, . . . , yn
loooomoooon

bn

s

Consider the following sets

B1 “ trz, a1y1, . . . , anyns | n ě 1, ai ą 0, for all iu,
B2 “ trw, a1y1, . . . , anyns | n ě 1, ai ą 0, for all iu,

Bp1,1q “ trz1, a1y1, . . . , anyn, z2, b1y1, . . . , bnyns | n ě 0, ai, bi ě 0, for all iu.

Given f P Bi, we assign to it the finite sequence Vf “ pa1, . . . , anq where 1 ď i ď 2. Note
that Vf P DpNq. So, we define the following order in f P Bi.

Definition 4.2.1. Let f , g P Bi where i “ 1 or 2, we define f ďBi
g whenever Vf ď Vg.

Proposition 4.2.1. Consider the set Bi and let f , g P Bi.

i. If f ďBi
g, then g is a consequence of f modulo I.

ii. pBi,ďBi
q satisfies the f.b.p.

Proof. The argument is analogous to the proofs of Propositions 4.1.1 and 4.1.2.

Corollary 4.2.1. Let J be a TZ3-ideal such that I Ď J and let Ai “ tf P J | f P Biu,
i “ 1, 2. Then there exist finite subsets A1

i Ď Ai such that

xAiyTZ3
“ xA1

iyTZ3
pmod Iq.

Proof. By item ii. of Proposition 4.2.1 and Theorem 1.5.1, there exist finite subsets A1
i Ď Ai

where i “ 1, 2, such that
A1

i Ď Ai Ď A1
i.

It follows that given g P Ai, there exists f P A1
i such that f ďBi

g. Hence, by item i. of
Proposition 4.2.1, g is a consequence of f modulo I. Then

xAiyTZ3
“ xA1

iyTZ3
pmod Iq.
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If f P Bp1,1q, we assign to it the finite sequence Vf “ ppa1, b1q, . . . , pan, bnqq.
Observe that Vf P DpN0

2
q. Recall that by Theorem 1.5.2 and Proposition 1.5.1, the set

DpN0
2
q is partially well ordered.

Definition 4.2.2. Let f , g be two polynomials in Bp1,1q. Define the following quasi-order
in Bp1,1q: f ďBp1,1q

g whenever Vf ď2 Vg.

Proposition 4.2.2. If f ďBp1,1q
g, then g P xf Y IyTZ3

.

Proof. Suppose that Vf “ ppa1, b1q, . . . , pan, bnqq and Vg “ ppa1
1, b

1
1q, . . . , pa1

m, b
1
mqq. By

hypothesis there exists a subsequence ppa1
i1 , b

1
i1q, . . . , pa1

in
, b1

in
qq of Vg such that ak ď a1

ik

and bk ď b1
ik

for every k P t1, . . . , nu. Let fpz1, z2, yi1 , . . . , yinq be the polynomial obtained
replacing the variable yk by yik

for each 1 ď k ď n in fpz1, z2, y1, . . . , ynq. Then by equality
(4.5), we get

f1 “ rfpz1, z2, yi1 , . . . , yinq, pb1
i1 ´ b1qyi1 , . . . , pb

1
in

´ bnqyins

” rz1, ai1yi1 , . . . , ainyin , z2, b
1
i1yi1 , . . . , b

1
in
yins pmod Iq.

Replacing the variable z1 by rz1, pa
1
i1 ´ a1qyi1 , . . . , pa

1
in

´ anqyins in f1 and applying several
times (4.4), we obtain

f1prz1, pa
1
i1 ´ a1qyi1 , . . . , pa

1
in

´ anqyins, z2, yi1 , . . . , yinq

” rz1, a
1
i1yi1 , . . . , a

1
in
yin , z2, b

1
i1yi1 , . . . , b

1
in
yins.

Let tl1, . . . , lm´nu “ t1 . . . ,muzti1, . . . , imu. It follows from equalities (4.4) and (4.5)

rrz1, a
1
l1yl1 , . . . , a

1
lm´n

ylm´ns, a1
i1yi1 , . . . , a

1
in
yin , z2,

b1
i1yi1 , . . . , b

1
in
yin , b

1
l1yl1 , . . . , b

1
lm´n

ylm´ns ” g pmod Iq.

Hence g is a consequence of f modulo I.

Proposition 4.2.3. pBp1,1q,ďBp1,1q
q is a quasi well ordered set.

Proof. Suppose that there is an infinite sequence tfiuiě0 of pairwise incomparable ele-
ments in Bp1,1q with respect to the order ďBp1,1q

. The above sequence defines the infinite
sequence tVfi

uiě0 in DpN0
2
q. Note that the elements of the sequence tVfi

uiě0 are pairwise
incomparable, but this is a contradiction since the set DpN0

2
q is partially well ordered.

Lemma 4.2.1. The commutators

c “ rz1, y1, . . . , yt, z2, yt`1, . . . , yt`ks

are linearly independent modulo the Z3-graded identities for UT3pF q
p´q.
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Proof. Here we use a technique based on generic matrices, adapted to our case. First,
consider the substitution z1 “ e12 and z2 “ e23. Computing c with the above substitution of
the zi, and assuming yi “ y1

i e11 ` y2
i e22 ` `y3

i e33 where the yj
i are commuting independent

variables (here j is an upper index, not an exponent), yields

c “

2
ź

s“1

ź

i

pys`1
i ´ y1

i qe13.

Here in the second product, i ranges from 1 to t, if s “ 1. If s “ 2, i ranges from t ` 1 to
t ` k. Now make the following substitutions for the yi.

