

RAIRO-Oper. Res. 57 (2023) 2067–2085 RAIRO Operations Research

https://doi.org/10.1051/ro/2023079 www.rairo-ro.org

MATHEMATICAL MODELS FOR THE CUTTING STOCK WITH LIMITED

OPEN STACKS PROBLEM

Gabriel Gazzinelli Guimarães and Kelly Cristina Poldi*

Abstract. This research is focused on solving the Cutting Stock with Limited Open Stacks Problem
(CS-LOSP). The CS-LOSP is an optimization problem which consists of the classical Cutting Stock
Problem (CSP) paired with the additional constraint that the maximum number of open stacks from
the sequencing of the cutting patterns obtained from the CSP solution is equal or lower than a preset
limit. Despite being a problem with great practical importance, the literature lacks models for this
problem, and only one-dimensional problems are addressed. In this paper, we propose two integer
linear programming formulations for the CS-LOSP that are valid for solving instances of the CSP of
any dimension. In order to eliminate symmetrical solutions to the problem, the proposed formulations
sequence sets of cutting patterns instead of sequencing the cutting patterns individually, thus, the
search space for solutions is reduced. A set of randomly generated instances for the two-dimensional
problem is used to perform computational experiments in order to validate the proposed mathematical
formulations.

Mathematics Subject Classification. 90-08, 90B30, 90C10.

Received January 20, 2023. Accepted May 31, 2023.

1. Introduction

The Cutting Stock Problem (CSP) is an optimization problem that aims to determine the best way to cut
a set of larger objects in smaller items in order to fulfill the demand for items of a specific size. The objective
function can minimize either the waste of raw material or the cost associated with the cutting process, among
others. The CSP can be classified according to the number of relevant dimensions of the object to be cut,
which can be one dimensional, two dimensional or three dimensional. An example of one-dimensional CSP is
the cutting of paper reels, while as a two-dimensional example we have the cutting of metal sheets.

Due to its practical importance, the Cutting Stock Problem (CSP) is a well researched topic. In the literature,
there are some mathematical formulations for such problem. Among the models proposed for the CSP, we can
cite the formulations proposed in [6, 7, 9–12, 14, 20, 22]. To the best of our knowledge, the first time CSP was
covered was in 1939, published by Kantorovich [12], in 1960. In this article, a formulation for the one-dimensional
CSP is proposed, in which the cutting of each object is considered individually.

Keywords. Cutting stock problem, open stack, pattern sequencing, mathematical formulation, integer linear programming, setup
cost.

Instituto de Matematica, Estatistica e Computacao Cientifica (IMECC), Universidade Estadual de Campinas (UNICAMP),
R. Sergio Buarque de Holanda, 651, 13083-859 Campinas, SP, Brazil.
∗Corresponding author: kelly@ime.unicamp.br

c○ The authors. Published by EDP Sciences, ROADEF, SMAI 2023

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

2068 G.G. GUIMARÃES AND K.C. POLDI

The mostly used approach for the CSP is the classical formulation proposed by Gilmore and Gomory in [9,10].
Such formulation, together with the proposed column generation approach for solving the linear programming
relaxation of the CSP combined with an integralization technique, is widely applied to solve the CSP [18].

Later on, based on an arc-flow approach, Wolsey [22] and Valério de Carvalho [20] propose a mathematical
formulation for the one-dimensional CSP. The model proposed in [20] is extended for the two-dimensional case,
i.e., to deal with objects regarding two dimensions, such as plates or boards, in [14].

In [6], the authors develop a procedure to reduce the number of variables and constraints of the arc-flow model
proposed in [20]. Such procedure is named as Meet-In-the-Middle (MIM). Another contribution presented in
this paper is the proposal of a novel arc-flow formulation which is more compact and presents an improved
overall performance.

The current state-of-the-art formulation for the one dimensional CSP is the one proposed in [7]. The authors
take advantage of the meet-in-the-middle procedure proposed in [6] and the classical arc-flow formulation pro-
posed in [20] to build a new model in which only half of the bin capacity is considered. The resulting formulation
has fewer variables and constraints, and therefore, performs better.

In a two-dimensional Cutting Stock Problem (2D-CSP), two dimensions of the object and the items are
relevant, typically length and width. The construction of two-dimensional cutting patterns is considerably more
labor-intensive when compared to the one-dimensional CSP. A guillotine cut on a board is a straight cut from
one edge to the opposite edge; in other words, the cut is of guillotine type when applied to a rectangle it produces
new rectangles. In some practical applications, such as in furniture industry, the cutting equipment is able to
perform only guillotines cuts.

In many practical applications, a guillotine cutting pattern is performed in stages. At each stage, cuts are
done in the same direction over the whole object or on pieces (strips) of it obtained from cuts performed in a
previous stage. The direction in which the cuts are performed is changed at each stage. Thus, if at any stage
the cuts are horizontal, at the next stage the cuts will be vertical and vice versa. Changing the direction of the
cuts can be expensive, as you need to rotate the machine or the object, which is time-consuming. Therefore, the
strategy of limiting the number of stages can be used to optimize the process. On the one hand, this restriction
reduces the number of feasible cutting patterns, on the other hand, the amount of material waste can increase.
When the number of stages is limited to 𝑘, the guillotine cutting pattern is called 𝑘-staged.

In the one-dimensional CSP, a cutting pattern can be obtained by solving a knapsack problem [9,10]. The gen-
eration of a two-dimensional cutting pattern is significantly more complex and, depending on the characteristics
of the types of allowed cuts, we can find several heuristic and exact approaches to determining two-dimensional
cutting patterns in the literature. In this research, we consider the two-staged guillotine cutting pattern, as
proposed in [11].

The order in which the cutting patterns are carried out can be relevant to manage the storage space around
the cutting machine. In many practical cases, such as cutting wooden boards for furniture making, the machines
have automatic unloading stations and the number of such stations is limited. The greater the number of stations,
the more expensive the cutting equipment is, so it is quite important for the company to have cutting plans
that require a limited and small number of open stacks. In this case, the Minimization of Open Stacks Problem
(MOSP) must be taken into account. The MOSP acts in the context in which the allocation of items obtained
from the CSP solution are stored in stacks, so that different items are arranged in different stacks. When all
cutting patterns containing a specific item type have already been performed, the stack referring to such item is
called a closed stack, otherwise, the stack of this item is considered open. The goal of the MOSP is to minimize
the maximum number of stacks that are simultaneously open.

A closely related problem to the MOSP is the Minimization of Tool Switches Problem (MTSP). The MTSP
aims to determine the order in which a set of tasks must be performed on a single flexible machine. Each of the
tasks needs a specific set of tools for its execution, and the in-use machine has a limitation on the maximum
number of tools that can be simultaneously allocated to the machine. Thus, it is necessary to switch the tools
allocated to the machine to process all tasks. The goal of the MTSP is to minimize the number of tool switches
performed.

MATHEMATICAL MODELS FOR THE CS-LOSP 2069

Yanasse [23] demonstrates that an optimal MTSP solution represents a sequencing of cutting patterns that
opens at most 𝐶 stacks if and only if the value of the solution to MTSP is equal to |𝐼| −𝐶, considering 𝐼 as the
set of all item types. With this proposition, in [23] a formulation for the MOSP based on the model proposed
in [19] for the MTSP is developed.

The strategy used in [23] to build the model for the MOSP is to change the interpretation of variables and
parameters, so that, instead of considering tools and tasks, the problem considers items and cutting patterns,
respectively. Once this is done, a constraint is added to the formulation proposed in [19], in order to ensure that
at most |𝐼| −𝐶 tool exchanges are performed in the context of the MTSP, thus ensuring that the sequencing is
equivalent to a cutting pattern sequencing that opens at most 𝐶 stacks. Finally, the model’s objective function
is changed to minimize the maximum number of open stacks.

In [15], the authors propose a constraint programming formulation and two new integer linear formulations
for the MOSP. The first one seeks to sequence the stacks to be closed, and the second is based on the open
stack counting strategy proposed in [8].

A formulation for the MTSP, inspired by the traveling salesman problem, is proposed in [13]. In this formu-
lation, the tasks to be performed are represented by the vertices in a graph and the sequence in which the tasks
are carried out is equivalent to the order in which the vertices are traversed in an Euler tour. In this model, a
dummy task is established, which represents the beginning and end of the Euler tour. In [5], the formulation
proposed in [13] is used as the basis for the construction of three new formulations for the MTSP.

In practical situations, the CSP is often associated with the MOSP. Despite this, in the literature, the CSP
and the MOSP are usually independently treated. The independent resolution of the problems consists in solving
the CSP and then sequencing the set of cutting patterns to minimize the maximum number of open stacks. In
some cases, solving the CSP and the MOSP independently may yield unsatisfactory results. Two disadvantages
of the independent resolution approach are discussed in [2], namely:

– Solving the two problems independently is not the same as finding a solution that minimizes the maximum
number of open stacks while reducing material waste. The quality of the solution obtained from the MOSP
resolution strongly depends on the set of cutting patterns determined when solving the CSP. It is possible
that there are several sets of cutting patterns that have the same objective function value for the CSP, but
present different results for the MOSP. In this case, solving the problems independently does not make it
possible to determine the set of cutting patterns that optimizes the two intended objectives.

– If there is a limit on the maximum number of stacks that can be opened, then the solution to the cutting
stock problem may not present feasible sequencing.

Therefore, the independent approach may be less efficient in optimizing the two intended goals. Instead
of solving the CSP and the MOSP independently, it is possible to combine the two problems into a single
formulation. In [24], the authors build a formulation for the integrated problem in which the CSP is solved
while subjected to the constraints that the maximum number of open stacks during the sequencing of the
cutting patterns is equal to or less than a previously defined limit. This problem is known in the literature as
the Cutting Stock with Limited Open Stacks Problem (CS-LOSP).

The idea of the formulation proposed in [24] is to build a model for the CS-LOSP that joins the formulation
proposed in [9–11] for the CSP and the one proposed in [23] for the MOSP. The coupling of both models is done
by a set of binary variables. The results obtained from the direct application of the formulation proposed in [24]
are limited. The difficulty of solving the model for large instances is mainly due to the huge number of variables
and constraints. The size of the formulation under consideration depends on the number of different types
of items and the total number of possible cutting patterns, since, even for small problems, the total number
of cutting patterns is considerably large, which compromises using the formulation for solving the problem.
Throughout this text, we refer to the model proposed in [24] as the Integrated Yanasse and Lamosa (IYL).

