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A system biology approach 
based on metabolic biomarkers 
and protein–protein interactions 
for identifying pathways 
underlying schizophrenia 
and bipolar disorder
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Shaikh Farhad Hossain1, Ming Huang1, Naoaki Ono1, Mirian A. F. Hayashi2,3* & 
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Mental disorders (MDs), including schizophrenia (SCZ) and bipolar disorder (BD), have attracted 
special attention from scientists due to their high prevalence and significantly debilitating clinical 
features. The diagnosis of MDs is still essentially based on clinical interviews, and intensive efforts to 
introduce biochemical based diagnostic methods have faced several difficulties for implementation in 
clinics, due to the complexity and still limited knowledge in MDs. In this context, aiming for improving 
the knowledge in etiology and pathophysiology, many authors have reported several alterations 
in metabolites in MDs and other brain diseases. After potentially fishing all metabolite biomarkers 
reported up to now for SCZ and BD, we investigated here the proteins related to these metabolites 
in order to construct a protein–protein interaction (PPI) network associated with these diseases. We 
determined the statistically significant clusters in this PPI network and, based on these clusters, we 
identified 28 significant pathways for SCZ and BDs that essentially compose three groups representing 
three major systems, namely stress response, energy and neuron systems. By characterizing new 
pathways with potential to innovate the diagnosis and treatment of psychiatric diseases, the present 
data may also contribute to the proposal of new intervention for the treatment of still unmet aspects 
in MDs.

Schizophrenia (SCZ) and bipolar disorder (BD) are severe debilitating mental disorders (MDs), as both are 
associated with cognitive impairments, and altered behavior, mood and perceptions. Together, these MDs affect 
around 100 million people worldwide, irrespective of nationality, ethnic origin, or socioeconomic  status1. SCZ is 
characterized by a set of positive and negative symptoms and, according to the 5th version of the Diagnostic and 
Statistical Manual of Mental Disorders (DSM-V), at least two or more of these symptoms need to be present in 
an individual for the diagnosis. In turn, BD is a chronic mood disorder often characterized by the fluctuations 
between mania and depressive episodes, and due to the complex mood alterations, the clinical misdiagnosis 
in BD is  common2. In addition, other MDs, such as major depressive disorders, also shares several common 
symptoms and specific endophenotypes with SCZ and  BD3–5. In fact, pathophysiology of all these MDs are 
mainly centered in the hypothesis of alterations in dopamine homeostasis and  signaling6,7, while gamma-amin-
obutyric acid (GABA) is the principal inhibitory neurotransmitter found altered in  SCZ8–11. SCZ and BD share 
several symptoms and, up to a certain degree, also share similar pharmacological interventions. For instance, 
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the second-generation antipsychotics (SGAs) were primarily developed for the treatment of the positive and 
negative symptoms of  SCZ12, while they are also currently used as an alternative to lithium for the suppression 
of the main symptoms in  BD13.

SCZ and BD are highly polygenic diseases, with many associated genetic variants with small effects, as dem-
onstrated by several genome-wide association studies (GWAS)14–17. Moreover, several genetic-based studies have 
shown a limited contribution to support the diagnosis and/or the characterization of pathways underlying these 
major MDs, due to the well-recognized pleiotropic features and small size effect of each  gene18,19. Therefore, 
none of genetic studies was adequate to reveal the mechanisms underlying the etiology and/or pathophysiology 
of SCZ and/or BD.

In this context, proteomics and metabolomics are now recognized as valuable tools for the characterization 
of any disease. Although proteins are the functional actors that are responsible for the generation or catabolism 
of all metabolites, identification of metabolic processes characteristically active or inactive in any specific healthy 
and/or pathological conditions may uncover pathways important for the understanding of disease mechanisms. 
Interestingly, the separation of SCZ and healthy control (HC) individuals, by metabolomic analysis was demon-
strated to be possible by employing different methods, such as proton NMR (1H-NMR) or mass spectrometry 
(MS)15,20–22, which also highlighted that the metabolic changes can be detected in different biological samples, 
including urine, blood or cerebrospinal fluid (CSF)23,24. The separation of BD subjects treated with SGAs, BD 
subjects treated with lithium, and SCZ subjects treated with SGAs was possible by employing serum metabo-
lomic studies, suggesting also the specificity of the pharmacometabolome to assist the diagnosis in  clinics25,26. 
In addition, a set of metabolites that allowed the separation of BD and SCZ patients from HCs, and that could 
discriminate SCZ from BD and crack users, were recently identified by us and  others15,20,25–28. These studies 
may represent a good example of how the metabolomic studies can bring new information about pathways and 
metabolic alterations, which might not be detectable by genetic studies. However, in these studies, the pathways 
identified for each individual metabolite could not be clearly associated with the etiology or pathophysiology 
of SCZ and BD.