First put all of the yj
i “ 0 except for:

• i “ 1, . . . , t: here define y2
i “ 1.

• i “ t ` 1, . . . , t ` k: here define y3
i “ 1.

Such a substitution vanishes all commutators but c, and c “ e13. So if we suppose there is a
linear combination among commutators of the type c (we assume them multihomogeneous;
this is no loss of generality since the base field is infinite), we assume that c participates
with a nonzero coefficient in it. Then make the substitution for the yi as above. All
commutators vanish except for c. This proves they are linearly independent.

Lemma 4.2.2. The commutators

c “ rz1, a1y1, . . . , anyn, z2, b1y1, . . . , bnyns

are linearly independent modulo the Z3-graded identities for UT3pF q
p´q.

Proof. First, consider the substitution z1 “ e12 and z2 “ e23. Computing c with the
above substitution of the zi, and assuming yi “ y1

i e11 ` y2
i e22 ` `y3

i e33, where the yj
i are

commuting independent variables as above, gives

c “

˜

n
ź

i“1
py2

i ´ y1
i q

ai

n
ź

i“1
py3

i ´ y1
i q

bi

¸

e13.

Now making y1
i “ 0 for all i, we obtain

c “

˜

n
ź

i“1
py2

i q
ai

n
ź

i“1
py3

i q
bi

¸

e13. (4.7)

Define the following monomial

mc “

n
ź

i“1
py2

i q
ai

n
ź

i“1
py3

i q
bi .
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Consider c, c1 two different commutators and notice that mc ‰ mc1 . Hence, the elements
of the set tmc | c P Bp1,1qu are linearly independent. So if we suppose there is a nontrivial
linear combination among commutators of type c (we assume them multihomogeneous)
such that

t
ÿ

i“1
αicipz1, z2, y1, . . . , ynq P I.

By equality (4.7), we have

0 “

˜

t
ÿ

j“1
αjmcj

¸

e13.

It follows that
0 “

t
ÿ

j“1
αjmcj

,

hence αj “ 0. This proves the commutators c are linearly independent.

Definition 4.2.3. Let fi, fj P Bp1,1q be multihomogeneous polynomials of the same
multidegree. Consider the finite sequences

Vfi
“ ppa1, b1q, . . . , pan, bnqq, Vfj

“ ppa1
1, b

1
1q, . . . , pa1

n, b
1
nqq.

We define the order fj ď
1 fi as follows:

fj ď
1 fi if

n
ÿ

i“1
a1

i ą

n
ÿ

i“1
ai, or if

n
ÿ

i“1
a1

i “

n
ÿ

i“1
ai and pa1, . . . , anq ďlex pa1

1, . . . , a
1
nq.

The order ď
1 is linear on the polynomials of the same multidegree in Bp1,1q.

Definition 4.2.4. Let f be a multihomogeneous polynomial such that

f “

n
ÿ

i“1
αifi,

where fi P Bp1,1q and αi P F zt0u. We define the leading monomial of f by

mlpfq “ max
ď1

tfi | 1 ď i ď nu,

and the leading coefficient of f , denoted by clpfq, as the coefficient of mlpfq.

By Lemmas 4.2.1 and 4.2.2, this way of writing f as a linear combination of
elements of Bp1,1q is unique. For this reason, we can define the leading monomial of f with
respect to the order ď

1.

Proposition 4.2.4. Let fpz1, z2, y1, . . . , ynq be a multihomogeneous polynomial such that

fpz1, z2, y1, . . . , ynq “

n
ÿ

i“1
αifipz1, z2, y1, . . . , ynq,

where fipz1, z2, y1, . . . , ynq P Bp1,1q and αi P F zt0u. The following statements hold.
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i. If gpz1, z2, y1, . . . , yn, yq “ rfpz1, z2, y1, . . . , ynq, ys, then mlpgq “ rmlpfq, ys.

ii. If hpz1, z2, y1, . . . , yn, yq “ fprz1, ys, z2, y1, . . . , ynq, then

mlphq “ mlpfqprz1, ys, z2, y1, . . . , ynq.

Proof. It follows from Definitions 4.2.3 and 4.2.4.

Proposition 4.2.5. Let f , g be two multihomogeneous polynomials such that

f “

t
ÿ

i“1
αifi, g “

s
ÿ

j“1
βjgj,

where αi, βj P F zt0u, fi, gj P Bp1,1q for all 1 ď i ď t and 1 ď j ď s. Suppose that
mlpfq ďBp1,1q

mlpgq, then there exists h P xfyZ3 modulo I such that mlphq “ mlpgq and
clphq “ clpfq.

Proof. By Proposition 4.2.2, we know that mlpgq P xmlpfqyZ3 mod I. Then, making the
same computations done on mlpfq to obtain mlpgq, we can obtain a consequence h from
f . Moreover, by Proposition 4.2.4, mlphq “ mlpgq. It is clear that the polynomial h has
the same leading coefficient as f .

Definition 4.2.5. Let f be a multihomogeneous polynomial that is a linear combination
of polynomials in Bp1,1q. Then f is called polynomial of type p1, 1q.

Proposition 4.2.6. There is no infinite sequence of polynomial tfiuiě1 of type p1, 1q such
that

fi R xf1, . . . , fi´1yTZ3
pmod Iq

where i ě 2.

Proof. Suppose, on the contrary, that there exists such an infinite sequence of polynomials
tfiuiě1. Moreover, suppose that the fi’s are of different multidegrees in the variables Y .
Define the following sets

• Ji “ xf1, . . . , fiyTZ3
pmod Iq;

• Ri “ tf P JizJi´1 | f is of type p1, 1q and of the same multidegree in the variables Y
as fiu ;

• xRi “ tmlpfq | f P Riu.