Concomitantly, in 2007, in [4] a sequential heuristic for solving the CS-LOSP is proposed. In this heuristic,
the cutting patterns are generated one after the other and, then, there are two approaches to deal with the
limitation on the maximum number of open stacks. The first approach penalizes the pseudo-prices of some

2070 G.G. GUIMARÃES AND K.C. POLDI

items in order to reduce the number of items in each generated cutting pattern. The second approach explicitly
restricts the maximum number of open stacks. To do so, during the generation of each cutting pattern, the
current number of open stacks is evaluated and we let 𝐶 be this value. Then, the new cutting pattern must
contain at most 𝐶−𝐶 new item types. Thus, the limitation on the maximum number of open stacks is respected.
More recently, in 2012, a tabu search heuristic combined with a constrained version of the model proposed in
[9, 10] to solve the CS-LOSP was developed in [1].

In [2], another formulation is proposed for the CS-LOSP. The authors manage to significantly reduce the
number of constraints in the model. While in the formulation proposed in [24] the number of constraints grew
exponentially as a function of the number of distinct types of items, in the formulation proposed in [2], the
number of constraints grows quadratically. Despite the success in reducing the number of constraints in the
formulation, the model still has a large number of variables. Another important contribution of the paper is the
proposition of a column generation method to solve the linear programming relaxation of the CS-LOSP.

In [24], although the proposed model is valid for cutting stock problems of any dimensions, the focus of the
computational experiments is on the one-dimensional problem. In [4], the authors propose the use of a sequential
heuristic to solve the one-dimensional CS-LOSP.

To the best of our knowledge, the paper [16] is the only one in the literature to address the two-dimensional
CS-LOSP. In such paper, three mathematical models are proposed, focused on the two and three staged two-
dimensional guillotine cutting stock with limited open stacks problem. Despite the scarcity of papers addressing
the two-dimensional CS-LOSP, the two-dimensional case has many real life applications such as in the glass,
metal or furniture industries, among others.

Therefore, the main contribution of this research is the proposal of two integer linear programming formula-
tions for the CS-LOSP for CSP-type problems of any dimension. Furthermore, such formulations are validated
through computational experiments on randomly generated instances for the two-dimensional CSP.

This paper is organized as follows. In Section 2, we present a study on the elimination of symmetries in
the solution of the CS-LOSP, which leads to a reduction of the search space. Next, in Section 3, we describe
the two proposed formulations for the CS-LOSP. Such formulations aim to sequence sets of cutting patterns
instead of sequence the cutting patterns individually. Moreover, both proposed formulations take into account
the symmetry elimination stated in Section 2. Computational experiments regarding the two-dimensional CS-
LOSP were carried out on randomly generated instances and are detailed in Section 4. The data set and the
procedure for generating the cutting patterns are detailed in Sections 4.1 and 4.2, respectively. In order to
evaluate the quality of the proposed formulations, in Section 4.3 the sizes of the formulations are analyzed. In
Section 4.4 the strength of the models is shown via the quality of the linear programming relaxation of the
three formulations addressed in this work. In Section 4.5 we evaluate the computational effort for the proposed
formulations and the one from the literature. Finally, the conclusions and future research proposal are provided
in Section 5.

2. Symmetries in the CS-LOSP solution

One of the challenges of solving the CS-LOSP is the large amount of symmetrical solutions. Given any set
of cutting patterns, there is a variety of possible cutting patterns sequences that respect the limitation on the
maximum number of open stacks, resulting in multiple solutions with the same objective function value.

It is possible to reduce the number of feasible cutting patterns sequences and, consequently, the search space
for solutions. Dominance relationships among the cutting patterns are presented in [3,8] in the MOSP context.
In those papers, the authors show that given a cutting pattern 𝑗1, if there is any cutting pattern 𝑗2, such that
all items generated by the cutting pattern 𝑗1 are also generated by the execution of the cutting pattern 𝑗2, then
the cutting pattern 𝑗1 is eliminated from the sequence.

In the context of CS-LOSP, in order to guarantee an optimal solution, it is necessary to consider all the cutting
patterns, without exception. Therefore, the strategy used in [3,8] needs to be adapted. Instead of eliminating the

MATHEMATICAL MODELS FOR THE CS-LOSP 2071

dominated cutting patterns, the approach developed in this research consists of grouping the cutting patterns
into sets and then determine an optimal sequence of such sets.

Definition 1. Any two cutting patterns are called to be of the same type if when they are executed they
produce the same types of items, regardless of the quantities of each item. Otherwise, they are called cutting
patterns of different types.

Consider a set of arbitrary feasible cutting patterns 𝑃 , with cardinality equal to 𝑁 , containing 𝐾 distinct
types of cutting patterns. The cutting patterns in 𝑃 can be grouped into 𝐾 proper subsets of 𝑃 , in order to
ensure that each of the 𝐾 subsets contains only cutting patterns of the same type. Let the subsets with such
properties be given by 𝐶k, 𝑘 = 1, . . . ,𝐾. So, the following properties apply.

Proposition 1. Given a sequence of cutting patterns in which 𝑛 cutting patterns in 𝐶k, for any 𝑘 ∈
{1, 2, . . . ,𝐾}, are executed one immediately after the other, the order in which these 𝑛 cutting patterns are

executed can be swapped without changing the maximum number of open stacks by this sequence.

Proof. Let 𝑠 be an arbitrary sequence of cutting patterns in which 𝑛 cutting patterns in 𝐶k are executed one
immediately after the other. Then we divide 𝑠 in three subsequences, 𝑠1, 𝑠2 and 𝑠3, where 𝑠1 is equivalent to
the part of the sequence 𝑠 prior to the execution of the cutting patterns in 𝐶k; 𝑠2 is the order in which the
cutting patterns in 𝐶k are executed, and the subsequence 𝑠3 is equivalent to the part of the sequence 𝑠 which
is related to the cutting patterns that are executed after the cutting patterns in 𝐶k.

Let 𝐾 be the maximum number of stacks opened by the subsequence 𝑠1 and 𝐾 be the number of stacks
that are opened right after the completion of the last element of subsequence 𝑠1. When a cutting pattern is
performed, for each distinct type of item generated by the cutting pattern, a new stack is opened if and only if
the stack for such item has not been previously opened. Since all cutting patterns in 𝐶k generate the same item
types, then, after the execution of the first cutting pattern in 𝑠2, all stacks related to items which were generated
by cutting patterns in 𝐶k are already opened. Thus, when executing the remaining part of the sequence 𝑠2, no
new stack will be opened. Thus, let ℓ be the amount of items of different types generated by cutting patterns in
𝐶k and 𝑚 be the number of stacks related to items generated by cutting patterns in 𝐶k which were previously
opened, that is, during execution of the sequence 𝑠1. Then, the number of stacks opened by the sequence 𝑠2 is
given by 𝐾 + 1 − 𝑚.

During the execution of the sequence 𝑠3, stacks can be opened or closed. Let 𝐾2 be the maximum number of
stacks opened by the sequence 𝑠3. Therefore, the maximum number of stacks opened by the sequence 𝑠 is given
by:

max
{︀

𝐾, 𝐾 + ℓ − 𝑚,𝐾2

}︀

.

Since, by hypothesis, 𝑠2 is an arbitrary sequence, we conclude that the maximum number of open stacks
during the execution of 𝑠 is independent of the sequence 𝑠2. Therefore, the order in which the 𝑛 cutting patterns
in 𝑠2 are executed can be swapped without changing the maximum number of open stacks. �

Proposition 2. Given a set of cutting patterns 𝑃 , let 𝑆 be a set of all feasible sequences of cutting patterns

in 𝑃 , where 𝑆 ⊂ 𝑆 is the set of all feasible sequence of cutting patterns in 𝑃 in which all cutting patterns that

produce the same item types are performed one right after the other. Moreover, let 𝑆
c

be the complement of 𝑆.

So, for every sequence 𝑠* ∈ 𝑆
c
, it is possible to find a sequence 𝑠* ∈ 𝑆 such that the maximum number of open

stacks from the execution of 𝑠* is equal to or less than the maximum number of open stacks from the execution

of 𝑠*.

Proof. Let 𝑝j be an arbitrary feasible cutting pattern ∀𝑗 = 1, . . . , 𝑁 ; 𝑃 a set containing those 𝑁 cutting patterns

and 𝑠* ∈ 𝑆
c

an arbitrary sequence of the cutting patterns in 𝑃 , given by:

𝑠* = 𝑝1 → 𝑝2 → . . . → 𝑝N .

2072 G.G. GUIMARÃES AND K.C. POLDI

Let 𝐶1 be the set of all the cutting patterns in 𝑃 that produce the same types of items as the cutting pattern
𝑝1 does; and let the cardinality of 𝐶1 be equal to 𝑛1. In the sequence 𝑠*, at most, the first 𝑛1 terms belong to
𝐶1. Let 𝑛*

1 be the largest index value such that, ∀ 1 ≤ 𝑗 ≤ 𝑛*
1, 𝑝j ∈ 𝐶1. By construction, 𝑝n*

1+1 /∈ 𝐶1.
Let 𝐶2 be the set of all the cutting patterns in 𝑃 that produce the same item types as the cutting pattern

𝑝n*

1+1, and let the cardinality of 𝐶2 be equal to 𝑛2. Therefore, in the sequence 𝑠*, at most, the first 𝑛1 + 𝑛2

terms belong to 𝐶1 ∪ 𝐶2; let 𝑛*
2 be the largest value such that, 𝑝j ∈ 𝐶1 ∪ 𝐶2,∀ 1 ≤ 𝑗 ≤ 𝑛*

2. By construction,
𝑝n*

2+1 /∈ 𝐶1 ∪𝐶2. Suppose there are 𝐾 distinct sets 𝐶k, 1 ≤ 𝑘 ≤ 𝐾 such that all cutting patterns in 𝐶k produce
the same types of items. This process can be repeated in order to obtain all sets 𝐶k, 1 ≤ 𝑘 ≤ 𝐾 and the values
𝑛*

k, so that, 𝑝j ∈ ∪k
i=1 𝐶i,∀ 1 ≤ 𝑗 ≤ 𝑛*

k, and 𝑛*
k ≤

∑︀k
i 𝑛i. Let 𝑆

*
∈ 𝑆 be a sequence in which the cutting patterns

in 𝐶1 are executed, followed by the execution of all the cutting patterns in 𝐶2, and so on, i.e.:

𝑠* = 𝐶1 → 𝐶2 → . . . → 𝐶K .