In the current study, we applied a systems level approach by exploring together the altered metabolites in 
SCZ and BD, aiming to have new insights into the underlying pathophysiology of these MDs. A systems level 
approach is likely to compensate some missing information and discard noisy data from the process. For this 
purpose, we identified the genes/proteins that are closely related with the biomarker metabolites and which are 
connected through reliable protein–protein interactions (PPIs). After constructing a PPI network related to SCZ 
and BD, we applied a graph-clustering algorithm DPClusO to determine the clusters in the network. Then, we 
utilized the statistically significant clusters to identify important and common pathways underlying SCZ and BD.

Methods and results
The approach adopted in the present work is illustrated in the flowchart (Fig. 1), consisting of five major steps. 
The methods and corresponding results obtained in each step of the flowchart are discussed below in five separate 
sections, according to the flow order.

Data collection of biomarkers. Biomarker metabolites were collected by searching the most relevant 
papers related to the target diseases, namely SCZ and/or BD. For this present study, we collected a total of 46 
biomarkers, from which 28 were related to SCZ, 25 were related to BD and 7 were common to these both MDs. 
The proportions of SCZ and BD unique and common metabolites are shown in Fig. 2a.

These biomarkers were mostly detected by NMR, MS, or ion cyclotron type of experiments by using human 
biological samples, such as serum, blood etc. The collection of these two sets consisting of 46 biomarker metab-
olites includes: acetate, N-acetyl-d-mannosamine, 2,3-diphospho-d-glyceric-acid, alpha-ketoglutaric-acid, 
N-acetyl-l-alanine, arginine, choline, formate, glutamate, amygdalin, isocitric acid, myo-inositol, N-acetyl-
glutamic-acid, phenylalanine, propionate, pyruvate, serine, beta-alanine, N-acetyl-l-phenyl-alanine, lipoam-
ide, alpha-ketoisovaleric acid (MOA)*, l-glutamine, acetate, N-acetyl aspartyl-glutamic acid (NAAG), lactate, 
phosphocholine, alanine, citrate, cystine, eicosanoic acid, glucose, glycerate, β-hydroxybutyrate, pyroglutamic 
acid, sorbitol, taurine, tocopherol-alpha, uridine, l-threonine, adenine, glycine, adenosine, GABA, mannitol, 
pantothenate, 3-methyl-2-oxobutinoic acid, guanine. We added these data to KNApSAcK biomarker database 
in which the biomarkers of many other diseases have also been  collected29–31.

Collection of related proteins. We adopted two methods to collect SCZ and BD proteins related to 
the biomarkers reported for these MDs. Firstly, we employed the R package  hmdbQuery32, which can pro-
vide pairwise associations between the metabolites and genes/proteins based on Human Metabolome Database 
(HMDB)33. Secondly, we utilized the metabolic pathway maps of the Kyoto Encyclopedia of Genes and Genomes 
(KEGG)  database34. The enzymes up to the path length of two, from each target biomarker, were selected. Here, 
we illustrate the process using an example. Figure 3 shows a part of the KEGG pathway (human) concerning 
l-glutamate, which is the synonym for the biomarker Glutamate with KEGG ID C00025. In Fig. 3, we can see 4 
branches connected to l-glutamate. All enzymes up to the path length of two, which include GLUD1, GLUD2, 
NIT2, ALDH4A1, ABAT, GFPT1, GFPT2, GLUL, GLS, GLS2, PPAT and GAD1, were all considered in our 
study. However, as for instance, CPS wasn’t selected, because it was considered out of the proposed protocol, as 
it was beyond the path length of two. We repeated this process for the 46 different biomarkers considered for 
this study (as listed above), and then we finally constructed the collection of these 46 sets of enzymes/proteins. 
Thus, we identified 331 + 279 = 610 and 186 + 279 = 495 proteins related to SCZ and BD, respectively, from which 
279 proteins were common to both diseases (as shown in Fig. 2b, also possibly implying that both diseases are 
closely related. Therefore, for the sake of the system level analysis, it was reasonable to consider these two dis-
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eases together for the pathway analysis. Such integrated analysis is likely to allow the identification of common 
and other novel significant pathways for these two diseases.

