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Resumo

Os problemas de roteamento possuem diversas aplicações no mundo real, cada uma com
restrições particulares como janelas de tempo, logística verde, disponibilidade de recursos e
acessibilidade aos clientes. Quando se trata de disponibilidade de recursos e acessibilidade
aos clientes, problemas de roteamento por cobertura são propostos para lidar com cenários
reais em que regiões de difícil acesso possuem clientes que precisam ser atendidos, mas não
podem ser visitados in loco. Os problemas de roteamento por cobertura visam encontrar
rotas de custo mínimo cujas demandas dos clientes são atendidas servindo-os localmente
ou remotamente com um veículo. Nesta tese, são propostas metodologias computacionais
para dois problemas de roteamento por cobertura: Covering Salesman Problem (CSP)
e Multi-Depot Covering Tour Vehicle Routing Problem (MDCTVRP). Além disso, dois
novos problemas de roteamento por cobertura são introduzidos: Capacitated Covering
Salesman Problem (CCSP) e Electric Capacitated Covering Tour Problem (ECCTP).

O CSP é uma generalização do Problema do Caixeiro Viajante em que o objetivo é
encontrar um ciclo de custo mínimo tal que todos os vértices sejam visitados ou cobertos
pelo ciclo. Nesta tese, desigualdades válidas da literatura são adaptadas para o CSP.
Além disso, é proposto um novo conjunto de desigualdades válidas que se utilizam de
aspectos únicos do problema. O primeiro branch-and-cut framework, com rotinas exa-
tas e heurísticas para separar as desigualdades válidas, é proposto para resolver o CSP.
Experimentos computacionais realizados em um benchmark de instâncias mostram que o
framework proposto foi capaz de superar metodologias do estado-da-arte da literatura,
além de obter soluções ótimas para diversas instâncias anteriormente não resolvidas.

O CCSP é introduzido nesta tese com a intenção de abordar restrições de cobertura
em problemas de roteamento de veículos capacitados. O objetivo do CCSP é atender os
clientes usando uma frota de veículos, minimizando a distância percorrida pelos veículos.
Os veículos podem atender os clientes localmente ou remotamente. Metodologias com-
putacionais baseadas em Programação Linear Inteira (PLI) e na meta-heurística Biased
Random-Key Genetic Algorithm (BRKGA) são propostas para resolver o CCSP. Além
disso, uma formulação de PLI oriunda do CCSP é estendida para resolver o MDCTVRP.
Os resultados dos experimentos computacionais mostram que a nova formulação para o
MDCTVRP superou a melhor abordagem exata existente até então. Especificamente,
soluções ótimas foram obtidas para vários instâncias anteriormente não resolvidas.

No intuito de abordar um cenário real envolvendo logística verde, o ECCTP é intro-
duzido nesta tese. O ECCTP é uma nova variante do problema de roteamento de veículos
onde as demandas dos clientes podem ser atendidas por veículos elétricos com autonomia
limitada e os veículos elétricos podem recarregar em postos de recargas alternativos. Os
veículos podem atender os clientes localmente ou remotamente. Uma formulação de PLI
mista e uma meta-heurística (BRKGA) são propostas para resolver o ECCTP. Com um
benchmark de instâncias adaptadas da literatura, foram realizados experimentos compu-
tacionais com o objetivo de avaliar a eficácia da formulação e da meta-heurística.



Abstract

Routing problems have several real-world applications, each with particular constraints
such as time windows, green logistics, resources availability and customers accessibil-
ity. When it comes to resources availability and customers accessibility, covering routing
problems are proposed to deal with real-world scenarios in which there are hard-to-reach
regions containing customers that need to be served, but cannot be visited on site. The
covering routing problems aim to find minimum cost routes such that the demands of the
customers are satisfied by serving them locally or remotely with a vehicle. In this thesis,
computational methodologies are proposed for two known covering routing problems: the
Covering Salesman Problem (CSP) and the Multi-Depot Covering Tour Vehicle Routing
Problem (MDCTVRP). Furthermore, two new covering routing problem are introduced:
the Capacitated Covering Salesman Problem (CCSP) and the Electric Capacitated Cov-
ering Tour Problem (ECCTP).

The CSP is a generalization of the Traveling Salesman Problem in which the objective
is to find a minimum cost tour such that every vertex is visited or covered by the tour.
In this thesis, valid inequalities from the literature are adapted to the CSP. In addition, a
novel set of valid inequalities is proposed, which make use of unique aspects of the problem.
The first branch-and-cut framework, with exact and heuristic routines to separate the
valid inequalities, is proposed to solve the CSP. Computational experiments conducted on
benchmark of instances show that the proposed framework was able to outperform state-
of-the-art methodologies from literature, in addition to having proven optimal solutions
for several previously unresolved instances.

The CCSP is introduced in this thesis with the intention of addressing covering con-
straints in capacitated vehicle routing problems. The objective of the CCSP is to serve
customers using a fleet of vehicles, minimizing the distance traversed by the vehicles.
The vehicles can serve customers locally or remotely. Computational methodologies
based on Integer Linear Programming (ILP) and Biased Random-Key Genetic Algorithm
(BRKGA) metaheuristic are proposed to solve the CCSP. Moreover, a CCSP ILP formu-
lation is extended to solve the MDCTVRP. The results of the computational experiments
show that the new formulation for the MDCTVRP outperformed the best existing ex-
act approach so far. Specifically, optimal solutions were obtained for several previously
unsolved instances.

In order to tackle a real-world scenario involving green logistics, the ECCTP is intro-
duced in this thesis. The ECCTP is a new variant of the vehicle routing problem where
customers demands can be served by a electric vehicles with limited autonomy and the
electric vehicles can recharge at alternative fuel stations. The vehicles can serve customers
locally or remotely. A mixed ILP formulation and a (BRKGA) metaheuristic are proposed
to solve the ECCTP. With a benchmark of instances adapted from the literature, com-
putational experiments were conducted with the purpose of evaluating the effectiveness
of the formulation and metaheuristic.
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Chapter 1

Introduction

1.1 Combinatorial optimization problems

In a Combinatorial Optimization Problem (COP), there is a collection of instances, a
finite set of feasible solutions for each instance, and a cost function. A feasible solution is
the one that meets all problem constraints.

A COP can be a minimization or maximization of the cost function. Without loss
of generality, we consider a minimization problem, whose objective is to find a feasible
solution such that the value of this solution, evaluated by the cost function, is minimum.

According to Papadimitriou and Steiglitz [29], an instance of a COP can be defined
as a pair (F, c), where F is the domain of feasible solutions and c is the cost function
mapped as:

c : F → R.

An optimal solution for a COP is a feasible solution f ∈ F such that

c(f) ⩽ c(y), ∀y ∈ F.

Wolsey [44] presented an alternative definition for a COP as follows: let a finite set
N = {1, ..., n}, weights cj for each j ∈ N , and a family F of feasible subsets of N . The
problem of finding a feasible subset of minimum weight can be modeled as:

min
S⊆N
{
∑
j∈S

cj : S ∈ F}.

A naive algorithm for solving a COP consists of enumerating all feasible solutions
in order to obtain an optimal solution. However, this algorithm becomes intractable in
practice, as many COPs have an exponential number of feasible solutions. Although there
are COPs in which polynomial time algorithms are known, many of them are NP-hard
problems where there is no polynomial algorithm, except if P = NP [29].
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1.1.1 Exact methods for COPs

Bertsimas and Tsitsiklis [3] stated that a wide range of COPs can be modeled as integer
linear programming problems. Consider matrices A, B, and vectors b, c, and d. The
problem

(MIP )

Minimize cx+ dy,

subject to

Ax+By = b,

x, y ⩾ 0,

x integer,

is defined as Mixed Integer Programming (MIP) problem, as x and y are integer and
continuous variables, respectively. In the case of having only integer variables, the problem

(IP )

Minimize cx,

subject to

Ax = b,

x ⩾ 0 and integer,

is considered as Integer Programming (IP) problem. If all variables are restricted to 0-1,
the problem

(BIP )

Minimize cx,

subject to

Ax = b,

x ∈ {0, 1}n,

is called Binary Integer Programming (BIP) problem, where n is the dimension of the
vector of variables x. It is known that there are no efficient algorithms to solve integer
programming problems [3] unless P = NP [29]. Thus, different approaches are proposed
for these problems, such as exact, approximation and heuristic methodologies.

The cutting plane method is an exact approach in which an integer programming prob-
lem is solved through its linear programming relaxation, i.e., the same problem but with
its integrality conditions removed [3]. Consider the IP problem. Its linear programming
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relaxation consists of

Minimize cx,

subject to

Ax = b,

x ⩾ 0.

The first step of the cutting plane method is to find an optimal solution x∗ for the
linear programming relaxation. The second step checks if x∗ is integer, if so, x∗ is also
an optimal solution for the integer programming problem and then the method stops;
otherwise, the method proceeds to the next step. The third and final step adds a linear
inequality constraint to the linear programming relaxation such that x∗ is cut and all
integer solutions of the integer programming problem are preserved. After the third step,
the method repeats the entire process. Algorithm 1 illustrates the cutting plane method.

Algorithm 1 Cutting plane method.
1: Find an optimal solution x∗ for the linear programming relaxation
2: If x∗ is integer, stop
3: Add linear inequality constraint to the linear programming relaxation, cutting x∗ and

preserving all integer solutions of the integer programming problem. Repeat step 1.

Another exact approach to solve integer programming problems is the Branch-and-
Bound algorithm [3]. Based on divide and conquer technique, the Branch-and-Bound
algorithm consists of exploring the set of feasible integer solutions, using bounds informa-
tion to avoid examining the entire feasible set. Let F be the set of feasible solutions to
the BIP problem

Minimize cx,

subject to

x ∈ F.

The set F can be partitioned into subsets {F1, ..., Fk}. Then, each Fi such that 1, ..., k
can be solved separately

Minimize cx,

subject to

x ∈ Fi i = 1, ..., k.

For instance, the problem F1 and F2 after partitioning F could be F1 = {x ∈ F : x1 =

0} and F2 = {x ∈ F : x1 = 1}, respectively. Each sub-problem can be solved recursively
so that for F1 we have two new sub-problems: F3 = {x ∈ F1 : x2 = 0} = {x ∈ F :

x1 = x2 = 0} and F4 = {x ∈ F1 : x2 = 1} = {x ∈ F : x1 = 0, x2 = 1}. This step of
the algorithm is called branching and creates an enumeration tree of sub-problems, which
Figure 1.1 shows as an example.
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Figure 1.1: Branching step of a Branch-and-Bound algorithm.

Exploring the space of feasible solutions using branching strategy can lead to an
enumeration tree with an exponential number of nodes. However, it is possible to use
bounding information to implicitly enumerate the tree. Let F = F1

⋃
F2

⋃
...
⋃
Fk be a

decomposition of F into subproblems and xi the optimal solution of Fi for i = 1, ..., k.
Then xi and xi are upper and lower bounds respectively for xi. Therefore, x = mini xi is
an upper bound of x and x = mini xi is a lower bound of x.

Using the upper and lower bounds, it is possible to prune branches of the enumeration
tree that contains no optimal solution. The types of pruning are: optimality, bound and
infeasibility pruning [44].

Figures 1.2 and 1.3 show decompositions of F into subproblems, where each sub-
problem has its corresponding upper and lower bounds.

Figure 1.2: Example of pruning by optimality.

In the example of Figure 1.2, x = mini xi = min{35, 40} and x = mini xi = min{35, 30}.
Since the lower and upper bounds for the sub-problem F1 are the same, the sub-problem
F1 can be pruned by optimally.

In Figure 1.3, x = mini xi = min{44, 40} and x = mini xi = min{41, 30}. The lower
bound for the sub-problem F1 is x1 = 41. However, in the sub-problem F2 we have an
upper bound with cost x2 = 40, so the optimal solution will not be found through the
branch of the sub-problem F1, because x1 > x2. Therefore, the sub-problem F1 is pruned
by bound.

A sub-problem is pruned by infeasibility when its branch has no feasible solutions.
For each sub-problem, the primal (upper) and dual (lower) bounds can be obtained by
feasible solutions and linear programming relaxation, respectively.
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Figure 1.3: Example of pruning by bound.

The Branch-and-Cut algorithm is also an exact approach to solve integer program-
ming problems [44]. It integrates the cutting plane method into the Branch-and-Bound
algorithm so that cutting planes are generated during the tree enumeration. The idea
of the Branch-and-Cut algorithm is to obtain tighter dual bounds for a sub-problem
by adding cuts, thus reducing the number of nodes explored during the enumeration.
Moreover, other techniques can be used inside the Branch-and-Cut algorithm, such as
pre-processing procedures and primal heuristics.

During the design of a Branch-and-Cut algorithm, a trade-off should be considered.
By adding many cuts for a sub-problem, the process of reoptimization can become slower
than usual. While in the Branch-and-Bound algorithm only bounds information need
to be kept, the Branch-and-Cut algorithm demands a cut pool in which all added cuts
are stored. Besides the bounds information for the sub-problems, the Branch-and-Cut
algorithm also requires a mechanism to indicate which constraints from the cut pool are
needed for a determined sub-problem.

1.1.2 Heuristics methods for COPs

In contrast to exact methods, heuristic methods for COPs are capable of obtaining primal
solutions without any guarantee of optimality. The main objective of heuristic methods is
to provide good feasible solutions with less computational effort. Furthermore, heuristic
methods are more appropriate to tackle hard and large size instances as it can be difficult
for exact methods to find feasible solutions in such scenarios.

One of the heuristic methods is the constructive heuristic [28, 34, 21]. The main idea
is to build a feasible solution for a COP progressively such that a single element is added
to the solution at each iteration. In general, greedy algorithms and their variants are used
to decide which element is added to the solution.

Local search procedures are heuristic methods that start from a feasible solution for
a COP and explore iteratively the solution space [36, 38, 39]. The procedure consists
of applying repeatedly local modifications to a solution in order to move to a neighbor
solution, not necessarily feasible or with better cost, until a stopping criterion is reached.
In general, the stopping criterion is based on a predefined number of iterations or when
no further improvement can be made to a feasible solution.

Metaheuristics are the most employed and successful heuristic methods to addresses
COPs. They consist of high-level procedures that combine diversification and intensifi-
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cation strategies in order to explore the solution space effectively for a COP and find
good feasible solutions. Many metaheuristics have been proposed to solve COPs in the
literature, such as Genetic Algorithm [17, 37], Simulated Annealing [19, 41], Tabu Search
[13, 23], Greedy Randomized Adaptive Search Procedures [30, 20] and Biased Random-
Key Genetic Algorithm [14, 35].

Another heuristic method that have been studied recently in the literature for COPs
are the Matheuristics [8, 22, 4]. By combining heuristic and exact methods, the main
idea of Matheuristics is to provide hybrid methodologies that explore the solution space
effectively, ensure that the solutions obtained are feasible and improve the cost by ap-
plying exact and heuristic approaches. Matheuristics have been applied to several COPs,
specially for large size instances, in which exact methods cannot find feasible solutions
with a reasonable computational effort.

1.2 Covering routing problems

The Traveling Salesman Problem (TSP) is one of the most famous and investigated COPs
due to its various applications, such as distribution of goods or services [2]. Consider a
single vehicle starting from a depot, visiting a set of customers and then returning to the
initial depot. The objective of the TSP is to find a minimum route for that vehicle in
terms of total travel time or distance.

Another well-known and studied COP is the Vehicle Routing Problem (VRP), intro-
duced by Dantzig and Ramser [7]. Given a set of customers, the goal of the capacitated
VRP is to serve all of them using a fleet of homogeneous vehicles located at a central
depot, minimizing the total travel time or distance. Each vehicle must start and finish its
route at the depot and cannot serve more than its capacity.

In addition to the applications of the original versions of the TSP and VRP, several
variants of them have been introduced in the literature, for instance variants considering
constraints of time windows, backhauls, and pickup-and-delivery [42]. In general, these
variants assume that all customers are reachable by a vehicle. However, many applications
can lead to scenarios where it is not possible to visit all customers due to limited time or
lack of access to reach customers, such as the design of satellite distribution center network
to supply humanitarian aid to the affected people in a disaster area [27, 33], hard-to-reach
rural areas that need primary health care [16, 24], and disaster relief [9, 18]. To tackle
these scenarios, covering routing problems have been introduced in the literature so that
unvisited customers are served remotely by a vehicle within a reasonable distance.

The Covering Salesman Problem (CSP), one of the first covering routing problems
introduced in the literature, was proposed by Current and Schilling [6]. Given a set
of customers, the goal of the CSP is to find a minimum single-vehicle route such that
all customers are served, either directly on the route or within a reasonable distance of
another customer directly visited by the route. In the case each customer covers only
itself, the CSP reduces to the TSP, which follows that CSP is also an NP-hard problem.

Gendreau et al. [12] studied the Covering Tour Problem, a variant of the CSP. In
the CTP, the set of customers is divided into two groups. The first one, denoted as T ,
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are customers that must be visited. The second one, called W , are customers that must
be covered. Also, there are generic locations in which the vehicle can visit. The goal
of the CTP is to determine a minimum single-vehicle route such that every customer
in T is visited and every customer in W is covered by a customer in T or a generic
location visited by the vehicle. A multi-vehicle variant of the CTP, denominated the
Multi-Vehicle Covering Tour Problem (m-CTP) was studied by Hachicha et al. [15]. The
m-CTP generalizes the CTP by incorporating multiple vehicles, with each route limited
to predefined length and number of customers or generic locations visited.

Allahyari et al. [1] proposed a covering routing problem called the Multi-Depot Cov-
ering Tour Vehicle Routing Problem (MDCTVRP). It combines the Multi-Depot Vehicle
Routing Problem (MDVRP) [40] and CSP. In the MDCTVRP, each customer is served
either directly on the route or remotely as long as its location is within a predetermined
distance of another customer visited by the route. The depots have a fleet of homogeneous
vehicles with limited capacity. Each vehicle must finish its route at the same depot from
it started and cannot serve more than its capacity.

The scientific questions of Table 1.1 were addressed during the research. These ques-
tions are briefly answered in the next section, where the contributions obtained through
the thesis are highlighted, and in more detail in the Chapters 2, 3 and 4.

Table 1.1: Research questions addressed during doctorate course.

Research problem Research question
Exact methodology for the CSP Is there an exact method more effective

than the state-of-the-art for CSP?
Valid inequalities for the CSP Is there a way to obtain specific valid in-

equalities for the CSP?
Multi-capacitated-vehicle CSP variant Is it possible to develop effective method-

ologies for a Multi-capacitated-vehicle CSP
variant?

Extend multi-capacitated-vehicle CSP
variant exact methodology to the MD-
CTVRP

Is there an exact method more robust than
the state-of-the-art for MDCTVRP?

Combine covering concept with green logis-
tic

Is it reasonable to combine covering con-
cept with green logistic in a new problem
and develop methodologies to solve it?

1.3 Contributions

In this thesis, computational methodologies are explored with the objective of providing
good solutions for different covering routing problems. These methodologies consist of
exact and heuristic algorithms. The exact algorithms are based on Integer Linear Pro-
gramming (ILP) formulations and the goal is to obtain optimal solutions and improve
dual bounds. The heuristic algorithms are designed for scenarios that require solving
large-size instances within a short computational time. With the intention of evaluating
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both methodologies, extensive computational experiments are conducted using a large
benchmark of instances.

Although effective heuristics methods have been proposed to solve the CSP, optimal
solutions for many instances were unknown previous to this research. Besides, effective
exact methods capable of improving the bounds, to the best of our knowledge, were not yet
been proposed for the CSP. Therefore Chapter 2 describes a novel set of valid inequalities
and the first branch-and-cut framework for the CSP to tackle this matter. Also, valid
inequalities from the generalized traveling salesman problem are leveraged to the CSP. The
branch-and-cut framework implements exact and heuristic routines to separate the valid
inequalities. The computational experiments show that the new framework outperformed
the state-of-the-art exact methodology from literature for the CSP. Among 48 instances
from literature, only 9 instances had known optimal solutions. The new framework was
able to obtain optimal solutions for all instances except one, representing a major step
towards the exact solution of the CSP.

This thesis also introduces new covering routing problems. Chapter 3 proposes the
CCSP, a new problem that combines the CSP and the VRP. The goal is to address covering
constraints in a problem with multiple vehicles and limited capacities. Exact methodolo-
gies based on ILP are proposed for the CCSP, while the Biased Random-Keys Genetic
Algorithm (BRKGA) metaheuristic is implemented to tackle large-size instances. Further-
more, an ILP formulation proposed for the CCSP is extended to solve the MDCTVRP.
Computational experiments demonstrate that the new Mixed Integer Linear Program-
ming (MILP) formulation for the MDCTVRP outperformed the state-of-the-art exact
methodology. Several optimal solutions were proven for previously unsolved instances.
In a benchmark of 280 instances from literature, the new MILP formulation obtained
optimal solutions for 118 and improved all known lower bounds. These results show a
substantial contribution to the state-of-the-art exact methodology for the MDCTVRP
regarding bounds and optimal solutions.

The Chapter 4 proposes another covering routing problem called the Electric Capac-
itated Covering Tour Problem (ECCTP). In this problem, customers are served by a
electric vehicle with limited autonomy and the vehicles can recharge at alternative fuel
stations. The vehicles serve customers by visiting or covering them remotely. An exact
approach based on MILP is proposed for the ECCTP, as well as a heuristic approach
consisted of a BRKGA metaheuristic implementation. Besides, a benchmark of ECCTP
instances are created based on instances originally proposed for the CVRP. The effec-
tiveness of both exact and heuristic approaches was evaluated through computational
experiments. The results indicate that the MILP formulation outperforms BRKGA in
terms of optimal solutions for small instances. However, BRKGA proves to be more
efficient regarding optimality gaps when addressing the more challenging instances.