It can then be seen that the maximum number of open stacks from the execution of 𝑠* is equal to or less
than the maximum number of open stacks from the execution of 𝑠*. The number of open stacks at time instant
ℎ is equal to the total number of open stacks minus the total number of closed stacks. Let 𝐴h be the number
of open stacks during the execution of the ℎth cutting pattern of the sequence 𝑠*.

Consider 𝑙k the amount of types of items that are produced by a cutting pattern of the set 𝐶k and 𝑙1 the
number of stacks opened by the execution of the first cutting pattern of the sequence 𝑠*. When executing the
other 𝑛1−1 cutting patterns, no new stack is opened since all cutting patterns in 𝐶1 generate the same types of
items, therefore, all the stacks related to these items are already opened. When executing the cutting pattern
𝑛1 + 1, the stacks related to the cutting patterns in 𝐶2, that were not previously opened due to the execution
of the cutting patterns in 𝐶1, must be opened. Consequently, the total number of stacks that have been opened
up to the instant ℎ = 𝑛1 + 1 is equal to 𝑙1 + (𝑙2 − |𝐽1 ∩ 𝐽2|), where 𝐽k is the set of item types cut by a cutting
pattern in 𝐶k. The completion of the next 𝑛2 − 1 cutting patterns does not open any new stack, as all stacks
referring to 𝐶2 have already been opened previously. When the cutting pattern 𝑛2 + 1 is executed, exactly the
same process is repeated, so the total of stacks that were opened up to the instant ℎ = 𝑛2 + 1 is equal to
𝑙1 + (𝑙2 − |𝐽1 ∩ 𝐽2|) + (𝑙3 − |𝐽1 ∪ 𝐽2 ∩ 𝐽3|). The function 𝐴h is given by:

𝐴h =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑙1, ℎ ≤ 𝑛1

𝑙1 + (𝑙2 − |𝐽1 ∩ 𝐽2|), 𝑛1 < ℎ ≤ 𝑛2

...
∑︀K

k=1 𝑙k −
∑︀K

k=1

⃒

⃒

(︀

∪k−1
i=1 (𝐽i) ∩ 𝐽k

)︀⃒

⃒, 𝑛K−1 < ℎ ≤ 𝑛K .

Now, consider 𝑠* a subsequence of 𝑠* composed of the first 𝑛*
K−1 + 1 cutting patterns of the sequence 𝑠*, in

the same order of execution as in 𝑠*. Let 𝐴*
h be the total number of open stacks at the instant ℎ. It is easy to

show that, when executing the first cutting pattern of the sequence 𝑠*, 𝑙1 stacks are opened, and when executing
the remaining 𝑛*

1 − 1 cutting patterns, no new stack is opened since all cutting patterns in 𝐶1 generate the
same item types. Accordingly, all stacks related to these items are already opened. When executing the cutting
pattern 𝑛*

1 + 1, the stacks referring to the cutting patterns in 𝐶2 that were not previously opened. Hence, the
total number of stacks that have been opened up to the instant ℎ = 𝑛*

1 + 1 is equal to 𝑙1 + (𝑙2 − |𝐽1 ∩ 𝐽2|). The
completion of the next 𝑛*

3 − 𝑛*
1 − 1 cutting patterns does not open any new stack, since only cutting patterns

in 𝐶1 ∪ 𝐶2 will be performed and all the stacks related to 𝐶1 and 𝐶2 have already been opened before. When
the cutting pattern 𝑛*

3 +1 is executed, exactly the same process happens. Thus, the total number of stacks that
have been opened up to the instant ℎ = 𝑛*

3 + 1 is equal to 𝑙1 + (𝑙2 − |𝐽1 ∩ 𝐽2|) + (𝑙3 − |𝐽1 ∪ 𝐽2 ∩ 𝐽3|). Therefore,
the function 𝐴*

h is very similar to the function 𝐴h, the only difference between them is the range of ℎ:

𝐴*
h =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑙1, ℎ ≤ 𝑛*
1

𝑙1 + (𝑙2 − |𝐽1 ∩ 𝐽2|), 𝑛*
1 < ℎ ≤ 𝑛*

2
...

∑︀K
k=1 𝑙k −

∑︀K
k=1

⃒

⃒

(︀

∪k−1
i=1 (𝐽i) ∩ 𝐽k

)︀⃒

⃒, 𝑛*
K−1 < ℎ ≤ 𝑛*

K .

MATHEMATICAL MODELS FOR THE CS-LOSP 2073

Let 𝐹h be the number of closed stacks after the execution of the ℎth cutting pattern of the sequence 𝑠*. If
ℎ ≤ 𝑛1 then no stack can be closed since there is no item such that all cutting patterns containing this item
have already been executed. At the instant ℎ = 𝑛1 + 1, all cutting patterns in 𝐶1 were already completed,
then, the stacks related to the items in 𝐶1, that are not present in any other cutting pattern, can be closed.
Therefore, there is a total of |𝐽1∖{(∪

K
k=2(𝐽k)}| closed stacks at this instant. Analogous to what was done before,

no stack can be closed until the instant ℎ = 𝑛2 + 1. At this instant, all the cutting patterns related to the
sets 𝐶1 and 𝐶2 have been executed. Therefore, the stacks related to the types of items present in the cutting
patterns in 𝐶1 ∪𝐶2 which are not present in any other cutting pattern in 𝐶k, ∀𝑘 = 1, . . . ,𝐾 can be closed, i.e.,
|𝐽1 ∪ 𝐽2∖{(∪

K
k=3(𝐽k)}| stacks are closed. In general, we have:

𝐹h =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0, ℎ ≤ 𝑛1
⃒

⃒𝐽1∖
{︀(︀

∪K
k=2(𝐽k)

)︀}︀⃒

⃒, 𝑛1 < ℎ ≤ 𝑛2
⃒

⃒𝐽1 ∪ 𝐽2∖
{︀(︀

∪K
k=3(𝐽k)

)︀}︀⃒

⃒, 𝑛2 < ℎ ≤ 𝑛3

...
⃒

⃒∪K−2
k=1 (𝐽k)∖

{︀(︀

∪K
k=K−1(𝐽k)

)︀}︀⃒

⃒, 𝑛K−2 < ℎ ≤ 𝑛K−1
⃒

⃒∪K−1
k=1 (𝐽k)∖{𝐽K}

⃒

⃒, 𝑛K−1 < ℎ ≤ 𝑛K .

Let 𝑃h be the number of stacks that are open during the completion of the ℎth cutting pattern of the sequence
𝑠*, then:

𝑃h = 𝐴h − 𝐹h−1.

The maximum number of stacks that are open simultaneously during the execution of the sequence 𝑠* is
given by:

max
{︀

𝑃1, 𝑃2, . . . , 𝑃N

}︀

= 𝑃h,

for some ℎ ∈ {1, 2, . . . , 𝑁}. Note that ℎ is contained in the range {𝑛j , 𝑛j+1} for some 𝑗 and therefore:

𝑃h = 𝐴h − 𝐹h−1 =

[︃

j+1
∑︁

k=1

𝑙k −

j+1
∑︁

k

⃒

⃒

⃒

⃒

(︂

k−1
∪

i=1
(𝐽i) ∩ 𝐽k

)︂⃒

⃒

⃒

⃒

]︃

−

[︂⃒

⃒

⃒

⃒

j
∪

k=1
(𝐽k)∖

{︂(︂

K
∪

k=j+1
(𝐽k)

)︂}︂⃒

⃒

⃒

⃒

]︂

.

Let 𝑃 *
h be the number of stacks that are open during the completion of the ℎth cutting pattern of the sequence

𝑠*, then: where 𝐹 *
h is the number of close stacks after the completion of the ℎth cutting pattern of the sequence

𝑠*. Unless all cutting patterns of a set 𝐶k have been executed, the stacks referring to the items generated by
this set cannot be closed. At the instant ℎ* ∈ (𝑛*

j , 𝑛
*
j+1], all executed cutting patterns belong to one of the sets

𝐶1, 𝐶2, . . . , 𝐶
*
nj

, 𝐶n*

j+1
. Let 𝐶 be the set containing all the sets 𝐶k, such that, all cutting patterns in 𝐶k were

executed until the instant ℎ* and 𝐶C the complement of 𝐶; hence, 𝐶 ⊂ {1, 2, . . . , 𝑗} and therefore:

𝐹 *
h* =

(︂⃒

⃒

⃒

⃒

∪
k∈C

(𝐽k)∖

(︂

∪
k∈Cc

(𝐽k)

)︂⃒

⃒

⃒

⃒

)︂

≤

(︂⃒

⃒

⃒

⃒

j
∪

k=1
(𝐽k)∖

(︂

K
∪

k=j+1
(𝐽k)

)︂⃒

⃒

⃒

⃒

)︂

= 𝐹h.