Note that fi P Ri, so without loss of generality, we can suppose that

mlpfiq “ min
ď1

xRi.
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We denote mi :“ mlpfiq where i ě 1. Then we have the infinite sequence tmiuiě1 in Bp1,1q.
By Proposition 4.2.3, we have that pBp1,1q,ďBp1,1q

q is a quasi well ordered set. It follows
from Theorem 1.5.1 that there exists an infinite subsequence tmik

ukě1 of the sequence
tmiuiě1 such that

mi1 ďBp1,1q
mi2 ďBp1,1q

¨ ¨ ¨ ďBp1,1q
mik

ďBp1,1q
¨ ¨ ¨

where i1 ă i2 ă ¨ ¨ ¨ ik ă ¨ ¨ ¨ .

Let αik
be the leading coefficient of fik

, where k ě 1. Take s ą 1 such that
s

ÿ

l“1
αil

‰ 0.

Recall that mil
ďBp1,1q

mis`1 , where l P t1, . . . su. By Proposition 4.2.5, there exists
hl P xfil

yTZ2
such that

mlphlq “ mis`1 and clphlq “ αil
,

for every 1 ď l ď s. Consider the polynomial

h “

s
ÿ

l“1
hl,

and notice that mlphq “ mis`1 and clphq “

s
ÿ

l1

αil
.

Observe that hl P Jil
Ď Jis`1´1, where 1 ď l ď s, and since Jis`1´1 is TZ2-ideal,

we have h P Jis`1´1. Define

g “ fis`1 ´ pαis`1clphq
´1

qh.

Then mlpgq ‰ mis`1 and mlpgq ď
1 mis`1 . Note that g P Jis`1 because fis`1 P Jis`1 and

h P Jis`1´1 Ď Jis`1 . On the other hand, g R Jis`1´1 because fis`1 R Jis`1´1 and h P Jis`1´1.
It follows that g P Ris`1 , then mlpgq P pRis`1 , but mlpgq ă

1 mis`1 and mis`1 “ min
ď1

pRis`1 ,
which is a contradiction.

As a direct consequence of Proposition 4.2.6, we have the following corollary.

Corollary 4.2.2. Let J be a TZ3-ideal such that I Ď J . Consider the following set

Ap1,1q “ tf P J | f is a polynomial of type p1, 1qu.

Then there exists a finite subset A1
p1,1q Ď Ap1,1q such that

xAp1,1qyTZ3
“ xA1

p1,1qyTZ3
pmod Iq.

Now we deduce the Specht property for the ideal of Z3-graded identities for
UT

p´q

3 pF q when F is an infinite field of characteristic different from 2.
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Theorem 4.2.1. Suppose that charF ‰ 2. If J is a TZ3-ideal such that I Ď J then J is
finitely generated as TZ3-ideal.

Proof. Since F is infinite, J is generated by its multihomogeneous polynomials. As charF ‰

2, using the multilinearization process, we can consider that every multihomogeneous
polynomial with variables z1s is linear in these variables, because by the identities (4.3),
they appear in the non-zero monomials of LpY Y Z Y W q{I at most twice. Hence, J is
generated as a TZ3-ideal, modulo I, by the following sets

• Ai “ tf P J | f P Biu where 1 ď i ď 2;

• Ap1,1q “ tf P J | f is a polynomial of type p1, 1qu.

Using Corollaries 4.2.1 and 4.2.2, we get that there exist finite subsets A1
i Ď Ai, where

i “ 1, 2, and A1
p1,1q Ď Ap1,1q such that

xAiyTZ3
“ xA1

iyTZ3
pmod Iq;

xAp1,1qyTZ3
“ xA1

p1,1qyTZ3
pmod Iq.

It follows
J “ xA1

1 Y A1
2 Y A1

p1,1qyTZ3
pmod Iq,

therefore J “ xA1
1 Y A1

2 Y A1
p1,1q Y IyTZ3

, and J is finitely generated as a TZ3-ideal.

4.2.1 The case UT p´q
3 pF q in characteristic 2

In this subsection we prove that the graded identities of UT p´q

3 pF q do not
satisfy the Specht property if F is an infinite field of characteristic 2.

Lemma 4.2.3. Let F be an infinite field of characteristic 2. For k ě 1, define the
polynomial

ck “ rz, y1, . . . , yk, zs.

Consider f a consequence of ck pmod Iq such that f is a multihomogeneous polynomial
and deg f ą deg ck. Suppose that f has degree 2 in the variable z and it is multilinear in
the variables y’s, then f is a linear combination of polynomials

rz, yi1 , . . . , yit , z, yit`1, . . . yil
s,

where the rightmost block of variables Y is not empty.

Proof. Note that the multihomogeneous consequences of the polynomial ck pmod Iq, that
have degree 2 in the variable z and degree 1 in all variables y, are obtained by applying a
combination of the following rules:
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• Making substitutions of type z ÞÑ z ` rz, yi1 , . . . , yits.

• Making rck, yi1 , . . . , yits.

Now replacing z by z ` rz, yk`1, . . . , yk`ns in ck and taking the homogeneous component
of degree 1 in yk`1, . . . , yk`n, we obtain the following polynomial

g “ rz, y1, . . . , yk, yk`1, . . . , yk`n, zs ` rz, y1, . . . , yk, rz, yk`1, . . . , yk`nss pmod Iq,

where we apply to the first summand several times the identity (4.4).