Conference papers were also published and presented in the Brazilian Symposium of
Operational Research conference in the years of 2016 and 2019, containing partial research
results related to the Chapter 2 and 4. In 2016, the paper [26] presented preliminary
studies about exact approaches for a CSP variant:
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Title. Um algoritmo branch-and-cut para o problema do ciclo dominante
Authors. Lucas Porto Maziero, Fábio Luiz Usberti, Celso Cavellucci
Abstract. This paper presents a study of a generalization of the Travelling Salesman

Problem (TSP), called Dominant Cycle Problem (DCP). This generalization is the compo-
sition of two NP-hard problems: TSP and Set Problem k-Dominante in Graphs (k-DSP).
The aim of the DCP is to find a minimum cost cycle in an undirected graph, from a
source node. The cycle is trafficked by a traveler who needs to visit a set of customers (we
dominant). The motivation of DCP study is in its practical application to power distribu-
tion companies, gas or water; in particular, the process of defining routes for reading the
consumption of such services. In this paper, an integer linear programming formulation
and branch-and-cut algorithm for the DCP are presented. The results obtained by exact
methods are compared with the results obtained by metaheuristic already developed for the
DCP.

The proposed ILP formulation, valid inequalities and separation routines were assessed
on a benchmark of instances generated randomly. Computational experiments showed
that the branch-and-cut algorithm obtained better bounds than the ILP formulation,
especially for instances with 200 nodes or more. In 2019, the paper [25] presented early
ILP formulation and results for the ECCTP:

Title. The Electric Capacitated Covering Tour Problem
Authors. Lucas Porto Maziero, Rafael Kendy Arakaki, Matheus Diógenes Andrade,

Fábio Luiz Usberti
Abstract. This paper proposes a new problem based on the classic Vehicle Routing

Problem (VRP). The problem is called Electric Capacitated Covering Tour Problem (EC-
CTP) and model a situation where customers can be serviced remotely by covering and
only electric vehicles are employed. The ECCTP integrates two research areas: the cov-
ering problems and the green logistics. The problem is modeled by Mixed Integer Linear
Program (MILP) and solved by a constructive heuristic. A set of benchmark instances is
proposed and computational experiments were conducted.

A constructive heuristic for the ECCTP was proposed and evaluated on a benchmark
of instances based on a set of public instances originally proposed for the CVRP. The
computational experiments show that the constructive heuristic obtained feasible solution
for the ECCTP in a very short computational time.

Furthermore, contributions to other research areas were made during doctorate course.
The first one is a publication in the XVIII Brazilian Symposium on Remote Sensing
conference [10]. This work was done together with researchers from Fundação de Ciência,
Aplicações e Tecnologias Espaciais and Embrapa Informática Agropecuária:
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Title. Otimização de um banco de dados geográficos utilizando PostGIS
Authors. João Luís dos Santos, João Francisco Gonçalves Antunes, Júlio César

Dalla Mora Esquerdo, Alexandre Camargo Coutinho, Lucas Porto Maziero
Abstract. The pervasive usage of geoprocessing tools between researchers, students

and users’ communities leads to resources integration and allowed online tools to accom-
plish demands of people’s daily life. With the progress of Information and Communications
Technology (ICT), new computational resources are constantly becoming available and the
effort of research institutes goes towards to release online interactive systems to the public
that allow geospatial data visualization and manipulation. However, behind all provided
resources there are a lot of process dealing with data preparation, storage and recovery. In
this way, this work was carried out to deal with these tasks, implementing logical models
of geographic database in order to store land use and land cover maps produced for the
Brazilian Legal Amazon. The dataset used to handle the experiments was obtained from
TerraClass initiative, a project created to qualify the deforested areas for that region. The
main objective of this study was to identify which thematic classes intersect with a set of
municipalities in the state of Pará, returning results in an acceptable time window for a
web application. To accomplish that, a PostGIS spatial database was established and geo-
processing techniques and spatial operators were used to perform the tasks. To speed-up
the queries execution time, a new model was proposed, reorganizing data in a new object
structure which results in an 80 times faster performance of data queries. Thereafter,
indexes were implemented and the cost of query execution was optimized more than 50%,
addressing an important issue regarding a multi-user environment scenario.

A new logical model for a geographic database was proposed in order to store infor-
mation about the land-use in the Brazilian Legal Amazon. Moreover, a indexing strategy
was developed with the goal of optimizing the runtime for queries made on the database.
The computational experiments show that this new approach is promising for multi-user
scenarios where the database must be able to manage several simultaneous requests.

The second and last contribution made to another research area is a publication in the
XXXVIII Brazilian Symposium on Computer Networks and Distributed Systems confer-
ence [31]. This work was developed together with researchers from University of Camp-
inas, University of Brasilia, Federal University of Rio Grande do Norte and Federal Uni-
versity of Bahia:

Title. Protocolo baseado em geometria computacional para descoberta de cache em
redes veiculares de dados nomeados.

Authors. Lucas Borges Rondon, Lucas Porto Maziero, Geraldo Pereira Rocha Filho,
Augusto José Venâncio Neto, Maycon Leone Maciel Peixoto, Leandro Aparecido Villas

Abstract. Efficient content distribution in large scale ad hoc vehicular networks
(VANETs) is extremely challenging due to the highly topology dynamics that VANETs
impose. The Vehicle Named Data Network (VNDN) architecture addresses the perfor-
mance and reliability challenges of delivering large-scale content delivery across VANETs,
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by supporting content-centric network communication and caching capabilities. However,
the success of VNDNs depends critically on mitigating the transmission packet storm of
interest occurrence in the cache discovery process, which results in network performance
degradations due to the waste of resources generated. In light of this, this paper proposes
a new geometric cache discovery protocol (PERSEU), which aims to pave the way for
efficient large-scale content distribution in VNDNs, through the ability to mitigate the
broadcast storm problem in VNDN cache discovery. Compared to other literature solu-
tions, the PERSEU protocol enhances the cache discovery step by 337.7% while allowing a
content delivery rate of 81.8% while reducing the number of streams in the cache discovery
process at 82.7%.

In order to tackle the broadcast storm problem during vehicle communication in a
VNDN, a new geometric cache discovery protocol was developed. This protocol, called
PERSEU, was based on the convex hull definition. The interest package transmitting
vehicles are chosen after applying an algorithm to find the convex hull according to the
vehicles coordinates. Computational experiments show that PERSEU, when compared to
other protocols, obtained better performance for cache discovering and content delivery
hit, as well as reduced the amount of interest packet transmissions.

1.4 Structure of the thesis

This thesis is a composition of research papers written by the author in conjunction
with other researchers throughout the course of the doctoral program. Chapter 2 con-
tains a published paper detailing valid inequalities and a branch-and-cut framework with
exact and heuristic separations routines for the Covering Salesman Problem (CSP). Chap-
ter 3 shows a preprint proposing a new covering routing problem called the Capacitated
Covering Salesman Problem (CCSP) in which ILP formulations, a Biased Random-Keys
Genetic Algorithm (BRKGA) and a matheuristic are proposed to solve this new prob-
lem. Moreover, the ILP formulation for the CCSP is extended to solve the Multi-Depot
Covering Tour Vehicle Routing Problem (MDCTVRP). Chapter 4 presents a published
chapter book regarding a new variant of the Vehicle Routing Problem (VRP) that permits
customers to be serviced by electric vehicles. A MILP formulation and a BRKGA meta-
heuristic are employed to solve this new variant. Chapter 5 consists of a discussion about
the exact and heuristic approaches developed for the problems and the results achieved by
them. Chapter 6 holds the final remarks about the covering routing problems studied, the
computational methodologies used to tackle these problems, the scientific contributions
obtained through this thesis and the promising future works.
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Chapter 2

Branch-and-cut algorithms for the
covering salesman problem

The paper presented next is a full article published in RAIRO - Operations Re-
search in 2023 and it is co-authored with Fábio Luiz Usberti and Celso Cavellucci (DOI:
https://doi.org/10.1051/ro/2023055). In this text we present the first branch-and-
cut framework for the covering salesman problem in which a new family of valid inequal-
ities is derived. Exact and heuristic separation algorithms are implemented for the new
family of inequalities. Computational studies show the proposed branch-and-cut frame-
work outperforming the state-of-the-art exact methodology.

The Covering Salesman Problem (CSP) is a generalization of the Traveling Salesman
Problem in which the tour is not required to visit all vertices, as long as all vertices are
covered by the tour. The objective of CSP is to find a minimum length Hamiltonian cycle
over a subset of vertices that covers an undirected graph. In this paper, valid inequalities
from the generalized traveling salesman problem are applied to the CSP in addition to
new valid inequalities that explore distinct aspects of the problem. A branch-and-cut
framework assembles exact and heuristic separation routines for integer and fractional
CSP solutions. Computational experiments show that the proposed framework outper-
formed methodologies from literature with respect to optimality gaps. Moreover, optimal
solutions were proven for several previously unsolved instances.

2.1 Introduction

Consider a set of sites scattered in the plane that must be covered by a single-vehicle
tour. Knowing that each site covers some of its neighbors, what is the minimum length of
an enclosed vehicle tour in which all sites are covered? This question is addressed by the
Covering Salesman Problem (CSP), proposed by Current and Schilling [6] in 1989. More
formally, given an undirected graph, the CSP objective is to find the shortest Hamiltonian
cycle on a subset of vertices that covers the graph. The special case where each vertex
covers strictly itself is the Travelling Salesman Problem (TSP) [2], which follows that CSP

https://doi.org/10.1051/ro/2023055
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is also NP-hard.
Since its proposal, the CSP has attracted the attention of researchers due to its com-

plexity and numerous applications. These applications arise in scenarios where it is unre-
alistic to visit all locations, e.g., rural health services, areas affected by natural disasters,
or planning mobile service units [6].

Several variants of CSP were investigated. Current et al. [5] studied the Shortest
Covering Path Problem (SCPP). The goal is to find a minimum cost s-t path in a net-
work that covers all vertices. The authors proposed two methods to solve the SCPP: a
Lagrangian relaxation and a branch-and-bound algorithm that makes use of the obtained
dual bounds.

Current and Schilling [7] introduced two bi-criterion routing problems: the Median
Tour Problem (MTP) and the Maximal Covering Tour Problem (MCTP). Assuming a
network with n vertices and a value p (p ⩽ n), the criteria for both problems are (i) to
find a minimum length tour that visits exactly p of the n vertices and (ii) to maximize
the accessibility of the vertices that are not in the tour. The problems differ in the way
the accessibility of the second criterion is evaluated. In MTP, the second criterion is
to minimize the sum of distances from each unvisited vertex to its closest vertex in the
tour. In MCTP, the second criterion is to minimize the number of uncovered vertices.
The authors proposed mathematical formulations and heuristics to solve both MTP and
MCTP. Their methodologies were tested on a real-life scenario requiring the optimal
location and sequence of stops for overnight mail service.

Another variant of CSP, studied by Gendreau et al. [13], is the Covering Tour Problem
(CTP). Let G = (V ∪W,E) be an undirected graph, where V ∪W is the set of vertices and
E is the set of edges. Vertex v0 is the depot, V is the set of vertices that can be visited,
T ⊆ V is the set of vertices that must be visited (v0 ∈ T ), and W is the set of vertices that
must be covered but cannot be visited. The goal of the CTP is to determine a minimum
length tour that visits a subset of vertices S ⊆ V such that T ⊆ S and each vertex of W
is covered by some vertex in S. The authors proposed heuristics and a branch-and-cut
algorithm to solve the CTP.

Golden et al. [14] proposed a generalized version of the CSP called the Generalized
Covering Salesman Problem (GCSP). Given an undirected graph G = (V,E), each vertex
i ∈ V has a covering demand ki, meaning vertex i has to be covered at least ki times. In
addition, there is a fixed cost Fi that incurs when the tour visits vertex i. The objective
of the GCSP is to minimize the solution cost which is given by the sum of the tour length
and the costs of the visited vertices. The authors developed local searches that explore
exchange, removal, and insertion of tour vertices to escape from local optimum.

Another similar problem to the CSP is the Generalized Traveling Salesman Problem
(GTSP). In GTSP, the vertices are partitioned into disjoint subsets, called clusters, and
the goal is to determine the minimum length tour that visits exactly one vertex from each
cluster. The GTSP is a special case of the CSP, where each cluster can be modeled as
a subset of vertices that mutually cover themselves. Fischetti, González, and Toth [12]
propose a branch-and-cut algorithm based on exact and heuristic separation routines for
some families of valid inequalities for the GTSP. These inequalities are translated for the
CSP in Section 2.3.
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Zhang and Xu [26] proposed the online CSP, where the vehicle will face up to k

blocked edges not known a priori during its tour traversal. The objective is to find a
minimum length tour that covers all vertices while bypassing the blocked edges. The
authors presented a (k + α)-competitive algorithm, where α = 1

2
+ (4k+2)r

OPT
+ 2υρ, υ is

the approximation ratio for the Steiner Tree Problem, ρ is the maximum number of
vertices that can cover an arbitrary vertex and r is the radius which defines the covering
neighbourhood of each vertex.

Many works in literature have given attention to the geometric CSP, also known as
the Close Enough Traveling Salesman Problem (CETSP). In this version, each vertex has
its neighborhood defined as a compact region of the plane. The goal is to find a minimum
length tour that starts from a depot and intercepts all neighborhood sets, thus covering
all its corresponding vertices. Approximation algorithms, heuristics and methodologies
based on ILP were developed for this version (Dumitrescu and Mitchell [11], Gulczynski
et al. [15], Dong et al. [10], Shuttleworth et al. [21], Behdani and Smith [3], Coutinho et
al. [4]).

Table 2.1 emphasizes the main differences between CSP and its counterparts. In CTP,
among the vertices that can be visited, for some of them the visitation is mandatory. As
for the vertices that must be covered, in CTP these vertices cannot be visited. In GTSP,
the vertices are clustered into disjoint neighborhoods, meaning each vertex covers exactly
the vertices in the cluster it belongs. The vertices in GCSP may require multiple coverings
and each visitation incurs into a fixed cost. Finally, in CETSP the vertices are covered
by a compact region on the plane instead of being covered by a subset of vertices. All
of these problems, despite sharing the idea of joining vehicle routing with set covering,
contain important distinctions with respect to CSP. This explains why this problem still
requires customized exact and heuristic methodologies.

Table 2.1: Summary of the main differences between CSP, CTP, GTSP, GCSP and
CETSP.

Required/Forbidden
visitations

Disjoint
neighborhoods

Multiple
coverings

Geometric
neighborhood

CSP ✗ ✗ ✗ ✗
CTP ✓ ✗ ✗ ✗
GTSP ✗ ✓ ✗ ✗
GCSP ✗ ✗ ✓ ✗
CETSP ✗ ✗ ✗ ✓

Some solution methodologies were proposed in the literature for the CSP. Current and
Schilling [6], for example, developed a two-step heuristic to solve the CSP: the first step
solves a set cover problem; the second step solves the TSP on the vertices determined
by the first step. More than two decades later Salari and Naju-Azimi [19] revisited
the problem by proposing a heuristic for the CSP embedded within an Integer Linear
Programming (ILP) framework. First, they employ constructive heuristics to find good
initial solutions and then the tour vertices are rearranged by the use of ILP techniques
in an attempt to reduce its length. Salari et al. [20] gave a polynomial-size formulation
and a hybrid heuristic for the CSP, which combines ant colony optimization and dynamic
programming. The formulation of Salari et al., to the best of our knowledge, composes
the state-of-the-art exact methodology for the CSP.
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Venkatesh et al. [24] proposed a Multi-Start Iterated Local Search (MS-ILS) algorithm
for the CSP with a variable degree of perturbation. Computational results show that the
proposed approach is competitive with other state-of-the-art heuristic approaches. Zang et
al. [25] reformulated the CSP as a bilevel CSP with a leader and a follower sub-problem
and proposed two Parallel Variable Neighborhood Search (PVNS) heuristics, namely,
synchronous “master–slave” PVNS and asynchronous cooperative PVNS. Computational
results show that the PVNS has improved previously best known solutions. Pandiri et
al. [17] developed two hybrid metaheuristic approaches for the CSP. The first is based on
the artificial bee colony algorithm and the second is based on the genetic algorithm. Both
approaches were competitive with the state-of-the-art heuristics. Lu et al. [16] presented a
Hybrid Evolutionary Algorithm (HEA) that assembles a crossover operator with solution
reconstruction, a destroy-and-repair mutation operator and a two-phase tabu search. The
HEA also uses Lin-Kernighan local search on multiple stages. Computational results show
that for 21 out of the 27 large instances, the HEA has improved previously best known
solutions, while for small and medium instances the HEA has achieved previously best
known solutions.

Recent applications of the CSP concern the routing of drones, which involves additional
operational constraints. For example, Vásquez et al. [23] studied the Travelling Salesman
Problem with Drone (TSP-D). Given a complete digraph, each node must be visited either
by a vehicle route starting and ending at a depot or by a drone executing dispatches to
customers from the vehicle during the route. When a drone visits a customer, it must
fly back to meet the vehicle at a scheduled location on its route. The objective is to
minimize travel time. The authors proposed a mixed integer programming formulation
and valid inequalities for the TSP-D, solving it by Bender’s decomposition using a two-
stage approach: first selecting a subset of customers to be visited by the vehicle and then
defining where the drone will be dispatched for the remaining customers. Computational
experiments validated the performance of the algorithm using a benchmark of instances
randomly generated.

A generalization of the TSP-D that considers more than one drone is the Travel-
ling Salesman Problem with Multiple Drones (TSP-MD). Tiniç et al. [22] proposed a
flow-based and a cut-based mixed integer linear programming formulations for TSP-MD.
Also, branch-and-cut algorithms were developed for relaxations of the proposed formula-
tions. The computational experiments showed that the branch-and-cut approaches out-
performed the flow-based formulation. A sensitivity analysis was also made with various
problem parameters, exploring scenarios such as vehicle operating cost, speed, and drone
endurance.

The Flying Sidekick Travelling Salesman Problem (FSTSP) is another drone routing
problem similar to the TSP-D. In FSTSP, there are some nodes that can be visited only
by the vehicle, and each drone flight is limited by battery duration. Dell’Amico et al. [8]
proposed a branch-and-bound exact algorithm and a heuristic, testing them on instances
from the literature. The results showed that the branch-and-bound algorithm was effective
in solving small instances while the heuristic approach was able to produce high-quality
solutions for larger instances.



29

Our contributions Despite being well studied in the point of view of heuristics, the
CSP still lacks effective exact methods. Many of the current best-known solutions still
had not been proven optimal or had an open optimality gap due to the absence of a
dual bound. The first branch-and-cut framework is proposed for the CSP to address
this matter. The framework employs exact and heuristic routines to separate families of
valid inequalities, some from the GTSP and others original for the CSP. Computational
experiments performed on a benchmark set of instances compare our methodology with
the state-of-the-art exact methodology from literature. Previous to this work, from a set
of 48 instances, for only 9 instances there were proven optimal solutions. Our methodology
improves this by certifying optimality for all except one instance. This represents a major
contribution to the current body of knowledge regarding exact approaches on the CSP.

This paper is organized as follows. Section 2.2 formally defines the CSP and presents
an integer linear programming formulation. Section 2.3 shows new valid inequalities for
the CSP. Section 2.4 describes separation routines for the proposed valid inequalities,
which constitute the branch-and-cut framework. In Section 2.5 computational experi-
ments are conducted on a benchmark of instances, and results are analyzed and discussed.
Section 2.6 gives the concluding remarks.

2.2 Problem Description and Formulation

The CSP can be formally stated as follows. Consider an undirected graph G(V,E), where
V is the set of vertices and E is the set of edges. Each edge e ∈ E is associated with
a non-negative cost ce. For each vertex v ∈ V , C(v) is the set of vertices that cover v

and D(v) is the set of vertices that are covered by v. It is considered that v ∈ C(v) and
v ∈ D(v), ∀v ∈ V . An optimal solution to the CSP is a minimum length Hamiltonian
cycle (tour) over a subset of vertices that covers all vertices in G. Figures 2.1a, 2.1b and
2.1c show optimal solutions for three CSP instances with 200 vertices.

An Integer Linear Programming (ILP) formulation for the CSP is presented. Binary
variable xe indicates if an edge e ∈ E belongs (1) or not (0) to the tour and binary variable
yv represents if a vertex belongs (1) or not (0) to the tour. We denote δ(v) the set of
edges incident to v ∈ V , δ(S) the set of edges with one endpoint in S ⊂ V and the other
in V \S and E(S) the set of edges with both endpoints in S.
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(a) Instance kroB200-7

(b) Instance kroB200-9

(c) Instance kroB200-11

Figure 2.1: Optimal solutions for instances kroB200-7, kroB200-9, and kroB200-11, where
each vertex covers its closest 7, 9, and 11 neighbors, respectively. Highlighted vertices
belong to the tour and their covering sets are represented by circumferences.
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(CSP )

MIN
∑
e∈E

cexe, (1)

subject to∑
e∈δ(v)

xe = 2yv ∀v ∈ V, (2)

∑
i∈C(v)

yi ⩾ 1 ∀v ∈ V, (3)

∑
e∈δ(S)

xe ⩾ 2(yi + yj − 1) ∀S ⊂ V, i ∈ S, j ∈ V \S, (4)

xe ∈ {0, 1} ∀i, j ∈ V, (5)

yv ∈ {0, 1} ∀i ∈ V. (6)

The CSP formulation is based on the ideas of Fischetti, González, and Toth [12] for
the GTSP. The objective function (1) minimizes the cost of a solution given by the sum
of the costs of its edges. Constraints (2) ensure the number of edges incident at a vertex
is 2 (if v is in the tour) or 0 (otherwise). Constraints (3) impose that each vertex must
be covered at least once. Constraints (4) are subtour elimination constraints which state
that every cut separating two vertices in the tour contains at least two edges.

2.3 Valid Inequalities

This section presents valid inequalities proposed by Fischetti, González, and Toth [12] for
the GTSP, and here translated for the CSP. It is worth reminding that the GTSP is a
special case of the CSP in which the vertices are partitioned into clusters, and each cluster
is formed by vertices which mutually cover themselves, i.e., any two vertices u and v from
the same cluster would have C(u) = C(v).