Construction of PPI network relevant to disease. SCZ and BD related PPI network was constructed 
using the human integrated protein–protein interaction rEference (HIPPIE) database, in which each interaction 
is characterized by a score value. The collection of proteins sets identified and depicted in Fig. 2b was considered 
as S. We selected all interactions regardless of the score value between proteins a and b, as such that a ∈ S and b ∈ 

Figure 1.  Flowchart showing each steps of the present research. The flowchart shows the analysis performed in 
the present work, starting from fishing out the most relevant metabolite biomarkers from online databases, such 
as MEDLINE/PubMed (maintained by The United States National Library of Medicine at the National Institutes 
of Health). Then, the analysis was performed using Kyoto encyclopedia of genes and genomes (KEGG), human 
metabolome database (HMDB), Human integrated protein–protein interaction rEference (HIPPIE), DAVID 
(The database for annotation, visualization and integrated discovery) and a network clustering algorithm 
(DPClusO).

Figure 2.  Proportion of unique and common (a) metabolites, (b) proteins regarding schizophrenia (SCZ) 
and bipolar disorder (BD). The metabolites and proteins present in BD, SCZ and common to both diseases are 
indicated by red, orange and blue colors respectively.
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S. In addition, we selected the interactions with score value > 0.7 between proteins a and b, as such that a ∈ S and 
b ∉ S. Then, we identified 3,233 interactions for BD, 4266 interactions for SCZ, and 1904 common interactions 
for SCZ and BD. In total, these 5595 interactions among a total of 3184 proteins composed our disease related 
PPI network. Additionally, in order to inspect the global network properties of this network, we employed 
Cytoscape tool, which is an open-source tool for visualizing and analyzing  networks35. The degree distribution 
of this network is of power-law type. Other global topological properties of this network are as follow: cluster-
ing coefficient is 0.066, characteristic path length is 4.973, and diameter is 12. Networks with power law degree 
distribution are so called scale-free  networks36. Scale-free networks are also small-world networks, if their aver-
age path length is small, and if diameter increases logarithmically with the number of  vertices37. Therefore, our 
network consisting of 3184 nodes with a power law degree distribution, average path length 4.973 and diameter 
12, can be considered as a small world network. These properties are consistent with a PPI network in general.

Network clustering and selection of significant clusters. After constructing the disease relevant PPI 
network, clustering was performed using the DPclusO  algorithm38–41. The DPClusO algorithm generates over-
lapping clusters and ensures coverage, i.e. each node goes to at least one cluster. We hypothesize that clustering 
of a disease relevant PPI network may help the isolation of systems with disease-related properties. Therefore, 
statistically significant PPI clusters that are enriched for SCZ and BD related proteins could be used to predict 
novel genes and pathways. Clustering was performed 9 times using input densities as 0.1, 0.2,…. up to 0.9. 
Table 1 shows the statistics data, i.e., the number of clusters, size of the biggest cluster, average cluster size and 
the number of significant clusters corresponding to 9 sets of the generated clusters. As expected, smaller density 
values resulted in larger and fewer number of clusters. The enrichment of proteins related to SCZ and BD was 
assessed in each identified cluster by Fisher’s exact test p-values. Additionally, p-values were corrected by Bon-
ferroni and Hochberg False Discovery Rate (FDR).

With 9 different input densities, DPClusO generated 9 sets of clusters. In other words, the disease relevant 
PPI network was divided into clusters in 9 different ways. To assess which set of clusters was more useful for our 
purpose, we performed a receiver-operating characteristic (ROC) analysis. For ROC analysis, we assigned the 
SScore (Significance Score)42, to each gene, based on the p-values of the clusters to which they belong to. SScore 
of a protein is defined as following:

We assigned a SScore value to each protein. However, as DPclusO performs overlapping clustering, each pro-
tein may have more than one SScores, from which we considered only the highest SScore for the ROC analysis. 
SCZ and BD related genes/proteins were downloaded from the DisGeNet database, and we considered the set 
collection of DisGeNet data and the extracted set of SCZ and BD related proteins as the true positive proteins 

SScore = − log(FDR).