Let C “ tk`1, . . . , k`nu and let P pCq “ tS | S Ď Cu be the set of all subsets
of C. If S “ ti1, . . . , itu Ď C, and its complement in C is Sc

“ CzS “ tit`1, . . . , inu, we
suppose that i1 ă ¨ ¨ ¨ ă it and it`1 ă ¨ ¨ ¨ ă in. Define

rz, y1, . . . , yk, YS, z, YScs “ rz, y1, . . . , yk, yi1 , . . . , yit , z, yit`1 , . . . , yins.

Recall that charF “ 2, so using several times the fact that ad y “ r˚, ys is a derivation in
every Lie algebra, we have

rz, y1, . . . , yk, rz, yk`1, . . . , yk`nss “
ÿ

SPP pCq

rz, y1, . . . , yk, YS, z, YScs,

therefore

g “ rz, y1, . . . , yk, yk`1, . . . , yk`n, zs `
ÿ

SPP pCq

rz, y1, . . . , yk, YS, z, YScs

“ 2rz, y1, . . . , yk, yk`1, . . . , yk`n, zs `
ÿ

SPP pCq,S‰C

rz, y1, . . . , yk, YS, z, YScs

“
ÿ

SPP pCq,S‰C

rz, y1, . . . , yk, YS, z, YScs,

and the result follows.

Theorem 4.2.2. If F is an infinite field, charF “ 2, then I, the ideal of the Z3-graded
identities of UT p´q

3 does not have the Specht property.

Proof. Given k ě 1, as above, we consider the polynomials

ckpz, y1, . . . , ykq “ rz, y1, . . . , yk, zs.

Note that by Theorem 4.0.1, ck ‰ 0 pmod Iq. We perform the following substitutions in
the polynomial ck

• z “ e12 ` e23,

• yi “ γ1
i e11 ` γ2

i e22 ` γ3
i e33,
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where γj
i are commuting independent variables. In this way we obtain the following

expression
˜

k
ź

i“1
pγ1

i ` γ2
i q `

k
ź

i“1
pγ2

i ` γ3
i q

¸

e13 (4.8)

Define

h “

˜

k
ź

i“1
pγ1

i ` γ2
i q `

k
ź

i“1
pγ2

i ` γ3
i q

¸

,

a polynomial in the commuting variables γl
i where 1 ď i ď k and 1 ď l ď 3.

Let Ik “ t1, . . . , ku and consider S Ď Ik such that S ‰ H and S ‰ Ik. We
define the following polynomial

fS “ rz, yi1 , . . . , yit , z, yit`1 , . . . , yik
s,

where S “ ti1, . . . , itu, Sc
“ tit`1, . . . , iku, i1 ă ¨ ¨ ¨ ă it and it`1 ă ¨ ¨ ¨ ă ik. By Theorem

4.0.1, fS ‰ 0 pmod Iq. Making the above substitution in fS, we get
˜

ź

iPS

pγ1
i ` γ2

i q `
ź

iPS

pγ2
i ` γ3

i q

¸

ź

jPSc

pγ1
j ` γ3

j qe13. (4.9)

Consider

hS “

˜

ź

iPS

pγ1
i ` γ2

i q `
ź

iPS

pγ2
i ` γ3

i q

¸

ź

jPSc

pγ1
j ` γ3

j q.

Observe that hS is a polynomial in the commuting variables γl
i where 1 ď i ď k and

1 ď l ď 3. Notice that

h R spanF thS | S Ď Ik, S ‰ Ik, S ‰ Hu,

because the monomials γ1
1

k
ź

i“2
γ2

i and γ3
1

k
ź

i“2
γ2

i appear in the polynomial h, but these

monomials do not appear in any of the hS.

Let Jk “ xc1, . . . ckyTZ3
pmod Iq and suppose ck P Jk´1. By Lemma 4.2.3, we

get
ck “

ÿ

SPP
αSfS

where αS P F and S P P “ tS Ď Ik | S ‰ Ik, S ‰ Hu. Then (4.8) and (4.9) imply

h “
ÿ

SPP
αShS,

but h R spanF thS | S P Pu. Therefore ck R Jk´1 and we have that the following ascending
chain of TZ3-ideals modulo I

J1 Ă J2 Ă ¨ ¨ ¨ Ă Jk Ă ¨ ¨ ¨ ,

where Ji “ xc1, . . . ciyTZ3
, is not stationary (does not stabilize). Therefore the TZ3-ideal I

does not have the Specht property.
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4.3 The case UTnpF q
p´q, n ą 3

Let Zgi and Y be disjoint infinite countable sets, Zgi “ tzgi
1 , z

gi
2 . . . , u where

gi P Znzt0u and Y “ ty1, y2, . . .u. Consider the free Lie algebra

LZn “ L
ˆ

ď

giPZnzt0u

Zgi Y Y

˙

freely generated over F by
ď

giPZnzt0u

Zgi Y Y . Notice that the algebra LZn has a natural

Zn-grading assuming the variables Y , Zgi to be of homogeneous degrees 0 and gi, for
gi P Znzt0u, respectively. Consider the algebra UTnpF q endowed with the canonical
Zn-grading, and denote by I the ideal of Zn-graded identities for UTnpF q.

By Theorem 4.0.1, we get that the non-zero monomials in the algebra LZn{I

are of the following types

I. rzgi , yi1 , . . . , yiss,

II. rzgj1 , y
p1q

i1 , . . . , y
p1q

is
, zgj2 , y

p2q

l1 , . . . , y
p2q

lm
, . . . , zgjk , y

pkq

t1 , . . . , y
pkq

tn
s,

where
k

ÿ

j“1
gij

ď n ´ 1 and the indices of the variables y’s are ordered in non-decreasing

way (that is their indices, in each group, increase with possible repetitions). Observe that
some (or all) of the blocks of variables y’s can be empty in monomials of type II.