Let D(S) be the union of sets D(v) for all v ∈ S, i.e., D(S) =
⋃
v∈S

D(v) and let γ(V ) be

the family of all the subsets S of vertices that contains C(v) for at least one vertex v ∈ S,
i.e., γ(V ) = {F ⊆ P(V ) : ∀S ∈ F, ∃v ∈ S,C(v) ⊆ S} where P(V ) is the power set of
V . To exemplify the concept of γ(V ), consider sets C(1) = {1, 4, 8}, C(2) = {2, 5, 8} and
C(3) = {3, 6, 7} as shown in Figure 2.2. As exemplified in Figure 2.2a, if S = {3, 4, 5},
then none of the sets C(1), C(2) and C(3) is a subset of S, thus S /∈ γ(V ). However, if
S = {3, 4, 5, 6, 7}, then set C(3) is contained in S, thus S ∈ γ(V ), as shown in Figure 2.2b.
The following family of inequalities are valid for the CSP:
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(a) S /∈ γ(V ) (b) S ∈ γ(V )

Figure 2.2: Example of S /∈ γ(V ) (a) and S ∈ γ(V ) (b).

∑
e∈δ(S)

xe ⩾ 2 ∀S ∈ γ(V ) : D(S) ̸= V, (7)

∑
e∈δ(S)

xe ⩾ 2yi ∀S ̸∈ γ(V ) : D(S) ̸= V, i ∈ S, (8)

∑
e∈δ(S)

xe ⩾ 2(yi + yj − 1) ∀S ̸∈ γ(V ) : D(S) = V, i ∈ S, j ∈ V \S. (9)

Inequalities (7) ensure that each cut separating two sets C(v) and C(w) must be
crossed at least twice. Inequalities (8) imply that each cut separating one vertex in the
tour and one set C(v) must be crossed at least twice. Inequalities (9) ensure that each cut
separating two vertices in the tour must be crossed at least twice. Originally in GTSP,
inequalities (7), (8), and (9) were applied to every subset of vertices containing at least
one cluster, i.e., any subset of family γ(V ).

In the following, a new family of valid inequalities is proposed to consider a scenario
particular to the CSP.

2.3.1 Cover Intersection Inequalities

Consider the case in which two covering sets C(v) and C(u) strictly overlap for some
pair of vertices v and u, i.e., C(v) ∩ C(u) ̸= ∅ and C(v) ̸= C(u). This is a distinguished
scenario for the CSP, and it does not occur on the GTSP since in that problem the
clusters are disjoint. The new valid inequalities extend the idea of inequalities (7), in the
sense of requiring a minimum weight for any edge cut-set separating two covering sets.
However, to address the overlap of covering sets, the new valid inequalities (10) also take
into account the edge cut-set weight of the intersection C(v) ∩ C(u).
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(a) Feasible solution (b) Infeasible solution

Figure 2.3: Example of feasible (a) and infeasible (b) solutions in the context of overlap
of covering sets.

For the following new valid inequalities (10), consider Sv = S ∩ C(v) for any v ∈ V .
These inequalities are here called CI inequalities (cover intersection inequalities), and they
only require a proper subset S ⊂ V such that S ∈ γ(V ), which means it can be employed
even if D(S) = V , another case in which inequalities (7) cannot be employed.

(CI inequalities)∑
e∈(δ(S)

⋃
δ(Sv))

xe ⩾ 2 ∀v ∈ V, ∀S ⊂ V : S ∈ γ(V ) (10)

According to constraints (3), for any given vertex v, at least one vertex of C(v) must
be visited by the tour. In other words, for any subset S ⊂ V such that S ∈ γ(V ), the tour
must visit Sv or C(v) \ Sv. If set S does not intersect with C(v), then Sv is empty, and
(10) reduces to (7). Otherwise, Sv is not empty, and in this case, to satisfy constraints (3),
the solution must contain at least two edges in either δ(Sv) or δ(S \Sv). Figures 2.3a and
2.3b consider V = C(u) ∪ C(v) and S = C(u). In this case, S ∈ γ(V ), and Sv contains
a single vertex since |C(u) ∩ C(v)| = 1. In Figure 2.3a, a feasible solution is presented
such that, even though the cut-set δ(S) is empty (the tour is inside S), the edge cut-set
δ(Sv) contains two edges, guaranteeing that node v is covered. An infeasible solution is
presented in Figure 2.3b such that both edge cut-sets δ(S) and δ(Sv) are empty.

2.4 Branch-and-cut framework

This section presents the separation routines for inequalities (7)-(10). Sections 2.4.1 and
2.4.2 present the separation routines for integer and fractional solutions, respectively. In
the following sections, consider {xI,yI} and {xF,yF} as integer and fractional solutions
for the CSP formulation without the subcycle elimination constraints (4) but possibly
including some of the valid inequalities (7)-(10). Also, let GI(V I , EI) and GF (V F , EF )

be the graphs induced by {xI,yI} and {xF,yF}, respectively. In GI , every vertex v ∈ V I

has a weight yv, such that yv ∈ yI, and every edge e ∈ EI has a cost xe, such that xe ∈ xI.
Similarly, in GF , every vertex v ∈ V F has a weight yv, such that yv ∈ yF, and every edge
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e ∈ EF has a cost xe, such that xe ∈ xF.

2.4.1 Separation routine for integer solutions

The proposed separation routine searches, in a lazy constraint fashion, for inequalities (7-
10) that are possibly violated by an integer solution {xI,yI}. First, the routine performs
a depth-first search in GI to check for the existence of illegal subcycles.

Let S ⊂ V be the vertices of an illegal subcycle in GI . To apply inequality (7) or
(10) with respect to set S, it is necessary that S ∈ γ(V ). If this is not the case, the
proposed routine attempts to augment S into Saug by including the set C(v) for some
v ∈ S. However, the choice of which C(v) will be included in Saug is relevant to the
effectiveness of the corresponding inequalities, as will be explained next.

Consider Figure 2.4, which shows a solution formed by two subcycles in graph GI .
In this figure C(v4) = {v4, v8}, C(5) = {v5, v7}, and C(v6) = {v6, v9}. By taking the
illegal subcycle represented by S = {v4, v5, v6}, it is not possible to apply inequalities (7)
or (10), since S /∈ γ(V ). By taking Saug = S ∪ C(5), then Saug ∈ γ(V ), however Saug

would not generate an effective cut, since vertex v7 ∈ V I . Otherwise, effective cuts can
be derived from Saug = S ∪ C(v4) or Saug = S ∪ C(v6). Therefore, for an inequality (7)
or (10) associated with Saug to be effective in cutting solution {xI,yI}, set Saug cannot
contain any vertex in V I \ S.

Algorithm 2 presents the implementation details of the separation routine for integer
solutions, which searches for inequalities (7-10) associated with each subcycle found in
{xI,yI}. The overall complexity of Algorithm 2 is bounded by O(V 3).

Figure 2.4: Example of an invalid CSP solution with two subcycles.

2.4.2 Exact separation routine for fractional solutions

This section gives the exact separation routines of inequalities (7-10) for a fractional CSP
solution {xF,yF}. In particular, the separation of inequalities (7), (8) and (9) follows
the methodology proposed by Fischetti, González and Toth [12] for the GTSP. As for the
CI inequalities (10), a transformation of the solution graph G′ is proposed to tackle the
overlap of covering sets. The routines are described next.
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Algorithm 2 Separation routine for integer solutions.
Input: graph GI(V I , EI) induced by an infeasible integer solution {xI,yI} for the

CSP.
Output: a set T of valid inequalities that cuts {xI,yI}.

1: for each subcycle S in {xI,yI} do
2: T ← ∅
3: if D(S) ̸= V then
4: if S ∈ γ(V ) then
5: T ← T∪ inequality (7) associated with S
6: else
7: T ← T∪ inequality (8) associated with S
8: for each v ∈ S do
9: Saug ← S ∪ C(v)

10: if Saug ∩ (V I \ S) = ∅ then
11: if D(Saug) ̸= V then
12: T ← T∪ inequality (7) associated with Saug

13: else
14: for u ∈ V do
15: Su ← S ∩ C(u);
16: if δ(Su) ∩ EI = ∅ then
17: T ← T∪ CI inequality (10) associated with Saug and Su

18: else
19: for each subcycle S ′ in {xI,yI} : S ′ ̸= S do
20: T ← T∪ inequality (9) associated with S and S ′

21: return T ;
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As observed by Fischetti, González and Toth [12], the separation problem to find one
or more inequalities (9) violated by {xF,yF} can be reduced to the problem of computing
a minimum cut between two vertices i and j in graph GF , i ∈ S and j ∈ V F\S, i.e.,
finding the maximum flow from i to j [1]. Similarly, the separation of inequalities (8)
can be reduced to computing a minimum cut in graph GF that separates i ∈ S and
C(u) ⊆ V F\S. In other words, finding the maximum flow from i to t [1], where t is
an artificial vertex connected to each j ∈ C(u) through edges with infinite capacity. As
for inequalities (7), the separation problem can be reduced to computing a minimum cut
between covering sets C(v) and C(u) in graph GF , with C(v) ⊆ S, C(u) ⊆ V \S, and
C(v) ∩ C(u) = ∅. A maximum flow from s to t can be computed, such that s and t are
artificial vertices connected, respectively, to each vertex in C(v) and C(u) with infinite
capacity edges, as illustrated in Figure 2.5. It is worth noting that the separation of
inequality (7) does not work when C(v) and C(u) overlap, since every cut separating s

and t has infinite weight, as exemplified in Figure 2.6a.

Figure 2.5: Max-flow instance for the separation of inequality (7) in the case where
C(v) ∩ C(u) = ∅.

An exact separation algorithm for CI inequalities (10) is proposed to accommodate the
case when two covering sets C(v) and C(u) overlap. The first step is to augment graph
GF , by including an artificial vertex w′ and an artificial edge (w,w′) for every vertex
w ∈ C(v) ∩ C(u). Vertex w is removed from C(u) and vertex w′ is included into C(u).
Finally, for each w ∈ C(v) ∩ C(u), let Tw be the set of edges with one endpoint being
w and the other is in V \C(v). The edges of Tw are excluded from GF and their total
weight is transferred to the artificial edge (w,w′). This ensures that every artificial edge
will be counted for in any minimum cut, in the sense that every edge in Tw contributes in
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their purpose of connecting both covering sets C(v) and C(u), as expected in a feasible
solution. Figure 2.6 illustrates the augmentation of graph GF .

(a) Pre-augmentation (b) Augmented graph

Figure 2.6: Graph augmentation for the separation of CI inequalities (10).

The separation of a CI inequality (10) reduces to computing a minimum cut between
sets C(v) and C(u) in the augmented graph. Let δ(Smin) be the minimum cut between
C(v) and C(u) and Su = Smin ∩C(u). If

∑
e∈δ(Smin)

⋃
δ(Su)

xe has a value less than 2, then a

violated CI inequality (10) was found.
Algorithm 3 presents the implementation of exact separation routine for fractional

solutions. The separation consists in computing a max-flow for each pair of vertices,
thus considering a push-relabel algorithm [1] to solve max-flow, the time complexity of
Algorithm 3 is bounded by O(V 4E).

Algorithm 3 Exact separation routine for fractional solutions.
Input: graph GF (V F , EF ) induced by a fractional solution {xF,yF} for the CSP.
Output: a set T of valid inequalities that cuts {xF,yF}.

1: T ← ∅
2: for v ∈ V do
3: for u ∈ V \ {v} do
4: if D(C(v)) ̸= V and C(v) ∩ C(u) = ∅ then
5: S ← minCut(C(v), C(u), GF )
6: T ← T∪ inequality (7) associated with S.
7: else
8: GF

aug ← augment(GF )
9: S ← minCut(C(v), C(u), GF

aug)
10: T ← T∪ CI inequality (10) associated with S and u.
11: if yv > 0 and v /∈ C(u) then
12: S ← minCut(v, C(u), GF )
13: T ← T∪ inequality (8) associated with S and u.
14: if yv + yu − 1 > 0 then
15: S ← minCut(v, u,GF )
16: T ← T∪ inequality (9) associated with S, v and u.
17: return T ;
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Given the computational effort required for the exact separation of fractional solutions,
two alternatives were investigated. The first is based on a first-found policy, which follows
the same steps of Algorithm 3, however the execution is interrupted once the first inequal-
ity which surpasses a given violation threshold ϵ is found. For example, with respect to
inequalities (7), given a vertex v ∈ V and a set S ∈ γ(V ) : D(S) ̸= V , if the following
holds, (2−

∑
e∈δ(S) xe > ϵ), then the cut is included in the model and Algorithm 3 halts.

The same goes for inequalities (8-10).
The second alternative for the exact separation routines resides in the heuristic sepa-

ration of inequalities (7-10), described in the following section.

2.4.3 Heuristic separation routine for fractional solutions

A heuristic separation has the purpose of finding inequalities being violated by a fractional
solution {xF,yF} within short computational times. In contrast with the exact separation
routine however, a heuristic does not come with any guarantee of finding a violated
inequality even if one exists.

The heuristic separation routine for inequalities (7-10) is composed of four main steps.
The first step searches for inequalities (7) and (10) for every u ∈ V and its corresponding
covering set C(u). In more details, let S = C(u) and consider two cases: (i) if D(S) ̸= V

and
∑

e∈δ(S) xe < 2, then the inequality (7) associated with S cuts {xF,yF}; (ii) if
D(S) = V and

∑
e∈δ(S) xe +

∑
e∈δ(Sv)\δ(S) xe < 2 for some vertex v ∈ V \ {u}, then the CI

inequality (10) associated with S and v cuts {xF,yF}.
In the second step, the connected components S1, . . . , Sp of GF are computed. For

each component Sk, let S = Sk and if S ∈ γ(V ) then two cases are considered: (i) if
D(S) ̸= V , then the inequality (7) associated with S cuts {xF,yF}; (ii) if D(S) = V and∑

e∈δ(Sv)
xe < 2 for some vertex v ∈ V , then the CI inequality (10) associated with S and

v cuts {xF,yF}. .
In the third step, for each connected component Sk, let S = Sk and i = argmaxv{yv :

v ∈ S}. If D(S) ̸= V , then the inequality (8) associated with S and v cuts {xF,yF}.
Finally, the fourth step iterates through all pairs of connected components Sk and Sl,

k ̸= l. For each pair, let i = argmaxv{yv : v ∈ Sk} and j = argmaxv{yv : v ∈ Sl}. If
yi + yj > 1, the inequality (9) associated with S = Sk, i, and j cuts {xF,yF}.

Algorithm 4, with a time complexity bounded by O(V 3), details the heuristic separa-
tion routine for fractional solutions.

2.5 Computational Experiments

In this section, the proposed branch-and-cut methodologies are evaluated and compared to
the state-of-the-art using the literature benchmark of instances, described in the following
section.
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Algorithm 4 Heuristic separation routine for fractional solutions.
Input: graph GF (V F , EF ) induced by a fractional solution {xF,yF} for the CSP.
Output: a set T of valid inequalities that cuts {xF,yF}.

1: T ← ∅
2: for u ∈ V do
3: S ← C(u);
4: if D(S) ̸= V then
5: if

∑
e∈δ(S) xe < 2 then

6: T ← T∪ inequality (7) associated with S.
7: else
8: for v ∈ V : v ̸= u do
9: Sv ← S ∩ C(v);

10: if
∑

e∈δ(S) xe +
∑

e∈δ(Sv)\δ(S) xe < 2 then
11: T ← T∪ CI inequality (10) associated with S and v.
12: Compute the connected components S1, . . . , Sp of GF ;
13: for k = 1, ..., p do
14: S ← Sk

15: if S ∈ γ(V ) then
16: if D(S) ̸= V then
17: T ← T∪ inequality (7) associated with S.
18: else
19: for v ∈ V : v ̸= w do
20: Sv ← S ∩ C(v);
21: if

∑
e∈δ(Sv)\δ(S) xe < 2 then

22: T ← T∪ CI inequality (10) associated with S and v.
23: else
24: i← argmaxv{yv : v ∈ S}.
25: if D(S) ̸= V then
26: T ← T∪ inequality (8) associated with S and i.
27: for l = k, ..., p do
28: j ← argmaxv{yv : v ∈ Sl}
29: T ← T∪ inequality (9) associated with S, i and j.
30: return T
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2.5.1 Instances

The benchmark used in the computational experiments is composed of instances by Salari
et al.[20] and a new set of instances, all of them based on the TSPLIB [18]. Salari et
al.[20] divided the instances into three types: small (36 instances, 51 ⩽ |V | ⩽ 100),
medium (12 instances, 150 ⩽ |V | ⩽ 200), and large (27 instances, 532 ⩽ |V | ⩽ 783). The
covering set of each vertex is defined by its k closest vertices. For each graph of small
and medium instances, three values of k were used, k = 7, k = 9, and k = 11. In order to
complement the medium instances, we also created 39 new instances with 225 ⩽ |V | ⩽ 493

to complement the set from the literature. The large instances were tested in the literature
for heuristics only, and for this reason, our results for these instances were not included
in the paper. Nonetheless, full experimental data (including results for large instances)
and source codes are available on-line1

2.5.2 Computational Settings

The branch-and-cut methodologies were implemented in C++ using solver Gurobi 8.1.1
and the Lemon graph library [9]. The experiments were conducted on a PC under Ubuntu
and CPU Intel Xeon E5-2630 2.2 GHz, with 64GB of RAM and one-hour time limit.

2.5.3 Evaluated Methodologies

Five branch-and-cut methodologies were implemented and evaluated in the computational
experiments:

1. CSP -I: exact separation routine for integer solutions (Algorithm 2) considering
valid inequalities (7), (8), and (9), but excluding the CI inequalities (10);

2. CSP -I&Fvp: uses the same exact separation routine for integer solutions as CSP -I.
On the root node, exact separation routine for fractional solutions (Algorithm 3)
considering inequalities (7), (8), and (9), but excluding the CI inequalities for CSP
(10). For the non-root nodes, Algorithm 3 was implemented under the first-found
policy with violation threshold ϵ = 1 (see Section 2.4.2).

3. CSP -I&Fvp-X: same as CSP -I&Fvp, but including the CI inequalities (10);

4. CSP -I&Fh: uses the same exact separation routine for integer solutions as CSP -I.
On the root node, exact separation routine for fractional solutions (Algorithm 3)
considering inequalities (7), (8), and (9), but excluding the CI inequalities (10).
For the non-root nodes, heuristic separation for fractional solutions (Algorithm 4,
considering inequalities (7), (8), and (9), but excluding the CI inequalities (10);

5. CSP -I&Fh-X: Same as CSP -I&Fh, but including inequalities (10);
1http://www.ic.unicamp.br/~fusberti/problems/csp.

http://www.ic.unicamp.br/~fusberti/problems/csp
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These methodologies were compared with the integer linear programming formulation
proposed by Salari et al.[20], denoted here as SRS. To the best of our knowledge, SRS

is the best performing exact methodology for the CSP.
Preliminary experiments have shown that even in cases where the heuristic separation

fails to find violated inequalities in methodologies CSP -I&Fh and CSP -I&Fh-X, apply-
ing the exact separation does not improve the quality of the solutions obtained. This can
be justified by the high computational effort spent by the exact separation routines.

2.5.4 Results

The results of the computational experiments are reported for the small instances in
Table 2.2 and for the medium instances in Tables 2.3 and 2.4. Each table reports for each
methodology and for each instance, the following:

• LB : best lower bound obtained;

• Gap: optimality gap (
UB − LB

LB
) · 100;

• Time: execution time in seconds.

In Tables 2.2 and 2.3, the column group BestUB reports the best upper bounds known
in the literature for each instance: column UB gives the best known upper bounds and
column References cites the papers which attained them. For each instance, Tables 2.2,
2.3, and 2.4 highlight the optimal solutions (underlined) and the best lower bounds (in
bold) obtained by each methodology.
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Table 2.2: Results of computational experiments for the small-size instances.