Concomitantly, we have:

𝐴*
h* =

j+1
∑︁

k=1

𝑙k −

j+1
∑︁

k=1

(︂

∪
i≤(k−1)

(𝐽i) ∩ 𝐽k

)︂

= 𝐴h,

and then:
𝑃h ≤ 𝑃 *

h* ≤ max
{︁

𝑃 *
1 , 𝑃 *

2 , . . . , 𝑃 *
n*

k−1
+1

}︁

≤ 𝑃 *,

where 𝑃 * is the maximum number of open stacks when executing the sequence 𝑠*. Therefore, for every sequence
in 𝑆

c
it is possible to find a sequence 𝑠* ∈ 𝑆 such that the maximum number of open stacks from execution of

𝑠* is equal to or less than the maximum number of open stacks from the execution of 𝑠*. �

2074 G.G. GUIMARÃES AND K.C. POLDI

3. The proposed formulations for the CS-LOSP

Propositions 1 and 2 presented in Section 2 can be used to reformulate the CS-LOSP as shown in this section.
Proposition 1 guarantees that, for a sequence in 𝑆, the order in which the cutting patterns of the same type
are carried out can be changed without changing the maximum number of stacks opened by this sequence.
Proposition 2 guarantees that if there is a sequence of cutting patterns that opens at most 𝐶 stacks, then there
is a sequence in which cutting patterns of the same type are performed, one right after the other, that respects
the limitation on the maximum number of open stacks. Thus, the search space is reduced and thereby only the
sequences in 𝑆 need to be considered. In this way, the CS-LOSP can be reformulated as a problem of determining
the frequency at which the cutting patterns should be performed in order to minimize material waste and, at
the same time, to find a sequence of sets of cutting patterns of the same type such that its fulfillment opens, at
most, 𝐶 stacks.

According to Definition 1 (Sect. 2), any set of 𝑃 cutting patterns containing 𝐾 different types of cutting
patterns can be divided into 𝐾 subsets of cutting patterns of the same type. Let 𝐶k, 𝑘 = 1, . . . ,𝐾, be the
disjoint subsets of 𝑃 such that every cutting pattern in 𝐶k is of the same type.

Next, we state the indices, parameters and variables that are used in the proposed formulations for the
CS-LOSP which are presented in Sections 3.1 and 3.2.

Indices, parameters and variables

𝐼 Set of all types of items;
𝑖 Index related to the item type, 𝑖 = 1, . . . , |𝐼|;
𝑁 Number of cutting patterns;
𝑗 Index related to the cutting pattern, 𝑗 = 1, . . . , 𝑁 ;
𝐶 Maximum limit on the number of open stacks;
𝐾 Number of distinct sets 𝐶k;
𝑐j Cost associated to the cutting pattern 𝑗, 𝑗 = 1, . . . , 𝑁 ;
𝑑i Demand of item type 𝑖, 𝑖 = 1, . . . , |𝐼|;
𝑁2 Number of distinct sets 𝐶k plus the dummy set 𝐶0;
𝑡 Index related to the time instant, 𝑡 = 1, . . . ,𝐾;
𝑅k Set of the indices of the cutting patterns in the set 𝐶k;
𝐽 ′

2 Set of the sets 𝐶k, 𝑘 = 0, . . . ,𝐾, i.e., including the dummy set;
𝐽2 Set of the sets 𝐶k, 𝑘 = 1, . . . ,𝐾, i.e., excluding the dummy set;
𝑃 i

2 Set which contains sets of the cutting patterns of the same type that produce item type 𝑖;
𝐽 ′ Set of all cutting patterns, including the dummy cutting pattern;
𝐽 Set of all cutting patterns, excluding the dummy cutting pattern;
𝐼k Set of items types produced by a cutting pattern in 𝐶k;

𝐵 constant given by
∑︀|I|

i=1 𝑑i;

α
(j) =

(︁

𝛼
(j)
1 , 𝛼

(j)
2 , . . . , 𝛼

(j)
|I|

)︁T

|𝐼|-dimensional vector such that 𝛼
(j)
i indicates the number of times that an item

type 𝑖 is allocated in the 𝑗th cutting pattern;
𝑝j Integer decision variable that determines how many times the cutting pattern 𝑗, 𝑗 = 1, . . . , 𝑁 is per-

formed;
𝑣j Binary decision variable that is equal to 1 if the the cutting pattern 𝑗 is used on the solution and 0

otherwise.

Considering the indices, parameters and sets defined above, in the following Sections 3.1 and 3.2, we present
two new linear integer programming models for the CS-LOSP that aims to sequence sets of cutting patterns of
the same type instead of sequencing the cutting patterns individually.

MATHEMATICAL MODELS FOR THE CS-LOSP 2075

3.1. Formulation I

While in the formulation proposed in [24] the cutting patterns were individually sequenced, the Formulation
I, proposed here, seeks to determine a sequence of sets of cutting patterns of the same type that respects the
limitation on the maximum number of open stacks. This approach significantly reduces the number of variables
and constraints of the model. Firstly, consider the following variables:

𝑤kt =

{︃

1, if the set of cutting patterns of the same type 𝐶k is the 𝑡th to be processed;

0, otherwise.

𝑧ti =

{︃

1, if the stack referring to the item type 𝑖 is opened from instant 𝑡 − 1 to 𝑡;

0, otherwise.

𝑦ti =

{︃

1, if the stack referring to the item type 𝑖 is open at the instant 𝑡;

0, otherwise.

Note that, a set of cutting patterns of the same type 𝐶k must be performed at some point in the sequence of
a solution if, and only if, at least one cutting pattern in 𝐶k is used. Thus, consider the following constraints:

𝐵

(︃

K
∑︁

t=1

𝑤kt

)︃

≥

⎛

⎝

∑︁

j∈Rk

𝑣j

⎞

⎠, 𝑘 = 1, . . . ,𝐾 (1)

K
∑︁

t=1

𝑤kt ≤

⎛

⎝

∑︁

j∈Rk

𝑣j

⎞

⎠, 𝑘 = 1, . . . ,𝐾 (2)

K
∑︁

t=1

𝑤kt ≤ 1, 𝑘 = 1, . . . ,𝐾 (3)

𝐵

(︃

K
∑︁

k=1

𝑤kt

)︃

≥

⎛

⎝

∑︁

j∈Rt

𝑣j

⎞

⎠, 𝑡 = 1, . . . ,𝐾 (4)

K
∑︁

k=1

𝑤kt ≤

⎛

⎝

∑︁

j∈Rt

𝑣j

⎞

⎠, 𝑡 = 1, . . . ,𝐾 (5)

K
∑︁

k=1

𝑤kt ≤ 1, 𝑡 = 1, . . . ,𝐾. (6)

Constraint sets (1) and (2) cause
∑︀K

t=1 𝑤kt = 0 if and only if
∑︀

j∈Rk
𝑣j = 0, as long as the value of the

constant 𝐵 is large enough. Thus, the set of cutting patterns 𝐶k is sequenced if and only if any cutting pattern
in 𝐶k is used. Since 𝑤kt is a binary variable for every 𝑘, 𝑡 ∈ {1, . . . ,𝐾}, the set of constraints (3) guarantees
that, if any pattern in the set of cutting patterns of the same type 𝐶k is used, this set of cutting patterns of
the same type is the 𝑡th to be processed, for a unique 𝑡 ∈ {1, . . . ,𝐾}. Similarly, the sets of constraints (4) and

(5) guarantee that
∑︀K

k=1 𝑤kt = 0 if and only if
∑︀

j∈Rt
𝑣j = 0, as long as the value of the constant 𝐵 is large

enough. Therefore, if no cutting pattern belonging to the cutting pattern set of the same type 𝐶t is used, then
no cutting pattern is executed at the instant 𝑡. This way, this instant can be ignored in sequencing. Since 𝑤kt

is a binary variable for every 𝑘, 𝑡 ∈ {1, . . . ,𝐾}, the set of constraints (6) guarantees that at most one set of
cutting patterns of the same type is executed at the instant 𝑡, for every 𝑡 ∈ {1, . . . ,𝐾}. Note that, since there
are cutting patterns that may not be used in the final solution, it is allowed that there are instants of time in
which no cutting pattern is executed, thus, in the optimal sequencing it is necessary to exclude the instants in
which no set of cutting patterns is used.

2076 G.G. GUIMARÃES AND K.C. POLDI

Moreover, if the set of cutting patterns 𝐶k is carried out at instant 𝑡, then all the stacks related to the item
types in 𝑃 i

2 must be opened at the instant 𝑡, so, we introduce a new set of constraints, given by:

𝑤kt ≤ 𝑦ti, 𝑘 ∈ 𝑃 i
2, 𝑡 = 1, . . . ,𝐾, 𝑖 ∈ 𝐼. (7)

Note that if none of the cutting patterns in the set of cutting patterns of the same type 𝐶k is used then
𝑤kt = 0, 𝑡 ∈ {1, . . . ,𝐾}, and, therefore, the set of constraints (7) becomes trivial. The remaining constraints
of Formulation I are identical to those of the proposed model in [24]. The Formulation I is given by:

(Formulation I)

min

N
∑︁

j=1

𝑐j𝑝j (8)

subject to:

N
∑︁

j=1

𝛼
(j)
i 𝑝j ≥ 𝑑i, 𝑖 ∈ 𝐼 (9)

K
∑︁

t=2

∑︁

i∈I

𝑧ti ≤ |𝐼| − 𝐶, (10)

𝑣j ≤ 𝑝j , 𝑗 = 1, . . . , 𝑁 (11)

𝐵𝑣j ≥ 𝑝j , 𝑗 = 1, . . . , 𝑁 (12)

𝑤kt ≤ 𝑦ti, 𝑘 ∈ 𝑃 i
2, 𝑡 = 1, . . . ,𝐾, 𝑖 ∈ 𝐼 (13)

∑︁

i∈I

𝑦ti ≤ 𝐶, 𝑡 = 1, . . . ,𝐾 (14)

𝑦ti − 𝑦(t−1)i ≤ 𝑧ti, 𝑡 = 2, . . . ,𝐾, 𝑖 ∈ 𝐼 (15)

𝑝j ∈ Z
+, 𝑗 = 1, . . . , 𝑁 (16)

𝑣j ∈ {0, 1}, 𝑗 = 1, . . . , 𝑁 (17)

𝑤kt ∈ {0, 1}, 𝑘 = 1, . . . ,𝐾, 𝑡 = 1, . . . ,𝐾 (18)

𝑦ti ∈ {0, 1}, 𝑡 = 1, . . . ,𝐾, 𝑖 ∈ 𝐼 (19)

𝑧ti ∈ {0, 1}, 𝑡 = 1, . . . ,𝐾, 𝑖 ∈ 𝐼, (20)

and constraints (1)–(6).