Let z1, . . . , zk be variables of degree g1, . . . , gk, respectively, such that
k

ÿ

i

gi ď

n ´ 1 and gi ‰ 0. Denote by

rzi, a1y1, . . . , anyns “ rz, y1, . . . , y1
loooomoooon

a1

, . . . , yn, . . . , yn
loooomoooon

an

s

rz1, a
p1q

1 y1, . . . , a
p1q
n yn, . . . , zk, a

pkq

1 y1, . . . , a
pkq
n yns

“ rz1, y1, . . . , y1
loooomoooon

a
p1q

1

, . . . , yn, . . . , yn
loooomoooon

a
p1q
n

, . . . , zk, y1, . . . , y1
loooomoooon

a
pkq

1

, . . . , yn, . . . , yn
loooomoooon

an
pkq

s.

Define the following sets

Bgi
“ trzi, a

p1q

1 y1, . . . , a
p1q
n yns | ai ą 0, n ě 1u;

Bpg1,...,gkq “ trz1, a
p1q

1 y1, . . . , a
p1q
n yn, zσp2q, a

p2q

1 y1, . . . , a
p2q
n yn, . . . , zσpkq, a

pkq

1 y1, . . . , a
pkq
n ynsu,

where σ P Sk, σp1q “ 1, apjq

i ě 0, 1 ď j ď n, and n ě 1.

Definition 4.3.1. Let f “ rzi, a1y1, . . . , anyns, g “ rzi, a
1
1y1, . . . , a

1
myms be polynomials in

Bgi
. Consider the finite sequences in DpNq

Vf “ pa1, . . . , anq, Vg “ pa1
1, . . . , a

1
mq.

We define the following order on Bgi
: f ďBgi

g whenever Vf ď Vg.
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Proposition 4.3.1. Consider the set Bgi
and let f , g P Bgi

be two polynomials in Bi.

i. If f ďBgi
g, then g is a consequence of f modulo I.

ii. pBgi
,ďBgi

q satisfies the f.b.p.

iii. Let J be a TZn-ideal such that I Ď J . Consider the following sets

Agi
“ tf P J | f P Bgi

u.

Then there exist finite subsets A1
gi

Ď Agi
such that

xAgi
yTZn

“ xA1
gi

yTZn
pmod Iq.

Proof. The proof of this proposition is completely analogous to the proofs of Proposition
4.2.1 and Corollary 4.2.1, and that is why we omit it.

Definition 4.3.2. Let f , g P Bpg1,...,gkq be respectively the polynomials

rz1, a
p1q

1 y1, . . . , a
p1q
n yn, zσp2q, a

p2q

1 y1, . . . , a
p2q
n yn, . . . , zσpkq, , a

pkq

1 y1, . . . , a
pkq
n yns,

rz1, a
1
1

p1q
y1, . . . , a

1
m

p1q
ym, zσp2q, a

1
1

p2q
y1, . . . , a

1
m

p2q
ym, . . . , zσpkq, a

1
1

pkq
y1, . . . , a

1
m

pkq
yms

where σ, τ P Sk are such that 1 “ σp1q “ τp1q. Consider the finite sequences

Vf “ ppa
p1q

1 , . . . , a
pkq

1 q, . . . , pap1q
n , . . . , apkq

n qq,

Vg “ ppa1
1

p1q
, . . . , a1

1
pkq

q, . . . , pa1
m

p1q
, . . . , a1

m
pkq

qq.

If Vf ďk Vg and σ “ τ , we write f ďBpg1,...,gkq
g.

Recall that Vf , Vg P DpN0
k
q. The order ďk coincides with the order defined in

Example 1.5.1.

Lemma 4.3.1. Let f P Bg1,...,gk
be such that

fpz1, . . . , zk, y1, . . . , ykq “ rz1, y1, z2, y2, . . . , zk, yks.

Then the polynomial

g “ rz1, y1, . . . , zi´1, yi´1, zi, y, yi, zi`1, . . . , zk, yks P xfyTZn
pmod Iq.

Proof. If i “ 1 then g “ fprz1, ys, z2, . . . , zk, y1, . . . , ykq P xfyTZn
pmod Iq. If i “ k then

g “ rf, ys and g is a consequence of f .

Thus we suppose 1 ă i ă k. Let fs be the polynomial obtained replacing the
variable zs by rzs, ys in f , where 1 ď s ď i. Notice that fs equals

rz1, y1, . . . , zs, y, ys, zs`1, ys`1 . . . , zk, yks ´ rz1, y1, . . . , zs´1, ys´1, y, zs, ys, . . . , zk, yks,
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where s P t1, . . . , iu. Recall that ry, y1
s “ 0 mod I, thus one has

g “

i
ÿ

s“1
fs pmod Iq.

Therefore g is a consequence of f modulo I.

The previous lemma has as a direct consequence the following result.

Proposition 4.3.2. Let f , g P Bpg1,...,gkq be polynomials such that Vf ďBpg1,...,gkq
Vg. Then

g P xfyTZn
modulo I.

Proposition 4.3.3. The set pBpg1,...,gkq,ďBpg1,...,gkq
q satisfies the f.b.p.