BestUB SRS CSP -I CSP -I&Fvp CSP -I&Fh CSP -I&Fvp-X CSP -I&Fh-X
Instance NC UB References LB Gap Time LB Gap Time LB Gap Time LB Gap Time LB Gap Time LB Gap Time
eil51 7 164 [14, 19, 20, 24, 25, 17, 16] 164 0 149 164 0 2 164 0 4 164 0 3 164 0 3 164 0 3

9 159 [14, 19, 20, 24, 25, 17, 16] 159 0 220 159 0 1 159 0 2 159 0 2 159 0 4 159 0 3
11 147 [14, 19, 20, 24, 25, 17, 16] 147 0 681 147 0 1 147 0 2 147 0 2 147 0 5 147 0 4

berlin52 7 3887 [14, 19, 20, 24, 25, 17, 16] 3887 0 140 3887 0 2 3887 0 2 3887 0 2 3887 0 4 3887 0 3
9 3430 [14, 19, 20, 24, 25, 17, 16] 3430 0 212 3430 0 1 3430 0 3 3430 0 2 3430 0 6 3430 0 3
11 3262 [14, 19, 20, 24, 25, 17, 16] 3262 0 255 3262 0 1 3262 0 2 3262 0 2 3262 0 4 3262 0 4

st70 7 288 [14, 19, 20, 24, 25, 17, 16] 288 0 490 288 0 3 288 0 7 288 0 5 288 0 7 288 0 7
9 259 [14, 19, 20, 24, 25, 17, 16] 259 0 1391 259 0 3 259 0 7 259 0 6 259 0 13 259 0 9
11 247 [14, 19, 20, 24, 25, 17, 16] 218 13.14 3600 247 0 3 247 0 7 247 0 5 247 0 14 247 0 9

eil76 7 207 [14, 19, 20, 24, 17, 16] 193 7.45 3600 207 0 6 207 0 29 207 0 9 207 0 15 207 0 12
9 185 [19, 25, 17, 16] 161 14.65 3600 185 0 10 185 0 10 185 0 9 185 0 13 185 0 12
11 170 [14, 19, 20, 24, 25, 17, 16] 145 17.08 3600 170 0 6 170 0 8 170 0 7 170 0 15 170 0 13

pr76 7 50275 [14, 19, 20, 24, 25, 17, 16] 50275 0 2488 50275 0 7 50275 0 8 50275 0 6 50275 0 12 50275 0 8
9 45348 [14, 19, 20, 24, 25, 17, 16] 42935 5.62 3600 45348 0 6 45348 0 32 45348 0 10 45348 0 16 45348 0 14
11 43028 [14, 19, 20, 24, 25, 17, 16] 39022 10.27 3600 43028 0 28 43028 0 17 43028 0 46 43028 0 27 43028 0 28

rat99 7 486 [14, 19, 20, 24, 25, 17, 16] 433 12.21 3600 486 0 238 486 0 19 486 0 17 486 0 33 486 0 17
9 455 [14, 19, 20, 24, 25, 17, 16] 377 20.73 3600 438 3.88 3600 455 0 30 455 0 27 455 0 28 455 0 29
11 444 [14, 19, 20, 24, 25, 17, 16] 350 26.81 3600 444 0 203 444 0 32 444 0 138 444 0 37 444 0 197

Continued on next page
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BestUB SRS CSP -I CSP -I&Fvp CSP -I&Fh CSP -I&Fvp-X CSP -I&Fh-X
Instance NC UB References LB Gap Time LB Gap Time LB Gap Time LB Gap Time LB Gap Time LB Gap Time
kroA100 7 9674 [14, 19, 20, 24, 25, 17, 16] 9177 5.42 3600 9674 0 15 9674 0 18 9674 0 27 9674 0 27 9674 0 30

9 9159 [14, 19, 20, 24, 25, 17, 16] 7938 15.38 3600 9159 0 154 9159 0 28 9159 0 2040 9159 0 36 9159 0 2230
11 8901 [14, 19, 20, 24, 25, 17, 16] 8593 3.59 3600 8608 3.40 3600 8901 0 45 8640 3.02 3600 8901 0 79 8801 1.14 3600

kroB100 7 9537 [14, 19, 20, 24, 25, 17, 16] - - 3600 9537 0 45 9537 0 22 9537 0 20 9537 0 26 9537 0 23
9 9240 [14, 19, 20, 24, 25, 17, 16] 7678 20.34 3600 9240 0 363 9240 0 21 9240 0 21 9240 0 31 9240 0 28
11 8842 [14, 19, 20, 24, 25, 17, 16] - - 3600 8842 0 141 8842 0 25 8842 0 29 8842 0 40 8842 0 36

kroC100 7 9723 [14, 19, 20, 24, 25, 17, 16] 8564 13.54 3600 9723 0 561 9723 0 107 9723 0 102 9723 0 67 9723 0 92
9 9171 [14, 19, 20, 24, 25, 17, 16] 7663 19.68 3600 8920 2.81 3600 9171 0 45 9171 0 783 9171 0 123 9171 0 972
11 8632 [14, 19, 20, 24, 25, 17, 16] 7590 13.73 3600 8632 0 254 8632 0 38 8632 0 820 8632 0 222 8632 0 870

kroD100 7 9626 [14, 19, 20, 24, 25, 17, 16] 8724 10.34 3600 9626 0 59 9626 0 17 9626 0 20 9626 0 34 9626 0 23
9 8885 [14, 19, 20, 24, 25, 17, 16] - - 3600 8885 0 16 8885 0 22 8885 0 27 8885 0 62 8885 0 35
11 8725 [14, 19, 20, 24, 25, 17, 16] - - 3600 8725 0 51 8725 0 35 8725 0 48 8725 0 63 8725 0 80

kroE100 7 10150 [14, 19, 20, 24, 25, 17, 16] 9274 9.44 3600 10150 0 520 10150 0 81 10150 0 42 10150 0 76 10150 0 32
9 8991 [14, 19, 24, 25, 17, 16] 8500 5.77 3600 8991 0 336 8991 0 31 8991 0 55 8991 0 28 8991 0 88
11 8450 [14, 19, 20, 24, 25, 17, 16] 7739 9.19 3600 8450 0 237 8450 0 23 8450 0 261 8450 0 33 8450 0 193

rd100 7 3461 [14, 19, 20, 24, 25, 17, 16] 3094 11.88 3600 3461 0 119 3461 0 20 3461 0 20 3461 0 24 3461 0 22
9 3194 [14, 19, 20, 24, 25, 17, 16] 2664 19.90 3600 3194 0 63 3194 0 18 3194 0 18 3194 0 24 3194 0 25
11 2922 [14, 19, 20, 24, 25, 17, 16] 2648 10.33 3600 2922 0 28 2922 0 21 2922 0 20 2922 0 34 2922 0 27

Avg 7673.50 9.27 2867.39 8310.08 0.28 396.75 8325.67 0.00 23.28 8318.42 0.08 229.19 8325.67 0.00 35.69 8322.89 0.03 243.92
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Table 2.3: Results of computational experiments for the medium-size instances.

BestUB CSP -I CSP -I&Fvp CSP -I&Fh CSP -I&Fvp-X CSP -I&Fh-X
Instance NC UB Reference(s) LB Gap Time LB Gap Time LB Gap Time LB Gap Time LB Gap Time
kroA150 7 11423 [14, 19, 20, 24, 25, 17, 16] 10658 7.18 3600 11423 0 174 11423 0 137 11423 0 147 11423 0 90

9 10056 [14, 19, 20, 24, 25, 17, 16] 10056 0 147 10056 0 84 10056 0 85 10056 0 92 10056 0 122
11 9439 [14, 19, 20, 24, 25, 17, 16] 9240 2.15 3600 9439 0 95 9439 0 67 9439 0 243 9439 0 91

kroB150 7 11457 [14, 19, 20, 24, 25, 17, 16] 10663 7.45 3600 11457 0 334 11457 0 116 11457 0 113 11457 0 81
9 10121 [14, 19, 20, 24, 25, 17, 16] 9951 1.71 3600 10121 0 280 10121 0 130 10121 0 145 10121 0 112
11 9611 [14, 19, 20, 24, 25, 17, 16] 9611 0 902 9611 0 849 9611 0 429 9611 0 947 9611 0 282

kroA200 7 13285 [14, 19, 25, 16] 11660 13.94 3600 12611 5.34 3600 12955 2.55 3600 12697 4.63 3600 13108 1.35 3600
9 11708 [14, 19, 20, 24, 25, 17, 16] 10327 13.37 3600 11094 5.53 3600 11708 0 2252 11537 1.48 3600 11708 0 1008
11 10748 [14, 19, 25, 17, 16] 9508 13.04 3600 10342 3.93 3600 10748 0 1044 10748 0 3582 10748 0 648

kroB200 7 13051 [14, 19, 20, 24, 25, 17, 16] 12260 6.45 3600 12462 4.73 3600 12904 1.14 3600 12697 2.79 3600 13051 0 1487
9 11864 [19, 20, 24, 25, 17, 16] 11209 5.84 3600 11379 4.26 3600 11864 0 2281 11695 1.45 3600 11864 0 1242
11 10644 [19, 20, 24, 25, 17, 16] 10405 2.30 3600 10644 0 800 10644 0 907 10644 0 514 10644 0 938

Avg 10462.33 6.12 3087.42 10886.58 1.98 1718.00 11077.50 0.31 1220.67 11010.50 0.86 1681.92 11102.42 0.11 808.42
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Table 2.4: Results of computational experiments for the new medium-size instances created.

CSP -I CSP -I&Fvp CSP -I&Fh CSP -I&Fvp-X CSP -I&Fh-X
Instance NC LB Gap Time LB Gap Time LB Gap Time LB Gap Time LB Gap Time

ts225
7 68805 3.74 3600 70254 1.79 3600 70988 0.50 3600 70802 0.83 3600 70976 0.25 3600
9 59718 10.36 3600 61834 16.17 3600 64048 1.72 3600 62899 4.77 3600 64404 1.22 3600
11 50022 15.54 3600 51057 15.51 3600 53691 8.45 3600 52755 37.07 3600 53786 7.40 3600

tsp225
7 1565 8.05 3600 1622 3.70 3600 1649 1.88 3600 1644 2.19 3600 1669 0.66 3600
9 1310 15.34 3600 1476 2.30 3600 1492 1.21 3600 1500 0.67 3600 1510 0.00 1218
11 1223 12.26 3600 1310 6.49 3600 1346 1.56 3600 1340 2.01 3600 1367 0.00 1271

pr226
7 50479 13.89 3600 47279 - 3600 50216 85.87 3600 48646 - 3600 50420 89.03 3600
9 50916 8.90 3600 47230 - 3600 49911 - 3600 51110 43.43 3600 50191 85.38 3600
11 50236 6.51 3600 44162 - 3600 48925 - 3600 45569 - 3600 49444 127.37 3600

gil262
7 938 12.15 3600 931 - 3600 991 6.76 3600 943 - 3600 965 - 3600
9 804 20.27 3600 865 - 3600 888 - 3600 877 - 3600 901 5.33 3600
11 798 10.03 3600 850 3.06 3600 850 2.71 3600 856 1.99 3600 854 2.69 3600

pr264
7 19057 191.89 3600 20360 - 3600 20970 - 3600 20425 - 3600 20983 - 3600
9 17962 - 3600 18986 - 3600 20257 - 3600 19115 - 3600 20497 375.64 3600
11 17052 - 3600 18790 - 3600 19748 409.25 3600 19183 - 3600 19556 - 3600

a280
7 772 53.63 3600 1046 - 3600 1083 21.79 3600 1088 122.15 3600 1086 - 3600
9 876 25.23 3600 946 15.22 3600 1003 2.89 3600 988 5.87 3600 983 - 3600
11 817 20.93 3600 871 12.40 3600 911 5.16 3600 917 - 3600 939 2.56 3600

pr299
7 17263 42.72 3600 20545 - 3600 21488 16.31 3600 21291 16.21 3600 21517 - 3600
9 18121 20.46 3600 19609 - 3600 20092 5.14 3600 19972 143.62 3600 20305 3.97 3600
11 13806 45.84 3600 18256 - 3600 18485 5.17 3600 18275 23.76 3600 18452 5.84 3600

Continued on next page
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CSP -I CSP -I&Fvp CSP -I&Fh CSP -I&Fvp-X CSP -I&Fh-X
Instance NC LB Gap Time LB Gap Time LB Gap Time LB Gap Time LB Gap Time

lin318
7 17634 23.90 3600 18715 12.95 3600 19331 - 3600 18991 209.48 3600 18886 - 3600
9 14073 42.85 3600 16012 - 3600 16718 - 3600 16229 223.08 3600 16920 15.76 3600
11 12389 48.97 3600 15511 - 3600 15425 247.70 3600 15809 - 3600 15526 236.91 3600

rd400
7 4272 73.36 3600 5935 - 3600 6093 - 3600 6054 - 3600 6041 - 3600
9 3705 82.73 3600 5354 - 3600 5342 237.06 3600 5389 - 3600 5388 - 3600
11 2948 93.69 3600 4755 - 3600 4749 22.53 3600 4819 - 3600 4825 21.24 3600

fl417
7 4670 141.31 3600 5465 - 3600 5452 1125.84 3600 5553 - 3600 5540 - 3600
9 3900 246.90 3600 5011 - 3600 5447 - 3600 5097 - 3600 5281 - 3600
11 4119 - 3600 4894 - 3600 4882 - 3600 4891 - 3600 4881 - 3600

pr439
7 38920 81.77 3600 49869 - 3600 49794 - 3600 50865 - 3600 50704 - 3600
9 35796 121.95 3600 42732 - 3600 42734 - 3600 46196 - 3600 46046 - 3600
11 30738 85.65 3600 43008 - 3600 42962 369.00 3600 43389 - 3600 43321 - 3600

pcb442
7 13992 89.07 3600 19760 - 3600 19768 20.62 3600 20618 - 3600 20560 - 3600
9 12390 142.28 3600 17009 - 3600 17105 - 3600 18434 - 3600 18403 35.18 3600
11 10760 103.79 3600 16436 - 3600 16144 - 3600 17478 13.13 3600 17448 16.94 3600

d493
7 12961 91.00 3600 16160 - 3600 16044 - 3600 16628 - 3600 16373 - 3600
9 11939 78.78 3600 15010 - 3600 14796 - 3600 15078 - 3600 15230 - 3600
11 10935 92.91 3600 13937 - 3600 13894 - 3600 14189 18.40 3600 14146 - 3600

Avg 17658 3600 19586 3600 20146 3600 20151 3600 20419 3479
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For small-size instances, there were previously known lower bounds for 32 out of 36
instances, obtained by SRS, from which optimal solutions were proven for 9 instances.
The proposed branch-and-cut framework, on the other hand, obtained lower bounds for all
instances. More importantly, the framework proved optimality for all 36 small instances.
All branch-and-cut methodologies outperformed SRS with respect to optimality gap,
and they were fairly robust among themselves; the worst performing (CSP -I) obtained
an average 0.28% optimality gap, while the best performing (CSP -I&Fvp and CSP -
I&Fvp-X) with zero optimality gap, shows the exact separation prevails over the heuristic
separation of fractional solutions for small instances.

With respect to medium-size instances created by Salari et al., no lower bound was
known for any of the 12 instances in the literature. The branch-and-cut framework ob-
tained the first lower bounds for all these instances. Furthermore, optimality was proven
for all instances except one (kroA200-7), which remains with an optimality gap of 1.35%.
The performance among the branch-and-cut methodologies varied more significantly this
time. The best-performing methodology was CSP -I&Fh-X, with an average gap of 0.11%.
The heuristic separation overcomes the exact separation, mainly due to the reduction in
computational effort. The worst-performing methodology (CSP -I) obtained an average
gap of 6.12%, showing that integral cuts alone perform poorly for more challenging in-
stances.

Regarding the medium-size instances generated in this work, the proposed branch-
and-cut framework obtained lower bounds for all instances. Among the 39 instances, the
framework proved optimality for 2 instances. The best methodology was CSP -I&Fh-X,
with an average lower bound of 20419, followed by methodologies CSP -I&Fvp-X, CSP -
I&Fh and CSP -I&Fvp with average lower bounds of 20151, 20146, and 19586, respectively.
Moreover, CSP -I&Fh-X obtained the best lower bound among all methodologies for 14
instances, followed by CSP -I&Fvp-X with 13 instances, CSP -I&Fh with 8 instances, and
CSP -I&Fvp with 1 instance.

The effect of the CI inequalities (10) in the performance of the methodologies was also
examined. Regarding the small and medium instances created by Salari et al., the aver-
age gaps of CSP -I&Fvp and CSP -I&Fvp-X were both zero for small instances, but for
the medium instances the CI inequalities reduced the average gap from 1.98% to 0.86%.
Furthermore, comparing CSP -I&Fh and CSP -I&Fh-X, the CI inequalities reduced the
average gaps from 0.08% to 0.03% for small instances and from 0.31% to 0.11% for medium
instances. It is worth mentioning that even for the medium instances where the method-
ologies CSP -I&Fvp and CSP -I&Fh obtained the same optimality gaps of CSP -I&Fvp-X
and CSP -I&Fh-X, the CI inequalities reduced the execution time on average. For exam-
ple, comparing the methodologies that use heuristic separation, the difference in execution
time was substantial. The average execution times of CSP -I&Fh and CSP -I&Fh-X were
1220.67 and 808.42, respectively, representing a reduction of more than 33%.

Considering the new medium instances, from a total of 39 instances, CSP -I&Fvp-X
and CSP -I&Fh-X obtained, together, the best lower bounds for 27 instances, while CSP -
I&Fvp and CSP -I&Fh obtained the best lower bounds for only 9 instances. Furthermore,
only CSP -I&Fh-X was able to obtain optimal solutions. Therefore, the results show
that the CI inequalities have a significant impact on reducing the optimality gaps and
obtaining the best lower bounds.
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2.6 Final Remarks
The proposed branch-and-cut framework for the CSP uses existing valid inequalities for
the GTSP, by Fischetti et al. [12], and a new family of valid inequalities, CI inequalities,
to improve on the state-of-the-art exact methodology for the CSP. Exact and heuristic
separation routines for integer and fractional solutions are investigated.

The branch-and-cut framework is composed of five methodologies using distinct fam-
ilies of inequalities and separation routines. Computational experiments conducted on a
benchmark of 48 instances from literature and 39 new instances delves into the effective-
ness of the framework. From the 48 small and medium instances from literature, only 9
optimal solutions were known. Our branch-and-cut framework, by borrowing meaningful
valid inequalities from GTSP and proposing new valid inequalities for CSP, was able to
obtain optimal solutions for all instances except one, thus 47 instances were proven opti-
mal (among them, 38 instances for the first time). With respect to the new instances, our
methodology obtained the highest number of best lower bounds and number of proven
optimal solutions. Finally, the experiments also show that the CI inequalities had a
significant role in the performance of the methodologies.

The ideas presented in this work can support the exact solution of many future de-
velopments of the CSP. The heuristics and metaheuristics approaches proposed to solve
the CSP in the literature can be combined with our branch-and-cut framework to develop
hybrid methodologies, such as matheuristics, in order to improve the upper and lower
bounds of the CSP. Future works may consider, for example, CSP with multiple vehi-
cles, capacity constraints, time constraints, green vehicles, uncertainty on the covering
neighborhood, and other generalizations of the CSP which better approximate practical
routing problems. The new family of valid inequalities proposed in this work should be
considered on the exact solution for any of these generalizations.
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Chapter 3

Exact algorithms and heuristics for
capacitated covering salesman problems

The text presented below is a preprint prepared for submission and it is co-authored
with Fábio Luiz Usberti and Celso Cavellucci. In this manuscript we propose a capacitated
variant of the covering salesman problem in which the objective is to find a set of routes
of minimum cost such that each vertex is visited or covered by a route, and that the total
demand serviced by any vehicle does not exceed its capacity. We present integer linear
programming formulations to the variant, and to tackle large instances that arise from
real applications, a biased random-key genetic algorithm and a matheuristic to intensify
the search are proposed. We also extend our integer linear programming formulation
for the Multi-depot covering tour vehicle routing problem. Computational experiments
show that our formulation outperformed the state-of-the-art exact methodology from the
literature concerning optimality gaps.

This paper introduces the Capacitated Covering Salesman Problem (CCSP), approach-
ing the notion of service by coverage in capacitated vehicle routing problems. In CCSP,
locations where vehicles can transit are provided, some of which have customers with de-
mands. The objective is to service customers through a fleet of vehicles based in a depot,
minimizing the total distance traversed by the vehicles. CCSP is unique in the sense that
customers, to be serviced, do not need to be visited by a vehicle. Instead, they can be
serviced if they are within a coverage area of the vehicle. This assumption is motivated by
applications in which some customers are unreachable (e.g., forbidden access to vehicles)
or visiting every customer is impractical. In this work, optimization methodologies are
proposed for the CCSP based on ILP (Integer Linear Programming) and BRKGA (Biased
Random-Key Genetic Algorithm) metaheuristic. Computational experiments conducted
on a benchmark of instances for the CCSP evaluate the performance of the methodologies
with respect to primal bounds. Furthermore, our ILP formulation is extended in order to
create a novel MILP (Mixed Integer Linear Programming) for the Multi-Depot Covering
Tour Vehicle Routing Problem (MDCTVRP). Computational experiments show that the
extended MILP formulation outperformed the previous state-of-the-art exact approach
with respect to optimality gaps. In particular, optimal solutions were obtained for several
previously unsolved instances.
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3.1 Introduction
The Capacitated Vehicle Routing Problem (CVRP), initially proposed by Dantzig and
Ramser [8], is one of the most well-known problems in combinatorial optimization. The
goal of CVRP is to service the demands of a set of customers through a set of vehicles
located in a depot, minimizing the total distance travelled. Each vehicle must depart and
return to the depot, and cannot service more than its capacity [5].

The CVRP encompasses many variants with restrictions of time constraints, resources
availability, and even customers accessibility, for example, regions of difficult means of
entry to vehicles [12, 2]. The latter can be addressed by considering service by covering.
A notion by which a customer can be serviced remotely as long as the customer is in the
covering range of the vehicle. For example, in Figure 3.1 customers b and d are within
the covering range of customer a. Also, customers a and e can be remotely serviced by
vertex c, if there is enough remaining capacity in the corresponding vehicle.

Figure 3.1: Example of covering ranges.

The first problem using the concept of servicing by coverage is the Covering Salesman
Problem (CSP), by Current and Schilling [7], stated as follows. Given an undirected
graph with cost attributed to the edges, the objective is to determine a minimum cost
cycle such that every vertex out of the cycle is covered by at least one vertex in the cycle.
The CSP generalizes the Travelling Salesman Problem (TSP) [3] in the case where each
vertex only covers itself, from which follows that CSP is NP-hard.

Generalizations of the CSP were investigated in literature. Golden et al. [11] proposed
a generalization of the CSP in which each vertex has a covering demand referring to the
number of times it must be covered by the tour. Also, each vertex has a fixed cost that
incurs from visiting it. The authors developed a heuristic with local search that explores
exchange, removal, and insertion neighborhoods.

Gendreau et al. [10] investigated the Covering Tour Problem (CTP), a problem where
the vertices are categorized by those that can be visited V , must be visited T ⊆ V , and
cannot be visited W . The goal of the CTP is to obtain a minimum cost Hamiltonian cycle
over a set of vertices S ⊆ V containing all vertices in T and no vertices in W , and each
vertex of W is covered by at least one vertex in S. Exact and heuristic methodologies
were proposed to solve the problem.

Hachicha et al. [15] introduced the Multi-Vehicle Covering Routing Problem (m-CTP).
It generalizes the CTP in the sense that there are multiple vehicles, and each route cannot
exceed predefined length and number of vertices. The m-CTP was used as the basis to
formulate a problem of locating distribution centers for humanitarian aid in disaster areas
[24]. Methodologies to solve the m-CTP include branch-and-cut [14], column generation
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[23], branch-and-price [17], constructive heuristics [15], evolutionary metaheuristic [14],
variable neighborhood descent[18].

Allahyari et al. [2] proposed the the Multi-Depot Covering Tour Vehicle Routing Prob-
lem (MDCTVRP). The MDCTVRP is a combination of the Multi-Depot Vehicle Routing
Problem (MDVRP) [27] and CSP. In the MDCTVRP, the demand of each customer can
be served either by visiting the customer directly or by covering, i.e, the customer location
is within a covering range of at least one visited customer. The authors developed two
mixed integer programming formulations and a hybrid metaheuristic, combining Greedy
Randomized Adaptive Search Procedure (GRASP), Iterated Local Search (ILS) and Sim-
ulated Annealing (SA).