Figure 3.  Partial l-glutamate pathway. GLUD1 glutamate dehydrogenase 1, GLUD2 glutamate dehydrogenase 
2, NIT2 omega-amidase NIT2, ALDH4A1 aldehyde dehydrogenase 4 family member A1, ABAT 
4-aminobutyrate aminotransferase, GFPT1 glutamine-fructose-6-phosphate transaminase 1,GFPT2 glutamine-
fructose-6-phosphate transaminase 2, GLUL glutamine synthetase, GLS glutaminase, GLS2 glutaminase 2, PPAT 
phosphoribosyl pyrophosphate amidotransferase, GAD1 glutamate decarboxylase 1, CPS1 carbamoyl-phosphate 
synthase 1, GABA gamma-aminobutyric acid.
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related to these MDs. The ROC curve was created by selecting a series of threshold SScore values to generate the 
true positive rates (TPR) and false positive rates (FPR).

The area under the curve (AUC) values corresponding to different densities are shown in Fig. 4. The high-
est AUC value was obtained for density 0.1. Then, we employed the clusters generated using density 0.1 for the 
pathway analysis. Some clusters included non-MD proteins together with currently known MD proteins.

Identification of SCZ and BD related pathways. For pathway analysis, we employed the online 
resources from the Database for Annotation, Visualization and Integrated Discovery (DAVID)43, in which a list 
of genes is considered to conceive the biological meaning for a gene group. In the previous section, based on the 
highest AUC value we selected 75 statistically significant clusters with FDR < 0.05. We collected the Uniprot_
Accession_IDs for the genes, representing the proteins included in those 75 significant clusters. We entered each 
of these 75 clusters to DAVID separately, and significantly associated KEGG pathways based on count = 2, EASE 
score = 0.1 and FDR ≤ 0.05 were retrieved. Count is the number of common genes/proteins between an input set 
and a pathway. EASE is the modified Fisher’s Exact p-value. DAVID Function Annotation tool applies Fisher’s 
exact test and provides a p-value for each pathway indicating its significance. For each cluster we have chosen 
the top 3 significant pathways. The significant PPI clusters can be considered as sub-systems relevant to SCZ and 
BD. We hypothesize that the pathways associated to many significant clusters are more relevant to SCZ and BD. 
Therefore, we finally made a bipartite graph, as shown in Fig. 5, linking these 75 clusters (one set of nodes) with 
the union of all significant pathways (another set of nodes) chosen for these 75 clusters. From the bipartite graph, 
28 high degree pathways (degree ≥ 3) were selected as SCZ and BD related pathways.

These selected pathways are: glycolysis/gluconeogenesis, estrogen signaling pathway, citrate cycle (TCA cycle), 
arginine biosynthesis, glutamatergic synapse, pyruvate metabolism, alanine/aspartate/glutamate metabolism, 
cysteine and methionine metabolism, glucagon signaling pathway, glyoxylate and dicarboxylate metabolism, 
aminoacyl-t-RNA biosynthesis, FoxO signaling pathway, platelet activation, sphingolipid signaling pathway, 
arginine/proline metabolism, cocaine addiction, ErbB signaling pathway, GABAergic synapse, glutathione 
metabolism, long-term depression, regulation of autophagy, valine/leucine/isoleucine degradation, chemical 
carcinogenesis, circadian entrainment, circadian rhythm, hippo signaling pathway, metabolism of xenobiotics 
by cytochrome P450, and protein digestion and absorption. These 28 identified pathways and their respective 
degrees are depicted in Fig. 6, and according to the KEGG pathway database, they could be classified into three 
main groups, namely energy systems, stress response and neuron systems.

Table 1.  Results of each DPclusO clustering.

Density Total clusters Max size Average size Significant clusters

0.1 315 72 17.59683 75

0.2 531 38 10.00188 56

0.3 816 25 6.530637 33

0.4 1053 17 5.361823 29

0.5 1382 13 4.293054 25

0.6 1841 11 3.260185 2

0.7 2724 8 2.104993 49

0.8 2744 7 2.097303 43

0.9 2764 7 2.068017 61

Figure 4.  The area under the curve (AUC) values for 9 different input densities used for clustering by DPClusO.
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Figure 5.  Bipartite graph linking significant clusters and corresponding significant pathways.

Figure 6.  SCZ and BD related pathways predicted in this study (degree ≥ 3, for 28 pathways). Red, yellow and 
blue bars are pathways related to energy systems, stress response and neuron systems respectively.
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Discussion
Due to the disparate and inconsistent findings from various biomarker studies in mental disorders (MDs), in the 
present work we aimed to identify the important pathways, predicted to be underlying SCZ and BD based on 
metabolite biomarkers. These 28 pathways identified herein are mainly involved in three major systems, namely 
stress response, energy and neuron systems, and they are all significantly related to SCZ and BD, as supported 
by several evidences reported in the literature and presented here in a simplified way as follow.