Proof. Suppose that there is an infinite sequence tfiuiě1 of pairwise incomparable elements
in Bpg1,...,gkq with respect to the order ďBpg1,...,gkq

. Since the symmetric group Sk is a finite
set, we obtain an infinite subsequence tfij

ujěi from tfiuiě1, such that the permutations σij

are the same for all j ě 1. Hence, the previous subsequence induces the sequence tVfij
ujěi

in DpNk
q. By Definition 4.3.2, these elements are pairwise incomparable with respect to

the order ďk. But this is absurd because pDpN0
k
q,ďkq is partially well-ordered.

Proposition 4.3.4. Let n ě 3 and take z1, . . . , zk variables of degrees g1, . . . , gk,

respectively, such that gi ‰ 0 and
k

ÿ

i“1
gi ď n ´ 1. Let yi be variables of degree 0. Then the

commutators

c “ rz1, y1, . . . , yt1 , z2, yt1`1, . . . , yt1`t2 , z3, . . . , zk, yt1`¨¨¨`tk´1`1, . . . , tt1`¨¨¨`tk
s

are linearly independent modulo the graded identities for UTnpF q
p´q.

Proof. Suppose that m ´ 1 “ g1 ` ¨ ¨ ¨ ` gk and consider first the substitutions:

z1 “ e1,g1`1, z2 “ eg1`1,g1`g2`1, . . . , zk “ eg1`¨¨¨`gk´1`1,g1`¨¨¨`gk`1.

Pay attention g1 ` ¨ ¨ ¨ ` gk ` 1 “ m ď n.

A standard staircase argument shows that, fixing z1 at the leftmost position in
the commutator, the only permutation of the z2, . . . , zk that yields a nonzero element will
be as in the commutator c given in the statement of the proposition.

Computing c with the above substitution of the zi, and assuming yi “ y1
i e11 `

y2
i e22 ` ¨ ¨ ¨ ` yn

i enn where the yj
i are commuting independent variables, yields

c “

k
ź

s“1

ź

i

pyg1`¨¨¨`gs`1
i ´ y1

i qe1m.

Here in the second product, i ranges:
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• From 1 to t1, if s “ 1.

• From t1 ` ¨ ¨ ¨ ` ts´1 ` 1 to t1 ` ¨ ¨ ¨ ` ts, if s ě 2.

Now make the following substitutions for the yi.

First put all of the yj
i “ 0 except for:

• i “ 1, . . . , t1: here define yg1`1
i “ 1.

• i “ t1 ` 1, . . . , t1 ` t2: here define yg1`g2`1
i “ 1.

• And so on, for i “ t1 ` ¨ ¨ ¨ ` ts´1 ` 1 to i “ t1 ` ¨ ¨ ¨ ` ts define yg1`¨¨¨`gs`1
i “ 1.

Such a substitution vanishes all commutators but c, and c evaluates to c “ e1m.

Let us suppose there is a nontrivial linear combination among multihomogeneous
commutators of the type c, such that c participates with a nonzero coefficient in it.

First we get, by means of the above substitution for the zi, the correct order
for the z2, . . . , zk. Then we make the substitutions for the yi as above. All commutators
vanish except for c. This implies the coefficient of c must be 0, a contradiction. This proves
the linear independence.

Proposition 4.3.5. Let n ě 3 and let z1, . . . , zk be variables of degrees g1, . . . , gk,

respectively, such that gi ‰ 0 and
k

ÿ

i“1
gi ď n ´ 1. Take yi variables of degree 0. Then the

commutators

c “ rz1, a
p1q

1 y1, . . . , a
p1q

t yt, z2, a
p2q

1 y1, . . . , a
p2q

t yt, . . . , zk, a
pkq

1 y1, . . . , a
pkq

t yts

are linearly independent modulo the graded identities of UTnpF q
p´q.

Proof. Suppose that m ´ 1 “ g1 ` ¨ ¨ ¨ ` gk and consider first the substitution:

z1 “ e1,g1`1, z2 “ eg1`1,g1`g2`1, . . . , zk “ eg1`¨¨¨`gk´1`1,g1`¨¨¨`gk`1.

(Pay attention that g1 ` ¨ ¨ ¨ ` gk ` 1 “ m.)

Once again, a staircase argument shows that, fixing z1 at the leftmost position
in the commutator, the only permutation of the z2, . . . , zk that yields a nonzero element
will be as in the commutator c.

Computing c with the above substitution of the zi, and assuming yi “ y1
i e11 `

y2
i e22 ` ¨ ¨ ¨ ` yn

i enn, where the yj
i are commuting independent variables, gives

c “

k
ź

s“1

t
ź

i“1
pyg1`¨¨¨`gs`1

i ´ y1
i q

a
psq

i e1m.
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Now making the substitution y1
i “ 0 for all i, we obtain:

c “

k
ź

s“1

t
ź

i“1
pyg1`¨¨¨`gs`1

i q
a

psq

i e1m. (4.10)

Define the following monomial

mc “

k
ź

s“1

t
ź

i“1
pyg1`¨¨¨`gs`1

i q
a

psq

i .

Note that if c and c1 are different commutators with the same permutation of the z2, . . . ,
zk, we have that the monomials mc and mc1 are different. We suppose there is a nontrivial
linear combination among commutators of type c

r
ÿ

i“1
αicipz1, . . . , zk, y1, . . . , ytq

which is a graded identity for UTnpF q
p´q. First we get, by means of the substitution for

the zi, the correct order for the z2, . . . , zk with respect to the commutator c1. Then we
make the substitution for the yi as above. By Equality (4.10), we have

0 “

´
l

ÿ

j“1
αij
mcij

¯

e1m,

where the polynomials cij
have the same permutation of the z2, . . . , zk as the polynomial

c1. It follows that 0 “

l
ÿ

j“1
αij
mcij

.