It is worth noticing that the CSP does not have a multi-vehicle variant, as does the
CTP. This work fills this gaps by proposing the Capacitated Covering Salesman Problem
(CCSP), a NP-hard problem generalizing both the CVRP and the CSP. Vertices with
non-negative demands must be covered by a set of capacitated vehicles, based at the
depot. The goal is to find a minimum cost set of vehicle routes servicing all the demands.
The CCSP represents a straightforward extension of the CSP where the service employed
by the vehicles comes at a limited supply. At the same time, the CCSP generalizes the
CVRP since covering provides an additional way to service each demand. It is worth
pointing out the differences between m-CTP and CCSP:

• CCSP considers demands on the vertices;

• m-CTP forces some vertices to be visited (T ⊆ V );

• m-CTP constrains the routes by their lengths and number of vertices, while in CCSP
the vehicle is capacitated by the amount of serviced demand.

• CCSP is a natural generalization of the CSP and the m-CTP generalizes the CTP.

Our contributions Two combinatorial optimization problems, the CSP and the VRP,
are combined into a general framework to address routing problems with multiple vehicles
and limited capacity in the context of service by covering. Mathematical formulations,
using integer linear programming, are provided to represent these problems as a CCSP.
The complexity of solving these problems optimally asks for heuristic methodologies to
tackle large instances that arise from real applications. This work answers this demand by
proposing a biased random-keys genetic algorithm to solve the CCSP, and a matheuris-
tic to intensify the search. Furthermore, we extended our ILP to solve the MDCTVRP
and conducted computational experiments on a benchmark of instances, comparing our
formulation with the state-of-the-art exact methodology from literature. The proposed
formulation outperformed the previous approach with respect to optimality gaps. More-
over, optimal solutions were proven for several previously unsolved instances.

The CCSP and MDCTVRP share common concepts of covering and vehicle capacity.
Consequently, both can be modeled in a similar manner concerning serving remotely
customers and demands served by the vehicle. Nevertheless, notable distinctions exist
between these problems. In CCSP, a vehicle is not obligated to serve a customer during its
visit, unlike in MDCTVRP, where the vehicle is required to serve a customer during each
visit. Additionally, in CCSP there are customers with no specified demand, providing
an opportunity for vehicles to use them to serve other customers remotely which have
demand. In contrast, in MDCTVRP every customer is associated with a specific demand.
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This paper is organized as follows. Section 3.2 formally defines the CCSP and MD-
CTVRP, presenting ILP formulations for the CCSP and a MILP formulation for the
MDCTVRP. Section 3.3 describes the BRKGA, and the intra-route and inter-route in-
tensification procedures. In Section 3.4, computational experiments are conducted on a
representative set of instances, and results are analyzed and discussed. Section 3.5 gives
the concluding remarks.

3.2 Mathematical Formulations

3.2.1 Models for the CCSP

Consider a complete undirected graph G(V,E), where each vertex v ∈ V has a demand
dv, each edge e ∈ E has a metric cost ce, and a depot vertex is denoted by v0. Let
V0 = V \ {v0} and Vd = {v ∈ V : dv > 0}. There are M homogeneous vehicles with
capacity Q that must service all vertices with positive demand.

For each vertex v ∈ V , C(v) is the set of vertices that covers v and D(v) is the set of
vertices that are covered by v. It is assumed that v ∈ C(v) and v ∈ D(v), ∀v ∈ V .

A route is a nonempty subset R ⊆ E of edges for which the induced subgraph G[R]
is a simple cycle containing v0. The goal of CCSP is to find M routes of minimum cost
with the following constraints:

• each vertex is visited no more than once;

• each demand dv : v ∈ Vd is serviced by a route R, which implies in v or some vertex
in C(v) being visited by R, and the demand dv being deducted from the capacity
of the vehicle;

• the total demand serviced by any vehicle must not exceed its capacity Q.

Figure 3.2 shows an optimal solution for a CCSP instance. Routes are depicted with
black lines; the blue triangle is v0; red squares are vertices with positive demand; green
points are visited vertices with no demand; arrows show which route serviced each demand.

The following ILP formulation CCSP1 is proposed for the CCSP. We denote δ(v) as
the edge cut-set of vertex v, and δ(S) the edge cut-set of a subset S ⊆ V . The formulation
includes the following decision variables: xe ∈ Z+ gives the number of times edge e ∈ E is
traversed; yv ∈ {0, 1} denotes if vertex v ∈ V is visited (1) or not (0); zuv ∈ {0, 1} shows
if vertex u ∈ Vd is serviced through vertex v ∈ C(u) (1) or not (0); K ∈ Z+ is the number
of vehicles.
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Figure 3.2: Optimal solution for the CCSP instance X-n115-w11-c7.

(CCSP1)

MIN
∑
e∈E

cexe, (1)

subject to∑
e∈δ(v0)

xe = 2K, (2)

∑
e∈δ(v)

xe = 2yv ∀v ∈ V0, (3)

∑
v∈C(u)

yv ⩾ 1 ∀u ∈ Vd, (4)

zuv ⩽ yv ∀u ∈ Vd, ∀v ∈ C(u), (5)∑
v∈C(u)

zuv = 1 ∀u ∈ Vd, (6)

∑
e∈δ(S)

xe ⩾
2

Q

∑
u∈Vd

∑
v∈(S∩C(u))

duzuv ∀S ⊆ V0, (7)

xe ∈ {0, 1} ∀e /∈ δ(v0), (8)

xe ∈ {0, 1, 2} ∀e ∈ δ(v0), (9)

yv ∈ {0, 1} ∀v ∈ V0, (10)

zuv ∈ {0, 1} ∀u ∈ Vd, ∀v ∈ C(u), (11)

K ∈ Z+. (12)



57

The objective function (1) minimizes the total cost of the routes. Constraints (2) state
that the vertex depot is visited by all K routes. Constraints (3) ensure that the number of
edges incident to a vertex v ∈ V0 is 2 if v is visited or 0 otherwise. Constraints (4) impose
that each vertex in Vd must be covered by at least one route. Constraints (5) state that if
a vertex u ∈ Vd is serviced by a vertex v ∈ C(u), then v is visited. Constraints (6) ensure
that every vertex u ∈ Vd is serviced by a vertex v ∈ C(u). Constraints (7) impose both
the connectivity and the vehicle capacity by forcing into the solution a sufficient number
of edges to each subset of vertices.

A second formulation, denominated CCSP2, can be derived by eliminating variables
y through variable substitution using constraints (3).

(CCSP2)

MIN
∑
e∈E

cexe,

subject to∑
e∈δ(v)

xe ⩾ 2zuv ∀v ∈ V0,∀u ∈ Vd, (13)

∑
e∈δ(v)

xe ⩽ 2
∑
u∈Vd

zuv ∀v ∈ V0, (14)

∑
e∈δ(v)

xe ⩽ 2 ∀v ∈ V0, (15)

(2), (6), (7), (8), (9), (11), (12).

Constraints (13), (14), and (15) impose the correct number of edges incident to a
vertex v ∈ V0 (2 if visited or 0 otherwise).

Preliminary experiments have shown that, even though the CCSP2 has fewer variables
than the CCSP1, the overall quality of the upper and lower bounds obtained by CCSP1

is better than CCSP2. Therefore, only the CCSP1 formulation will be considered in the
computational experiments.

3.2.2 Models for a Multi-depot Variant

The Multi-Depot Covering Tour Vehicle Routing Problem (MDCTVRP), proposed by
Allahyari et al. [2], is defined next. Given a directed graph G = (N,A), with vertices
N = Nc∪Nd, and arcs A. Each customer i ∈ Nc = {1, 2, ..., nc} has a positive demand di.
Set Nd = {1, ..., nd} contains the depots. Each arc (i, j) ∈ A has a positive traversing cost
cij. Each customer has to be covered by a route. Set C(v) represents the vertices that
covers v. A cost c′ij > 0 is attributed for servicing customer i through j. A set of identical
vehicles P = {1, 2, ..., p} is available, and Q is the vehicle capacity. Each depot k ∈ Nd has
a limited capacity H. Finally, to each depot is attributed a unique set Pk = {1, . . . , pk}
of vehicles. The objective of MDCTVRP is to find a minimum cost set of routes, such
that all demands are covered, the vehicles and depots capacities are satisfied, and each
vehicle starts and ends its route in the same depot.

Borrowing ideas from model CCSP1 and from the flow-based formulation by Allah-
yari et al. [2], we propose a new MILP formulation for the MDCTVRP. The formulation,
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henceforth denominated MDCTV RPm, includes the following decision variables: xij de-
notes if arc (i, j) ∈ A is traversed (1) or not (0); yv represents if vertex v ∈ Nc is visited
(1) or not (0); zuv shows if vertex u ∈ Nc is serviced by vertex v ∈ Nc (1) or not (0); fij
gives the vehicle load while traversing arc (i, j). We represent SP as the set containing
all simple paths connecting depots. Specifically, SP(st) ∈ SP denotes the set of all simple
paths between depots s and t.

(MDCTV RPm)

MIN
∑

(i,j)∈A

cijxij +
∑
i∈Nc

∑
j∈Nc

c′ijzij, (16)

subject to∑
j∈Nc

xjk =
∑
j∈Nc

xkj ∀k ∈ Nd, (17)∑
j∈Nc

xkj ⩽ |Pk| ∀k ∈ Nd, (18)∑
j∈N

xjv =
∑
j∈N

xvj = yv ∀v ∈ Nc, (19)∑
v∈C(u)

yv ⩾ 1 ∀u ∈ Nc, (20)

zuv ⩽ yv ∀u ∈ Nc,∀v ∈ C(u), (21)∑
j∈N

xvj ⩽ zvv ∀v ∈ Nc, (22)∑
v∈C(u)

zuv = 1 ∀u ∈ Nc, (23)

∑
(i,j)∈SP(st)

xij ⩽
∣∣SP(st)

∣∣− 1 ∀s, t ∈ Nd, s ̸= t,∀SP(st) ∈ SP, (24)

∑
j∈N

fji =
∑
j∈Nc

djzji +
∑
j∈N

fij ∀i ∈ Nc, (25)∑
i∈Nc

fik = 0 ∀k ∈ Nd, (26)

fij ⩽ (Q− di)xij ∀(i, j) ∈ A : i ∈ N, j ∈ Nc, (27)

djxij ⩽ fij ∀(i, j) ∈ A : i ∈ N, j ∈ Nc, (28)∑
i∈Nc

fki ⩽ H ∀k ∈ Nd, (29)

xi,j ∈ {0, 1} ∀(i, j) ∈ A, (30)

yv ∈ {0, 1} ∀v ∈ Nc, (31)

zuv ∈ {0, 1} ∀u ∈ Nc,∀v ∈ C(u), (32)

fij ∈ R+ ∀(i, j) ∈ A. (33)

The objective function (16) minimizes the total cost of the routes and allocations costs.
For each depot k ∈ Nd, constraints (17) impose that the number of vehicles arriving k
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must be equal to the number of vehicles leaving k. Constraints (18) bound the amount
of vehicles arriving each depot. For each customer v ∈ Nc, constraints (19) state that
the number of arcs arriving and leaving v is 1 if v is visited, or 0 otherwise. Constraints
(20) impose that each vertex in Nc must be covered by at least one route. Constraints
(21) state that a vertex u ∈ Nc can only be serviced through a vertex v ∈ C(u) if v is
visited. Constraints (22) require that if a customer v ∈ Nc is visited by a vehicle, then its
demand is serviced by itself. Constraints (23) ensure that every vertex u ∈ Nc is serviced
by a vertex v ∈ C(u). Constraints (24) prevent simple paths between depots, forcing each
route to start and end in the same depot. Constraints (25) impose the flow conservation
on each customer i. Constraints (26) ensure that the vehicle load is zero when returning to
the depot. Constraints (27) and constraints (28) bound the vehicle load when traversing
arc (i, j). Constraints (29) impose that the capacity of each depot is at most H.

The number of decision variables used in the new MILP formulation is O(V 2) and
the number of decision variables used in the model by Allahyari et al. [2] is O(V 3). An
O(V 2) algorithm can separate constraints (24) for integer solutions using a lazy constraint
strategy. Given a graph induced by an integer solution, the separation of constraints (24)
is performed using Depth-First-Search (DFS) [6]. For every pair (i, j) such that i, j ∈ Nd,
a DFS is performed starting from i. If j is reached, the edges from the path between i
and j are retrieved and then a constraint (24) is added to the formulation.

3.3 BRKGA for Capacitated Covering Salesman Prob-
lem

Guided by the Darwinian principle of the survival of the fittest, the Biased Random Key
Genetic Algorithm (BRKGA) [13] is an evolutionary metaheuristic in which a population
of individuals, representing solutions of a combinatorial optimization problem, evolves
towards the optimal.

Each individual is represented by a chromosome encoded as a vector, in which each
allele is a random key uniformly drawn over the interval [0, 1). The decoder method
is the problem-specific component of the BRKGA which is responsible for mapping a
chromosome into a solution.

An initial population of random chromosomes is created and forced into a selective
pressure environment in which the best individuals are more likely to survive throughout
the generations producing offsprings.

The BRKGA partitions the population into elite and non-elite sets, with sizes deter-
mined by fixed parameters. The elite set is composed by the best individuals; all the
remaining individuals form the non-elite set, including the mutants, i.e., random chromo-
somes introduced into the population as a form of diversification.

In each generation, the BRKGA executes the following steps:

1. Decode the chromosomes, evaluating their fitness;

2. Identify the best individuals to form the elite set;

3. Preserve the elite set into the population for the next generation;

4. Introduce the mutants in the next generation;
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5. Generate offsprings through the crossover of elite and non-elite chromosomes, in-
serting them in the next generation.

The BRKGA has demonstrated its efficacy as a robust method for addressing various
routing problems [25, 21, 1, 20, 9]. In this sense, the following sections describe how the
BRKGA can be employed to solve the CCSP.

3.3.1 Solution encoding

The solution is encoded as a vector X = (x1, ..., xn) of size n = |Vd|, where xi is a random
number in the interval [0, 1), for i = 1, . . . , n. Each element of X represents a vertex of
Vd.

3.3.2 Decoder function

The decoder function takes as input a vector X and returns a feasible solution for the
CCSP represented by a set of routes R. Let X ′ be the vector resulting by sorting the
keys of X in non-decreasing order.

The proposed decoder for the CCSP has two phases, described in the following sections.

First phase - Best Fit Algorithm

The minimum number of vehicles required to service all demands can be determined by
solving a Bin Packing Problem (BPP) [19], which is NP-hard. Our decoder assigns vertices
from Vd to vehicles by solving the BPP approximately, using the Best Fit Algorithm
(BFA). The BFA assigns each vertex to a vehicle with the least residual capacity that can
still service the vertex; if no such vehicle exists, a new one is assigned (Figure 3.3).

Algorithm 5 presents the BFA pseudo-code applied in the decoder, which can be imple-
mented using self-balancing search trees leading to a worst-time complexity of O(n lg n).

Second phase - route construction

Consider that route Rm of vehicle m is a sequence of vertices represented as Rm =
{Rm(0), . . . , Rm(rm + 1)}, where Rm(i) and rm are, respectively, the i-th vertex visited
by vehicle m and the number of vertices in V0 visited by vehicle m. The route starts and
ends at the depot, i.e., Rm(0) = Rm(rm + 1) = v0.

The second phase of the decoder creates a route for each vehicle by using the following
insertion cost function,

g(v,Rm) = min
i={0,...,rm}

{
c(u,v) + c(v,w) − c(u,w) : u = Rm(i), w = Rm(i+ 1)

}
,

which gives the minimum cost of inserting a vertex v into a route Rm.
For each vehicle m ∈ M and each vertex u ∈ Am, all unvisited vertices v ∈ C(u) are

considered to be included in route Rm by checking the value of g(v,Rm) and taking the
vertex resulting in the least cost increment.

Algorithm 6 presents the route construction pseudo-code used in our decoder.
A vertex v is called redundant if when removed from a route it does not change the

solution feasibility. It occurs when the vertices serviced by v can all be serviced by other
vertices in the solution without violating the capacity of any involved vehicle. After
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Figure 3.3: Example of Best Fit Algorithm.
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Algorithm 5 Best fit algorithm
Input: a vector X ′ .
Output: a set of vehiclesM = {1, . . . ,M} and their assigned verticesA = {A1, . . . , AM}.

1: m← 0;M← {∅}; A ← {∅};
2: for each x′

i ∈ X
′ do

3: v ← getV ertex(i) – returns the vertex associated to element x′
i;

4: if

∃m ∈M :
∑
u∈Am

du ⩽ Q− dv

 then

5: m← arg max
m′∈M

 ∑
u∈A′

m

du :
∑
u∈A′

m

du ⩽ Q− dv

;

6: Am ← Am ∪ {v};
7: else
8: m← m+ 1;
9: M←M∪ {m};

10: Am ← {v};
11: A ← A∪ {Am}

Algorithm 6 Construction of Routes
Input: a set of vehicles M = {1, . . . ,M} and their assigned vertices

A = {A1, . . . , AM}.
Output: a set of routes R = {R1, . . . , Rm}.

1: R ← ∅;
2:
3: for each vehicle m ∈M do
4: Rm(0)← {v0};
5:
6: rm ← 0
7:
8: for each v ∈ Am do
9: S ←

{
u ∈ C(v) : u ̸= Rm′(u′),∀m′ ∈ {1, . . . ,m},∀u′ ∈ {1, . . . , rm′}

}
– set of

unvisited candidates to service v
10:
11: u← argmin

u′∈S

{
g(u′, Rm)

}
– find best candidate

12:
13: insert(u,Rm) – insert u in the best position of route Rm

14:
15: rm ← rm + 1
16:
17: Rm(rm)← {v0};
18:
19: R ← R∪ {Rm};
20:
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applying Algorithm 6, the decoder greedily removes redundancies by considering their
cost decrease, until a maximal set of redundancies is removed.

3.3.3 Intra-Route

Once the BRKGA stopping criteria is triggered, the Lin-Kernighan (LK) heuristic [22]
performs the final intra-routes improvements. The LK heuristic is based on k-opt neigh-
borhood, which consists in applying up to k edge exchanges, and it is considered one of
the best local searches for the Traveling Salesman Problem.

3.3.4 Inter-Route Intensification

Following the ideas of Sartori and Buriol [26], this paper proposes a matheuristic for the
CCSP using a formulation with covering and packing constraints. Let F be the set of all
CCSP feasible routes, aif the covering matrix where for each pair (i, f), i ∈ Vd and f ∈ F ,
aif = 1 if and only if vertex i is serviced by route f , and bif the visiting matrix where
for each pair (i, f), i ∈ V0 and f ∈ F , bif = 1 if and only if vertex i is visited by route
f . The formulation includes the binary variable λf , which denotes whether the feasible
route f ∈ F is used (1) or not (0).

The formulation reads as follows:

(Matheuristic)

MIN
∑
f∈F

cfλf , (34)

subject to∑
f∈F

aifλf ⩾ 1 ∀i ∈ Vd (35)∑
f∈F

bifλf ⩽ 1 ∀i ∈ V0 (36)

λf ∈ {0, 1} ∀f ∈ F.

The objective function (34) minimizes the costs of the routes. Constraints (35) ensure
that each vertex in Vd must be serviced by at least one route, while constraints (36)
impose that every vertex in V0 must be visited by at most one route. Considering that
the cardinality of F grows exponentially, in this work we generate a pool of routes F

′ in
the Matheuristic formulation. The pool of routes contains a set of CCSP feasible routes
generated as follows. First, an exhaustive search is conducted to find every optimal route
that services up to three vertices. All of these routes are included into F

′ . The remaining
routes of F ′ are filled with the elite individuals from the BRKGA generations, starting
from the last generation and continuing until either the size limit of F ′ is reached or all
elite individuals from each BRKGA generation are added to F

′ .
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3.4 Computational Experiments

3.4.1 Instances Benchmark

The instances for the CCSP were obtained from the CVRP instances created by Christofides
and Eilon [4] and Uchoa et al. [29], containing between 101 and 303 vertices, and named
as E-nA-kB and X-nA-kB, respectively. The symbol A gives the number of vertices (with
the depot), and B represents the number of vehicles required to service all the demands.

To generate CCSP instances, the following parameters were used:

• |Vd|: number of vertices with demand;

•
∣∣D(v)

∣∣: covering size, where v ∈ V0.

The |Vd| parameter varied in 10%, 20%, and 40% of n. The vertices with demand
consist of the first |Vd| vertices, excluding the depot, of the CVRP instance. It is worth
mentioning that all demands associated with Vd remain unchanged in relation to CVRP
instance. Similarly, the vehicle capacity Q in the CCSP instance remains the same as in
the CVRP instance.

For each vertex v ∈ V0, the set D(v) is defined by the closest vertices from v. The
cardinality of D(v) varied in 7, 9, and 11.

For each CVRP instance, all pairings of |Vd| and
∣∣D(v)

∣∣ were considered, resulting in
nine combinations and a benchmark of 495 instances. A pre-processing was conducted in
the set of instances to remove any vertex v ∈ V0 such that D(v) ∩ Vd = ∅.

The MDCTVRP instances were created by Allahyari et al. [2], and they are divided
in small (120 instances) and large (160 instances). The small instances contain up to 30
vertices, and the large instances have up to 90 vertices. In small instances, the vehicle
capacity fluctuates between 140 and 150, while in large instances, the vehicle capacity
alternates between 160 and 170. The small instances are divided into three categories,
and the large instances are divided into four categories. Each category has eight different
groups of instances. The instances are named InputXYZT, where “X”, “Y”, “Z”, and “T”
give the category, number of depots, vehicle capacity, and the coverage coefficient (which
defines the cost of serving a vertex), respectively. Five instances were generated for each
group of instances.