The objective function (8) aims to minimize the overall cost associated to the cutting patterns. The con-
straints (9) ensures that the demand is fulfilled. The constraint (10) guarantees that the maximum number of
simultaneously open stacks equals 𝐶. This constraint derives from the fact that a solution for the MTSP in
which |𝐼|−𝐶 tool changes are performed represents, in the context of the MOSP, a sequence of cutting patterns
that opens at most 𝐶 stacks as demonstrated in [23]. The constraints (11) and (12) guarantee that 𝑣j = 0 if and
only if 𝑝j = 0. The constraints (1)–(6) were explained earlier in this section. The constraint set (13) guarantees
that if a cutting pattern in 𝐶k is used, then all stacks open due to the execution of this set must be taken into
account; otherwise, the constraint becomes trivial. The set of constraints (14) prevents the open stack capacity
limit from being exceeded. The set of constraints (15) ensure that if the stack 𝑖 was not open at the instant of
time 𝑡 − 1 and it is open at the time instant 𝑡, then, the stack must be open from the instant 𝑡 − 1 to 𝑡. The
constraints (16)–(18) define the domain of variables.

3.2. Formulation II

In this section, we propose a second formulation for the CS-LOSP based on the models proposed in [5,9]. In
this formulation, the sets of cutting patterns to be performed are represented by the vertices of a graph and the

MATHEMATICAL MODELS FOR THE CS-LOSP 2077

sequence in which the sets of cutting patterns are carried out is equivalent to the order in which the vertices are
traversed in an Euler circuit. In this model, a dummy set of cutting patterns is established, which represents the
beginning and the end of the Euler circuit. Let 𝑘, 𝑓 and 𝑜 be the indices related to the sets of cutting patterns
of the same type, ∀𝑘, 𝑓, 𝑜 ∈ 𝐽 ′

2. For all 𝑘 ∈ 𝐽 ′
2, 𝑓 ∈ 𝐽 ′

2 and 𝑘 ̸= 𝑓 , let 𝑥kf be equal to 1, if the execution of
the set of cutting patterns of the same type 𝐶f is done immediately after the execution of the set 𝐶k; and 0,
otherwise. Similarly, for all 𝑘 ∈ 𝐽 ′

2, 𝑓 ∈ 𝐽 ′
2, 𝑘 ̸= 𝑓 and 𝑖 ∈ (𝐼∖𝐼k)∪ (𝐼k∖𝐼f), let 𝑦i

kf be a binary variable equal to
1 if the execution of the set of cutting patterns of the same type 𝐶f is done immediately after the execution of
the set 𝐶k and if the stack related to the item type 𝑖 is open after the execution of the set of cutting patterns of
the same type 𝐶k and before the execution of the set of cutting patterns of the same type 𝐶f ; and 0, otherwise.
Note that the variable 𝑦i

kf is not defined for 𝑖 ∈ 𝐼k ∩ 𝐼f , once the stack 𝑖 must be open after the execution of

the set 𝐶k which implies 𝑦i
kf = 1, so there is no need to consider the set of variables for 𝑖 ∈ 𝐼k ∩ 𝐼f . Finally, for

all 𝑘 ∈ 𝐽2, let 𝑢k be an auxiliary variable used to prevent the formation of sub-cycles, as proposed in [17]. In
this section, we chose to present the constraints of Formulation II in blocks to facilitate the understanding of
the modeling. Firstly, we present the constraints regarding the sequence of the sets of cutting patterns of the
same type, then we present another block of constraints that ensures that the sequence of the sets of cutting
patterns of the same type respects the limitation on the maximum number of simultaneously open stacks. This
latter block of constraints is based on some of the constraints proposed in [5]. Finally, we present the objective
function and some additional constraints.

For all 𝑘 ∈ 𝐽 ′, the set of cutting patterns of the same type 𝐶k must be present in the sequence of sets of
cutting patterns of the same type if, and only if, at least one cutting pattern in 𝐶k is executed in the CS-LOSP
solution. Therefore, we propose the following block of constraints:

∑︁

k∈J′

2∖{0}

𝑥k0 = 1, (21)

∑︁

f∈J′

2∖{0}

𝑥0f = 1, (22)

𝐵

⎛

⎝

∑︁

f∈J′

2∖{k}

𝑥kf

⎞

⎠ ≥

⎛

⎝

∑︁

j∈Rk

𝑣j

⎞

⎠, 𝑘 ∈ 𝐽2 (23)

∑︁

f∈J′

2∖{k}

𝑥kf ≤

⎛

⎝

∑︁

j∈Rk

𝑣j

⎞

⎠, 𝑘 ∈ 𝐽2 (24)

∑︁

f∈J′

2∖{k}

𝑥kf ≤ 1, 𝑘 ∈ 𝐽2 (25)

𝐵

⎛

⎝

∑︁

k∈J′

2∖{f}

𝑥kf

⎞

⎠ ≥

⎛

⎝

∑︁

j∈Rf

𝑣j

⎞

⎠, 𝑓 ∈ 𝐽2 (26)

∑︁

k∈J′

2∖{f}

𝑥kf ≤

⎛

⎝

∑︁

j∈Rf

𝑣j

⎞

⎠, 𝑓 ∈ 𝐽2 (27)

∑︁

k∈J′

2∖{f}

𝑥kf ≤ 1, 𝑓 ∈ 𝐽2 (28)

𝑣0 = 1. (29)

The constraints (21), (22) and (29) guarantee that the set of dummy cutting patterns is used. The sets of
constraints (23) ensure that, considering 𝐵 as a sufficiently large constant, if a cutting pattern in 𝐶k is used

2078 G.G. GUIMARÃES AND K.C. POLDI

(
∑︀

j∈Rk
𝑣j > 0) then at least one set 𝐶f must be performed immediately after the execution of the cutting

patterns in 𝐶k. The constraints (24) guarantee that if no cutting pattern in 𝐶k is used (
∑︀

j∈Rk
𝑣j = 0) then no

cutting patterns set 𝐶f is executed immediately after the execution of the cutting patterns in 𝐶k. Lastly, the
constraints (25) ensure that if any cutting pattern in 𝐶k is used, then exactly one set of cutting patterns 𝐶f is
executed immediately after the execution of the cutting patterns set 𝐶k. Similarly, the sets of constraints (26),
(27) and (28) assure that if any cutting pattern in 𝐶f is used, then exactly one set of cutting patterns 𝐶k is
executed prior to the execution of the set of cutting patterns 𝐶k. If no cutting pattern in 𝐶f is used, then the
execution of the set of cutting patterns 𝐶f can not be preceded by the execution of any set of cutting patterns
of the same type.

Following, we present and describe, in the context of the CS-LOSP, the constraints proposed in [5] that are
used in the Formulation II.

∑︁

k∈J′

2∖{f}

𝑦i
kf −

∑︁

o∈J′

2∖{f}

𝑦i
fo ≥ 0, 𝑓 ∈ 𝐽 ′

2, 𝑖 ∈ 𝐼∖𝐼f (30)

∑︁

i∈I:
i∈Ik

i/∈If

𝑦i
kf +

∑︁

i∈I:
i/∈Ik

i/∈If

𝑦i
kf ≤ (𝐶 − |𝐼f |)𝑥kf , 𝑘, 𝑓 ∈ 𝐽 ′

2, 𝑘 ̸= 𝑓 (31)

𝑦i
kf ≤ 𝑥kf , 𝑘 ∈ 𝐽2, 𝑖 ∈ 𝐼∖𝐼f . (32)

The constraints (30) ensure that a stack related to an item type in 𝐼∖𝐼f can only be open after the execution
of the set of cutting patterns of same type 𝐶f if the stack was already open before the execution of the set of
cutting patterns of same type 𝐶f . The left-hand side of the set of constraints (31) counts the number of open
stacks after the execution of the set 𝐶k referring to items that are not generated when executing a cutting
pattern in 𝐶f . Thus, the constraints (31) ensure that this quantity, plus the number of different item types
generated by the execution of a cutting pattern in 𝐶f is less than or equal to 𝐶, ensuring that the limit on
the maximum number of open stacks is respected. Finally, the constraints (32) ensure that 𝑦i

kf can only be
equal to one if the set 𝐶f is executed immediately after 𝐶k. If a set of cutting patterns 𝑜 is not used, then we
have 𝑥of = 𝑥ko = 0, for every 𝑓, 𝑘 ∈ 𝐽 ′

2, the set of constraints (32), proposed in [5], does not account for this
particular case, therefore, we add the following constraints to the model:

∑︁

i∈I:
i/∈Ik

i∈If

(𝑥kf − 𝑦i
kf) ≥ 0, 𝑘, 𝑓 ∈ 𝐽 ′

2, 𝑘 ̸= 𝑓. (33)

The set of constraints (33) together with the constraints (32) ensure that if a set of cutting patterns 𝑜 is
not used, then 𝑦i

of = 𝑦i
ko = 0 for 𝑘, 𝑓 ∈ 𝐽 ′

2. The remaining constraints as well as the objective function of the
proposed Formulation II is given by:

(Formulation II)

min
N
∑︁

j=1

𝑐j𝑝j (34)

subject to:
N
∑︁

j=1

𝛼
(j)
i 𝑝j ≥ 𝑑i, 𝑖 ∈ 𝐼 (35)

∑︁

k,f∈J
k ̸=f

∑︁

i∈I:
i/∈Ik

i∈If

(︀

𝑥kf − 𝑦i
kf

)︀

≤ |𝐼| − 𝐶, (36)

MATHEMATICAL MODELS FOR THE CS-LOSP 2079

𝑣j ≤ 𝑝j , 𝑗 ∈ 𝐽 (37)

𝐵𝑣j ≥ 𝑝j , 𝑗 ∈ 𝐽 (38)

𝑢k − 𝑢f + 𝑁2𝑥kf ≤ 𝑁2 − 1, 𝑘, 𝑓 ∈ 𝐽2, 𝑘 ̸= 𝑓 (39)

𝑥kf ∈ {0, 1}, 𝑘, 𝑓 ∈ 𝐽 ′
2, 𝑘 ̸= 𝑓 (40)

𝑦i
kf ∈ {0, 1}, 𝑘, 𝑓 ∈ 𝐽 ′

2, 𝑘 ̸= 𝑓, 𝑖 ∈ (𝐼∖𝐼k) ∪ (𝐼k∖𝐼f) (41)

𝑣j ∈ {0, 1}, 𝑗 ∈ 𝐽 ′ (42)

𝑝j ∈ Z
+, 𝑗 ∈ 𝐽 ′ (43)

𝑢k ∈ {1, 2, . . . , 𝑁2} 𝑘 ∈ 𝐽2 (44)

and constraints (21)–(33).