But the monomials mcij
(in commuting variables) are linearly independent

because they are different for each cij
, hence αij

“ 0. Using the same argument several
times, we have that αi “ 0 for every 1 ď i ď r, and the claim follows.

Definition 4.3.3. Let fi, fj P Bpg1,...,gkq be multihomogeneous polynomials of the same
multidegree, as given below, respectively

rz1, a
p1q

1 y1, . . . , a
p1q
n yn, zσp2q, a

p2q

1 y1, . . . , a
p2q
n yn, . . . , zσpkq, a

pkq

1 y1, . . . , a
pkq
n yns;

rz1, a
1
1

p1q
y1, . . . , a

1
n

p1q
yn, zσp2q, a

1
1

p2q
y1, . . . , a

1
n

p2q
yn, . . . , zσpkq, a

1
1

pkq
y1, . . . , a

1
n

pkq
yns.

Consider the finite sequences

Vfi
“ ppa

p1q

1 , . . . , a
pkq

1 q, . . . , pap1q
n , . . . , apkq

n qq,

Vfj
“ ppa1

1
p1q
, . . . , a1

1
pkq

q, . . . , pa1
n

p1q
, . . . , a1

n
pkq

qq.

We define the order fj ď
1 fi if some of the following conditions is met:

• pσp2q, . . . , σpkqq ălex pτp2q, . . . , τpkqq;
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• σ “ τ and
k´1
ÿ

s“1

n
ÿ

i“1
a1

i
psq

ą

k´1
ÿ

s“1

n
ÿ

i“1
ai

psq;

• σ “ τ ,
k´1
ÿ

s“1

n
ÿ

i“1
a1

i
psq

“

k´1
ÿ

s“1

n
ÿ

i“1
ai

psq and

p

n
ÿ

i“1
ai

p1q, . . . ,
n

ÿ

i“1
ai

pk´1q
q ălex p

n
ÿ

i“1
a1

i
p1q
, . . . ,

n
ÿ

i“1
a1

i
pk´1q

q;

• σ “ τ ,
k´1
ÿ

s“1

n
ÿ

i“1
a1

i
psq

“

k´1
ÿ

s“1

n
ÿ

i“1
ai

psq,

p

n
ÿ

i“1
ai

p1q, . . . ,
n

ÿ

i“1
ai

pk´1q
q “ p

n
ÿ

i“1
a1

i
p1q
, . . . ,

n
ÿ

i“1
a1

i
pk´1q

q, and

pa1
p1q, . . . , an

p1q, . . . , a1
pk´1q, . . . , an

pk´1q
qďlexpa1

1
p1q
, . . . , a1

n
p1q
, . . . , a1

1
pk´1q

, . . . , a1
n

pk´1q
q.

Observe that this order is linear on the polynomials of the same multidegree in
Bpg1,...,gkq.

Suppose f “

t
ÿ

i“1
fi is a multihomogeneous polynomial, where fi P Bpg1,...,gkq

and αi P F zt0u. By Propositions 4.3.4 and 4.3.5, this way of expressing f as a linear
combination of elements of Bpg1,...,gkq is unique. For this reason, we can define the leading
monomial of f with respect to the order ď

1.

Definition 4.3.4. Let f “

t
ÿ

i“1
αifi be a multihomogeneous polynomial, where fi P Bpg1,...,gkq

and αi P F zt0u. We define the leading monomial of f by

mlpfq “ max
ď1

tfi | 1 ď i ď nu,

and the leading coefficient of f , clpfq, as the coefficient of mlpfq.

Proposition 4.3.6. Consider two elements in Bpg1,...,gkq

fi “ rz1, a
p1q

1 y1, . . . , a
p1q
n yn, zσp2q, a

p2q

1 y1, . . . , a
p2q
n yn, . . . , zσpkq, a

pkq

1 y1, . . . , a
pkq
n yns;

fj “ rz1, a
1
1

p1q
y1, . . . , a

1
n

p1q
yn, zτp2q, a

1
1

p2q
y1, . . . , a

1
n

p2q
yn, . . . , zτpkq, a

1
1

pkq
y1, . . . , a

1
n

pkq
yns

of the same multidegree and suppose that fj ď
1 fi. Let f psq

i , f psq

j be the polynomials obtained
by replacing the variable zs by rzs, ys in fi and fj, respectively, where 1 ď s ď k. Then
mlpf

psq

j q ď
1 mlpf

psq

i q.

Proof. Consider the finite sequences

Vfi
“ ppa

p1q

1 , . . . , a
pkq

1 q, . . . , pap1q
n , . . . , apkq

n qq,

Vfj
“ ppa1

1
p1q
, . . . , a1

1
pkq

q, . . . , pa1
n

p1q
, . . . , a1

n
pkq

qq.
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If pσp2q, . . . , σpkqq ălex pτp2q, . . . , τpkqq, the result follows.