3.4.2 Computational Settings

The ILP and MILP formulations were implemented and solved using Gurobi 8.1.1 version.
The execution time limit were set to a one hour, except for the MDCTV RPm formula-
tion, which was set to two hours following Allahyari et al. [2]. The experiments were
conducted on a PC under Ubuntu 10.12, and CPU Intel Xeon(R) Silver 3114 2.20 GHz,
with 32GB of RAM. The BRKGA developed for the CCSP used the C++ framework
from Resende and Toso [28]. The parameters used by the BRKGA are listed in Table 3.1.
The implementation of the LK heuristic proposed by Helsgaun [16] was employed. The
matheuristic adopted a size limit for the pool F ′ of 1 million routes.

3.4.3 Evaluated Methodologies

Five methodologies were implemented and evaluated in the computational experiments:
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Table 3.1: BRKGA parameters.

Parameter Value
Population size 1000

Fraction of population to be elite individuals 40%
Fraction of population to be replaced by mutants 20%

Crossover probability 70%

• CCSP1: solution of the CCSP1 model, initially ignoring Constraints (7), and later
including them in the formulation using a lazy constraint strategy;

• BRKGA: implementation of the BRKGA for the CCSP described in Section 3.3;

• CCSP1s: same as CCSP1, however the solution obtained by the BRKGA is given as
warm start for the CCSP1 model;

• Matheuristic: solution of the matheuristic described in Subsection 3.3.4;

• MDCTVRPm: solution of the MDCTV RPm formulation, initially ignoring Con-
straints (24), and including them on-demand in the formulation using a lazy con-
straint strategy.

The MDCTVRPm was compared with the flow-based formulation (Fflow) and node-
based formulation (Fnode), both proposed by Allahyari et al. [2], which are the state-of-
the-art exact methodologies for the MDCTVRP, to the best of our knowledge.

3.4.4 Results for the CCSP

Full experimental data, results, instances, and source codes are available on-line1. The
results of the computational experiments show that the CCSP1 methodology was able to
obtain upper bounds for 430 out of 495 instances. In addition, the CCSP1 methodology
proved optimality for 71 instances size up to 101 vertices. Analyzing the results of the
BRKGA methodology, we can note that for 407 instances, the obtained solutions were
better than the upper bounds obtained by CCSP1.

With respect to methodologies CCSP1s and Matheuristic, the results show that
the matheuristic was more effective to improve the solutions obtained from BRKGA.
Matheuristic methodology improved the BRKGA solutions for 187 out of 495 instances,
while CCSP1s improved for 88 instances. The average cost of improvements made by
CCSP1s and Matheuristic on BRKGA solutions were approximately 1.69% and 2.3%,
respectively.

Figure 3.4 shows, for each methodology, the percentage of solved instances in function
of the deviation from the best upper bound ((UB−BestUB

UB
) ∗ 100). The performance profile

clearly shows the BRKGA dominating CCSP1 with respect to upper bounds. The BRKGA
obtained the best solutions for approximately 48% of instances, while the CCSP1 obtained
for approximately 16% of instances. The CCSP1s was able to improve the warm start
BRKGA solution for several instances, obtaining the best solutions for approximately 58%
of instances. Finally, comparing methodologies Matheuristic and CCSP1s, Matheuristic
was more effective in improving the BRKGA solutions. The Matheuristic methodology
obtained the best solution for approximately 74% of instances, outperforming CCSP1s.

1http://www.ic.unicamp.br/~fusberti/problems/ccsp

http://www.ic.unicamp.br/~fusberti/problems/ccsp
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Figure 3.4: Performance profiles in terms of deviation (%) from the best upper bound.

3.4.5 Results for the MDCTVRP

Tables 3.2 and 3.3 report the results for the small and large instances, respectively. Ta-
ble 3.2 reports for each methodology and for each group of small-size instances, the average
gap (Avg.gap), the number of optimal solutions (#Opt), and the average running time
(Avg.time).

For small instances, the overall optimality gaps were 0.10%, 8.99%, and 30.28% for
the MDCTVRPm, Fflow, and Fnode methodologies, respectively. From 120 small instances,
117, 10, and 4 optimal solutions were obtained by MDCTVRPm, Fflow, and Fnode, respec-
tively.

Table 3.3 gives the results from MDCTVRPm for each group of large-size instances.
The column group MDCTVRPm reports the averages upper bound (Avg.ub), lower bound
(Avg.lb), optimality gap (Avg.gap), running time (Avg.time), and number of optimal
solutions (#Opt). The column group GRASP x ILS [2] reports the results obtained by
the hybrid meta-heuristic proposed by Allahyari et al. [2]. “Avg” gives the average cost
obtained over five executions for each instance. Avg.gapLP and Avg.gap MDCTVRPm give the
“Avg” gap from the linear relaxation of Fflow formulation, and the average lower bound
(Avg.lb) of MDCTVRPm, respectively.

It should be noticed that, due to the large number of variables, Allahyari et al. [2] have
not executed experiments on large instances with Fflow. The computational results have
shown that MDCTVRPm achieved good lower bounds for large. Previously, the GRASP
x ILS overall gap with respect to the linear programming relaxation of Fflow was 20.98%,
while with the new lower bounds obtained by MDCTVRPm the GRASP x ILS overall gap
was improved to 7.98%. It is worth noting that even though MDCTVRPm is an exact
methodology, the upper bounds were close to the solutions cost obtained by the GRASP
x ILS. More specifically, the solutions cost obtained by GRASP x ILS are, on average,
only 1.37% apart from the upper bounds obtained by MDCTVRPm.
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MDCTVRPm Fflow Fnode

Category Group Avg.gap #Opt Avg.time Avg.gap #Opt Avg.time Avg.gap #Opt Avg.time

1

Input1000 0.00 5 8.00 6.37 0 7200.00 22.25 0 7200.00
Input1001 0.00 5 8.80 6.38 0 7200.00 21.29 0 7200.00
Input1010 0.00 5 6.60 1.74 2 6015.00 17.71 0 7200.00
Input1011 0.00 5 5.20 2.48 1 7066.00 18.63 0 7200.00
Input1100 0.00 5 7.00 4.96 2 5621.00 14.19 1 7200.00
Input1101 0.00 5 6.80 4.87 1 5848.00 12.44 1 7200.00
Input1110 0.00 5 5.80 3.14 2 5504.00 13.85 1 7200.00
Input1111 0.00 5 6.20 2.03 2 5220.00 11.57 1 7200.00

2

Input2000 0.00 5 140.20 10.56 0 7200.00 42.30 0 7200.00
Input2001 0.00 5 184.60 10.81 0 7200.00 38.64 0 7200.00
Input2010 0.00 5 70.20 10.39 0 7200.00 37.45 0 7200.00
Input2011 0.00 5 115.40 11.14 0 7200.00 33.94 0 7200.00
Input2100 0.00 5 66.60 7.98 0 7200.00 31.33 0 7200.00
Input2101 0.00 5 138.20 7.63 0 7200.00 27.85 0 7200.00
input2110 0.00 5 73.20 9.02 0 7200.00 28.45 0 7200.00
Input2111 0.00 5 44.60 9.55 0 7200.00 27.43 0 7200.00

3

Input3000 1.01 4 2653.20 14.48 0 7200.00 50.29 0 7200.00
Input3001 0.71 4 2853.20 14.93 0 7200.00 44.15 0 7200.00
Input3010 0.00 5 1865.80 15.23 0 7200.00 44.46 0 7200.00
Input3011 0.58 4 1923.60 14.29 0 7200.00 41.20 0 7200.00
Input3100 0.00 5 288.20 12.95 0 7200.00 39.75 0 7200.00
Input3101 0.00 5 246.40 11.83 0 7200.00 35.90 0 7200.00
Input3110 0.00 5 383.60 12.25 0 7200.00 36.70 0 7200.00
Input3111 0.00 5 492.20 10.85 0 7200.00 35.00 0 7200.00

Average 0.10 483.07 8.99 6869.75 30.28 7200.00
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Table 3.3: Results of computational experiments for the large-size instances.

MDCTVRPm GRASP x ILS [2]
Category Group Avg.ub Avg.lb Avg.gap #Opt Avg.time Avg Avg.gapLP Avg.gapMDCTVRPm

4

Input4000 799.45 751.98 6.22 0 7200.00 796.21 19.30 5.88
Input4001 808.23 764.91 5.55 0 7200.00 806.95 18.57 5.50
Input4010 787.18 729.22 7.86 0 7200.00 775.66 19.68 6.37
Input4011 792.13 744.53 6.26 0 7200.00 787.64 19.12 5.79
Input4100 737.27 692.92 6.24 0 7200.00 733.72 21.90 5.89
Input4101 750.94 701.21 6.98 0 7200.00 745.62 20.91 6.33
Input4110 721.12 678.30 6.09 1 6650.80 711.94 21.26 4.96
Input4111 730.01 689.79 5.72 0 7200.00 728.17 21.03 5.56

5

Input5000 899.58 815.45 10.27 0 7200.00 880.01 19.80 7.92
Input5001 903.58 829.00 8.95 0 7200.00 895.99 18.93 8.08
Input5010 869.08 784.04 10.82 0 7200.00 857.27 21.41 9.34
Input5011 886.07 800.62 10.63 0 7200.00 873.99 20.46 9.16
Input5100 810.75 732.59 10.65 0 7200.00 796.88 22.12 8.78
Input5101 827.35 748.43 10.52 0 7200.00 813.70 20.85 8.72
Input5110 785.86 711.22 10.51 0 7200.00 777.99 23.23 9.39
Input5111 804.80 728.69 10.37 0 7200.00 794.78 21.71 9.07

6

Input6000 1005.58 922.85 8.88 0 7200.00 997.18 20.01 8.05
Input6001 1037.50 936.43 10.75 0 7200.00 1016.10 19.43 8.51
Input6010 987.04 898.72 9.63 0 7200.00 968.81 20.59 7.80
Input6011 998.51 916.29 8.83 0 7200.00 989.60 20.16 8.00
Input6100 955.65 875.82 9.07 0 7200.00 946.88 20.63 8.11
Input6101 984.79 893.52 10.09 0 7200.00 967.23 20.11 8.25
Input6110 936.80 848.97 10.27 0 7200.00 920.24 21.58 8.40
Input6111 953.62 867.56 9.88 0 7200.00 939.51 20.77 8.29

7

Input7000 1031.77 930.53 10.79 0 7200.00 1013.92 21.35 8.96
Input7001 1047.06 935.57 11.88 0 7200.00 1019.34 20.89 8.95
Input7010 1012.71 905.58 11.78 0 7200.00 989.22 21.90 9.24
Input7011 1018.47 910.80 11.83 0 7200.00 995.08 21.47 9.25
Input7100 933.58 842.19 10.81 0 7200.00 918.91 22.90 9.11
Input7101 948.35 849.03 11.65 0 7200.00 924.61 22.39 8.90
Input7110 917.68 830.41 10.51 0 7200.00 904.92 23.56 8.97
Input7111 919.48 832.89 10.37 0 7200.00 915.05 23.24 9.86

Average 893.81 815.63 9.40 881.35 20.98 7.98
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3.5 Final Remarks
This work proposes the Capacitated Covering Salesman Problem (CCSP), a problem that
approaches the notion of coverage in vehicle routing problems. Two ILP formulations and
a BRKGA are proposed to solve the CCSP. From the set of instances for the CVRP
[4, 29], a benchmark of instances for CCSP was generated.

Computational experiments conducted on a benchmark of 198 instances for CCSP
evaluated the ILP formulation and the BRKGA. The results show the effectiveness of
the BRKGA in obtaining upper bounds for all instances. The CCSP1 obtained optimal
solutions for 71 instances, with up to 101 vertices.

Furthermore, a new MILP formulation is proposed for the Multi-Depot Covering Tour
Vehicle Routing Problem (MDCTVRP). Computational experiments were conducted on
a benchmark of 280 instances from literature. The overall results show unequivocally
the new formulation outperforming the best known exact methodology from literature,
obtaining 118 new optimal solutions and improving all known lower bounds.

Future works should focus on valid inequalities and a branch-and-cut framework for
the solution of CCSP and MDCTVRP. Another promising field of research is to consider
multi-objective vehicle routing problem with covering range being the additional objective
function.
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Chapter 4

Routing Electric Vehicles with Remote
Servicing

The paper presented next is a full chapter published in Modeling and Optimization in
Green Logistics book in 2020 and it is co-authored by Rafael Kendy Arakaki, Lucas Porto
Maziero, Matheus Diógenes Andrade, Vitor Mitsuo Fukushigue Hama, and Fábio Luiz
Usberti (DOI: https://doi.org/10.1007/978-3-030-45308-4). In this text we intro-
duce a new variant of the Vehicle Routing Problem with covering constraints and electric
vehicles. Exact and heuristic algorithms are proposed to solve the problem. The efficacy
of the suggested approaches is demonstrated through computational experiments, offering
valuable insights for decision-making concerning electric vehicle-based transportation.

This paper introduces a problem called Electric Capacitated Covering Tour Problem
(ECCTP), a variant of the Vehicle Routing Problem that allows customers demands to be
serviced remotely by electric vehicles with limited battery range and that recharge at Al-
ternative Fuel Stations (AFSs). The ECCTP integrates two research areas: vehicle routing
problems and green logistics. We propose a Mixed Integer Linear Programming (MILP)
mathematical formulation and a Biased Random-Key Genetic algorithm (BRKGA) meta-
heuristic for the ECCTP. A set of benchmark instances from literature is adapted for the
problem. Computational experiments show the effectiveness of the proposed methods
while providing useful information for the decision-making on transportation operated by
electric vehicles.

4.1 Introduction
In the Vehicle Routing Problem (VRP) [12] a set of customers must be serviced by a
homogeneous fleet of vehicles with limited capacity, each vehicle starting from a common
depot. The objective is to minimize the total cost of vehicle routes. Many variants of
the VRP were studied in the literature where additional constraints related to scheduling,
budget, fleet heterogeneity and others are considered [28].

In another research direction, green logistics have emerged as a discipline focused on
the planning and operation of logistic systems aiming high energy efficiency and low levels
of carbon emission [17]. Among VRP variants within this discipline, there is the Green
Vehicle Routing Problem (G-VRP), comprehending additional challenges associated with

https://doi.org/10.1007/978-3-030-45308-4
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operating a fleet of Alternative Fuel Vehicles (AFV) and incorporating stops at Alternative
Fuel Stations (AFS) [8]. One of the biggest challenges modeled by G-VRP is the reduced
number of alternative fuel stations and the low range of alternative fuel vehicles. A G-
VRP solution example is depicted in Figure 4.1, in which each customer is visited by a
route and some AFS are visited more than once for recharging.

Depot

AFS

Customer

Figure 4.1: G-VRP solution example

In another branch of VRP variants, [1] investigated the covering tour VRP, a problem
where some customers may be located in regions of difficult access but can be serviced by
covering: the vehicle visits one of the neighboring customers instead of directly visiting
the customer. This problem has application in determining post-boxes locations within
a set of candidate locations, finding optimal collection routes [16]. Another application
is to design routes for mobile health care delivery teams where services are rendered at a
number of locations by medical teams, and the population living outside these locations
must travel on foot to reach them [10, 26].

This work merges two branches of vehicle routing problems, the G-VRP and the
covering tour VRP, resulting in a new problem called Electric Capacitated Covering Tour
Problem (ECCTP). In the ECCTP, a homogeneous fleet of electric vehicles are used to
service the demands of customers. A customer can be serviced by any vehicle visiting a
node inside the neighborhood of that customer. An empty neighborhood implies that the
corresponding customer must be visited in order to be serviced. Figure 4.2 presents an
ECCTP example in which some vertices are customers and others are traffic vertices. A
traffic vertex does not have demand and may be visited or not. Both traffic and customer
vertices can be used to service demands of neighboring customers by covering.

Depot

Traffic

AFS

Customer

Figure 4.2: ECCTP solution example

Our contribution We introduce a new VRP variant called Electric Capacitated Cov-
ering Tour Problem (ECCTP) and present a Mixed Integer Linear Programming (MILP)
model for the problem. A Biased Random-Key Genetic Algorithm (BRKGA) is also pro-
posed for the ECCTP. Furthermore, a set of benchmark instances for the problem was
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created based on public benchmark instances originally proposed for the VRP. Computa-
tional experiments were conducted with the proposed methods to evaluate the effectiveness
of the approaches and to extract useful information for transportation decision-making.

Section 4.2 presents a literature review of papers related to this work, classified in
two subsections: (1) covering tour problems and (2) green vehicle routing problems. In
Section 4.3 the ECCTP is formally defined. In Section 4.4 a mathematical formulation
for the problem is presented. Section 4.5 describes the BRKGA metaheuristic. Section
4.6 contains the results and analysis of the computational experiments. Finally, Section
4.7 presents the final remarks.

4.2 Literature Review

4.2.1 Covering Routing Problems

The Covering Salesman Problem (CSP), proposed by J. R. Current and D. A. Schilling
[6], addresses the following question: considering a set of sites scattered in the plane that
must be covered by a single vehicle tour and knowing that each site covers some of its
neighbors, what is the minimum length of an enclosed vehicle tour in which all sites are
covered? More formally, given an undirected graph, the CSP objective is to find the
shortest Hamiltonian cycle on a subset of vertices that covers the graph. The special
case where each vertex covers strictly itself is the Traveling Salesman Problem (TSP) [2],
which follows that CSP is also NP-hard.

Some solution methodologies were proposed in the literature for the CSP. J. R. Current
and D. A. Schilling [6], for example, developed a two-step heuristic to solve the CSP: the
first step solves a set cover problem; the second step solves the TSP on the vertices
determined by the first step. More than two decades later [21] revisited the problem by
proposing a heuristic for the CSP embedded within an Integer Linear Programming (ILP)
framework. First they employ constructive heuristics to find good initial solutions and
then the tour vertices are rearranged by the use of ILP techniques in an attempt to reduce
its length. More recently, [22] give a polynomial size formulation and a hybrid heuristic
for the CSP. Their heuristic combines ant colony optimization and dynamic programming.

M. Gendreau et al. [11] studied the Covering Tour Problem (CTP), a variant of CSP.
Let G = (V ∪W,E) be an undirected graph, where V ∪W is the set of vertices and E is
the set of edges. Vertex v0 is the depot, V is the set of vertices that can be visited, T ⊆ V
is the set of vertices that must be visited (v0 ∈ T ), and W is the set of vertices that
must be covered but cannot be visited. The goal of the CTP is to determine a minimum
length tour that visits a subset of vertices S ⊆ V such that T ⊆ S and each vertex of W
is covered by some vertex in S. The authors proposed heuristics and a branch-and-cut
algorithm to solve the CTP.

There are works in the literature that tackle the geometric version of CSP. In this
version, a compact region of the plane containing each vertex is specified as a neighborhood
set. The goal is to find a minimum length tour that starts from a depot and intercepts all
neighborhood sets, thus covering all its corresponding vertices. Approximation algorithms,
heuristics and methodologies based on ILP were developed for this version ([7], [14], [25],
[5]).

Some works in the literature addresses variants of CTP considering multiple vehicles.
[15] introduced the multi-vehicle covering tour problem (m-CTP). Given a graph G =
(V ∪W,E), where V ∪W is the set of vertices and E the set of edges. Vertex v0 is a
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depot at which m identical vehicles start their routes, V is the set of vertices that can
be visited, T ⊆ V is the set of vertices that must be visited (v0 ∈ T ), and W is the set
of vertices that must be covered but cannot be visited. The objective of m-CTP is to
determine m routes of minimum total length satisfying following restrictions:

• there are at most m vehicle routes and each route starts and ends at vertex v0;

• each vertex of T is visited exactly once, while each vertex of V \T is visited at most
once;

• each vertex of W must be covered by a route in the sense that it must lie within a
preset distance c of a vertex of V belonging to a route (assuming that v0 does not
cover all vertices of W );

• the number of vertices (excluding v0) in each route is limited by a value p;

• the length of each route cannot exceed a value q.

The work of [19] investigated the location of distribution centers in the context of
disaster relief. In these situations, support teams are unable to visit each affected area.
Therefore, people need to go to a particular distribution center to obtain survival items,
provided that these centers are not too far away. The locations of the distribution centers
are defined for a car fleet departing from a depot. This application can be modeled through
m-CTP. The authors proposed an Integer Linear Programming (ILP) formulation and
developed a heuristic able to produce high quality solutions, even for large size instances.

Some works in the literature considered capacitated versions of covering vehicle routing
problems. S. Allahyari et al. [1] proposed the Multi-Depot Covering Vehicle Routing
Problem (MDCTVRP). Let G = (N,A) be a directed graph, where N = Nc ∪ Nd is the
set of vertices; A = {(i, j)|i, j ∈ N} is the set of arcs; Nc = {1, 2, ..., nc} is the set of
customers’ vertices such that all i ∈ Nc has a demand di > 0; Nd = {1, 2, ..., nd} is the set
of depots of which the vehicles begin their routes. In the MDCTVRP is not necessary that
each customer has to be visited by a vehicle, provided that they are within a maximum
distance from at least one visited customer. The authors developed two formulations of
Mixed Integer Linear Programming (MILP) and a Greedy Randomized Adaptive Search
Procedure (GRASP) metaheuristic to solve the MDCTVRP.

In the work of [9] the multi-vehicle cumulative covering tour problem (m-CCTP) was
proposed. Given a complete graph G = (V ∪W,E), where V = {v0, ..., vn+1} is the set
of vertices. V ′ = V \{v0, vn+1} is the set of vertices that can be visited and v0 and vn+1

are the two depots; W is the set of inaccessible vertices that must be covered; and E is
the set of edges. Let T ⊂ V ′ be the set of vertices that must be visited. The m-CCTP
consists of finding a set of routes that visits all customers in T and some in V ′\T such
that the vertices in W are covered and the sum of arrival times at the visited vertices
is minimized. An MILP formulation and a GRASP metaheuristic are proposed for m-
CCTP. The computational experiments evaluated the performance of the methodologies
for a set of instances and showed the effectiveness of the GRASP metaheuristic.

4.2.2 Green vehicle routing problems

S. Erdoğan and E. Miller-Hooks [8] proposed the G-VRP and developed two constructive
heuristics: the modified heuristic of Clarke and Wright (savings) and the algorithm of



77

clustering based on density. The authors also proposed a heuristic custom improvement
technique.