The objective function (34), as well as the constraints (35)–(38), are equivalent to the sets of constraints
(8)–(12), respectively. The constraints (39) are based on the constraints proposed in [17], to avoid sub-cycles.
This set of constraints have two main goals, the first is to ensure that the sequence of sets of cutting patterns
starts and ends with the dummy set 𝐶0. The second goal of the constraints is to eliminate sequences in which
more than 𝑁2 sets of cutting patterns are executed, i.e., to eliminate sub-cycles in which a set of cutting patterns
𝐶k is executed more than once. A detailed explanation of this set of constraints can be found in [17]. As stated
in [17], the variables 𝑢k are defined as non-negative integers. We can show that in this particular case their
domain can be restricted to {1, 2, . . . , 𝑁2}. Let 𝑠 = 𝐶k1

→ 𝐶k1
→ . . . → 𝐶kn

be a feasible sequence of sets of
cutting patterns with 𝑛 ≤ 𝑁2, then, by setting 𝑢k1

= 1, 𝑢k2
= 2, . . . , 𝑢kn

= 𝑛 we can see that the constraints
(39) are satisfied. Since in all feasible sequence of sets of cutting patterns, at most 𝑁2 sets of cutting patterns
are executed, we conclude that the domain of the variables 𝑢k can be restricted to {1, 2, . . . , 𝑁2}. The remaining
constraints are related to the domain of the variables.

4. Computational experiments

In order to validate the proposed models and to compare the time required to determine an optimal solu-
tion, computational tests on random instances are performed and analyzed. In Section 4.1 we describe the
random data set generated for the two-dimensional CS-LOSP, which are available at https://github.com/

ggazzinelli/2D-CS-LOSP, and in Section 4.2 we detail the cutting pattern generation used in this work as well
as a proposition that guarantees that the dominated cutting patterns can be removed from the solution without
loss of optimality. Analyses of the size and the quality of the linear programming relaxation of the proposed
mathematical formulations are presented in Sections 4.3 and 4.4, respectively. Finally, in Section 4.5 we present
the computational results for the two-dimensional CS-LOSP.

The approaches were coded in Julia Programming Language (version 1.1.1) using the IBM ILOG CPLEX
(version 20.1) as the general ILP solver. The experiments were carried out on a computer with an Intel 7i-8700
(3.20 GHz), 16 GB of RAM.

4.1. Data set for the two-dimensional CS-LOSP

In this section we describe the proposed data set for the two-dimensional CS-LOSP that was considered for
analyzing and comparing the Integrated Yanasse and Lamosa (IYL), Formulation I and Formulation II models.
We assume that a sufficiently large number of identical two-dimensional objects is available to be cut. According
to the typology proposed in [21], in the context of CSPs, this particular CSP is known as the Single Stock Size
Cutting Stock Problem (SSSCSP). Furthermore, for the computational experiments, exact two-stage guillotine
cutting patterns were considered. The characteristics of the instances are described as follows.

𝐿 Length of the standard object;
𝑊 Width of the standard object;
|𝐼| Number of item types;

2080 G.G. GUIMARÃES AND K.C. POLDI

ℓi Length of item type 𝑖, 𝑖 = 1, . . . , |𝐼|;
𝑤i Width of item type 𝑖, 𝑖 = 1, . . . , |𝐼|;
𝑑i Demand of item type 𝑖, 𝑖 = 1, . . . , |𝐼|.

The dimension of the standard objects to be cut 𝐿×𝑊 is fixed at 1000× 500. Two intervals were considered
to generate the length of the items [200, 500] and [300, 800]. The length of the demanded items ℓi was randomly
generated without repetition, that is, items of different types have different lengths. The width of the required
items 𝑤i was randomly generated as one of the values of the set {100, 200, 300, 400}. The number of distinct
types of items in each instance is 5 or 10. The demand of items was randomly generated in the range [100, 400],
i.e., 𝑑i ∈ [100, 400], 𝑖 = 1, . . . , |𝐼|. By combining the different parameters mentioned above, four classes of
instances were generated:

– Class 1: |𝐼| = 5; ℓi ∈ [200, 500];
– Class 2: |𝐼| = 10; ℓi ∈ [200, 500];
– Class 3: |𝐼| = 5; ℓi ∈ [300, 800];
– Class 4: |𝐼| = 10; ℓi ∈ [300, 800].

Each class contains 10 instances. Classes 1–4 are used to compare the time each model spent to solve the
instances of the CS-LOSP.

The 𝐶 parameter represents the amount of stacks that can be opened, this parameter can significantly change
the time required to reach an optimal solution. Since |𝐼| is the number of types of items, the value of 𝐶 can vary
from 1 up to |𝐼|. In [2], the authors argue that the relevant values of 𝐶 are typically small. Furthermore, from
the point of view of practical application, this number should also be small because the greater the number of
unloading stations (number of open stacks), the more expensive and spacious the equipment must be. Thus, in
the computational tests, we considered three values for 𝐶, namely: 𝐶 = 2, 𝐶 = 3 and 𝐶 = 4. Note that for
𝐶 = 1 only homogeneous cutting patterns can be used and, therefore, the problem is trivial. Moreover, for the
computational experiments, we consider 𝑐j = 1, 𝑗 = 1, . . . , 𝑁 .

4.2. Generation of cutting patterns and reduction strategies via dominance and feasibility

As described in [11], the 2-stage guillotine cutting patterns can be built in two steps. In the first step,
horizontal strips are defined and, for each horizontal strip, the feasible cutting patterns. In the second step, the
number of times each strip is used with its respective cutting pattern is determined.

Considering the exact 2-stage guillotine cutting pattern, an item type 𝑖 can be produced by cutting a strip if
and only if the width of the strip and the item type 𝑖 is the same. Thus, we are interested only in strips such as
its width is equal to 𝑤i for at least one index 𝑖 ∈ 𝐼. Let 𝑂 be the number of distinct strips that are capable of
producing at least one type of item when cut, note that since it is possible to have 𝑤i1 = 𝑤i2 for 𝑖1 ̸= 𝑖2, then
𝑂 ≤ |𝐼|. Let 𝑜 = 1, . . . , 𝑂 be the indexes that identify the strips of dimensions 𝐿×𝑤o and 𝐸o be the set of item
types that may be produced by the strip 𝑜, i.e., 𝐸o = {𝑖 | 𝑤i = 𝑤o}.

Each 𝑜 strip can be cut in several ways, the specific way in which a strip is cut corresponds to a one-
dimensional cutting pattern. Considering 𝜃i

o as the number of times that item type 𝑖 is present in the strip 𝑜,
𝑖 ∈ 𝐼 we must have:

∑︁

i∈Eo

ℓi𝜃
i
o ≤ 𝐿 𝑜 = 1, . . . , 𝑂. (45)

Every feasible solution of (45) corresponds to a feasible one-dimensional cutting pattern for the strip 𝑜.
Let 𝑁o be the set of the distinct one-dimensional cutting patterns that can be obtained by cutting a strip of
dimensions 𝐿 × 𝑤o. For all 𝑜 ∈ 𝑂 and 𝑗 ∈ 𝑁o, let 𝛽j

o be the number of times the strip 𝑜 is cut according to the
cutting pattern 𝑗, ∀𝑗 ∈ 𝑁o and 𝑜 ∈ 𝑂, 𝛽j

o must satisfy:

∑︁

j∈No

O
∑︁

o=1

𝑤o𝛽
j
o ≤ 𝑊. (46)

MATHEMATICAL MODELS FOR THE CS-LOSP 2081

Finally, let 𝛾j
oi be the number of times item type 𝑖 is produced by cutting the strip 𝑜 according to the one-

dimensional cutting pattern 𝑗. A two-dimensional guillotine 2-stage exact cutting pattern can be represented

by an |𝐼|−dimensional vector α
(j) = (𝛼

(j)
1 , 𝛼

(j)
2 , . . . , 𝛼

(j)
|I|)

t where the 𝑖th coordinate corresponds to the number
of times that item type 𝑖 is present in the cutting pattern.

𝛼
(j)
i = 𝛾j

oi𝛽
j
o 𝑖 ∈ 𝐼. (47)

The number of cutting patterns of a class depends on the dimension of the items (length and width) and the
number of different types of items. For classes such that the size of the items is relatively small or that there
are a lot of items of different types, the number of feasible cutting patterns can be excessively large, making it
difficult to solve the problem up to optimality.

In this subsection, we show that there are two subsets of the cutting patterns that can be eliminated without
affecting the CS-LOSP optimal solution. The first one regards the cutting patterns that become infeasible due
to the limitation on the number of open stacks. Whenever a cutting pattern is performed, the stacks related to
the cut items must be opened. Thus, if the number of different types of items in a single cutting pattern already
exceeds the maximum limit of stacks that can be opened simultaneously, this cutting pattern cannot be part
of the solution and can be removed from the problem without changing the CS-LOSP optimal solution. The
second one regards the cutting patterns that are dominated by another cutting pattern. We define dominated
cutting patterns, in the context of a CS-LOSP, through Proposition 3, as follows:

Proposition 3. In a CS-LOSP in which overproduction is allowed, and the objective is to minimize the

number of cut objects, consider two distinct cutting patterns: α
(j1) = (𝛼

(j1)
1 , 𝛼

(j1)
2 , . . . , 𝛼

(j1)
|I|)T and α

(j2) =

(𝛼
(j2)
1 , 𝛼

(j2)
2 , . . . , 𝛼

(j2)
|I|)T . If both cutting patterns produce the same types of items when cut, that is, for all 𝑖 such

that 𝛼
(j1)
i = 0, we have 𝛼

(j2)
i = 0 and vice versa, and 𝛼

(j2)
i ≥ 𝛼

(j1)
i for 𝑖 ∈ 𝐼. Then, the cutting pattern α

(j1) is

dominated by the cutting pattern α
(j2). Therefore, α

(j1) can be removed from the problem without changing the

optimal CS-LOSP solution.