Now consider σ “ τ and without loss of generality suppose that σ is the identity.
Hence

f
psq

i “ rz1, a1
p1qy1, . . . , an

p1qyn, . . . , zs, y, a1
psqy1, . . . , an

psqyn, zs`1,

a1
ps`1qy1, . . . , an

ps`1qyn . . . , zk, a1
pkqy1, . . . , an

pkqyns

´ rz1, a1
p1qy1, . . . , an

p1qyn . . . , zs´1, a1
ps´1qy1, . . . , an

ps´1qyn, y, zs,

a1
psqy1, . . . , an

psqyn, . . . , zk, a1
pkqy1, . . . , an

pkqyns;

f
psq

j “ rz1, a
1
1

p1q
y1, . . . , a

1
n

p1q
yn, . . . , zs, y, a

1
1

psq
y1, . . . , a

1
n

psq
yn, zs`1,

a1
1

ps`1q
y1, . . . , a

1
n

ps`1q
yn, . . . , zk, a

1
1

pkq
y1, . . . , a

1
n

pkq
yns

´ rz1, a
1
1

p1q
y1, . . . , a

1
n

p1q
yn . . . , zs´1, a

1
1

ps´1q
y1, . . . , a

1
n

ps´1q
yn, y, zs,

a1
1

psq
y1, . . . , a

1
n

psq
yn, . . . , zk, a

1
1

pkq
y1, . . . , a

1
n

pkq
yns.

By Definition 4.3.3, we have

mlpf
psq

i q “ rz1, a1
p1qy1, . . . , an

p1qyn, . . . , zs, y, a1
psqy1, . . . , an

psqyn, zs`1,

a1
p1qy1, . . . , an

ps`1qyn . . . , zk, a1
pkqy1, . . . , an

pkqyns;
mlpf

psq

j q “ rz1, a
1
1

p1q
y1, . . . , a

1
n

p1q
yn, . . . , zs, y, a

1
1

psq
y1, . . . , a

1
n

psq
yn, zs`1,

a1
1

p1q
y1, . . . , a

1
n

ps`1q
yn . . . , zk, a

1
1

pkq
y1, . . . , a

1
n

pkq
yns.

Observe that the s-th block of variables y’s in both polynomials clpf psq

i q and clpf
psq

j q is
subjected to the same modification by the same variable y. Recall that

rz, y1, y2s “ rz, y2, y1s pmod Iq

for every variable z of degree different from 0. Hence the order is preserved, and this means
mlpf

psq

j q ď
1 mlpf

psq

i q.

Corollary 4.3.1. Consider f “

t
ÿ

i“1
αifi a multihomogeneous polynomial, where fi P

Bpg1,...,gkq, and suppose that mlpfq “ f1. Let f psq

i be the polynomial obtained by replacing
the variable zs by rzs, ys in fi, where 1 ď s ď k and 1 ď i ď t. Then mlpf

psq

i q ď
1 mlpf

psq

1 q.

Proof. Recall that the commutators fi have the same multidegree. So, applying the previous
proposition, the result follows.

Proposition 4.3.7. Consider f , g two multihomogeneous polynomials such that

f “

t
ÿ

i“1
αifi, g “

s
ÿ

j“1
βjgj,
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where αi, βj P F zt0u, fi, gj P Bpg1,...,gkq for every 1 ď i ď t and 1 ď j ď s. Suppose that
mlpfq ďBpg1,...,gkq

mlpgq. Then there exists h P xfyZn modulo I such that mlphq “ mlpgq

and clphq “ clpfq.

Proof. By Proposition 4.3.2, we have that mlpgq is a consequence of mlpfq modulo I.
Then Corollary 4.3.1, making the same computations as in the case of mlpfq in order to
obtain mlpgq, we deduce a consequence h from f such that mlphq “ mlpgq. Moreover, the
leading coefficient of h is the same as that of f .

Definition 4.3.5. Let f be a multihomogeneous polynomial that is a linear combination
of polynomials in Bpg1,...,gkq. Then f is called a polynomial of type pg1, . . . , gkq.

Proposition 4.3.8. There is no infinite sequence of polynomials tfiuiě1 of type pg1, . . . , gkq

such that
fi R xf1, . . . , fi´1yTZn

pmod Iq

for every i ě 2.

Proof. The proof is completely analogous to that of Proposition 4.2.5.

As a consequence of the previous result, we have the following corollary

Corollary 4.3.2. Let J be a TZn-ideal such that I Ď J . Consider the following set

Apg1,...,gkq “ tf P J | f is a polynomial of type pg1, . . . , gkqu.

Then there exists a finite subset A1
pg1,...,gkq Ď Apg1,...,gkq such that

xApg1,...,gkqyTZn
“ xA1

pg1,...,gkqyTZn
pmod Iq.

Theorem 4.3.1. Suppose that charF “ 0 or charF ě n. If J is a TZn-ideal such that
I Ď J , then J is finitely generated as a TZn-ideal.

Proof. Since F is an infinite field, J is generated by its multihomogeneous polynomials. If
charF ě n or charF “ 0, using the multilinearization process, we can consider that any
multihomogeneous polynomial is linear in the variables of degree different from 0, because
by Theorem 4.0.1, each of them can appear in the non-zero monomials of LZn{I at most
n ´ 1 times. Hence, J is generated as TZn-ideal, modulo I, by the following sets

• Agi
“ tf P J | f P Bgi

u where gi P Znzt0u;

• Apg1,...,gkq “ tf P J | f is a polynomial of type pg1, . . . , gkqu, where
k

ÿ

i“1
gi ď n´ 1 and

gi ‰ 0.
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Using Proposition 4.3.1 and Corollary 4.3.2, we get that there exist finite subsets A1
gi

Ď Agi
,

where gi P Znzt0u, and A1
pg1,...,gkq Ď Apg1,...,gkq such that

xAgi
yTZn

“ xA1
gi

yTZn
pmod Iq,

xApg1,...,gkqyTZn
“ xA1

pg1,...,gkqyTZn
pmod Iq.

It follows
J “ xMyTZn

pmod Iq,

where M is a finite set. Then J “ xM Y IyTZn
and since I has a finite basis, we can

conclude that J is finitely generated as a TZn-ideal.
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