Ç. Koç and I. Karaoglan [31] proposed an approach for the G-VRP that utilizes a
simulated annealing within a branch-and-cut framework. The Simulated Annealing was
used to improve the initial solution and to find better primal bounds during the search.
The authors evaluated their approach in terms of the number of optimal solutions obtained
and the computational time required to find the best solution. The computational results
have shown that 22 of 40 instances with 20 customers were solved optimally with a
pre-defined time limit. Moreover, [31] proposed a new mathematical formulation with
fewer variables and restrictions than previous works and without the need of network
augmenting.

V. Leggieri and M. Haouari [17] proposed an improved model, achieving better re-
sults than the previous model by Ç. Koç and I. Karaoglan [31] and S. Erdoğan and E.
Miller-Hooks [8]. Their formulation offers two significant advantages: compactness, due
to a polynomial number of variables and restrictions, and flexibility, allowing it to be
more easily adapted to other VRP variants. The main idea was to apply Reformulation-
Linearization Technique (RLT), proposed by H. Sherali and W. Adams [23] and H. D.
Sherali and W. P. Adams [24]. First a non-linear MILP formulation is proposed for the G-
VRP, and then an equivalent MILP formulation is derived. V. Leggieri and M. Haouari
[17] provide empirical evidence that the formulation and the reduction procedure were
able to find optimal solutions for medium-sized instances using a general purpose solver.

A. Montoya et al. [18] propose a two-phase heuristic for the G-VRP. In the first
phase, the heuristic constructs a set of routes using route-first cluster-second randomized
heuristics with a procedure of optimal insertion of AFSs. In the second phase, a G-VRP
solution is obtained from the resolution of set partitioning formulation over the set of
routes constructed in the first phase. To test their approach, [18] execute experiments in
a set of 52 literature instances. The results showed that the heuristic is competitive with
other state-of-art methods.

Some very similar problems related to the G-VRP are proposed by R. G. Conrad and
M. A. Figliozzi [4] and Y.-W. Wang et al. [30]. For example, they introduced the recharg-
ing vehicle routing problem, where vehicles with limited range are allowed to recharge
at customer locations mid-tour. Their work addresses the problem in two versions, the
capacitated (CRVRP) and the capacitated with time-windows (CRVRP-TW), for both
presenting mathematical formulations and experimental results with solution bounds.

Another variant which connects routing problem to green logistics is the Pollution-
Routing Problem (PRP), introduced by T. Bektas and G. Laporte [3]. The PRP has a
broader and more comprehensive objective function that accounts not just for the travel
distance, but also for the number of greenhouse emissions, fuel, travel times, and their
costs. The results of [3] suggest that the PRP has the potential of yielding savings in
total cost.

4.3 Problem Description
The ECCTP is defined next. Consider a complete graph G(V,E), where V is the set of
vertices and E is the set of edges. The set of vertices V = W ∪ T ∪F ∪ {v0} is composed
of four disjoint sets of vertices: W contains customer vertices; T contains traffic vertices;
F contains Alternative Fuel Stations (AFFs) vertices; and v0 is the depot vertex. The
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edges (i, j) ∈ E have costs cij ⩾ 0. There is a set of MUB homogeneous vehicles that start
their routes in the depot vertex v0 with a demand capacity Q and a battery level charged
to the maximum of β units. Each customer w ∈ W has an associated demand dw ⩾ 0.
For each customer w ∈ W , the set C(w) is the subset of all vertices in W ∪ T that cover
w. It is considered that w ∈ C(w), ∀w ∈ W . The vehicles must service all customers
in W . The goal of ECCTP consists of finding a set of M ≤ MUB minimum cost routes
satisfying the following constraints:

• Each route begins and ends at the vertex depot v0;

• Each vertex v ∈ (T ∪W ) is visited at most once by only one route;

• Each vertex f ∈ F can be visited multiple times by several routes;

• Each vertex w ∈ W must be covered by at least one route, i.e., it must be serviced
through some vertex v ∈ C(w) that is visited by some route;

• The demand dw of a vertex w ∈ W is serviced exclusively by one route;

• The demand of a vertex w ∈ W can be serviced by a route k ∈ {1, . . . ,MUB} only
if there is a vertex v visited by route k such that v ∈ C(w);

• The total demand serviced by a route must not exceed the capacity Q of the vehicle;

• The battery level of a vehicle decreases by cij when it travels along an edge (i, j) ∈ E.
It is not allowed for a vehicle to visit an edge whose cost is higher than its current
battery level. When the vehicle visits a station vertex f ∈ F , its battery level is
restored to the maximum capacity of β units.

The VRP is a special case of the ECCTP where: (1) only depot and customer vertices
are considered; (2) a very high battery capacity (β =∞); (3) each customer covers only
itself (∀w ∈ W : C(w) = {w}). Since the VRP is a NP-hard problem [12], it follows that
the ECCTP is also NP-hard.

4.4 Mathematical model
The ECCTP formulation is defined on a subgraph G′(V,E ′) of the original graph G(V,E).
The subset of edges E ′ = E \ Einf is the original set E without some infeasible edges,
where Einf = {(vi, vj) ∈ E : cij > β} is a set of edges that cannot be visited by any
feasible solution because of the limited battery capacity.

The functions and parameters used in the MILP formulation for the ECCTP are:

• δ+(i) : is the set of directed edges in E ′ which leave a vertex vi ∈ V ;

• δ−(i) : is the set of directed edges in E ′ which enter a vertex vi ∈ V ;

• δ(i) = δ+(i) ∪ δ−(i);

• Mset = {1, ...,MUB} is the set of available vehicles;

• MLB = ⌈
∑

i∈W di/Q⌉ is a lower bound for a feasible number of vehicles;
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The sets of variables used in the MILP formulation for the ECCTP are given next:

• xk
ij: is the number of times edge (vi, vj) ∈ E ′ is visited by route k ∈Mset.

• yi : is the number of times vertex vi ∈ (W ∪ T ) is visited.

• wf : is the number of times vertex vf ∈ F is visited.

• zki : is 1 if vertex vi ∈ W is served by route k ∈Mset; 0 otherwise.

• ei : is the vehicle battery level at arriving in vertex vi ∈ V ;

• M : is the number of routes.

The objective function (1) minimizes the routes total cost. Constraints (2), (3) and
(4) imply that the depot must belong to all routes and limit the number of routes. Con-
straints (5) guarantee that every vertex vi ∈ W has its demand serviced. Constraints
(6) ensure that for each route the number of edges that enters and leaves a vertex is the
same. Constraints (7) and (8) integrate edge variables with vertex degree variables of
customer/traffic vertices and stations, respectively. Constraints (9) ensure that, for every
vertex vw ∈ W whose demand is attended by vehicle k ∈ Mset, there at least one vertex
i ∈ C(w) visited by vehicle k, where C(w) is the set of vertices that cover vw. Constraints
(10) ensure that the total attended demand by a vehicle must not exceed its capacity
Q. Constraints (11) are the connectivity constraints which assure that all routes are con-
nected to the depot. More specifically, it states that given a set of vertices S without
depot vertex v0 and a customer/traffic vertex vi∗ ∈ S, if vertex vi∗ is visited by route k
then there must be at least one edge entering the set S in that route in order to vi∗ be
connected to the depot.

Constraints (12-15) enforce that the vehicles can only visit vertices that are within the
reach of their residual capacities. Constraints (12) define the minimum and maximum
energy level. Constraints (13) restore the vehicle energy level when a vehicle is visiting
a depot or a recharging station. Constraints (14) update the vehicle energy level when a
vertex j ∈ W ∪T is visited. Constraints (15) do not allow vehicles to recharge in stations
or return to depot without the required energy. Constraints (16-22) define the domain
for each set of variables.
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Min
∑

(i,j)∈E′

cijxij (1)

s.t.∑
k∈Mset

∑
j∈δ+(v0)

xk
ij =

∑
k∈Mset

∑
j∈δ−(v0)

xk
ji = M (2)

MLB ⩽ M ⩽ MUB (3)∑
j∈δ+(v0)

xk
ij ⩽ 1 ∀k ∈Mset (4)

∑
k∈M

zki = 1 ∀vi ∈ W (5)∑
j∈δ+(i)

xk
ij =

∑
j∈δ−(i)

xk
ji ∀vi ∈ V, ∀k ∈Mset (6)

∑
k∈Mset

∑
j∈δ+(i)

xk
ij = yi ∀vi ∈ W ∪ T (7)

∑
k∈Mset

∑
j∈δ+(f)

xk
ij = wf ∀vf ∈ F (8)

∑
i∈C(w)

∑
j∈δ−(i)

xk
ji ⩾ zkw ∀vw ∈ W,k ∈Mset (9)

∑
i∈W

diz
k
i ⩽ Q ∀k ∈M (10)∑

vi∈(V \S)

∑
vj∈S

xk
ij ⩾

∑
vp∈δ−(vi∗ )

xk
pi∗ ∀S ⊆ V \ {v0}

∀vi∗ ∈ S ∩ (W ∪ T ),∀k ∈Mset (11)
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0 ⩽ ei ⩽ β ∀vi ∈ V ∪W (12)

ef = β ∀vf ∈ F ∪ {v0} (13)

ej ⩽ ei − cij(
∑

k∈Mset

xk
ij) + β(1− (

∑
k∈Mset

xk
ij)) ∀vj ∈ W ∪ T,∀vi ∈ V (14)

cij(
∑

k∈Mset

xk
ij) ⩽ ei ∀vj ∈ F ∪ {v0}, ∀vi ∈ W ∪ T (15)

xk
ij ∈ {0, 1} ∀(vi, vj) ∈ E ′ : vi ∈ W ∪ T or vj ∈ W ∪ T,

∀k ∈Mset (16)

xk
ij ∈ Z+ ∀(vi, vj) ∈ E ′ : vi, vj ∈ F ∪ {v0},

∀k ∈Mset (17)

yi ∈ {0, 1} ∀vi ∈ W ∪ T (18)

wf ∈ Z+ ∀vf ∈ F (19)

zki ∈ {0, 1} ∀vi ∈ W,∀k ∈Mset (20)

ej ∈ R+ ∀vj ∈ V (21)

M ∈ Z+ (22)

There are an exponential number of connectivity constraints (11); therefore, a com-
plete enumeration of them is only possible for very small instances. The solution adopted
was to consider an iterative algorithm that adds the connectivity constraints to the formu-
lation as they are needed to progress the optimization. First the formulation is executed
without these constraints and as soon as an integer solution (x∗,M) is obtained, the
iterative algorithm is called. The process is shown in Algorithm 7. A connected compo-
nent algorithm is executed M times for each route k ∈ {1, ...,M} on undirected graphs
Gk

x∗(V k
x∗ , Ek

x∗) induced by the edges visited in each route k of the solution. From the
connected components in each induced graph one can observe that excluding the one that
contains the depot vertex v0, all others make subset of vertices disconnected from the de-
pot. Therefore, for each subset of vertices S associated to a component disconnected from
v0, a set of corresponding connectivity constraints (11) is added to the formulation, then
the solver restarts the optimization. This process is repeated until an optimal solution
that does not violate any of the connectivity constraints (11) is obtained.

Some of the advantages of our proposed formulation for ECCTP, comparing to other
formulations for similar electric vehicle routing problems in literature, is: (1) the ability
to handle any number of visits on each station vertex; (2) allowing solutions that have any
number of consecutive visits of stations. For example, [8] proposed a formulation where
dummy vertices are created for each possible visit to a station; [8, 31] and [17] proposed
formulations that assume a vehicle never makes two consecutive visits in station vertices;
and [30] proposed a formulation that assumed each station would be used at most once
per vehicle.

4.5 BRKGA
In this section, we will describe a Biased Random Key Genetic Algorithm (BRKGA)
metaheuristic developed for the ECCTP. The BRKGA [13] is a metaheuristic proposed
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Algorithm 7 Iterative algorithm for ECCTP formulation.
Input: A feasible solution (x∗,M) for constraints (2-10) and (12-22).
Output: A set CC of connectivity constraints (11) violated by (x∗,M), if there is

any.
1: for k = 1 to M do
2: Create a graph Gk

x∗(V k
x∗ , Ek

x∗) induced by the set of edges Ek
x∗ = {(i, j) ∈ E ′ :∑

j∈δ+(vi)
xk
ij +

∑
j∈δ−(vi)

xk
ji ⩾ 1} and where Vx∗ = {i ∈ V :

∑
j∈δ+(vi)

xk
ij ⩾ 1}

3: Obtain the set of connected components in Gk
x∗

4: for each found connected component S such that v0 ̸∈ S do
5: vi∗ ← an arbitrarily chosen vertex from S ∩ (W ∪ T )
6: CCnew ← set of connectivity constraints (11) given by (S, vi∗) for each k ∈Mset

7: CC ← CC ∪ CCnew

8: return CC

to address combinatorial optimization problems. The key idea is developing a decoder
function to map a sequence of fixed-length real-valued numbers (random keys) to rep-
resent a solution for the targeted problem. This section first gives an overview of this
metaheuristic and then our method is described.

4.5.1 Biased Random Key Genetic Algorithm (BRKGA)

Similar to genetic algorithms, BRKGAs represent solutions by chromosomes. The method
starts with an initial population of random individuals. The population is composed of
two ranks: elite and non-elite individuals. The algorithm then processes the generations
iteratively in four steps: (1) crossover of couples made by an elite and a non-elite indi-
viduals; (2) small fraction of pure random mutants are created; (3) decoding and ranking
the new generation; and (4) a population selection procedure to keep the population at a
fixed size.

The main characteristics that define the BRKGA, in contrast to the general class of
genetic algorithm, are that in the BRKGA: (1) the solutions are represented by a fixed-
length sequence of N random numbers, each in the interval [0, 1); (2) elitist strategy is
always adopted: best solutions pass to next generation without change; (3) the crossover
is always between an elite and a non-elite individuals; and (4) no mutation method is
considered: instead, some random individuals (mutants) are inserted in the population
from time to time.

The BRKGA contains only one problem-specific procedure: a decoder function. This
procedure starts from a vector of random keys, i.e. real-valued numbers in the interval
of [0, 1) and should output a solution for the problem that can be evaluated by a fitness
function. Therefore, to define a BRKGA method, one just needs to define a corresponding
decoding function and its problem specified parameters [27]. The parameters chosen for
the BRKGA are described in Section 4.6. In the following subsection, the proposed
decoder function for ECCTP is described.

4.5.2 Decoding an ECCTP solution from a vector of random keys

The decoder function for ECCTP is composed of the following steps:



83

1. construction of a single route with unlimited capacity and an unlimited electric
battery that visit exactly once each customer and traffic vertex in (W ∪ T );

2. assign which customers will be served by covering each vertex in the route;

3. Split procedure: optimally split the single route with unlimited capacity into a set
of routes with feasible capacity, each starting and ending in the depot vertex v0.

4. InsertStations procedure: a dynamic programming approach to optimally insert the
stations’ visits in each route, making the route feasible;

In the first step, a chromosome S of length N = |W ∪ T | is given. The alleles in
non-decreasing order keeping track of the original positions as shown in Fig. 4.3. Each
position is then mapped to a unique element in W ∪T . The result is a single route R that
visits each vertex in W ∪ T once as shown in Fig. 4.4. This route may have a demand
greater than the limited capacity and/or may use more energy than the battery supports.
These infeasibilities will be treated by the following steps.

Figure 4.3: Decoding a chromosome into a route.

Figure 4.4: A single route decoded from the chromosome.

In the second step, we assign to each vertex in R a subset of customers that will be
serviced (by covering) when the route visits that vertex. Starting from the vertex r1 at the
beginning of the route R = (r1, r2, . . . , rn), we assign to node ri the following customers,
in that order: (1) ri itself if it is a customer vertex not yet assigned; (2) the customers,
in lexicographic order of, that can be served by covering from ri and which have not yet
been assigned, until the total assigned demand does not exceed the vehicle capacity. If
all customers coverable by ri were assigned and there is still capacity remaining, we try
to assign customers to the next vertex ri+1 and so on. If the demand was greater or equal
to the capacity, we stop assigning customers to the vertex, reset the total demand, and
restart assigning customers to the following vertices of the route. In the example shown
in Fig. 4.5, vertex 3 services customers 3, 2 and 4, while vertices 5 and 1 only services
themselves, and vertex 4 only serves customer 6. Vertices 2 and 6 do not service any
client and will be removed in the next step. This guarantees that every customer will be
serviced exactly once, but still does not assure the battery constraint.

Next, we remove from R all the vertices that have not been assigned to service any
customer. Then the split procedure is applied in order to handle capacity constraints.
This procedure was inspired by the split procedure originally proposed for VRP [20]. The
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Figure 4.5: Assign customers to a vertex.

single route R is divided into several sub-routes such that each one attends the capacity
constraints. This procedure is optimal for a given sequence of vertices. We create a
weighted Direct Acyclic Graph (DAG) whose vertices are ordered as same as the route R.
Edge (i, j) exists if and only if the sub-route 0 −→ i

vertices between i,j−−−−−−−−−−−→, 0, (where 0 represents
the depot), has a demand less or equal to the vehicle capacity Q. The weight of this edge
is the total traveled distance of this route. By solving the shortest path problem in this
DAG we can find the routes (edges) such that the total distance is minimum. An example
is illustrated in Fig. 4.6, where the obtained shortest path cost is 2+5 = 7. This algorithm
is fast since the time complexity for the shortest path in DAGs is O(|E|).

In the last step, InsertStations procedure, we solve the problem of deciding where
the vehicle should proceed to recharge its battery for each route. The pseudocode of
the dynamic programming is shown in Algorithm 8. One can observe that between two
consecutive vertices i, j of a given route, we have two choices: go from i to a recharge
station not farther than the current battery level and then visit j (line 8); or go straight
from i to j (line 13). In the first case, if we have more than one feasible ways of going from
a station to j, with the same remaining battery level, then the shortest way is chosen and
saved in the table (lines 11 and 14). An example is illustrated in Fig. 4.7, where the chosen
decision was to go from vertex 0 to vertex 3 directly and then from vertex 3 to recharge
in station 3 and then arrive at vertex 0. The total route cost is 6. After InsertStations
procedure is executed for each route, the obtained solution is feasible for ECCTP.

4.6 Computational Experiments

4.6.1 Benchmark of Instances

The set of instances for the ECCTP was generated from a set of CVRP instances proposed
by E. Uchoa et al. [29], namely X-n110-k13. This instance is named in the format X-
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Figure 4.6: The split procedure.

Figure 4.7: Inserting recharging stations.
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Algorithm 8 InsertStations
Input: A route R, vehicle battery range β, shortest distance between any two vertices

d(i, j).
Output: A feasible route.

1: Create a matrix M [1, . . . , |R|][0, . . . , β]
2: Initialize every value of M to ∞
3: Initialize M [1][β] := 0
4: for i = 1 to |R| − 1 do
5: for j = 0 to β do
6: if M [i][j]! =∞ then
7: dist = d(i, i+ 1)
8: for each station k such that d(i, k) <= j and d(k, i+ 1) <= β do
9: dl = d(i, k)

10: dr = d(k, i+ 1)
11: if M [i][j] + dl + dr < M [i+ 1][β − dr] then
12: M [i+ 1][β − dr] = M [i][j] + dl + dr

13: if j-dist>=0 then
14: if M [i][j] + dist < M [i+ 1][j − dist] then
15: M [i+ 1][j − dist] = M [i][j] + dist

return The route corresponding to the minj M [|R|][j]

nA-kB, where A represents the n + 1 vertices (including the depot vertex) and B the
minimum number of vehicles needed to serve the demand for all vertices, calculated by
solving the bin packing problem. Figure 4.8 illustrates the CVRP instance X-n110-k13
(Table 4.1).

From that X-n110-k13 instance, a total of 54 ECCTP instances were generated with
varying parameters. Table 4.1 summarizes the parameters used in the generation of
instances for the ECCTP. Each generated ECCTP instance considered the five following
parameters:

Table 4.1: Parameters of generated instances for the ECCTP.

Parameter Description Values
|V | total of vertices {21, 31, 41, 51, 61, 71}
|W | number of customers vertices 50% of |V | − 1

|T | number of traffic vertices 30% of |V | − 1

|F | number of stations vertices 20% of |V | − 1

β vehicle battery capacity {50%, 60%, 70%} of dG
c size of coverage {5, 7, 11}

dG - graph diameter of the ECCTP instance

In the ECCTP instances the depot vertex is the same as the one in X-n110-k13 and
the remaining vertices are the |V | − 1 closest vertices to the depot. The vehicle capacity
Q of the ECCTP instances is the same as the X-n110-k13 instance.

The customer and station vertices were chosen randomly, with uniform distribution,
from the set V \{v0}. The |V | − 1− |W | − |F | remaining vertices are traffic vertices. The
customer vertices are always within a maximum distance of β

2
from some station vertex.
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Figure 4.8: The CVRP instance X-n110-k13 used to generate the instances for ECCTP.
a

aImage produced by Uchoa et al. [29] and extracted from the site http://vrp.atd-lab.inf.puc-
rio.br/index.php/en/plotted-instances?data=X-n110-k13.

Besides, it is guaranteed there exists a tree spanning all stations and the depot using only
edges of length β or less. Therefore, the vehicles can travel through all customer and
station vertices can be served.

For each vertex v ∈ (W ∪ T ) \ {v0} a set D(v), which represents the vertices covered
by v, is formed by the c closest customers or traffic vertices to v. From that, the set
C(w), which represents the vertices that cover a customer w ∈ W , is generated by simply
considering that v ∈ C(w) ⇐⇒ w ∈ D(v).

The instances for the ECCTP are named in the format wI-eaJ-cK, where I represents
the number of customer vertices, J the vehicle battery capacity, and K the size of coverage.

4.6.2 Computational Settings

The computational experiments were executed in an Intel Xeon E3-1230 V2 3.3 GHz with
32 GB of RAM and Linux 64-bit operating system. The MILP formulation was imple-
mented using solver Gurobi Optimizer 8.1.1, set with a 3600 s time limit for all instances.
The BRKGA described in this paper was implemented using the C++ framework pro-
posed by R. F. Toso and M. G. C. Resende [27], set with a |W | ∗ 10 s time limit for each
instance. Also, the parameters used by BRKGA are:

• Number of alleles per chromosome: |W |+ |T |;

• Number of chromosomes in population: 100;

• Size of the elite set in population: 10% of the entire population;

• Number of mutants to be introduced in the population at each generation: 10% of
the entire population;
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• Probability that an allele is inherited from the elite parent: 80%.