Proof. Consider an optimal solution for the CS-LOSP in which the cutting pattern α
(j1) is part of the solution.

When 𝛼
(j2)
i ≥ 𝛼

(j1)
i for 𝑖 ∈ 𝐼, then the quantity of items obtained from the cutting pattern 𝑗2 is equal to or

greater than the quantity of items obtained from the cutting pattern 𝑗1, for any type of item. Therefore, when
replacing the cutting pattern 𝑗1 by the cutting pattern 𝑗2, the quantity of items remains the same or increases,
this way the demand constraints are fulfilled and the quantity of used objects remains the same. Furthermore,

if for all 𝑖 such that 𝛼
(j1)
i = 0, we have 𝛼

(j2)
i = 0, and vice versa, then the number of open stacks is exactly

the same, since both cutting patterns generate the same types of items. Therefore, an execution of the cutting
pattern 𝑗1 can be replaced by the execution of the cutting pattern 𝑗2 without changing the value of the objective
function. Thus, the removal of the cutting pattern 𝑗1 does not change the value of the objective function at all
in an optimal solution. In this case, the cutting pattern 𝑗1 is dominated by the cutting pattern 𝑗2. �

Proposition 3 guarantees that all cutting patterns dominated by some other cutting pattern can be removed
without altering the optimal solution to the problem. Consequently, the overall number of cutting patterns is
reduced. The number of variables and constraints of the models proposed in this research is closely linked to the
number of cutting patterns. Thus, adopting the strategy of removing dominated cutting patterns considerably
reduces the computational complexity of the problem and, therefore, this procedure is used in computational
tests.

Similar to the formulations proposed in [2, 24], the formulations proposed in this research require that the
feasible cutting patterns be determined a priori. The amount of feasible cutting patterns can be reduced due
to Proposition 3. Furthermore, observe that if a cutting pattern produces more than 𝐶 types of items it is
infeasible in the context of CS-LOSP, therefore we only generate cutting patterns that produce at most four
different item types, since this is the biggest value of 𝐶 considered in the computational experiments performed

2082 G.G. GUIMARÃES AND K.C. POLDI

Table 1. Average number of variables and constraints regarding IYL, Formulation I and
Formulation II models and Classes 1–4.

Number of variables
Class IYL Formulation I Formulation II

1 317.66× 10 562.70 181.17× 10
2 383.669× 103 230.87× 102 197.49× 103

3 154.88× 10 424.60 137.14× 10
4 281.39× 102 869.18× 10 729.27× 102

Number of constraints
1 804.15× 10 955.9 224.72× 10
2 123.56618× 104 593.29× 102 199.79× 103

3 316.38× 10 677.70 171.30× 10
4 748.115× 102 196.49× 102 744.27× 102

in this section. Hence, the first step for carrying out the computational experiments, is the generation of the
feasible cutting patterns, ignoring the dominated patterns in accordance with Proposition 3 and those such that
the number of items generated from their execution is greater than four. This set of generated cutting patterns
is used in all computational experiments performed in this section.

4.3. Models size

By sequencing sets of cutting patterns of the same type rather than sequencing the cutting patterns individ-
ually, it is possible to significantly reduce the number of variables and constraints of the models. While the IYL
model, proposed in [24], has 2|𝐼|𝑁 + 𝑁2 + 2𝑁 − |𝐼| variables, the Formulation I has 2|𝐼|𝑁2 + 𝑁2

2 + 2𝑁 − |𝐼|
variables. Since the value of 𝑁2 can be significantly lower than the value of 𝑁 , the number of variables in
the Formulation I tends to be smaller than the number of variables in the IYL model.

The same happens for the amount of constraints, while the IYL formulation has 𝑁(5 + |𝐼| +
∑︀

i∈I |𝑃i|) + 1
constraints, the Formulation I has 2𝑁 + 𝑁2(7 + |𝐼| +

∑︀

i∈I |𝑃
i
2|) + 1 constraints, and again, we can expect a

reduction in the amount of constraints.

The Formulation II has 2(𝑁 + 1) + (𝑁2 + 1)2 − (𝑁2 + 1) +
∑︀

k,f∈J′

2

k ̸=f

|(𝐼∖𝐼k) ∪ (𝐼k∖𝐼f)| + 𝑁2 variables and

|𝐼| + 2𝑁 + 8𝑁2 + 3𝑁2
2 +

∑︀

k∈J′

2
|𝐼∖𝐼k| +

∑︀

k,f∈J′

2

k ̸=f

|𝐼∖𝐼f | + 4 constraints. Table 1 shows the comparison between

the number of variables and constraints regarding the three formulations for Classes 1–4.

We can notice that, among the three formulations, the Formulation I is the most compact. Moreover, the
proposed Formulation I and Formulation II have a lower number of constraints and variables when compared
to the formulation from the literature. The difference in size of the models is particularly noticeable for classes
with items of small size, i.e., Classes 1 and 2.

4.4. Analysis of the quality of linear programming relaxation

The linear programming relaxation of an ILP model is an important tool to assess the model strength.
Moreover, the linear programming relaxation of a formulation can provide useful lower bounds. In order to
compare the strength of the formulations proposed in this research and the one proposed in [24], we perform
some computational experiments to compare the quality of the linear programming relaxation of the models. In
this subsection, we present the results for the computational experiments performed on 10 instances of Class 1
considering 𝐶 = 2, i.e., the maximum number of open stacks allowed was fixed at 2.

For this set of instances, the average value for the integer optimal solution to the CS-LOSP the equals to
347. Regarding the linear programming relaxation of the Formulation I and the model proposed in [24], both

MATHEMATICAL MODELS FOR THE CS-LOSP 2083

Table 2. Time spent to solve instances of Class 1 regarding the IYL, Formulation I and
Formulation II models as a function of the value of 𝐶.

Id C IYL F1 F2 OF C IYL F1 F2 OF C IYL F1 F2 OF

Class 1

1 2 0.09 0.35 0.09 467 3 0.22 0.37 0.53 467 4 0.12 0.07 0.15 467

2 2 0.12 0.78 0.09 334 3 0.24 0.07 0.10 334 4 0.14 0.08 0.16 334

3 2 0.11 0.08 0.09 401 3 0.15 0.09 0.13 401 4 0.20 0.08 0.21 401

4 2 0.32 0.19 0.10 187 3 19.15 0.16 0.23 173 4 3.88 0.19 3.11 173

5 2 0.05 0.70 0.08 249 3 0.09 0.07 0.15 249 4 0.06 0.06 0.32 249

6 2 0.73 0.27 0.33 243 3 9.60 0.24 0.68 224 4 11.42 0.31 1.01 224

7 2 – 17.70 – 233 3 2.52 1.56 0.33 227 4 3.64 0.15 0.63 227

8 2 3.36 0.75 0.31 387 3 0.19 0.10 0.21 387 4 0.13 0.08 0.19 387

9 2 1.01 0.07 0.25 395 3 0.08 0.09 0.12 395 4 0.07 0.05 0.24 395

10 2 0.75 0.12 0.09 574 3 0.07 0.54 0.16 574 4 0.07 0.05 0.18 574

Class 2

1 2 – – 441.03 426 3 – – – – 4 – – – –

2 2 1427.34 – 8.25 520 3 – 3757.72 – 511 4 – 1855.08 511

3 2 – – 602.25 448 3 – 3672.45 – 445 4 – 2159.90 2981.36 445

4 2 – – 2897.06 486 3 – – – – 4 – 1019.69 – 470

5 2 – – 54.48 523 3 – 1157.67 1042.81 510 4 – 1205.03 – 501

6 2 – 23.34 4.91 537 3 – 4368.41 221.69 535 4 – 2018.19 4886.98 535

7 2 – – 109.05 391 3 – 550.82 – 367 4 – – – –

8 2 – 623.50 37.90 529 3 – – – – 4 – 65.24 – 475

9 2 – – – – 3 – 157.18 106.67 555 4 – 2593.08 – 555

Class 3

1 2 0.95 0.07 0.09 369 3 0.92 0.18 0.14 369 4 0.71 0.10 0.16 369

2 2 0.80 0.12 0.16 412 3 0.13 0.07 0.15 412 4 0.09 0.05 0.21 412

3 2 4.21 0.05 0.05 534 3 0.09 0.05 0.13 534 4 0.05 0.21 0.16 534

4 2 0.08 0.07 0.06 376 3 0.11 0.06 0.08 376 4 0.05 0.06 0.13 376

5 2 0.22 0.06 0.15 245 3 0.63 0.13 0.17 245 4 0.54 0.09 0.46 245

6 2 0.07 0.05 0.08 658 3 0.09 0.02 0.21 658 4 0.07 0.05 0.15 658

7 2 0.06 0.03 0.05 637 3 0.05 0.03 0.08 637 4 0.02 0.02 0.08 637

8 2 0.06 0.02 0.07 671 3 0.03 0.02 0.06 671 4 0.02 0.02 0.08 671

9 2 2.23 0.26 0.25 323 3 1.95 0.27 0.70 323 4 0.41 0.09 1.29 323

10 2 0.18 0.02 0.04 853 3 0.25 0.02 0.05 853 4 0.02 0.02 0.05 853

Class 4

1 2 17.36 0.97 10.22 914 3 564.94 76.18 – 913 4 13.09 54.87 – 913

2 2 106.37 262.12 7.95 1090 3 319.28 7.10 – 1090 4 165.28 14.82 – 1090

3 2 789.44 662.93 18.53 606 3 – 1572.77 – 606

4 2 – – – – 3 9.31 6.42 3670.90 1042 4 2.34 7.05 – 1042

5 2 3.42 1044.19 45.45 1312 3 26.45 16.27 19.55 1312 4 108.77 11.20 – 1312

6 2 0.42 0.69 4.64 1478 3 0.42 0.69 4.75 1478 4 0.33 9.88 185.51 1478

7 2 17.11 7.25 1.57 1093 3 29.20 23.57 – 1093 4 39.99 0.56 – 1093

8 2 677.95 56.09 5.64 1388 3 14.19 49.89 – 1388 4 8.53 6.74 – 1388

9 2 14.46 0.44 0.76 1168 3 4.81 19.96 620.05 1168 4 19.48 6.63 – 1168

10 2 9.40 13.27 2.45 711 3 4.47 3.97 87.90 711 4 7.33 1.31 1025.38 711

average values equal 342.24; while the average value for linear programming relaxation of the Formulation II is
equal to 346.02. These results suggest that the Formulation II is stronger than the Formulation I and the model
proposed in [24] as well. This result is somewhat expected since both the Formulation I and the model proposed
in [24] are anchored in the [19], which, as stated in [5] is weaker than the formulation proposed in [5], in which
the Formulation II is based. A simple way to improve the quality of the linear programming relaxation is to
consider only cutting patterns in which at most 𝐶 items are generated. In this case, the linear programming
relaxation yields identical results for all the three formulations. Moreover, for the three of them, the average for
the linear programming relaxation is equal to 346.02 for the three formulations, corresponding to a difference
of only 0.28% from the integer programming problem.