The majority of pathways identified in this study are associated with energy metabolism. In fact, among the 
identified SCZ and BD related pathways, those presenting the highest degree are the (1) glycolysis/gluconeogen-
esis; (2) pyruvate (which is the output of the metabolism of glucose) metabolism; (3) glucagon (which increases 
glycogenolysis and gluconeogenesis) signaling pathway; (4) citrate cycle (TCA cycle) (which is an important 
aerobic pathway for the final steps of the oxidation of carbohydrates and fatty acids); and (5) FoxO signaling 
pathway (which plays important roles in regulation of gluconeogenesis and glycogenolysis by insulin signaling 
and which affects many cellular physiological processes such as cell cycle, apoptosis, metabolism and oxidative 
stress, immune regulation). Interestingly, it is well accepted that patients with MDs often present metabolic 
vulnerabilities with consequent risk of developing cardiometabolic  comorbidities44, representing one of the 
leading causes for premature death and reduced lifespan of patients with SCZ or  BD44,45. In fact, several authors 
have suggested the involvement of abnormalities in energy metabolism and brain glucose utilization in the 
pathophysiology of these psychiatric  disorders44,45. Moreover, proteomic studies with post-mortem brains have 
also provided evidences for energy metabolism dysfunction in several  MDs46, as well as Schubert et al. reported 
an increased glycolysis in SCZ and  BD47.

Moreover, multiple pieces of evidence have also suggested that brain energy metabolism, mitochondrial 
functions and redox balance are impaired to various degrees in BD and SCZ, and mitochondrial dysfunction 
and the resultant metabolic changes leading to oxidative stress may also be important etiological factors in the 
context of these  MDs48–51.

Mitochondria have a central role in the energy metabolism, and implication of mitochondrial function 
alterations in the etiology of SCZ is  recognized52. Furthermore, it is suggested that mitochondrial respiration is 
downregulated in depression, and upregulated during mania in BD, whilst in SCZ, the number of mitochondria 
and mitochondrial respiration are both  downregulated53. Moreover, the mitochondrial dysfunction in blood 
platelets of patients with manic episodes was proposed as a ‘trait’ marker of  BD54. One of our identified path-
ways is platelet activation. At this point, it is also worth mentioning that lithium is also key to a wide range of 
processes at all levels, from neuroprotection to oxidative stress and energy  production55. In addition, lithium has 
unquestionable therapeutic superiority for BD treatment, while it also plays an important role in mitochondrial 
function, which is improved via its role in phospholipid metabolism and inositol  depletion55.

Possibly as a response to these abnormalities in metabolism and oxidative stress, several compensatory 
pathways were also identified in the present study, as for instance, the (1) glutathione metabolism, which plays 
important roles in antioxidant defense and its deficiency contributes to oxidative stress; (2) sphingolipid signal-
ing pathway which regulates cellular responses to stress; and (3) ErbB signaling pathway which regulates diverse 
biologic responses, including cell proliferation and survival, and regulation of autophagy that is involved in cell 
growth, survival, development and death, and linked to neurodegeneration in many other disorders, besides 
being a stress-induced catabolic process. In fact, the main biological alterations of BD and SCZ pertain to inflam-
mation, oxidative stress, membrane ion channels, metabolic dysfunction and circadian  system56–59. Interestingly, 
we have also identified here the circadian entrainment and circadian rhythm as highly important pathways 
associated with the metabolites found in BD and SCZ.

Energy pathways and synaptic function were also implicated in neuropsychiatric disorders such as SCZ 
and  BD60. Among the pathways related to neuron systems found in the present work are the (1) glutamater-
gic synapse, (2) GABAergic synapses, (3) long-term depression (LTD), (4) cocaine addiction, amongst others (as 
shown in Fig. 6). These pathways are implicated in synaptic/neuronal differentiation, plasticity, and migration, 
as well as the activation of metabotropic glutamate receptors in the prefrontal cortex induces LTD and reduces 
the stress-induced anhedonia and other stress-related behavioral impairments in  MDs61. The LTD is a type of 
synaptic plasticity in which the efficacy of signal transmission across a synapse continuously decreases after a 
certain triggering activity, and this activity-dependent plasticity may also result in a persistent enhancement 
of synaptic  transmission62. While the LTD pathway has F ≥ 35, the long-term potentiation pathway has F < 20, 
therefore, suggesting together that LTD may be implicated in the cognitive dysfunctions observed in SCZ and 
BD, although not demonstrated or explored in clinics up to now.