4.6.3 Experiment Results

The results of the computational experiments for the benchmark of instances are reported
in Tables 4.2, 4.3 and 4.4.

Table 4.2 reports the summary results of the experiments and for each |W | the follow-
ing data are shown:

• avg gap (%): average optimality gap;

• # opt: number of optimal solutions;

• avg time: average execution time in seconds.

The column group "MILP formulation" reports the summary results obtained by the
MILP formulation, while the column group "BRKGA" reports the summary results ob-
tained by the BRKGA metaheuristic. Note that the "avg time" column of the "MILP
formulation" column group is the average total execution time of the MILP formulation,
while the "avg time" column of the "BRKGA" column group represents the average exe-
cution time until the best upper bounds were obtained. The last row reports the average
values of each column.

Table 4.2: Summary results of experiments.

MILP formulation BRKGA
|W | avg gap (%) # opt avg time avg gap (%) # opt avg time
10 0.00 9 1.69 3.42 2 0.02
15 2.60 6 1433.40 6.09 1 6.26
20 13.01 1 3289.03 15.40 0 20.64
25 44.59 0 3600.00 44.63 0 24.33
30 52.69 0 3600.00 46.63 0 65.80
35 85.42 0 3600.00 59.99 0 101.65
overall 33.05 16 2587.35 29.36 3 36.45

From Table 4.2 one can observe that for the smaller instances (|W | ⩽ 20) the solution
quality of the MILP formulation was superior, achieving a total of 16 optimal instances,
while the BRKGA obtained 3. Conversely, BRKGA has a processing time much faster
than the MILP formulation for instances of all sizes: in overall average, the BRKGA is
approximately 70 times faster.

Regarding the hardest instances (|W | ⩾ 30) the performance of BRKGA is superior
in both solution cost and processing time. For |W | = 35, for example, BRKGA obtained
an average gap (%) of 59.99 in comparison to 85.42 of the MILP formulation. Moreover,
for these instances, the BRKGA average time was approximately 35 times faster. This
shows that the BRKGA is the most suitable method for the hardest ECCTP instances,
with the advantage of also being faster. Conversely, the MILP formulation can be used
to obtain good solutions for small instances and to obtain lower bounds.

Tables 4.3 and 4.4 report the full results of the experiments and for each instance, the
following data are shown:
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• UB: best upper bound obtained;

• LB: best lower bound obtained;

• gap (%): optimality gap (UB−LB
UB

) ∗ 100;

• time: execution time in seconds;

• M: number of vehicles used in the solution.

Column "MUB" represents an upper bound of the number of vehicles required to the
demand of all customers. The column group "MILP formulation" reports the results
obtained by the MILP formulation proposed for ECCTP. In this column group, "time"
represents the total execution time of MILP formulation and the symbol "-" means that
no upper bounds were obtained. The column group "BRKGA" reports the results ob-
tained by the BRKGA metaheuristic proposed for ECCTP. In this column group, "time"
represents the execution time until the best UB was obtained. For all instances, the last
row of each variation of β reports the average values of each column. Similarly, the last
row of each variation of |W | reports the average values of each column.

The value of parameter MUB can be quite important regarding the optimization dif-
ficulty of instances by the proposed methods. If the value is too low, it may be difficult
to find any feasible solution. Conversely, a big value can turn the instances unnecessarily
difficult to be solved by the MILP formulation since the number of variables relies on
MUB. Therefore, we considered a moderate value of MUB for each instance computed
by the following formula: MUB = ⌊3

2
∗MLB⌋ + 1, where MLB = ⌈

∑
i∈W di/Q⌉ is a lower

bound on the number of vehicles for any feasible solution.
Table 4.3 shows that parameter c is crucial for the difficulty of the instances and cost of

optimal solutions. The MILP method addressed more easily instances with c = 11, both
in solution quality and processing time, when compared to c ∈ {5, 7}. For example, the
only optimal solution obtained for |W | = 20 is the instance with c = 11 and β = 70%∗dG.

Parameter β also showed a substantial impact on solution costs. The decrease of
solution cost when increasing the vehicle batteries capacity from β = 50% ∗ dG to β =
60% ∗ dG is substantially greater than from β = 60% ∗ dG to β = 70% ∗ dG. For example,
observing the optimal costs of |W | = 10 instances, the average cost decrease from the first
increment in battery capacity was approximately 8%, while the second increment incurred
in approximately 9% cost reduction. The same pattern was observed for |W | = 15, 20, 25.
The economic interpretation of these results is that the increase in the battery capacity has
diminishing returns concerning transportation costs. This kind of analysis could support
the decision-making process for which vehicles model should be used given their capacities
and potential cost reductions.

Table 4.4 shows the difficulty of optimizing the largest instances |W | = 30, 35. For
many of these instances, the MILP method did not obtain any feasible solution. This prob-
ably is related to the energy constraints since this happened especially more frequently
for β = 50% ∗ dG and less frequently for β = 70% ∗ dG. This suggests that reformulating
the problem using a stronger set of constraints to model the battery capacities may be a
promising research topic. Conversely, BRKGA was shown to be an effective approach to
obtain feasible solutions.
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Table 4.3: Results for instances with 10 ⩽ |W | ⩽ 20.

MILP formulation BRKGA
|W | β c MUB UB LB gap (%) time M UB gap (%) time M

10

50%
5 4 911 911 0.00 0.90 2 911 0.00 0.01 2
7 4 711 711 0.00 0.80 2 715 0.56 0.02 2
11 4 278 278 0.00 0.10 2 294 5.44 0.04 2

overall 633.33 633.33 0.00 0.60 2.00 640.00 2.00 0.02 2.00

60%
5 4 819 819 0.00 3.70 2 819 0.00 0.01 2
7 4 669 669 0.00 1.60 2 688 2.76 0.02 2
11 4 278 278 0.00 0.10 2 294 5.44 0.02 2

overall 588.67 588.67 0.00 1.80 2.00 600.33 2.73 0.02 2.00

70%
5 4 768 768 0.00 50.00 3 819 6.23 0.01 2
7 4 654 654 0.00 2.90 2 688 4.94 0.03 2
11 4 278 278 0.00 0.10 2 294 5.44 0.01 2

overall 566.67 566.67 0.00 2.67 2.33 600.33 5.54 0.02 2.00

overall 596.22 596.22 0.00 1.69 2.11 613.56 3.42 0.02 2.00

15

50%
5 4 1129 1085 3.90 3600.00 2 1160 6.47 44.47 2
7 4 942 942 0.00 1070.40 2 948 0.63 7.54 2
11 4 587 587 0.00 6.10 2 634 7.41 0.10 2

overall 886.00 871.33 1.30 1558.83 2.00 914.00 4.84 17.37 2.00

60%
5 4 1046 938 10.33 3600.00 2 1076 12.83 0.23 2
7 4 894 894 0.00 707.00 2 926 3.46 0.44 3
11 4 587 587 0.00 6.70 2 634 7.41 0.04 2

overall 842.33 806.33 3.44 1437.90 2.00 878.67 7.90 0.24 2.33

70%
5 4 1013 920 9.18 3600.00 2 1013 9.18 3.31 2
7 4 833 833 0.00 283.10 2 833 0.00 0.01 2
11 4 587 587 0.00 27.30 2 634 7.41 0.19 2

overall 811.00 780.00 3.06 1303.47 2.00 826.67 5.53 1.17 2.00

overall 846.44 819.22 2.60 1433.40 2.00 873.11 6.09 6.26 2.11

20

50%
5 5 1657 1321 20.28 3600.00 3 1657 20.28 8.87 3
7 5 1285 1184 7.86 3600.00 3 1366 13.32 149.82 3
11 5 1061 955 9.99 3600.00 3 1068 10.58 0.72 3

overall 1334.33 1153.33 12.71 3600.00 3.00 1363.67 14.73 53.14 3.00

60%
5 5 1607 1241 22.78 3600.00 3 1607 22.78 20.01 3
7 5 1259 1033 17.95 3600.00 3 1263 18.21 1.38 3
11 5 926 873 5.72 3600.00 3 962 9.25 0.02 3

overall 1264.00 1049.00 15.48 3600.00 3.00 1277.33 16.75 7.14 3.00

70%
5 5 1573 1229 21.87 3600.00 3 1573 21.87 4.60 3
7 5 1259 1125 10.64 3600.00 3 1341 16.11 2.08 3
11 5 902 902 0.00 801.30 3 962 6.24 9.99 3

overall 1244.67 1085.33 10.84 2667.10 3.00 1292.00 14.74 5.56 3.00

overall 1281.00 1095.89 13.01 3289.03 3.00 1311.00 15.40 20.64 3.00
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Table 4.4: Results for instances with 25 ⩽ |W | ⩽ 35.

MILP formulation BRKGA
|W | β c MUB UB LB gap (%) time M UB gap (%) time M

25

50%
5 5 2458 1358 44.75 3600.00 3 2462 44.84 39.10 3
7 5 2066 1134 45.11 3600.00 3 2067 45.14 2.76 3
11 5 1715 1042 39.24 3600.00 3 1715 39.24 0.99 3

overall 2079.67 1178.00 43.04 3600.00 3.00 2081.33 43.07 14.28 3.00

60%
5 5 2431 1324 45.54 3600.00 3 2461 46.20 30.93 3
7 5 2027 1041 48.64 3600.00 3 2027 48.64 41.72 3
11 5 1604 872 45.64 3600.00 3 1640 46.83 94.10 3

overall 2020.67 1079.00 46.61 3600.00 3.00 2042.67 47.22 55.58 3.00

70%
5 5 2418 1358 43.84 3600.00 3 2368 42.65 2.97 3
7 5 2044 1094 46.48 3600.00 3 1994 45.14 1.69 3
11 5 1552 899 42.07 3600.00 3 1577 42.99 4.73 3

overall 2004.67 1117.00 44.13 3600.00 3.00 1979.67 43.59 3.13 3.00

overall 2035.00 1124.67 44.59 3600.00 3.00 2034.56 44.63 24.33 3.00

30

50%
5 7 - 1610 - 3600.00 - 3183 49.42 38.95 4
7 7 - 1456 - 3600.00 - 2586 43.70 28.77 4
11 7 2243 1262 43.74 3600.00 4 2169 41.82 14.73 4

overall 2243.00 1442.67 43.74 3600.00 4.00 2646.00 44.98 27.48 4.00

60%
5 7 - 1593 - 3600.00 - 3149 49.41 93.49 4
7 7 2585 1525 41.01 3600.00 4 2476 38.41 80.56 4
11 7 3272 1053 67.82 3600.00 6 2180 51.70 7.56 4

overall 2928.50 1390.33 54.41 3600.00 5.00 2601.67 46.51 60.54 4.00

70%
5 7 - 1559 - 3600.00 - 3102 49.74 161.09 4
7 7 3375 1229 63.59 3600.00 5 2514 51.11 39.63 4
11 7 2104 1109 47.29 3600.00 4 1992 44.33 127.46 4

overall 2739.50 1299.00 55.44 3600.00 4.50 2536.00 48.39 109.39 4.00

overall 2715.80 1377.33 52.69 3600.00 4.60 2594.56 46.63 65.80 4.00

35

50%
5 7 - 1561 - 3600.00 - 4254 63.31 192.99 5
7 7 - 1454 - 3600.00 - 3553 59.08 11.33 4
11 7 - 1236 - 3600.00 - 3132 60.54 14.42 4

overall - 1417.00 - 3600.00 - 3646.33 60.97 72.91 4.33

60%
5 7 - 1655 - 3600.00 - 4009 58.72 47.37 4
7 7 - 1295 - 3600.00 - 3592 63.95 65.35 4
11 7 - 1121 - 3600.00 - 2805 60.04 4.27 4

overall - 1357.00 - 3600.00 - 3468.67 60.90 39.00 4.00

70%
5 7 10139 1577 84.45 3600.00 6 3651 56.81 234.11 4
7 7 - 1341 - 3600.00 - 3376 60.28 339.96 5
11 7 9105 1239 86.39 3600.00 6 2893 57.17 5.02 4

overall 9622.00 1385.67 85.42 3600.00 6.00 3306.67 58.09 193.03 4.33

overall 9622.00 1386.56 85.42 3600.00 6.00 3473.89 59.99 101.65 4.22
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4.7 Conclusion
We proposed a new problem called Electric Capacitated Covering Tour Problem (EC-
CTP), which joins two branches in vehicle routing, the green vehicle routing and the
covering tour vehicle routing.

The ECCTP was formulated as a Mixed Integer Linear Programming (MILP) model.
In contrast to other formulations of electric vehicle routing problems, our model does not
make any assumptions or restrictions concerning the number of times a vehicle visits the
recharging station.

A Biased Random Key Genetic Algorithm (BRKGA) metaheuristic was proposed as a
methodology to obtain high-quality solutions for large instances. The BRKGA decoder’s
main features are: (1) a split procedure, which optimally splits a single non-capacitated
route into capacitated routes; (2) a dynamic programming procedure that optimally in-
serts stations visits in each vehicle route.

A set of benchmark instances, adapted from the CVRP literature, was proposed for the
ECCTP. Computational experiments showed the effectiveness of the proposed methods.
The MILP formulation solved the small instances (|W | ⩽ 15) in reasonable processing
time (less than 1 h). For bigger instances (|W | ⩾ 30), the BRKGA outperformed the
MILP, obtaining substantially better solutions while taking less computational time.

The computational experiments also allowed analyzing how the parameters of electric
vehicle battery capacity and coverage neighborhood size could impact on the optimal
solution cost and the difficulty to solve the instances. The proposed methods were found to
be sensitive to the neighborhood size concerning the solution gap. Moreover, the analysis
emphasized the importance of vehicle battery capacity when addressing the economic
feasibility of a transportation plan.

Future studies of the ECCTP should investigate stronger mathematical formulations
and also the development of local search methods as well as intensification and diversifi-
cation strategies.
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Chapter 5

Discussion

This thesis comprises two articles presented in Chapters 2 and 3, along with one book
chapter presented in Chapter 4. The objective of this research was to develop exact
and heuristic algorithms to address covering routing problems. The aim was to explore
algorithmic methodologies and provide effective solutions for NP-hard problems. The
exact methodologies were based on Integer Linear Programming (ILP) and Mixed Integer
Linear Programming (MILP) formulations, with a focus on obtaining optimal solutions
and improving dual bounds. On the other hand, heuristic methodologies were employed
to effectively solve large-sized instances within a short execution time, aiming to achieve
high-quality solutions. Both methodologies were executed and rigorously evaluated using
significant benchmarks from the literature and works presented in this thesis.

The scientific questions "Is there an exact method more effective than the state-of-the-
art for CSP?" and "Is there a way to obtain specific valid inequalities for the CSP?" of
Table 1.1 are addressed in the Chapter 2, in which an exact methodology for the Cov-
ering Salesman Problem (CSP) is presented. The approach involves the development
of a branch-and-cut framework, which combines a novel set of inequalities called Cover
Intersection (CI) inequalities, along with the usage of valid inequalities from the Gener-
alized Traveling Salesman Problem (GTSP) proposed by Fischetti et al. [11]. The study
addresses exact and heuristic separation routines for both integer and fractional solutions.

In order to assess the effectiveness of the branch-and-cut framework, a comparison
was made with the ILP formulation proposed by Salari et al. [32] for the CSP. Extensive
computational experiments were conducted on a benchmark of 48 instances from literature
and 39 new instances. Prior to this study, only 9 optimal solutions were known among the
48 instances from literature. The branch-and-cut framework was able to obtain optimal
solutions for 47 instances, with 38 of them being solved optimally for the first time.
Furthermore, when it comes to the new instances, the results show substantial impact of
the CI inequalities on reducing the optimality gap and obtaining the best lower bounds.
Notably, the only optimal solutions achieved among the 39 instances were solely possible
when using the CI inequalities.

Chapter 3 introduces a new covering routing problem denominated as the Capaci-
tated Covering Salesman Problem (CCSP). The objective of CCSP is to determine a set
of routes with the minimum cost, ensuring that each vertex is visited or covered by at least
one route and the total demand serviced by any vehicle does not exceed its capacity. For
the purpose of answering the scientific question "Is it possible to develop effective method-
ologies for a Multi-capacitated-vehicle CSP variant?", two ILP formulations are proposed
for the CCSP, and to tackle large size instances, a Biased Random-Key Genetic Algo-
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rithm (BRKGA) and a matheuristic to intensify the search are proposed. Furthermore,
the scientific question "Is there an exact method more robust than the state-of-the-art for
MDCTVRP?" is verified by extending a CCSP ILP formulation to address the Multi-
Depot Covering Tour Vehicle Routing Problem (MDCTVRP).

With the objective of evaluating the performance of the two ILP formulations, BRKGA
and matheuristic, a benchmark of CCSP instances was created based on the Capacitated
Vehicle Routing Problem (CVRP) instances proposed by Christofides and Eilon [5] and
Uchoa et al. [43]. Additionally, the new MILP formulation proposed for the MDCTVRP
was compared to the flow-based and node-based formulations presented by Allahyari
et al.[1], using a benchmark of 280 instances from the literature. The computational
experiments demonstrated that the new formulation consistently outperformed the best
known exact methodology for the MDCTVRP from literature. Out of the 280 instances,
108 were solved optimally for the first time. Furthermore, the new formulation was able
to improve all known lower bounds.

In an effort to assess the scientific question "Is it reasonable to combine covering
concept with green logistic in a new problem and develop methodologies to solve it?",
Chapter 4 introduces the Electric Capacitated Covering Tour Problem (ECCTP). This
problem presents a combination of a covering routing problem and the Green Vehicle
Routing Problem (G-VRP), in which the customers demands are serviced by covering
using electric vehicles. The goal of ECCTP is to find a set of routes with the minimum
cost, ensuring that each costumer is visited or covered, the total demand serviced by any
electric vehicle does not exceed its capacity and the battery level of an electric vehicle
during a route does not run out. Two methodologies are proposed to solve the ECCTP:
a MILP formulation and a BRKGA algorithm.

For the purpose of measuring the performance for both methodologies, a benchmark of
54 instances for the ECCTP was proposed. These instances were derived from the CVRP
instances created by Uchoa et al. [43]. In the case of small instances, the results revealed
that the MILP formulation achieved 16 optimal solutions, while BRKGA obtained only
3. Regarding the more challenging instances, BRKGA outperformed MILP in terms of
optimality gaps. The average gap achieved by BRKGA for the hardest instances was
approximately 59.99%, while MILP obtained a corresponding value of 85.42%. Hence,
these results confirm that BRKGA is the most appropriate method for the hardest ECCTP
instances.
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Chapter 6

Conclusions

Routing problems have captured the interest of many researchers due to their numerous
real-world applications. When it comes to real-world applications, novel variations of
routing problems have been introduced in the literature, encompassing restrictions such as
time constraints, green logistics, resources availability and customers accessibility. Among
these, the latter gives rise to the covering routing problems, designed to address real-world
scenarios where there are hard-to-reach regions containing customers that need to be
serviced by coverage. In this thesis, we study and present computational methodologies
for four distinct covering routing problems: (i) the Covering Salesman Problem (CSP);
(ii) the Capacitated Covering Salesman Problem (CCSP); (iii) Multi-Depot Covering Tour
Vehicle Routing Problem (MDCTVRP); and (iv) the Electric Capacitated Covering Tour
Problem (ECCTP).

Different computational methodologies were presented in this thesis in order to ad-
dress the covering routing problems under study. The exact approaches were based on
Integer Linear Programming (ILP) and Mixed Integer Linear Programming (MILP) for-
mulations. Furthermore, valid inequalities and branch-and-cut algorithms were developed,
encompassing both exact and heuristic separation routines for different inequalities. On
the other hand, metaheuristics based on the Biased Random-Key Genetic Algorithm
(BRKGA) were investigated with the purpose of tackling large size instances. Moreover,
a hybrid methodology was employed to improve heuristic solutions obtained through
BRKGA. This methodology was based on an ILP formulation with covering and packing
constraints, where an intensification in the search space was made from the solutions of
BRKGA.

The computational methodologies and results presented in this thesis show several
contributions to the advancement of studies on covering routing problems and their state
of the art. Various instances in the literature were solved optimally for the first time
by employing the developed methodologies. Besides, the state-of-the-art methodologies
for different covering routing problems were outperformed. Through the results obtained
in this thesis, we believe that the proposed computational methodologies can be applied
to tackle several real applications, including collect and delivery routing systems with
bimodal distribution, routing of health care services in developing countries and meter
reading automation by using trucks equipped with sensors capable of read data remotely.

For the CSP, future works should investigate the integration of heuristics methodolo-
gies into the branch-and-cut framework proposed in this thesis. This approach aims to
develop hybrid methodologies for the CSP, such as matheuristics. Thus, the upper and
lower bounds for the CSP can be improved by using hybrid methodologies. Furthermore,
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the new family of valid inequalities should be assessed in new CSP variants, for example,
CSP with multiple vehicles, capacity constraints, time constraints, green vehicles, uncer-
tainty on the covering neighborhood, and other generalizations of the CSP which better
approximate practical routing problems.

Regarding the CCSP and MDCTVRP, investigations into valid inequalities and branch-
and-cut algorithms can be significantly effective. The proposed valid inequalities and the
branch-and-cut framework for the CSP can be extended in order to tackle both of these
problems. Furthermore, it is essential to consider novel variants of routing problems,
such as multi-objective vehicle routing problem. In this variant, the covering range of the
problem is considered within the objective function.

In relation to the ECCTP, new ILP and MILP formulations, valid inequalities and
branch-and-cut algorithms should be investigated in order to obtain new optimal solutions
and improve the lower bounds. On the other hand, heuristic methodologies should be
explored with the goal of obtaining high-quality solutions for the ECCTP. This can be
achieved by the development of new metaheuristics, local search procedures and hybrid
methodologies, such as matheuristics in which apply intensification and diversification
strategies in the search space of the problem.
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