4.5. Computational results

In this subsection, we compare the computational time spent to determine an optimal solution via the IYL,
Formulation I and Formulation II models for Classes 1 to 4 and the obtained results are presented in Table 2.

The CPLEX absolute GAP was set at its default of 10−6. Remembering that no cutting pattern with more
than 𝐶 item types was considered. The first column of Table 2 identifies the instance of the class; the second
column presents the value of 𝐶; the third, fourth and fifth columns present the computational time spent to
reach an optimal solution considering the IYL, Formulation I and Formulation II models, respectively. The
sixth column presents the value of the objective function of the optimal solution to the problem. The remaining
columns of the table repeat the same pattern of the second, third, fourth, fifth and sixth columns. In the Table 2
we refer to the Formulation I and Formulation II as F1 and F2, respectively. Instances in which none of the
three models was able to reach an optimal solution, within the time limit of 7200 s, were omitted from the table.

2084 G.G. GUIMARÃES AND K.C. POLDI

Among the 120 test instances, it was possible to solve 87, 103 and 88 by the IYL, Formulation I and
Formulation II models, respectively. The Formulation II model presents interesting results for the instances
where 𝐶 = 2, for these instances, while Formulation II outperforms the other two formulations by solving 36
instances up to optimality while the IYL and Formulation I models solve 29 and 31 instances, respectively. For
𝐶 = 3 and 𝐶 = 4 the Formulation I presents better results.

Based on the results presented in the previous tables, we can observe that the size of the items is a factor with
a great impact on computational time. For classes with items of smaller size, the time required to determine an
optimal solution was greater, and, therefore, the number of instances solved for these classes was smaller. This
result is expected since the smaller the size of the items, the greater the number of possible cutting patterns
and, consequently, the size of the model. Another parameter that influences the time required to determine an
optimal solution is the number of items of different types. Classes containing a greater number of types of items
require more computational time.

As discussed in Section 2, by sequencing subsets of cutting patterns of the same type instead of sequencing
the cutting patterns individually, it is possible to significantly reduce the number of variables and constraints in
the models. This reduction is particularly notable for classes in which the item size is shorter. The reduction in
the number of variables and constraints directly reflects on the time required to determine an optimal solution,
the models proposed in this research are able to solve a larger number of instances when compared to the
IYL formulation, the results are particularly remarkable for Class 2 in which the IYL formulation is able to
determine the optimal solution for only one instance, while the Formulation I and Formulation II solve 13 and
15 instances, respectively.

5. Conclusions and future research

In this research, we propose two new integer linear programming models for the cutting stock with limited
open stacks problem (CS-LOSP), both valid for the one-dimensional and the two-dimensional CS-LOSP. The
proposed models are compared with the formulation proposed in [24]. To guarantee the validity of the model,
several computational tests were performed with randomly generated two-dimensional instances of the CSP.
In order to eliminate symmetrical solutions of the problem and to reduce the search space for solutions, we
demonstrate that the CS-LOSP can be reformulated as the problem of determining how often cutting patterns
should be performed in order to minimize material waste while simultaneously finding a sequence of sets of
cutting patterns of the same type whose execution respects the pre-established maximum limit on the number
of open stacks. It is worth mentioning that sequencing sets of cutting patterns of the same type instead of
sequencing all the cutting patterns individually enables a reduction on the number of variables and constraints
in the model. This reduction is more expressive for instances where the demanded item sizes are relatively
small. Furthermore, by removing symmetric solutions from the problem, it is possible to notice an increase in
model performance. Considering the 120 instances used in the computational tests, it was possible to solve a
total of 102 and 89 instances respecting the time limitation of 7200, using Formulation I and Formulation II,
respectively, while for the model proposed in [24], a total of 87 instances were solved. Although the proposed
modeling presents interesting results, the computational tests performed are limited and suggest the need to
develop more efficient models for the resolution of the CS-LOSP, especially to deal with instances containing a
large number of different types of items where the results obtained in this work are unsatisfactory. As further
research, we recommend investigating alternative solution approaches, such as heuristics and metaheuristics,
aiming to solve larger instances.

Funding informations. This research was funded by the São Paulo Research Foundation – FAPESP (grant 2016/01860-1)

and by the Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior – Brasil (CAPES) – Finance Code 001.

MATHEMATICAL MODELS FOR THE CS-LOSP 2085

References

[1] C. Arbib, F. Marinelli and F. Pezzella, An LP-based tabu search for batch scheduling in a cutting process with finite buffers.
Int. J. Prod. Econ. 136 (2012) 287–296.

[2] C. Arbib, F. Marinelli and P. Ventura, One-dimensional cutting stock with a limited number of open stacks: bounds and
solutions from a new integer linear programming model. Int. Trans. Oper. Res. 23 (2016) 47–63.

[3] J.C. Becceneri, H.H. Yanasse and N.Y. Soma, A method for solving the minimization of the maximum number of open stacks
problem within a cutting process. Comput. Oper. Res. 31 (2004) 2315–2332.

[4] G. Belov and G. Scheithauer, Setup and open-stacks minimization in one-dimensional stock cutting. INFORMS J. Comput.
19 (2007) 27–35.

[5] D. Catanzaro, L. Golveia and M. Labbé, Improved integer linear programming formulations for the job sequencing and tool
switching problem. Eur. J. Oper. Res. 244 (2015) 766–777.

[6] J.F. Côté and M. Iori, The meet-in-the-middle principle for cutting and packing problems. INFORMS J. Comput. 30 (2018)
646–661.

[7] M. Delorme and M. Iori, Enhanced pseudo-polynomial formulations for bin packing and cutting stock problems. INFORMS
J. Comput. 32 (2020) 101–119.

[8] E. Faggioli and C.A. Bentivoglio, Heuristic and exact methods for the cutting sequencing problem. Eur. J. Oper. Res. 110

(1998) 564–575.

[9] P.C. Gilmore and R.E. Gomory, A linear programming approach to the cutting-stock problem. Oper. Res. 9 (1961) 849–859.

[10] P.C. Gilmore and R.E. Gomory, A linear programming approach to the cutting-stock problem – part II. Oper. Res. 11 (1963)
863–888.

[11] P.C. Gilmore and R.E. Gomory, Multi-stage cutting stock problems of two and more dimensions. Oper. Res. 13 (1965) 94–120.

[12] L.V. Kantorovich, Mathematical methods of organizing and planning production. Manage. Sci. 6 (1960) 366–422.

[13] G. Laporte, J.J. Salazar-González and F. Semet, Exact algorithms for the job sequencing and tool switching problem. IIE
Trans. 36 (2004) 37–45.

[14] R. Macedo, C. Alves and J.M. Valério de Carvalho, Arc-flow model for the two-dimensional guillotine cutting stock problem.
Comput. Oper. Res. 37 (2010) 991–1001.

[15] M. Martin, H.H. Yanasse and M.J. Pinto, Mathematical models for the minimization of open stacks problem. Int. Trans. Oper.
Res. 29 (2022) 2944–2967.

[16] M. Martin, H.H. Yanasse, M.O. Santos and R. Morabito, Models for two- and three-stage two-dimensional cutting stock
problems with a limited number of open stacks. Int. J. Prod. Res. 61 (2023) 2895–2916.

[17] C.E. Miller, A.W. Tucker and R.A. Zemlin, Integer programming formulation of traveling salesman problems. J. ACM (JACM)
7 (1960) 326–329.

[18] K.C. Poldi and M.N. Arenales, Heuristics for the one-dimensional cutting stock problem with limited multiple stock lengths.
Comput. Oper. Res. 36 (2009) 2074–2081.

[19] C.S. Tang and E.V. Denardo, Models arising from a flexible manufacturing machine, part I: minimization of the number of
the tool switches. Oper. Res. 36 (1988) 767–777.

[20] J.M. Valério de Carvalho, Exact solution of bin-packing problems using column generation and branch-and-bound. Ann. Oper.
Res. 86 (1999) 629–659.

[21] G. Wäscher, H. Haußner and H. Schumann, An improved typology of cutting and packing problems. Eur. J. Oper. Res. 183

(2007) 1109–1130, 12.

[22] L.A. Wolsey, Valid inequalities, covering problems and discrete dynamic programs. Ann. Discrete Math. 1 (1977) 527–538.

[23] H.H. Yanasse, On a pattern sequencing problem to minimize the maximum number of open stacks. Eur. J. Oper. Res. 100

(1997) 454–463.

[24] H.H. Yanasse and M.J.P. Lamosa, An integrated cutting stock and sequencing problem. Eur. J. Oper. Res. 183 (2007) 1353–
1370.

Please help to maintain this journal in open access!

This journal is currently published in open access under the Subscribe to Open model
(S2O). We are thankful to our subscribers and supporters for making it possible to
publish this journal in open access in the current year, free of charge for authors and
readers.

Check with your library that it subscribes to the journal, or consider making a personal donation to
the S2O programme by contacting subscribers@edpsciences.org.

More information, including a list of supporters and financial transparency reports,

is available at https://edpsciences.org/en/subscribe-to-open-s2o.