We have also identified pathways related to several amino acids metabolism and synthesis (e.g. alanine/
aspartate/glutamate metabolism, cysteine and methionine metabolism, arginine/proline metabolism, arginine 
biosynthesis etc.) and protein digestion/absorption pathway, which are important not only for the protein bio-
synthesis, but also for the functions interrelated with glucose metabolism, synthesis of neurotransmitters, and 
production of energy, whilst some of them have also the ability to modulate the inflammatory and immune 
systems. The association between MDs and inflammation/neuroinflammation has been widely discussed and 
accepted by many, and the correlation of pro-inflammatory markers with symptoms intensity was also reported 
in SCZ and  BD63. Two other identified pathways are Hippo Signaling pathway and metabolism of xenobiotics by 
cytochrome p450. Cytochrome P450 enzymes (CYPs) play a crucial role in metabolism of xenobiotics in human 
brain. Recent advances support role of these enzymes in the pathogenesis of psychiatric and neurodegenerative 
disorders such as depression, and  schizophrenia64. Hippo Signaling pathway is known to have involvement in 
stress-related psychiatric  disorders65.

Taken together, all presented data are in good agreement with the theoretical framework for metabolic 
comorbidities of mood disorders in which immune system has been likewise “selfish” due to independent energy 
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consumption, which may compete with the brain (another high energy-consumer) for glucose, which may 
explain the various conditions of medical impairment, as the Metabolic Syndrome (MetS), obesity, type 2 diabetes 
mellitus (T2DM) and immune dysregulation, often reported in neuropsychiatric  patients66.

In addition, some other unexpected pathways were also identified here, as the estrogen signaling pathway. 
This pathway is frequently associated with the activation of various protein-kinase cascades, and aminoacyl-t-
RNA biosynthesis, which play a central role in protein biosynthesis. Certainly, these protein-kinase cascades and 
protein biosynthesis deserve special attention. Further studies of these pathways in the context of BD and/or 
SCZ may have the power to bring new insights into these MDs.

Lastly, good biomarkers for early diagnosis could allow clinical early diagnosis and possibly more adequate 
 treatment67. Therefore, early diagnosis of SCZ and BD would be essential to improve outcomes, as early inter-
vention was found to be beneficial for the patients to prevent the cognitive deficits and disabilities if early and 
properly treated with appropriate  pharmacotherapy68–70. However, as most of them could not be replicated, 
unfortunately, no biomarker has been established for differentiating BD and HCs until  present71, with exception 
to our most recently work describing a set of metabolic peripheral biomarkers that allow the differential diagnosis 
between SCZ and  BD20. However, the absence of any conclusive evidence to identify these severe mental illnesses 
at an early stage, based on biomarkers alone, led us to propose the integration of these metabolome data by using 
system biology approach based on protein–protein interactions for identifying pathways underlying SCZ and 
BD pathophysiology, as presented here. The possible inclusion of some of these more reliable biomarkers, in a 
study conducted as presented here, may also further increase the power of bringing even more valuable insights 
into the actual knowledge of pathways underlying these diseases, possibly contributing to early diagnosis and/
or a better clinical management.

Conclusion
In this work we presented a method for identifying pathways underlying Schizophrenia and Bipolar Disorder 
based on potential biomarkers and PPI network. This study started by collecting a list of potential biomarkers 
and only those genes that have strong links with the biomarkers and that are connected via reliable PPIs were 
involved. After constructing a PPI network linked exclusively to SCZ and BD, we identified 75 statistically sig-
nificant clusters. Based on these clusters, we identified 28 significant pathways, suggesting that SCZ and BD onset 
may be mainly associated with the abnormality of energy systems, and neuron functions and stress response, 
which were shown by many to be affected in these MDs. Our results also support the mitochondrial hypotheses 
for these  mental disorders (MDs), and further studies targeting mitochondria function and long-term depres-
sion (LTD) may have the power to strongly contribute for the understanding of the mechanism underlying these 
MDs. Novel pathways, never associated with MDs previously, were also identified here, such as the protein-kinase 
cascades, LTD and protein biosynthesis. These pathways certainly deserve further attention and studies, aiming 
to aid in the diagnosis and/or clinical management of MDs. More importantly, we highlight that the present 
proposed method for finding disease pathways, starting from metabolite biomarkers, is potentially applicable 
for any other disease.
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Dataset may be sent upon request.
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